33aa06f12b87a5ba9a7f73ce15a697ac052c3b3a
[deliverable/linux.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/mutex.h>
40 #include <linux/buffer_head.h> /* for invalidate_bdev */
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/module.h>
48 #include <linux/reboot.h>
49 #include <linux/file.h>
50 #include <linux/compat.h>
51 #include <linux/delay.h>
52 #include <linux/raid/md_p.h>
53 #include <linux/raid/md_u.h>
54 #include <linux/slab.h>
55 #include "md.h"
56 #include "bitmap.h"
57
58 #ifndef MODULE
59 static void autostart_arrays(int part);
60 #endif
61
62 /* pers_list is a list of registered personalities protected
63 * by pers_lock.
64 * pers_lock does extra service to protect accesses to
65 * mddev->thread when the mutex cannot be held.
66 */
67 static LIST_HEAD(pers_list);
68 static DEFINE_SPINLOCK(pers_lock);
69
70 static void md_print_devices(void);
71
72 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
73 static struct workqueue_struct *md_wq;
74 static struct workqueue_struct *md_misc_wq;
75
76 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
77
78 /*
79 * Default number of read corrections we'll attempt on an rdev
80 * before ejecting it from the array. We divide the read error
81 * count by 2 for every hour elapsed between read errors.
82 */
83 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
84 /*
85 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
86 * is 1000 KB/sec, so the extra system load does not show up that much.
87 * Increase it if you want to have more _guaranteed_ speed. Note that
88 * the RAID driver will use the maximum available bandwidth if the IO
89 * subsystem is idle. There is also an 'absolute maximum' reconstruction
90 * speed limit - in case reconstruction slows down your system despite
91 * idle IO detection.
92 *
93 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
94 * or /sys/block/mdX/md/sync_speed_{min,max}
95 */
96
97 static int sysctl_speed_limit_min = 1000;
98 static int sysctl_speed_limit_max = 200000;
99 static inline int speed_min(struct mddev *mddev)
100 {
101 return mddev->sync_speed_min ?
102 mddev->sync_speed_min : sysctl_speed_limit_min;
103 }
104
105 static inline int speed_max(struct mddev *mddev)
106 {
107 return mddev->sync_speed_max ?
108 mddev->sync_speed_max : sysctl_speed_limit_max;
109 }
110
111 static struct ctl_table_header *raid_table_header;
112
113 static ctl_table raid_table[] = {
114 {
115 .procname = "speed_limit_min",
116 .data = &sysctl_speed_limit_min,
117 .maxlen = sizeof(int),
118 .mode = S_IRUGO|S_IWUSR,
119 .proc_handler = proc_dointvec,
120 },
121 {
122 .procname = "speed_limit_max",
123 .data = &sysctl_speed_limit_max,
124 .maxlen = sizeof(int),
125 .mode = S_IRUGO|S_IWUSR,
126 .proc_handler = proc_dointvec,
127 },
128 { }
129 };
130
131 static ctl_table raid_dir_table[] = {
132 {
133 .procname = "raid",
134 .maxlen = 0,
135 .mode = S_IRUGO|S_IXUGO,
136 .child = raid_table,
137 },
138 { }
139 };
140
141 static ctl_table raid_root_table[] = {
142 {
143 .procname = "dev",
144 .maxlen = 0,
145 .mode = 0555,
146 .child = raid_dir_table,
147 },
148 { }
149 };
150
151 static const struct block_device_operations md_fops;
152
153 static int start_readonly;
154
155 /* bio_clone_mddev
156 * like bio_clone, but with a local bio set
157 */
158
159 static void mddev_bio_destructor(struct bio *bio)
160 {
161 struct mddev *mddev, **mddevp;
162
163 mddevp = (void*)bio;
164 mddev = mddevp[-1];
165
166 bio_free(bio, mddev->bio_set);
167 }
168
169 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
170 struct mddev *mddev)
171 {
172 struct bio *b;
173 struct mddev **mddevp;
174
175 if (!mddev || !mddev->bio_set)
176 return bio_alloc(gfp_mask, nr_iovecs);
177
178 b = bio_alloc_bioset(gfp_mask, nr_iovecs,
179 mddev->bio_set);
180 if (!b)
181 return NULL;
182 mddevp = (void*)b;
183 mddevp[-1] = mddev;
184 b->bi_destructor = mddev_bio_destructor;
185 return b;
186 }
187 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
188
189 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
190 struct mddev *mddev)
191 {
192 struct bio *b;
193 struct mddev **mddevp;
194
195 if (!mddev || !mddev->bio_set)
196 return bio_clone(bio, gfp_mask);
197
198 b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
199 mddev->bio_set);
200 if (!b)
201 return NULL;
202 mddevp = (void*)b;
203 mddevp[-1] = mddev;
204 b->bi_destructor = mddev_bio_destructor;
205 __bio_clone(b, bio);
206 if (bio_integrity(bio)) {
207 int ret;
208
209 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
210
211 if (ret < 0) {
212 bio_put(b);
213 return NULL;
214 }
215 }
216
217 return b;
218 }
219 EXPORT_SYMBOL_GPL(bio_clone_mddev);
220
221 void md_trim_bio(struct bio *bio, int offset, int size)
222 {
223 /* 'bio' is a cloned bio which we need to trim to match
224 * the given offset and size.
225 * This requires adjusting bi_sector, bi_size, and bi_io_vec
226 */
227 int i;
228 struct bio_vec *bvec;
229 int sofar = 0;
230
231 size <<= 9;
232 if (offset == 0 && size == bio->bi_size)
233 return;
234
235 bio->bi_sector += offset;
236 bio->bi_size = size;
237 offset <<= 9;
238 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
239
240 while (bio->bi_idx < bio->bi_vcnt &&
241 bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
242 /* remove this whole bio_vec */
243 offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
244 bio->bi_idx++;
245 }
246 if (bio->bi_idx < bio->bi_vcnt) {
247 bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
248 bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
249 }
250 /* avoid any complications with bi_idx being non-zero*/
251 if (bio->bi_idx) {
252 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
253 (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
254 bio->bi_vcnt -= bio->bi_idx;
255 bio->bi_idx = 0;
256 }
257 /* Make sure vcnt and last bv are not too big */
258 bio_for_each_segment(bvec, bio, i) {
259 if (sofar + bvec->bv_len > size)
260 bvec->bv_len = size - sofar;
261 if (bvec->bv_len == 0) {
262 bio->bi_vcnt = i;
263 break;
264 }
265 sofar += bvec->bv_len;
266 }
267 }
268 EXPORT_SYMBOL_GPL(md_trim_bio);
269
270 /*
271 * We have a system wide 'event count' that is incremented
272 * on any 'interesting' event, and readers of /proc/mdstat
273 * can use 'poll' or 'select' to find out when the event
274 * count increases.
275 *
276 * Events are:
277 * start array, stop array, error, add device, remove device,
278 * start build, activate spare
279 */
280 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
281 static atomic_t md_event_count;
282 void md_new_event(struct mddev *mddev)
283 {
284 atomic_inc(&md_event_count);
285 wake_up(&md_event_waiters);
286 }
287 EXPORT_SYMBOL_GPL(md_new_event);
288
289 /* Alternate version that can be called from interrupts
290 * when calling sysfs_notify isn't needed.
291 */
292 static void md_new_event_inintr(struct mddev *mddev)
293 {
294 atomic_inc(&md_event_count);
295 wake_up(&md_event_waiters);
296 }
297
298 /*
299 * Enables to iterate over all existing md arrays
300 * all_mddevs_lock protects this list.
301 */
302 static LIST_HEAD(all_mddevs);
303 static DEFINE_SPINLOCK(all_mddevs_lock);
304
305
306 /*
307 * iterates through all used mddevs in the system.
308 * We take care to grab the all_mddevs_lock whenever navigating
309 * the list, and to always hold a refcount when unlocked.
310 * Any code which breaks out of this loop while own
311 * a reference to the current mddev and must mddev_put it.
312 */
313 #define for_each_mddev(_mddev,_tmp) \
314 \
315 for (({ spin_lock(&all_mddevs_lock); \
316 _tmp = all_mddevs.next; \
317 _mddev = NULL;}); \
318 ({ if (_tmp != &all_mddevs) \
319 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
320 spin_unlock(&all_mddevs_lock); \
321 if (_mddev) mddev_put(_mddev); \
322 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
323 _tmp != &all_mddevs;}); \
324 ({ spin_lock(&all_mddevs_lock); \
325 _tmp = _tmp->next;}) \
326 )
327
328
329 /* Rather than calling directly into the personality make_request function,
330 * IO requests come here first so that we can check if the device is
331 * being suspended pending a reconfiguration.
332 * We hold a refcount over the call to ->make_request. By the time that
333 * call has finished, the bio has been linked into some internal structure
334 * and so is visible to ->quiesce(), so we don't need the refcount any more.
335 */
336 static void md_make_request(struct request_queue *q, struct bio *bio)
337 {
338 const int rw = bio_data_dir(bio);
339 struct mddev *mddev = q->queuedata;
340 int cpu;
341 unsigned int sectors;
342
343 if (mddev == NULL || mddev->pers == NULL
344 || !mddev->ready) {
345 bio_io_error(bio);
346 return;
347 }
348 smp_rmb(); /* Ensure implications of 'active' are visible */
349 rcu_read_lock();
350 if (mddev->suspended) {
351 DEFINE_WAIT(__wait);
352 for (;;) {
353 prepare_to_wait(&mddev->sb_wait, &__wait,
354 TASK_UNINTERRUPTIBLE);
355 if (!mddev->suspended)
356 break;
357 rcu_read_unlock();
358 schedule();
359 rcu_read_lock();
360 }
361 finish_wait(&mddev->sb_wait, &__wait);
362 }
363 atomic_inc(&mddev->active_io);
364 rcu_read_unlock();
365
366 /*
367 * save the sectors now since our bio can
368 * go away inside make_request
369 */
370 sectors = bio_sectors(bio);
371 mddev->pers->make_request(mddev, bio);
372
373 cpu = part_stat_lock();
374 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
375 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
376 part_stat_unlock();
377
378 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
379 wake_up(&mddev->sb_wait);
380 }
381
382 /* mddev_suspend makes sure no new requests are submitted
383 * to the device, and that any requests that have been submitted
384 * are completely handled.
385 * Once ->stop is called and completes, the module will be completely
386 * unused.
387 */
388 void mddev_suspend(struct mddev *mddev)
389 {
390 BUG_ON(mddev->suspended);
391 mddev->suspended = 1;
392 synchronize_rcu();
393 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
394 mddev->pers->quiesce(mddev, 1);
395 }
396 EXPORT_SYMBOL_GPL(mddev_suspend);
397
398 void mddev_resume(struct mddev *mddev)
399 {
400 mddev->suspended = 0;
401 wake_up(&mddev->sb_wait);
402 mddev->pers->quiesce(mddev, 0);
403
404 md_wakeup_thread(mddev->thread);
405 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
406 }
407 EXPORT_SYMBOL_GPL(mddev_resume);
408
409 int mddev_congested(struct mddev *mddev, int bits)
410 {
411 return mddev->suspended;
412 }
413 EXPORT_SYMBOL(mddev_congested);
414
415 /*
416 * Generic flush handling for md
417 */
418
419 static void md_end_flush(struct bio *bio, int err)
420 {
421 struct md_rdev *rdev = bio->bi_private;
422 struct mddev *mddev = rdev->mddev;
423
424 rdev_dec_pending(rdev, mddev);
425
426 if (atomic_dec_and_test(&mddev->flush_pending)) {
427 /* The pre-request flush has finished */
428 queue_work(md_wq, &mddev->flush_work);
429 }
430 bio_put(bio);
431 }
432
433 static void md_submit_flush_data(struct work_struct *ws);
434
435 static void submit_flushes(struct work_struct *ws)
436 {
437 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
438 struct md_rdev *rdev;
439
440 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
441 atomic_set(&mddev->flush_pending, 1);
442 rcu_read_lock();
443 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
444 if (rdev->raid_disk >= 0 &&
445 !test_bit(Faulty, &rdev->flags)) {
446 /* Take two references, one is dropped
447 * when request finishes, one after
448 * we reclaim rcu_read_lock
449 */
450 struct bio *bi;
451 atomic_inc(&rdev->nr_pending);
452 atomic_inc(&rdev->nr_pending);
453 rcu_read_unlock();
454 bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev);
455 bi->bi_end_io = md_end_flush;
456 bi->bi_private = rdev;
457 bi->bi_bdev = rdev->bdev;
458 atomic_inc(&mddev->flush_pending);
459 submit_bio(WRITE_FLUSH, bi);
460 rcu_read_lock();
461 rdev_dec_pending(rdev, mddev);
462 }
463 rcu_read_unlock();
464 if (atomic_dec_and_test(&mddev->flush_pending))
465 queue_work(md_wq, &mddev->flush_work);
466 }
467
468 static void md_submit_flush_data(struct work_struct *ws)
469 {
470 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
471 struct bio *bio = mddev->flush_bio;
472
473 if (bio->bi_size == 0)
474 /* an empty barrier - all done */
475 bio_endio(bio, 0);
476 else {
477 bio->bi_rw &= ~REQ_FLUSH;
478 mddev->pers->make_request(mddev, bio);
479 }
480
481 mddev->flush_bio = NULL;
482 wake_up(&mddev->sb_wait);
483 }
484
485 void md_flush_request(struct mddev *mddev, struct bio *bio)
486 {
487 spin_lock_irq(&mddev->write_lock);
488 wait_event_lock_irq(mddev->sb_wait,
489 !mddev->flush_bio,
490 mddev->write_lock, /*nothing*/);
491 mddev->flush_bio = bio;
492 spin_unlock_irq(&mddev->write_lock);
493
494 INIT_WORK(&mddev->flush_work, submit_flushes);
495 queue_work(md_wq, &mddev->flush_work);
496 }
497 EXPORT_SYMBOL(md_flush_request);
498
499 /* Support for plugging.
500 * This mirrors the plugging support in request_queue, but does not
501 * require having a whole queue or request structures.
502 * We allocate an md_plug_cb for each md device and each thread it gets
503 * plugged on. This links tot the private plug_handle structure in the
504 * personality data where we keep a count of the number of outstanding
505 * plugs so other code can see if a plug is active.
506 */
507 struct md_plug_cb {
508 struct blk_plug_cb cb;
509 struct mddev *mddev;
510 };
511
512 static void plugger_unplug(struct blk_plug_cb *cb)
513 {
514 struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
515 if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
516 md_wakeup_thread(mdcb->mddev->thread);
517 kfree(mdcb);
518 }
519
520 /* Check that an unplug wakeup will come shortly.
521 * If not, wakeup the md thread immediately
522 */
523 int mddev_check_plugged(struct mddev *mddev)
524 {
525 struct blk_plug *plug = current->plug;
526 struct md_plug_cb *mdcb;
527
528 if (!plug)
529 return 0;
530
531 list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
532 if (mdcb->cb.callback == plugger_unplug &&
533 mdcb->mddev == mddev) {
534 /* Already on the list, move to top */
535 if (mdcb != list_first_entry(&plug->cb_list,
536 struct md_plug_cb,
537 cb.list))
538 list_move(&mdcb->cb.list, &plug->cb_list);
539 return 1;
540 }
541 }
542 /* Not currently on the callback list */
543 mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
544 if (!mdcb)
545 return 0;
546
547 mdcb->mddev = mddev;
548 mdcb->cb.callback = plugger_unplug;
549 atomic_inc(&mddev->plug_cnt);
550 list_add(&mdcb->cb.list, &plug->cb_list);
551 return 1;
552 }
553 EXPORT_SYMBOL_GPL(mddev_check_plugged);
554
555 static inline struct mddev *mddev_get(struct mddev *mddev)
556 {
557 atomic_inc(&mddev->active);
558 return mddev;
559 }
560
561 static void mddev_delayed_delete(struct work_struct *ws);
562
563 static void mddev_put(struct mddev *mddev)
564 {
565 struct bio_set *bs = NULL;
566
567 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
568 return;
569 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
570 mddev->ctime == 0 && !mddev->hold_active) {
571 /* Array is not configured at all, and not held active,
572 * so destroy it */
573 list_del_init(&mddev->all_mddevs);
574 bs = mddev->bio_set;
575 mddev->bio_set = NULL;
576 if (mddev->gendisk) {
577 /* We did a probe so need to clean up. Call
578 * queue_work inside the spinlock so that
579 * flush_workqueue() after mddev_find will
580 * succeed in waiting for the work to be done.
