md: don't update metadata when stopping a read-only array.
[deliverable/linux.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 /* pers_list is a list of registered personalities protected
62 * by pers_lock.
63 * pers_lock does extra service to protect accesses to
64 * mddev->thread when the mutex cannot be held.
65 */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68
69 static void md_print_devices(void);
70
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74
75 static int remove_and_add_spares(struct mddev *mddev,
76 struct md_rdev *this);
77
78 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
79
80 /*
81 * Default number of read corrections we'll attempt on an rdev
82 * before ejecting it from the array. We divide the read error
83 * count by 2 for every hour elapsed between read errors.
84 */
85 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
86 /*
87 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
88 * is 1000 KB/sec, so the extra system load does not show up that much.
89 * Increase it if you want to have more _guaranteed_ speed. Note that
90 * the RAID driver will use the maximum available bandwidth if the IO
91 * subsystem is idle. There is also an 'absolute maximum' reconstruction
92 * speed limit - in case reconstruction slows down your system despite
93 * idle IO detection.
94 *
95 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
96 * or /sys/block/mdX/md/sync_speed_{min,max}
97 */
98
99 static int sysctl_speed_limit_min = 1000;
100 static int sysctl_speed_limit_max = 200000;
101 static inline int speed_min(struct mddev *mddev)
102 {
103 return mddev->sync_speed_min ?
104 mddev->sync_speed_min : sysctl_speed_limit_min;
105 }
106
107 static inline int speed_max(struct mddev *mddev)
108 {
109 return mddev->sync_speed_max ?
110 mddev->sync_speed_max : sysctl_speed_limit_max;
111 }
112
113 static struct ctl_table_header *raid_table_header;
114
115 static ctl_table raid_table[] = {
116 {
117 .procname = "speed_limit_min",
118 .data = &sysctl_speed_limit_min,
119 .maxlen = sizeof(int),
120 .mode = S_IRUGO|S_IWUSR,
121 .proc_handler = proc_dointvec,
122 },
123 {
124 .procname = "speed_limit_max",
125 .data = &sysctl_speed_limit_max,
126 .maxlen = sizeof(int),
127 .mode = S_IRUGO|S_IWUSR,
128 .proc_handler = proc_dointvec,
129 },
130 { }
131 };
132
133 static ctl_table raid_dir_table[] = {
134 {
135 .procname = "raid",
136 .maxlen = 0,
137 .mode = S_IRUGO|S_IXUGO,
138 .child = raid_table,
139 },
140 { }
141 };
142
143 static ctl_table raid_root_table[] = {
144 {
145 .procname = "dev",
146 .maxlen = 0,
147 .mode = 0555,
148 .child = raid_dir_table,
149 },
150 { }
151 };
152
153 static const struct block_device_operations md_fops;
154
155 static int start_readonly;
156
157 /* bio_clone_mddev
158 * like bio_clone, but with a local bio set
159 */
160
161 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
162 struct mddev *mddev)
163 {
164 struct bio *b;
165
166 if (!mddev || !mddev->bio_set)
167 return bio_alloc(gfp_mask, nr_iovecs);
168
169 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
170 if (!b)
171 return NULL;
172 return b;
173 }
174 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
175
176 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
177 struct mddev *mddev)
178 {
179 if (!mddev || !mddev->bio_set)
180 return bio_clone(bio, gfp_mask);
181
182 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
183 }
184 EXPORT_SYMBOL_GPL(bio_clone_mddev);
185
186 void md_trim_bio(struct bio *bio, int offset, int size)
187 {
188 /* 'bio' is a cloned bio which we need to trim to match
189 * the given offset and size.
190 * This requires adjusting bi_sector, bi_size, and bi_io_vec
191 */
192 int i;
193 struct bio_vec *bvec;
194 int sofar = 0;
195
196 size <<= 9;
197 if (offset == 0 && size == bio->bi_size)
198 return;
199
200 bio->bi_sector += offset;
201 bio->bi_size = size;
202 offset <<= 9;
203 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
204
205 while (bio->bi_idx < bio->bi_vcnt &&
206 bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
207 /* remove this whole bio_vec */
208 offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
209 bio->bi_idx++;
210 }
211 if (bio->bi_idx < bio->bi_vcnt) {
212 bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
213 bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
214 }
215 /* avoid any complications with bi_idx being non-zero*/
216 if (bio->bi_idx) {
217 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
218 (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
219 bio->bi_vcnt -= bio->bi_idx;
220 bio->bi_idx = 0;
221 }
222 /* Make sure vcnt and last bv are not too big */
223 bio_for_each_segment(bvec, bio, i) {
224 if (sofar + bvec->bv_len > size)
225 bvec->bv_len = size - sofar;
226 if (bvec->bv_len == 0) {
227 bio->bi_vcnt = i;
228 break;
229 }
230 sofar += bvec->bv_len;
231 }
232 }
233 EXPORT_SYMBOL_GPL(md_trim_bio);
234
235 /*
236 * We have a system wide 'event count' that is incremented
237 * on any 'interesting' event, and readers of /proc/mdstat
238 * can use 'poll' or 'select' to find out when the event
239 * count increases.
240 *
241 * Events are:
242 * start array, stop array, error, add device, remove device,
243 * start build, activate spare
244 */
245 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
246 static atomic_t md_event_count;
247 void md_new_event(struct mddev *mddev)
248 {
249 atomic_inc(&md_event_count);
250 wake_up(&md_event_waiters);
251 }
252 EXPORT_SYMBOL_GPL(md_new_event);
253
254 /* Alternate version that can be called from interrupts
255 * when calling sysfs_notify isn't needed.
256 */
257 static void md_new_event_inintr(struct mddev *mddev)
258 {
259 atomic_inc(&md_event_count);
260 wake_up(&md_event_waiters);
261 }
262
263 /*
264 * Enables to iterate over all existing md arrays
265 * all_mddevs_lock protects this list.
266 */
267 static LIST_HEAD(all_mddevs);
268 static DEFINE_SPINLOCK(all_mddevs_lock);
269
270
271 /*
272 * iterates through all used mddevs in the system.
273 * We take care to grab the all_mddevs_lock whenever navigating
274 * the list, and to always hold a refcount when unlocked.
275 * Any code which breaks out of this loop while own
276 * a reference to the current mddev and must mddev_put it.
277 */
278 #define for_each_mddev(_mddev,_tmp) \
279 \
280 for (({ spin_lock(&all_mddevs_lock); \
281 _tmp = all_mddevs.next; \
282 _mddev = NULL;}); \
283 ({ if (_tmp != &all_mddevs) \
284 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
285 spin_unlock(&all_mddevs_lock); \
286 if (_mddev) mddev_put(_mddev); \
287 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
288 _tmp != &all_mddevs;}); \
289 ({ spin_lock(&all_mddevs_lock); \
290 _tmp = _tmp->next;}) \
291 )
292
293
294 /* Rather than calling directly into the personality make_request function,
295 * IO requests come here first so that we can check if the device is
296 * being suspended pending a reconfiguration.
297 * We hold a refcount over the call to ->make_request. By the time that
298 * call has finished, the bio has been linked into some internal structure
299 * and so is visible to ->quiesce(), so we don't need the refcount any more.
300 */
301 static void md_make_request(struct request_queue *q, struct bio *bio)
302 {
303 const int rw = bio_data_dir(bio);
304 struct mddev *mddev = q->queuedata;
305 int cpu;
306 unsigned int sectors;
307
308 if (mddev == NULL || mddev->pers == NULL
309 || !mddev->ready) {
310 bio_io_error(bio);
311 return;
312 }
313 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
314 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
315 return;
316 }
317 smp_rmb(); /* Ensure implications of 'active' are visible */
318 rcu_read_lock();
319 if (mddev->suspended) {
320 DEFINE_WAIT(__wait);
321 for (;;) {
322 prepare_to_wait(&mddev->sb_wait, &__wait,
323 TASK_UNINTERRUPTIBLE);
324 if (!mddev->suspended)
325 break;
326 rcu_read_unlock();
327 schedule();
328 rcu_read_lock();
329 }
330 finish_wait(&mddev->sb_wait, &__wait);
331 }
332 atomic_inc(&mddev->active_io);
333 rcu_read_unlock();
334
335 /*
336 * save the sectors now since our bio can
337 * go away inside make_request
338 */
339 sectors = bio_sectors(bio);
340 mddev->pers->make_request(mddev, bio);
341
342 cpu = part_stat_lock();
343 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
344 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
345 part_stat_unlock();
346
347 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
348 wake_up(&mddev->sb_wait);
349 }
350
351 /* mddev_suspend makes sure no new requests are submitted
352 * to the device, and that any requests that have been submitted
353 * are completely handled.
354 * Once ->stop is called and completes, the module will be completely
355 * unused.
356 */
357 void mddev_suspend(struct mddev *mddev)
358 {
359 BUG_ON(mddev->suspended);
360 mddev->suspended = 1;
361 synchronize_rcu();
362 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
363 mddev->pers->quiesce(mddev, 1);
364
365 del_timer_sync(&mddev->safemode_timer);
366 }
367 EXPORT_SYMBOL_GPL(mddev_suspend);
368
369 void mddev_resume(struct mddev *mddev)
370 {
371 mddev->suspended = 0;
372 wake_up(&mddev->sb_wait);
373 mddev->pers->quiesce(mddev, 0);
374
375 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
376 md_wakeup_thread(mddev->thread);
377 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
378 }
379 EXPORT_SYMBOL_GPL(mddev_resume);
380
381 int mddev_congested(struct mddev *mddev, int bits)
382 {
383 return mddev->suspended;
384 }
385 EXPORT_SYMBOL(mddev_congested);
386
387 /*
388 * Generic flush handling for md
389 */
390
391 static void md_end_flush(struct bio *bio, int err)
392 {
393 struct md_rdev *rdev = bio->bi_private;
394 struct mddev *mddev = rdev->mddev;
395
396 rdev_dec_pending(rdev, mddev);
397
398 if (atomic_dec_and_test(&mddev->flush_pending)) {
399 /* The pre-request flush has finished */
400 queue_work(md_wq, &mddev->flush_work);
401 }
402 bio_put(bio);
403 }
404
405 static void md_submit_flush_data(struct work_struct *ws);
406
407 static void submit_flushes(struct work_struct *ws)
408 {
409 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
410 struct md_rdev *rdev;
411
412 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
413 atomic_set(&mddev->flush_pending, 1);
414 rcu_read_lock();
415 rdev_for_each_rcu(rdev, mddev)
416 if (rdev->raid_disk >= 0 &&
417 !test_bit(Faulty, &rdev->flags)) {
418 /* Take two references, one is dropped
419 * when request finishes, one after
420 * we reclaim rcu_read_lock
421 */
422 struct bio *bi;
423 atomic_inc(&rdev->nr_pending);
424 atomic_inc(&rdev->nr_pending);
425 rcu_read_unlock();
426 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
427 bi->bi_end_io = md_end_flush;
428 bi->bi_private = rdev;
429 bi->bi_bdev = rdev->bdev;
430 atomic_inc(&mddev->flush_pending);
431 submit_bio(WRITE_FLUSH, bi);
432 rcu_read_lock();
433 rdev_dec_pending(rdev, mddev);
434 }
435 rcu_read_unlock();
436 if (atomic_dec_and_test(&mddev->flush_pending))
437 queue_work(md_wq, &mddev->flush_work);
438 }
439
440 static void md_submit_flush_data(struct work_struct *ws)
441 {
442 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
443 struct bio *bio = mddev->flush_bio;
444
445 if (bio->bi_size == 0)
446 /* an empty barrier - all done */
447 bio_endio(bio, 0);
448 else {
449 bio->bi_rw &= ~REQ_FLUSH;
450 mddev->pers->make_request(mddev, bio);
451 }
452
453 mddev->flush_bio = NULL;
454 wake_up(&mddev->sb_wait);
455 }
456
457 void md_flush_request(struct mddev *mddev, struct bio *bio)
458 {
459 spin_lock_irq(&mddev->write_lock);
460 wait_event_lock_irq(mddev->sb_wait,
461 !mddev->flush_bio,
462 mddev->write_lock);
463 mddev->flush_bio = bio;
464 spin_unlock_irq(&mddev->write_lock);
465
466 INIT_WORK(&mddev->flush_work, submit_flushes);
467 queue_work(md_wq, &mddev->flush_work);
468 }
469 EXPORT_SYMBOL(md_flush_request);
470
471 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
472 {
473 struct mddev *mddev = cb->data;
474 md_wakeup_thread(mddev->thread);
475 kfree(cb);
476 }
477 EXPORT_SYMBOL(md_unplug);
478
479 static inline struct mddev *mddev_get(struct mddev *mddev)
480 {
481 atomic_inc(&mddev->active);
482 return mddev;
483 }
484
485 static void mddev_delayed_delete(struct work_struct *ws);
486
487 static void mddev_put(struct mddev *mddev)
488 {
489 struct bio_set *bs = NULL;
490
491 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
492 return;
493 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
494 mddev->ctime == 0 && !mddev->hold_active) {
495 /* Array is not configured at all, and not held active,
496 * so destroy it */
497 list_del_init(&mddev->all_mddevs);
498 bs = mddev->bio_set;
499 mddev->bio_set = NULL;
500 if (mddev->gendisk) {
501 /* We did a probe so need to clean up. Call
502 * queue_work inside the spinlock so that
503 * flush_workqueue() after mddev_find will
504 * succeed in waiting for the work to be done.
505 */
506 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
507 queue_work(md_misc_wq, &mddev->del_work);
508 } else
509 kfree(mddev);
510 }
511 spin_unlock(&all_mddevs_lock);
512 if (bs)
513 bioset_free(bs);
514 }
515
516 void mddev_init(struct mddev *mddev)
517 {
518 mutex_init(&mddev->open_mutex);
519 mutex_init(&mddev->reconfig_mutex);
520 mutex_init(&mddev->bitmap_info.mutex);
521 INIT_LIST_HEAD(&mddev->disks);
522 INIT_LIST_HEAD(&mddev->all_mddevs);
523 init_timer(&mddev->safemode_timer);
524 atomic_set(&mddev->active, 1);
525 atomic_set(&mddev->openers, 0);
526 atomic_set(&mddev->active_io, 0);
527 spin_lock_init(&mddev->write_lock);
528 atomic_set(&mddev->flush_pending, 0);
529 init_waitqueue_head(&mddev->sb_wait);
530 init_waitqueue_head(&mddev->recovery_wait);
531 mddev->reshape_position = MaxSector;
532 mddev->reshape_backwards = 0;
533 mddev->resync_min = 0;
534 mddev->resync_max = MaxSector;
535 mddev->level = LEVEL_NONE;
536 }
537 EXPORT_SYMBOL_GPL(mddev_init);
538
539 static struct mddev * mddev_find(dev_t unit)
540 {
541 struct mddev *mddev, *new = NULL;
542
543 if (unit && MAJOR(unit) != MD_MAJOR)
544 unit &= ~((1<<MdpMinorShift)-1);
545
546 retry:
547 spin_lock(&all_mddevs_lock);
548
549 if (unit) {
550 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
551 if (mddev->unit == unit) {
552 mddev_get(mddev);
553 spin_unlock(&all_mddevs_lock);
554 kfree(new);
555 return mddev;
556 }
557
558 if (new) {
559 list_add(&new->all_mddevs, &all_mddevs);
560 spin_unlock(&all_mddevs_lock);
561 new->hold_active = UNTIL_IOCTL;
562 return new;
563 }
564 } else if (new) {
565 /* find an unused unit number */
566 static int next_minor = 512;
567 int start = next_minor;
568 int is_free = 0;
569 int dev = 0;
570 while (!is_free) {
571 dev = MKDEV(MD_MAJOR, next_minor);
572 next_minor++;
573 if (next_minor > MINORMASK)
574 next_minor = 0;
575 if (next_minor == start) {
576 /* Oh dear, all in use. */
577 spin_unlock(&all_mddevs_lock);
578 kfree(new);
579 return NULL;
580 }
581
582 is_free = 1;
583 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
584 if (mddev->unit == dev) {
585 is_free = 0;
586 break;
587 }
588 }
589 new->unit = dev;
590 new->md_minor = MINOR(dev);
591 new->hold_active = UNTIL_STOP;
592 list_add(&new->all_mddevs, &all_mddevs);
593 spin_unlock(&all_mddevs_lock);
594 return new;
595 }
596 spin_unlock(&all_mddevs_lock);
597
598 new = kzalloc(sizeof(*new), GFP_KERNEL);
599 if (!new)
600 return NULL;
601
602 new->unit = unit;
603 if (MAJOR(unit) == MD_MAJOR)
604 new->md_minor = MINOR(unit);
605 else
606 new->md_minor = MINOR(unit) >> MdpMinorShift;
607
608 mddev_init(new);
609
610 goto retry;
611 }
612
613 static inline int mddev_lock(struct mddev * mddev)
614 {
615 return mutex_lock_interruptible(&mddev->reconfig_mutex);
616 }
617
618 static inline int mddev_is_locked(struct mddev *mddev)
619 {
620 return mutex_is_locked(&mddev->reconfig_mutex);
621 }
622
623 static inline int mddev_trylock(struct mddev * mddev)
624 {
625 return mutex_trylock(&mddev->reconfig_mutex);
626 }
627
628 static struct attribute_group md_redundancy_group;
629
630 static void mddev_unlock(struct mddev * mddev)
631 {
632 if (mddev->to_remove) {
633 /* These cannot be removed under reconfig_mutex as
634 * an access to the files will try to take reconfig_mutex
635 * while holding the file unremovable, which leads to
636 * a deadlock.
637 * So hold set sysfs_active while the remove in happeing,
638 * and anything else which might set ->to_remove or my
639 * otherwise change the sysfs namespace will fail with
640 * -EBUSY if sysfs_active is still set.
641 * We set sysfs_active under reconfig_mutex and elsewhere
642 * test it under the same mutex to ensure its correct value
643 * is seen.
644 */
645 struct attribute_group *to_remove = mddev->to_remove;
646 mddev->to_remove = NULL;
647 mddev->sysfs_active = 1;
648 mutex_unlock(&mddev->reconfig_mutex);
649
650 if (mddev->kobj.sd) {
651 if (to_remove != &md_redundancy_group)
652 sysfs_remove_group(&mddev->kobj, to_remove);
653 if (mddev->pers == NULL ||
654 mddev->pers->sync_request == NULL) {
655 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
656 if (mddev->sysfs_action)
657 sysfs_put(mddev->sysfs_action);
658 mddev->sysfs_action = NULL;
659 }
660 }
661 mddev->sysfs_active = 0;
662 } else
663 mutex_unlock(&mddev->reconfig_mutex);
664
665 /* As we've dropped the mutex we need a spinlock to
666 * make sure the thread doesn't disappear
667 */
668 spin_lock(&pers_lock);
669 md_wakeup_thread(mddev->thread);
670 spin_unlock(&pers_lock);
671 }
672
673 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
674 {
675 struct md_rdev *rdev;
676
677 rdev_for_each(rdev, mddev)
678 if (rdev->desc_nr == nr)
679 return rdev;
680
681 return NULL;
682 }
683
684 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
685 {
686 struct md_rdev *rdev;
687
688 rdev_for_each_rcu(rdev, mddev)
689 if (rdev->desc_nr == nr)
690 return rdev;
691
692 return NULL;
693 }
694
695 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
696 {
697 struct md_rdev *rdev;
698
699 rdev_for_each(rdev, mddev)
700 if (rdev->bdev->bd_dev == dev)
701 return rdev;
702
703 return NULL;
704 }
705
706 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
707 {
708 struct md_rdev *rdev;
709
710 rdev_for_each_rcu(rdev, mddev)
711 if (rdev->bdev->bd_dev == dev)
712 return rdev;
713
714 return NULL;
715 }
716
717 static struct md_personality *find_pers(int level, char *clevel)
718 {
719 struct md_personality *pers;
720 list_for_each_entry(pers, &pers_list, list) {
721 if (level != LEVEL_NONE && pers->level == level)
722 return pers;
723 if (strcmp(pers->name, clevel)==0)
724 return pers;
725 }
726 return NULL;
727 }
728
729 /* return the offset of the super block in 512byte sectors */
730 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
731 {
732 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
733 return MD_NEW_SIZE_SECTORS(num_sectors);
734 }
735
736 static int alloc_disk_sb(struct md_rdev * rdev)
737 {
738 if (rdev->sb_page)
739 MD_BUG();
740
741 rdev->sb_page = alloc_page(GFP_KERNEL);
742 if (!rdev->sb_page) {
743 printk(KERN_ALERT "md: out of memory.\n");
744 return -ENOMEM;
745 }
746
747 return 0;
748 }
749
750 void md_rdev_clear(struct md_rdev *rdev)
751 {
752 if (rdev->sb_page) {
753 put_page(rdev->sb_page);
754 rdev->sb_loaded = 0;
755 rdev->sb_page = NULL;
756 rdev->sb_start = 0;
757 rdev->sectors = 0;
758 }
759 if (rdev->bb_page) {
760 put_page(rdev->bb_page);
761 rdev->bb_page = NULL;
762 }
763 kfree(rdev->badblocks.page);
764 rdev->badblocks.page = NULL;
765 }
766 EXPORT_SYMBOL_GPL(md_rdev_clear);
767
768 static void super_written(struct bio *bio, int error)
769 {
770 struct md_rdev *rdev = bio->bi_private;
771 struct mddev *mddev = rdev->mddev;
772
773 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
774 printk("md: super_written gets error=%d, uptodate=%d\n",
775 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
776 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
777 md_error(mddev, rdev);
778 }
779
780 if (atomic_dec_and_test(&mddev->pending_writes))
781 wake_up(&mddev->sb_wait);
782 bio_put(bio);
783 }
784
785 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
786 sector_t sector, int size, struct page *page)
787 {
788 /* write first size bytes of page to sector of rdev
789 * Increment mddev->pending_writes before returning
790 * and decrement it on completion, waking up sb_wait
791 * if zero is reached.
792 * If an error occurred, call md_error
793 */
794 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
795
796 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
797 bio->bi_sector = sector;
798 bio_add_page(bio, page, size, 0);
799 bio->bi_private = rdev;
800 bio->bi_end_io = super_written;
801
802 atomic_inc(&mddev->pending_writes);
803 submit_bio(WRITE_FLUSH_FUA, bio);
804 }
805
806 void md_super_wait(struct mddev *mddev)
807 {
808 /* wait for all superblock writes that were scheduled to complete */
809 DEFINE_WAIT(wq);
810 for(;;) {
811 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
812 if (atomic_read(&mddev->pending_writes)==0)
813 break;
814 schedule();
815 }
816 finish_wait(&mddev->sb_wait, &wq);
817 }
818
819 static void bi_complete(struct bio *bio, int error)
820 {
821 complete((struct completion*)bio->bi_private);
822 }
823
824 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
825 struct page *page, int rw, bool metadata_op)
826 {
827 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
828 struct completion event;
829 int ret;
830
831 rw |= REQ_SYNC;
832
833 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
834 rdev->meta_bdev : rdev->bdev;
835 if (metadata_op)
836 bio->bi_sector = sector + rdev->sb_start;
837 else if (rdev->mddev->reshape_position != MaxSector &&
838 (rdev->mddev->reshape_backwards ==
839 (sector >= rdev->mddev->reshape_position)))
840 bio->bi_sector = sector + rdev->new_data_offset;
841 else
842 bio->bi_sector = sector + rdev->data_offset;
843 bio_add_page(bio, page, size, 0);
844 init_completion(&event);
845 bio->bi_private = &event;
846 bio->bi_end_io = bi_complete;
847 submit_bio(rw, bio);
848 wait_for_completion(&event);
849
850 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
851 bio_put(bio);
852 return ret;
853 }
854 EXPORT_SYMBOL_GPL(sync_page_io);
855
856 static int read_disk_sb(struct md_rdev * rdev, int size)
857 {
858 char b[BDEVNAME_SIZE];
859 if (!rdev->sb_page) {
860 MD_BUG();
861 return -EINVAL;
862 }
863 if (rdev->sb_loaded)
864 return 0;
865
866
867 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
868 goto fail;
869 rdev->sb_loaded = 1;
870 return 0;
871
872 fail:
873 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
874 bdevname(rdev->bdev,b));
875 return -EINVAL;
876 }
877
878 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
879 {
880 return sb1->set_uuid0 == sb2->set_uuid0 &&
881 sb1->set_uuid1 == sb2->set_uuid1 &&
882 sb1->set_uuid2 == sb2->set_uuid2 &&
883 sb1->set_uuid3 == sb2->set_uuid3;
884 }
885
886 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
887 {
888 int ret;
889 mdp_super_t *tmp1, *tmp2;
890
891 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
892 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
893
894 if (!tmp1 || !tmp2) {
895 ret = 0;
896 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
897 goto abort;
898 }
899
900 *tmp1 = *sb1;
901 *tmp2 = *sb2;
902
903 /*
904 * nr_disks is not constant
905 */
906 tmp1->nr_disks = 0;
907 tmp2->nr_disks = 0;
908
909 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
910 abort:
911 kfree(tmp1);
912 kfree(tmp2);
913 return ret;
914 }
915
916
917 static u32 md_csum_fold(u32 csum)
918 {
919 csum = (csum & 0xffff) + (csum >> 16);
920 return (csum & 0xffff) + (csum >> 16);
921 }
922
923 static unsigned int calc_sb_csum(mdp_super_t * sb)
924 {
925 u64 newcsum = 0;
926 u32 *sb32 = (u32*)sb;
927 int i;
928 unsigned int disk_csum, csum;
929
930 disk_csum = sb->sb_csum;
931 sb->sb_csum = 0;
932
933 for (i = 0; i < MD_SB_BYTES/4 ; i++)
934 newcsum += sb32[i];
935 csum = (newcsum & 0xffffffff) + (newcsum>>32);
936
937
938 #ifdef CONFIG_ALPHA
939 /* This used to use csum_partial, which was wrong for several
940 * reasons including that different results are returned on
941 * different architectures. It isn't critical that we get exactly
942 * the same return value as before (we always csum_fold before
943 * testing, and that removes any differences). However as we
944 * know that csum_partial always returned a 16bit value on
945 * alphas, do a fold to maximise conformity to previous behaviour.
946 */
947 sb->sb_csum = md_csum_fold(disk_csum);
948 #else
949 sb->sb_csum = disk_csum;
950 #endif
951 return csum;
952 }
953
954
955 /*
956 * Handle superblock details.
957 * We want to be able to handle multiple superblock formats
958 * so we have a common interface to them all, and an array of
959 * different handlers.
960 * We rely on user-space to write the initial superblock, and support
961 * reading and updating of superblocks.
962 * Interface methods are:
963 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
964 * loads and validates a superblock on dev.
965 * if refdev != NULL, compare superblocks on both devices
966 * Return:
967 * 0 - dev has a superblock that is compatible with refdev
968 * 1 - dev has a superblock that is compatible and newer than refdev
969 * so dev should be used as the refdev in future
970 * -EINVAL superblock incompatible or invalid
971 * -othererror e.g. -EIO
972 *
973 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
974 * Verify that dev is acceptable into mddev.
975 * The first time, mddev->raid_disks will be 0, and data from
976 * dev should be merged in. Subsequent calls check that dev
977 * is new enough. Return 0 or -EINVAL
978 *
979 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
980 * Update the superblock for rdev with data in mddev
981 * This does not write to disc.
982 *
983 */
984
985 struct super_type {
986 char *name;
987 struct module *owner;
988 int (*load_super)(struct md_rdev *rdev,
989 struct md_rdev *refdev,
990 int minor_version);
991 int (*validate_super)(struct mddev *mddev,
992 struct md_rdev *rdev);
993 void (*sync_super)(struct mddev *mddev,
994 struct md_rdev *rdev);
995 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
996 sector_t num_sectors);
997 int (*allow_new_offset)(struct md_rdev *rdev,
998 unsigned long long new_offset);
999 };
1000
1001 /*
1002 * Check that the given mddev has no bitmap.
1003 *
1004 * This function is called from the run method of all personalities that do not
1005 * support bitmaps. It prints an error message and returns non-zero if mddev
1006 * has a bitmap. Otherwise, it returns 0.
1007 *
1008 */
1009 int md_check_no_bitmap(struct mddev *mddev)
1010 {
1011 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1012 return 0;
1013 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1014 mdname(mddev), mddev->pers->name);
1015 return 1;
1016 }
1017 EXPORT_SYMBOL(md_check_no_bitmap);
1018
1019 /*
1020 * load_super for 0.90.0
1021 */
1022 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1023 {
1024 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1025 mdp_super_t *sb;
1026 int ret;
1027
1028 /*
1029 * Calculate the position of the superblock (512byte sectors),
1030 * it's at the end of the disk.
1031 *
1032 * It also happens to be a multiple of 4Kb.
1033 */
1034 rdev->sb_start = calc_dev_sboffset(rdev);
1035
1036 ret = read_disk_sb(rdev, MD_SB_BYTES);
1037 if (ret) return ret;
1038
1039 ret = -EINVAL;
1040
1041 bdevname(rdev->bdev, b);
1042 sb = page_address(rdev->sb_page);
1043
1044 if (sb->md_magic != MD_SB_MAGIC) {
1045 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1046 b);
1047 goto abort;
1048 }
1049
1050 if (sb->major_version != 0 ||
1051 sb->minor_version < 90 ||
1052 sb->minor_version > 91) {
1053 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1054 sb->major_version, sb->minor_version,
1055 b);
1056 goto abort;
1057 }
1058
1059 if (sb->raid_disks <= 0)
1060 goto abort;
1061
1062 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1063 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1064 b);
1065 goto abort;
1066 }
1067
1068 rdev->preferred_minor = sb->md_minor;
1069 rdev->data_offset = 0;
1070 rdev->new_data_offset = 0;
1071 rdev->sb_size = MD_SB_BYTES;
1072 rdev->badblocks.shift = -1;
1073
1074 if (sb->level == LEVEL_MULTIPATH)
1075 rdev->desc_nr = -1;
1076 else
1077 rdev->desc_nr = sb->this_disk.number;
1078
1079 if (!refdev) {
1080 ret = 1;
1081 } else {
1082 __u64 ev1, ev2;
1083 mdp_super_t *refsb = page_address(refdev->sb_page);
1084 if (!uuid_equal(refsb, sb)) {
1085 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1086 b, bdevname(refdev->bdev,b2));
1087 goto abort;
1088 }
1089 if (!sb_equal(refsb, sb)) {
1090 printk(KERN_WARNING "md: %s has same UUID"
1091 " but different superblock to %s\n",
1092 b, bdevname(refdev->bdev, b2));
1093 goto abort;
1094 }
1095 ev1 = md_event(sb);
1096 ev2 = md_event(refsb);
1097 if (ev1 > ev2)
1098 ret = 1;
1099 else
1100 ret = 0;
1101 }
1102 rdev->sectors = rdev->sb_start;
1103 /* Limit to 4TB as metadata cannot record more than that.
1104 * (not needed for Linear and RAID0 as metadata doesn't
1105 * record this size)
1106 */
1107 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1108 rdev->sectors = (2ULL << 32) - 2;
1109
1110 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1111 /* "this cannot possibly happen" ... */
1112 ret = -EINVAL;
1113
1114 abort:
1115 return ret;
1116 }
1117
1118 /*
1119 * validate_super for 0.90.0
1120 */
1121 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1122 {
1123 mdp_disk_t *desc;
1124 mdp_super_t *sb = page_address(rdev->sb_page);
1125 __u64 ev1 = md_event(sb);
1126
1127 rdev->raid_disk = -1;
1128 clear_bit(Faulty, &rdev->flags);
1129 clear_bit(In_sync, &rdev->flags);
1130 clear_bit(WriteMostly, &rdev->flags);
1131
1132 if (mddev->raid_disks == 0) {
1133 mddev->major_version = 0;
1134 mddev->minor_version = sb->minor_version;
1135 mddev->patch_version = sb->patch_version;
1136 mddev->external = 0;
1137 mddev->chunk_sectors = sb->chunk_size >> 9;
1138 mddev->ctime = sb->ctime;
1139 mddev->utime = sb->utime;
1140 mddev->level = sb->level;
1141 mddev->clevel[0] = 0;
1142 mddev->layout = sb->layout;
1143 mddev->raid_disks = sb->raid_disks;
1144 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1145 mddev->events = ev1;
1146 mddev->bitmap_info.offset = 0;
1147 mddev->bitmap_info.space = 0;
1148 /* bitmap can use 60 K after the 4K superblocks */
1149 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1150 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1151 mddev->reshape_backwards = 0;
1152
1153 if (mddev->minor_version >= 91) {
1154 mddev->reshape_position = sb->reshape_position;
1155 mddev->delta_disks = sb->delta_disks;
1156 mddev->new_level = sb->new_level;
1157 mddev->new_layout = sb->new_layout;
1158 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1159 if (mddev->delta_disks < 0)
1160 mddev->reshape_backwards = 1;
1161 } else {
1162 mddev->reshape_position = MaxSector;
1163 mddev->delta_disks = 0;
1164 mddev->new_level = mddev->level;
1165 mddev->new_layout = mddev->layout;
1166 mddev->new_chunk_sectors = mddev->chunk_sectors;
1167 }
1168
1169 if (sb->state & (1<<MD_SB_CLEAN))
1170 mddev->recovery_cp = MaxSector;
1171 else {
1172 if (sb->events_hi == sb->cp_events_hi &&
1173 sb->events_lo == sb->cp_events_lo) {
1174 mddev->recovery_cp = sb->recovery_cp;
1175 } else
1176 mddev->recovery_cp = 0;
1177 }
1178
1179 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1180 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1181 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1182 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1183
1184 mddev->max_disks = MD_SB_DISKS;
1185
1186 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1187 mddev->bitmap_info.file == NULL) {
1188 mddev->bitmap_info.offset =
1189 mddev->bitmap_info.default_offset;
1190 mddev->bitmap_info.space =
1191 mddev->bitmap_info.space;
1192 }
1193
1194 } else if (mddev->pers == NULL) {
1195 /* Insist on good event counter while assembling, except
1196 * for spares (which don't need an event count) */
1197 ++ev1;
1198 if (sb->disks[rdev->desc_nr].state & (
1199 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1200 if (ev1 < mddev->events)
1201 return -EINVAL;
1202 } else if (mddev->bitmap) {
1203 /* if adding to array with a bitmap, then we can accept an
1204 * older device ... but not too old.