581 */
582 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
583 queue_work(md_misc_wq, &mddev->del_work);
584 } else
585 kfree(mddev);
586 }
587 spin_unlock(&all_mddevs_lock);
588 if (bs)
589 bioset_free(bs);
590 }
591
592 void mddev_init(struct mddev *mddev)
593 {
594 mutex_init(&mddev->open_mutex);
595 mutex_init(&mddev->reconfig_mutex);
596 mutex_init(&mddev->bitmap_info.mutex);
597 INIT_LIST_HEAD(&mddev->disks);
598 INIT_LIST_HEAD(&mddev->all_mddevs);
599 init_timer(&mddev->safemode_timer);
600 atomic_set(&mddev->active, 1);
601 atomic_set(&mddev->openers, 0);
602 atomic_set(&mddev->active_io, 0);
603 atomic_set(&mddev->plug_cnt, 0);
604 spin_lock_init(&mddev->write_lock);
605 atomic_set(&mddev->flush_pending, 0);
606 init_waitqueue_head(&mddev->sb_wait);
607 init_waitqueue_head(&mddev->recovery_wait);
608 mddev->reshape_position = MaxSector;
609 mddev->resync_min = 0;
610 mddev->resync_max = MaxSector;
611 mddev->level = LEVEL_NONE;
612 }
613 EXPORT_SYMBOL_GPL(mddev_init);
614
615 static struct mddev * mddev_find(dev_t unit)
616 {
617 struct mddev *mddev, *new = NULL;
618
619 if (unit && MAJOR(unit) != MD_MAJOR)
620 unit &= ~((1<<MdpMinorShift)-1);
621
622 retry:
623 spin_lock(&all_mddevs_lock);
624
625 if (unit) {
626 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
627 if (mddev->unit == unit) {
628 mddev_get(mddev);
629 spin_unlock(&all_mddevs_lock);
630 kfree(new);
631 return mddev;
632 }
633
634 if (new) {
635 list_add(&new->all_mddevs, &all_mddevs);
636 spin_unlock(&all_mddevs_lock);
637 new->hold_active = UNTIL_IOCTL;
638 return new;
639 }
640 } else if (new) {
641 /* find an unused unit number */
642 static int next_minor = 512;
643 int start = next_minor;
644 int is_free = 0;
645 int dev = 0;
646 while (!is_free) {
647 dev = MKDEV(MD_MAJOR, next_minor);
648 next_minor++;
649 if (next_minor > MINORMASK)
650 next_minor = 0;
651 if (next_minor == start) {
652 /* Oh dear, all in use. */
653 spin_unlock(&all_mddevs_lock);
654 kfree(new);
655 return NULL;
656 }
657
658 is_free = 1;
659 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
660 if (mddev->unit == dev) {
661 is_free = 0;
662 break;
663 }
664 }
665 new->unit = dev;
666 new->md_minor = MINOR(dev);
667 new->hold_active = UNTIL_STOP;
668 list_add(&new->all_mddevs, &all_mddevs);
669 spin_unlock(&all_mddevs_lock);
670 return new;
671 }
672 spin_unlock(&all_mddevs_lock);
673
674 new = kzalloc(sizeof(*new), GFP_KERNEL);
675 if (!new)
676 return NULL;
677
678 new->unit = unit;
679 if (MAJOR(unit) == MD_MAJOR)
680 new->md_minor = MINOR(unit);
681 else
682 new->md_minor = MINOR(unit) >> MdpMinorShift;
683
684 mddev_init(new);
685
686 goto retry;
687 }
688
689 static inline int mddev_lock(struct mddev * mddev)
690 {
691 return mutex_lock_interruptible(&mddev->reconfig_mutex);
692 }
693
694 static inline int mddev_is_locked(struct mddev *mddev)
695 {
696 return mutex_is_locked(&mddev->reconfig_mutex);
697 }
698
699 static inline int mddev_trylock(struct mddev * mddev)
700 {
701 return mutex_trylock(&mddev->reconfig_mutex);
702 }
703
704 static struct attribute_group md_redundancy_group;
705
706 static void mddev_unlock(struct mddev * mddev)
707 {
708 if (mddev->to_remove) {
709 /* These cannot be removed under reconfig_mutex as
710 * an access to the files will try to take reconfig_mutex
711 * while holding the file unremovable, which leads to
712 * a deadlock.
713 * So hold set sysfs_active while the remove in happeing,
714 * and anything else which might set ->to_remove or my
715 * otherwise change the sysfs namespace will fail with
716 * -EBUSY if sysfs_active is still set.
717 * We set sysfs_active under reconfig_mutex and elsewhere
718 * test it under the same mutex to ensure its correct value
719 * is seen.
720 */
721 struct attribute_group *to_remove = mddev->to_remove;
722 mddev->to_remove = NULL;
723 mddev->sysfs_active = 1;
724 mutex_unlock(&mddev->reconfig_mutex);
725
726 if (mddev->kobj.sd) {
727 if (to_remove != &md_redundancy_group)
728 sysfs_remove_group(&mddev->kobj, to_remove);
729 if (mddev->pers == NULL ||
730 mddev->pers->sync_request == NULL) {
731 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
732 if (mddev->sysfs_action)
733 sysfs_put(mddev->sysfs_action);
734 mddev->sysfs_action = NULL;
735 }
736 }
737 mddev->sysfs_active = 0;
738 } else
739 mutex_unlock(&mddev->reconfig_mutex);
740
741 /* As we've dropped the mutex we need a spinlock to
742 * make sure the thread doesn't disappear
743 */
744 spin_lock(&pers_lock);
745 md_wakeup_thread(mddev->thread);
746 spin_unlock(&pers_lock);
747 }
748
749 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
750 {
751 struct md_rdev *rdev;
752
753 list_for_each_entry(rdev, &mddev->disks, same_set)
754 if (rdev->desc_nr == nr)
755 return rdev;
756
757 return NULL;
758 }
759
760 static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
761 {
762 struct md_rdev *rdev;
763
764 list_for_each_entry(rdev, &mddev->disks, same_set)
765 if (rdev->bdev->bd_dev == dev)
766 return rdev;
767
768 return NULL;
769 }
770
771 static struct md_personality *find_pers(int level, char *clevel)
772 {
773 struct md_personality *pers;
774 list_for_each_entry(pers, &pers_list, list) {
775 if (level != LEVEL_NONE && pers->level == level)
776 return pers;
777 if (strcmp(pers->name, clevel)==0)
778 return pers;
779 }
780 return NULL;
781 }
782
783 /* return the offset of the super block in 512byte sectors */
784 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
785 {
786 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
787 return MD_NEW_SIZE_SECTORS(num_sectors);
788 }
789
790 static int alloc_disk_sb(struct md_rdev * rdev)
791 {
792 if (rdev->sb_page)
793 MD_BUG();
794
795 rdev->sb_page = alloc_page(GFP_KERNEL);
796 if (!rdev->sb_page) {
797 printk(KERN_ALERT "md: out of memory.\n");
798 return -ENOMEM;
799 }
800
801 return 0;
802 }
803
804 static void free_disk_sb(struct md_rdev * rdev)
805 {
806 if (rdev->sb_page) {
807 put_page(rdev->sb_page);
808 rdev->sb_loaded = 0;
809 rdev->sb_page = NULL;
810 rdev->sb_start = 0;
811 rdev->sectors = 0;
812 }
813 if (rdev->bb_page) {
814 put_page(rdev->bb_page);
815 rdev->bb_page = NULL;
816 }
817 }
818
819
820 static void super_written(struct bio *bio, int error)
821 {
822 struct md_rdev *rdev = bio->bi_private;
823 struct mddev *mddev = rdev->mddev;
824
825 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
826 printk("md: super_written gets error=%d, uptodate=%d\n",
827 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
828 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
829 md_error(mddev, rdev);
830 }
831
832 if (atomic_dec_and_test(&mddev->pending_writes))
833 wake_up(&mddev->sb_wait);
834 bio_put(bio);
835 }
836
837 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
838 sector_t sector, int size, struct page *page)
839 {
840 /* write first size bytes of page to sector of rdev
841 * Increment mddev->pending_writes before returning
842 * and decrement it on completion, waking up sb_wait
843 * if zero is reached.
844 * If an error occurred, call md_error
845 */
846 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
847
848 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
849 bio->bi_sector = sector;
850 bio_add_page(bio, page, size, 0);
851 bio->bi_private = rdev;
852 bio->bi_end_io = super_written;
853
854 atomic_inc(&mddev->pending_writes);
855 submit_bio(WRITE_FLUSH_FUA, bio);
856 }
857
858 void md_super_wait(struct mddev *mddev)
859 {
860 /* wait for all superblock writes that were scheduled to complete */
861 DEFINE_WAIT(wq);
862 for(;;) {
863 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
864 if (atomic_read(&mddev->pending_writes)==0)
865 break;
866 schedule();
867 }
868 finish_wait(&mddev->sb_wait, &wq);
869 }
870
871 static void bi_complete(struct bio *bio, int error)
872 {
873 complete((struct completion*)bio->bi_private);
874 }
875
876 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
877 struct page *page, int rw, bool metadata_op)
878 {
879 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
880 struct completion event;
881 int ret;
882
883 rw |= REQ_SYNC;
884
885 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
886 rdev->meta_bdev : rdev->bdev;
887 if (metadata_op)
888 bio->bi_sector = sector + rdev->sb_start;
889 else
890 bio->bi_sector = sector + rdev->data_offset;
891 bio_add_page(bio, page, size, 0);
892 init_completion(&event);
893 bio->bi_private = &event;
894 bio->bi_end_io = bi_complete;
895 submit_bio(rw, bio);
896 wait_for_completion(&event);
897
898 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
899 bio_put(bio);
900 return ret;
901 }
902 EXPORT_SYMBOL_GPL(sync_page_io);
903
904 static int read_disk_sb(struct md_rdev * rdev, int size)
905 {
906 char b[BDEVNAME_SIZE];
907 if (!rdev->sb_page) {
908 MD_BUG();
909 return -EINVAL;
910 }
911 if (rdev->sb_loaded)
912 return 0;
913
914
915 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
916 goto fail;
917 rdev->sb_loaded = 1;
918 return 0;
919
920 fail:
921 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
922 bdevname(rdev->bdev,b));
923 return -EINVAL;
924 }
925
926 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
927 {
928 return sb1->set_uuid0 == sb2->set_uuid0 &&
929 sb1->set_uuid1 == sb2->set_uuid1 &&
930 sb1->set_uuid2 == sb2->set_uuid2 &&
931 sb1->set_uuid3 == sb2->set_uuid3;
932 }
933
934 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
935 {
936 int ret;
937 mdp_super_t *tmp1, *tmp2;
938
939 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
940 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
941
942 if (!tmp1 || !tmp2) {
943 ret = 0;
944 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
945 goto abort;
946 }
947
948 *tmp1 = *sb1;
949 *tmp2 = *sb2;
950
951 /*
952 * nr_disks is not constant
953 */
954 tmp1->nr_disks = 0;
955 tmp2->nr_disks = 0;
956
957 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
958 abort:
959 kfree(tmp1);
960 kfree(tmp2);
961 return ret;
962 }
963
964
965 static u32 md_csum_fold(u32 csum)
966 {
967 csum = (csum & 0xffff) + (csum >> 16);
968 return (csum & 0xffff) + (csum >> 16);
969 }
970
971 static unsigned int calc_sb_csum(mdp_super_t * sb)
972 {
973 u64 newcsum = 0;
974 u32 *sb32 = (u32*)sb;
975 int i;
976 unsigned int disk_csum, csum;
977
978 disk_csum = sb->sb_csum;
979 sb->sb_csum = 0;
980
981 for (i = 0; i < MD_SB_BYTES/4 ; i++)
982 newcsum += sb32[i];
983 csum = (newcsum & 0xffffffff) + (newcsum>>32);
984
985
986 #ifdef CONFIG_ALPHA
987 /* This used to use csum_partial, which was wrong for several
988 * reasons including that different results are returned on
989 * different architectures. It isn't critical that we get exactly
990 * the same return value as before (we always csum_fold before
991 * testing, and that removes any differences). However as we
992 * know that csum_partial always returned a 16bit value on
993 * alphas, do a fold to maximise conformity to previous behaviour.
994 */
995 sb->sb_csum = md_csum_fold(disk_csum);
996 #else
997 sb->sb_csum = disk_csum;
998 #endif
999 return csum;
1000 }
1001
1002
1003 /*
1004 * Handle superblock details.
1005 * We want to be able to handle multiple superblock formats
1006 * so we have a common interface to them all, and an array of
1007 * different handlers.
1008 * We rely on user-space to write the initial superblock, and support
1009 * reading and updating of superblocks.
1010 * Interface methods are:
1011 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1012 * loads and validates a superblock on dev.
1013 * if refdev != NULL, compare superblocks on both devices
1014 * Return:
1015 * 0 - dev has a superblock that is compatible with refdev
1016 * 1 - dev has a superblock that is compatible and newer than refdev
1017 * so dev should be used as the refdev in future
1018 * -EINVAL superblock incompatible or invalid
1019 * -othererror e.g. -EIO
1020 *
1021 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
1022 * Verify that dev is acceptable into mddev.
1023 * The first time, mddev->raid_disks will be 0, and data from
1024 * dev should be merged in. Subsequent calls check that dev
1025 * is new enough. Return 0 or -EINVAL
1026 *
1027 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
1028 * Update the superblock for rdev with data in mddev
1029 * This does not write to disc.
1030 *
1031 */
1032
1033 struct super_type {
1034 char *name;
1035 struct module *owner;
1036 int (*load_super)(struct md_rdev *rdev, struct md_rdev *refdev,
1037 int minor_version);
1038 int (*validate_super)(struct mddev *mddev, struct md_rdev *rdev);
1039 void (*sync_super)(struct mddev *mddev, struct md_rdev *rdev);
1040 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
1041 sector_t num_sectors);
1042 };
1043
1044 /*
1045 * Check that the given mddev has no bitmap.
1046 *
1047 * This function is called from the run method of all personalities that do not
1048 * support bitmaps. It prints an error message and returns non-zero if mddev
1049 * has a bitmap. Otherwise, it returns 0.
1050 *
1051 */
1052 int md_check_no_bitmap(struct mddev *mddev)
1053 {
1054 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1055 return 0;
1056 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1057 mdname(mddev), mddev->pers->name);
1058 return 1;
1059 }
1060 EXPORT_SYMBOL(md_check_no_bitmap);
1061
1062 /*
1063 * load_super for 0.90.0
1064 */
1065 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1066 {
1067 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1068 mdp_super_t *sb;
1069 int ret;
1070
1071 /*
1072 * Calculate the position of the superblock (512byte sectors),
1073 * it's at the end of the disk.
1074 *
1075 * It also happens to be a multiple of 4Kb.
1076 */
1077 rdev->sb_start = calc_dev_sboffset(rdev);
1078
1079 ret = read_disk_sb(rdev, MD_SB_BYTES);
1080 if (ret) return ret;
1081
1082 ret = -EINVAL;
1083
1084 bdevname(rdev->bdev, b);
1085 sb = page_address(rdev->sb_page);
1086
1087 if (sb->md_magic != MD_SB_MAGIC) {
1088 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1089 b);
1090 goto abort;
1091 }
1092
1093 if (sb->major_version != 0 ||
1094 sb->minor_version < 90 ||
1095 sb->minor_version > 91) {
1096 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1097 sb->major_version, sb->minor_version,
1098 b);
1099 goto abort;
1100 }
1101
1102 if (sb->raid_disks <= 0)
1103 goto abort;
1104
1105 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1106 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1107 b);
1108 goto abort;
1109 }
1110
1111 rdev->preferred_minor = sb->md_minor;
1112 rdev->data_offset = 0;
1113 rdev->sb_size = MD_SB_BYTES;
1114 rdev->badblocks.shift = -1;
1115
1116 if (sb->level == LEVEL_MULTIPATH)
1117 rdev->desc_nr = -1;
1118 else
1119 rdev->desc_nr = sb->this_disk.number;
1120
1121 if (!refdev) {
1122 ret = 1;
1123 } else {
1124 __u64 ev1, ev2;
1125 mdp_super_t *refsb = page_address(refdev->sb_page);
1126 if (!uuid_equal(refsb, sb)) {
1127 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1128 b, bdevname(refdev->bdev,b2));
1129 goto abort;
1130 }
1131 if (!sb_equal(refsb, sb)) {
1132 printk(KERN_WARNING "md: %s has same UUID"
1133 " but different superblock to %s\n",
1134 b, bdevname(refdev->bdev, b2));
1135 goto abort;
1136 }
1137 ev1 = md_event(sb);
1138 ev2 = md_event(refsb);
1139 if (ev1 > ev2)
1140 ret = 1;
1141 else
1142 ret = 0;
1143 }
1144 rdev->sectors = rdev->sb_start;
1145 /* Limit to 4TB as metadata cannot record more than that */
1146 if (rdev->sectors >= (2ULL << 32))
1147 rdev->sectors = (2ULL << 32) - 2;
1148
1149 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1150 /* "this cannot possibly happen" ... */
1151 ret = -EINVAL;
1152
1153 abort:
1154 return ret;
1155 }
1156
1157 /*
1158 * validate_super for 0.90.0
1159 */
1160 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1161 {
1162 mdp_disk_t *desc;
1163 mdp_super_t *sb = page_address(rdev->sb_page);
1164 __u64 ev1 = md_event(sb);
1165
1166 rdev->raid_disk = -1;
1167 clear_bit(Faulty, &rdev->flags);
1168 clear_bit(In_sync, &rdev->flags);
1169 clear_bit(WriteMostly, &rdev->flags);
1170
1171 if (mddev->raid_disks == 0) {
1172 mddev->major_version = 0;
1173 mddev->minor_version = sb->minor_version;
1174 mddev->patch_version = sb->patch_version;
1175 mddev->external = 0;
1176 mddev->chunk_sectors = sb->chunk_size >> 9;
1177 mddev->ctime = sb->ctime;
1178 mddev->utime = sb->utime;
1179 mddev->level = sb->level;
1180 mddev->clevel[0] = 0;
1181 mddev->layout = sb->layout;
1182 mddev->raid_disks = sb->raid_disks;
1183 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1184 mddev->events = ev1;
1185 mddev->bitmap_info.offset = 0;
1186 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1187
1188 if (mddev->minor_version >= 91) {
1189 mddev->reshape_position = sb->reshape_position;
1190 mddev->delta_disks = sb->delta_disks;
1191 mddev->new_level = sb->new_level;
1192 mddev->new_layout = sb->new_layout;
1193 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1194 } else {
1195 mddev->reshape_position = MaxSector;
1196 mddev->delta_disks = 0;
1197 mddev->new_level = mddev->level;
1198 mddev->new_layout = mddev->layout;
1199 mddev->new_chunk_sectors = mddev->chunk_sectors;
1200 }
1201
1202 if (sb->state & (1<<MD_SB_CLEAN))
1203 mddev->recovery_cp = MaxSector;
1204 else {
1205 if (sb->events_hi == sb->cp_events_hi &&
1206 sb->events_lo == sb->cp_events_lo) {
1207 mddev->recovery_cp = sb->recovery_cp;
1208 } else
1209 mddev->recovery_cp = 0;
1210 }
1211
1212 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1213 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1214 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1215 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1216
1217 mddev->max_disks = MD_SB_DISKS;
1218
1219 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1220 mddev->bitmap_info.file == NULL)
1221 mddev->bitmap_info.offset =
1222 mddev->bitmap_info.default_offset;
1223
1224 } else if (mddev->pers == NULL) {
1225 /* Insist on good event counter while assembling, except
1226 * for spares (which don't need an event count) */
1227 ++ev1;
1228 if (sb->disks[rdev->desc_nr].state & (
1229 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1230 if (ev1 < mddev->events)
1231 return -EINVAL;
1232 } else if (mddev->bitmap) {
1233 /* if adding to array with a bitmap, then we can accept an
1234 * older device ... but not too old.
1235 */
1236 if (ev1 < mddev->bitmap->events_cleared)
1237 return 0;
1238 } else {
1239 if (ev1 < mddev->events)
1240 /* just a hot-add of a new device, leave raid_disk at -1 */
1241 return 0;
1242 }
1243
1244 if (mddev->level != LEVEL_MULTIPATH) {
1245 desc = sb->disks + rdev->desc_nr;
1246
1247 if (desc->state & (1<<MD_DISK_FAULTY))
1248 set_bit(Faulty, &rdev->flags);
1249 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1250 desc->raid_disk < mddev->raid_disks */) {
1251 set_bit(In_sync, &rdev->flags);
1252 rdev->raid_disk = desc->raid_disk;
1253 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1254 /* active but not in sync implies recovery up to
1255 * reshape position. We don't know exactly where
1256 * that is, so set to zero for now */
1257 if (mddev->minor_version >= 91) {
1258 rdev->recovery_offset = 0;
1259 rdev->raid_disk = desc->raid_disk;
1260 }
1261 }
1262 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1263 set_bit(WriteMostly, &rdev->flags);
1264 } else /* MULTIPATH are always insync */
1265 set_bit(In_sync, &rdev->flags);
1266 return 0;
1267 }
1268
1269 /*
1270 * sync_super for 0.90.0
1271 */
1272 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1273 {
1274 mdp_super_t *sb;
1275 struct md_rdev *rdev2;
1276 int next_spare = mddev->raid_disks;
1277
1278
1279 /* make rdev->sb match mddev data..
1280 *
1281 * 1/ zero out disks
1282 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1283 * 3/ any empty disks < next_spare become removed
1284 *
1285 * disks[0] gets initialised to REMOVED because
1286 * we cannot be sure from other fields if it has
1287 * been initialised or not.
1288 */
1289 int i;
1290 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1291
1292 rdev->sb_size = MD_SB_BYTES;
1293
1294 sb = page_address(rdev->sb_page);
1295
1296 memset(sb, 0, sizeof(*sb));
1297
1298 sb->md_magic = MD_SB_MAGIC;
1299 sb->major_version = mddev->major_version;
1300 sb->patch_version = mddev->patch_version;
1301 sb->gvalid_words = 0; /* ignored */
1302 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1303 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1304 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1305 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1306
1307 sb->ctime = mddev->ctime;
1308 sb->level = mddev->level;
1309 sb->size = mddev->dev_sectors / 2;
1310 sb->raid_disks = mddev->raid_disks;
1311 sb->md_minor = mddev->md_minor;
1312 sb->not_persistent = 0;
1313 sb->utime = mddev->utime;
1314 sb->state = 0;
1315 sb->events_hi = (mddev->events>>32);
1316 sb->events_lo = (u32)mddev->events;
1317
1318 if (mddev->reshape_position == MaxSector)
1319 sb->minor_version = 90;
1320 else {
1321 sb->minor_version = 91;
1322 sb->reshape_position = mddev->reshape_position;
1323 sb->new_level = mddev->new_level;
1324 sb->delta_disks = mddev->delta_disks;
1325 sb->new_layout = mddev->new_layout;
1326 sb->new_chunk = mddev->new_chunk_sectors << 9;
1327 }
1328 mddev->minor_version = sb->minor_version;
1329 if (mddev->in_sync)
1330 {
1331 sb->recovery_cp = mddev->recovery_cp;
1332 sb->cp_events_hi = (mddev->events>>32);
1333 sb->cp_events_lo = (u32)mddev->events;
1334 if (mddev->recovery_cp == MaxSector)
1335 sb->state = (1<< MD_SB_CLEAN);
1336 } else
1337 sb->recovery_cp = 0;
1338
1339 sb->layout = mddev->layout;
1340 sb->chunk_size = mddev->chunk_sectors << 9;
1341
1342 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1343 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1344
1345 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1346 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1347 mdp_disk_t *d;
1348 int desc_nr;
1349 int is_active = test_bit(In_sync, &rdev2->flags);
1350
1351 if (rdev2->raid_disk >= 0 &&
1352 sb->minor_version >= 91)
1353 /* we have nowhere to store the recovery_offset,
1354 * but if it is not below the reshape_position,
1355 * we can piggy-back on that.
1356 */
1357 is_active = 1;
1358 if (rdev2->raid_disk < 0 ||
1359 test_bit(Faulty, &rdev2->flags))
1360 is_active = 0;
1361 if (is_active)
1362 desc_nr = rdev2->raid_disk;
1363 else
1364 desc_nr = next_spare++;
1365 rdev2->desc_nr = desc_nr;
1366 d = &sb->disks[rdev2->desc_nr];
1367 nr_disks++;
1368 d->number = rdev2->desc_nr;
1369 d->major = MAJOR(rdev2->bdev->bd_dev);
1370 d->minor = MINOR(rdev2->bdev->bd_dev);
1371 if (is_active)
1372 d->raid_disk = rdev2->raid_disk;
1373 else
1374 d->raid_disk = rdev2->desc_nr; /* compatibility */
1375 if (test_bit(Faulty, &rdev2->flags))
1376 d->state = (1<<MD_DISK_FAULTY);
1377 else if (is_active) {
1378 d->state = (1<<MD_DISK_ACTIVE);
1379 if (test_bit(In_sync, &rdev2->flags))
1380 d->state |= (1<<MD_DISK_SYNC);
1381 active++;
1382 working++;
1383 } else {
1384 d->state = 0;
1385 spare++;
1386 working++;
1387 }
1388 if (test_bit(WriteMostly, &rdev2->flags))
1389 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1390 }
1391 /* now set the "removed" and "faulty" bits on any missing devices */
1392 for (i=0 ; i < mddev->raid_disks ; i++) {
1393 mdp_disk_t *d = &sb->disks[i];
1394 if (d->state == 0 && d->number == 0) {
1395 d->number = i;
1396 d->raid_disk = i;
1397 d->state = (1<<MD_DISK_REMOVED);
1398 d->state |= (1<<MD_DISK_FAULTY);
1399 failed++;
1400 }
1401 }
1402 sb->nr_disks = nr_disks;
1403 sb->active_disks = active;
1404 sb->working_disks = working;
1405 sb->failed_disks = failed;
1406 sb->spare_disks = spare;
1407
1408 sb->this_disk = sb->disks[rdev->desc_nr];
1409 sb->sb_csum = calc_sb_csum(sb);
1410 }
1411
1412 /*
1413 * rdev_size_change for 0.90.0
1414 */
1415 static unsigned long long
1416 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1417 {
1418 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1419 return 0; /* component must fit device */
1420 if (rdev->mddev->bitmap_info.offset)
1421 return 0; /* can't move bitmap */
1422 rdev->sb_start = calc_dev_sboffset(rdev);
1423 if (!num_sectors || num_sectors > rdev->sb_start)
1424 num_sectors = rdev->sb_start;
1425 /* Limit to 4TB as metadata cannot record more than that.
1426 * 4TB == 2^32 KB, or 2*2^32 sectors.
1427 */
1428 if (num_sectors >= (2ULL << 32))
1429 num_sectors = (2ULL << 32) - 2;
1430 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1431 rdev->sb_page);
1432 md_super_wait(rdev->mddev);
1433 return num_sectors;
1434 }
1435
1436
1437 /*
1438 * version 1 superblock
1439 */
1440
1441 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1442 {
1443 __le32 disk_csum;
1444 u32 csum;
1445 unsigned long long newcsum;
1446 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1447 __le32 *isuper = (__le32*)sb;
1448 int i;
1449
1450 disk_csum = sb->sb_csum;
1451 sb->sb_csum = 0;
1452 newcsum = 0;
1453 for (i=0; size>=4; size -= 4 )
1454 newcsum += le32_to_cpu(*isuper++);
1455
1456 if (size == 2)
1457 newcsum += le16_to_cpu(*(__le16*) isuper);
1458
1459 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1460 sb->sb_csum = disk_csum;
1461 return cpu_to_le32(csum);
1462 }
1463
1464 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1465 int acknowledged);
1466 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1467 {
1468 struct mdp_superblock_1 *sb;
1469 int ret;
1470 sector_t sb_start;
1471 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1472 int bmask;
1473
1474 /*
1475 * Calculate the position of the superblock in 512byte sectors.
1476 * It is always aligned to a 4K boundary and
1477 * depeding on minor_version, it can be:
1478 * 0: At least 8K, but less than 12K, from end of device
1479 * 1: At start of device
1480 * 2: 4K from start of device.
1481 */
1482 switch(minor_version) {
1483 case 0:
1484 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1485 sb_start -= 8*2;
1486 sb_start &= ~(sector_t)(4*2-1);
1487 break;
1488 case 1:
1489 sb_start = 0;
1490 break;
1491 case 2:
1492 sb_start = 8;
1493 break;
1494 default:
1495 return -EINVAL;
1496 }
1497 rdev->sb_start = sb_start;
1498
1499 /* superblock is rarely larger than 1K, but it can be larger,
1500 * and it is safe to read 4k, so we do that
1501 */
1502 ret = read_disk_sb(rdev, 4096);
1503 if (ret) return ret;
1504
1505
1506 sb = page_address(rdev->sb_page);
1507
1508 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1509 sb->major_version != cpu_to_le32(1) ||
1510 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1511 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1512 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1513 return -EINVAL;
1514
1515 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1516 printk("md: invalid superblock checksum on %s\n",
1517 bdevname(rdev->bdev,b));
1518 return -EINVAL;
1519 }
1520 if (le64_to_cpu(sb->data_size) < 10) {
1521 printk("md: data_size too small on %s\n",
1522 bdevname(rdev->bdev,b));
1523 return -EINVAL;
1524 }
1525
1526 rdev->preferred_minor = 0xffff;
1527 rdev->data_offset = le64_to_cpu(sb->data_offset);
1528 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1529
1530 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1531 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1532 if (rdev->sb_size & bmask)
1533 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1534
1535 if (minor_version
1536 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1537 return -EINVAL;
1538
1539 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1540 rdev->desc_nr = -1;
1541 else
1542 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1543
1544 if (!rdev->bb_page) {
1545 rdev->bb_page = alloc_page(GFP_KERNEL);
1546 if (!rdev->bb_page)
1547 return -ENOMEM;
1548 }
1549 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1550 rdev->badblocks.count == 0) {
1551 /* need to load the bad block list.
1552 * Currently we limit it to one page.
1553 */
1554 s32 offset;
1555 sector_t bb_sector;
1556 u64 *bbp;
1557 int i;
1558 int sectors = le16_to_cpu(sb->bblog_size);
1559 if (sectors > (PAGE_SIZE / 512))
1560 return -EINVAL;
1561 offset = le32_to_cpu(sb->bblog_offset);
1562 if (offset == 0)
1563 return -EINVAL;
1564 bb_sector = (long long)offset;
1565 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1566 rdev->bb_page, READ, true))
1567 return -EIO;
1568 bbp = (u64 *)page_address(rdev->bb_page);
1569 rdev->badblocks.shift = sb->bblog_shift;
1570 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1571 u64 bb = le64_to_cpu(*bbp);
1572 int count = bb & (0x3ff);
1573 u64 sector = bb >> 10;
1574 sector <<= sb->bblog_shift;
1575 count <<= sb->bblog_shift;
1576 if (bb + 1 == 0)
1577 break;
1578 if (md_set_badblocks(&rdev->badblocks,
1579 sector, count, 1) == 0)
1580 return -EINVAL;
1581 }
1582 } else if (sb->bblog_offset == 0)
1583 rdev->badblocks.shift = -1;
1584
1585 if (!refdev) {
1586 ret = 1;
1587 } else {
1588 __u64 ev1, ev2;
1589 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1590
1591 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1592 sb->level != refsb->level ||
1593 sb->layout != refsb->layout ||
1594 sb->chunksize != refsb->chunksize) {
1595 printk(KERN_WARNING "md: %s has strangely different"
1596 " superblock to %s\n",
1597 bdevname(rdev->bdev,b),
1598 bdevname(refdev->bdev,b2));
1599 return -EINVAL;
1600 }
1601 ev1 = le64_to_cpu(sb->events);
1602 ev2 = le64_to_cpu(refsb->events);
1603
1604 if (ev1 > ev2)
1605 ret = 1;
1606 else
1607 ret = 0;
1608 }
1609 if (minor_version)
1610 rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
1611 le64_to_cpu(sb->data_offset);
1612 else
1613 rdev->sectors = rdev->sb_start;
1614 if (rdev->sectors < le64_to_cpu(sb->data_size))
1615 return -EINVAL;
1616 rdev->sectors = le64_to_cpu(sb->data_size);
1617 if (le64_to_cpu(sb->size) > rdev->sectors)
1618 return -EINVAL;
1619 return ret;
1620 }
1621
1622 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1623 {
1624 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1625 __u64 ev1 = le64_to_cpu(sb->events);
1626
1627 rdev->raid_disk = -1;
1628 clear_bit(Faulty, &rdev->flags);
1629 clear_bit(In_sync, &rdev->flags);
1630 clear_bit(WriteMostly, &rdev->flags);
1631
1632 if (mddev->raid_disks == 0) {
1633 mddev->major_version = 1;
1634 mddev->patch_version = 0;
1635 mddev->external = 0;
1636 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1637 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1638 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1639 mddev->level = le32_to_cpu(sb->level);
1640 mddev->clevel[0] = 0;
1641 mddev->layout = le32_to_cpu(sb->layout);
1642 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1643 mddev->dev_sectors = le64_to_cpu(sb->size);
1644 mddev->events = ev1;
1645 mddev->bitmap_info.offset = 0;
1646 mddev->bitmap_info.default_offset = 1024 >> 9;
1647
1648 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1649 memcpy(mddev->uuid, sb->set_uuid, 16);
1650
1651 mddev->max_disks = (4096-256)/2;
1652
1653 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1654 mddev->bitmap_info.file == NULL )
1655 mddev->bitmap_info.offset =
1656 (__s32)le32_to_cpu(sb->bitmap_offset);
1657
1658 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1659 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1660 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1661 mddev->new_level = le32_to_cpu(sb->new_level);
1662 mddev->new_layout = le32_to_cpu(sb->new_layout);
1663 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1664 } else {
1665 mddev->reshape_position = MaxSector;
1666 mddev->delta_disks = 0;
1667 mddev->new_level = mddev->level;
1668 mddev->new_layout = mddev->layout;
1669 mddev->new_chunk_sectors = mddev->chunk_sectors;
1670 }
1671
1672 } else if (mddev->pers == NULL) {
1673 /* Insist of good event counter while assembling, except for
1674 * spares (which don't need an event count) */
1675 ++ev1;
1676 if (rdev->desc_nr >= 0 &&
1677 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1678 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1679 if (ev1 < mddev->events)
1680 return -EINVAL;
1681 } else if (mddev->bitmap) {
1682 /* If adding to array with a bitmap, then we can accept an
1683 * older device, but not too old.