1205 */
1206 if (ev1 < mddev->bitmap->events_cleared)
1207 return 0;
1208 } else {
1209 if (ev1 < mddev->events)
1210 /* just a hot-add of a new device, leave raid_disk at -1 */
1211 return 0;
1212 }
1213
1214 if (mddev->level != LEVEL_MULTIPATH) {
1215 desc = sb->disks + rdev->desc_nr;
1216
1217 if (desc->state & (1<<MD_DISK_FAULTY))
1218 set_bit(Faulty, &rdev->flags);
1219 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1220 desc->raid_disk < mddev->raid_disks */) {
1221 set_bit(In_sync, &rdev->flags);
1222 rdev->raid_disk = desc->raid_disk;
1223 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1224 /* active but not in sync implies recovery up to
1225 * reshape position. We don't know exactly where
1226 * that is, so set to zero for now */
1227 if (mddev->minor_version >= 91) {
1228 rdev->recovery_offset = 0;
1229 rdev->raid_disk = desc->raid_disk;
1230 }
1231 }
1232 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1233 set_bit(WriteMostly, &rdev->flags);
1234 } else /* MULTIPATH are always insync */
1235 set_bit(In_sync, &rdev->flags);
1236 return 0;
1237 }
1238
1239 /*
1240 * sync_super for 0.90.0
1241 */
1242 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1243 {
1244 mdp_super_t *sb;
1245 struct md_rdev *rdev2;
1246 int next_spare = mddev->raid_disks;
1247
1248
1249 /* make rdev->sb match mddev data..
1250 *
1251 * 1/ zero out disks
1252 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1253 * 3/ any empty disks < next_spare become removed
1254 *
1255 * disks[0] gets initialised to REMOVED because
1256 * we cannot be sure from other fields if it has
1257 * been initialised or not.
1258 */
1259 int i;
1260 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1261
1262 rdev->sb_size = MD_SB_BYTES;
1263
1264 sb = page_address(rdev->sb_page);
1265
1266 memset(sb, 0, sizeof(*sb));
1267
1268 sb->md_magic = MD_SB_MAGIC;
1269 sb->major_version = mddev->major_version;
1270 sb->patch_version = mddev->patch_version;
1271 sb->gvalid_words = 0; /* ignored */
1272 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1273 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1274 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1275 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1276
1277 sb->ctime = mddev->ctime;
1278 sb->level = mddev->level;
1279 sb->size = mddev->dev_sectors / 2;
1280 sb->raid_disks = mddev->raid_disks;
1281 sb->md_minor = mddev->md_minor;
1282 sb->not_persistent = 0;
1283 sb->utime = mddev->utime;
1284 sb->state = 0;
1285 sb->events_hi = (mddev->events>>32);
1286 sb->events_lo = (u32)mddev->events;
1287
1288 if (mddev->reshape_position == MaxSector)
1289 sb->minor_version = 90;
1290 else {
1291 sb->minor_version = 91;
1292 sb->reshape_position = mddev->reshape_position;
1293 sb->new_level = mddev->new_level;
1294 sb->delta_disks = mddev->delta_disks;
1295 sb->new_layout = mddev->new_layout;
1296 sb->new_chunk = mddev->new_chunk_sectors << 9;
1297 }
1298 mddev->minor_version = sb->minor_version;
1299 if (mddev->in_sync)
1300 {
1301 sb->recovery_cp = mddev->recovery_cp;
1302 sb->cp_events_hi = (mddev->events>>32);
1303 sb->cp_events_lo = (u32)mddev->events;
1304 if (mddev->recovery_cp == MaxSector)
1305 sb->state = (1<< MD_SB_CLEAN);
1306 } else
1307 sb->recovery_cp = 0;
1308
1309 sb->layout = mddev->layout;
1310 sb->chunk_size = mddev->chunk_sectors << 9;
1311
1312 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1313 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1314
1315 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1316 rdev_for_each(rdev2, mddev) {
1317 mdp_disk_t *d;
1318 int desc_nr;
1319 int is_active = test_bit(In_sync, &rdev2->flags);
1320
1321 if (rdev2->raid_disk >= 0 &&
1322 sb->minor_version >= 91)
1323 /* we have nowhere to store the recovery_offset,
1324 * but if it is not below the reshape_position,
1325 * we can piggy-back on that.
1326 */
1327 is_active = 1;
1328 if (rdev2->raid_disk < 0 ||
1329 test_bit(Faulty, &rdev2->flags))
1330 is_active = 0;
1331 if (is_active)
1332 desc_nr = rdev2->raid_disk;
1333 else
1334 desc_nr = next_spare++;
1335 rdev2->desc_nr = desc_nr;
1336 d = &sb->disks[rdev2->desc_nr];
1337 nr_disks++;
1338 d->number = rdev2->desc_nr;
1339 d->major = MAJOR(rdev2->bdev->bd_dev);
1340 d->minor = MINOR(rdev2->bdev->bd_dev);
1341 if (is_active)
1342 d->raid_disk = rdev2->raid_disk;
1343 else
1344 d->raid_disk = rdev2->desc_nr; /* compatibility */
1345 if (test_bit(Faulty, &rdev2->flags))
1346 d->state = (1<<MD_DISK_FAULTY);
1347 else if (is_active) {
1348 d->state = (1<<MD_DISK_ACTIVE);
1349 if (test_bit(In_sync, &rdev2->flags))
1350 d->state |= (1<<MD_DISK_SYNC);
1351 active++;
1352 working++;
1353 } else {
1354 d->state = 0;
1355 spare++;
1356 working++;
1357 }
1358 if (test_bit(WriteMostly, &rdev2->flags))
1359 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1360 }
1361 /* now set the "removed" and "faulty" bits on any missing devices */
1362 for (i=0 ; i < mddev->raid_disks ; i++) {
1363 mdp_disk_t *d = &sb->disks[i];
1364 if (d->state == 0 && d->number == 0) {
1365 d->number = i;
1366 d->raid_disk = i;
1367 d->state = (1<<MD_DISK_REMOVED);
1368 d->state |= (1<<MD_DISK_FAULTY);
1369 failed++;
1370 }
1371 }
1372 sb->nr_disks = nr_disks;
1373 sb->active_disks = active;
1374 sb->working_disks = working;
1375 sb->failed_disks = failed;
1376 sb->spare_disks = spare;
1377
1378 sb->this_disk = sb->disks[rdev->desc_nr];
1379 sb->sb_csum = calc_sb_csum(sb);
1380 }
1381
1382 /*
1383 * rdev_size_change for 0.90.0
1384 */
1385 static unsigned long long
1386 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1387 {
1388 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1389 return 0; /* component must fit device */
1390 if (rdev->mddev->bitmap_info.offset)
1391 return 0; /* can't move bitmap */
1392 rdev->sb_start = calc_dev_sboffset(rdev);
1393 if (!num_sectors || num_sectors > rdev->sb_start)
1394 num_sectors = rdev->sb_start;
1395 /* Limit to 4TB as metadata cannot record more than that.
1396 * 4TB == 2^32 KB, or 2*2^32 sectors.
1397 */
1398 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1399 num_sectors = (2ULL << 32) - 2;
1400 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1401 rdev->sb_page);
1402 md_super_wait(rdev->mddev);
1403 return num_sectors;
1404 }
1405
1406 static int
1407 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1408 {
1409 /* non-zero offset changes not possible with v0.90 */
1410 return new_offset == 0;
1411 }
1412
1413 /*
1414 * version 1 superblock
1415 */
1416
1417 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1418 {
1419 __le32 disk_csum;
1420 u32 csum;
1421 unsigned long long newcsum;
1422 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1423 __le32 *isuper = (__le32*)sb;
1424
1425 disk_csum = sb->sb_csum;
1426 sb->sb_csum = 0;
1427 newcsum = 0;
1428 for (; size >= 4; size -= 4)
1429 newcsum += le32_to_cpu(*isuper++);
1430
1431 if (size == 2)
1432 newcsum += le16_to_cpu(*(__le16*) isuper);
1433
1434 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1435 sb->sb_csum = disk_csum;
1436 return cpu_to_le32(csum);
1437 }
1438
1439 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1440 int acknowledged);
1441 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1442 {
1443 struct mdp_superblock_1 *sb;
1444 int ret;
1445 sector_t sb_start;
1446 sector_t sectors;
1447 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1448 int bmask;
1449
1450 /*
1451 * Calculate the position of the superblock in 512byte sectors.
1452 * It is always aligned to a 4K boundary and
1453 * depeding on minor_version, it can be:
1454 * 0: At least 8K, but less than 12K, from end of device
1455 * 1: At start of device
1456 * 2: 4K from start of device.
1457 */
1458 switch(minor_version) {
1459 case 0:
1460 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1461 sb_start -= 8*2;
1462 sb_start &= ~(sector_t)(4*2-1);
1463 break;
1464 case 1:
1465 sb_start = 0;
1466 break;
1467 case 2:
1468 sb_start = 8;
1469 break;
1470 default:
1471 return -EINVAL;
1472 }
1473 rdev->sb_start = sb_start;
1474
1475 /* superblock is rarely larger than 1K, but it can be larger,
1476 * and it is safe to read 4k, so we do that
1477 */
1478 ret = read_disk_sb(rdev, 4096);
1479 if (ret) return ret;
1480
1481
1482 sb = page_address(rdev->sb_page);
1483
1484 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1485 sb->major_version != cpu_to_le32(1) ||
1486 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1487 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1488 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1489 return -EINVAL;
1490
1491 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1492 printk("md: invalid superblock checksum on %s\n",
1493 bdevname(rdev->bdev,b));
1494 return -EINVAL;
1495 }
1496 if (le64_to_cpu(sb->data_size) < 10) {
1497 printk("md: data_size too small on %s\n",
1498 bdevname(rdev->bdev,b));
1499 return -EINVAL;
1500 }
1501 if (sb->pad0 ||
1502 sb->pad3[0] ||
1503 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1504 /* Some padding is non-zero, might be a new feature */
1505 return -EINVAL;
1506
1507 rdev->preferred_minor = 0xffff;
1508 rdev->data_offset = le64_to_cpu(sb->data_offset);
1509 rdev->new_data_offset = rdev->data_offset;
1510 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1511 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1512 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1513 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1514
1515 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1516 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1517 if (rdev->sb_size & bmask)
1518 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1519
1520 if (minor_version
1521 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1522 return -EINVAL;
1523 if (minor_version
1524 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1525 return -EINVAL;
1526
1527 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1528 rdev->desc_nr = -1;
1529 else
1530 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1531
1532 if (!rdev->bb_page) {
1533 rdev->bb_page = alloc_page(GFP_KERNEL);
1534 if (!rdev->bb_page)
1535 return -ENOMEM;
1536 }
1537 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1538 rdev->badblocks.count == 0) {
1539 /* need to load the bad block list.
1540 * Currently we limit it to one page.
1541 */
1542 s32 offset;
1543 sector_t bb_sector;
1544 u64 *bbp;
1545 int i;
1546 int sectors = le16_to_cpu(sb->bblog_size);
1547 if (sectors > (PAGE_SIZE / 512))
1548 return -EINVAL;
1549 offset = le32_to_cpu(sb->bblog_offset);
1550 if (offset == 0)
1551 return -EINVAL;
1552 bb_sector = (long long)offset;
1553 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1554 rdev->bb_page, READ, true))
1555 return -EIO;
1556 bbp = (u64 *)page_address(rdev->bb_page);
1557 rdev->badblocks.shift = sb->bblog_shift;
1558 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1559 u64 bb = le64_to_cpu(*bbp);
1560 int count = bb & (0x3ff);
1561 u64 sector = bb >> 10;
1562 sector <<= sb->bblog_shift;
1563 count <<= sb->bblog_shift;
1564 if (bb + 1 == 0)
1565 break;
1566 if (md_set_badblocks(&rdev->badblocks,
1567 sector, count, 1) == 0)
1568 return -EINVAL;
1569 }
1570 } else if (sb->bblog_offset == 0)
1571 rdev->badblocks.shift = -1;
1572
1573 if (!refdev) {
1574 ret = 1;
1575 } else {
1576 __u64 ev1, ev2;
1577 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1578
1579 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1580 sb->level != refsb->level ||
1581 sb->layout != refsb->layout ||
1582 sb->chunksize != refsb->chunksize) {
1583 printk(KERN_WARNING "md: %s has strangely different"
1584 " superblock to %s\n",
1585 bdevname(rdev->bdev,b),
1586 bdevname(refdev->bdev,b2));
1587 return -EINVAL;
1588 }
1589 ev1 = le64_to_cpu(sb->events);
1590 ev2 = le64_to_cpu(refsb->events);
1591
1592 if (ev1 > ev2)
1593 ret = 1;
1594 else
1595 ret = 0;
1596 }
1597 if (minor_version) {
1598 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1599 sectors -= rdev->data_offset;
1600 } else
1601 sectors = rdev->sb_start;
1602 if (sectors < le64_to_cpu(sb->data_size))
1603 return -EINVAL;
1604 rdev->sectors = le64_to_cpu(sb->data_size);
1605 return ret;
1606 }
1607
1608 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1609 {
1610 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1611 __u64 ev1 = le64_to_cpu(sb->events);
1612
1613 rdev->raid_disk = -1;
1614 clear_bit(Faulty, &rdev->flags);
1615 clear_bit(In_sync, &rdev->flags);
1616 clear_bit(WriteMostly, &rdev->flags);
1617
1618 if (mddev->raid_disks == 0) {
1619 mddev->major_version = 1;
1620 mddev->patch_version = 0;
1621 mddev->external = 0;
1622 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1623 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1624 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1625 mddev->level = le32_to_cpu(sb->level);
1626 mddev->clevel[0] = 0;
1627 mddev->layout = le32_to_cpu(sb->layout);
1628 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1629 mddev->dev_sectors = le64_to_cpu(sb->size);
1630 mddev->events = ev1;
1631 mddev->bitmap_info.offset = 0;
1632 mddev->bitmap_info.space = 0;
1633 /* Default location for bitmap is 1K after superblock
1634 * using 3K - total of 4K
1635 */
1636 mddev->bitmap_info.default_offset = 1024 >> 9;
1637 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1638 mddev->reshape_backwards = 0;
1639
1640 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1641 memcpy(mddev->uuid, sb->set_uuid, 16);
1642
1643 mddev->max_disks = (4096-256)/2;
1644
1645 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1646 mddev->bitmap_info.file == NULL) {
1647 mddev->bitmap_info.offset =
1648 (__s32)le32_to_cpu(sb->bitmap_offset);
1649 /* Metadata doesn't record how much space is available.
1650 * For 1.0, we assume we can use up to the superblock
1651 * if before, else to 4K beyond superblock.
1652 * For others, assume no change is possible.
1653 */
1654 if (mddev->minor_version > 0)
1655 mddev->bitmap_info.space = 0;
1656 else if (mddev->bitmap_info.offset > 0)
1657 mddev->bitmap_info.space =
1658 8 - mddev->bitmap_info.offset;
1659 else
1660 mddev->bitmap_info.space =
1661 -mddev->bitmap_info.offset;
1662 }
1663
1664 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1665 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1666 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1667 mddev->new_level = le32_to_cpu(sb->new_level);
1668 mddev->new_layout = le32_to_cpu(sb->new_layout);
1669 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1670 if (mddev->delta_disks < 0 ||
1671 (mddev->delta_disks == 0 &&
1672 (le32_to_cpu(sb->feature_map)
1673 & MD_FEATURE_RESHAPE_BACKWARDS)))
1674 mddev->reshape_backwards = 1;
1675 } else {
1676 mddev->reshape_position = MaxSector;
1677 mddev->delta_disks = 0;
1678 mddev->new_level = mddev->level;
1679 mddev->new_layout = mddev->layout;
1680 mddev->new_chunk_sectors = mddev->chunk_sectors;
1681 }
1682
1683 } else if (mddev->pers == NULL) {
1684 /* Insist of good event counter while assembling, except for
1685 * spares (which don't need an event count) */
1686 ++ev1;
1687 if (rdev->desc_nr >= 0 &&
1688 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1689 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1690 if (ev1 < mddev->events)
1691 return -EINVAL;
1692 } else if (mddev->bitmap) {
1693 /* If adding to array with a bitmap, then we can accept an
1694 * older device, but not too old.
1695 */
1696 if (ev1 < mddev->bitmap->events_cleared)
1697 return 0;
1698 } else {
1699 if (ev1 < mddev->events)
1700 /* just a hot-add of a new device, leave raid_disk at -1 */
1701 return 0;
1702 }
1703 if (mddev->level != LEVEL_MULTIPATH) {
1704 int role;
1705 if (rdev->desc_nr < 0 ||
1706 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1707 role = 0xffff;
1708 rdev->desc_nr = -1;
1709 } else
1710 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1711 switch(role) {
1712 case 0xffff: /* spare */
1713 break;
1714 case 0xfffe: /* faulty */
1715 set_bit(Faulty, &rdev->flags);
1716 break;
1717 default:
1718 if ((le32_to_cpu(sb->feature_map) &
1719 MD_FEATURE_RECOVERY_OFFSET))
1720 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1721 else
1722 set_bit(In_sync, &rdev->flags);
1723 rdev->raid_disk = role;
1724 break;
1725 }
1726 if (sb->devflags & WriteMostly1)
1727 set_bit(WriteMostly, &rdev->flags);
1728 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1729 set_bit(Replacement, &rdev->flags);
1730 } else /* MULTIPATH are always insync */
1731 set_bit(In_sync, &rdev->flags);
1732
1733 return 0;
1734 }
1735
1736 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1737 {
1738 struct mdp_superblock_1 *sb;
1739 struct md_rdev *rdev2;
1740 int max_dev, i;
1741 /* make rdev->sb match mddev and rdev data. */
1742
1743 sb = page_address(rdev->sb_page);
1744
1745 sb->feature_map = 0;
1746 sb->pad0 = 0;
1747 sb->recovery_offset = cpu_to_le64(0);
1748 memset(sb->pad3, 0, sizeof(sb->pad3));
1749
1750 sb->utime = cpu_to_le64((__u64)mddev->utime);
1751 sb->events = cpu_to_le64(mddev->events);
1752 if (mddev->in_sync)
1753 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1754 else
1755 sb->resync_offset = cpu_to_le64(0);
1756
1757 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1758
1759 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1760 sb->size = cpu_to_le64(mddev->dev_sectors);
1761 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1762 sb->level = cpu_to_le32(mddev->level);
1763 sb->layout = cpu_to_le32(mddev->layout);
1764
1765 if (test_bit(WriteMostly, &rdev->flags))
1766 sb->devflags |= WriteMostly1;
1767 else
1768 sb->devflags &= ~WriteMostly1;
1769 sb->data_offset = cpu_to_le64(rdev->data_offset);
1770 sb->data_size = cpu_to_le64(rdev->sectors);
1771
1772 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1773 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1774 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1775 }
1776
1777 if (rdev->raid_disk >= 0 &&
1778 !test_bit(In_sync, &rdev->flags)) {
1779 sb->feature_map |=
1780 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1781 sb->recovery_offset =
1782 cpu_to_le64(rdev->recovery_offset);
1783 }
1784 if (test_bit(Replacement, &rdev->flags))
1785 sb->feature_map |=
1786 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1787
1788 if (mddev->reshape_position != MaxSector) {
1789 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1790 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1791 sb->new_layout = cpu_to_le32(mddev->new_layout);
1792 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1793 sb->new_level = cpu_to_le32(mddev->new_level);
1794 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1795 if (mddev->delta_disks == 0 &&
1796 mddev->reshape_backwards)
1797 sb->feature_map
1798 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1799 if (rdev->new_data_offset != rdev->data_offset) {
1800 sb->feature_map
1801 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1802 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1803 - rdev->data_offset));
1804 }
1805 }
1806
1807 if (rdev->badblocks.count == 0)
1808 /* Nothing to do for bad blocks*/ ;
1809 else if (sb->bblog_offset == 0)
1810 /* Cannot record bad blocks on this device */
1811 md_error(mddev, rdev);
1812 else {
1813 struct badblocks *bb = &rdev->badblocks;
1814 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1815 u64 *p = bb->page;
1816 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1817 if (bb->changed) {
1818 unsigned seq;
1819
1820 retry:
1821 seq = read_seqbegin(&bb->lock);
1822
1823 memset(bbp, 0xff, PAGE_SIZE);
1824
1825 for (i = 0 ; i < bb->count ; i++) {
1826 u64 internal_bb = p[i];
1827 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1828 | BB_LEN(internal_bb));
1829 bbp[i] = cpu_to_le64(store_bb);
1830 }
1831 bb->changed = 0;
1832 if (read_seqretry(&bb->lock, seq))
1833 goto retry;
1834
1835 bb->sector = (rdev->sb_start +
1836 (int)le32_to_cpu(sb->bblog_offset));
1837 bb->size = le16_to_cpu(sb->bblog_size);
1838 }
1839 }
1840
1841 max_dev = 0;
1842 rdev_for_each(rdev2, mddev)
1843 if (rdev2->desc_nr+1 > max_dev)
1844 max_dev = rdev2->desc_nr+1;
1845
1846 if (max_dev > le32_to_cpu(sb->max_dev)) {
1847 int bmask;
1848 sb->max_dev = cpu_to_le32(max_dev);
1849 rdev->sb_size = max_dev * 2 + 256;
1850 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1851 if (rdev->sb_size & bmask)
1852 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1853 } else
1854 max_dev = le32_to_cpu(sb->max_dev);
1855
1856 for (i=0; i<max_dev;i++)
1857 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1858
1859 rdev_for_each(rdev2, mddev) {
1860 i = rdev2->desc_nr;
1861 if (test_bit(Faulty, &rdev2->flags))
1862 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1863 else if (test_bit(In_sync, &rdev2->flags))
1864 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1865 else if (rdev2->raid_disk >= 0)
1866 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1867 else
1868 sb->dev_roles[i] = cpu_to_le16(0xffff);
1869 }
1870
1871 sb->sb_csum = calc_sb_1_csum(sb);
1872 }
1873
1874 static unsigned long long
1875 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1876 {
1877 struct mdp_superblock_1 *sb;
1878 sector_t max_sectors;
1879 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1880 return 0; /* component must fit device */
1881 if (rdev->data_offset != rdev->new_data_offset)
1882 return 0; /* too confusing */
1883 if (rdev->sb_start < rdev->data_offset) {
1884 /* minor versions 1 and 2; superblock before data */
1885 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1886 max_sectors -= rdev->data_offset;
1887 if (!num_sectors || num_sectors > max_sectors)
1888 num_sectors = max_sectors;
1889 } else if (rdev->mddev->bitmap_info.offset) {
1890 /* minor version 0 with bitmap we can't move */
1891 return 0;
1892 } else {
1893 /* minor version 0; superblock after data */
1894 sector_t sb_start;
1895 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1896 sb_start &= ~(sector_t)(4*2 - 1);
1897 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1898 if (!num_sectors || num_sectors > max_sectors)
1899 num_sectors = max_sectors;
1900 rdev->sb_start = sb_start;
1901 }
1902 sb = page_address(rdev->sb_page);
1903 sb->data_size = cpu_to_le64(num_sectors);
1904 sb->super_offset = rdev->sb_start;
1905 sb->sb_csum = calc_sb_1_csum(sb);
1906 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1907 rdev->sb_page);
1908 md_super_wait(rdev->mddev);
1909 return num_sectors;
1910
1911 }
1912
1913 static int
1914 super_1_allow_new_offset(struct md_rdev *rdev,
1915 unsigned long long new_offset)
1916 {
1917 /* All necessary checks on new >= old have been done */
1918 struct bitmap *bitmap;
1919 if (new_offset >= rdev->data_offset)
1920 return 1;
1921
1922 /* with 1.0 metadata, there is no metadata to tread on
1923 * so we can always move back */
1924 if (rdev->mddev->minor_version == 0)
1925 return 1;
1926
1927 /* otherwise we must be sure not to step on
1928 * any metadata, so stay:
1929 * 36K beyond start of superblock
1930 * beyond end of badblocks
1931 * beyond write-intent bitmap
1932 */
1933 if (rdev->sb_start + (32+4)*2 > new_offset)
1934 return 0;
1935 bitmap = rdev->mddev->bitmap;
1936 if (bitmap && !rdev->mddev->bitmap_info.file &&
1937 rdev->sb_start + rdev->mddev->bitmap_info.offset +
1938 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1939 return 0;
1940 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1941 return 0;
1942
1943 return 1;
1944 }
1945
1946 static struct super_type super_types[] = {
1947 [0] = {
1948 .name = "0.90.0",
1949 .owner = THIS_MODULE,
1950 .load_super = super_90_load,
1951 .validate_super = super_90_validate,
1952 .sync_super = super_90_sync,
1953 .rdev_size_change = super_90_rdev_size_change,
1954 .allow_new_offset = super_90_allow_new_offset,
1955 },
1956 [1] = {
1957 .name = "md-1",
1958 .owner = THIS_MODULE,
1959 .load_super = super_1_load,
1960 .validate_super = super_1_validate,
1961 .sync_super = super_1_sync,
1962 .rdev_size_change = super_1_rdev_size_change,
1963 .allow_new_offset = super_1_allow_new_offset,
1964 },
1965 };
1966
1967 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1968 {
1969 if (mddev->sync_super) {
1970 mddev->sync_super(mddev, rdev);
1971 return;
1972 }
1973
1974 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1975
1976 super_types[mddev->major_version].sync_super(mddev, rdev);
1977 }
1978
1979 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1980 {
1981 struct md_rdev *rdev, *rdev2;
1982
1983 rcu_read_lock();
1984 rdev_for_each_rcu(rdev, mddev1)
1985 rdev_for_each_rcu(rdev2, mddev2)
1986 if (rdev->bdev->bd_contains ==
1987 rdev2->bdev->bd_contains) {
1988 rcu_read_unlock();
1989 return 1;
1990 }
1991 rcu_read_unlock();
1992 return 0;
1993 }
1994
1995 static LIST_HEAD(pending_raid_disks);
1996
1997 /*
1998 * Try to register data integrity profile for an mddev
1999 *
2000 * This is called when an array is started and after a disk has been kicked
2001 * from the array. It only succeeds if all working and active component devices
2002 * are integrity capable with matching profiles.
2003 */
2004 int md_integrity_register(struct mddev *mddev)
2005 {
2006 struct md_rdev *rdev, *reference = NULL;
2007
2008 if (list_empty(&mddev->disks))
2009 return 0; /* nothing to do */
2010 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2011 return 0; /* shouldn't register, or already is */
2012 rdev_for_each(rdev, mddev) {
2013 /* skip spares and non-functional disks */
2014 if (test_bit(Faulty, &rdev->flags))
2015 continue;
2016 if (rdev->raid_disk < 0)
2017 continue;
2018 if (!reference) {
2019 /* Use the first rdev as the reference */
2020 reference = rdev;
2021 continue;
2022 }
2023 /* does this rdev's profile match the reference profile? */
2024 if (blk_integrity_compare(reference->bdev->bd_disk,
2025 rdev->bdev->bd_disk) < 0)
2026 return -EINVAL;
2027 }
2028 if (!reference || !bdev_get_integrity(reference->bdev))
2029 return 0;
2030 /*
2031 * All component devices are integrity capable and have matching
2032 * profiles, register the common profile for the md device.
2033 */
2034 if (blk_integrity_register(mddev->gendisk,
2035 bdev_get_integrity(reference->bdev)) != 0) {
2036 printk(KERN_ERR "md: failed to register integrity for %s\n",
2037 mdname(mddev));
2038 return -EINVAL;
2039 }
2040 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2041 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2042 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2043 mdname(mddev));
2044 return -EINVAL;
2045 }
2046 return 0;
2047 }
2048 EXPORT_SYMBOL(md_integrity_register);
2049
2050 /* Disable data integrity if non-capable/non-matching disk is being added */
2051 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2052 {
2053 struct blk_integrity *bi_rdev;
2054 struct blk_integrity *bi_mddev;
2055
2056 if (!mddev->gendisk)
2057 return;
2058
2059 bi_rdev = bdev_get_integrity(rdev->bdev);
2060 bi_mddev = blk_get_integrity(mddev->gendisk);
2061
2062 if (!bi_mddev) /* nothing to do */
2063 return;
2064 if (rdev->raid_disk < 0) /* skip spares */
2065 return;
2066 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2067 rdev->bdev->bd_disk) >= 0)
2068 return;
2069 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2070 blk_integrity_unregister(mddev->gendisk);
2071 }
2072 EXPORT_SYMBOL(md_integrity_add_rdev);
2073
2074 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2075 {
2076 char b[BDEVNAME_SIZE];
2077 struct kobject *ko;
2078 char *s;
2079 int err;
2080
2081 if (rdev->mddev) {
2082 MD_BUG();
2083 return -EINVAL;
2084 }
2085
2086 /* prevent duplicates */
2087 if (find_rdev(mddev, rdev->bdev->bd_dev))
2088 return -EEXIST;
2089
2090 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2091 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2092 rdev->sectors < mddev->dev_sectors)) {
2093 if (mddev->pers) {
2094 /* Cannot change size, so fail
2095 * If mddev->level <= 0, then we don't care
2096 * about aligning sizes (e.g. linear)
2097 */
2098 if (mddev->level > 0)
2099 return -ENOSPC;
2100 } else
2101 mddev->dev_sectors = rdev->sectors;
2102 }
2103
2104 /* Verify rdev->desc_nr is unique.
2105 * If it is -1, assign a free number, else
2106 * check number is not in use
2107 */
2108 if (rdev->desc_nr < 0) {
2109 int choice = 0;
2110 if (mddev->pers) choice = mddev->raid_disks;
2111 while (find_rdev_nr(mddev, choice))
2112 choice++;
2113 rdev->desc_nr = choice;
2114 } else {
2115 if (find_rdev_nr(mddev, rdev->desc_nr))
2116 return -EBUSY;
2117 }
2118 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2119 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2120 mdname(mddev), mddev->max_disks);
2121 return -EBUSY;
2122 }
2123 bdevname(rdev->bdev,b);
2124 while ( (s=strchr(b, '/')) != NULL)
2125 *s = '!';
2126
2127 rdev->mddev = mddev;
2128 printk(KERN_INFO "md: bind<%s>\n", b);
2129
2130 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2131 goto fail;
2132
2133 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2134 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2135 /* failure here is OK */;
2136 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2137
2138 list_add_rcu(&rdev->same_set, &mddev->disks);
2139 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2140
2141 /* May as well allow recovery to be retried once */
2142 mddev->recovery_disabled++;
2143
2144 return 0;
2145
2146 fail:
2147 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2148 b, mdname(mddev));
2149 return err;
2150 }
2151
2152 static void md_delayed_delete(struct work_struct *ws)
2153 {
2154 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2155 kobject_del(&rdev->kobj);
2156 kobject_put(&rdev->kobj);
2157 }
2158
2159 static void unbind_rdev_from_array(struct md_rdev * rdev)
2160 {
2161 char b[BDEVNAME_SIZE];
2162 if (!rdev->mddev) {
2163 MD_BUG();
2164 return;
2165 }
2166 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2167 list_del_rcu(&rdev->same_set);
2168 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2169 rdev->mddev = NULL;
2170 sysfs_remove_link(&rdev->kobj, "block");
2171 sysfs_put(rdev->sysfs_state);
2172 rdev->sysfs_state = NULL;
2173 rdev->badblocks.count = 0;
2174 /* We need to delay this, otherwise we can deadlock when
2175 * writing to 'remove' to "dev/state". We also need
2176 * to delay it due to rcu usage.
2177 */
2178 synchronize_rcu();
2179 INIT_WORK(&rdev->del_work, md_delayed_delete);
2180 kobject_get(&rdev->kobj);
2181 queue_work(md_misc_wq, &rdev->del_work);
2182 }
2183
2184 /*
2185 * prevent the device from being mounted, repartitioned or
2186 * otherwise reused by a RAID array (or any other kernel
2187 * subsystem), by bd_claiming the device.