1684 */
1685 if (ev1 < mddev->bitmap->events_cleared)
1686 return 0;
1687 } else {
1688 if (ev1 < mddev->events)
1689 /* just a hot-add of a new device, leave raid_disk at -1 */
1690 return 0;
1691 }
1692 if (mddev->level != LEVEL_MULTIPATH) {
1693 int role;
1694 if (rdev->desc_nr < 0 ||
1695 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1696 role = 0xffff;
1697 rdev->desc_nr = -1;
1698 } else
1699 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1700 switch(role) {
1701 case 0xffff: /* spare */
1702 break;
1703 case 0xfffe: /* faulty */
1704 set_bit(Faulty, &rdev->flags);
1705 break;
1706 default:
1707 if ((le32_to_cpu(sb->feature_map) &
1708 MD_FEATURE_RECOVERY_OFFSET))
1709 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1710 else
1711 set_bit(In_sync, &rdev->flags);
1712 rdev->raid_disk = role;
1713 break;
1714 }
1715 if (sb->devflags & WriteMostly1)
1716 set_bit(WriteMostly, &rdev->flags);
1717 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1718 set_bit(Replacement, &rdev->flags);
1719 } else /* MULTIPATH are always insync */
1720 set_bit(In_sync, &rdev->flags);
1721
1722 return 0;
1723 }
1724
1725 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1726 {
1727 struct mdp_superblock_1 *sb;
1728 struct md_rdev *rdev2;
1729 int max_dev, i;
1730 /* make rdev->sb match mddev and rdev data. */
1731
1732 sb = page_address(rdev->sb_page);
1733
1734 sb->feature_map = 0;
1735 sb->pad0 = 0;
1736 sb->recovery_offset = cpu_to_le64(0);
1737 memset(sb->pad1, 0, sizeof(sb->pad1));
1738 memset(sb->pad3, 0, sizeof(sb->pad3));
1739
1740 sb->utime = cpu_to_le64((__u64)mddev->utime);
1741 sb->events = cpu_to_le64(mddev->events);
1742 if (mddev->in_sync)
1743 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1744 else
1745 sb->resync_offset = cpu_to_le64(0);
1746
1747 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1748
1749 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1750 sb->size = cpu_to_le64(mddev->dev_sectors);
1751 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1752 sb->level = cpu_to_le32(mddev->level);
1753 sb->layout = cpu_to_le32(mddev->layout);
1754
1755 if (test_bit(WriteMostly, &rdev->flags))
1756 sb->devflags |= WriteMostly1;
1757 else
1758 sb->devflags &= ~WriteMostly1;
1759
1760 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1761 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1762 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1763 }
1764
1765 if (rdev->raid_disk >= 0 &&
1766 !test_bit(In_sync, &rdev->flags)) {
1767 sb->feature_map |=
1768 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1769 sb->recovery_offset =
1770 cpu_to_le64(rdev->recovery_offset);
1771 }
1772 if (test_bit(Replacement, &rdev->flags))
1773 sb->feature_map |=
1774 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1775
1776 if (mddev->reshape_position != MaxSector) {
1777 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1778 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1779 sb->new_layout = cpu_to_le32(mddev->new_layout);
1780 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1781 sb->new_level = cpu_to_le32(mddev->new_level);
1782 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1783 }
1784
1785 if (rdev->badblocks.count == 0)
1786 /* Nothing to do for bad blocks*/ ;
1787 else if (sb->bblog_offset == 0)
1788 /* Cannot record bad blocks on this device */
1789 md_error(mddev, rdev);
1790 else {
1791 struct badblocks *bb = &rdev->badblocks;
1792 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1793 u64 *p = bb->page;
1794 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1795 if (bb->changed) {
1796 unsigned seq;
1797
1798 retry:
1799 seq = read_seqbegin(&bb->lock);
1800
1801 memset(bbp, 0xff, PAGE_SIZE);
1802
1803 for (i = 0 ; i < bb->count ; i++) {
1804 u64 internal_bb = *p++;
1805 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1806 | BB_LEN(internal_bb));
1807 *bbp++ = cpu_to_le64(store_bb);
1808 }
1809 if (read_seqretry(&bb->lock, seq))
1810 goto retry;
1811
1812 bb->sector = (rdev->sb_start +
1813 (int)le32_to_cpu(sb->bblog_offset));
1814 bb->size = le16_to_cpu(sb->bblog_size);
1815 bb->changed = 0;
1816 }
1817 }
1818
1819 max_dev = 0;
1820 list_for_each_entry(rdev2, &mddev->disks, same_set)
1821 if (rdev2->desc_nr+1 > max_dev)
1822 max_dev = rdev2->desc_nr+1;
1823
1824 if (max_dev > le32_to_cpu(sb->max_dev)) {
1825 int bmask;
1826 sb->max_dev = cpu_to_le32(max_dev);
1827 rdev->sb_size = max_dev * 2 + 256;
1828 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1829 if (rdev->sb_size & bmask)
1830 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1831 } else
1832 max_dev = le32_to_cpu(sb->max_dev);
1833
1834 for (i=0; i<max_dev;i++)
1835 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1836
1837 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1838 i = rdev2->desc_nr;
1839 if (test_bit(Faulty, &rdev2->flags))
1840 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1841 else if (test_bit(In_sync, &rdev2->flags))
1842 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1843 else if (rdev2->raid_disk >= 0)
1844 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1845 else
1846 sb->dev_roles[i] = cpu_to_le16(0xffff);
1847 }
1848
1849 sb->sb_csum = calc_sb_1_csum(sb);
1850 }
1851
1852 static unsigned long long
1853 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1854 {
1855 struct mdp_superblock_1 *sb;
1856 sector_t max_sectors;
1857 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1858 return 0; /* component must fit device */
1859 if (rdev->sb_start < rdev->data_offset) {
1860 /* minor versions 1 and 2; superblock before data */
1861 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1862 max_sectors -= rdev->data_offset;
1863 if (!num_sectors || num_sectors > max_sectors)
1864 num_sectors = max_sectors;
1865 } else if (rdev->mddev->bitmap_info.offset) {
1866 /* minor version 0 with bitmap we can't move */
1867 return 0;
1868 } else {
1869 /* minor version 0; superblock after data */
1870 sector_t sb_start;
1871 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1872 sb_start &= ~(sector_t)(4*2 - 1);
1873 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1874 if (!num_sectors || num_sectors > max_sectors)
1875 num_sectors = max_sectors;
1876 rdev->sb_start = sb_start;
1877 }
1878 sb = page_address(rdev->sb_page);
1879 sb->data_size = cpu_to_le64(num_sectors);
1880 sb->super_offset = rdev->sb_start;
1881 sb->sb_csum = calc_sb_1_csum(sb);
1882 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1883 rdev->sb_page);
1884 md_super_wait(rdev->mddev);
1885 return num_sectors;
1886 }
1887
1888 static struct super_type super_types[] = {
1889 [0] = {
1890 .name = "0.90.0",
1891 .owner = THIS_MODULE,
1892 .load_super = super_90_load,
1893 .validate_super = super_90_validate,
1894 .sync_super = super_90_sync,
1895 .rdev_size_change = super_90_rdev_size_change,
1896 },
1897 [1] = {
1898 .name = "md-1",
1899 .owner = THIS_MODULE,
1900 .load_super = super_1_load,
1901 .validate_super = super_1_validate,
1902 .sync_super = super_1_sync,
1903 .rdev_size_change = super_1_rdev_size_change,
1904 },
1905 };
1906
1907 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1908 {
1909 if (mddev->sync_super) {
1910 mddev->sync_super(mddev, rdev);
1911 return;
1912 }
1913
1914 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1915
1916 super_types[mddev->major_version].sync_super(mddev, rdev);
1917 }
1918
1919 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1920 {
1921 struct md_rdev *rdev, *rdev2;
1922
1923 rcu_read_lock();
1924 rdev_for_each_rcu(rdev, mddev1)
1925 rdev_for_each_rcu(rdev2, mddev2)
1926 if (rdev->bdev->bd_contains ==
1927 rdev2->bdev->bd_contains) {
1928 rcu_read_unlock();
1929 return 1;
1930 }
1931 rcu_read_unlock();
1932 return 0;
1933 }
1934
1935 static LIST_HEAD(pending_raid_disks);
1936
1937 /*
1938 * Try to register data integrity profile for an mddev
1939 *
1940 * This is called when an array is started and after a disk has been kicked
1941 * from the array. It only succeeds if all working and active component devices
1942 * are integrity capable with matching profiles.
1943 */
1944 int md_integrity_register(struct mddev *mddev)
1945 {
1946 struct md_rdev *rdev, *reference = NULL;
1947
1948 if (list_empty(&mddev->disks))
1949 return 0; /* nothing to do */
1950 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1951 return 0; /* shouldn't register, or already is */
1952 list_for_each_entry(rdev, &mddev->disks, same_set) {
1953 /* skip spares and non-functional disks */
1954 if (test_bit(Faulty, &rdev->flags))
1955 continue;
1956 if (rdev->raid_disk < 0)
1957 continue;
1958 if (!reference) {
1959 /* Use the first rdev as the reference */
1960 reference = rdev;
1961 continue;
1962 }
1963 /* does this rdev's profile match the reference profile? */
1964 if (blk_integrity_compare(reference->bdev->bd_disk,
1965 rdev->bdev->bd_disk) < 0)
1966 return -EINVAL;
1967 }
1968 if (!reference || !bdev_get_integrity(reference->bdev))
1969 return 0;
1970 /*
1971 * All component devices are integrity capable and have matching
1972 * profiles, register the common profile for the md device.
1973 */
1974 if (blk_integrity_register(mddev->gendisk,
1975 bdev_get_integrity(reference->bdev)) != 0) {
1976 printk(KERN_ERR "md: failed to register integrity for %s\n",
1977 mdname(mddev));
1978 return -EINVAL;
1979 }
1980 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1981 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1982 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1983 mdname(mddev));
1984 return -EINVAL;
1985 }
1986 return 0;
1987 }
1988 EXPORT_SYMBOL(md_integrity_register);
1989
1990 /* Disable data integrity if non-capable/non-matching disk is being added */
1991 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1992 {
1993 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1994 struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1995
1996 if (!bi_mddev) /* nothing to do */
1997 return;
1998 if (rdev->raid_disk < 0) /* skip spares */
1999 return;
2000 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2001 rdev->bdev->bd_disk) >= 0)
2002 return;
2003 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2004 blk_integrity_unregister(mddev->gendisk);
2005 }
2006 EXPORT_SYMBOL(md_integrity_add_rdev);
2007
2008 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2009 {
2010 char b[BDEVNAME_SIZE];
2011 struct kobject *ko;
2012 char *s;
2013 int err;
2014
2015 if (rdev->mddev) {
2016 MD_BUG();
2017 return -EINVAL;
2018 }
2019
2020 /* prevent duplicates */
2021 if (find_rdev(mddev, rdev->bdev->bd_dev))
2022 return -EEXIST;
2023
2024 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2025 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2026 rdev->sectors < mddev->dev_sectors)) {
2027 if (mddev->pers) {
2028 /* Cannot change size, so fail
2029 * If mddev->level <= 0, then we don't care
2030 * about aligning sizes (e.g. linear)
2031 */
2032 if (mddev->level > 0)
2033 return -ENOSPC;
2034 } else
2035 mddev->dev_sectors = rdev->sectors;
2036 }
2037
2038 /* Verify rdev->desc_nr is unique.
2039 * If it is -1, assign a free number, else
2040 * check number is not in use
2041 */
2042 if (rdev->desc_nr < 0) {
2043 int choice = 0;
2044 if (mddev->pers) choice = mddev->raid_disks;
2045 while (find_rdev_nr(mddev, choice))
2046 choice++;
2047 rdev->desc_nr = choice;
2048 } else {
2049 if (find_rdev_nr(mddev, rdev->desc_nr))
2050 return -EBUSY;
2051 }
2052 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2053 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2054 mdname(mddev), mddev->max_disks);
2055 return -EBUSY;
2056 }
2057 bdevname(rdev->bdev,b);
2058 while ( (s=strchr(b, '/')) != NULL)
2059 *s = '!';
2060
2061 rdev->mddev = mddev;
2062 printk(KERN_INFO "md: bind<%s>\n", b);
2063
2064 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2065 goto fail;
2066
2067 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2068 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2069 /* failure here is OK */;
2070 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2071
2072 list_add_rcu(&rdev->same_set, &mddev->disks);
2073 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2074
2075 /* May as well allow recovery to be retried once */
2076 mddev->recovery_disabled++;
2077
2078 return 0;
2079
2080 fail:
2081 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2082 b, mdname(mddev));
2083 return err;
2084 }
2085
2086 static void md_delayed_delete(struct work_struct *ws)
2087 {
2088 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2089 kobject_del(&rdev->kobj);
2090 kobject_put(&rdev->kobj);
2091 }
2092
2093 static void unbind_rdev_from_array(struct md_rdev * rdev)
2094 {
2095 char b[BDEVNAME_SIZE];
2096 if (!rdev->mddev) {
2097 MD_BUG();
2098 return;
2099 }
2100 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2101 list_del_rcu(&rdev->same_set);
2102 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2103 rdev->mddev = NULL;
2104 sysfs_remove_link(&rdev->kobj, "block");
2105 sysfs_put(rdev->sysfs_state);
2106 rdev->sysfs_state = NULL;
2107 kfree(rdev->badblocks.page);
2108 rdev->badblocks.count = 0;
2109 rdev->badblocks.page = NULL;
2110 /* We need to delay this, otherwise we can deadlock when
2111 * writing to 'remove' to "dev/state". We also need
2112 * to delay it due to rcu usage.
2113 */
2114 synchronize_rcu();
2115 INIT_WORK(&rdev->del_work, md_delayed_delete);
2116 kobject_get(&rdev->kobj);
2117 queue_work(md_misc_wq, &rdev->del_work);
2118 }
2119
2120 /*
2121 * prevent the device from being mounted, repartitioned or
2122 * otherwise reused by a RAID array (or any other kernel
2123 * subsystem), by bd_claiming the device.