2188 */
2189 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2190 {
2191 int err = 0;
2192 struct block_device *bdev;
2193 char b[BDEVNAME_SIZE];
2194
2195 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2196 shared ? (struct md_rdev *)lock_rdev : rdev);
2197 if (IS_ERR(bdev)) {
2198 printk(KERN_ERR "md: could not open %s.\n",
2199 __bdevname(dev, b));
2200 return PTR_ERR(bdev);
2201 }
2202 rdev->bdev = bdev;
2203 return err;
2204 }
2205
2206 static void unlock_rdev(struct md_rdev *rdev)
2207 {
2208 struct block_device *bdev = rdev->bdev;
2209 rdev->bdev = NULL;
2210 if (!bdev)
2211 MD_BUG();
2212 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2213 }
2214
2215 void md_autodetect_dev(dev_t dev);
2216
2217 static void export_rdev(struct md_rdev * rdev)
2218 {
2219 char b[BDEVNAME_SIZE];
2220 printk(KERN_INFO "md: export_rdev(%s)\n",
2221 bdevname(rdev->bdev,b));
2222 if (rdev->mddev)
2223 MD_BUG();
2224 md_rdev_clear(rdev);
2225 #ifndef MODULE
2226 if (test_bit(AutoDetected, &rdev->flags))
2227 md_autodetect_dev(rdev->bdev->bd_dev);
2228 #endif
2229 unlock_rdev(rdev);
2230 kobject_put(&rdev->kobj);
2231 }
2232
2233 static void kick_rdev_from_array(struct md_rdev * rdev)
2234 {
2235 unbind_rdev_from_array(rdev);
2236 export_rdev(rdev);
2237 }
2238
2239 static void export_array(struct mddev *mddev)
2240 {
2241 struct md_rdev *rdev, *tmp;
2242
2243 rdev_for_each_safe(rdev, tmp, mddev) {
2244 if (!rdev->mddev) {
2245 MD_BUG();
2246 continue;
2247 }
2248 kick_rdev_from_array(rdev);
2249 }
2250 if (!list_empty(&mddev->disks))
2251 MD_BUG();
2252 mddev->raid_disks = 0;
2253 mddev->major_version = 0;
2254 }
2255
2256 static void print_desc(mdp_disk_t *desc)
2257 {
2258 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2259 desc->major,desc->minor,desc->raid_disk,desc->state);
2260 }
2261
2262 static void print_sb_90(mdp_super_t *sb)
2263 {
2264 int i;
2265
2266 printk(KERN_INFO
2267 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2268 sb->major_version, sb->minor_version, sb->patch_version,
2269 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2270 sb->ctime);
2271 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2272 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2273 sb->md_minor, sb->layout, sb->chunk_size);
2274 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
2275 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2276 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2277 sb->failed_disks, sb->spare_disks,
2278 sb->sb_csum, (unsigned long)sb->events_lo);
2279
2280 printk(KERN_INFO);
2281 for (i = 0; i < MD_SB_DISKS; i++) {
2282 mdp_disk_t *desc;
2283
2284 desc = sb->disks + i;
2285 if (desc->number || desc->major || desc->minor ||
2286 desc->raid_disk || (desc->state && (desc->state != 4))) {
2287 printk(" D %2d: ", i);
2288 print_desc(desc);
2289 }
2290 }
2291 printk(KERN_INFO "md: THIS: ");
2292 print_desc(&sb->this_disk);
2293 }
2294
2295 static void print_sb_1(struct mdp_superblock_1 *sb)
2296 {
2297 __u8 *uuid;
2298
2299 uuid = sb->set_uuid;
2300 printk(KERN_INFO
2301 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2302 "md: Name: \"%s\" CT:%llu\n",
2303 le32_to_cpu(sb->major_version),
2304 le32_to_cpu(sb->feature_map),
2305 uuid,
2306 sb->set_name,
2307 (unsigned long long)le64_to_cpu(sb->ctime)
2308 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2309
2310 uuid = sb->device_uuid;
2311 printk(KERN_INFO
2312 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2313 " RO:%llu\n"
2314 "md: Dev:%08x UUID: %pU\n"
2315 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2316 "md: (MaxDev:%u) \n",
2317 le32_to_cpu(sb->level),
2318 (unsigned long long)le64_to_cpu(sb->size),
2319 le32_to_cpu(sb->raid_disks),
2320 le32_to_cpu(sb->layout),
2321 le32_to_cpu(sb->chunksize),
2322 (unsigned long long)le64_to_cpu(sb->data_offset),
2323 (unsigned long long)le64_to_cpu(sb->data_size),
2324 (unsigned long long)le64_to_cpu(sb->super_offset),
2325 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2326 le32_to_cpu(sb->dev_number),
2327 uuid,
2328 sb->devflags,
2329 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2330 (unsigned long long)le64_to_cpu(sb->events),
2331 (unsigned long long)le64_to_cpu(sb->resync_offset),
2332 le32_to_cpu(sb->sb_csum),
2333 le32_to_cpu(sb->max_dev)
2334 );
2335 }
2336
2337 static void print_rdev(struct md_rdev *rdev, int major_version)
2338 {
2339 char b[BDEVNAME_SIZE];
2340 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2341 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2342 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2343 rdev->desc_nr);
2344 if (rdev->sb_loaded) {
2345 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2346 switch (major_version) {
2347 case 0:
2348 print_sb_90(page_address(rdev->sb_page));
2349 break;
2350 case 1:
2351 print_sb_1(page_address(rdev->sb_page));
2352 break;
2353 }
2354 } else
2355 printk(KERN_INFO "md: no rdev superblock!\n");
2356 }
2357
2358 static void md_print_devices(void)
2359 {
2360 struct list_head *tmp;
2361 struct md_rdev *rdev;
2362 struct mddev *mddev;
2363 char b[BDEVNAME_SIZE];
2364
2365 printk("\n");
2366 printk("md: **********************************\n");
2367 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2368 printk("md: **********************************\n");
2369 for_each_mddev(mddev, tmp) {
2370
2371 if (mddev->bitmap)
2372 bitmap_print_sb(mddev->bitmap);
2373 else
2374 printk("%s: ", mdname(mddev));
2375 rdev_for_each(rdev, mddev)
2376 printk("<%s>", bdevname(rdev->bdev,b));
2377 printk("\n");
2378
2379 rdev_for_each(rdev, mddev)
2380 print_rdev(rdev, mddev->major_version);
2381 }
2382 printk("md: **********************************\n");
2383 printk("\n");
2384 }
2385
2386
2387 static void sync_sbs(struct mddev * mddev, int nospares)
2388 {
2389 /* Update each superblock (in-memory image), but
2390 * if we are allowed to, skip spares which already
2391 * have the right event counter, or have one earlier
2392 * (which would mean they aren't being marked as dirty
2393 * with the rest of the array)
2394 */
2395 struct md_rdev *rdev;
2396 rdev_for_each(rdev, mddev) {
2397 if (rdev->sb_events == mddev->events ||
2398 (nospares &&
2399 rdev->raid_disk < 0 &&
2400 rdev->sb_events+1 == mddev->events)) {
2401 /* Don't update this superblock */
2402 rdev->sb_loaded = 2;
2403 } else {
2404 sync_super(mddev, rdev);
2405 rdev->sb_loaded = 1;
2406 }
2407 }
2408 }
2409
2410 static void md_update_sb(struct mddev * mddev, int force_change)
2411 {
2412 struct md_rdev *rdev;
2413 int sync_req;
2414 int nospares = 0;
2415 int any_badblocks_changed = 0;
2416
2417 if (mddev->ro) {
2418 if (force_change)
2419 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2420 return;
2421 }
2422 repeat:
2423 /* First make sure individual recovery_offsets are correct */
2424 rdev_for_each(rdev, mddev) {
2425 if (rdev->raid_disk >= 0 &&
2426 mddev->delta_disks >= 0 &&
2427 !test_bit(In_sync, &rdev->flags) &&
2428 mddev->curr_resync_completed > rdev->recovery_offset)
2429 rdev->recovery_offset = mddev->curr_resync_completed;
2430
2431 }
2432 if (!mddev->persistent) {
2433 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2434 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2435 if (!mddev->external) {
2436 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2437 rdev_for_each(rdev, mddev) {
2438 if (rdev->badblocks.changed) {
2439 rdev->badblocks.changed = 0;
2440 md_ack_all_badblocks(&rdev->badblocks);
2441 md_error(mddev, rdev);
2442 }
2443 clear_bit(Blocked, &rdev->flags);
2444 clear_bit(BlockedBadBlocks, &rdev->flags);
2445 wake_up(&rdev->blocked_wait);
2446 }
2447 }
2448 wake_up(&mddev->sb_wait);
2449 return;
2450 }
2451
2452 spin_lock_irq(&mddev->write_lock);
2453
2454 mddev->utime = get_seconds();
2455
2456 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2457 force_change = 1;
2458 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2459 /* just a clean<-> dirty transition, possibly leave spares alone,
2460 * though if events isn't the right even/odd, we will have to do
2461 * spares after all
2462 */
2463 nospares = 1;
2464 if (force_change)
2465 nospares = 0;
2466 if (mddev->degraded)
2467 /* If the array is degraded, then skipping spares is both
2468 * dangerous and fairly pointless.
2469 * Dangerous because a device that was removed from the array
2470 * might have a event_count that still looks up-to-date,
2471 * so it can be re-added without a resync.
2472 * Pointless because if there are any spares to skip,
2473 * then a recovery will happen and soon that array won't
2474 * be degraded any more and the spare can go back to sleep then.
2475 */
2476 nospares = 0;
2477
2478 sync_req = mddev->in_sync;
2479
2480 /* If this is just a dirty<->clean transition, and the array is clean
2481 * and 'events' is odd, we can roll back to the previous clean state */
2482 if (nospares
2483 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2484 && mddev->can_decrease_events
2485 && mddev->events != 1) {
2486 mddev->events--;
2487 mddev->can_decrease_events = 0;
2488 } else {
2489 /* otherwise we have to go forward and ... */
2490 mddev->events ++;
2491 mddev->can_decrease_events = nospares;
2492 }
2493
2494 if (!mddev->events) {
2495 /*
2496 * oops, this 64-bit counter should never wrap.
2497 * Either we are in around ~1 trillion A.C., assuming
2498 * 1 reboot per second, or we have a bug:
2499 */
2500 MD_BUG();
2501 mddev->events --;
2502 }
2503
2504 rdev_for_each(rdev, mddev) {
2505 if (rdev->badblocks.changed)
2506 any_badblocks_changed++;
2507 if (test_bit(Faulty, &rdev->flags))
2508 set_bit(FaultRecorded, &rdev->flags);
2509 }
2510
2511 sync_sbs(mddev, nospares);
2512 spin_unlock_irq(&mddev->write_lock);
2513
2514 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2515 mdname(mddev), mddev->in_sync);
2516
2517 bitmap_update_sb(mddev->bitmap);
2518 rdev_for_each(rdev, mddev) {
2519 char b[BDEVNAME_SIZE];
2520
2521 if (rdev->sb_loaded != 1)
2522 continue; /* no noise on spare devices */
2523
2524 if (!test_bit(Faulty, &rdev->flags) &&
2525 rdev->saved_raid_disk == -1) {
2526 md_super_write(mddev,rdev,
2527 rdev->sb_start, rdev->sb_size,
2528 rdev->sb_page);
2529 pr_debug("md: (write) %s's sb offset: %llu\n",
2530 bdevname(rdev->bdev, b),
2531 (unsigned long long)rdev->sb_start);
2532 rdev->sb_events = mddev->events;
2533 if (rdev->badblocks.size) {
2534 md_super_write(mddev, rdev,
2535 rdev->badblocks.sector,
2536 rdev->badblocks.size << 9,
2537 rdev->bb_page);
2538 rdev->badblocks.size = 0;
2539 }
2540
2541 } else if (test_bit(Faulty, &rdev->flags))
2542 pr_debug("md: %s (skipping faulty)\n",
2543 bdevname(rdev->bdev, b));
2544 else
2545 pr_debug("(skipping incremental s/r ");
2546
2547 if (mddev->level == LEVEL_MULTIPATH)
2548 /* only need to write one superblock... */
2549 break;
2550 }
2551 md_super_wait(mddev);
2552 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2553
2554 spin_lock_irq(&mddev->write_lock);
2555 if (mddev->in_sync != sync_req ||
2556 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2557 /* have to write it out again */
2558 spin_unlock_irq(&mddev->write_lock);
2559 goto repeat;
2560 }
2561 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2562 spin_unlock_irq(&mddev->write_lock);
2563 wake_up(&mddev->sb_wait);
2564 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2565 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2566
2567 rdev_for_each(rdev, mddev) {
2568 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2569 clear_bit(Blocked, &rdev->flags);
2570
2571 if (any_badblocks_changed)
2572 md_ack_all_badblocks(&rdev->badblocks);
2573 clear_bit(BlockedBadBlocks, &rdev->flags);
2574 wake_up(&rdev->blocked_wait);
2575 }
2576 }
2577
2578 /* words written to sysfs files may, or may not, be \n terminated.
2579 * We want to accept with case. For this we use cmd_match.
2580 */
2581 static int cmd_match(const char *cmd, const char *str)
2582 {
2583 /* See if cmd, written into a sysfs file, matches
2584 * str. They must either be the same, or cmd can
2585 * have a trailing newline
2586 */
2587 while (*cmd && *str && *cmd == *str) {
2588 cmd++;
2589 str++;
2590 }
2591 if (*cmd == '\n')
2592 cmd++;
2593 if (*str || *cmd)
2594 return 0;
2595 return 1;
2596 }
2597
2598 struct rdev_sysfs_entry {
2599 struct attribute attr;
2600 ssize_t (*show)(struct md_rdev *, char *);
2601 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2602 };
2603
2604 static ssize_t
2605 state_show(struct md_rdev *rdev, char *page)
2606 {
2607 char *sep = "";
2608 size_t len = 0;
2609
2610 if (test_bit(Faulty, &rdev->flags) ||
2611 rdev->badblocks.unacked_exist) {
2612 len+= sprintf(page+len, "%sfaulty",sep);
2613 sep = ",";
2614 }
2615 if (test_bit(In_sync, &rdev->flags)) {
2616 len += sprintf(page+len, "%sin_sync",sep);
2617 sep = ",";
2618 }
2619 if (test_bit(WriteMostly, &rdev->flags)) {
2620 len += sprintf(page+len, "%swrite_mostly",sep);
2621 sep = ",";
2622 }
2623 if (test_bit(Blocked, &rdev->flags) ||
2624 (rdev->badblocks.unacked_exist
2625 && !test_bit(Faulty, &rdev->flags))) {
2626 len += sprintf(page+len, "%sblocked", sep);
2627 sep = ",";
2628 }
2629 if (!test_bit(Faulty, &rdev->flags) &&
2630 !test_bit(In_sync, &rdev->flags)) {
2631 len += sprintf(page+len, "%sspare", sep);
2632 sep = ",";
2633 }
2634 if (test_bit(WriteErrorSeen, &rdev->flags)) {
2635 len += sprintf(page+len, "%swrite_error", sep);
2636 sep = ",";
2637 }
2638 if (test_bit(WantReplacement, &rdev->flags)) {
2639 len += sprintf(page+len, "%swant_replacement", sep);
2640 sep = ",";
2641 }
2642 if (test_bit(Replacement, &rdev->flags)) {
2643 len += sprintf(page+len, "%sreplacement", sep);
2644 sep = ",";
2645 }
2646
2647 return len+sprintf(page+len, "\n");
2648 }
2649
2650 static ssize_t
2651 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2652 {
2653 /* can write
2654 * faulty - simulates an error
2655 * remove - disconnects the device
2656 * writemostly - sets write_mostly
2657 * -writemostly - clears write_mostly
2658 * blocked - sets the Blocked flags
2659 * -blocked - clears the Blocked and possibly simulates an error
2660 * insync - sets Insync providing device isn't active
2661 * write_error - sets WriteErrorSeen
2662 * -write_error - clears WriteErrorSeen
2663 */
2664 int err = -EINVAL;
2665 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2666 md_error(rdev->mddev, rdev);
2667 if (test_bit(Faulty, &rdev->flags))
2668 err = 0;
2669 else
2670 err = -EBUSY;
2671 } else if (cmd_match(buf, "remove")) {
2672 if (rdev->raid_disk >= 0)
2673 err = -EBUSY;
2674 else {
2675 struct mddev *mddev = rdev->mddev;
2676 kick_rdev_from_array(rdev);
2677 if (mddev->pers)
2678 md_update_sb(mddev, 1);
2679 md_new_event(mddev);
2680 err = 0;
2681 }
2682 } else if (cmd_match(buf, "writemostly")) {
2683 set_bit(WriteMostly, &rdev->flags);
2684 err = 0;
2685 } else if (cmd_match(buf, "-writemostly")) {
2686 clear_bit(WriteMostly, &rdev->flags);
2687 err = 0;
2688 } else if (cmd_match(buf, "blocked")) {
2689 set_bit(Blocked, &rdev->flags);
2690 err = 0;
2691 } else if (cmd_match(buf, "-blocked")) {
2692 if (!test_bit(Faulty, &rdev->flags) &&
2693 rdev->badblocks.unacked_exist) {
2694 /* metadata handler doesn't understand badblocks,
2695 * so we need to fail the device
2696 */
2697 md_error(rdev->mddev, rdev);
2698 }
2699 clear_bit(Blocked, &rdev->flags);
2700 clear_bit(BlockedBadBlocks, &rdev->flags);
2701 wake_up(&rdev->blocked_wait);
2702 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2703 md_wakeup_thread(rdev->mddev->thread);
2704
2705 err = 0;
2706 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2707 set_bit(In_sync, &rdev->flags);
2708 err = 0;
2709 } else if (cmd_match(buf, "write_error")) {
2710 set_bit(WriteErrorSeen, &rdev->flags);
2711 err = 0;
2712 } else if (cmd_match(buf, "-write_error")) {
2713 clear_bit(WriteErrorSeen, &rdev->flags);
2714 err = 0;
2715 } else if (cmd_match(buf, "want_replacement")) {
2716 /* Any non-spare device that is not a replacement can
2717 * become want_replacement at any time, but we then need to
2718 * check if recovery is needed.
2719 */
2720 if (rdev->raid_disk >= 0 &&
2721 !test_bit(Replacement, &rdev->flags))
2722 set_bit(WantReplacement, &rdev->flags);
2723 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2724 md_wakeup_thread(rdev->mddev->thread);
2725 err = 0;
2726 } else if (cmd_match(buf, "-want_replacement")) {
2727 /* Clearing 'want_replacement' is always allowed.
2728 * Once replacements starts it is too late though.
2729 */
2730 err = 0;
2731 clear_bit(WantReplacement, &rdev->flags);
2732 } else if (cmd_match(buf, "replacement")) {
2733 /* Can only set a device as a replacement when array has not
2734 * yet been started. Once running, replacement is automatic
2735 * from spares, or by assigning 'slot'.
2736 */
2737 if (rdev->mddev->pers)
2738 err = -EBUSY;
2739 else {
2740 set_bit(Replacement, &rdev->flags);
2741 err = 0;
2742 }
2743 } else if (cmd_match(buf, "-replacement")) {
2744 /* Similarly, can only clear Replacement before start */
2745 if (rdev->mddev->pers)
2746 err = -EBUSY;
2747 else {
2748 clear_bit(Replacement, &rdev->flags);
2749 err = 0;
2750 }
2751 }
2752 if (!err)
2753 sysfs_notify_dirent_safe(rdev->sysfs_state);
2754 return err ? err : len;
2755 }
2756 static struct rdev_sysfs_entry rdev_state =
2757 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2758
2759 static ssize_t
2760 errors_show(struct md_rdev *rdev, char *page)
2761 {
2762 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2763 }
2764
2765 static ssize_t
2766 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2767 {
2768 char *e;
2769 unsigned long n = simple_strtoul(buf, &e, 10);
2770 if (*buf && (*e == 0 || *e == '\n')) {
2771 atomic_set(&rdev->corrected_errors, n);
2772 return len;
2773 }
2774 return -EINVAL;
2775 }
2776 static struct rdev_sysfs_entry rdev_errors =
2777 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2778
2779 static ssize_t
2780 slot_show(struct md_rdev *rdev, char *page)
2781 {
2782 if (rdev->raid_disk < 0)
2783 return sprintf(page, "none\n");
2784 else
2785 return sprintf(page, "%d\n", rdev->raid_disk);
2786 }
2787
2788 static ssize_t
2789 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2790 {
2791 char *e;
2792 int err;
2793 int slot = simple_strtoul(buf, &e, 10);
2794 if (strncmp(buf, "none", 4)==0)
2795 slot = -1;
2796 else if (e==buf || (*e && *e!= '\n'))
2797 return -EINVAL;
2798 if (rdev->mddev->pers && slot == -1) {
2799 /* Setting 'slot' on an active array requires also
2800 * updating the 'rd%d' link, and communicating
2801 * with the personality with ->hot_*_disk.
2802 * For now we only support removing
2803 * failed/spare devices. This normally happens automatically,
2804 * but not when the metadata is externally managed.
2805 */
2806 if (rdev->raid_disk == -1)
2807 return -EEXIST;
2808 /* personality does all needed checks */
2809 if (rdev->mddev->pers->hot_remove_disk == NULL)
2810 return -EINVAL;
2811 clear_bit(Blocked, &rdev->flags);
2812 remove_and_add_spares(rdev->mddev, rdev);
2813 if (rdev->raid_disk >= 0)
2814 return -EBUSY;
2815 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2816 md_wakeup_thread(rdev->mddev->thread);
2817 } else if (rdev->mddev->pers) {
2818 /* Activating a spare .. or possibly reactivating
2819 * if we ever get bitmaps working here.
2820 */
2821
2822 if (rdev->raid_disk != -1)
2823 return -EBUSY;
2824
2825 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2826 return -EBUSY;
2827
2828 if (rdev->mddev->pers->hot_add_disk == NULL)
2829 return -EINVAL;
2830
2831 if (slot >= rdev->mddev->raid_disks &&
2832 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2833 return -ENOSPC;
2834
2835 rdev->raid_disk = slot;
2836 if (test_bit(In_sync, &rdev->flags))
2837 rdev->saved_raid_disk = slot;
2838 else
2839 rdev->saved_raid_disk = -1;
2840 clear_bit(In_sync, &rdev->flags);
2841 err = rdev->mddev->pers->
2842 hot_add_disk(rdev->mddev, rdev);
2843 if (err) {
2844 rdev->raid_disk = -1;
2845 return err;
2846 } else
2847 sysfs_notify_dirent_safe(rdev->sysfs_state);
2848 if (sysfs_link_rdev(rdev->mddev, rdev))
2849 /* failure here is OK */;
2850 /* don't wakeup anyone, leave that to userspace. */
2851 } else {
2852 if (slot >= rdev->mddev->raid_disks &&
2853 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2854 return -ENOSPC;
2855 rdev->raid_disk = slot;
2856 /* assume it is working */
2857 clear_bit(Faulty, &rdev->flags);
2858 clear_bit(WriteMostly, &rdev->flags);
2859 set_bit(In_sync, &rdev->flags);
2860 sysfs_notify_dirent_safe(rdev->sysfs_state);
2861 }
2862 return len;
2863 }
2864
2865
2866 static struct rdev_sysfs_entry rdev_slot =
2867 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2868
2869 static ssize_t
2870 offset_show(struct md_rdev *rdev, char *page)
2871 {
2872 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2873 }
2874
2875 static ssize_t
2876 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2877 {
2878 unsigned long long offset;
2879 if (strict_strtoull(buf, 10, &offset) < 0)
2880 return -EINVAL;
2881 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2882 return -EBUSY;
2883 if (rdev->sectors && rdev->mddev->external)
2884 /* Must set offset before size, so overlap checks
2885 * can be sane */
2886 return -EBUSY;
2887 rdev->data_offset = offset;
2888 rdev->new_data_offset = offset;
2889 return len;
2890 }
2891
2892 static struct rdev_sysfs_entry rdev_offset =
2893 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2894
2895 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2896 {
2897 return sprintf(page, "%llu\n",
2898 (unsigned long long)rdev->new_data_offset);
2899 }
2900
2901 static ssize_t new_offset_store(struct md_rdev *rdev,
2902 const char *buf, size_t len)
2903 {
2904 unsigned long long new_offset;
2905 struct mddev *mddev = rdev->mddev;
2906
2907 if (strict_strtoull(buf, 10, &new_offset) < 0)
2908 return -EINVAL;
2909
2910 if (mddev->sync_thread)
2911 return -EBUSY;
2912 if (new_offset == rdev->data_offset)
2913 /* reset is always permitted */
2914 ;
2915 else if (new_offset > rdev->data_offset) {
2916 /* must not push array size beyond rdev_sectors */
2917 if (new_offset - rdev->data_offset
2918 + mddev->dev_sectors > rdev->sectors)
2919 return -E2BIG;
2920 }
2921 /* Metadata worries about other space details. */
2922
2923 /* decreasing the offset is inconsistent with a backwards
2924 * reshape.
2925 */
2926 if (new_offset < rdev->data_offset &&
2927 mddev->reshape_backwards)
2928 return -EINVAL;
2929 /* Increasing offset is inconsistent with forwards
2930 * reshape. reshape_direction should be set to
2931 * 'backwards' first.
2932 */
2933 if (new_offset > rdev->data_offset &&
2934 !mddev->reshape_backwards)
2935 return -EINVAL;
2936
2937 if (mddev->pers && mddev->persistent &&
2938 !super_types[mddev->major_version]
2939 .allow_new_offset(rdev, new_offset))
2940 return -E2BIG;
2941 rdev->new_data_offset = new_offset;
2942 if (new_offset > rdev->data_offset)
2943 mddev->reshape_backwards = 1;
2944 else if (new_offset < rdev->data_offset)
2945 mddev->reshape_backwards = 0;
2946
2947 return len;
2948 }
2949 static struct rdev_sysfs_entry rdev_new_offset =
2950 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2951
2952 static ssize_t
2953 rdev_size_show(struct md_rdev *rdev, char *page)
2954 {
2955 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2956 }
2957
2958 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2959 {
2960 /* check if two start/length pairs overlap */
2961 if (s1+l1 <= s2)
2962 return 0;
2963 if (s2+l2 <= s1)
2964 return 0;
2965 return 1;
2966 }
2967
2968 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2969 {
2970 unsigned long long blocks;
2971 sector_t new;
2972
2973 if (strict_strtoull(buf, 10, &blocks) < 0)
2974 return -EINVAL;
2975
2976 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2977 return -EINVAL; /* sector conversion overflow */
2978
2979 new = blocks * 2;
2980 if (new != blocks * 2)
2981 return -EINVAL; /* unsigned long long to sector_t overflow */
2982
2983 *sectors = new;
2984 return 0;
2985 }
2986
2987 static ssize_t
2988 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2989 {
2990 struct mddev *my_mddev = rdev->mddev;
2991 sector_t oldsectors = rdev->sectors;
2992 sector_t sectors;
2993
2994 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2995 return -EINVAL;
2996 if (rdev->data_offset != rdev->new_data_offset)
2997 return -EINVAL; /* too confusing */
2998 if (my_mddev->pers && rdev->raid_disk >= 0) {
2999 if (my_mddev->persistent) {
3000 sectors = super_types[my_mddev->major_version].
3001 rdev_size_change(rdev, sectors);
3002 if (!sectors)
3003 return -EBUSY;
3004 } else if (!sectors)
3005 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
3006 rdev->data_offset;
3007 if (!my_mddev->pers->resize)
3008 /* Cannot change size for RAID0 or Linear etc */
3009 return -EINVAL;
3010 }
3011 if (sectors < my_mddev->dev_sectors)
3012 return -EINVAL; /* component must fit device */
3013
3014 rdev->sectors = sectors;
3015 if (sectors > oldsectors && my_mddev->external) {
3016 /* need to check that all other rdevs with the same ->bdev
3017 * do not overlap. We need to unlock the mddev to avoid
3018 * a deadlock. We have already changed rdev->sectors, and if
3019 * we have to change it back, we will have the lock again.
3020 */
3021 struct mddev *mddev;
3022 int overlap = 0;
3023 struct list_head *tmp;
3024
3025 mddev_unlock(my_mddev);
3026 for_each_mddev(mddev, tmp) {
3027 struct md_rdev *rdev2;
3028
3029 mddev_lock(mddev);
3030 rdev_for_each(rdev2, mddev)
3031 if (rdev->bdev == rdev2->bdev &&
3032 rdev != rdev2 &&
3033 overlaps(rdev->data_offset, rdev->sectors,
3034 rdev2->data_offset,
3035 rdev2->sectors)) {
3036 overlap = 1;
3037 break;
3038 }
3039 mddev_unlock(mddev);
3040 if (overlap) {
3041 mddev_put(mddev);
3042 break;
3043 }
3044 }
3045 mddev_lock(my_mddev);
3046 if (overlap) {
3047 /* Someone else could have slipped in a size
3048 * change here, but doing so is just silly.
3049 * We put oldsectors back because we *know* it is
3050 * safe, and trust userspace not to race with
3051 * itself
3052 */
3053 rdev->sectors = oldsectors;
3054 return -EBUSY;
3055 }
3056 }
3057 return len;
3058 }
3059
3060 static struct rdev_sysfs_entry rdev_size =
3061 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3062
3063
3064 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3065 {
3066 unsigned long long recovery_start = rdev->recovery_offset;
3067
3068 if (test_bit(In_sync, &rdev->flags) ||
3069 recovery_start == MaxSector)
3070 return sprintf(page, "none\n");
3071
3072 return sprintf(page, "%llu\n", recovery_start);
3073 }
3074
3075 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3076 {
3077 unsigned long long recovery_start;
3078
3079 if (cmd_match(buf, "none"))
3080 recovery_start = MaxSector;
3081 else if (strict_strtoull(buf, 10, &recovery_start))
3082 return -EINVAL;
3083
3084 if (rdev->mddev->pers &&
3085 rdev->raid_disk >= 0)
3086 return -EBUSY;
3087
3088 rdev->recovery_offset = recovery_start;
3089 if (recovery_start == MaxSector)
3090 set_bit(In_sync, &rdev->flags);
3091 else
3092 clear_bit(In_sync, &rdev->flags);
3093 return len;
3094 }
3095
3096 static struct rdev_sysfs_entry rdev_recovery_start =
3097 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3098
3099
3100 static ssize_t
3101 badblocks_show(struct badblocks *bb, char *page, int unack);
3102 static ssize_t
3103 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3104
3105 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3106 {
3107 return badblocks_show(&rdev->badblocks, page, 0);
3108 }
3109 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3110 {
3111 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3112 /* Maybe that ack was all we needed */
3113 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3114 wake_up(&rdev->blocked_wait);
3115 return rv;
3116 }
3117 static struct rdev_sysfs_entry rdev_bad_blocks =
3118 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3119
3120
3121 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3122 {
3123 return badblocks_show(&rdev->badblocks, page, 1);
3124 }
3125 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3126 {
3127 return badblocks_store(&rdev->badblocks, page, len, 1);
3128 }
3129 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3130 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3131
3132 static struct attribute *rdev_default_attrs[] = {
3133 &rdev_state.attr,
3134 &rdev_errors.attr,
3135 &rdev_slot.attr,
3136 &rdev_offset.attr,
3137 &rdev_new_offset.attr,
3138 &rdev_size.attr,
3139 &rdev_recovery_start.attr,
3140 &rdev_bad_blocks.attr,
3141 &rdev_unack_bad_blocks.attr,
3142 NULL,
3143 };
3144 static ssize_t
3145 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3146 {
3147 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3148 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3149 struct mddev *mddev = rdev->mddev;
3150 ssize_t rv;
3151
3152 if (!entry->show)
3153 return -EIO;
3154
3155 rv = mddev ? mddev_lock(mddev) : -EBUSY;
3156 if (!rv) {
3157 if (rdev->mddev == NULL)
3158 rv = -EBUSY;
3159 else
3160 rv = entry->show(rdev, page);
3161 mddev_unlock(mddev);
3162 }
3163 return rv;
3164 }
3165
3166 static ssize_t
3167 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3168 const char *page, size_t length)
3169 {
3170 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3171 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3172 ssize_t rv;
3173 struct mddev *mddev = rdev->mddev;
3174
3175 if (!entry->store)
3176 return -EIO;
3177 if (!capable(CAP_SYS_ADMIN))
3178 return -EACCES;
3179 rv = mddev ? mddev_lock(mddev): -EBUSY;
3180 if (!rv) {
3181 if (rdev->mddev == NULL)
3182 rv = -EBUSY;
3183 else
3184 rv = entry->store(rdev, page, length);
3185 mddev_unlock(mddev);
3186 }
3187 return rv;
3188 }
3189
3190 static void rdev_free(struct kobject *ko)
3191 {
3192 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3193 kfree(rdev);
3194 }
3195 static const struct sysfs_ops rdev_sysfs_ops = {
3196 .show = rdev_attr_show,
3197 .store = rdev_attr_store,
3198 };
3199 static struct kobj_type rdev_ktype = {
3200 .release = rdev_free,
3201 .sysfs_ops = &rdev_sysfs_ops,
3202 .default_attrs = rdev_default_attrs,
3203 };
3204
3205 int md_rdev_init(struct md_rdev *rdev)
3206 {
3207 rdev->desc_nr = -1;
3208 rdev->saved_raid_disk = -1;
3209 rdev->raid_disk = -1;
3210 rdev->flags = 0;
3211 rdev->data_offset = 0;
3212 rdev->new_data_offset = 0;
3213 rdev->sb_events = 0;
3214 rdev->last_read_error.tv_sec = 0;
3215 rdev->last_read_error.tv_nsec = 0;
3216 rdev->sb_loaded = 0;
3217 rdev->bb_page = NULL;
3218 atomic_set(&rdev->nr_pending, 0);
3219 atomic_set(&rdev->read_errors, 0);
3220 atomic_set(&rdev->corrected_errors, 0);
3221
3222 INIT_LIST_HEAD(&rdev->same_set);
3223 init_waitqueue_head(&rdev->blocked_wait);
3224
3225 /* Add space to store bad block list.
3226 * This reserves the space even on arrays where it cannot
3227 * be used - I wonder if that matters
3228 */
3229 rdev->badblocks.count = 0;
3230 rdev->badblocks.shift = 0;
3231 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3232 seqlock_init(&rdev->badblocks.lock);
3233 if (rdev->badblocks.page == NULL)
3234 return -ENOMEM;
3235
3236 return 0;
3237 }
3238 EXPORT_SYMBOL_GPL(md_rdev_init);
3239 /*
3240 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3241 *
3242 * mark the device faulty if:
3243 *
3244 * - the device is nonexistent (zero size)
3245 * - the device has no valid superblock
3246 *
3247 * a faulty rdev _never_ has rdev->sb set.
3248 */
3249 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3250 {
3251 char b[BDEVNAME_SIZE];
3252 int err;
3253 struct md_rdev *rdev;
3254 sector_t size;
3255
3256 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3257 if (!rdev) {
3258 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3259 return ERR_PTR(-ENOMEM);
3260 }
3261
3262 err = md_rdev_init(rdev);
3263 if (err)
3264 goto abort_free;
3265 err = alloc_disk_sb(rdev);
3266 if (err)
3267 goto abort_free;
3268
3269 err = lock_rdev(rdev, newdev, super_format == -2);
3270 if (err)
3271 goto abort_free;
3272
3273 kobject_init(&rdev->kobj, &rdev_ktype);
3274
3275 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3276 if (!size) {
3277 printk(KERN_WARNING
3278 "md: %s has zero or unknown size, marking faulty!\n",
3279 bdevname(rdev->bdev,b));
3280 err = -EINVAL;
3281 goto abort_free;
3282 }
3283
3284 if (super_format >= 0) {
3285 err = super_types[super_format].
3286 load_super(rdev, NULL, super_minor);
3287 if (err == -EINVAL) {
3288 printk(KERN_WARNING
3289 "md: %s does not have a valid v%d.%d "
3290 "superblock, not importing!\n",
3291 bdevname(rdev->bdev,b),
3292 super_format, super_minor);
3293 goto abort_free;
3294 }
3295 if (err < 0) {
3296 printk(KERN_WARNING
3297 "md: could not read %s's sb, not importing!\n",
3298 bdevname(rdev->bdev,b));
3299 goto abort_free;
3300 }
3301 }
3302 if (super_format == -1)
3303 /* hot-add for 0.90, or non-persistent: so no badblocks */
3304 rdev->badblocks.shift = -1;
3305
3306 return rdev;
3307
3308 abort_free:
3309 if (rdev->bdev)
3310 unlock_rdev(rdev);
3311 md_rdev_clear(rdev);
3312 kfree(rdev);
3313 return ERR_PTR(err);
3314 }
3315
3316 /*
3317 * Check a full RAID array for plausibility
3318 */
3319
3320
3321 static void analyze_sbs(struct mddev * mddev)
3322 {
3323 int i;
3324 struct md_rdev *rdev, *freshest, *tmp;
3325 char b[BDEVNAME_SIZE];
3326
3327 freshest = NULL;
3328 rdev_for_each_safe(rdev, tmp, mddev)
3329 switch (super_types[mddev->major_version].
3330 load_super(rdev, freshest, mddev->minor_version)) {
3331 case 1:
3332 freshest = rdev;
3333 break;
3334 case 0:
3335 break;
3336 default:
3337 printk( KERN_ERR \
3338 "md: fatal superblock inconsistency in %s"
3339 " -- removing from array\n",
3340 bdevname(rdev->bdev,b));
3341 kick_rdev_from_array(rdev);
3342 }
3343
3344
3345 super_types[mddev->major_version].
3346 validate_super(mddev, freshest);
3347
3348 i = 0;
3349 rdev_for_each_safe(rdev, tmp, mddev) {
3350 if (mddev->max_disks &&
3351 (rdev->desc_nr >= mddev->max_disks ||
3352 i > mddev->max_disks)) {
3353 printk(KERN_WARNING
3354 "md: %s: %s: only %d devices permitted\n",
3355 mdname(mddev), bdevname(rdev->bdev, b),
3356 mddev->max_disks);
3357 kick_rdev_from_array(rdev);
3358 continue;
3359 }
3360 if (rdev != freshest)
3361 if (super_types[mddev->major_version].
3362 validate_super(mddev, rdev)) {
3363 printk(KERN_WARNING "md: kicking non-fresh %s"
3364 " from array!\n",
3365 bdevname(rdev->bdev,b));
3366 kick_rdev_from_array(rdev);
3367 continue;
3368 }
3369 if (mddev->level == LEVEL_MULTIPATH) {
3370 rdev->desc_nr = i++;
3371 rdev->raid_disk = rdev->desc_nr;
3372 set_bit(In_sync, &rdev->flags);
3373 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3374 rdev->raid_disk = -1;
3375 clear_bit(In_sync, &rdev->flags);
3376 }
3377 }
3378 }
3379
3380 /* Read a fixed-point number.
3381 * Numbers in sysfs attributes should be in "standard" units where
3382 * possible, so time should be in seconds.
3383 * However we internally use a a much smaller unit such as
3384 * milliseconds or jiffies.
3385 * This function takes a decimal number with a possible fractional
3386 * component, and produces an integer which is the result of
3387 * multiplying that number by 10^'scale'.
3388 * all without any floating-point arithmetic.
3389 */
3390 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3391 {
3392 unsigned long result = 0;
3393 long decimals = -1;
3394 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3395 if (*cp == '.')
3396 decimals = 0;
3397 else if (decimals < scale) {
3398 unsigned int value;
3399 value = *cp - '0';
3400 result = result * 10 + value;
3401 if (decimals >= 0)
3402 decimals++;
3403 }
3404 cp++;
3405 }
3406 if (*cp == '\n')
3407 cp++;
3408 if (*cp)
3409 return -EINVAL;
3410 if (decimals < 0)
3411 decimals = 0;
3412 while (decimals < scale) {
3413 result *= 10;
3414 decimals ++;
3415 }
3416 *res = result;
3417 return 0;
3418 }
3419
3420
3421 static void md_safemode_timeout(unsigned long data);
3422
3423 static ssize_t
3424 safe_delay_show(struct mddev *mddev, char *page)
3425 {
3426 int msec = (mddev->safemode_delay*1000)/HZ;
3427 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3428 }
3429 static ssize_t
3430 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3431 {
3432 unsigned long msec;
3433
3434 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3435 return -EINVAL;
3436 if (msec == 0)
3437 mddev->safemode_delay = 0;
3438 else {
3439 unsigned long old_delay = mddev->safemode_delay;
3440 mddev->safemode_delay = (msec*HZ)/1000;
3441 if (mddev->safemode_delay == 0)
3442 mddev->safemode_delay = 1;
3443 if (mddev->safemode_delay < old_delay)
3444 md_safemode_timeout((unsigned long)mddev);
3445 }
3446 return len;
3447 }
3448 static struct md_sysfs_entry md_safe_delay =
3449 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3450
3451 static ssize_t
3452 level_show(struct mddev *mddev, char *page)
3453 {
3454 struct md_personality *p = mddev->pers;
3455 if (p)
3456 return sprintf(page, "%s\n", p->name);
3457 else if (mddev->clevel[0])
3458 return sprintf(page, "%s\n", mddev->clevel);
3459 else if (mddev->level != LEVEL_NONE)
3460 return sprintf(page, "%d\n", mddev->level);
3461 else
3462 return 0;
3463 }
3464
3465 static ssize_t
3466 level_store(struct mddev *mddev, const char *buf, size_t len)
3467 {
3468 char clevel[16];
3469 ssize_t rv = len;
3470 struct md_personality *pers;
3471 long level;
3472 void *priv;
3473 struct md_rdev *rdev;
3474
3475 if (mddev->pers == NULL) {
3476 if (len == 0)
3477 return 0;
3478 if (len >= sizeof(mddev->clevel))
3479 return -ENOSPC;
3480 strncpy(mddev->clevel, buf, len);
3481 if (mddev->clevel[len-1] == '\n')
3482 len--;
3483 mddev->clevel[len] = 0;
3484 mddev->level = LEVEL_NONE;
3485 return rv;
3486 }
3487
3488 /* request to change the personality. Need to ensure:
3489 * - array is not engaged in resync/recovery/reshape
3490 * - old personality can be suspended
3491 * - new personality will access other array.
3492 */
3493
3494 if (mddev->sync_thread ||
3495 mddev->reshape_position != MaxSector ||
3496 mddev->sysfs_active)
3497 return -EBUSY;
3498
3499 if (!mddev->pers->quiesce) {
3500 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3501 mdname(mddev), mddev->pers->name);
3502 return -EINVAL;
3503 }
3504
3505 /* Now find the new personality */
3506 if (len == 0 || len >= sizeof(clevel))
3507 return -EINVAL;
3508 strncpy(clevel, buf, len);
3509 if (clevel[len-1] == '\n')
3510 len--;
3511 clevel[len] = 0;
3512 if (strict_strtol(clevel, 10, &level))
3513 level = LEVEL_NONE;
3514
3515 if (request_module("md-%s", clevel) != 0)
3516 request_module("md-level-%s", clevel);
3517 spin_lock(&pers_lock);
3518 pers = find_pers(level, clevel);
3519 if (!pers || !try_module_get(pers->owner)) {
3520 spin_unlock(&pers_lock);
3521 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3522 return -EINVAL;
3523 }
3524 spin_unlock(&pers_lock);
3525
3526 if (pers == mddev->pers) {
3527 /* Nothing to do! */
3528 module_put(pers->owner);
3529 return rv;
3530 }
3531 if (!pers->takeover) {
3532 module_put(pers->owner);
3533 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3534 mdname(mddev), clevel);
3535 return -EINVAL;
3536 }
3537
3538 rdev_for_each(rdev, mddev)
3539 rdev->new_raid_disk = rdev->raid_disk;
3540
3541 /* ->takeover must set new_* and/or delta_disks
3542 * if it succeeds, and may set them when it fails.
3543 */
3544 priv = pers->takeover(mddev);
3545 if (IS_ERR(priv)) {
3546 mddev->new_level = mddev->level;
3547 mddev->new_layout = mddev->layout;
3548 mddev->new_chunk_sectors = mddev->chunk_sectors;
3549 mddev->raid_disks -= mddev->delta_disks;
3550 mddev->delta_disks = 0;
3551 mddev->reshape_backwards = 0;
3552 module_put(pers->owner);
3553 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3554 mdname(mddev), clevel);
3555 return PTR_ERR(priv);
3556 }
3557
3558 /* Looks like we have a winner */
3559 mddev_suspend(mddev);
3560 mddev->pers->stop(mddev);
3561
3562 if (mddev->pers->sync_request == NULL &&
3563 pers->sync_request != NULL) {
3564 /* need to add the md_redundancy_group */
3565 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3566 printk(KERN_WARNING
3567 "md: cannot register extra attributes for %s\n",
3568 mdname(mddev));
3569 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3570 }
3571 if (mddev->pers->sync_request != NULL &&
3572 pers->sync_request == NULL) {
3573 /* need to remove the md_redundancy_group */
3574 if (mddev->to_remove == NULL)
3575 mddev->to_remove = &md_redundancy_group;
3576 }
3577
3578 if (mddev->pers->sync_request == NULL &&
3579 mddev->external) {
3580 /* We are converting from a no-redundancy array
3581 * to a redundancy array and metadata is managed
3582 * externally so we need to be sure that writes
3583 * won't block due to a need to transition
3584 * clean->dirty
3585 * until external management is started.
3586 */
3587 mddev->in_sync = 0;
3588 mddev->safemode_delay = 0;
3589 mddev->safemode = 0;
3590 }
3591
3592 rdev_for_each(rdev, mddev) {
3593 if (rdev->raid_disk < 0)
3594 continue;
3595 if (rdev->new_raid_disk >= mddev->raid_disks)
3596 rdev->new_raid_disk = -1;
3597 if (rdev->new_raid_disk == rdev->raid_disk)
3598 continue;
3599 sysfs_unlink_rdev(mddev, rdev);
3600 }
3601 rdev_for_each(rdev, mddev) {
3602 if (rdev->raid_disk < 0)
3603 continue;
3604 if (rdev->new_raid_disk == rdev->raid_disk)
3605 continue;
3606 rdev->raid_disk = rdev->new_raid_disk;
3607 if (rdev->raid_disk < 0)
3608 clear_bit(In_sync, &rdev->flags);
3609 else {
3610 if (sysfs_link_rdev(mddev, rdev))
3611 printk(KERN_WARNING "md: cannot register rd%d"
3612 " for %s after level change\n",
3613 rdev->raid_disk, mdname(mddev));
3614 }
3615 }
3616
3617 module_put(mddev->pers->owner);
3618 mddev->pers = pers;
3619 mddev->private = priv;
3620 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3621 mddev->level = mddev->new_level;
3622 mddev->layout = mddev->new_layout;
3623 mddev->chunk_sectors = mddev->new_chunk_sectors;
3624 mddev->delta_disks = 0;
3625 mddev->reshape_backwards = 0;
3626 mddev->degraded = 0;
3627 if (mddev->pers->sync_request == NULL) {
3628 /* this is now an array without redundancy, so
3629 * it must always be in_sync
3630 */
3631 mddev->in_sync = 1;
3632 del_timer_sync(&mddev->safemode_timer);
3633 }
3634 pers->run(mddev);
3635 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3636 mddev_resume(mddev);
3637 sysfs_notify(&mddev->kobj, NULL, "level");
3638 md_new_event(mddev);
3639 return rv;
3640 }
3641
3642 static struct md_sysfs_entry md_level =
3643 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3644
3645
3646 static ssize_t
3647 layout_show(struct mddev *mddev, char *page)
3648 {
3649 /* just a number, not meaningful for all levels */
3650 if (mddev->reshape_position != MaxSector &&
3651 mddev->layout != mddev->new_layout)
3652 return sprintf(page, "%d (%d)\n",
3653 mddev->new_layout, mddev->layout);
3654 return sprintf(page, "%d\n", mddev->layout);
3655 }
3656
3657 static ssize_t
3658 layout_store(struct mddev *mddev, const char *buf, size_t len)
3659 {
3660 char *e;
3661 unsigned long n = simple_strtoul(buf, &e, 10);
3662
3663 if (!*buf || (*e && *e != '\n'))
3664 return -EINVAL;
3665
3666 if (mddev->pers) {
3667 int err;
3668 if (mddev->pers->check_reshape == NULL)
3669 return -EBUSY;
3670 mddev->new_layout = n;
3671 err = mddev->pers->check_reshape(mddev);
3672 if (err) {
3673 mddev->new_layout = mddev->layout;
3674 return err;
3675 }
3676 } else {
3677 mddev->new_layout = n;
3678 if (mddev->reshape_position == MaxSector)
3679 mddev->layout = n;
3680 }
3681 return len;
3682 }
3683 static struct md_sysfs_entry md_layout =
3684 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3685
3686
3687 static ssize_t
3688 raid_disks_show(struct mddev *mddev, char *page)
3689 {
3690 if (mddev->raid_disks == 0)
3691 return 0;
3692 if (mddev->reshape_position != MaxSector &&
3693 mddev->delta_disks != 0)
3694 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3695 mddev->raid_disks - mddev->delta_disks);
3696 return sprintf(page, "%d\n", mddev->raid_disks);
3697 }
3698
3699 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3700
3701 static ssize_t
3702 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3703 {
3704 char *e;
3705 int rv = 0;
3706 unsigned long n = simple_strtoul(buf, &e, 10);
3707
3708 if (!*buf || (*e && *e != '\n'))
3709 return -EINVAL;
3710
3711 if (mddev->pers)
3712 rv = update_raid_disks(mddev, n);
3713 else if (mddev->reshape_position != MaxSector) {
3714 struct md_rdev *rdev;
3715 int olddisks = mddev->raid_disks - mddev->delta_disks;
3716
3717 rdev_for_each(rdev, mddev) {
3718 if (olddisks < n &&
3719 rdev->data_offset < rdev->new_data_offset)
3720 return -EINVAL;
3721 if (olddisks > n &&
3722 rdev->data_offset > rdev->new_data_offset)
3723 return -EINVAL;
3724 }
3725 mddev->delta_disks = n - olddisks;
3726 mddev->raid_disks = n;
3727 mddev->reshape_backwards = (mddev->delta_disks < 0);
3728 } else
3729 mddev->raid_disks = n;
3730 return rv ? rv : len;
3731 }
3732 static struct md_sysfs_entry md_raid_disks =
3733 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3734
3735 static ssize_t
3736 chunk_size_show(struct mddev *mddev, char *page)
3737 {
3738 if (mddev->reshape_position != MaxSector &&
3739 mddev->chunk_sectors != mddev->new_chunk_sectors)
3740 return sprintf(page, "%d (%d)\n",
3741 mddev->new_chunk_sectors << 9,
3742 mddev->chunk_sectors << 9);
3743 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3744 }
3745
3746 static ssize_t
3747 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3748 {
3749 char *e;
3750 unsigned long n = simple_strtoul(buf, &e, 10);
3751
3752 if (!*buf || (*e && *e != '\n'))
3753 return -EINVAL;
3754
3755 if (mddev->pers) {
3756 int err;
3757 if (mddev->pers->check_reshape == NULL)
3758 return -EBUSY;
3759 mddev->new_chunk_sectors = n >> 9;
3760 err = mddev->pers->check_reshape(mddev);
3761 if (err) {
3762 mddev->new_chunk_sectors = mddev->chunk_sectors;
3763 return err;
3764 }
3765 } else {
3766 mddev->new_chunk_sectors = n >> 9;
3767 if (mddev->reshape_position == MaxSector)
3768 mddev->chunk_sectors = n >> 9;
3769 }
3770 return len;
3771 }
3772 static struct md_sysfs_entry md_chunk_size =
3773 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3774
3775 static ssize_t
3776 resync_start_show(struct mddev *mddev, char *page)
3777 {
3778 if (mddev->recovery_cp == MaxSector)
3779 return sprintf(page, "none\n");
3780 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3781 }
3782
3783 static ssize_t
3784 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3785 {
3786 char *e;
3787 unsigned long long n = simple_strtoull(buf, &e, 10);
3788
3789 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3790 return -EBUSY;
3791 if (cmd_match(buf, "none"))
3792 n = MaxSector;
3793 else if (!*buf || (*e && *e != '\n'))
3794 return -EINVAL;
3795
3796 mddev->recovery_cp = n;
3797 if (mddev->pers)
3798 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3799 return len;
3800 }
3801 static struct md_sysfs_entry md_resync_start =
3802 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3803
3804 /*
3805 * The array state can be:
3806 *
3807 * clear
3808 * No devices, no size, no level
3809 * Equivalent to STOP_ARRAY ioctl
3810 * inactive
3811 * May have some settings, but array is not active
3812 * all IO results in error
3813 * When written, doesn't tear down array, but just stops it
3814 * suspended (not supported yet)
3815 * All IO requests will block. The array can be reconfigured.
3816 * Writing this, if accepted, will block until array is quiescent
3817 * readonly
3818 * no resync can happen. no superblocks get written.
3819 * write requests fail
3820 * read-auto
3821 * like readonly, but behaves like 'clean' on a write request.
3822 *
3823 * clean - no pending writes, but otherwise active.
3824 * When written to inactive array, starts without resync
3825 * If a write request arrives then
3826 * if metadata is known, mark 'dirty' and switch to 'active'.
3827 * if not known, block and switch to write-pending
3828 * If written to an active array that has pending writes, then fails.
3829 * active
3830 * fully active: IO and resync can be happening.
3831 * When written to inactive array, starts with resync
3832 *
3833 * write-pending
3834 * clean, but writes are blocked waiting for 'active' to be written.
3835 *
3836 * active-idle
3837 * like active, but no writes have been seen for a while (100msec).
3838 *
3839 */
3840 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3841 write_pending, active_idle, bad_word};
3842 static char *array_states[] = {
3843 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3844 "write-pending", "active-idle", NULL };
3845
3846 static int match_word(const char *word, char **list)
3847 {
3848 int n;
3849 for (n=0; list[n]; n++)
3850 if (cmd_match(word, list[n]))
3851 break;
3852 return n;
3853 }
3854
3855 static ssize_t
3856 array_state_show(struct mddev *mddev, char *page)
3857 {
3858 enum array_state st = inactive;
3859
3860 if (mddev->pers)
3861 switch(mddev->ro) {
3862 case 1:
3863 st = readonly;
3864 break;
3865 case 2:
3866 st = read_auto;
3867 break;
3868 case 0:
3869 if (mddev->in_sync)
3870 st = clean;
3871 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3872 st = write_pending;
3873 else if (mddev->safemode)
3874 st = active_idle;
3875 else
3876 st = active;
3877 }
3878 else {
3879 if (list_empty(&mddev->disks) &&
3880 mddev->raid_disks == 0 &&
3881 mddev->dev_sectors == 0)
3882 st = clear;
3883 else
3884 st = inactive;
3885 }
3886 return sprintf(page, "%s\n", array_states[st]);
3887 }
3888
3889 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
3890 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
3891 static int do_md_run(struct mddev * mddev);
3892 static int restart_array(struct mddev *mddev);
3893
3894 static ssize_t
3895 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3896 {
3897 int err = -EINVAL;
3898 enum array_state st = match_word(buf, array_states);
3899 switch(st) {
3900 case bad_word:
3901 break;
3902 case clear:
3903 /* stopping an active array */
3904 err = do_md_stop(mddev, 0, NULL);
3905 break;
3906 case inactive:
3907 /* stopping an active array */
3908 if (mddev->pers)
3909 err = do_md_stop(mddev, 2, NULL);
3910 else
3911 err = 0; /* already inactive */
3912 break;
3913 case suspended:
3914 break; /* not supported yet */
3915 case readonly:
3916 if (mddev->pers)
3917 err = md_set_readonly(mddev, NULL);
3918 else {
3919 mddev->ro = 1;
3920 set_disk_ro(mddev->gendisk, 1);
3921 err = do_md_run(mddev);
3922 }
3923 break;
3924 case read_auto:
3925 if (mddev->pers) {
3926 if (mddev->ro == 0)
3927 err = md_set_readonly(mddev, NULL);
3928 else if (mddev->ro == 1)
3929 err = restart_array(mddev);
3930 if (err == 0) {
3931 mddev->ro = 2;
3932 set_disk_ro(mddev->gendisk, 0);
3933 }
3934 } else {
3935 mddev->ro = 2;
3936 err = do_md_run(mddev);
3937 }
3938 break;
3939 case clean:
3940 if (mddev->pers) {
3941 restart_array(mddev);
3942 spin_lock_irq(&mddev->write_lock);
3943 if (atomic_read(&mddev->writes_pending) == 0) {
3944 if (mddev->in_sync == 0) {
3945 mddev->in_sync = 1;
3946 if (mddev->safemode == 1)
3947 mddev->safemode = 0;
3948 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3949 }
3950 err = 0;
3951 } else
3952 err = -EBUSY;
3953 spin_unlock_irq(&mddev->write_lock);
3954 } else
3955 err = -EINVAL;
3956 break;
3957 case active:
3958 if (mddev->pers) {
3959 restart_array(mddev);
3960 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3961 wake_up(&mddev->sb_wait);
3962 err = 0;
3963 } else {
3964 mddev->ro = 0;
3965 set_disk_ro(mddev->gendisk, 0);
3966 err = do_md_run(mddev);
3967 }
3968 break;
3969 case write_pending:
3970 case active_idle:
3971 /* these cannot be set */
3972 break;
3973 }
3974 if (err)
3975 return err;
3976 else {
3977 if (mddev->hold_active == UNTIL_IOCTL)
3978 mddev->hold_active = 0;
3979 sysfs_notify_dirent_safe(mddev->sysfs_state);
3980 return len;
3981 }
3982 }
3983 static struct md_sysfs_entry md_array_state =
3984 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3985
3986 static ssize_t
3987 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3988 return sprintf(page, "%d\n",
3989 atomic_read(&mddev->max_corr_read_errors));
3990 }
3991
3992 static ssize_t
3993 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3994 {
3995 char *e;
3996 unsigned long n = simple_strtoul(buf, &e, 10);
3997
3998 if (*buf && (*e == 0 || *e == '\n')) {
3999 atomic_set(&mddev->max_corr_read_errors, n);
4000 return len;
4001 }
4002 return -EINVAL;
4003 }
4004
4005 static struct md_sysfs_entry max_corr_read_errors =
4006 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4007 max_corrected_read_errors_store);
4008
4009 static ssize_t
4010 null_show(struct mddev *mddev, char *page)
4011 {
4012 return -EINVAL;
4013 }
4014
4015 static ssize_t
4016 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4017 {
4018 /* buf must be %d:%d\n? giving major and minor numbers */
4019 /* The new device is added to the array.
4020 * If the array has a persistent superblock, we read the
4021 * superblock to initialise info and check validity.
4022 * Otherwise, only checking done is that in bind_rdev_to_array,
4023 * which mainly checks size.
4024 */
4025 char *e;
4026 int major = simple_strtoul(buf, &e, 10);
4027 int minor;
4028 dev_t dev;
4029 struct md_rdev *rdev;
4030 int err;
4031
4032 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4033 return -EINVAL;
4034 minor = simple_strtoul(e+1, &e, 10);
4035 if (*e && *e != '\n')
4036 return -EINVAL;
4037 dev = MKDEV(major, minor);
4038 if (major != MAJOR(dev) ||
4039 minor != MINOR(dev))
4040 return -EOVERFLOW;
4041
4042
4043 if (mddev->persistent) {
4044 rdev = md_import_device(dev, mddev->major_version,
4045 mddev->minor_version);
4046 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4047 struct md_rdev *rdev0
4048 = list_entry(mddev->disks.next,
4049 struct md_rdev, same_set);
4050 err = super_types[mddev->major_version]
4051 .load_super(rdev, rdev0, mddev->minor_version);
4052 if (err < 0)
4053 goto out;
4054 }
4055 } else if (mddev->external)
4056 rdev = md_import_device(dev, -2, -1);
4057 else
4058 rdev = md_import_device(dev, -1, -1);
4059
4060 if (IS_ERR(rdev))
4061 return PTR_ERR(rdev);
4062 err = bind_rdev_to_array(rdev, mddev);
4063 out:
4064 if (err)
4065 export_rdev(rdev);
4066 return err ? err : len;
4067 }
4068
4069 static struct md_sysfs_entry md_new_device =
4070 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4071
4072 static ssize_t
4073 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4074 {
4075 char *end;
4076 unsigned long chunk, end_chunk;
4077
4078 if (!mddev->bitmap)
4079 goto out;
4080 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4081 while (*buf) {
4082 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4083 if (buf == end) break;
4084 if (*end == '-') { /* range */
4085 buf = end + 1;
4086 end_chunk = simple_strtoul(buf, &end, 0);
4087 if (buf == end) break;
4088 }
4089 if (*end && !isspace(*end)) break;
4090 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4091 buf = skip_spaces(end);
4092 }
4093 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4094 out:
4095 return len;
4096 }
4097
4098 static struct md_sysfs_entry md_bitmap =
4099 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4100
4101 static ssize_t
4102 size_show(struct mddev *mddev, char *page)
4103 {
4104 return sprintf(page, "%llu\n",
4105 (unsigned long long)mddev->dev_sectors / 2);
4106 }
4107
4108 static int update_size(struct mddev *mddev, sector_t num_sectors);
4109
4110 static ssize_t
4111 size_store(struct mddev *mddev, const char *buf, size_t len)
4112 {
4113 /* If array is inactive, we can reduce the component size, but
4114 * not increase it (except from 0).
4115 * If array is active, we can try an on-line resize
4116 */
4117 sector_t sectors;
4118 int err = strict_blocks_to_sectors(buf, &sectors);
4119
4120 if (err < 0)
4121 return err;
4122 if (mddev->pers) {
4123 err = update_size(mddev, sectors);
4124 md_update_sb(mddev, 1);
4125 } else {
4126 if (mddev->dev_sectors == 0 ||
4127 mddev->dev_sectors > sectors)
4128 mddev->dev_sectors = sectors;
4129 else
4130 err = -ENOSPC;
4131 }
4132 return err ? err : len;
4133 }
4134
4135 static struct md_sysfs_entry md_size =
4136 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4137
4138
4139 /* Metadata version.
4140 * This is one of
4141 * 'none' for arrays with no metadata (good luck...)
4142 * 'external' for arrays with externally managed metadata,
4143 * or N.M for internally known formats
4144 */
4145 static ssize_t
4146 metadata_show(struct mddev *mddev, char *page)
4147 {
4148 if (mddev->persistent)
4149 return sprintf(page, "%d.%d\n",
4150 mddev->major_version, mddev->minor_version);
4151 else if (mddev->external)
4152 return sprintf(page, "external:%s\n", mddev->metadata_type);
4153 else
4154 return sprintf(page, "none\n");
4155 }
4156
4157 static ssize_t
4158 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4159 {
4160 int major, minor;
4161 char *e;
4162 /* Changing the details of 'external' metadata is
4163 * always permitted. Otherwise there must be
4164 * no devices attached to the array.
4165 */
4166 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4167 ;
4168 else if (!list_empty(&mddev->disks))
4169 return -EBUSY;
4170
4171 if (cmd_match(buf, "none")) {
4172 mddev->persistent = 0;
4173 mddev->external = 0;
4174 mddev->major_version = 0;
4175 mddev->minor_version = 90;
4176 return len;
4177 }
4178 if (strncmp(buf, "external:", 9) == 0) {
4179 size_t namelen = len-9;
4180 if (namelen >= sizeof(mddev->metadata_type))
4181 namelen = sizeof(mddev->metadata_type)-1;
4182 strncpy(mddev->metadata_type, buf+9, namelen);
4183 mddev->metadata_type[namelen] = 0;
4184 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4185 mddev->metadata_type[--namelen] = 0;
4186 mddev->persistent = 0;
4187 mddev->external = 1;
4188 mddev->major_version = 0;
4189 mddev->minor_version = 90;
4190 return len;
4191 }
4192 major = simple_strtoul(buf, &e, 10);
4193 if (e==buf || *e != '.')