2124 */
2125 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2126 {
2127 int err = 0;
2128 struct block_device *bdev;
2129 char b[BDEVNAME_SIZE];
2130
2131 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2132 shared ? (struct md_rdev *)lock_rdev : rdev);
2133 if (IS_ERR(bdev)) {
2134 printk(KERN_ERR "md: could not open %s.\n",
2135 __bdevname(dev, b));
2136 return PTR_ERR(bdev);
2137 }
2138 rdev->bdev = bdev;
2139 return err;
2140 }
2141
2142 static void unlock_rdev(struct md_rdev *rdev)
2143 {
2144 struct block_device *bdev = rdev->bdev;
2145 rdev->bdev = NULL;
2146 if (!bdev)
2147 MD_BUG();
2148 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2149 }
2150
2151 void md_autodetect_dev(dev_t dev);
2152
2153 static void export_rdev(struct md_rdev * rdev)
2154 {
2155 char b[BDEVNAME_SIZE];
2156 printk(KERN_INFO "md: export_rdev(%s)\n",
2157 bdevname(rdev->bdev,b));
2158 if (rdev->mddev)
2159 MD_BUG();
2160 free_disk_sb(rdev);
2161 #ifndef MODULE
2162 if (test_bit(AutoDetected, &rdev->flags))
2163 md_autodetect_dev(rdev->bdev->bd_dev);
2164 #endif
2165 unlock_rdev(rdev);
2166 kobject_put(&rdev->kobj);
2167 }
2168
2169 static void kick_rdev_from_array(struct md_rdev * rdev)
2170 {
2171 unbind_rdev_from_array(rdev);
2172 export_rdev(rdev);
2173 }
2174
2175 static void export_array(struct mddev *mddev)
2176 {
2177 struct md_rdev *rdev, *tmp;
2178
2179 rdev_for_each(rdev, tmp, mddev) {
2180 if (!rdev->mddev) {
2181 MD_BUG();
2182 continue;
2183 }
2184 kick_rdev_from_array(rdev);
2185 }
2186 if (!list_empty(&mddev->disks))
2187 MD_BUG();
2188 mddev->raid_disks = 0;
2189 mddev->major_version = 0;
2190 }
2191
2192 static void print_desc(mdp_disk_t *desc)
2193 {
2194 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2195 desc->major,desc->minor,desc->raid_disk,desc->state);
2196 }
2197
2198 static void print_sb_90(mdp_super_t *sb)
2199 {
2200 int i;
2201
2202 printk(KERN_INFO
2203 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2204 sb->major_version, sb->minor_version, sb->patch_version,
2205 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2206 sb->ctime);
2207 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2208 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2209 sb->md_minor, sb->layout, sb->chunk_size);
2210 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
2211 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2212 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2213 sb->failed_disks, sb->spare_disks,
2214 sb->sb_csum, (unsigned long)sb->events_lo);
2215
2216 printk(KERN_INFO);
2217 for (i = 0; i < MD_SB_DISKS; i++) {
2218 mdp_disk_t *desc;
2219
2220 desc = sb->disks + i;
2221 if (desc->number || desc->major || desc->minor ||
2222 desc->raid_disk || (desc->state && (desc->state != 4))) {
2223 printk(" D %2d: ", i);
2224 print_desc(desc);
2225 }
2226 }
2227 printk(KERN_INFO "md: THIS: ");
2228 print_desc(&sb->this_disk);
2229 }
2230
2231 static void print_sb_1(struct mdp_superblock_1 *sb)
2232 {
2233 __u8 *uuid;
2234
2235 uuid = sb->set_uuid;
2236 printk(KERN_INFO
2237 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2238 "md: Name: \"%s\" CT:%llu\n",
2239 le32_to_cpu(sb->major_version),
2240 le32_to_cpu(sb->feature_map),
2241 uuid,
2242 sb->set_name,
2243 (unsigned long long)le64_to_cpu(sb->ctime)
2244 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2245
2246 uuid = sb->device_uuid;
2247 printk(KERN_INFO
2248 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2249 " RO:%llu\n"
2250 "md: Dev:%08x UUID: %pU\n"
2251 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2252 "md: (MaxDev:%u) \n",
2253 le32_to_cpu(sb->level),
2254 (unsigned long long)le64_to_cpu(sb->size),
2255 le32_to_cpu(sb->raid_disks),
2256 le32_to_cpu(sb->layout),
2257 le32_to_cpu(sb->chunksize),
2258 (unsigned long long)le64_to_cpu(sb->data_offset),
2259 (unsigned long long)le64_to_cpu(sb->data_size),
2260 (unsigned long long)le64_to_cpu(sb->super_offset),
2261 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2262 le32_to_cpu(sb->dev_number),
2263 uuid,
2264 sb->devflags,
2265 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2266 (unsigned long long)le64_to_cpu(sb->events),
2267 (unsigned long long)le64_to_cpu(sb->resync_offset),
2268 le32_to_cpu(sb->sb_csum),
2269 le32_to_cpu(sb->max_dev)
2270 );
2271 }
2272
2273 static void print_rdev(struct md_rdev *rdev, int major_version)
2274 {
2275 char b[BDEVNAME_SIZE];
2276 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2277 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2278 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2279 rdev->desc_nr);
2280 if (rdev->sb_loaded) {
2281 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2282 switch (major_version) {
2283 case 0:
2284 print_sb_90(page_address(rdev->sb_page));
2285 break;
2286 case 1:
2287 print_sb_1(page_address(rdev->sb_page));
2288 break;
2289 }
2290 } else
2291 printk(KERN_INFO "md: no rdev superblock!\n");
2292 }
2293
2294 static void md_print_devices(void)
2295 {
2296 struct list_head *tmp;
2297 struct md_rdev *rdev;
2298 struct mddev *mddev;
2299 char b[BDEVNAME_SIZE];
2300
2301 printk("\n");
2302 printk("md: **********************************\n");
2303 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2304 printk("md: **********************************\n");
2305 for_each_mddev(mddev, tmp) {
2306
2307 if (mddev->bitmap)
2308 bitmap_print_sb(mddev->bitmap);
2309 else
2310 printk("%s: ", mdname(mddev));
2311 list_for_each_entry(rdev, &mddev->disks, same_set)
2312 printk("<%s>", bdevname(rdev->bdev,b));
2313 printk("\n");
2314
2315 list_for_each_entry(rdev, &mddev->disks, same_set)
2316 print_rdev(rdev, mddev->major_version);
2317 }
2318 printk("md: **********************************\n");
2319 printk("\n");
2320 }
2321
2322
2323 static void sync_sbs(struct mddev * mddev, int nospares)
2324 {
2325 /* Update each superblock (in-memory image), but
2326 * if we are allowed to, skip spares which already
2327 * have the right event counter, or have one earlier
2328 * (which would mean they aren't being marked as dirty
2329 * with the rest of the array)
2330 */
2331 struct md_rdev *rdev;
2332 list_for_each_entry(rdev, &mddev->disks, same_set) {
2333 if (rdev->sb_events == mddev->events ||
2334 (nospares &&
2335 rdev->raid_disk < 0 &&
2336 rdev->sb_events+1 == mddev->events)) {
2337 /* Don't update this superblock */
2338 rdev->sb_loaded = 2;
2339 } else {
2340 sync_super(mddev, rdev);
2341 rdev->sb_loaded = 1;
2342 }
2343 }
2344 }
2345
2346 static void md_update_sb(struct mddev * mddev, int force_change)
2347 {
2348 struct md_rdev *rdev;
2349 int sync_req;
2350 int nospares = 0;
2351 int any_badblocks_changed = 0;
2352
2353 repeat:
2354 /* First make sure individual recovery_offsets are correct */
2355 list_for_each_entry(rdev, &mddev->disks, same_set) {
2356 if (rdev->raid_disk >= 0 &&
2357 mddev->delta_disks >= 0 &&
2358 !test_bit(In_sync, &rdev->flags) &&
2359 mddev->curr_resync_completed > rdev->recovery_offset)
2360 rdev->recovery_offset = mddev->curr_resync_completed;
2361
2362 }
2363 if (!mddev->persistent) {
2364 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2365 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2366 if (!mddev->external) {
2367 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2368 list_for_each_entry(rdev, &mddev->disks, same_set) {
2369 if (rdev->badblocks.changed) {
2370 md_ack_all_badblocks(&rdev->badblocks);
2371 md_error(mddev, rdev);
2372 }
2373 clear_bit(Blocked, &rdev->flags);
2374 clear_bit(BlockedBadBlocks, &rdev->flags);
2375 wake_up(&rdev->blocked_wait);
2376 }
2377 }
2378 wake_up(&mddev->sb_wait);
2379 return;
2380 }
2381
2382 spin_lock_irq(&mddev->write_lock);
2383
2384 mddev->utime = get_seconds();
2385
2386 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2387 force_change = 1;
2388 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2389 /* just a clean<-> dirty transition, possibly leave spares alone,
2390 * though if events isn't the right even/odd, we will have to do
2391 * spares after all
2392 */
2393 nospares = 1;
2394 if (force_change)
2395 nospares = 0;
2396 if (mddev->degraded)
2397 /* If the array is degraded, then skipping spares is both
2398 * dangerous and fairly pointless.
2399 * Dangerous because a device that was removed from the array
2400 * might have a event_count that still looks up-to-date,
2401 * so it can be re-added without a resync.
2402 * Pointless because if there are any spares to skip,
2403 * then a recovery will happen and soon that array won't
2404 * be degraded any more and the spare can go back to sleep then.
2405 */
2406 nospares = 0;
2407
2408 sync_req = mddev->in_sync;
2409
2410 /* If this is just a dirty<->clean transition, and the array is clean
2411 * and 'events' is odd, we can roll back to the previous clean state */
2412 if (nospares
2413 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2414 && mddev->can_decrease_events
2415 && mddev->events != 1) {
2416 mddev->events--;
2417 mddev->can_decrease_events = 0;
2418 } else {
2419 /* otherwise we have to go forward and ... */
2420 mddev->events ++;
2421 mddev->can_decrease_events = nospares;
2422 }
2423
2424 if (!mddev->events) {
2425 /*
2426 * oops, this 64-bit counter should never wrap.
2427 * Either we are in around ~1 trillion A.C., assuming
2428 * 1 reboot per second, or we have a bug:
2429 */
2430 MD_BUG();
2431 mddev->events --;
2432 }
2433
2434 list_for_each_entry(rdev, &mddev->disks, same_set) {
2435 if (rdev->badblocks.changed)
2436 any_badblocks_changed++;
2437 if (test_bit(Faulty, &rdev->flags))
2438 set_bit(FaultRecorded, &rdev->flags);
2439 }
2440
2441 sync_sbs(mddev, nospares);
2442 spin_unlock_irq(&mddev->write_lock);
2443
2444 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2445 mdname(mddev), mddev->in_sync);
2446
2447 bitmap_update_sb(mddev->bitmap);
2448 list_for_each_entry(rdev, &mddev->disks, same_set) {
2449 char b[BDEVNAME_SIZE];
2450
2451 if (rdev->sb_loaded != 1)
2452 continue; /* no noise on spare devices */
2453
2454 if (!test_bit(Faulty, &rdev->flags) &&
2455 rdev->saved_raid_disk == -1) {
2456 md_super_write(mddev,rdev,
2457 rdev->sb_start, rdev->sb_size,
2458 rdev->sb_page);
2459 pr_debug("md: (write) %s's sb offset: %llu\n",
2460 bdevname(rdev->bdev, b),
2461 (unsigned long long)rdev->sb_start);
2462 rdev->sb_events = mddev->events;
2463 if (rdev->badblocks.size) {
2464 md_super_write(mddev, rdev,
2465 rdev->badblocks.sector,
2466 rdev->badblocks.size << 9,
2467 rdev->bb_page);
2468 rdev->badblocks.size = 0;
2469 }
2470
2471 } else if (test_bit(Faulty, &rdev->flags))
2472 pr_debug("md: %s (skipping faulty)\n",
2473 bdevname(rdev->bdev, b));
2474 else
2475 pr_debug("(skipping incremental s/r ");
2476
2477 if (mddev->level == LEVEL_MULTIPATH)
2478 /* only need to write one superblock... */
2479 break;
2480 }
2481 md_super_wait(mddev);
2482 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2483
2484 spin_lock_irq(&mddev->write_lock);
2485 if (mddev->in_sync != sync_req ||
2486 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2487 /* have to write it out again */
2488 spin_unlock_irq(&mddev->write_lock);
2489 goto repeat;
2490 }
2491 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2492 spin_unlock_irq(&mddev->write_lock);
2493 wake_up(&mddev->sb_wait);
2494 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2495 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2496
2497 list_for_each_entry(rdev, &mddev->disks, same_set) {
2498 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2499 clear_bit(Blocked, &rdev->flags);
2500
2501 if (any_badblocks_changed)
2502 md_ack_all_badblocks(&rdev->badblocks);
2503 clear_bit(BlockedBadBlocks, &rdev->flags);
2504 wake_up(&rdev->blocked_wait);
2505 }
2506 }
2507
2508 /* words written to sysfs files may, or may not, be \n terminated.
2509 * We want to accept with case. For this we use cmd_match.
2510 */
2511 static int cmd_match(const char *cmd, const char *str)
2512 {
2513 /* See if cmd, written into a sysfs file, matches
2514 * str. They must either be the same, or cmd can
2515 * have a trailing newline
2516 */
2517 while (*cmd && *str && *cmd == *str) {
2518 cmd++;
2519 str++;
2520 }
2521 if (*cmd == '\n')
2522 cmd++;
2523 if (*str || *cmd)
2524 return 0;
2525 return 1;
2526 }
2527
2528 struct rdev_sysfs_entry {
2529 struct attribute attr;
2530 ssize_t (*show)(struct md_rdev *, char *);
2531 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2532 };
2533
2534 static ssize_t
2535 state_show(struct md_rdev *rdev, char *page)
2536 {
2537 char *sep = "";
2538 size_t len = 0;
2539
2540 if (test_bit(Faulty, &rdev->flags) ||
2541 rdev->badblocks.unacked_exist) {
2542 len+= sprintf(page+len, "%sfaulty",sep);
2543 sep = ",";
2544 }
2545 if (test_bit(In_sync, &rdev->flags)) {
2546 len += sprintf(page+len, "%sin_sync",sep);
2547 sep = ",";
2548 }
2549 if (test_bit(WriteMostly, &rdev->flags)) {
2550 len += sprintf(page+len, "%swrite_mostly",sep);
2551 sep = ",";
2552 }
2553 if (test_bit(Blocked, &rdev->flags) ||
2554 (rdev->badblocks.unacked_exist
2555 && !test_bit(Faulty, &rdev->flags))) {
2556 len += sprintf(page+len, "%sblocked", sep);
2557 sep = ",";
2558 }
2559 if (!test_bit(Faulty, &rdev->flags) &&
2560 !test_bit(In_sync, &rdev->flags)) {
2561 len += sprintf(page+len, "%sspare", sep);
2562 sep = ",";
2563 }
2564 if (test_bit(WriteErrorSeen, &rdev->flags)) {
2565 len += sprintf(page+len, "%swrite_error", sep);
2566 sep = ",";
2567 }
2568 if (test_bit(WantReplacement, &rdev->flags)) {
2569 len += sprintf(page+len, "%swant_replacement", sep);
2570 sep = ",";
2571 }
2572 if (test_bit(Replacement, &rdev->flags)) {
2573 len += sprintf(page+len, "%sreplacement", sep);
2574 sep = ",";
2575 }
2576
2577 return len+sprintf(page+len, "\n");
2578 }
2579
2580 static ssize_t
2581 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2582 {
2583 /* can write
2584 * faulty - simulates an error
2585 * remove - disconnects the device
2586 * writemostly - sets write_mostly
2587 * -writemostly - clears write_mostly
2588 * blocked - sets the Blocked flags
2589 * -blocked - clears the Blocked and possibly simulates an error
2590 * insync - sets Insync providing device isn't active
2591 * write_error - sets WriteErrorSeen
2592 * -write_error - clears WriteErrorSeen
2593 */
2594 int err = -EINVAL;
2595 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2596 md_error(rdev->mddev, rdev);
2597 if (test_bit(Faulty, &rdev->flags))
2598 err = 0;
2599 else
2600 err = -EBUSY;
2601 } else if (cmd_match(buf, "remove")) {
2602 if (rdev->raid_disk >= 0)
2603 err = -EBUSY;
2604 else {
2605 struct mddev *mddev = rdev->mddev;
2606 kick_rdev_from_array(rdev);
2607 if (mddev->pers)
2608 md_update_sb(mddev, 1);
2609 md_new_event(mddev);
2610 err = 0;
2611 }
2612 } else if (cmd_match(buf, "writemostly")) {
2613 set_bit(WriteMostly, &rdev->flags);
2614 err = 0;
2615 } else if (cmd_match(buf, "-writemostly")) {
2616 clear_bit(WriteMostly, &rdev->flags);
2617 err = 0;
2618 } else if (cmd_match(buf, "blocked")) {
2619 set_bit(Blocked, &rdev->flags);
2620 err = 0;
2621 } else if (cmd_match(buf, "-blocked")) {
2622 if (!test_bit(Faulty, &rdev->flags) &&
2623 rdev->badblocks.unacked_exist) {
2624 /* metadata handler doesn't understand badblocks,
2625 * so we need to fail the device
2626 */
2627 md_error(rdev->mddev, rdev);
2628 }
2629 clear_bit(Blocked, &rdev->flags);
2630 clear_bit(BlockedBadBlocks, &rdev->flags);
2631 wake_up(&rdev->blocked_wait);
2632 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2633 md_wakeup_thread(rdev->mddev->thread);
2634
2635 err = 0;
2636 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2637 set_bit(In_sync, &rdev->flags);
2638 err = 0;
2639 } else if (cmd_match(buf, "write_error")) {
2640 set_bit(WriteErrorSeen, &rdev->flags);
2641 err = 0;
2642 } else if (cmd_match(buf, "-write_error")) {
2643 clear_bit(WriteErrorSeen, &rdev->flags);
2644 err = 0;
2645 } else if (cmd_match(buf, "want_replacement")) {
2646 /* Any non-spare device that is not a replacement can
2647 * become want_replacement at any time, but we then need to
2648 * check if recovery is needed.