4194 return -EINVAL;
4195 buf = e+1;
4196 minor = simple_strtoul(buf, &e, 10);
4197 if (e==buf || (*e && *e != '\n') )
4198 return -EINVAL;
4199 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4200 return -ENOENT;
4201 mddev->major_version = major;
4202 mddev->minor_version = minor;
4203 mddev->persistent = 1;
4204 mddev->external = 0;
4205 return len;
4206 }
4207
4208 static struct md_sysfs_entry md_metadata =
4209 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4210
4211 static ssize_t
4212 action_show(struct mddev *mddev, char *page)
4213 {
4214 char *type = "idle";
4215 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4216 type = "frozen";
4217 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4218 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4219 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4220 type = "reshape";
4221 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4222 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4223 type = "resync";
4224 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4225 type = "check";
4226 else
4227 type = "repair";
4228 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4229 type = "recover";
4230 }
4231 return sprintf(page, "%s\n", type);
4232 }
4233
4234 static void reap_sync_thread(struct mddev *mddev);
4235
4236 static ssize_t
4237 action_store(struct mddev *mddev, const char *page, size_t len)
4238 {
4239 if (!mddev->pers || !mddev->pers->sync_request)
4240 return -EINVAL;
4241
4242 if (cmd_match(page, "frozen"))
4243 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4244 else
4245 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4246
4247 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4248 if (mddev->sync_thread) {
4249 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4250 reap_sync_thread(mddev);
4251 }
4252 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4253 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4254 return -EBUSY;
4255 else if (cmd_match(page, "resync"))
4256 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4257 else if (cmd_match(page, "recover")) {
4258 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4259 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4260 } else if (cmd_match(page, "reshape")) {
4261 int err;
4262 if (mddev->pers->start_reshape == NULL)
4263 return -EINVAL;
4264 err = mddev->pers->start_reshape(mddev);
4265 if (err)
4266 return err;
4267 sysfs_notify(&mddev->kobj, NULL, "degraded");
4268 } else {
4269 if (cmd_match(page, "check"))
4270 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4271 else if (!cmd_match(page, "repair"))
4272 return -EINVAL;
4273 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4274 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4275 }
4276 if (mddev->ro == 2) {
4277 /* A write to sync_action is enough to justify
4278 * canceling read-auto mode
4279 */
4280 mddev->ro = 0;
4281 md_wakeup_thread(mddev->sync_thread);
4282 }
4283 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4284 md_wakeup_thread(mddev->thread);
4285 sysfs_notify_dirent_safe(mddev->sysfs_action);
4286 return len;
4287 }
4288
4289 static ssize_t
4290 mismatch_cnt_show(struct mddev *mddev, char *page)
4291 {
4292 return sprintf(page, "%llu\n",
4293 (unsigned long long)
4294 atomic64_read(&mddev->resync_mismatches));
4295 }
4296
4297 static struct md_sysfs_entry md_scan_mode =
4298 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4299
4300
4301 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4302
4303 static ssize_t
4304 sync_min_show(struct mddev *mddev, char *page)
4305 {
4306 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4307 mddev->sync_speed_min ? "local": "system");
4308 }
4309
4310 static ssize_t
4311 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4312 {
4313 int min;
4314 char *e;
4315 if (strncmp(buf, "system", 6)==0) {
4316 mddev->sync_speed_min = 0;
4317 return len;
4318 }
4319 min = simple_strtoul(buf, &e, 10);
4320 if (buf == e || (*e && *e != '\n') || min <= 0)
4321 return -EINVAL;
4322 mddev->sync_speed_min = min;
4323 return len;
4324 }
4325
4326 static struct md_sysfs_entry md_sync_min =
4327 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4328
4329 static ssize_t
4330 sync_max_show(struct mddev *mddev, char *page)
4331 {
4332 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4333 mddev->sync_speed_max ? "local": "system");
4334 }
4335
4336 static ssize_t
4337 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4338 {
4339 int max;
4340 char *e;
4341 if (strncmp(buf, "system", 6)==0) {
4342 mddev->sync_speed_max = 0;
4343 return len;
4344 }
4345 max = simple_strtoul(buf, &e, 10);
4346 if (buf == e || (*e && *e != '\n') || max <= 0)
4347 return -EINVAL;
4348 mddev->sync_speed_max = max;
4349 return len;
4350 }
4351
4352 static struct md_sysfs_entry md_sync_max =
4353 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4354
4355 static ssize_t
4356 degraded_show(struct mddev *mddev, char *page)
4357 {
4358 return sprintf(page, "%d\n", mddev->degraded);
4359 }
4360 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4361
4362 static ssize_t
4363 sync_force_parallel_show(struct mddev *mddev, char *page)
4364 {
4365 return sprintf(page, "%d\n", mddev->parallel_resync);
4366 }
4367
4368 static ssize_t
4369 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4370 {
4371 long n;
4372
4373 if (strict_strtol(buf, 10, &n))
4374 return -EINVAL;
4375
4376 if (n != 0 && n != 1)
4377 return -EINVAL;
4378
4379 mddev->parallel_resync = n;
4380
4381 if (mddev->sync_thread)
4382 wake_up(&resync_wait);
4383
4384 return len;
4385 }
4386
4387 /* force parallel resync, even with shared block devices */
4388 static struct md_sysfs_entry md_sync_force_parallel =
4389 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4390 sync_force_parallel_show, sync_force_parallel_store);
4391
4392 static ssize_t
4393 sync_speed_show(struct mddev *mddev, char *page)
4394 {
4395 unsigned long resync, dt, db;
4396 if (mddev->curr_resync == 0)
4397 return sprintf(page, "none\n");
4398 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4399 dt = (jiffies - mddev->resync_mark) / HZ;
4400 if (!dt) dt++;
4401 db = resync - mddev->resync_mark_cnt;
4402 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4403 }
4404
4405 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4406
4407 static ssize_t
4408 sync_completed_show(struct mddev *mddev, char *page)
4409 {
4410 unsigned long long max_sectors, resync;
4411
4412 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4413 return sprintf(page, "none\n");
4414
4415 if (mddev->curr_resync == 1 ||
4416 mddev->curr_resync == 2)
4417 return sprintf(page, "delayed\n");
4418
4419 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4420 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4421 max_sectors = mddev->resync_max_sectors;
4422 else
4423 max_sectors = mddev->dev_sectors;
4424
4425 resync = mddev->curr_resync_completed;
4426 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4427 }
4428
4429 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4430
4431 static ssize_t
4432 min_sync_show(struct mddev *mddev, char *page)
4433 {
4434 return sprintf(page, "%llu\n",
4435 (unsigned long long)mddev->resync_min);
4436 }
4437 static ssize_t
4438 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4439 {
4440 unsigned long long min;
4441 if (strict_strtoull(buf, 10, &min))
4442 return -EINVAL;
4443 if (min > mddev->resync_max)
4444 return -EINVAL;
4445 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4446 return -EBUSY;
4447
4448 /* Must be a multiple of chunk_size */
4449 if (mddev->chunk_sectors) {
4450 sector_t temp = min;
4451 if (sector_div(temp, mddev->chunk_sectors))
4452 return -EINVAL;
4453 }
4454 mddev->resync_min = min;
4455
4456 return len;
4457 }
4458
4459 static struct md_sysfs_entry md_min_sync =
4460 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4461
4462 static ssize_t
4463 max_sync_show(struct mddev *mddev, char *page)
4464 {
4465 if (mddev->resync_max == MaxSector)
4466 return sprintf(page, "max\n");
4467 else
4468 return sprintf(page, "%llu\n",
4469 (unsigned long long)mddev->resync_max);
4470 }
4471 static ssize_t
4472 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4473 {
4474 if (strncmp(buf, "max", 3) == 0)
4475 mddev->resync_max = MaxSector;
4476 else {
4477 unsigned long long max;
4478 if (strict_strtoull(buf, 10, &max))
4479 return -EINVAL;
4480 if (max < mddev->resync_min)
4481 return -EINVAL;
4482 if (max < mddev->resync_max &&
4483 mddev->ro == 0 &&
4484 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4485 return -EBUSY;
4486
4487 /* Must be a multiple of chunk_size */
4488 if (mddev->chunk_sectors) {
4489 sector_t temp = max;
4490 if (sector_div(temp, mddev->chunk_sectors))
4491 return -EINVAL;
4492 }
4493 mddev->resync_max = max;
4494 }
4495 wake_up(&mddev->recovery_wait);
4496 return len;
4497 }
4498
4499 static struct md_sysfs_entry md_max_sync =
4500 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4501
4502 static ssize_t
4503 suspend_lo_show(struct mddev *mddev, char *page)
4504 {
4505 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4506 }
4507
4508 static ssize_t
4509 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4510 {
4511 char *e;
4512 unsigned long long new = simple_strtoull(buf, &e, 10);
4513 unsigned long long old = mddev->suspend_lo;
4514
4515 if (mddev->pers == NULL ||
4516 mddev->pers->quiesce == NULL)
4517 return -EINVAL;
4518 if (buf == e || (*e && *e != '\n'))
4519 return -EINVAL;
4520
4521 mddev->suspend_lo = new;
4522 if (new >= old)
4523 /* Shrinking suspended region */
4524 mddev->pers->quiesce(mddev, 2);
4525 else {
4526 /* Expanding suspended region - need to wait */
4527 mddev->pers->quiesce(mddev, 1);
4528 mddev->pers->quiesce(mddev, 0);
4529 }
4530 return len;
4531 }
4532 static struct md_sysfs_entry md_suspend_lo =
4533 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4534
4535
4536 static ssize_t
4537 suspend_hi_show(struct mddev *mddev, char *page)
4538 {
4539 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4540 }
4541
4542 static ssize_t
4543 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4544 {
4545 char *e;
4546 unsigned long long new = simple_strtoull(buf, &e, 10);
4547 unsigned long long old = mddev->suspend_hi;
4548
4549 if (mddev->pers == NULL ||
4550 mddev->pers->quiesce == NULL)
4551 return -EINVAL;
4552 if (buf == e || (*e && *e != '\n'))
4553 return -EINVAL;
4554
4555 mddev->suspend_hi = new;
4556 if (new <= old)
4557 /* Shrinking suspended region */
4558 mddev->pers->quiesce(mddev, 2);
4559 else {
4560 /* Expanding suspended region - need to wait */
4561 mddev->pers->quiesce(mddev, 1);
4562 mddev->pers->quiesce(mddev, 0);
4563 }
4564 return len;
4565 }
4566 static struct md_sysfs_entry md_suspend_hi =
4567 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4568
4569 static ssize_t
4570 reshape_position_show(struct mddev *mddev, char *page)
4571 {
4572 if (mddev->reshape_position != MaxSector)
4573 return sprintf(page, "%llu\n",
4574 (unsigned long long)mddev->reshape_position);
4575 strcpy(page, "none\n");
4576 return 5;
4577 }
4578
4579 static ssize_t
4580 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4581 {
4582 struct md_rdev *rdev;
4583 char *e;
4584 unsigned long long new = simple_strtoull(buf, &e, 10);
4585 if (mddev->pers)
4586 return -EBUSY;
4587 if (buf == e || (*e && *e != '\n'))
4588 return -EINVAL;
4589 mddev->reshape_position = new;
4590 mddev->delta_disks = 0;
4591 mddev->reshape_backwards = 0;
4592 mddev->new_level = mddev->level;
4593 mddev->new_layout = mddev->layout;
4594 mddev->new_chunk_sectors = mddev->chunk_sectors;
4595 rdev_for_each(rdev, mddev)
4596 rdev->new_data_offset = rdev->data_offset;
4597 return len;
4598 }
4599
4600 static struct md_sysfs_entry md_reshape_position =
4601 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4602 reshape_position_store);
4603
4604 static ssize_t
4605 reshape_direction_show(struct mddev *mddev, char *page)
4606 {
4607 return sprintf(page, "%s\n",
4608 mddev->reshape_backwards ? "backwards" : "forwards");
4609 }
4610
4611 static ssize_t
4612 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4613 {
4614 int backwards = 0;
4615 if (cmd_match(buf, "forwards"))
4616 backwards = 0;
4617 else if (cmd_match(buf, "backwards"))
4618 backwards = 1;
4619 else
4620 return -EINVAL;
4621 if (mddev->reshape_backwards == backwards)
4622 return len;
4623
4624 /* check if we are allowed to change */
4625 if (mddev->delta_disks)
4626 return -EBUSY;
4627
4628 if (mddev->persistent &&
4629 mddev->major_version == 0)
4630 return -EINVAL;
4631
4632 mddev->reshape_backwards = backwards;
4633 return len;
4634 }
4635
4636 static struct md_sysfs_entry md_reshape_direction =
4637 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4638 reshape_direction_store);
4639
4640 static ssize_t
4641 array_size_show(struct mddev *mddev, char *page)
4642 {
4643 if (mddev->external_size)
4644 return sprintf(page, "%llu\n",
4645 (unsigned long long)mddev->array_sectors/2);
4646 else
4647 return sprintf(page, "default\n");
4648 }
4649
4650 static ssize_t
4651 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4652 {
4653 sector_t sectors;
4654
4655 if (strncmp(buf, "default", 7) == 0) {
4656 if (mddev->pers)
4657 sectors = mddev->pers->size(mddev, 0, 0);
4658 else
4659 sectors = mddev->array_sectors;
4660
4661 mddev->external_size = 0;
4662 } else {
4663 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4664 return -EINVAL;
4665 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4666 return -E2BIG;
4667
4668 mddev->external_size = 1;
4669 }
4670
4671 mddev->array_sectors = sectors;
4672 if (mddev->pers) {
4673 set_capacity(mddev->gendisk, mddev->array_sectors);
4674 revalidate_disk(mddev->gendisk);
4675 }
4676 return len;
4677 }
4678
4679 static struct md_sysfs_entry md_array_size =
4680 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4681 array_size_store);
4682
4683 static struct attribute *md_default_attrs[] = {
4684 &md_level.attr,
4685 &md_layout.attr,
4686 &md_raid_disks.attr,
4687 &md_chunk_size.attr,
4688 &md_size.attr,
4689 &md_resync_start.attr,
4690 &md_metadata.attr,
4691 &md_new_device.attr,
4692 &md_safe_delay.attr,
4693 &md_array_state.attr,
4694 &md_reshape_position.attr,
4695 &md_reshape_direction.attr,
4696 &md_array_size.attr,
4697 &max_corr_read_errors.attr,
4698 NULL,
4699 };
4700
4701 static struct attribute *md_redundancy_attrs[] = {
4702 &md_scan_mode.attr,
4703 &md_mismatches.attr,
4704 &md_sync_min.attr,
4705 &md_sync_max.attr,
4706 &md_sync_speed.attr,
4707 &md_sync_force_parallel.attr,
4708 &md_sync_completed.attr,
4709 &md_min_sync.attr,
4710 &md_max_sync.attr,
4711 &md_suspend_lo.attr,
4712 &md_suspend_hi.attr,
4713 &md_bitmap.attr,
4714 &md_degraded.attr,
4715 NULL,
4716 };
4717 static struct attribute_group md_redundancy_group = {
4718 .name = NULL,
4719 .attrs = md_redundancy_attrs,
4720 };
4721
4722
4723 static ssize_t
4724 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4725 {
4726 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4727 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4728 ssize_t rv;
4729
4730 if (!entry->show)
4731 return -EIO;
4732 spin_lock(&all_mddevs_lock);
4733 if (list_empty(&mddev->all_mddevs)) {
4734 spin_unlock(&all_mddevs_lock);
4735 return -EBUSY;
4736 }
4737 mddev_get(mddev);
4738 spin_unlock(&all_mddevs_lock);
4739
4740 rv = mddev_lock(mddev);
4741 if (!rv) {
4742 rv = entry->show(mddev, page);
4743 mddev_unlock(mddev);
4744 }
4745 mddev_put(mddev);
4746 return rv;
4747 }
4748
4749 static ssize_t
4750 md_attr_store(struct kobject *kobj, struct attribute *attr,
4751 const char *page, size_t length)
4752 {
4753 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4754 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4755 ssize_t rv;
4756
4757 if (!entry->store)
4758 return -EIO;
4759 if (!capable(CAP_SYS_ADMIN))
4760 return -EACCES;
4761 spin_lock(&all_mddevs_lock);
4762 if (list_empty(&mddev->all_mddevs)) {
4763 spin_unlock(&all_mddevs_lock);
4764 return -EBUSY;
4765 }
4766 mddev_get(mddev);
4767 spin_unlock(&all_mddevs_lock);
4768 if (entry->store == new_dev_store)
4769 flush_workqueue(md_misc_wq);
4770 rv = mddev_lock(mddev);
4771 if (!rv) {
4772 rv = entry->store(mddev, page, length);
4773 mddev_unlock(mddev);
4774 }
4775 mddev_put(mddev);
4776 return rv;
4777 }
4778
4779 static void md_free(struct kobject *ko)
4780 {
4781 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4782
4783 if (mddev->sysfs_state)
4784 sysfs_put(mddev->sysfs_state);
4785
4786 if (mddev->gendisk) {
4787 del_gendisk(mddev->gendisk);
4788 put_disk(mddev->gendisk);
4789 }
4790 if (mddev->queue)
4791 blk_cleanup_queue(mddev->queue);
4792
4793 kfree(mddev);
4794 }
4795
4796 static const struct sysfs_ops md_sysfs_ops = {
4797 .show = md_attr_show,
4798 .store = md_attr_store,
4799 };
4800 static struct kobj_type md_ktype = {
4801 .release = md_free,
4802 .sysfs_ops = &md_sysfs_ops,
4803 .default_attrs = md_default_attrs,
4804 };
4805
4806 int mdp_major = 0;
4807
4808 static void mddev_delayed_delete(struct work_struct *ws)
4809 {
4810 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4811
4812 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4813 kobject_del(&mddev->kobj);
4814 kobject_put(&mddev->kobj);
4815 }
4816
4817 static int md_alloc(dev_t dev, char *name)
4818 {
4819 static DEFINE_MUTEX(disks_mutex);
4820 struct mddev *mddev = mddev_find(dev);
4821 struct gendisk *disk;
4822 int partitioned;
4823 int shift;
4824 int unit;
4825 int error;
4826
4827 if (!mddev)
4828 return -ENODEV;
4829
4830 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4831 shift = partitioned ? MdpMinorShift : 0;
4832 unit = MINOR(mddev->unit) >> shift;
4833
4834 /* wait for any previous instance of this device to be
4835 * completely removed (mddev_delayed_delete).
4836 */
4837 flush_workqueue(md_misc_wq);
4838
4839 mutex_lock(&disks_mutex);
4840 error = -EEXIST;
4841 if (mddev->gendisk)
4842 goto abort;
4843
4844 if (name) {
4845 /* Need to ensure that 'name' is not a duplicate.
4846 */
4847 struct mddev *mddev2;
4848 spin_lock(&all_mddevs_lock);
4849
4850 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4851 if (mddev2->gendisk &&
4852 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4853 spin_unlock(&all_mddevs_lock);
4854 goto abort;
4855 }
4856 spin_unlock(&all_mddevs_lock);
4857 }
4858
4859 error = -ENOMEM;
4860 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4861 if (!mddev->queue)
4862 goto abort;
4863 mddev->queue->queuedata = mddev;
4864
4865 blk_queue_make_request(mddev->queue, md_make_request);
4866 blk_set_stacking_limits(&mddev->queue->limits);
4867
4868 disk = alloc_disk(1 << shift);
4869 if (!disk) {
4870 blk_cleanup_queue(mddev->queue);
4871 mddev->queue = NULL;
4872 goto abort;
4873 }
4874 disk->major = MAJOR(mddev->unit);
4875 disk->first_minor = unit << shift;
4876 if (name)
4877 strcpy(disk->disk_name, name);
4878 else if (partitioned)
4879 sprintf(disk->disk_name, "md_d%d", unit);
4880 else
4881 sprintf(disk->disk_name, "md%d", unit);
4882 disk->fops = &md_fops;
4883 disk->private_data = mddev;
4884 disk->queue = mddev->queue;
4885 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4886 /* Allow extended partitions. This makes the
4887 * 'mdp' device redundant, but we can't really
4888 * remove it now.
4889 */
4890 disk->flags |= GENHD_FL_EXT_DEVT;
4891 mddev->gendisk = disk;
4892 /* As soon as we call add_disk(), another thread could get
4893 * through to md_open, so make sure it doesn't get too far
4894 */
4895 mutex_lock(&mddev->open_mutex);
4896 add_disk(disk);
4897
4898 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4899 &disk_to_dev(disk)->kobj, "%s", "md");
4900 if (error) {
4901 /* This isn't possible, but as kobject_init_and_add is marked
4902 * __must_check, we must do something with the result
4903 */
4904 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4905 disk->disk_name);
4906 error = 0;
4907 }
4908 if (mddev->kobj.sd &&
4909 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4910 printk(KERN_DEBUG "pointless warning\n");
4911 mutex_unlock(&mddev->open_mutex);
4912 abort:
4913 mutex_unlock(&disks_mutex);
4914 if (!error && mddev->kobj.sd) {
4915 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4916 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4917 }
4918 mddev_put(mddev);
4919 return error;
4920 }
4921
4922 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4923 {
4924 md_alloc(dev, NULL);
4925 return NULL;
4926 }
4927
4928 static int add_named_array(const char *val, struct kernel_param *kp)
4929 {
4930 /* val must be "md_*" where * is not all digits.
4931 * We allocate an array with a large free minor number, and
4932 * set the name to val. val must not already be an active name.
4933 */
4934 int len = strlen(val);
4935 char buf[DISK_NAME_LEN];
4936
4937 while (len && val[len-1] == '\n')
4938 len--;
4939 if (len >= DISK_NAME_LEN)
4940 return -E2BIG;
4941 strlcpy(buf, val, len+1);
4942 if (strncmp(buf, "md_", 3) != 0)
4943 return -EINVAL;
4944 return md_alloc(0, buf);
4945 }
4946
4947 static void md_safemode_timeout(unsigned long data)
4948 {
4949 struct mddev *mddev = (struct mddev *) data;
4950
4951 if (!atomic_read(&mddev->writes_pending)) {
4952 mddev->safemode = 1;
4953 if (mddev->external)
4954 sysfs_notify_dirent_safe(mddev->sysfs_state);
4955 }
4956 md_wakeup_thread(mddev->thread);
4957 }
4958
4959 static int start_dirty_degraded;
4960
4961 int md_run(struct mddev *mddev)
4962 {
4963 int err;
4964 struct md_rdev *rdev;
4965 struct md_personality *pers;
4966
4967 if (list_empty(&mddev->disks))
4968 /* cannot run an array with no devices.. */
4969 return -EINVAL;
4970
4971 if (mddev->pers)
4972 return -EBUSY;
4973 /* Cannot run until previous stop completes properly */
4974 if (mddev->sysfs_active)
4975 return -EBUSY;
4976
4977 /*
4978 * Analyze all RAID superblock(s)
4979 */
4980 if (!mddev->raid_disks) {
4981 if (!mddev->persistent)
4982 return -EINVAL;
4983 analyze_sbs(mddev);
4984 }
4985
4986 if (mddev->level != LEVEL_NONE)
4987 request_module("md-level-%d", mddev->level);
4988 else if (mddev->clevel[0])
4989 request_module("md-%s", mddev->clevel);
4990
4991 /*
4992 * Drop all container device buffers, from now on
4993 * the only valid external interface is through the md
4994 * device.
4995 */
4996 rdev_for_each(rdev, mddev) {
4997 if (test_bit(Faulty, &rdev->flags))
4998 continue;
4999 sync_blockdev(rdev->bdev);
5000 invalidate_bdev(rdev->bdev);
5001
5002 /* perform some consistency tests on the device.
5003 * We don't want the data to overlap the metadata,
5004 * Internal Bitmap issues have been handled elsewhere.
5005 */
5006 if (rdev->meta_bdev) {
5007 /* Nothing to check */;
5008 } else if (rdev->data_offset < rdev->sb_start) {
5009 if (mddev->dev_sectors &&
5010 rdev->data_offset + mddev->dev_sectors
5011 > rdev->sb_start) {
5012 printk("md: %s: data overlaps metadata\n",
5013 mdname(mddev));
5014 return -EINVAL;
5015 }
5016 } else {
5017 if (rdev->sb_start + rdev->sb_size/512
5018 > rdev->data_offset) {
5019 printk("md: %s: metadata overlaps data\n",
5020 mdname(mddev));
5021 return -EINVAL;
5022 }
5023 }
5024 sysfs_notify_dirent_safe(rdev->sysfs_state);
5025 }
5026
5027 if (mddev->bio_set == NULL)
5028 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5029
5030 spin_lock(&pers_lock);
5031 pers = find_pers(mddev->level, mddev->clevel);
5032 if (!pers || !try_module_get(pers->owner)) {
5033 spin_unlock(&pers_lock);
5034 if (mddev->level != LEVEL_NONE)
5035 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5036 mddev->level);
5037 else
5038 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5039 mddev->clevel);
5040 return -EINVAL;
5041 }
5042 mddev->pers = pers;
5043 spin_unlock(&pers_lock);
5044 if (mddev->level != pers->level) {
5045 mddev->level = pers->level;
5046 mddev->new_level = pers->level;
5047 }
5048 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5049
5050 if (mddev->reshape_position != MaxSector &&
5051 pers->start_reshape == NULL) {
5052 /* This personality cannot handle reshaping... */
5053 mddev->pers = NULL;
5054 module_put(pers->owner);
5055 return -EINVAL;
5056 }
5057
5058 if (pers->sync_request) {
5059 /* Warn if this is a potentially silly
5060 * configuration.
5061 */
5062 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5063 struct md_rdev *rdev2;
5064 int warned = 0;
5065
5066 rdev_for_each(rdev, mddev)
5067 rdev_for_each(rdev2, mddev) {
5068 if (rdev < rdev2 &&
5069 rdev->bdev->bd_contains ==
5070 rdev2->bdev->bd_contains) {
5071 printk(KERN_WARNING
5072 "%s: WARNING: %s appears to be"
5073 " on the same physical disk as"
5074 " %s.\n",
5075 mdname(mddev),
5076 bdevname(rdev->bdev,b),
5077 bdevname(rdev2->bdev,b2));
5078 warned = 1;
5079 }
5080 }
5081
5082 if (warned)
5083 printk(KERN_WARNING
5084 "True protection against single-disk"
5085 " failure might be compromised.\n");
5086 }
5087
5088 mddev->recovery = 0;
5089 /* may be over-ridden by personality */
5090 mddev->resync_max_sectors = mddev->dev_sectors;
5091
5092 mddev->ok_start_degraded = start_dirty_degraded;
5093
5094 if (start_readonly && mddev->ro == 0)
5095 mddev->ro = 2; /* read-only, but switch on first write */
5096
5097 err = mddev->pers->run(mddev);
5098 if (err)
5099 printk(KERN_ERR "md: pers->run() failed ...\n");
5100 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
5101 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5102 " but 'external_size' not in effect?\n", __func__);
5103 printk(KERN_ERR
5104 "md: invalid array_size %llu > default size %llu\n",
5105 (unsigned long long)mddev->array_sectors / 2,
5106 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
5107 err = -EINVAL;
5108 mddev->pers->stop(mddev);
5109 }
5110 if (err == 0 && mddev->pers->sync_request &&
5111 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5112 err = bitmap_create(mddev);
5113 if (err) {
5114 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5115 mdname(mddev), err);
5116 mddev->pers->stop(mddev);
5117 }
5118 }
5119 if (err) {
5120 module_put(mddev->pers->owner);
5121 mddev->pers = NULL;
5122 bitmap_destroy(mddev);
5123 return err;
5124 }
5125 if (mddev->pers->sync_request) {
5126 if (mddev->kobj.sd &&
5127 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5128 printk(KERN_WARNING
5129 "md: cannot register extra attributes for %s\n",
5130 mdname(mddev));
5131 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5132 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5133 mddev->ro = 0;
5134
5135 atomic_set(&mddev->writes_pending,0);
5136 atomic_set(&mddev->max_corr_read_errors,
5137 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5138 mddev->safemode = 0;
5139 mddev->safemode_timer.function = md_safemode_timeout;
5140 mddev->safemode_timer.data = (unsigned long) mddev;
5141 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5142 mddev->in_sync = 1;
5143 smp_wmb();
5144 mddev->ready = 1;
5145 rdev_for_each(rdev, mddev)
5146 if (rdev->raid_disk >= 0)
5147 if (sysfs_link_rdev(mddev, rdev))
5148 /* failure here is OK */;
5149
5150 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5151
5152 if (mddev->flags)
5153 md_update_sb(mddev, 0);
5154
5155 md_new_event(mddev);
5156 sysfs_notify_dirent_safe(mddev->sysfs_state);
5157 sysfs_notify_dirent_safe(mddev->sysfs_action);
5158 sysfs_notify(&mddev->kobj, NULL, "degraded");
5159 return 0;
5160 }
5161 EXPORT_SYMBOL_GPL(md_run);
5162
5163 static int do_md_run(struct mddev *mddev)
5164 {
5165 int err;
5166
5167 err = md_run(mddev);
5168 if (err)
5169 goto out;
5170 err = bitmap_load(mddev);
5171 if (err) {
5172 bitmap_destroy(mddev);
5173 goto out;
5174 }
5175
5176 md_wakeup_thread(mddev->thread);
5177 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5178
5179 set_capacity(mddev->gendisk, mddev->array_sectors);
5180 revalidate_disk(mddev->gendisk);
5181 mddev->changed = 1;
5182 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5183 out:
5184 return err;
5185 }
5186
5187 static int restart_array(struct mddev *mddev)
5188 {
5189 struct gendisk *disk = mddev->gendisk;
5190
5191 /* Complain if it has no devices */
5192 if (list_empty(&mddev->disks))
5193 return -ENXIO;
5194 if (!mddev->pers)
5195 return -EINVAL;
5196 if (!mddev->ro)
5197 return -EBUSY;
5198 mddev->safemode = 0;
5199 mddev->ro = 0;
5200 set_disk_ro(disk, 0);
5201 printk(KERN_INFO "md: %s switched to read-write mode.\n",
5202 mdname(mddev));
5203 /* Kick recovery or resync if necessary */
5204 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5205 md_wakeup_thread(mddev->thread);
5206 md_wakeup_thread(mddev->sync_thread);
5207 sysfs_notify_dirent_safe(mddev->sysfs_state);
5208 return 0;
5209 }
5210
5211 /* similar to deny_write_access, but accounts for our holding a reference
5212 * to the file ourselves */
5213 static int deny_bitmap_write_access(struct file * file)
5214 {
5215 struct inode *inode = file->f_mapping->host;
5216
5217 spin_lock(&inode->i_lock);
5218 if (atomic_read(&inode->i_writecount) > 1) {
5219 spin_unlock(&inode->i_lock);
5220 return -ETXTBSY;
5221 }
5222 atomic_set(&inode->i_writecount, -1);
5223 spin_unlock(&inode->i_lock);
5224
5225 return 0;
5226 }
5227
5228 void restore_bitmap_write_access(struct file *file)
5229 {
5230 struct inode *inode = file->f_mapping->host;
5231
5232 spin_lock(&inode->i_lock);
5233 atomic_set(&inode->i_writecount, 1);
5234 spin_unlock(&inode->i_lock);
5235 }
5236
5237 static void md_clean(struct mddev *mddev)
5238 {
5239 mddev->array_sectors = 0;
5240 mddev->external_size = 0;
5241 mddev->dev_sectors = 0;
5242 mddev->raid_disks = 0;
5243 mddev->recovery_cp = 0;
5244 mddev->resync_min = 0;
5245 mddev->resync_max = MaxSector;
5246 mddev->reshape_position = MaxSector;
5247 mddev->external = 0;
5248 mddev->persistent = 0;
5249 mddev->level = LEVEL_NONE;
5250 mddev->clevel[0] = 0;
5251 mddev->flags = 0;
5252 mddev->ro = 0;
5253 mddev->metadata_type[0] = 0;
5254 mddev->chunk_sectors = 0;
5255 mddev->ctime = mddev->utime = 0;
5256 mddev->layout = 0;
5257 mddev->max_disks = 0;
5258 mddev->events = 0;
5259 mddev->can_decrease_events = 0;
5260 mddev->delta_disks = 0;
5261 mddev->reshape_backwards = 0;
5262 mddev->new_level = LEVEL_NONE;
5263 mddev->new_layout = 0;
5264 mddev->new_chunk_sectors = 0;
5265 mddev->curr_resync = 0;
5266 atomic64_set(&mddev->resync_mismatches, 0);
5267 mddev->suspend_lo = mddev->suspend_hi = 0;
5268 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5269 mddev->recovery = 0;
5270 mddev->in_sync = 0;
5271 mddev->changed = 0;
5272 mddev->degraded = 0;
5273 mddev->safemode = 0;
5274 mddev->merge_check_needed = 0;
5275 mddev->bitmap_info.offset = 0;
5276 mddev->bitmap_info.default_offset = 0;
5277 mddev->bitmap_info.default_space = 0;
5278 mddev->bitmap_info.chunksize = 0;
5279 mddev->bitmap_info.daemon_sleep = 0;
5280 mddev->bitmap_info.max_write_behind = 0;
5281 }
5282
5283 static void __md_stop_writes(struct mddev *mddev)
5284 {
5285 if (mddev->sync_thread) {
5286 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5287 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5288 reap_sync_thread(mddev);
5289 }
5290
5291 del_timer_sync(&mddev->safemode_timer);
5292
5293 bitmap_flush(mddev);
5294 md_super_wait(mddev);
5295
5296 if (mddev->ro == 0 &&
5297 (!mddev->in_sync || mddev->flags)) {
5298 /* mark array as shutdown cleanly */
5299 mddev->in_sync = 1;
5300 md_update_sb(mddev, 1);
5301 }
5302 }
5303
5304 void md_stop_writes(struct mddev *mddev)
5305 {
5306 mddev_lock(mddev);
5307 __md_stop_writes(mddev);
5308 mddev_unlock(mddev);
5309 }
5310 EXPORT_SYMBOL_GPL(md_stop_writes);
5311
5312 static void __md_stop(struct mddev *mddev)
5313 {
5314 mddev->ready = 0;
5315 mddev->pers->stop(mddev);
5316 if (mddev->pers->sync_request && mddev->to_remove == NULL)
5317 mddev->to_remove = &md_redundancy_group;
5318 module_put(mddev->pers->owner);
5319 mddev->pers = NULL;
5320 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5321 }
5322
5323 void md_stop(struct mddev *mddev)
5324 {
5325 /* stop the array and free an attached data structures.
5326 * This is called from dm-raid
5327 */
5328 __md_stop(mddev);
5329 bitmap_destroy(mddev);
5330 if (mddev->bio_set)
5331 bioset_free(mddev->bio_set);
5332 }
5333
5334 EXPORT_SYMBOL_GPL(md_stop);
5335
5336 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5337 {
5338 int err = 0;
5339 mutex_lock(&mddev->open_mutex);
5340 if (atomic_read(&mddev->openers) > !!bdev) {
5341 printk("md: %s still in use.\n",mdname(mddev));
5342 err = -EBUSY;
5343 goto out;
5344 }
5345 if (bdev)
5346 sync_blockdev(bdev);
5347 if (mddev->pers) {
5348 __md_stop_writes(mddev);
5349
5350 err = -ENXIO;
5351 if (mddev->ro==1)
5352 goto out;
5353 mddev->ro = 1;
5354 set_disk_ro(mddev->gendisk, 1);
5355 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5356 sysfs_notify_dirent_safe(mddev->sysfs_state);
5357 err = 0;
5358 }
5359 out:
5360 mutex_unlock(&mddev->open_mutex);
5361 return err;
5362 }
5363
5364 /* mode:
5365 * 0 - completely stop and dis-assemble array
5366 * 2 - stop but do not disassemble array
5367 */
5368 static int do_md_stop(struct mddev * mddev, int mode,
5369 struct block_device *bdev)
5370 {
5371 struct gendisk *disk = mddev->gendisk;
5372 struct md_rdev *rdev;
5373
5374 mutex_lock(&mddev->open_mutex);
5375 if (atomic_read(&mddev->openers) > !!bdev ||
5376 mddev->sysfs_active) {
5377 printk("md: %s still in use.\n",mdname(mddev));
5378 mutex_unlock(&mddev->open_mutex);
5379 return -EBUSY;
5380 }
5381 if (bdev)
5382 /* It is possible IO was issued on some other
5383 * open file which was closed before we took ->open_mutex.
5384 * As that was not the last close __blkdev_put will not
5385 * have called sync_blockdev, so we must.
5386 */
5387 sync_blockdev(bdev);
5388
5389 if (mddev->pers) {
5390 if (mddev->ro)
5391 set_disk_ro(disk, 0);
5392
5393 __md_stop_writes(mddev);
5394 __md_stop(mddev);
5395 mddev->queue->merge_bvec_fn = NULL;
5396 mddev->queue->backing_dev_info.congested_fn = NULL;
5397
5398 /* tell userspace to handle 'inactive' */
5399 sysfs_notify_dirent_safe(mddev->sysfs_state);
5400
5401 rdev_for_each(rdev, mddev)
5402 if (rdev->raid_disk >= 0)
5403 sysfs_unlink_rdev(mddev, rdev);
5404
5405 set_capacity(disk, 0);
5406 mutex_unlock(&mddev->open_mutex);
5407 mddev->changed = 1;
5408 revalidate_disk(disk);
5409
5410 if (mddev->ro)
5411 mddev->ro = 0;
5412 } else
5413 mutex_unlock(&mddev->open_mutex);
5414 /*
5415 * Free resources if final stop
5416 */
5417 if (mode == 0) {
5418 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5419
5420 bitmap_destroy(mddev);
5421 if (mddev->bitmap_info.file) {
5422 restore_bitmap_write_access(mddev->bitmap_info.file);
5423 fput(mddev->bitmap_info.file);
5424 mddev->bitmap_info.file = NULL;
5425 }
5426 mddev->bitmap_info.offset = 0;
5427
5428 export_array(mddev);
5429
5430 md_clean(mddev);
5431 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5432 if (mddev->hold_active == UNTIL_STOP)
5433 mddev->hold_active = 0;
5434 }
5435 blk_integrity_unregister(disk);
5436 md_new_event(mddev);
5437 sysfs_notify_dirent_safe(mddev->sysfs_state);
5438 return 0;
5439 }
5440
5441 #ifndef MODULE
5442 static void autorun_array(struct mddev *mddev)
5443 {
5444 struct md_rdev *rdev;
5445 int err;
5446
5447 if (list_empty(&mddev->disks))
5448 return;
5449
5450 printk(KERN_INFO "md: running: ");
5451
5452 rdev_for_each(rdev, mddev) {
5453 char b[BDEVNAME_SIZE];
5454 printk("<%s>", bdevname(rdev->bdev,b));
5455 }
5456 printk("\n");
5457
5458 err = do_md_run(mddev);
5459 if (err) {
5460 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5461 do_md_stop(mddev, 0, NULL);
5462 }
5463 }
5464
5465 /*
5466 * lets try to run arrays based on all disks that have arrived
5467 * until now. (those are in pending_raid_disks)
5468 *
5469 * the method: pick the first pending disk, collect all disks with
5470 * the same UUID, remove all from the pending list and put them into
5471 * the 'same_array' list. Then order this list based on superblock
5472 * update time (freshest comes first), kick out 'old' disks and
5473 * compare superblocks. If everything's fine then run it.
5474 *
5475 * If "unit" is allocated, then bump its reference count
5476 */
5477 static void autorun_devices(int part)
5478 {
5479 struct md_rdev *rdev0, *rdev, *tmp;
5480 struct mddev *mddev;
5481 char b[BDEVNAME_SIZE];
5482
5483 printk(KERN_INFO "md: autorun ...\n");
5484 while (!list_empty(&pending_raid_disks)) {
5485 int unit;
5486 dev_t dev;
5487 LIST_HEAD(candidates);
5488 rdev0 = list_entry(pending_raid_disks.next,
5489 struct md_rdev, same_set);
5490
5491 printk(KERN_INFO "md: considering %s ...\n",
5492 bdevname(rdev0->bdev,b));
5493 INIT_LIST_HEAD(&candidates);
5494 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5495 if (super_90_load(rdev, rdev0, 0) >= 0) {
5496 printk(KERN_INFO "md: adding %s ...\n",
5497 bdevname(rdev->bdev,b));
5498 list_move(&rdev->same_set, &candidates);
5499 }
5500 /*
5501 * now we have a set of devices, with all of them having
5502 * mostly sane superblocks. It's time to allocate the
5503 * mddev.
5504 */
5505 if (part) {
5506 dev = MKDEV(mdp_major,
5507 rdev0->preferred_minor << MdpMinorShift);
5508 unit = MINOR(dev) >> MdpMinorShift;
5509 } else {
5510 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5511 unit = MINOR(dev);
5512 }
5513 if (rdev0->preferred_minor != unit) {
5514 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5515 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5516 break;
5517 }
5518
5519 md_probe(dev, NULL, NULL);
5520 mddev = mddev_find(dev);
5521 if (!mddev || !mddev->gendisk) {
5522 if (mddev)
5523 mddev_put(mddev);
5524 printk(KERN_ERR
5525 "md: cannot allocate memory for md drive.\n");
5526 break;
5527 }
5528 if (mddev_lock(mddev))
5529 printk(KERN_WARNING "md: %s locked, cannot run\n",
5530 mdname(mddev));
5531 else if (mddev->raid_disks || mddev->major_version
5532 || !list_empty(&mddev->disks)) {
5533 printk(KERN_WARNING
5534 "md: %s already running, cannot run %s\n",
5535 mdname(mddev), bdevname(rdev0->bdev,b));
5536 mddev_unlock(mddev);
5537 } else {
5538 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5539 mddev->persistent = 1;
5540 rdev_for_each_list(rdev, tmp, &candidates) {
5541 list_del_init(&rdev->same_set);
5542 if (bind_rdev_to_array(rdev, mddev))
5543 export_rdev(rdev);
5544 }
5545 autorun_array(mddev);
5546 mddev_unlock(mddev);
5547 }
5548 /* on success, candidates will be empty, on error
5549 * it won't...
5550 */
5551 rdev_for_each_list(rdev, tmp, &candidates) {
5552 list_del_init(&rdev->same_set);
5553 export_rdev(rdev);
5554 }
5555 mddev_put(mddev);
5556 }
5557 printk(KERN_INFO "md: ... autorun DONE.\n");
5558 }
5559 #endif /* !MODULE */
5560
5561 static int get_version(void __user * arg)
5562 {
5563 mdu_version_t ver;
5564
5565 ver.major = MD_MAJOR_VERSION;
5566 ver.minor = MD_MINOR_VERSION;
5567 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5568
5569 if (copy_to_user(arg, &ver, sizeof(ver)))
5570 return -EFAULT;
5571
5572 return 0;
5573 }
5574
5575 static int get_array_info(struct mddev * mddev, void __user * arg)
5576 {
5577 mdu_array_info_t info;
5578 int nr,working,insync,failed,spare;
5579 struct md_rdev *rdev;
5580
5581 nr = working = insync = failed = spare = 0;
5582 rcu_read_lock();
5583 rdev_for_each_rcu(rdev, mddev) {
5584 nr++;
5585 if (test_bit(Faulty, &rdev->flags))
5586 failed++;
5587 else {
5588 working++;
5589 if (test_bit(In_sync, &rdev->flags))
5590 insync++;
5591 else
5592 spare++;
5593 }
5594 }
5595 rcu_read_unlock();
5596
5597 info.major_version = mddev->major_version;
5598 info.minor_version = mddev->minor_version;
5599 info.patch_version = MD_PATCHLEVEL_VERSION;
5600 info.ctime = mddev->ctime;
5601 info.level = mddev->level;
5602 info.size = mddev->dev_sectors / 2;
5603 if (info.size != mddev->dev_sectors / 2) /* overflow */
5604 info.size = -1;
5605 info.nr_disks = nr;
5606 info.raid_disks = mddev->raid_disks;
5607 info.md_minor = mddev->md_minor;
5608 info.not_persistent= !mddev->persistent;
5609
5610 info.utime = mddev->utime;
5611 info.state = 0;
5612 if (mddev->in_sync)
5613 info.state = (1<<MD_SB_CLEAN);
5614 if (mddev->bitmap && mddev->bitmap_info.offset)
5615 info.state = (1<<MD_SB_BITMAP_PRESENT);
5616 info.active_disks = insync;
5617 info.working_disks = working;
5618 info.failed_disks = failed;
5619 info.spare_disks = spare;
5620
5621 info.layout = mddev->layout;
5622 info.chunk_size = mddev->chunk_sectors << 9;
5623
5624 if (copy_to_user(arg, &info, sizeof(info)))
5625 return -EFAULT;
5626
5627 return 0;
5628 }
5629
5630 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5631 {
5632 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5633 char *ptr, *buf = NULL;
5634 int err = -ENOMEM;
5635
5636 if (md_allow_write(mddev))
5637 file = kmalloc(sizeof(*file), GFP_NOIO);
5638 else
5639 file = kmalloc(sizeof(*file), GFP_KERNEL);
5640
5641 if (!file)
5642 goto out;
5643
5644 /* bitmap disabled, zero the first byte and copy out */
5645 if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5646 file->pathname[0] = '\0';
5647 goto copy_out;
5648 }
5649
5650 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5651 if (!buf)
5652 goto out;
5653
5654 ptr = d_path(&mddev->bitmap->storage.file->f_path,
5655 buf, sizeof(file->pathname));
5656 if (IS_ERR(ptr))
5657 goto out;
5658
5659 strcpy(file->pathname, ptr);
5660
5661 copy_out:
5662 err = 0;
5663 if (copy_to_user(arg, file, sizeof(*file)))
5664 err = -EFAULT;
5665 out:
5666 kfree(buf);
5667 kfree(file);
5668 return err;
5669 }
5670
5671 static int get_disk_info(struct mddev * mddev, void __user * arg)
5672 {
5673 mdu_disk_info_t info;
5674 struct md_rdev *rdev;
5675
5676 if (copy_from_user(&info, arg, sizeof(info)))
5677 return -EFAULT;
5678
5679 rcu_read_lock();
5680 rdev = find_rdev_nr_rcu(mddev, info.number);
5681 if (rdev) {
5682 info.major = MAJOR(rdev->bdev->bd_dev);
5683 info.minor = MINOR(rdev->bdev->bd_dev);
5684 info.raid_disk = rdev->raid_disk;
5685 info.state = 0;
5686 if (test_bit(Faulty, &rdev->flags))
5687 info.state |= (1<<MD_DISK_FAULTY);
5688 else if (test_bit(In_sync, &rdev->flags)) {
5689 info.state |= (1<<MD_DISK_ACTIVE);
5690 info.state |= (1<<MD_DISK_SYNC);
5691 }
5692 if (test_bit(WriteMostly, &rdev->flags))
5693 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5694 } else {
5695 info.major = info.minor = 0;
5696 info.raid_disk = -1;
5697 info.state = (1<<MD_DISK_REMOVED);
5698 }
5699 rcu_read_unlock();
5700
5701 if (copy_to_user(arg, &info, sizeof(info)))
5702 return -EFAULT;
5703
5704 return 0;
5705 }
5706
5707 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5708 {
5709 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5710 struct md_rdev *rdev;
5711 dev_t dev = MKDEV(info->major,info->minor);
5712
5713 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5714 return -EOVERFLOW;
5715
5716 if (!mddev->raid_disks) {
5717 int err;
5718 /* expecting a device which has a superblock */
5719 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5720 if (IS_ERR(rdev)) {
5721 printk(KERN_WARNING
5722 "md: md_import_device returned %ld\n",
5723 PTR_ERR(rdev));
5724 return PTR_ERR(rdev);
5725 }
5726 if (!list_empty(&mddev->disks)) {
5727 struct md_rdev *rdev0
5728 = list_entry(mddev->disks.next,
5729 struct md_rdev, same_set);
5730 err = super_types[mddev->major_version]
5731 .load_super(rdev, rdev0, mddev->minor_version);
5732 if (err < 0) {
5733 printk(KERN_WARNING
5734 "md: %s has different UUID to %s\n",
5735 bdevname(rdev->bdev,b),
5736 bdevname(rdev0->bdev,b2));
5737 export_rdev(rdev);
5738 return -EINVAL;
5739 }
5740 }
5741 err = bind_rdev_to_array(rdev, mddev);
5742 if (err)
5743 export_rdev(rdev);
5744 return err;
5745 }
5746
5747 /*
5748 * add_new_disk can be used once the array is assembled
5749 * to add "hot spares". They must already have a superblock
5750 * written
5751 */
5752 if (mddev->pers) {
5753 int err;
5754 if (!mddev->pers->hot_add_disk) {
5755 printk(KERN_WARNING
5756 "%s: personality does not support diskops!\n",
5757 mdname(mddev));
5758 return -EINVAL;
5759 }
5760 if (mddev->persistent)
5761 rdev = md_import_device(dev, mddev->major_version,
5762 mddev->minor_version);
5763 else
5764 rdev = md_import_device(dev, -1, -1);
5765 if (IS_ERR(rdev)) {
5766 printk(KERN_WARNING
5767 "md: md_import_device returned %ld\n",
5768 PTR_ERR(rdev));
5769 return PTR_ERR(rdev);
5770 }
5771 /* set saved_raid_disk if appropriate */
5772 if (!mddev->persistent) {
5773 if (info->state & (1<<MD_DISK_SYNC) &&
5774 info->raid_disk < mddev->raid_disks) {
5775 rdev->raid_disk = info->raid_disk;
5776 set_bit(In_sync, &rdev->flags);
5777 } else
5778 rdev->raid_disk = -1;
5779 } else
5780 super_types[mddev->major_version].
5781 validate_super(mddev, rdev);
5782 if ((info->state & (1<<MD_DISK_SYNC)) &&
5783 rdev->raid_disk != info->raid_disk) {
5784 /* This was a hot-add request, but events doesn't
5785 * match, so reject it.
5786 */
5787 export_rdev(rdev);
5788 return -EINVAL;
5789 }
5790
5791 if (test_bit(In_sync, &rdev->flags))
5792 rdev->saved_raid_disk = rdev->raid_disk;
5793 else
5794 rdev->saved_raid_disk = -1;
5795
5796 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5797 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5798 set_bit(WriteMostly, &rdev->flags);
5799 else
5800 clear_bit(WriteMostly, &rdev->flags);
5801
5802 rdev->raid_disk = -1;
5803 err = bind_rdev_to_array(rdev, mddev);
5804 if (!err && !mddev->pers->hot_remove_disk) {
5805 /* If there is hot_add_disk but no hot_remove_disk
5806 * then added disks for geometry changes,
5807 * and should be added immediately.
5808 */
5809 super_types[mddev->major_version].
5810 validate_super(mddev, rdev);
5811 err = mddev->pers->hot_add_disk(mddev, rdev);
5812 if (err)
5813 unbind_rdev_from_array(rdev);
5814 }
5815 if (err)
5816 export_rdev(rdev);
5817 else
5818 sysfs_notify_dirent_safe(rdev->sysfs_state);
5819
5820 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5821 if (mddev->degraded)
5822 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5823 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5824 if (!err)
5825 md_new_event(mddev);
5826 md_wakeup_thread(mddev->thread);
5827 return err;
5828 }
5829
5830 /* otherwise, add_new_disk is only allowed
5831 * for major_version==0 superblocks
5832 */
5833 if (mddev->major_version != 0) {
5834 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5835 mdname(mddev));
5836 return -EINVAL;
5837 }
5838
5839 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5840 int err;
5841 rdev = md_import_device(dev, -1, 0);
5842 if (IS_ERR(rdev)) {
5843 printk(KERN_WARNING
5844 "md: error, md_import_device() returned %ld\n",
5845 PTR_ERR(rdev));
5846 return PTR_ERR(rdev);
5847 }
5848 rdev->desc_nr = info->number;
5849 if (info->raid_disk < mddev->raid_disks)
5850 rdev->raid_disk = info->raid_disk;
5851 else
5852 rdev->raid_disk = -1;
5853
5854 if (rdev->raid_disk < mddev->raid_disks)
5855 if (info->state & (1<<MD_DISK_SYNC))
5856 set_bit(In_sync, &rdev->flags);
5857
5858 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5859 set_bit(WriteMostly, &rdev->flags);
5860
5861 if (!mddev->persistent) {
5862 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5863 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5864 } else
5865 rdev->sb_start = calc_dev_sboffset(rdev);
5866 rdev->sectors = rdev->sb_start;
5867
5868 err = bind_rdev_to_array(rdev, mddev);
5869 if (err) {
5870 export_rdev(rdev);
5871 return err;
5872 }
5873 }
5874
5875 return 0;
5876 }
5877
5878 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5879 {
5880 char b[BDEVNAME_SIZE];
5881 struct md_rdev *rdev;
5882
5883 rdev = find_rdev(mddev, dev);
5884 if (!rdev)
5885 return -ENXIO;
5886
5887 clear_bit(Blocked, &rdev->flags);
5888 remove_and_add_spares(mddev, rdev);
5889
5890 if (rdev->raid_disk >= 0)
5891 goto busy;
5892
5893 kick_rdev_from_array(rdev);
5894 md_update_sb(mddev, 1);
5895 md_new_event(mddev);
5896
5897 return 0;
5898 busy:
5899 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5900 bdevname(rdev->bdev,b), mdname(mddev));
5901 return -EBUSY;
5902 }
5903
5904 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5905 {
5906 char b[BDEVNAME_SIZE];
5907 int err;
5908 struct md_rdev *rdev;
5909
5910 if (!mddev->pers)
5911 return -ENODEV;
5912
5913 if (mddev->major_version != 0) {
5914 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5915 " version-0 superblocks.\n",
5916 mdname(mddev));
5917 return -EINVAL;
5918 }
5919 if (!mddev->pers->hot_add_disk) {
5920 printk(KERN_WARNING
5921 "%s: personality does not support diskops!\n",
5922 mdname(mddev));
5923 return -EINVAL;
5924 }
5925
5926 rdev = md_import_device(dev, -1, 0);
5927 if (IS_ERR(rdev)) {
5928 printk(KERN_WARNING
5929 "md: error, md_import_device() returned %ld\n",
5930 PTR_ERR(rdev));
5931 return -EINVAL;
5932 }
5933
5934 if (mddev->persistent)
5935 rdev->sb_start = calc_dev_sboffset(rdev);
5936 else
5937 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5938
5939 rdev->sectors = rdev->sb_start;
5940
5941 if (test_bit(Faulty, &rdev->flags)) {
5942 printk(KERN_WARNING
5943 "md: can not hot-add faulty %s disk to %s!\n",
5944 bdevname(rdev->bdev,b), mdname(mddev));
5945 err = -EINVAL;
5946 goto abort_export;
5947 }
5948 clear_bit(In_sync, &rdev->flags);
5949 rdev->desc_nr = -1;
5950 rdev->saved_raid_disk = -1;
5951 err = bind_rdev_to_array(rdev, mddev);
5952 if (err)
5953 goto abort_export;
5954
5955 /*
5956 * The rest should better be atomic, we can have disk failures
5957 * noticed in interrupt contexts ...
5958 */
5959
5960 rdev->raid_disk = -1;
5961
5962 md_update_sb(mddev, 1);
5963
5964 /*
5965 * Kick recovery, maybe this spare has to be added to the
5966 * array immediately.
5967 */
5968 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5969 md_wakeup_thread(mddev->thread);
5970 md_new_event(mddev);
5971 return 0;
5972
5973 abort_export:
5974 export_rdev(rdev);
5975 return err;
5976 }
5977
5978 static int set_bitmap_file(struct mddev *mddev, int fd)
5979 {
5980 int err;
5981
5982 if (mddev->pers) {
5983 if (!mddev->pers->quiesce)
5984 return -EBUSY;
5985 if (mddev->recovery || mddev->sync_thread)
5986 return -EBUSY;
5987 /* we should be able to change the bitmap.. */
5988 }
5989
5990
5991 if (fd >= 0) {
5992 if (mddev->bitmap)
5993 return -EEXIST; /* cannot add when bitmap is present */
5994 mddev->bitmap_info.file = fget(fd);
5995
5996 if (mddev->bitmap_info.file == NULL) {
5997 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5998 mdname(mddev));
5999 return -EBADF;
6000 }
6001
6002 err = deny_bitmap_write_access(mddev->bitmap_info.file);
6003 if (err) {
6004 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6005 mdname(mddev));
6006 fput(mddev->bitmap_info.file);
6007 mddev->bitmap_info.file = NULL;
6008 return err;
6009 }
6010 mddev->bitmap_info.offset = 0; /* file overrides offset */
6011 } else if (mddev->bitmap == NULL)
6012 return -ENOENT; /* cannot remove what isn't there */
6013 err = 0;
6014 if (mddev->pers) {
6015 mddev->pers->quiesce(mddev, 1);
6016 if (fd >= 0) {
6017 err = bitmap_create(mddev);
6018 if (!err)
6019 err = bitmap_load(mddev);
6020 }
6021 if (fd < 0 || err) {
6022 bitmap_destroy(mddev);
6023 fd = -1; /* make sure to put the file */
6024 }
6025 mddev->pers->quiesce(mddev, 0);
6026 }
6027 if (fd < 0) {
6028 if (mddev->bitmap_info.file) {
6029 restore_bitmap_write_access(mddev->bitmap_info.file);
6030 fput(mddev->bitmap_info.file);
6031 }
6032 mddev->bitmap_info.file = NULL;
6033 }
6034
6035 return err;
6036 }
6037
6038 /*
6039 * set_array_info is used two different ways
6040 * The original usage is when creating a new array.
6041 * In this usage, raid_disks is > 0 and it together with
6042 * level, size, not_persistent,layout,chunksize determine the
6043 * shape of the array.
6044 * This will always create an array with a type-0.90.0 superblock.
6045 * The newer usage is when assembling an array.
6046 * In this case raid_disks will be 0, and the major_version field is
6047 * use to determine which style super-blocks are to be found on the devices.
6048 * The minor and patch _version numbers are also kept incase the
6049 * super_block handler wishes to interpret them.
6050 */
6051 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
6052 {
6053
6054 if (info->raid_disks == 0) {
6055 /* just setting version number for superblock loading */
6056 if (info->major_version < 0 ||
6057 info->major_version >= ARRAY_SIZE(super_types) ||
6058 super_types[info->major_version].name == NULL) {
6059 /* maybe try to auto-load a module? */
6060 printk(KERN_INFO
6061 "md: superblock version %d not known\n",
6062 info->major_version);
6063 return -EINVAL;
6064 }
6065 mddev->major_version = info->major_version;
6066 mddev->minor_version = info->minor_version;
6067 mddev->patch_version = info->patch_version;
6068 mddev->persistent = !info->not_persistent;
6069 /* ensure mddev_put doesn't delete this now that there
6070 * is some minimal configuration.
6071 */
6072 mddev->ctime = get_seconds();
6073 return 0;
6074 }
6075 mddev->major_version = MD_MAJOR_VERSION;
6076 mddev->minor_version = MD_MINOR_VERSION;
6077 mddev->patch_version = MD_PATCHLEVEL_VERSION;
6078 mddev->ctime = get_seconds();
6079
6080 mddev->level = info->level;
6081 mddev->clevel[0] = 0;
6082 mddev->dev_sectors = 2 * (sector_t)info->size;
6083 mddev->raid_disks = info->raid_disks;
6084 /* don't set md_minor, it is determined by which /dev/md* was
6085 * openned
6086 */
6087 if (info->state & (1<<MD_SB_CLEAN))
6088 mddev->recovery_cp = MaxSector;
6089 else
6090 mddev->recovery_cp = 0;
6091 mddev->persistent = ! info->not_persistent;
6092 mddev->external = 0;
6093
6094 mddev->layout = info->layout;
6095 mddev->chunk_sectors = info->chunk_size >> 9;
6096
6097 mddev->max_disks = MD_SB_DISKS;
6098
6099 if (mddev->persistent)
6100 mddev->flags = 0;
6101 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6102
6103 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6104 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6105 mddev->bitmap_info.offset = 0;
6106
6107 mddev->reshape_position = MaxSector;
6108
6109 /*
6110 * Generate a 128 bit UUID
6111 */
6112 get_random_bytes(mddev->uuid, 16);
6113
6114 mddev->new_level = mddev->level;
6115 mddev->new_chunk_sectors = mddev->chunk_sectors;
6116 mddev->new_layout = mddev->layout;
6117 mddev->delta_disks = 0;
6118 mddev->reshape_backwards = 0;
6119
6120 return 0;
6121 }
6122
6123 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6124 {
6125 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6126
6127 if (mddev->external_size)
6128 return;
6129
6130 mddev->array_sectors = array_sectors;
6131 }
6132 EXPORT_SYMBOL(md_set_array_sectors);
6133
6134 static int update_size(struct mddev *mddev, sector_t num_sectors)
6135 {
6136 struct md_rdev *rdev;
6137 int rv;
6138 int fit = (num_sectors == 0);
6139
6140 if (mddev->pers->resize == NULL)
6141 return -EINVAL;
6142 /* The "num_sectors" is the number of sectors of each device that
6143 * is used. This can only make sense for arrays with redundancy.
6144 * linear and raid0 always use whatever space is available. We can only
6145 * consider changing this number if no resync or reconstruction is
6146 * happening, and if the new size is acceptable. It must fit before the
6147 * sb_start or, if that is <data_offset, it must fit before the size
6148 * of each device. If num_sectors is zero, we find the largest size
6149 * that fits.
6150 */
6151 if (mddev->sync_thread)
6152 return -EBUSY;
6153
6154 rdev_for_each(rdev, mddev) {
6155 sector_t avail = rdev->sectors;
6156
6157 if (fit && (num_sectors == 0 || num_sectors > avail))
6158 num_sectors = avail;
6159 if (avail < num_sectors)
6160 return -ENOSPC;
6161 }
6162 rv = mddev->pers->resize(mddev, num_sectors);
6163 if (!rv)
6164 revalidate_disk(mddev->gendisk);
6165 return rv;
6166 }
6167
6168 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6169 {
6170 int rv;
6171 struct md_rdev *rdev;
6172 /* change the number of raid disks */
6173 if (mddev->pers->check_reshape == NULL)
6174 return -EINVAL;
6175 if (raid_disks <= 0 ||
6176 (mddev->max_disks && raid_disks >= mddev->max_disks))
6177 return -EINVAL;
6178 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
6179 return -EBUSY;
6180
6181 rdev_for_each(rdev, mddev) {
6182 if (mddev->raid_disks < raid_disks &&
6183 rdev->data_offset < rdev->new_data_offset)
6184 return -EINVAL;
6185 if (mddev->raid_disks > raid_disks &&
6186 rdev->data_offset > rdev->new_data_offset)
6187 return -EINVAL;
6188 }
6189
6190 mddev->delta_disks = raid_disks - mddev->raid_disks;
6191 if (mddev->delta_disks < 0)
6192 mddev->reshape_backwards = 1;
6193 else if (mddev->delta_disks > 0)
6194 mddev->reshape_backwards = 0;
6195
6196 rv = mddev->pers->check_reshape(mddev);
6197 if (rv < 0) {
6198 mddev->delta_disks = 0;
6199 mddev->reshape_backwards = 0;
6200 }
6201 return rv;
6202 }
6203
6204
6205 /*
6206 * update_array_info is used to change the configuration of an
6207 * on-line array.
6208 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6209 * fields in the info are checked against the array.
6210 * Any differences that cannot be handled will cause an error.
6211 * Normally, only one change can be managed at a time.
6212 */
6213 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6214 {
6215 int rv = 0;
6216 int cnt = 0;
6217 int state = 0;
6218
6219 /* calculate expected state,ignoring low bits */
6220 if (mddev->bitmap && mddev->bitmap_info.offset)
6221 state |= (1 << MD_SB_BITMAP_PRESENT);
6222
6223 if (mddev->major_version != info->major_version ||
6224 mddev->minor_version != info->minor_version ||
6225 /* mddev->patch_version != info->patch_version || */
6226 mddev->ctime != info->ctime ||
6227 mddev->level != info->level ||
6228 /* mddev->layout != info->layout || */
6229 !mddev->persistent != info->not_persistent||
6230 mddev->chunk_sectors != info->chunk_size >> 9 ||
6231 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6232 ((state^info->state) & 0xfffffe00)
6233 )
6234 return -EINVAL;
6235 /* Check there is only one change */
6236 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6237 cnt++;
6238 if (mddev->raid_disks != info->raid_disks)
6239 cnt++;
6240 if (mddev->layout != info->layout)
6241 cnt++;
6242 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6243 cnt++;
6244 if (cnt == 0)
6245 return 0;
6246 if (cnt > 1)
6247 return -EINVAL;
6248
6249 if (mddev->layout != info->layout) {
6250 /* Change layout
6251 * we don't need to do anything at the md level, the
6252 * personality will take care of it all.
6253 */
6254 if (mddev->pers->check_reshape == NULL)
6255 return -EINVAL;
6256 else {
6257 mddev->new_layout = info->layout;
6258 rv = mddev->pers->check_reshape(mddev);
6259 if (rv)
6260 mddev->new_layout = mddev->layout;
6261 return rv;
6262 }
6263 }
6264 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6265 rv = update_size(mddev, (sector_t)info->size * 2);
6266
6267 if (mddev->raid_disks != info->raid_disks)
6268 rv = update_raid_disks(mddev, info->raid_disks);
6269
6270 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6271 if (mddev->pers->quiesce == NULL)
6272 return -EINVAL;
6273 if (mddev->recovery || mddev->sync_thread)
6274 return -EBUSY;
6275 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6276 /* add the bitmap */
6277 if (mddev->bitmap)
6278 return -EEXIST;
6279 if (mddev->bitmap_info.default_offset == 0)
6280 return -EINVAL;
6281 mddev->bitmap_info.offset =
6282 mddev->bitmap_info.default_offset;
6283 mddev->bitmap_info.space =
6284 mddev->bitmap_info.default_space;
6285 mddev->pers->quiesce(mddev, 1);
6286 rv = bitmap_create(mddev);
6287 if (!rv)
6288 rv = bitmap_load(mddev);
6289 if (rv)
6290 bitmap_destroy(mddev);
6291 mddev->pers->quiesce(mddev, 0);
6292 } else {
6293 /* remove the bitmap */
6294 if (!mddev->bitmap)
6295 return -ENOENT;
6296 if (mddev->bitmap->storage.file)
6297 return -EINVAL;
6298 mddev->pers->quiesce(mddev, 1);
6299 bitmap_destroy(mddev);
6300 mddev->pers->quiesce(mddev, 0);
6301 mddev->bitmap_info.offset = 0;
6302 }
6303 }
6304 md_update_sb(mddev, 1);
6305 return rv;
6306 }
6307
6308 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6309 {
6310 struct md_rdev *rdev;
6311 int err = 0;
6312
6313 if (mddev->pers == NULL)
6314 return -ENODEV;
6315
6316 rcu_read_lock();
6317 rdev = find_rdev_rcu(mddev, dev);
6318 if (!rdev)
6319 err = -ENODEV;
6320 else {
6321 md_error(mddev, rdev);
6322 if (!test_bit(Faulty, &rdev->flags))
6323 err = -EBUSY;
6324 }
6325 rcu_read_unlock();
6326 return err;
6327 }
6328
6329 /*
6330 * We have a problem here : there is no easy way to give a CHS
6331 * virtual geometry. We currently pretend that we have a 2 heads
6332 * 4 sectors (with a BIG number of cylinders...). This drives
6333 * dosfs just mad... ;-)
6334 */
6335 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6336 {
6337 struct mddev *mddev = bdev->bd_disk->private_data;
6338
6339 geo->heads = 2;
6340 geo->sectors = 4;
6341 geo->cylinders = mddev->array_sectors / 8;
6342 return 0;
6343 }
6344
6345 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6346 unsigned int cmd, unsigned long arg)
6347 {
6348 int err = 0;
6349 void __user *argp = (void __user *)arg;
6350 struct mddev *mddev = NULL;
6351 int ro;
6352
6353 switch (cmd) {
6354 case RAID_VERSION:
6355 case GET_ARRAY_INFO:
6356 case GET_DISK_INFO:
6357 break;
6358 default:
6359 if (!capable(CAP_SYS_ADMIN))
6360 return -EACCES;
6361 }
6362
6363 /*
6364 * Commands dealing with the RAID driver but not any
6365 * particular array:
6366 */
6367 switch (cmd) {
6368 case RAID_VERSION:
6369 err = get_version(argp);
6370 goto done;
6371
6372 case PRINT_RAID_DEBUG:
6373 err = 0;
6374 md_print_devices();
6375 goto done;
6376
6377 #ifndef MODULE
6378 case RAID_AUTORUN:
6379 err = 0;
6380 autostart_arrays(arg);
6381 goto done;
6382 #endif
6383 default:;
6384 }
6385
6386 /*
6387 * Commands creating/starting a new array:
6388 */
6389
6390 mddev = bdev->bd_disk->private_data;
6391
6392 if (!mddev) {
6393 BUG();
6394 goto abort;
6395 }
6396
6397 /* Some actions do not requires the mutex */
6398 switch (cmd) {
6399 case GET_ARRAY_INFO:
6400 if (!mddev->raid_disks && !mddev->external)
6401 err = -ENODEV;
6402 else
6403 err = get_array_info(mddev, argp);
6404 goto abort;
6405
6406 case GET_DISK_INFO:
6407 if (!mddev->raid_disks && !mddev->external)
6408 err = -ENODEV;
6409 else
6410 err = get_disk_info(mddev, argp);
6411 goto abort;
6412
6413 case SET_DISK_FAULTY:
6414 err = set_disk_faulty(mddev, new_decode_dev(arg));
6415 goto abort;
6416 }
6417
6418 if (cmd == ADD_NEW_DISK)
6419 /* need to ensure md_delayed_delete() has completed */
6420 flush_workqueue(md_misc_wq);
6421
6422 err = mddev_lock(mddev);
6423 if (err) {
6424 printk(KERN_INFO
6425 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6426 err, cmd);
6427 goto abort;
6428 }
6429
6430 if (cmd == SET_ARRAY_INFO) {
6431 mdu_array_info_t info;
6432 if (!arg)
6433 memset(&info, 0, sizeof(info));
6434 else if (copy_from_user(&info, argp, sizeof(info))) {
6435 err = -EFAULT;
6436 goto abort_unlock;
6437 }
6438 if (mddev->pers) {
6439 err = update_array_info(mddev, &info);
6440 if (err) {
6441 printk(KERN_WARNING "md: couldn't update"
6442 " array info. %d\n", err);
6443 goto abort_unlock;
6444 }
6445 goto done_unlock;
6446 }
6447 if (!list_empty(&mddev->disks)) {
6448 printk(KERN_WARNING
6449 "md: array %s already has disks!\n",
6450 mdname(mddev));
6451 err = -EBUSY;
6452 goto abort_unlock;
6453 }
6454 if (mddev->raid_disks) {
6455 printk(KERN_WARNING
6456 "md: array %s already initialised!\n",
6457 mdname(mddev));
6458 err = -EBUSY;
6459 goto abort_unlock;
6460 }
6461 err = set_array_info(mddev, &info);
6462 if (err) {
6463 printk(KERN_WARNING "md: couldn't set"
6464 " array info. %d\n", err);
6465 goto abort_unlock;
6466 }
6467 goto done_unlock;
6468 }
6469
6470 /*
6471 * Commands querying/configuring an existing array:
6472 */
6473 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6474 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6475 if ((!mddev->raid_disks && !mddev->external)
6476 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6477 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6478 && cmd != GET_BITMAP_FILE) {
6479 err = -ENODEV;
6480 goto abort_unlock;
6481 }
6482
6483 /*
6484 * Commands even a read-only array can execute:
6485 */
6486 switch (cmd) {
6487 case GET_BITMAP_FILE:
6488 err = get_bitmap_file(mddev, argp);
6489 goto done_unlock;
6490
6491 case RESTART_ARRAY_RW:
6492 err = restart_array(mddev);
6493 goto done_unlock;
6494
6495 case STOP_ARRAY:
6496 err = do_md_stop(mddev, 0, bdev);
6497 goto done_unlock;
6498
6499 case STOP_ARRAY_RO:
6500 err = md_set_readonly(mddev, bdev);
6501 goto done_unlock;
6502
6503 case HOT_REMOVE_DISK:
6504 err = hot_remove_disk(mddev, new_decode_dev(arg));
6505 goto done_unlock;
6506
6507 case ADD_NEW_DISK:
6508 /* We can support ADD_NEW_DISK on read-only arrays
6509 * on if we are re-adding a preexisting device.