2649 */
2650 if (rdev->raid_disk >= 0 &&
2651 !test_bit(Replacement, &rdev->flags))
2652 set_bit(WantReplacement, &rdev->flags);
2653 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2654 md_wakeup_thread(rdev->mddev->thread);
2655 err = 0;
2656 } else if (cmd_match(buf, "-want_replacement")) {
2657 /* Clearing 'want_replacement' is always allowed.
2658 * Once replacements starts it is too late though.
2659 */
2660 err = 0;
2661 clear_bit(WantReplacement, &rdev->flags);
2662 } else if (cmd_match(buf, "replacement")) {
2663 /* Can only set a device as a replacement when array has not
2664 * yet been started. Once running, replacement is automatic
2665 * from spares, or by assigning 'slot'.
2666 */
2667 if (rdev->mddev->pers)
2668 err = -EBUSY;
2669 else {
2670 set_bit(Replacement, &rdev->flags);
2671 err = 0;
2672 }
2673 } else if (cmd_match(buf, "-replacement")) {
2674 /* Similarly, can only clear Replacement before start */
2675 if (rdev->mddev->pers)
2676 err = -EBUSY;
2677 else {
2678 clear_bit(Replacement, &rdev->flags);
2679 err = 0;
2680 }
2681 }
2682 if (!err)
2683 sysfs_notify_dirent_safe(rdev->sysfs_state);
2684 return err ? err : len;
2685 }
2686 static struct rdev_sysfs_entry rdev_state =
2687 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2688
2689 static ssize_t
2690 errors_show(struct md_rdev *rdev, char *page)
2691 {
2692 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2693 }
2694
2695 static ssize_t
2696 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2697 {
2698 char *e;
2699 unsigned long n = simple_strtoul(buf, &e, 10);
2700 if (*buf && (*e == 0 || *e == '\n')) {
2701 atomic_set(&rdev->corrected_errors, n);
2702 return len;
2703 }
2704 return -EINVAL;
2705 }
2706 static struct rdev_sysfs_entry rdev_errors =
2707 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2708
2709 static ssize_t
2710 slot_show(struct md_rdev *rdev, char *page)
2711 {
2712 if (rdev->raid_disk < 0)
2713 return sprintf(page, "none\n");
2714 else
2715 return sprintf(page, "%d\n", rdev->raid_disk);
2716 }
2717
2718 static ssize_t
2719 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2720 {
2721 char *e;
2722 int err;
2723 int slot = simple_strtoul(buf, &e, 10);
2724 if (strncmp(buf, "none", 4)==0)
2725 slot = -1;
2726 else if (e==buf || (*e && *e!= '\n'))
2727 return -EINVAL;
2728 if (rdev->mddev->pers && slot == -1) {
2729 /* Setting 'slot' on an active array requires also
2730 * updating the 'rd%d' link, and communicating
2731 * with the personality with ->hot_*_disk.
2732 * For now we only support removing
2733 * failed/spare devices. This normally happens automatically,
2734 * but not when the metadata is externally managed.
2735 */
2736 if (rdev->raid_disk == -1)
2737 return -EEXIST;
2738 /* personality does all needed checks */
2739 if (rdev->mddev->pers->hot_remove_disk == NULL)
2740 return -EINVAL;
2741 err = rdev->mddev->pers->
2742 hot_remove_disk(rdev->mddev, rdev);
2743 if (err)
2744 return err;
2745 sysfs_unlink_rdev(rdev->mddev, rdev);
2746 rdev->raid_disk = -1;
2747 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2748 md_wakeup_thread(rdev->mddev->thread);
2749 } else if (rdev->mddev->pers) {
2750 /* Activating a spare .. or possibly reactivating
2751 * if we ever get bitmaps working here.
2752 */
2753
2754 if (rdev->raid_disk != -1)
2755 return -EBUSY;
2756
2757 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2758 return -EBUSY;
2759
2760 if (rdev->mddev->pers->hot_add_disk == NULL)
2761 return -EINVAL;
2762
2763 if (slot >= rdev->mddev->raid_disks &&
2764 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2765 return -ENOSPC;
2766
2767 rdev->raid_disk = slot;
2768 if (test_bit(In_sync, &rdev->flags))
2769 rdev->saved_raid_disk = slot;
2770 else
2771 rdev->saved_raid_disk = -1;
2772 clear_bit(In_sync, &rdev->flags);
2773 err = rdev->mddev->pers->
2774 hot_add_disk(rdev->mddev, rdev);
2775 if (err) {
2776 rdev->raid_disk = -1;
2777 return err;
2778 } else
2779 sysfs_notify_dirent_safe(rdev->sysfs_state);
2780 if (sysfs_link_rdev(rdev->mddev, rdev))
2781 /* failure here is OK */;
2782 /* don't wakeup anyone, leave that to userspace. */
2783 } else {
2784 if (slot >= rdev->mddev->raid_disks &&
2785 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2786 return -ENOSPC;
2787 rdev->raid_disk = slot;
2788 /* assume it is working */
2789 clear_bit(Faulty, &rdev->flags);
2790 clear_bit(WriteMostly, &rdev->flags);
2791 set_bit(In_sync, &rdev->flags);
2792 sysfs_notify_dirent_safe(rdev->sysfs_state);
2793 }
2794 return len;
2795 }
2796
2797
2798 static struct rdev_sysfs_entry rdev_slot =
2799 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2800
2801 static ssize_t
2802 offset_show(struct md_rdev *rdev, char *page)
2803 {
2804 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2805 }
2806
2807 static ssize_t
2808 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2809 {
2810 char *e;
2811 unsigned long long offset = simple_strtoull(buf, &e, 10);
2812 if (e==buf || (*e && *e != '\n'))
2813 return -EINVAL;
2814 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2815 return -EBUSY;
2816 if (rdev->sectors && rdev->mddev->external)
2817 /* Must set offset before size, so overlap checks
2818 * can be sane */
2819 return -EBUSY;
2820 rdev->data_offset = offset;
2821 return len;
2822 }
2823
2824 static struct rdev_sysfs_entry rdev_offset =
2825 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2826
2827 static ssize_t
2828 rdev_size_show(struct md_rdev *rdev, char *page)
2829 {
2830 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2831 }
2832
2833 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2834 {
2835 /* check if two start/length pairs overlap */
2836 if (s1+l1 <= s2)
2837 return 0;
2838 if (s2+l2 <= s1)
2839 return 0;
2840 return 1;
2841 }
2842
2843 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2844 {
2845 unsigned long long blocks;
2846 sector_t new;
2847
2848 if (strict_strtoull(buf, 10, &blocks) < 0)
2849 return -EINVAL;
2850
2851 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2852 return -EINVAL; /* sector conversion overflow */
2853
2854 new = blocks * 2;
2855 if (new != blocks * 2)
2856 return -EINVAL; /* unsigned long long to sector_t overflow */
2857
2858 *sectors = new;
2859 return 0;
2860 }
2861
2862 static ssize_t
2863 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2864 {
2865 struct mddev *my_mddev = rdev->mddev;
2866 sector_t oldsectors = rdev->sectors;
2867 sector_t sectors;
2868
2869 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2870 return -EINVAL;
2871 if (my_mddev->pers && rdev->raid_disk >= 0) {
2872 if (my_mddev->persistent) {
2873 sectors = super_types[my_mddev->major_version].
2874 rdev_size_change(rdev, sectors);
2875 if (!sectors)
2876 return -EBUSY;
2877 } else if (!sectors)
2878 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2879 rdev->data_offset;
2880 }
2881 if (sectors < my_mddev->dev_sectors)
2882 return -EINVAL; /* component must fit device */
2883
2884 rdev->sectors = sectors;
2885 if (sectors > oldsectors && my_mddev->external) {
2886 /* need to check that all other rdevs with the same ->bdev
2887 * do not overlap. We need to unlock the mddev to avoid
2888 * a deadlock. We have already changed rdev->sectors, and if
2889 * we have to change it back, we will have the lock again.
2890 */
2891 struct mddev *mddev;
2892 int overlap = 0;
2893 struct list_head *tmp;
2894
2895 mddev_unlock(my_mddev);
2896 for_each_mddev(mddev, tmp) {
2897 struct md_rdev *rdev2;
2898
2899 mddev_lock(mddev);
2900 list_for_each_entry(rdev2, &mddev->disks, same_set)
2901 if (rdev->bdev == rdev2->bdev &&
2902 rdev != rdev2 &&
2903 overlaps(rdev->data_offset, rdev->sectors,
2904 rdev2->data_offset,
2905 rdev2->sectors)) {
2906 overlap = 1;
2907 break;
2908 }
2909 mddev_unlock(mddev);
2910 if (overlap) {
2911 mddev_put(mddev);
2912 break;
2913 }
2914 }
2915 mddev_lock(my_mddev);
2916 if (overlap) {
2917 /* Someone else could have slipped in a size
2918 * change here, but doing so is just silly.
2919 * We put oldsectors back because we *know* it is
2920 * safe, and trust userspace not to race with
2921 * itself
2922 */
2923 rdev->sectors = oldsectors;
2924 return -EBUSY;
2925 }
2926 }
2927 return len;
2928 }
2929
2930 static struct rdev_sysfs_entry rdev_size =
2931 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2932
2933
2934 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2935 {
2936 unsigned long long recovery_start = rdev->recovery_offset;
2937
2938 if (test_bit(In_sync, &rdev->flags) ||
2939 recovery_start == MaxSector)
2940 return sprintf(page, "none\n");
2941
2942 return sprintf(page, "%llu\n", recovery_start);
2943 }
2944
2945 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2946 {
2947 unsigned long long recovery_start;
2948
2949 if (cmd_match(buf, "none"))
2950 recovery_start = MaxSector;
2951 else if (strict_strtoull(buf, 10, &recovery_start))
2952 return -EINVAL;
2953
2954 if (rdev->mddev->pers &&
2955 rdev->raid_disk >= 0)
2956 return -EBUSY;
2957
2958 rdev->recovery_offset = recovery_start;
2959 if (recovery_start == MaxSector)
2960 set_bit(In_sync, &rdev->flags);
2961 else
2962 clear_bit(In_sync, &rdev->flags);
2963 return len;
2964 }
2965
2966 static struct rdev_sysfs_entry rdev_recovery_start =
2967 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2968
2969
2970 static ssize_t
2971 badblocks_show(struct badblocks *bb, char *page, int unack);
2972 static ssize_t
2973 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2974
2975 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2976 {
2977 return badblocks_show(&rdev->badblocks, page, 0);
2978 }
2979 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2980 {
2981 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2982 /* Maybe that ack was all we needed */
2983 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2984 wake_up(&rdev->blocked_wait);
2985 return rv;
2986 }
2987 static struct rdev_sysfs_entry rdev_bad_blocks =
2988 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2989
2990
2991 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2992 {
2993 return badblocks_show(&rdev->badblocks, page, 1);
2994 }
2995 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2996 {
2997 return badblocks_store(&rdev->badblocks, page, len, 1);
2998 }
2999 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3000 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3001
3002 static struct attribute *rdev_default_attrs[] = {
3003 &rdev_state.attr,
3004 &rdev_errors.attr,
3005 &rdev_slot.attr,
3006 &rdev_offset.attr,
3007 &rdev_size.attr,
3008 &rdev_recovery_start.attr,
3009 &rdev_bad_blocks.attr,
3010 &rdev_unack_bad_blocks.attr,
3011 NULL,
3012 };
3013 static ssize_t
3014 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3015 {
3016 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3017 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3018 struct mddev *mddev = rdev->mddev;
3019 ssize_t rv;
3020
3021 if (!entry->show)
3022 return -EIO;
3023
3024 rv = mddev ? mddev_lock(mddev) : -EBUSY;
3025 if (!rv) {
3026 if (rdev->mddev == NULL)
3027 rv = -EBUSY;
3028 else
3029 rv = entry->show(rdev, page);
3030 mddev_unlock(mddev);
3031 }
3032 return rv;
3033 }
3034
3035 static ssize_t
3036 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3037 const char *page, size_t length)
3038 {
3039 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3040 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3041 ssize_t rv;
3042 struct mddev *mddev = rdev->mddev;
3043
3044 if (!entry->store)
3045 return -EIO;
3046 if (!capable(CAP_SYS_ADMIN))
3047 return -EACCES;
3048 rv = mddev ? mddev_lock(mddev): -EBUSY;
3049 if (!rv) {
3050 if (rdev->mddev == NULL)
3051 rv = -EBUSY;
3052 else
3053 rv = entry->store(rdev, page, length);
3054 mddev_unlock(mddev);
3055 }
3056 return rv;
3057 }
3058
3059 static void rdev_free(struct kobject *ko)
3060 {
3061 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3062 kfree(rdev);
3063 }
3064 static const struct sysfs_ops rdev_sysfs_ops = {
3065 .show = rdev_attr_show,
3066 .store = rdev_attr_store,
3067 };
3068 static struct kobj_type rdev_ktype = {
3069 .release = rdev_free,
3070 .sysfs_ops = &rdev_sysfs_ops,
3071 .default_attrs = rdev_default_attrs,
3072 };
3073
3074 int md_rdev_init(struct md_rdev *rdev)
3075 {
3076 rdev->desc_nr = -1;
3077 rdev->saved_raid_disk = -1;
3078 rdev->raid_disk = -1;
3079 rdev->flags = 0;
3080 rdev->data_offset = 0;
3081 rdev->sb_events = 0;
3082 rdev->last_read_error.tv_sec = 0;
3083 rdev->last_read_error.tv_nsec = 0;
3084 rdev->sb_loaded = 0;
3085 rdev->bb_page = NULL;
3086 atomic_set(&rdev->nr_pending, 0);
3087 atomic_set(&rdev->read_errors, 0);
3088 atomic_set(&rdev->corrected_errors, 0);
3089
3090 INIT_LIST_HEAD(&rdev->same_set);
3091 init_waitqueue_head(&rdev->blocked_wait);
3092
3093 /* Add space to store bad block list.
3094 * This reserves the space even on arrays where it cannot
3095 * be used - I wonder if that matters
3096 */
3097 rdev->badblocks.count = 0;
3098 rdev->badblocks.shift = 0;
3099 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3100 seqlock_init(&rdev->badblocks.lock);
3101 if (rdev->badblocks.page == NULL)
3102 return -ENOMEM;
3103
3104 return 0;
3105 }
3106 EXPORT_SYMBOL_GPL(md_rdev_init);
3107 /*
3108 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3109 *
3110 * mark the device faulty if:
3111 *
3112 * - the device is nonexistent (zero size)
3113 * - the device has no valid superblock
3114 *
3115 * a faulty rdev _never_ has rdev->sb set.
3116 */
3117 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3118 {
3119 char b[BDEVNAME_SIZE];
3120 int err;
3121 struct md_rdev *rdev;
3122 sector_t size;
3123
3124 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3125 if (!rdev) {
3126 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3127 return ERR_PTR(-ENOMEM);
3128 }
3129
3130 err = md_rdev_init(rdev);
3131 if (err)
3132 goto abort_free;
3133 err = alloc_disk_sb(rdev);
3134 if (err)
3135 goto abort_free;
3136
3137 err = lock_rdev(rdev, newdev, super_format == -2);
3138 if (err)
3139 goto abort_free;
3140
3141 kobject_init(&rdev->kobj, &rdev_ktype);
3142
3143 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3144 if (!size) {
3145 printk(KERN_WARNING
3146 "md: %s has zero or unknown size, marking faulty!\n",
3147 bdevname(rdev->bdev,b));
3148 err = -EINVAL;
3149 goto abort_free;
3150 }
3151
3152 if (super_format >= 0) {
3153 err = super_types[super_format].
3154 load_super(rdev, NULL, super_minor);
3155 if (err == -EINVAL) {
3156 printk(KERN_WARNING
3157 "md: %s does not have a valid v%d.%d "
3158 "superblock, not importing!\n",
3159 bdevname(rdev->bdev,b),
3160 super_format, super_minor);
3161 goto abort_free;
3162 }
3163 if (err < 0) {
3164 printk(KERN_WARNING
3165 "md: could not read %s's sb, not importing!\n",
3166 bdevname(rdev->bdev,b));
3167 goto abort_free;
3168 }
3169 }
3170 if (super_format == -1)
3171 /* hot-add for 0.90, or non-persistent: so no badblocks */
3172 rdev->badblocks.shift = -1;
3173
3174 return rdev;
3175
3176 abort_free:
3177 if (rdev->bdev)
3178 unlock_rdev(rdev);
3179 free_disk_sb(rdev);
3180 kfree(rdev->badblocks.page);
3181 kfree(rdev);
3182 return ERR_PTR(err);
3183 }
3184
3185 /*
3186 * Check a full RAID array for plausibility
3187 */
3188
3189
3190 static void analyze_sbs(struct mddev * mddev)
3191 {
3192 int i;
3193 struct md_rdev *rdev, *freshest, *tmp;
3194 char b[BDEVNAME_SIZE];
3195
3196 freshest = NULL;
3197 rdev_for_each(rdev, tmp, mddev)
3198 switch (super_types[mddev->major_version].
3199 load_super(rdev, freshest, mddev->minor_version)) {
3200 case 1:
3201 freshest = rdev;
3202 break;
3203 case 0:
3204 break;
3205 default:
3206 printk( KERN_ERR \
3207 "md: fatal superblock inconsistency in %s"
3208 " -- removing from array\n",
3209 bdevname(rdev->bdev,b));
3210 kick_rdev_from_array(rdev);
3211 }
3212
3213
3214 super_types[mddev->major_version].
3215 validate_super(mddev, freshest);
3216
3217 i = 0;
3218 rdev_for_each(rdev, tmp, mddev) {
3219 if (mddev->max_disks &&
3220 (rdev->desc_nr >= mddev->max_disks ||
3221 i > mddev->max_disks)) {
3222 printk(KERN_WARNING
3223 "md: %s: %s: only %d devices permitted\n",
3224 mdname(mddev), bdevname(rdev->bdev, b),
3225 mddev->max_disks);
3226 kick_rdev_from_array(rdev);
3227 continue;
3228 }
3229 if (rdev != freshest)
3230 if (super_types[mddev->major_version].
3231 validate_super(mddev, rdev)) {
3232 printk(KERN_WARNING "md: kicking non-fresh %s"
3233 " from array!\n",
3234 bdevname(rdev->bdev,b));
3235 kick_rdev_from_array(rdev);
3236 continue;
3237 }
3238 if (mddev->level == LEVEL_MULTIPATH) {
3239 rdev->desc_nr = i++;
3240 rdev->raid_disk = rdev->desc_nr;
3241 set_bit(In_sync, &rdev->flags);
3242 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3243 rdev->raid_disk = -1;
3244 clear_bit(In_sync, &rdev->flags);
3245 }
3246 }
3247 }
3248
3249 /* Read a fixed-point number.
3250 * Numbers in sysfs attributes should be in "standard" units where
3251 * possible, so time should be in seconds.
3252 * However we internally use a a much smaller unit such as
3253 * milliseconds or jiffies.
3254 * This function takes a decimal number with a possible fractional
3255 * component, and produces an integer which is the result of
3256 * multiplying that number by 10^'scale'.
3257 * all without any floating-point arithmetic.
3258 */
3259 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3260 {
3261 unsigned long result = 0;
3262 long decimals = -1;
3263 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3264 if (*cp == '.')
3265 decimals = 0;
3266 else if (decimals < scale) {
3267 unsigned int value;
3268 value = *cp - '0';
3269 result = result * 10 + value;
3270 if (decimals >= 0)
3271 decimals++;
3272 }
3273 cp++;
3274 }
3275 if (*cp == '\n')
3276 cp++;
3277 if (*cp)
3278 return -EINVAL;
3279 if (decimals < 0)
3280 decimals = 0;
3281 while (decimals < scale) {
3282 result *= 10;
3283 decimals ++;
3284 }
3285 *res = result;
3286 return 0;
3287 }
3288
3289
3290 static void md_safemode_timeout(unsigned long data);
3291
3292 static ssize_t
3293 safe_delay_show(struct mddev *mddev, char *page)
3294 {
3295 int msec = (mddev->safemode_delay*1000)/HZ;
3296 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3297 }
3298 static ssize_t
3299 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3300 {
3301 unsigned long msec;
3302
3303 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3304 return -EINVAL;
3305 if (msec == 0)
3306 mddev->safemode_delay = 0;
3307 else {
3308 unsigned long old_delay = mddev->safemode_delay;
3309 mddev->safemode_delay = (msec*HZ)/1000;
3310 if (mddev->safemode_delay == 0)
3311 mddev->safemode_delay = 1;
3312 if (mddev->safemode_delay < old_delay)
3313 md_safemode_timeout((unsigned long)mddev);
3314 }
3315 return len;
3316 }
3317 static struct md_sysfs_entry md_safe_delay =
3318 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3319
3320 static ssize_t
3321 level_show(struct mddev *mddev, char *page)
3322 {
3323 struct md_personality *p = mddev->pers;
3324 if (p)
3325 return sprintf(page, "%s\n", p->name);
3326 else if (mddev->clevel[0])
3327 return sprintf(page, "%s\n", mddev->clevel);
3328 else if (mddev->level != LEVEL_NONE)
3329 return sprintf(page, "%d\n", mddev->level);
3330 else
3331 return 0;
3332 }
3333
3334 static ssize_t
3335 level_store(struct mddev *mddev, const char *buf, size_t len)
3336 {
3337 char clevel[16];
3338 ssize_t rv = len;
3339 struct md_personality *pers;
3340 long level;
3341 void *priv;
3342 struct md_rdev *rdev;
3343
3344 if (mddev->pers == NULL) {
3345 if (len == 0)
3346 return 0;
3347 if (len >= sizeof(mddev->clevel))
3348 return -ENOSPC;
3349 strncpy(mddev->clevel, buf, len);
3350 if (mddev->clevel[len-1] == '\n')
3351 len--;
3352 mddev->clevel[len] = 0;
3353 mddev->level = LEVEL_NONE;
3354 return rv;
3355 }
3356
3357 /* request to change the personality. Need to ensure:
3358 * - array is not engaged in resync/recovery/reshape
3359 * - old personality can be suspended
3360 * - new personality will access other array.
3361 */
3362
3363 if (mddev->sync_thread ||
3364 mddev->reshape_position != MaxSector ||
3365 mddev->sysfs_active)
3366 return -EBUSY;
3367
3368 if (!mddev->pers->quiesce) {
3369 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3370 mdname(mddev), mddev->pers->name);
3371 return -EINVAL;
3372 }
3373
3374 /* Now find the new personality */
3375 if (len == 0 || len >= sizeof(clevel))
3376 return -EINVAL;
3377 strncpy(clevel, buf, len);
3378 if (clevel[len-1] == '\n')
3379 len--;
3380 clevel[len] = 0;
3381 if (strict_strtol(clevel, 10, &level))
3382 level = LEVEL_NONE;
3383
3384 if (request_module("md-%s", clevel) != 0)
3385 request_module("md-level-%s", clevel);
3386 spin_lock(&pers_lock);
3387 pers = find_pers(level, clevel);
3388 if (!pers || !try_module_get(pers->owner)) {
3389 spin_unlock(&pers_lock);
3390 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3391 return -EINVAL;
3392 }
3393 spin_unlock(&pers_lock);
3394
3395 if (pers == mddev->pers) {
3396 /* Nothing to do! */
3397 module_put(pers->owner);
3398 return rv;
3399 }
3400 if (!pers->takeover) {
3401 module_put(pers->owner);
3402 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3403 mdname(mddev), clevel);
3404 return -EINVAL;
3405 }
3406
3407 list_for_each_entry(rdev, &mddev->disks, same_set)
3408 rdev->new_raid_disk = rdev->raid_disk;
3409
3410 /* ->takeover must set new_* and/or delta_disks
3411 * if it succeeds, and may set them when it fails.
3412 */
3413 priv = pers->takeover(mddev);
3414 if (IS_ERR(priv)) {
3415 mddev->new_level = mddev->level;
3416 mddev->new_layout = mddev->layout;
3417 mddev->new_chunk_sectors = mddev->chunk_sectors;
3418 mddev->raid_disks -= mddev->delta_disks;
3419 mddev->delta_disks = 0;
3420 module_put(pers->owner);
3421 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3422 mdname(mddev), clevel);
3423 return PTR_ERR(priv);
3424 }
3425
3426 /* Looks like we have a winner */
3427 mddev_suspend(mddev);
3428 mddev->pers->stop(mddev);
3429
3430 if (mddev->pers->sync_request == NULL &&
3431 pers->sync_request != NULL) {
3432 /* need to add the md_redundancy_group */
3433 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3434 printk(KERN_WARNING
3435 "md: cannot register extra attributes for %s\n",
3436 mdname(mddev));
3437 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3438 }
3439 if (mddev->pers->sync_request != NULL &&
3440 pers->sync_request == NULL) {
3441 /* need to remove the md_redundancy_group */
3442 if (mddev->to_remove == NULL)
3443 mddev->to_remove = &md_redundancy_group;
3444 }
3445
3446 if (mddev->pers->sync_request == NULL &&
3447 mddev->external) {
3448 /* We are converting from a no-redundancy array
3449 * to a redundancy array and metadata is managed
3450 * externally so we need to be sure that writes
3451 * won't block due to a need to transition
3452 * clean->dirty
3453 * until external management is started.
3454 */
3455 mddev->in_sync = 0;
3456 mddev->safemode_delay = 0;
3457 mddev->safemode = 0;
3458 }
3459
3460 list_for_each_entry(rdev, &mddev->disks, same_set) {
3461 if (rdev->raid_disk < 0)
3462 continue;
3463 if (rdev->new_raid_disk >= mddev->raid_disks)
3464 rdev->new_raid_disk = -1;
3465 if (rdev->new_raid_disk == rdev->raid_disk)
3466 continue;
3467 sysfs_unlink_rdev(mddev, rdev);
3468 }
3469 list_for_each_entry(rdev, &mddev->disks, same_set) {
3470 if (rdev->raid_disk < 0)
3471 continue;
3472 if (rdev->new_raid_disk == rdev->raid_disk)
3473 continue;
3474 rdev->raid_disk = rdev->new_raid_disk;
3475 if (rdev->raid_disk < 0)
3476 clear_bit(In_sync, &rdev->flags);
3477 else {
3478 if (sysfs_link_rdev(mddev, rdev))
3479 printk(KERN_WARNING "md: cannot register rd%d"
3480 " for %s after level change\n",
3481 rdev->raid_disk, mdname(mddev));
3482 }
3483 }
3484
3485 module_put(mddev->pers->owner);
3486 mddev->pers = pers;
3487 mddev->private = priv;
3488 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3489 mddev->level = mddev->new_level;
3490 mddev->layout = mddev->new_layout;
3491 mddev->chunk_sectors = mddev->new_chunk_sectors;
3492 mddev->delta_disks = 0;
3493 mddev->degraded = 0;
3494 if (mddev->pers->sync_request == NULL) {
3495 /* this is now an array without redundancy, so
3496 * it must always be in_sync
3497 */
3498 mddev->in_sync = 1;
3499 del_timer_sync(&mddev->safemode_timer);
3500 }
3501 pers->run(mddev);
3502 mddev_resume(mddev);
3503 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3504 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3505 md_wakeup_thread(mddev->thread);
3506 sysfs_notify(&mddev->kobj, NULL, "level");
3507 md_new_event(mddev);
3508 return rv;
3509 }
3510
3511 static struct md_sysfs_entry md_level =
3512 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3513
3514
3515 static ssize_t
3516 layout_show(struct mddev *mddev, char *page)
3517 {
3518 /* just a number, not meaningful for all levels */
3519 if (mddev->reshape_position != MaxSector &&
3520 mddev->layout != mddev->new_layout)
3521 return sprintf(page, "%d (%d)\n",
3522 mddev->new_layout, mddev->layout);
3523 return sprintf(page, "%d\n", mddev->layout);
3524 }
3525
3526 static ssize_t
3527 layout_store(struct mddev *mddev, const char *buf, size_t len)
3528 {
3529 char *e;
3530 unsigned long n = simple_strtoul(buf, &e, 10);
3531
3532 if (!*buf || (*e && *e != '\n'))
3533 return -EINVAL;
3534
3535 if (mddev->pers) {
3536 int err;
3537 if (mddev->pers->check_reshape == NULL)
3538 return -EBUSY;
3539 mddev->new_layout = n;
3540 err = mddev->pers->check_reshape(mddev);
3541 if (err) {
3542 mddev->new_layout = mddev->layout;
3543 return err;
3544 }
3545 } else {
3546 mddev->new_layout = n;
3547 if (mddev->reshape_position == MaxSector)
3548 mddev->layout = n;
3549 }
3550 return len;
3551 }
3552 static struct md_sysfs_entry md_layout =
3553 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3554
3555
3556 static ssize_t
3557 raid_disks_show(struct mddev *mddev, char *page)
3558 {
3559 if (mddev->raid_disks == 0)
3560 return 0;
3561 if (mddev->reshape_position != MaxSector &&
3562 mddev->delta_disks != 0)
3563 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3564 mddev->raid_disks - mddev->delta_disks);
3565 return sprintf(page, "%d\n", mddev->raid_disks);
3566 }
3567
3568 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3569
3570 static ssize_t
3571 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3572 {
3573 char *e;
3574 int rv = 0;
3575 unsigned long n = simple_strtoul(buf, &e, 10);
3576
3577 if (!*buf || (*e && *e != '\n'))
3578 return -EINVAL;
3579
3580 if (mddev->pers)
3581 rv = update_raid_disks(mddev, n);
3582 else if (mddev->reshape_position != MaxSector) {
3583 int olddisks = mddev->raid_disks - mddev->delta_disks;
3584 mddev->delta_disks = n - olddisks;
3585 mddev->raid_disks = n;
3586 } else
3587 mddev->raid_disks = n;
3588 return rv ? rv : len;
3589 }
3590 static struct md_sysfs_entry md_raid_disks =
3591 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3592
3593 static ssize_t
3594 chunk_size_show(struct mddev *mddev, char *page)
3595 {
3596 if (mddev->reshape_position != MaxSector &&
3597 mddev->chunk_sectors != mddev->new_chunk_sectors)
3598 return sprintf(page, "%d (%d)\n",
3599 mddev->new_chunk_sectors << 9,
3600 mddev->chunk_sectors << 9);
3601 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3602 }
3603
3604 static ssize_t
3605 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3606 {
3607 char *e;
3608 unsigned long n = simple_strtoul(buf, &e, 10);
3609
3610 if (!*buf || (*e && *e != '\n'))
3611 return -EINVAL;
3612
3613 if (mddev->pers) {
3614 int err;
3615 if (mddev->pers->check_reshape == NULL)
3616 return -EBUSY;
3617 mddev->new_chunk_sectors = n >> 9;
3618 err = mddev->pers->check_reshape(mddev);
3619 if (err) {
3620 mddev->new_chunk_sectors = mddev->chunk_sectors;
3621 return err;
3622 }
3623 } else {
3624 mddev->new_chunk_sectors = n >> 9;
3625 if (mddev->reshape_position == MaxSector)
3626 mddev->chunk_sectors = n >> 9;
3627 }
3628 return len;
3629 }
3630 static struct md_sysfs_entry md_chunk_size =
3631 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3632
3633 static ssize_t
3634 resync_start_show(struct mddev *mddev, char *page)
3635 {
3636 if (mddev->recovery_cp == MaxSector)
3637 return sprintf(page, "none\n");
3638 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3639 }
3640
3641 static ssize_t
3642 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3643 {
3644 char *e;
3645 unsigned long long n = simple_strtoull(buf, &e, 10);
3646
3647 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3648 return -EBUSY;
3649 if (cmd_match(buf, "none"))
3650 n = MaxSector;
3651 else if (!*buf || (*e && *e != '\n'))
3652 return -EINVAL;
3653
3654 mddev->recovery_cp = n;
3655 return len;
3656 }
3657 static struct md_sysfs_entry md_resync_start =
3658 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3659
3660 /*
3661 * The array state can be:
3662 *
3663 * clear
3664 * No devices, no size, no level
3665 * Equivalent to STOP_ARRAY ioctl
3666 * inactive
3667 * May have some settings, but array is not active
3668 * all IO results in error
3669 * When written, doesn't tear down array, but just stops it
3670 * suspended (not supported yet)
3671 * All IO requests will block. The array can be reconfigured.
3672 * Writing this, if accepted, will block until array is quiescent
3673 * readonly
3674 * no resync can happen. no superblocks get written.