6510 * So require mddev->pers and MD_DISK_SYNC.
6511 */
6512 if (mddev->pers) {
6513 mdu_disk_info_t info;
6514 if (copy_from_user(&info, argp, sizeof(info)))
6515 err = -EFAULT;
6516 else if (!(info.state & (1<<MD_DISK_SYNC)))
6517 /* Need to clear read-only for this */
6518 break;
6519 else
6520 err = add_new_disk(mddev, &info);
6521 goto done_unlock;
6522 }
6523 break;
6524
6525 case BLKROSET:
6526 if (get_user(ro, (int __user *)(arg))) {
6527 err = -EFAULT;
6528 goto done_unlock;
6529 }
6530 err = -EINVAL;
6531
6532 /* if the bdev is going readonly the value of mddev->ro
6533 * does not matter, no writes are coming
6534 */
6535 if (ro)
6536 goto done_unlock;
6537
6538 /* are we are already prepared for writes? */
6539 if (mddev->ro != 1)
6540 goto done_unlock;
6541
6542 /* transitioning to readauto need only happen for
6543 * arrays that call md_write_start
6544 */
6545 if (mddev->pers) {
6546 err = restart_array(mddev);
6547 if (err == 0) {
6548 mddev->ro = 2;
6549 set_disk_ro(mddev->gendisk, 0);
6550 }
6551 }
6552 goto done_unlock;
6553 }
6554
6555 /*
6556 * The remaining ioctls are changing the state of the
6557 * superblock, so we do not allow them on read-only arrays.
6558 * However non-MD ioctls (e.g. get-size) will still come through
6559 * here and hit the 'default' below, so only disallow
6560 * 'md' ioctls, and switch to rw mode if started auto-readonly.
6561 */
6562 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6563 if (mddev->ro == 2) {
6564 mddev->ro = 0;
6565 sysfs_notify_dirent_safe(mddev->sysfs_state);
6566 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6567 /* mddev_unlock will wake thread */
6568 /* If a device failed while we were read-only, we
6569 * need to make sure the metadata is updated now.
6570 */
6571 if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6572 mddev_unlock(mddev);
6573 wait_event(mddev->sb_wait,
6574 !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6575 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6576 mddev_lock(mddev);
6577 }
6578 } else {
6579 err = -EROFS;
6580 goto abort_unlock;
6581 }
6582 }
6583
6584 switch (cmd) {
6585 case ADD_NEW_DISK:
6586 {
6587 mdu_disk_info_t info;
6588 if (copy_from_user(&info, argp, sizeof(info)))
6589 err = -EFAULT;
6590 else
6591 err = add_new_disk(mddev, &info);
6592 goto done_unlock;
6593 }
6594
6595 case HOT_ADD_DISK:
6596 err = hot_add_disk(mddev, new_decode_dev(arg));
6597 goto done_unlock;
6598
6599 case RUN_ARRAY:
6600 err = do_md_run(mddev);
6601 goto done_unlock;
6602
6603 case SET_BITMAP_FILE:
6604 err = set_bitmap_file(mddev, (int)arg);
6605 goto done_unlock;
6606
6607 default:
6608 err = -EINVAL;
6609 goto abort_unlock;
6610 }
6611
6612 done_unlock:
6613 abort_unlock:
6614 if (mddev->hold_active == UNTIL_IOCTL &&
6615 err != -EINVAL)
6616 mddev->hold_active = 0;
6617 mddev_unlock(mddev);
6618
6619 return err;
6620 done:
6621 if (err)
6622 MD_BUG();
6623 abort:
6624 return err;
6625 }
6626 #ifdef CONFIG_COMPAT
6627 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6628 unsigned int cmd, unsigned long arg)
6629 {
6630 switch (cmd) {
6631 case HOT_REMOVE_DISK:
6632 case HOT_ADD_DISK:
6633 case SET_DISK_FAULTY:
6634 case SET_BITMAP_FILE:
6635 /* These take in integer arg, do not convert */
6636 break;
6637 default:
6638 arg = (unsigned long)compat_ptr(arg);
6639 break;
6640 }
6641
6642 return md_ioctl(bdev, mode, cmd, arg);
6643 }
6644 #endif /* CONFIG_COMPAT */
6645
6646 static int md_open(struct block_device *bdev, fmode_t mode)
6647 {
6648 /*
6649 * Succeed if we can lock the mddev, which confirms that
6650 * it isn't being stopped right now.
6651 */
6652 struct mddev *mddev = mddev_find(bdev->bd_dev);
6653 int err;
6654
6655 if (!mddev)
6656 return -ENODEV;
6657
6658 if (mddev->gendisk != bdev->bd_disk) {
6659 /* we are racing with mddev_put which is discarding this
6660 * bd_disk.
6661 */
6662 mddev_put(mddev);
6663 /* Wait until bdev->bd_disk is definitely gone */
6664 flush_workqueue(md_misc_wq);
6665 /* Then retry the open from the top */
6666 return -ERESTARTSYS;
6667 }
6668 BUG_ON(mddev != bdev->bd_disk->private_data);
6669
6670 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6671 goto out;
6672
6673 err = 0;
6674 atomic_inc(&mddev->openers);
6675 mutex_unlock(&mddev->open_mutex);
6676
6677 check_disk_change(bdev);
6678 out:
6679 return err;
6680 }
6681
6682 static int md_release(struct gendisk *disk, fmode_t mode)
6683 {
6684 struct mddev *mddev = disk->private_data;
6685
6686 BUG_ON(!mddev);
6687 atomic_dec(&mddev->openers);
6688 mddev_put(mddev);
6689
6690 return 0;
6691 }
6692
6693 static int md_media_changed(struct gendisk *disk)
6694 {
6695 struct mddev *mddev = disk->private_data;
6696
6697 return mddev->changed;
6698 }
6699
6700 static int md_revalidate(struct gendisk *disk)
6701 {
6702 struct mddev *mddev = disk->private_data;
6703
6704 mddev->changed = 0;
6705 return 0;
6706 }
6707 static const struct block_device_operations md_fops =
6708 {
6709 .owner = THIS_MODULE,
6710 .open = md_open,
6711 .release = md_release,
6712 .ioctl = md_ioctl,
6713 #ifdef CONFIG_COMPAT
6714 .compat_ioctl = md_compat_ioctl,
6715 #endif
6716 .getgeo = md_getgeo,
6717 .media_changed = md_media_changed,
6718 .revalidate_disk= md_revalidate,
6719 };
6720
6721 static int md_thread(void * arg)
6722 {
6723 struct md_thread *thread = arg;
6724
6725 /*
6726 * md_thread is a 'system-thread', it's priority should be very
6727 * high. We avoid resource deadlocks individually in each
6728 * raid personality. (RAID5 does preallocation) We also use RR and
6729 * the very same RT priority as kswapd, thus we will never get
6730 * into a priority inversion deadlock.
6731 *
6732 * we definitely have to have equal or higher priority than
6733 * bdflush, otherwise bdflush will deadlock if there are too
6734 * many dirty RAID5 blocks.
6735 */
6736
6737 allow_signal(SIGKILL);
6738 while (!kthread_should_stop()) {
6739
6740 /* We need to wait INTERRUPTIBLE so that
6741 * we don't add to the load-average.
6742 * That means we need to be sure no signals are
6743 * pending
6744 */
6745 if (signal_pending(current))
6746 flush_signals(current);
6747
6748 wait_event_interruptible_timeout
6749 (thread->wqueue,
6750 test_bit(THREAD_WAKEUP, &thread->flags)
6751 || kthread_should_stop(),
6752 thread->timeout);
6753
6754 clear_bit(THREAD_WAKEUP, &thread->flags);
6755 if (!kthread_should_stop())
6756 thread->run(thread);
6757 }
6758
6759 return 0;
6760 }
6761
6762 void md_wakeup_thread(struct md_thread *thread)
6763 {
6764 if (thread) {
6765 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6766 set_bit(THREAD_WAKEUP, &thread->flags);
6767 wake_up(&thread->wqueue);
6768 }
6769 }
6770
6771 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6772 struct mddev *mddev, const char *name)
6773 {
6774 struct md_thread *thread;
6775
6776 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6777 if (!thread)
6778 return NULL;
6779
6780 init_waitqueue_head(&thread->wqueue);
6781
6782 thread->run = run;
6783 thread->mddev = mddev;
6784 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6785 thread->tsk = kthread_run(md_thread, thread,
6786 "%s_%s",
6787 mdname(thread->mddev),
6788 name);
6789 if (IS_ERR(thread->tsk)) {
6790 kfree(thread);
6791 return NULL;
6792 }
6793 return thread;
6794 }
6795
6796 void md_unregister_thread(struct md_thread **threadp)
6797 {
6798 struct md_thread *thread = *threadp;
6799 if (!thread)
6800 return;
6801 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6802 /* Locking ensures that mddev_unlock does not wake_up a
6803 * non-existent thread
6804 */
6805 spin_lock(&pers_lock);
6806 *threadp = NULL;
6807 spin_unlock(&pers_lock);
6808
6809 kthread_stop(thread->tsk);
6810 kfree(thread);
6811 }
6812
6813 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6814 {
6815 if (!mddev) {
6816 MD_BUG();
6817 return;
6818 }
6819
6820 if (!rdev || test_bit(Faulty, &rdev->flags))
6821 return;
6822
6823 if (!mddev->pers || !mddev->pers->error_handler)
6824 return;
6825 mddev->pers->error_handler(mddev,rdev);
6826 if (mddev->degraded)
6827 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6828 sysfs_notify_dirent_safe(rdev->sysfs_state);
6829 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6830 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6831 md_wakeup_thread(mddev->thread);
6832 if (mddev->event_work.func)
6833 queue_work(md_misc_wq, &mddev->event_work);
6834 md_new_event_inintr(mddev);
6835 }
6836
6837 /* seq_file implementation /proc/mdstat */
6838
6839 static void status_unused(struct seq_file *seq)
6840 {
6841 int i = 0;
6842 struct md_rdev *rdev;
6843
6844 seq_printf(seq, "unused devices: ");
6845
6846 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6847 char b[BDEVNAME_SIZE];
6848 i++;
6849 seq_printf(seq, "%s ",
6850 bdevname(rdev->bdev,b));
6851 }
6852 if (!i)
6853 seq_printf(seq, "<none>");
6854
6855 seq_printf(seq, "\n");
6856 }
6857
6858
6859 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6860 {
6861 sector_t max_sectors, resync, res;
6862 unsigned long dt, db;
6863 sector_t rt;
6864 int scale;
6865 unsigned int per_milli;
6866
6867 if (mddev->curr_resync <= 3)
6868 resync = 0;
6869 else
6870 resync = mddev->curr_resync
6871 - atomic_read(&mddev->recovery_active);
6872
6873 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6874 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6875 max_sectors = mddev->resync_max_sectors;
6876 else
6877 max_sectors = mddev->dev_sectors;
6878
6879 /*
6880 * Should not happen.
6881 */
6882 if (!max_sectors) {
6883 MD_BUG();
6884 return;
6885 }
6886 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6887 * in a sector_t, and (max_sectors>>scale) will fit in a
6888 * u32, as those are the requirements for sector_div.
6889 * Thus 'scale' must be at least 10
6890 */
6891 scale = 10;
6892 if (sizeof(sector_t) > sizeof(unsigned long)) {
6893 while ( max_sectors/2 > (1ULL<<(scale+32)))
6894 scale++;
6895 }
6896 res = (resync>>scale)*1000;
6897 sector_div(res, (u32)((max_sectors>>scale)+1));
6898
6899 per_milli = res;
6900 {
6901 int i, x = per_milli/50, y = 20-x;
6902 seq_printf(seq, "[");
6903 for (i = 0; i < x; i++)
6904 seq_printf(seq, "=");
6905 seq_printf(seq, ">");
6906 for (i = 0; i < y; i++)
6907 seq_printf(seq, ".");
6908 seq_printf(seq, "] ");
6909 }
6910 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6911 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6912 "reshape" :
6913 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6914 "check" :
6915 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6916 "resync" : "recovery"))),
6917 per_milli/10, per_milli % 10,
6918 (unsigned long long) resync/2,
6919 (unsigned long long) max_sectors/2);
6920
6921 /*
6922 * dt: time from mark until now
6923 * db: blocks written from mark until now
6924 * rt: remaining time
6925 *
6926 * rt is a sector_t, so could be 32bit or 64bit.
6927 * So we divide before multiply in case it is 32bit and close
6928 * to the limit.
6929 * We scale the divisor (db) by 32 to avoid losing precision
6930 * near the end of resync when the number of remaining sectors
6931 * is close to 'db'.
6932 * We then divide rt by 32 after multiplying by db to compensate.
6933 * The '+1' avoids division by zero if db is very small.
6934 */
6935 dt = ((jiffies - mddev->resync_mark) / HZ);
6936 if (!dt) dt++;
6937 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6938 - mddev->resync_mark_cnt;
6939
6940 rt = max_sectors - resync; /* number of remaining sectors */
6941 sector_div(rt, db/32+1);
6942 rt *= dt;
6943 rt >>= 5;
6944
6945 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6946 ((unsigned long)rt % 60)/6);
6947
6948 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6949 }
6950
6951 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6952 {
6953 struct list_head *tmp;
6954 loff_t l = *pos;
6955 struct mddev *mddev;
6956
6957 if (l >= 0x10000)
6958 return NULL;
6959 if (!l--)
6960 /* header */
6961 return (void*)1;
6962
6963 spin_lock(&all_mddevs_lock);
6964 list_for_each(tmp,&all_mddevs)
6965 if (!l--) {
6966 mddev = list_entry(tmp, struct mddev, all_mddevs);
6967 mddev_get(mddev);
6968 spin_unlock(&all_mddevs_lock);
6969 return mddev;
6970 }
6971 spin_unlock(&all_mddevs_lock);
6972 if (!l--)
6973 return (void*)2;/* tail */
6974 return NULL;
6975 }
6976
6977 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6978 {
6979 struct list_head *tmp;
6980 struct mddev *next_mddev, *mddev = v;
6981
6982 ++*pos;
6983 if (v == (void*)2)
6984 return NULL;
6985
6986 spin_lock(&all_mddevs_lock);
6987 if (v == (void*)1)
6988 tmp = all_mddevs.next;
6989 else
6990 tmp = mddev->all_mddevs.next;
6991 if (tmp != &all_mddevs)
6992 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6993 else {
6994 next_mddev = (void*)2;
6995 *pos = 0x10000;
6996 }
6997 spin_unlock(&all_mddevs_lock);
6998
6999 if (v != (void*)1)
7000 mddev_put(mddev);
7001 return next_mddev;
7002
7003 }
7004
7005 static void md_seq_stop(struct seq_file *seq, void *v)
7006 {
7007 struct mddev *mddev = v;
7008
7009 if (mddev && v != (void*)1 && v != (void*)2)
7010 mddev_put(mddev);
7011 }
7012
7013 static int md_seq_show(struct seq_file *seq, void *v)
7014 {
7015 struct mddev *mddev = v;
7016 sector_t sectors;
7017 struct md_rdev *rdev;
7018
7019 if (v == (void*)1) {
7020 struct md_personality *pers;
7021 seq_printf(seq, "Personalities : ");
7022 spin_lock(&pers_lock);
7023 list_for_each_entry(pers, &pers_list, list)
7024 seq_printf(seq, "[%s] ", pers->name);
7025
7026 spin_unlock(&pers_lock);
7027 seq_printf(seq, "\n");
7028 seq->poll_event = atomic_read(&md_event_count);
7029 return 0;
7030 }
7031 if (v == (void*)2) {
7032 status_unused(seq);
7033 return 0;
7034 }
7035
7036 if (mddev_lock(mddev) < 0)
7037 return -EINTR;
7038
7039 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7040 seq_printf(seq, "%s : %sactive", mdname(mddev),
7041 mddev->pers ? "" : "in");
7042 if (mddev->pers) {
7043 if (mddev->ro==1)
7044 seq_printf(seq, " (read-only)");
7045 if (mddev->ro==2)
7046 seq_printf(seq, " (auto-read-only)");
7047 seq_printf(seq, " %s", mddev->pers->name);
7048 }
7049
7050 sectors = 0;
7051 rdev_for_each(rdev, mddev) {
7052 char b[BDEVNAME_SIZE];
7053 seq_printf(seq, " %s[%d]",
7054 bdevname(rdev->bdev,b), rdev->desc_nr);
7055 if (test_bit(WriteMostly, &rdev->flags))
7056 seq_printf(seq, "(W)");
7057 if (test_bit(Faulty, &rdev->flags)) {
7058 seq_printf(seq, "(F)");
7059 continue;
7060 }
7061 if (rdev->raid_disk < 0)
7062 seq_printf(seq, "(S)"); /* spare */
7063 if (test_bit(Replacement, &rdev->flags))
7064 seq_printf(seq, "(R)");
7065 sectors += rdev->sectors;
7066 }
7067
7068 if (!list_empty(&mddev->disks)) {
7069 if (mddev->pers)
7070 seq_printf(seq, "\n %llu blocks",
7071 (unsigned long long)
7072 mddev->array_sectors / 2);
7073 else
7074 seq_printf(seq, "\n %llu blocks",
7075 (unsigned long long)sectors / 2);
7076 }
7077 if (mddev->persistent) {
7078 if (mddev->major_version != 0 ||
7079 mddev->minor_version != 90) {
7080 seq_printf(seq," super %d.%d",
7081 mddev->major_version,
7082 mddev->minor_version);
7083 }
7084 } else if (mddev->external)
7085 seq_printf(seq, " super external:%s",
7086 mddev->metadata_type);
7087 else
7088 seq_printf(seq, " super non-persistent");
7089
7090 if (mddev->pers) {
7091 mddev->pers->status(seq, mddev);
7092 seq_printf(seq, "\n ");
7093 if (mddev->pers->sync_request) {
7094 if (mddev->curr_resync > 2) {
7095 status_resync(seq, mddev);
7096 seq_printf(seq, "\n ");
7097 } else if (mddev->curr_resync >= 1)
7098 seq_printf(seq, "\tresync=DELAYED\n ");
7099 else if (mddev->recovery_cp < MaxSector)
7100 seq_printf(seq, "\tresync=PENDING\n ");
7101 }
7102 } else
7103 seq_printf(seq, "\n ");
7104
7105 bitmap_status(seq, mddev->bitmap);
7106
7107 seq_printf(seq, "\n");
7108 }
7109 mddev_unlock(mddev);
7110
7111 return 0;
7112 }
7113
7114 static const struct seq_operations md_seq_ops = {
7115 .start = md_seq_start,
7116 .next = md_seq_next,
7117 .stop = md_seq_stop,
7118 .show = md_seq_show,
7119 };
7120
7121 static int md_seq_open(struct inode *inode, struct file *file)
7122 {
7123 struct seq_file *seq;
7124 int error;
7125
7126 error = seq_open(file, &md_seq_ops);
7127 if (error)
7128 return error;
7129
7130 seq = file->private_data;
7131 seq->poll_event = atomic_read(&md_event_count);
7132 return error;
7133 }
7134
7135 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7136 {
7137 struct seq_file *seq = filp->private_data;
7138 int mask;
7139
7140 poll_wait(filp, &md_event_waiters, wait);
7141
7142 /* always allow read */
7143 mask = POLLIN | POLLRDNORM;
7144
7145 if (seq->poll_event != atomic_read(&md_event_count))
7146 mask |= POLLERR | POLLPRI;
7147 return mask;
7148 }
7149
7150 static const struct file_operations md_seq_fops = {
7151 .owner = THIS_MODULE,
7152 .open = md_seq_open,
7153 .read = seq_read,
7154 .llseek = seq_lseek,
7155 .release = seq_release_private,
7156 .poll = mdstat_poll,
7157 };
7158
7159 int register_md_personality(struct md_personality *p)
7160 {
7161 spin_lock(&pers_lock);
7162 list_add_tail(&p->list, &pers_list);
7163 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
7164 spin_unlock(&pers_lock);
7165 return 0;
7166 }
7167
7168 int unregister_md_personality(struct md_personality *p)
7169 {
7170 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7171 spin_lock(&pers_lock);
7172 list_del_init(&p->list);
7173 spin_unlock(&pers_lock);
7174 return 0;
7175 }
7176
7177 static int is_mddev_idle(struct mddev *mddev, int init)
7178 {
7179 struct md_rdev * rdev;
7180 int idle;
7181 int curr_events;
7182
7183 idle = 1;
7184 rcu_read_lock();
7185 rdev_for_each_rcu(rdev, mddev) {
7186 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7187 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7188 (int)part_stat_read(&disk->part0, sectors[1]) -
7189 atomic_read(&disk->sync_io);
7190 /* sync IO will cause sync_io to increase before the disk_stats
7191 * as sync_io is counted when a request starts, and
7192 * disk_stats is counted when it completes.
7193 * So resync activity will cause curr_events to be smaller than
7194 * when there was no such activity.
7195 * non-sync IO will cause disk_stat to increase without
7196 * increasing sync_io so curr_events will (eventually)
7197 * be larger than it was before. Once it becomes
7198 * substantially larger, the test below will cause
7199 * the array to appear non-idle, and resync will slow
7200 * down.
7201 * If there is a lot of outstanding resync activity when
7202 * we set last_event to curr_events, then all that activity
7203 * completing might cause the array to appear non-idle
7204 * and resync will be slowed down even though there might
7205 * not have been non-resync activity. This will only
7206 * happen once though. 'last_events' will soon reflect
7207 * the state where there is little or no outstanding
7208 * resync requests, and further resync activity will
7209 * always make curr_events less than last_events.
7210 *
7211 */
7212 if (init || curr_events - rdev->last_events > 64) {
7213 rdev->last_events = curr_events;
7214 idle = 0;
7215 }
7216 }
7217 rcu_read_unlock();
7218 return idle;
7219 }
7220
7221 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7222 {
7223 /* another "blocks" (512byte) blocks have been synced */
7224 atomic_sub(blocks, &mddev->recovery_active);
7225 wake_up(&mddev->recovery_wait);
7226 if (!ok) {
7227 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7228 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7229 md_wakeup_thread(mddev->thread);
7230 // stop recovery, signal do_sync ....
7231 }
7232 }
7233
7234
7235 /* md_write_start(mddev, bi)
7236 * If we need to update some array metadata (e.g. 'active' flag
7237 * in superblock) before writing, schedule a superblock update
7238 * and wait for it to complete.
7239 */
7240 void md_write_start(struct mddev *mddev, struct bio *bi)
7241 {
7242 int did_change = 0;
7243 if (bio_data_dir(bi) != WRITE)
7244 return;
7245
7246 BUG_ON(mddev->ro == 1);
7247 if (mddev->ro == 2) {
7248 /* need to switch to read/write */
7249 mddev->ro = 0;
7250 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7251 md_wakeup_thread(mddev->thread);
7252 md_wakeup_thread(mddev->sync_thread);
7253 did_change = 1;
7254 }
7255 atomic_inc(&mddev->writes_pending);
7256 if (mddev->safemode == 1)
7257 mddev->safemode = 0;
7258 if (mddev->in_sync) {
7259 spin_lock_irq(&mddev->write_lock);
7260 if (mddev->in_sync) {
7261 mddev->in_sync = 0;
7262 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7263 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7264 md_wakeup_thread(mddev->thread);
7265 did_change = 1;
7266 }
7267 spin_unlock_irq(&mddev->write_lock);
7268 }
7269 if (did_change)
7270 sysfs_notify_dirent_safe(mddev->sysfs_state);
7271 wait_event(mddev->sb_wait,
7272 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7273 }
7274
7275 void md_write_end(struct mddev *mddev)
7276 {
7277 if (atomic_dec_and_test(&mddev->writes_pending)) {
7278 if (mddev->safemode == 2)
7279 md_wakeup_thread(mddev->thread);
7280 else if (mddev->safemode_delay)
7281 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7282 }
7283 }
7284
7285 /* md_allow_write(mddev)
7286 * Calling this ensures that the array is marked 'active' so that writes
7287 * may proceed without blocking. It is important to call this before
7288 * attempting a GFP_KERNEL allocation while holding the mddev lock.
7289 * Must be called with mddev_lock held.
7290 *
7291 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7292 * is dropped, so return -EAGAIN after notifying userspace.
7293 */
7294 int md_allow_write(struct mddev *mddev)
7295 {
7296 if (!mddev->pers)
7297 return 0;
7298 if (mddev->ro)
7299 return 0;
7300 if (!mddev->pers->sync_request)
7301 return 0;
7302
7303 spin_lock_irq(&mddev->write_lock);
7304 if (mddev->in_sync) {
7305 mddev->in_sync = 0;
7306 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7307 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7308 if (mddev->safemode_delay &&
7309 mddev->safemode == 0)
7310 mddev->safemode = 1;
7311 spin_unlock_irq(&mddev->write_lock);
7312 md_update_sb(mddev, 0);
7313 sysfs_notify_dirent_safe(mddev->sysfs_state);
7314 } else
7315 spin_unlock_irq(&mddev->write_lock);
7316
7317 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7318 return -EAGAIN;
7319 else
7320 return 0;
7321 }
7322 EXPORT_SYMBOL_GPL(md_allow_write);
7323
7324 #define SYNC_MARKS 10
7325 #define SYNC_MARK_STEP (3*HZ)
7326 #define UPDATE_FREQUENCY (5*60*HZ)
7327 void md_do_sync(struct md_thread *thread)
7328 {
7329 struct mddev *mddev = thread->mddev;
7330 struct mddev *mddev2;
7331 unsigned int currspeed = 0,
7332 window;
7333 sector_t max_sectors,j, io_sectors;
7334 unsigned long mark[SYNC_MARKS];
7335 unsigned long update_time;
7336 sector_t mark_cnt[SYNC_MARKS];
7337 int last_mark,m;
7338 struct list_head *tmp;
7339 sector_t last_check;
7340 int skipped = 0;
7341 struct md_rdev *rdev;
7342 char *desc;
7343 struct blk_plug plug;
7344
7345 /* just incase thread restarts... */
7346 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7347 return;
7348 if (mddev->ro) /* never try to sync a read-only array */
7349 return;
7350
7351 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7352 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7353 desc = "data-check";
7354 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7355 desc = "requested-resync";
7356 else
7357 desc = "resync";
7358 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7359 desc = "reshape";
7360 else
7361 desc = "recovery";
7362
7363 /* we overload curr_resync somewhat here.
7364 * 0 == not engaged in resync at all
7365 * 2 == checking that there is no conflict with another sync
7366 * 1 == like 2, but have yielded to allow conflicting resync to
7367 * commense
7368 * other == active in resync - this many blocks
7369 *
7370 * Before starting a resync we must have set curr_resync to
7371 * 2, and then checked that every "conflicting" array has curr_resync
7372 * less than ours. When we find one that is the same or higher
7373 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7374 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7375 * This will mean we have to start checking from the beginning again.
7376 *
7377 */
7378
7379 do {
7380 mddev->curr_resync = 2;
7381
7382 try_again:
7383 if (kthread_should_stop())
7384 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7385
7386 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7387 goto skip;
7388 for_each_mddev(mddev2, tmp) {
7389 if (mddev2 == mddev)
7390 continue;
7391 if (!mddev->parallel_resync
7392 && mddev2->curr_resync
7393 && match_mddev_units(mddev, mddev2)) {
7394 DEFINE_WAIT(wq);
7395 if (mddev < mddev2 && mddev->curr_resync == 2) {
7396 /* arbitrarily yield */
7397 mddev->curr_resync = 1;
7398 wake_up(&resync_wait);
7399 }
7400 if (mddev > mddev2 && mddev->curr_resync == 1)
7401 /* no need to wait here, we can wait the next
7402 * time 'round when curr_resync == 2
7403 */
7404 continue;
7405 /* We need to wait 'interruptible' so as not to
7406 * contribute to the load average, and not to
7407 * be caught by 'softlockup'
7408 */
7409 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7410 if (!kthread_should_stop() &&
7411 mddev2->curr_resync >= mddev->curr_resync) {
7412 printk(KERN_INFO "md: delaying %s of %s"
7413 " until %s has finished (they"
7414 " share one or more physical units)\n",
7415 desc, mdname(mddev), mdname(mddev2));
7416 mddev_put(mddev2);
7417 if (signal_pending(current))
7418 flush_signals(current);
7419 schedule();
7420 finish_wait(&resync_wait, &wq);
7421 goto try_again;
7422 }
7423 finish_wait(&resync_wait, &wq);
7424 }
7425 }
7426 } while (mddev->curr_resync < 2);
7427
7428 j = 0;
7429 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7430 /* resync follows the size requested by the personality,
7431 * which defaults to physical size, but can be virtual size
7432 */
7433 max_sectors = mddev->resync_max_sectors;
7434 atomic64_set(&mddev->resync_mismatches, 0);
7435 /* we don't use the checkpoint if there's a bitmap */
7436 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7437 j = mddev->resync_min;
7438 else if (!mddev->bitmap)
7439 j = mddev->recovery_cp;
7440
7441 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7442 max_sectors = mddev->resync_max_sectors;
7443 else {
7444 /* recovery follows the physical size of devices */
7445 max_sectors = mddev->dev_sectors;
7446 j = MaxSector;
7447 rcu_read_lock();
7448 rdev_for_each_rcu(rdev, mddev)
7449 if (rdev->raid_disk >= 0 &&
7450 !test_bit(Faulty, &rdev->flags) &&
7451 !test_bit(In_sync, &rdev->flags) &&
7452 rdev->recovery_offset < j)
7453 j = rdev->recovery_offset;
7454 rcu_read_unlock();
7455 }
7456
7457 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7458 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7459 " %d KB/sec/disk.\n", speed_min(mddev));
7460 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7461 "(but not more than %d KB/sec) for %s.\n",
7462 speed_max(mddev), desc);
7463
7464 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7465
7466 io_sectors = 0;
7467 for (m = 0; m < SYNC_MARKS; m++) {
7468 mark[m] = jiffies;
7469 mark_cnt[m] = io_sectors;
7470 }
7471 last_mark = 0;
7472 mddev->resync_mark = mark[last_mark];
7473 mddev->resync_mark_cnt = mark_cnt[last_mark];
7474
7475 /*
7476 * Tune reconstruction:
7477 */
7478 window = 32*(PAGE_SIZE/512);
7479 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7480 window/2, (unsigned long long)max_sectors/2);
7481
7482 atomic_set(&mddev->recovery_active, 0);
7483 last_check = 0;
7484
7485 if (j>2) {
7486 printk(KERN_INFO
7487 "md: resuming %s of %s from checkpoint.\n",
7488 desc, mdname(mddev));
7489 mddev->curr_resync = j;
7490 } else
7491 mddev->curr_resync = 3; /* no longer delayed */
7492 mddev->curr_resync_completed = j;
7493 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7494 md_new_event(mddev);
7495 update_time = jiffies;
7496
7497 blk_start_plug(&plug);
7498 while (j < max_sectors) {
7499 sector_t sectors;
7500
7501 skipped = 0;
7502
7503 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7504 ((mddev->curr_resync > mddev->curr_resync_completed &&
7505 (mddev->curr_resync - mddev->curr_resync_completed)
7506 > (max_sectors >> 4)) ||
7507 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7508 (j - mddev->curr_resync_completed)*2
7509 >= mddev->resync_max - mddev->curr_resync_completed
7510 )) {
7511 /* time to update curr_resync_completed */
7512 wait_event(mddev->recovery_wait,
7513 atomic_read(&mddev->recovery_active) == 0);
7514 mddev->curr_resync_completed = j;
7515 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7516 j > mddev->recovery_cp)
7517 mddev->recovery_cp = j;
7518 update_time = jiffies;
7519 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7520 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7521 }
7522
7523 while (j >= mddev->resync_max && !kthread_should_stop()) {
7524 /* As this condition is controlled by user-space,
7525 * we can block indefinitely, so use '_interruptible'
7526 * to avoid triggering warnings.
7527 */
7528 flush_signals(current); /* just in case */
7529 wait_event_interruptible(mddev->recovery_wait,
7530 mddev->resync_max > j
7531 || kthread_should_stop());
7532 }
7533
7534 if (kthread_should_stop())
7535 goto interrupted;
7536
7537 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7538 currspeed < speed_min(mddev));
7539 if (sectors == 0) {
7540 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7541 goto out;
7542 }
7543
7544 if (!skipped) { /* actual IO requested */
7545 io_sectors += sectors;
7546 atomic_add(sectors, &mddev->recovery_active);
7547 }
7548
7549 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7550 break;
7551
7552 j += sectors;
7553 if (j > 2)
7554 mddev->curr_resync = j;
7555 mddev->curr_mark_cnt = io_sectors;
7556 if (last_check == 0)
7557 /* this is the earliest that rebuild will be
7558 * visible in /proc/mdstat
7559 */
7560 md_new_event(mddev);
7561
7562 if (last_check + window > io_sectors || j == max_sectors)
7563 continue;
7564
7565 last_check = io_sectors;
7566 repeat:
7567 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7568 /* step marks */
7569 int next = (last_mark+1) % SYNC_MARKS;
7570
7571 mddev->resync_mark = mark[next];
7572 mddev->resync_mark_cnt = mark_cnt[next];
7573 mark[next] = jiffies;
7574 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7575 last_mark = next;
7576 }
7577
7578
7579 if (kthread_should_stop())
7580 goto interrupted;
7581
7582
7583 /*
7584 * this loop exits only if either when we are slower than
7585 * the 'hard' speed limit, or the system was IO-idle for
7586 * a jiffy.
7587 * the system might be non-idle CPU-wise, but we only care
7588 * about not overloading the IO subsystem. (things like an
7589 * e2fsck being done on the RAID array should execute fast)
7590 */
7591 cond_resched();
7592
7593 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7594 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7595
7596 if (currspeed > speed_min(mddev)) {
7597 if ((currspeed > speed_max(mddev)) ||
7598 !is_mddev_idle(mddev, 0)) {
7599 msleep(500);
7600 goto repeat;
7601 }
7602 }
7603 }
7604 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7605 /*
7606 * this also signals 'finished resyncing' to md_stop
7607 */
7608 out:
7609 blk_finish_plug(&plug);
7610 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7611
7612 /* tell personality that we are finished */
7613 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7614
7615 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7616 mddev->curr_resync > 2) {
7617 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7618 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7619 if (mddev->curr_resync >= mddev->recovery_cp) {
7620 printk(KERN_INFO
7621 "md: checkpointing %s of %s.\n",
7622 desc, mdname(mddev));
7623 if (test_bit(MD_RECOVERY_ERROR,
7624 &mddev->recovery))
7625 mddev->recovery_cp =
7626 mddev->curr_resync_completed;
7627 else
7628 mddev->recovery_cp =
7629 mddev->curr_resync;
7630 }
7631 } else
7632 mddev->recovery_cp = MaxSector;
7633 } else {
7634 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7635 mddev->curr_resync = MaxSector;
7636 rcu_read_lock();
7637 rdev_for_each_rcu(rdev, mddev)
7638 if (rdev->raid_disk >= 0 &&
7639 mddev->delta_disks >= 0 &&
7640 !test_bit(Faulty, &rdev->flags) &&
7641 !test_bit(In_sync, &rdev->flags) &&
7642 rdev->recovery_offset < mddev->curr_resync)
7643 rdev->recovery_offset = mddev->curr_resync;
7644 rcu_read_unlock();
7645 }
7646 }
7647 skip:
7648 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7649
7650 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7651 /* We completed so min/max setting can be forgotten if used. */
7652 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7653 mddev->resync_min = 0;
7654 mddev->resync_max = MaxSector;
7655 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7656 mddev->resync_min = mddev->curr_resync_completed;
7657 mddev->curr_resync = 0;
7658 wake_up(&resync_wait);
7659 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7660 md_wakeup_thread(mddev->thread);
7661 return;
7662
7663 interrupted:
7664 /*
7665 * got a signal, exit.
7666 */
7667 printk(KERN_INFO
7668 "md: md_do_sync() got signal ... exiting\n");
7669 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7670 goto out;
7671
7672 }
7673 EXPORT_SYMBOL_GPL(md_do_sync);
7674
7675 static int remove_and_add_spares(struct mddev *mddev,
7676 struct md_rdev *this)
7677 {
7678 struct md_rdev *rdev;
7679 int spares = 0;
7680 int removed = 0;
7681
7682 rdev_for_each(rdev, mddev)
7683 if ((this == NULL || rdev == this) &&
7684 rdev->raid_disk >= 0 &&
7685 !test_bit(Blocked, &rdev->flags) &&
7686 (test_bit(Faulty, &rdev->flags) ||
7687 ! test_bit(In_sync, &rdev->flags)) &&
7688 atomic_read(&rdev->nr_pending)==0) {
7689 if (mddev->pers->hot_remove_disk(
7690 mddev, rdev) == 0) {
7691 sysfs_unlink_rdev(mddev, rdev);
7692 rdev->raid_disk = -1;
7693 removed++;
7694 }
7695 }
7696 if (removed && mddev->kobj.sd)
7697 sysfs_notify(&mddev->kobj, NULL, "degraded");
7698
7699 if (this)
7700 goto no_add;
7701
7702 rdev_for_each(rdev, mddev) {
7703 if (rdev->raid_disk >= 0 &&
7704 !test_bit(In_sync, &rdev->flags) &&
7705 !test_bit(Faulty, &rdev->flags))
7706 spares++;
7707 if (rdev->raid_disk >= 0)
7708 continue;
7709 if (test_bit(Faulty, &rdev->flags))
7710 continue;
7711 if (mddev->ro &&
7712 rdev->saved_raid_disk < 0)
7713 continue;
7714
7715 rdev->recovery_offset = 0;
7716 if (rdev->saved_raid_disk >= 0 && mddev->in_sync) {
7717 spin_lock_irq(&mddev->write_lock);
7718 if (mddev->in_sync)
7719 /* OK, this device, which is in_sync,
7720 * will definitely be noticed before
7721 * the next write, so recovery isn't
7722 * needed.
7723 */
7724 rdev->recovery_offset = mddev->recovery_cp;
7725 spin_unlock_irq(&mddev->write_lock);
7726 }
7727 if (mddev->ro && rdev->recovery_offset != MaxSector)
7728 /* not safe to add this disk now */
7729 continue;
7730 if (mddev->pers->
7731 hot_add_disk(mddev, rdev) == 0) {
7732 if (sysfs_link_rdev(mddev, rdev))
7733 /* failure here is OK */;
7734 spares++;
7735 md_new_event(mddev);
7736 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7737 }
7738 }
7739 no_add:
7740 if (removed)
7741 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7742 return spares;
7743 }
7744
7745 static void reap_sync_thread(struct mddev *mddev)
7746 {
7747 struct md_rdev *rdev;
7748
7749 /* resync has finished, collect result */
7750 md_unregister_thread(&mddev->sync_thread);
7751 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7752 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7753 /* success...*/
7754 /* activate any spares */
7755 if (mddev->pers->spare_active(mddev)) {
7756 sysfs_notify(&mddev->kobj, NULL,
7757 "degraded");
7758 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7759 }
7760 }
7761 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7762 mddev->pers->finish_reshape)
7763 mddev->pers->finish_reshape(mddev);
7764
7765 /* If array is no-longer degraded, then any saved_raid_disk
7766 * information must be scrapped. Also if any device is now
7767 * In_sync we must scrape the saved_raid_disk for that device
7768 * do the superblock for an incrementally recovered device
7769 * written out.
7770 */
7771 rdev_for_each(rdev, mddev)
7772 if (!mddev->degraded ||
7773 test_bit(In_sync, &rdev->flags))
7774 rdev->saved_raid_disk = -1;
7775
7776 md_update_sb(mddev, 1);
7777 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7778 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7779 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7780 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7781 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7782 /* flag recovery needed just to double check */
7783 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7784 sysfs_notify_dirent_safe(mddev->sysfs_action);
7785 md_new_event(mddev);
7786 if (mddev->event_work.func)
7787 queue_work(md_misc_wq, &mddev->event_work);
7788 }
7789
7790 /*
7791 * This routine is regularly called by all per-raid-array threads to
7792 * deal with generic issues like resync and super-block update.
7793 * Raid personalities that don't have a thread (linear/raid0) do not
7794 * need this as they never do any recovery or update the superblock.
7795 *
7796 * It does not do any resync itself, but rather "forks" off other threads
7797 * to do that as needed.
7798 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7799 * "->recovery" and create a thread at ->sync_thread.
7800 * When the thread finishes it sets MD_RECOVERY_DONE
7801 * and wakeups up this thread which will reap the thread and finish up.
7802 * This thread also removes any faulty devices (with nr_pending == 0).
7803 *
7804 * The overall approach is:
7805 * 1/ if the superblock needs updating, update it.
7806 * 2/ If a recovery thread is running, don't do anything else.
7807 * 3/ If recovery has finished, clean up, possibly marking spares active.
7808 * 4/ If there are any faulty devices, remove them.
7809 * 5/ If array is degraded, try to add spares devices
7810 * 6/ If array has spares or is not in-sync, start a resync thread.
7811 */
7812 void md_check_recovery(struct mddev *mddev)
7813 {
7814 if (mddev->suspended)
7815 return;
7816
7817 if (mddev->bitmap)
7818 bitmap_daemon_work(mddev);
7819
7820 if (signal_pending(current)) {
7821 if (mddev->pers->sync_request && !mddev->external) {
7822 printk(KERN_INFO "md: %s in immediate safe mode\n",
7823 mdname(mddev));
7824 mddev->safemode = 2;
7825 }
7826 flush_signals(current);
7827 }
7828
7829 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7830 return;
7831 if ( ! (
7832 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7833 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7834 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7835 (mddev->external == 0 && mddev->safemode == 1) ||
7836 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7837 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7838 ))
7839 return;
7840
7841 if (mddev_trylock(mddev)) {
7842 int spares = 0;
7843
7844 if (mddev->ro) {
7845 /* On a read-only array we can:
7846 * - remove failed devices
7847 * - add already-in_sync devices if the array itself
7848 * is in-sync.
7849 * As we only add devices that are already in-sync,
7850 * we can activate the spares immediately.
7851 */
7852 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7853 remove_and_add_spares(mddev, NULL);
7854 mddev->pers->spare_active(mddev);
7855 goto unlock;
7856 }
7857
7858 if (!mddev->external) {
7859 int did_change = 0;
7860 spin_lock_irq(&mddev->write_lock);
7861 if (mddev->safemode &&
7862 !atomic_read(&mddev->writes_pending) &&
7863 !mddev->in_sync &&
7864 mddev->recovery_cp == MaxSector) {
7865 mddev->in_sync = 1;
7866 did_change = 1;
7867 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7868 }
7869 if (mddev->safemode == 1)
7870 mddev->safemode = 0;
7871 spin_unlock_irq(&mddev->write_lock);
7872 if (did_change)
7873 sysfs_notify_dirent_safe(mddev->sysfs_state);
7874 }
7875
7876 if (mddev->flags)
7877 md_update_sb(mddev, 0);
7878
7879 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7880 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7881 /* resync/recovery still happening */
7882 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7883 goto unlock;
7884 }
7885 if (mddev->sync_thread) {
7886 reap_sync_thread(mddev);
7887 goto unlock;
7888 }
7889 /* Set RUNNING before clearing NEEDED to avoid
7890 * any transients in the value of "sync_action".
7891 */
7892 mddev->curr_resync_completed = 0;
7893 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7894 /* Clear some bits that don't mean anything, but
7895 * might be left set
7896 */
7897 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7898 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7899
7900 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7901 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7902 goto unlock;
7903 /* no recovery is running.
7904 * remove any failed drives, then
7905 * add spares if possible.
7906 * Spares are also removed and re-added, to allow
7907 * the personality to fail the re-add.
7908 */
7909
7910 if (mddev->reshape_position != MaxSector) {
7911 if (mddev->pers->check_reshape == NULL ||
7912 mddev->pers->check_reshape(mddev) != 0)
7913 /* Cannot proceed */
7914 goto unlock;
7915 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7916 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7917 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
7918 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7919 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7920 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7921 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7922 } else if (mddev->recovery_cp < MaxSector) {
7923 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7924 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7925 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7926 /* nothing to be done ... */
7927 goto unlock;
7928
7929 if (mddev->pers->sync_request) {
7930 if (spares) {
7931 /* We are adding a device or devices to an array
7932 * which has the bitmap stored on all devices.
7933 * So make sure all bitmap pages get written
7934 */
7935 bitmap_write_all(mddev->bitmap);
7936 }
7937 mddev->sync_thread = md_register_thread(md_do_sync,
7938 mddev,
7939 "resync");
7940 if (!mddev->sync_thread) {
7941 printk(KERN_ERR "%s: could not start resync"
7942 " thread...\n",
7943 mdname(mddev));
7944 /* leave the spares where they are, it shouldn't hurt */
7945 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7946 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7947 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7948 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7949 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7950 } else
7951 md_wakeup_thread(mddev->sync_thread);
7952 sysfs_notify_dirent_safe(mddev->sysfs_action);
7953 md_new_event(mddev);
7954 }
7955 unlock:
7956 if (!mddev->sync_thread) {
7957 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7958 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7959 &mddev->recovery))
7960 if (mddev->sysfs_action)
7961 sysfs_notify_dirent_safe(mddev->sysfs_action);
7962 }
7963 mddev_unlock(mddev);
7964 }
7965 }
7966
7967 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7968 {
7969 sysfs_notify_dirent_safe(rdev->sysfs_state);
7970 wait_event_timeout(rdev->blocked_wait,
7971 !test_bit(Blocked, &rdev->flags) &&
7972 !test_bit(BlockedBadBlocks, &rdev->flags),
7973 msecs_to_jiffies(5000));
7974 rdev_dec_pending(rdev, mddev);
7975 }
7976 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7977
7978 void md_finish_reshape(struct mddev *mddev)
7979 {
7980 /* called be personality module when reshape completes. */
7981 struct md_rdev *rdev;
7982
7983 rdev_for_each(rdev, mddev) {
7984 if (rdev->data_offset > rdev->new_data_offset)
7985 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
7986 else
7987 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
7988 rdev->data_offset = rdev->new_data_offset;
7989 }
7990 }
7991 EXPORT_SYMBOL(md_finish_reshape);
7992
7993 /* Bad block management.
7994 * We can record which blocks on each device are 'bad' and so just
7995 * fail those blocks, or that stripe, rather than the whole device.
7996 * Entries in the bad-block table are 64bits wide. This comprises:
7997 * Length of bad-range, in sectors: 0-511 for lengths 1-512
7998 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7999 * A 'shift' can be set so that larger blocks are tracked and
8000 * consequently larger devices can be covered.
8001 * 'Acknowledged' flag - 1 bit. - the most significant bit.
8002 *
8003 * Locking of the bad-block table uses a seqlock so md_is_badblock
8004 * might need to retry if it is very unlucky.
8005 * We will sometimes want to check for bad blocks in a bi_end_io function,
8006 * so we use the write_seqlock_irq variant.
8007 *
8008 * When looking for a bad block we specify a range and want to
8009 * know if any block in the range is bad. So we binary-search
8010 * to the last range that starts at-or-before the given endpoint,
8011 * (or "before the sector after the target range")
8012 * then see if it ends after the given start.
8013 * We return
8014 * 0 if there are no known bad blocks in the range
8015 * 1 if there are known bad block which are all acknowledged
8016 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8017 * plus the start/length of the first bad section we overlap.
8018 */
8019 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8020 sector_t *first_bad, int *bad_sectors)
8021 {
8022 int hi;
8023 int lo;
8024 u64 *p = bb->page;
8025 int rv;
8026 sector_t target = s + sectors;
8027 unsigned seq;
8028
8029 if (bb->shift > 0) {
8030 /* round the start down, and the end up */
8031 s >>= bb->shift;
8032 target += (1<<bb->shift) - 1;
8033 target >>= bb->shift;
8034 sectors = target - s;
8035 }
8036 /* 'target' is now the first block after the bad range */
8037
8038 retry:
8039 seq = read_seqbegin(&bb->lock);
8040 lo = 0;
8041 rv = 0;
8042 hi = bb->count;
8043
8044 /* Binary search between lo and hi for 'target'
8045 * i.e. for the last range that starts before 'target'
8046 */
8047 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8048 * are known not to be the last range before target.
8049 * VARIANT: hi-lo is the number of possible
8050 * ranges, and decreases until it reaches 1
8051 */
8052 while (hi - lo > 1) {
8053 int mid = (lo + hi) / 2;
8054 sector_t a = BB_OFFSET(p[mid]);
8055 if (a < target)
8056 /* This could still be the one, earlier ranges
8057 * could not. */
8058 lo = mid;
8059 else
8060 /* This and later ranges are definitely out. */
8061 hi = mid;
8062 }
8063 /* 'lo' might be the last that started before target, but 'hi' isn't */
8064 if (hi > lo) {
8065 /* need to check all range that end after 's' to see if
8066 * any are unacknowledged.
8067 */
8068 while (lo >= 0 &&
8069 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8070 if (BB_OFFSET(p[lo]) < target) {
8071 /* starts before the end, and finishes after
8072 * the start, so they must overlap
8073 */
8074 if (rv != -1 && BB_ACK(p[lo]))
8075 rv = 1;
8076 else
8077 rv = -1;
8078 *first_bad = BB_OFFSET(p[lo]);
8079 *bad_sectors = BB_LEN(p[lo]);
8080 }
8081 lo--;
8082 }
8083 }
8084
8085 if (read_seqretry(&bb->lock, seq))
8086 goto retry;
8087
8088 return rv;
8089 }
8090 EXPORT_SYMBOL_GPL(md_is_badblock);
8091
8092 /*
8093 * Add a range of bad blocks to the table.
8094 * This might extend the table, or might contract it
8095 * if two adjacent ranges can be merged.
8096 * We binary-search to find the 'insertion' point, then
8097 * decide how best to handle it.
8098 */
8099 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8100 int acknowledged)
8101 {
8102 u64 *p;
8103 int lo, hi;
8104 int rv = 1;
8105
8106 if (bb->shift < 0)
8107 /* badblocks are disabled */
8108 return 0;
8109
8110 if (bb->shift) {
8111 /* round the start down, and the end up */
8112 sector_t next = s + sectors;
8113 s >>= bb->shift;
8114 next += (1<<bb->shift) - 1;
8115 next >>= bb->shift;
8116 sectors = next - s;
8117 }
8118
8119 write_seqlock_irq(&bb->lock);
8120
8121 p = bb->page;
8122 lo = 0;
8123 hi = bb->count;
8124 /* Find the last range that starts at-or-before 's' */
8125 while (hi - lo > 1) {
8126 int mid = (lo + hi) / 2;
8127 sector_t a = BB_OFFSET(p[mid]);
8128 if (a <= s)
8129 lo = mid;
8130 else
8131 hi = mid;
8132 }
8133 if (hi > lo && BB_OFFSET(p[lo]) > s)
8134 hi = lo;
8135
8136 if (hi > lo) {
8137 /* we found a range that might merge with the start
8138 * of our new range
8139 */
8140 sector_t a = BB_OFFSET(p[lo]);
8141 sector_t e = a + BB_LEN(p[lo]);
8142 int ack = BB_ACK(p[lo]);
8143 if (e >= s) {
8144 /* Yes, we can merge with a previous range */
8145 if (s == a && s + sectors >= e)
8146 /* new range covers old */
8147 ack = acknowledged;
8148 else
8149 ack = ack && acknowledged;
8150
8151 if (e < s + sectors)
8152 e = s + sectors;
8153 if (e - a <= BB_MAX_LEN) {
8154 p[lo] = BB_MAKE(a, e-a, ack);
8155 s = e;
8156 } else {
8157 /* does not all fit in one range,
8158 * make p[lo] maximal
8159 */
8160 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8161 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8162 s = a + BB_MAX_LEN;
8163 }
8164 sectors = e - s;
8165 }
8166 }
8167 if (sectors && hi < bb->count) {
8168 /* 'hi' points to the first range that starts after 's'.
8169 * Maybe we can merge with the start of that range */
8170 sector_t a = BB_OFFSET(p[hi]);
8171 sector_t e = a + BB_LEN(p[hi]);
8172 int ack = BB_ACK(p[hi]);
8173 if (a <= s + sectors) {
8174 /* merging is possible */
8175 if (e <= s + sectors) {
8176 /* full overlap */
8177 e = s + sectors;
8178 ack = acknowledged;
8179 } else
8180 ack = ack && acknowledged;
8181
8182 a = s;
8183 if (e - a <= BB_MAX_LEN) {
8184 p[hi] = BB_MAKE(a, e-a, ack);
8185 s = e;
8186 } else {
8187 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8188 s = a + BB_MAX_LEN;
8189 }
8190 sectors = e - s;
8191 lo = hi;
8192 hi++;
8193 }
8194 }
8195 if (sectors == 0 && hi < bb->count) {
8196 /* we might be able to combine lo and hi */
8197 /* Note: 's' is at the end of 'lo' */
8198 sector_t a = BB_OFFSET(p[hi]);
8199 int lolen = BB_LEN(p[lo]);
8200 int hilen = BB_LEN(p[hi]);
8201 int newlen = lolen + hilen - (s - a);
8202 if (s >= a && newlen < BB_MAX_LEN) {
8203 /* yes, we can combine them */
8204 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8205 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8206 memmove(p + hi, p + hi + 1,
8207 (bb->count - hi - 1) * 8);
8208 bb->count--;
8209 }
8210 }
8211 while (sectors) {
8212 /* didn't merge (it all).
8213 * Need to add a range just before 'hi' */
8214 if (bb->count >= MD_MAX_BADBLOCKS) {
8215 /* No room for more */
8216 rv = 0;
8217 break;
8218 } else {
8219 int this_sectors = sectors;
8220 memmove(p + hi + 1, p + hi,
8221 (bb->count - hi) * 8);
8222 bb->count++;
8223
8224 if (this_sectors > BB_MAX_LEN)
8225 this_sectors = BB_MAX_LEN;
8226 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8227 sectors -= this_sectors;
8228 s += this_sectors;
8229 }
8230 }
8231
8232 bb->changed = 1;
8233 if (!acknowledged)
8234 bb->unacked_exist = 1;
8235 write_sequnlock_irq(&bb->lock);
8236
8237 return rv;
8238 }
8239
8240 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8241 int is_new)
8242 {
8243 int rv;
8244 if (is_new)
8245 s += rdev->new_data_offset;
8246 else
8247 s += rdev->data_offset;
8248 rv = md_set_badblocks(&rdev->badblocks,
8249 s, sectors, 0);
8250 if (rv) {
8251 /* Make sure they get written out promptly */
8252 sysfs_notify_dirent_safe(rdev->sysfs_state);
8253 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8254 md_wakeup_thread(rdev->mddev->thread);
8255 }
8256 return rv;
8257 }
8258 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8259
8260 /*
8261 * Remove a range of bad blocks from the table.
8262 * This may involve extending the table if we spilt a region,
8263 * but it must not fail. So if the table becomes full, we just
8264 * drop the remove request.
8265 */
8266 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8267 {
8268 u64 *p;
8269 int lo, hi;
8270 sector_t target = s + sectors;
8271 int rv = 0;
8272
8273 if (bb->shift > 0) {
8274 /* When clearing we round the start up and the end down.
8275 * This should not matter as the shift should align with
8276 * the block size and no rounding should ever be needed.
8277 * However it is better the think a block is bad when it
8278 * isn't than to think a block is not bad when it is.
8279 */
8280 s += (1<<bb->shift) - 1;
8281 s >>= bb->shift;
8282 target >>= bb->shift;
8283 sectors = target - s;
8284 }
8285
8286 write_seqlock_irq(&bb->lock);
8287
8288 p = bb->page;
8289 lo = 0;
8290 hi = bb->count;
8291 /* Find the last range that starts before 'target' */
8292 while (hi - lo > 1) {
8293 int mid = (lo + hi) / 2;
8294 sector_t a = BB_OFFSET(p[mid]);
8295 if (a < target)
8296 lo = mid;
8297 else
8298 hi = mid;
8299 }
8300 if (hi > lo) {
8301 /* p[lo] is the last range that could overlap the
8302 * current range. Earlier ranges could also overlap,
8303 * but only this one can overlap the end of the range.
8304 */
8305 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8306 /* Partial overlap, leave the tail of this range */
8307 int ack = BB_ACK(p[lo]);
8308 sector_t a = BB_OFFSET(p[lo]);
8309 sector_t end = a + BB_LEN(p[lo]);
8310
8311 if (a < s) {
8312 /* we need to split this range */
8313 if (bb->count >= MD_MAX_BADBLOCKS) {
8314 rv = 0;
8315 goto out;
8316 }
8317 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8318 bb->count++;
8319 p[lo] = BB_MAKE(a, s-a, ack);
8320 lo++;
8321 }
8322 p[lo] = BB_MAKE(target, end - target, ack);
8323 /* there is no longer an overlap */
8324 hi = lo;
8325 lo--;
8326 }
8327 while (lo >= 0 &&
8328 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8329 /* This range does overlap */
8330 if (BB_OFFSET(p[lo]) < s) {
8331 /* Keep the early parts of this range. */
8332 int ack = BB_ACK(p[lo]);
8333 sector_t start = BB_OFFSET(p[lo]);
8334 p[lo] = BB_MAKE(start, s - start, ack);
8335 /* now low doesn't overlap, so.. */
8336 break;
8337 }
8338 lo--;
8339 }
8340 /* 'lo' is strictly before, 'hi' is strictly after,
8341 * anything between needs to be discarded
8342 */
8343 if (hi - lo > 1) {
8344 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8345 bb->count -= (hi - lo - 1);
8346 }
8347 }
8348
8349 bb->changed = 1;
8350 out:
8351 write_sequnlock_irq(&bb->lock);
8352 return rv;
8353 }
8354
8355 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8356 int is_new)
8357 {
8358 if (is_new)
8359 s += rdev->new_data_offset;
8360 else
8361 s += rdev->data_offset;
8362 return md_clear_badblocks(&rdev->badblocks,
8363 s, sectors);
8364 }
8365 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8366
8367 /*
8368 * Acknowledge all bad blocks in a list.
8369 * This only succeeds if ->changed is clear. It is used by
8370 * in-kernel metadata updates
8371 */
8372 void md_ack_all_badblocks(struct badblocks *bb)
8373 {
8374 if (bb->page == NULL || bb->changed)
8375 /* no point even trying */
8376 return;
8377 write_seqlock_irq(&bb->lock);
8378
8379 if (bb->changed == 0 && bb->unacked_exist) {
8380 u64 *p = bb->page;
8381 int i;
8382 for (i = 0; i < bb->count ; i++) {
8383 if (!BB_ACK(p[i])) {
8384 sector_t start = BB_OFFSET(p[i]);
8385 int len = BB_LEN(p[i]);
8386 p[i] = BB_MAKE(start, len, 1);
8387 }
8388 }
8389 bb->unacked_exist = 0;
8390 }
8391 write_sequnlock_irq(&bb->lock);
8392 }
8393 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8394
8395 /* sysfs access to bad-blocks list.
8396 * We present two files.
8397 * 'bad-blocks' lists sector numbers and lengths of ranges that
8398 * are recorded as bad. The list is truncated to fit within
8399 * the one-page limit of sysfs.
8400 * Writing "sector length" to this file adds an acknowledged
8401 * bad block list.
8402 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8403 * been acknowledged. Writing to this file adds bad blocks
8404 * without acknowledging them. This is largely for testing.
8405 */
8406
8407 static ssize_t
8408 badblocks_show(struct badblocks *bb, char *page, int unack)
8409 {
8410 size_t len;
8411 int i;
8412 u64 *p = bb->page;
8413 unsigned seq;
8414
8415 if (bb->shift < 0)
8416 return 0;
8417
8418 retry:
8419 seq = read_seqbegin(&bb->lock);
8420
8421 len = 0;
8422 i = 0;
8423
8424 while (len < PAGE_SIZE && i < bb->count) {
8425 sector_t s = BB_OFFSET(p[i]);
8426 unsigned int length = BB_LEN(p[i]);
8427 int ack = BB_ACK(p[i]);
8428 i++;
8429
8430 if (unack && ack)
8431 continue;
8432
8433 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8434 (unsigned long long)s << bb->shift,
8435 length << bb->shift);
8436 }
8437 if (unack && len == 0)
8438 bb->unacked_exist = 0;
8439
8440 if (read_seqretry(&bb->lock, seq))
8441 goto retry;
8442
8443 return len;
8444 }
8445
8446 #define DO_DEBUG 1
8447
8448 static ssize_t
8449 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8450 {
8451 unsigned long long sector;
8452 int length;
8453 char newline;
8454 #ifdef DO_DEBUG
8455 /* Allow clearing via sysfs *only* for testing/debugging.
8456 * Normally only a successful write may clear a badblock
8457 */
8458 int clear = 0;
8459 if (page[0] == '-') {
8460 clear = 1;
8461 page++;
8462 }
8463 #endif /* DO_DEBUG */
8464
8465 switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8466 case 3:
8467 if (newline != '\n')
8468 return -EINVAL;
8469 case 2:
8470 if (length <= 0)
8471 return -EINVAL;
8472 break;
8473 default:
8474 return -EINVAL;
8475 }
8476
8477 #ifdef DO_DEBUG
8478 if (clear) {
8479 md_clear_badblocks(bb, sector, length);
8480 return len;
8481 }
8482 #endif /* DO_DEBUG */
8483 if (md_set_badblocks(bb, sector, length, !unack))
8484 return len;
8485 else
8486 return -ENOSPC;
8487 }
8488
8489 static int md_notify_reboot(struct notifier_block *this,
8490 unsigned long code, void *x)
8491 {
8492 struct list_head *tmp;
8493 struct mddev *mddev;
8494 int need_delay = 0;
8495
8496 for_each_mddev(mddev, tmp) {
8497 if (mddev_trylock(mddev)) {
8498 if (mddev->pers)
8499 __md_stop_writes(mddev);
8500 mddev->safemode = 2;
8501 mddev_unlock(mddev);
8502 }
8503 need_delay = 1;
8504 }
8505 /*
8506 * certain more exotic SCSI devices are known to be
8507 * volatile wrt too early system reboots. While the
8508 * right place to handle this issue is the given
8509 * driver, we do want to have a safe RAID driver ...
8510 */
8511 if (need_delay)
8512 mdelay(1000*1);
8513
8514 return NOTIFY_DONE;
8515 }
8516
8517 static struct notifier_block md_notifier = {
8518 .notifier_call = md_notify_reboot,
8519 .next = NULL,
8520 .priority = INT_MAX, /* before any real devices */
8521 };
8522
8523 static void md_geninit(void)
8524 {
8525 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8526
8527 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8528 }
8529
8530 static int __init md_init(void)
8531 {
8532 int ret = -ENOMEM;
8533
8534 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8535 if (!md_wq)
8536 goto err_wq;
8537
8538 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8539 if (!md_misc_wq)
8540 goto err_misc_wq;
8541
8542 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8543 goto err_md;
8544
8545 if ((ret = register_blkdev(0, "mdp")) < 0)
8546 goto err_mdp;
8547 mdp_major = ret;
8548
8549 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8550 md_probe, NULL, NULL);
8551 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8552 md_probe, NULL, NULL);
8553
8554 register_reboot_notifier(&md_notifier);
8555 raid_table_header = register_sysctl_table(raid_root_table);
8556
8557 md_geninit();
8558 return 0;
8559
8560 err_mdp:
8561 unregister_blkdev(MD_MAJOR, "md");
8562 err_md:
8563 destroy_workqueue(md_misc_wq);
8564 err_misc_wq:
8565 destroy_workqueue(md_wq);
8566 err_wq:
8567 return ret;
8568 }
8569
8570 #ifndef MODULE
8571
8572 /*
8573 * Searches all registered partitions for autorun RAID arrays
8574 * at boot time.
8575 */
8576
8577 static LIST_HEAD(all_detected_devices);
8578 struct detected_devices_node {
8579 struct list_head list;
8580 dev_t dev;
8581 };
8582
8583 void md_autodetect_dev(dev_t dev)
8584 {
8585 struct detected_devices_node *node_detected_dev;
8586
8587 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8588 if (node_detected_dev) {
8589 node_detected_dev->dev = dev;
8590 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8591 } else {
8592 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8593 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8594 }
8595 }
8596
8597
8598 static void autostart_arrays(int part)
8599 {
8600 struct md_rdev *rdev;
8601 struct detected_devices_node *node_detected_dev;
8602 dev_t dev;
8603 int i_scanned, i_passed;
8604
8605 i_scanned = 0;
8606 i_passed = 0;
8607
8608 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8609
8610 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8611 i_scanned++;
8612 node_detected_dev = list_entry(all_detected_devices.next,
8613 struct detected_devices_node, list);
8614 list_del(&node_detected_dev->list);
8615 dev = node_detected_dev->dev;
8616 kfree(node_detected_dev);
8617 rdev = md_import_device(dev,0, 90);
8618 if (IS_ERR(rdev))
8619 continue;
8620
8621 if (test_bit(Faulty, &rdev->flags)) {
8622 MD_BUG();
8623 continue;
8624 }
8625 set_bit(AutoDetected, &rdev->flags);
8626 list_add(&rdev->same_set, &pending_raid_disks);
8627 i_passed++;
8628 }
8629
8630 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8631 i_scanned, i_passed);
8632
8633 autorun_devices(part);
8634 }
8635
8636 #endif /* !MODULE */
8637
8638 static __exit void md_exit(void)
8639 {
8640 struct mddev *mddev;
8641 struct list_head *tmp;
8642
8643 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8644 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8645
8646 unregister_blkdev(MD_MAJOR,"md");
8647 unregister_blkdev(mdp_major, "mdp");
8648 unregister_reboot_notifier(&md_notifier);
8649 unregister_sysctl_table(raid_table_header);
8650 remove_proc_entry("mdstat", NULL);
8651 for_each_mddev(mddev, tmp) {
8652 export_array(mddev);
8653 mddev->hold_active = 0;
8654 }
8655 destroy_workqueue(md_misc_wq);
8656 destroy_workqueue(md_wq);
8657 }
8658
8659 subsys_initcall(md_init);
8660 module_exit(md_exit)
8661
8662 static int get_ro(char *buffer, struct kernel_param *kp)
8663 {
8664 return sprintf(buffer, "%d", start_readonly);
8665 }
8666 static int set_ro(const char *val, struct kernel_param *kp)
8667 {
8668 char *e;
8669 int num = simple_strtoul(val, &e, 10);
8670 if (*val && (*e == '\0' || *e == '\n')) {
8671 start_readonly = num;
8672 return 0;
8673 }
8674 return -EINVAL;
8675 }
8676
8677 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8678 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8679
8680 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8681
8682 EXPORT_SYMBOL(register_md_personality);
8683 EXPORT_SYMBOL(unregister_md_personality);
8684 EXPORT_SYMBOL(md_error);
8685 EXPORT_SYMBOL(md_done_sync);
8686 EXPORT_SYMBOL(md_write_start);
8687 EXPORT_SYMBOL(md_write_end);
8688 EXPORT_SYMBOL(md_register_thread);
8689 EXPORT_SYMBOL(md_unregister_thread);
8690 EXPORT_SYMBOL(md_wakeup_thread);
8691 EXPORT_SYMBOL(md_check_recovery);
8692 MODULE_LICENSE("GPL");
8693 MODULE_DESCRIPTION("MD RAID framework");
8694 MODULE_ALIAS("md");
8695 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
This page took 0.243614 seconds and 5 git commands to generate.