3675 * write requests fail
3676 * read-auto
3677 * like readonly, but behaves like 'clean' on a write request.
3678 *
3679 * clean - no pending writes, but otherwise active.
3680 * When written to inactive array, starts without resync
3681 * If a write request arrives then
3682 * if metadata is known, mark 'dirty' and switch to 'active'.
3683 * if not known, block and switch to write-pending
3684 * If written to an active array that has pending writes, then fails.
3685 * active
3686 * fully active: IO and resync can be happening.
3687 * When written to inactive array, starts with resync
3688 *
3689 * write-pending
3690 * clean, but writes are blocked waiting for 'active' to be written.
3691 *
3692 * active-idle
3693 * like active, but no writes have been seen for a while (100msec).
3694 *
3695 */
3696 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3697 write_pending, active_idle, bad_word};
3698 static char *array_states[] = {
3699 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3700 "write-pending", "active-idle", NULL };
3701
3702 static int match_word(const char *word, char **list)
3703 {
3704 int n;
3705 for (n=0; list[n]; n++)
3706 if (cmd_match(word, list[n]))
3707 break;
3708 return n;
3709 }
3710
3711 static ssize_t
3712 array_state_show(struct mddev *mddev, char *page)
3713 {
3714 enum array_state st = inactive;
3715
3716 if (mddev->pers)
3717 switch(mddev->ro) {
3718 case 1:
3719 st = readonly;
3720 break;
3721 case 2:
3722 st = read_auto;
3723 break;
3724 case 0:
3725 if (mddev->in_sync)
3726 st = clean;
3727 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3728 st = write_pending;
3729 else if (mddev->safemode)
3730 st = active_idle;
3731 else
3732 st = active;
3733 }
3734 else {
3735 if (list_empty(&mddev->disks) &&
3736 mddev->raid_disks == 0 &&
3737 mddev->dev_sectors == 0)
3738 st = clear;
3739 else
3740 st = inactive;
3741 }
3742 return sprintf(page, "%s\n", array_states[st]);
3743 }
3744
3745 static int do_md_stop(struct mddev * mddev, int ro, int is_open);
3746 static int md_set_readonly(struct mddev * mddev, int is_open);
3747 static int do_md_run(struct mddev * mddev);
3748 static int restart_array(struct mddev *mddev);
3749
3750 static ssize_t
3751 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3752 {
3753 int err = -EINVAL;
3754 enum array_state st = match_word(buf, array_states);
3755 switch(st) {
3756 case bad_word:
3757 break;
3758 case clear:
3759 /* stopping an active array */
3760 if (atomic_read(&mddev->openers) > 0)
3761 return -EBUSY;
3762 err = do_md_stop(mddev, 0, 0);
3763 break;
3764 case inactive:
3765 /* stopping an active array */
3766 if (mddev->pers) {
3767 if (atomic_read(&mddev->openers) > 0)
3768 return -EBUSY;
3769 err = do_md_stop(mddev, 2, 0);
3770 } else
3771 err = 0; /* already inactive */
3772 break;
3773 case suspended:
3774 break; /* not supported yet */
3775 case readonly:
3776 if (mddev->pers)
3777 err = md_set_readonly(mddev, 0);
3778 else {
3779 mddev->ro = 1;
3780 set_disk_ro(mddev->gendisk, 1);
3781 err = do_md_run(mddev);
3782 }
3783 break;
3784 case read_auto:
3785 if (mddev->pers) {
3786 if (mddev->ro == 0)
3787 err = md_set_readonly(mddev, 0);
3788 else if (mddev->ro == 1)
3789 err = restart_array(mddev);
3790 if (err == 0) {
3791 mddev->ro = 2;
3792 set_disk_ro(mddev->gendisk, 0);
3793 }
3794 } else {
3795 mddev->ro = 2;
3796 err = do_md_run(mddev);
3797 }
3798 break;
3799 case clean:
3800 if (mddev->pers) {
3801 restart_array(mddev);
3802 spin_lock_irq(&mddev->write_lock);
3803 if (atomic_read(&mddev->writes_pending) == 0) {
3804 if (mddev->in_sync == 0) {
3805 mddev->in_sync = 1;
3806 if (mddev->safemode == 1)
3807 mddev->safemode = 0;
3808 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3809 }
3810 err = 0;
3811 } else
3812 err = -EBUSY;
3813 spin_unlock_irq(&mddev->write_lock);
3814 } else
3815 err = -EINVAL;
3816 break;
3817 case active:
3818 if (mddev->pers) {
3819 restart_array(mddev);
3820 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3821 wake_up(&mddev->sb_wait);
3822 err = 0;
3823 } else {
3824 mddev->ro = 0;
3825 set_disk_ro(mddev->gendisk, 0);
3826 err = do_md_run(mddev);
3827 }
3828 break;
3829 case write_pending:
3830 case active_idle:
3831 /* these cannot be set */
3832 break;
3833 }
3834 if (err)
3835 return err;
3836 else {
3837 if (mddev->hold_active == UNTIL_IOCTL)
3838 mddev->hold_active = 0;
3839 sysfs_notify_dirent_safe(mddev->sysfs_state);
3840 return len;
3841 }
3842 }
3843 static struct md_sysfs_entry md_array_state =
3844 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3845
3846 static ssize_t
3847 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3848 return sprintf(page, "%d\n",
3849 atomic_read(&mddev->max_corr_read_errors));
3850 }
3851
3852 static ssize_t
3853 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3854 {
3855 char *e;
3856 unsigned long n = simple_strtoul(buf, &e, 10);
3857
3858 if (*buf && (*e == 0 || *e == '\n')) {
3859 atomic_set(&mddev->max_corr_read_errors, n);
3860 return len;
3861 }
3862 return -EINVAL;
3863 }
3864
3865 static struct md_sysfs_entry max_corr_read_errors =
3866 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3867 max_corrected_read_errors_store);
3868
3869 static ssize_t
3870 null_show(struct mddev *mddev, char *page)
3871 {
3872 return -EINVAL;
3873 }
3874
3875 static ssize_t
3876 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3877 {
3878 /* buf must be %d:%d\n? giving major and minor numbers */
3879 /* The new device is added to the array.
3880 * If the array has a persistent superblock, we read the
3881 * superblock to initialise info and check validity.
3882 * Otherwise, only checking done is that in bind_rdev_to_array,
3883 * which mainly checks size.
3884 */
3885 char *e;
3886 int major = simple_strtoul(buf, &e, 10);
3887 int minor;
3888 dev_t dev;
3889 struct md_rdev *rdev;
3890 int err;
3891
3892 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3893 return -EINVAL;
3894 minor = simple_strtoul(e+1, &e, 10);
3895 if (*e && *e != '\n')
3896 return -EINVAL;
3897 dev = MKDEV(major, minor);
3898 if (major != MAJOR(dev) ||
3899 minor != MINOR(dev))
3900 return -EOVERFLOW;
3901
3902
3903 if (mddev->persistent) {
3904 rdev = md_import_device(dev, mddev->major_version,
3905 mddev->minor_version);
3906 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3907 struct md_rdev *rdev0
3908 = list_entry(mddev->disks.next,
3909 struct md_rdev, same_set);
3910 err = super_types[mddev->major_version]
3911 .load_super(rdev, rdev0, mddev->minor_version);
3912 if (err < 0)
3913 goto out;
3914 }
3915 } else if (mddev->external)
3916 rdev = md_import_device(dev, -2, -1);
3917 else
3918 rdev = md_import_device(dev, -1, -1);
3919
3920 if (IS_ERR(rdev))
3921 return PTR_ERR(rdev);
3922 err = bind_rdev_to_array(rdev, mddev);
3923 out:
3924 if (err)
3925 export_rdev(rdev);
3926 return err ? err : len;
3927 }
3928
3929 static struct md_sysfs_entry md_new_device =
3930 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3931
3932 static ssize_t
3933 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
3934 {
3935 char *end;
3936 unsigned long chunk, end_chunk;
3937
3938 if (!mddev->bitmap)
3939 goto out;
3940 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3941 while (*buf) {
3942 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3943 if (buf == end) break;
3944 if (*end == '-') { /* range */
3945 buf = end + 1;
3946 end_chunk = simple_strtoul(buf, &end, 0);
3947 if (buf == end) break;
3948 }
3949 if (*end && !isspace(*end)) break;
3950 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3951 buf = skip_spaces(end);
3952 }
3953 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3954 out:
3955 return len;
3956 }
3957
3958 static struct md_sysfs_entry md_bitmap =
3959 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3960
3961 static ssize_t
3962 size_show(struct mddev *mddev, char *page)
3963 {
3964 return sprintf(page, "%llu\n",
3965 (unsigned long long)mddev->dev_sectors / 2);
3966 }
3967
3968 static int update_size(struct mddev *mddev, sector_t num_sectors);
3969
3970 static ssize_t
3971 size_store(struct mddev *mddev, const char *buf, size_t len)
3972 {
3973 /* If array is inactive, we can reduce the component size, but
3974 * not increase it (except from 0).
3975 * If array is active, we can try an on-line resize
3976 */
3977 sector_t sectors;
3978 int err = strict_blocks_to_sectors(buf, &sectors);
3979
3980 if (err < 0)
3981 return err;
3982 if (mddev->pers) {
3983 err = update_size(mddev, sectors);
3984 md_update_sb(mddev, 1);
3985 } else {
3986 if (mddev->dev_sectors == 0 ||
3987 mddev->dev_sectors > sectors)
3988 mddev->dev_sectors = sectors;
3989 else
3990 err = -ENOSPC;
3991 }
3992 return err ? err : len;
3993 }
3994
3995 static struct md_sysfs_entry md_size =
3996 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3997
3998
3999 /* Metdata version.
4000 * This is one of
4001 * 'none' for arrays with no metadata (good luck...)
4002 * 'external' for arrays with externally managed metadata,
4003 * or N.M for internally known formats
4004 */
4005 static ssize_t
4006 metadata_show(struct mddev *mddev, char *page)
4007 {
4008 if (mddev->persistent)
4009 return sprintf(page, "%d.%d\n",
4010 mddev->major_version, mddev->minor_version);
4011 else if (mddev->external)
4012 return sprintf(page, "external:%s\n", mddev->metadata_type);
4013 else
4014 return sprintf(page, "none\n");
4015 }
4016
4017 static ssize_t
4018 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4019 {
4020 int major, minor;
4021 char *e;
4022 /* Changing the details of 'external' metadata is
4023 * always permitted. Otherwise there must be
4024 * no devices attached to the array.
4025 */
4026 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4027 ;
4028 else if (!list_empty(&mddev->disks))
4029 return -EBUSY;
4030
4031 if (cmd_match(buf, "none")) {
4032 mddev->persistent = 0;
4033 mddev->external = 0;
4034 mddev->major_version = 0;
4035 mddev->minor_version = 90;
4036 return len;
4037 }
4038 if (strncmp(buf, "external:", 9) == 0) {
4039 size_t namelen = len-9;
4040 if (namelen >= sizeof(mddev->metadata_type))
4041 namelen = sizeof(mddev->metadata_type)-1;
4042 strncpy(mddev->metadata_type, buf+9, namelen);
4043 mddev->metadata_type[namelen] = 0;
4044 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4045 mddev->metadata_type[--namelen] = 0;
4046 mddev->persistent = 0;
4047 mddev->external = 1;
4048 mddev->major_version = 0;
4049 mddev->minor_version = 90;
4050 return len;
4051 }
4052 major = simple_strtoul(buf, &e, 10);
4053 if (e==buf || *e != '.')
4054 return -EINVAL;
4055 buf = e+1;
4056 minor = simple_strtoul(buf, &e, 10);
4057 if (e==buf || (*e && *e != '\n') )
4058 return -EINVAL;
4059 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4060 return -ENOENT;
4061 mddev->major_version = major;
4062 mddev->minor_version = minor;
4063 mddev->persistent = 1;
4064 mddev->external = 0;
4065 return len;
4066 }
4067
4068 static struct md_sysfs_entry md_metadata =
4069 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4070
4071 static ssize_t
4072 action_show(struct mddev *mddev, char *page)
4073 {
4074 char *type = "idle";
4075 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4076 type = "frozen";
4077 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4078 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4079 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4080 type = "reshape";
4081 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4082 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4083 type = "resync";
4084 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4085 type = "check";
4086 else
4087 type = "repair";
4088 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4089 type = "recover";
4090 }
4091 return sprintf(page, "%s\n", type);
4092 }
4093
4094 static void reap_sync_thread(struct mddev *mddev);
4095
4096 static ssize_t
4097 action_store(struct mddev *mddev, const char *page, size_t len)
4098 {
4099 if (!mddev->pers || !mddev->pers->sync_request)
4100 return -EINVAL;
4101
4102 if (cmd_match(page, "frozen"))
4103 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4104 else
4105 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4106
4107 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4108 if (mddev->sync_thread) {
4109 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4110 reap_sync_thread(mddev);
4111 }
4112 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4113 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4114 return -EBUSY;
4115 else if (cmd_match(page, "resync"))
4116 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4117 else if (cmd_match(page, "recover")) {
4118 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4119 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4120 } else if (cmd_match(page, "reshape")) {
4121 int err;
4122 if (mddev->pers->start_reshape == NULL)
4123 return -EINVAL;
4124 err = mddev->pers->start_reshape(mddev);
4125 if (err)
4126 return err;
4127 sysfs_notify(&mddev->kobj, NULL, "degraded");
4128 } else {
4129 if (cmd_match(page, "check"))
4130 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4131 else if (!cmd_match(page, "repair"))
4132 return -EINVAL;
4133 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4134 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4135 }
4136 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4137 md_wakeup_thread(mddev->thread);
4138 sysfs_notify_dirent_safe(mddev->sysfs_action);
4139 return len;
4140 }
4141
4142 static ssize_t
4143 mismatch_cnt_show(struct mddev *mddev, char *page)
4144 {
4145 return sprintf(page, "%llu\n",
4146 (unsigned long long) mddev->resync_mismatches);
4147 }
4148
4149 static struct md_sysfs_entry md_scan_mode =
4150 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4151
4152
4153 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4154
4155 static ssize_t
4156 sync_min_show(struct mddev *mddev, char *page)
4157 {
4158 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4159 mddev->sync_speed_min ? "local": "system");
4160 }
4161
4162 static ssize_t
4163 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4164 {
4165 int min;
4166 char *e;
4167 if (strncmp(buf, "system", 6)==0) {
4168 mddev->sync_speed_min = 0;
4169 return len;
4170 }
4171 min = simple_strtoul(buf, &e, 10);
4172 if (buf == e || (*e && *e != '\n') || min <= 0)
4173 return -EINVAL;
4174 mddev->sync_speed_min = min;
4175 return len;
4176 }
4177
4178 static struct md_sysfs_entry md_sync_min =
4179 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4180
4181 static ssize_t
4182 sync_max_show(struct mddev *mddev, char *page)
4183 {
4184 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4185 mddev->sync_speed_max ? "local": "system");
4186 }
4187
4188 static ssize_t
4189 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4190 {
4191 int max;
4192 char *e;
4193 if (strncmp(buf, "system", 6)==0) {
4194 mddev->sync_speed_max = 0;
4195 return len;
4196 }
4197 max = simple_strtoul(buf, &e, 10);
4198 if (buf == e || (*e && *e != '\n') || max <= 0)
4199 return -EINVAL;
4200 mddev->sync_speed_max = max;
4201 return len;
4202 }
4203
4204 static struct md_sysfs_entry md_sync_max =
4205 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4206
4207 static ssize_t
4208 degraded_show(struct mddev *mddev, char *page)
4209 {
4210 return sprintf(page, "%d\n", mddev->degraded);
4211 }
4212 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4213
4214 static ssize_t
4215 sync_force_parallel_show(struct mddev *mddev, char *page)
4216 {
4217 return sprintf(page, "%d\n", mddev->parallel_resync);
4218 }
4219
4220 static ssize_t
4221 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4222 {
4223 long n;
4224
4225 if (strict_strtol(buf, 10, &n))
4226 return -EINVAL;
4227
4228 if (n != 0 && n != 1)
4229 return -EINVAL;
4230
4231 mddev->parallel_resync = n;
4232
4233 if (mddev->sync_thread)
4234 wake_up(&resync_wait);
4235
4236 return len;
4237 }
4238
4239 /* force parallel resync, even with shared block devices */
4240 static struct md_sysfs_entry md_sync_force_parallel =
4241 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4242 sync_force_parallel_show, sync_force_parallel_store);
4243
4244 static ssize_t
4245 sync_speed_show(struct mddev *mddev, char *page)
4246 {
4247 unsigned long resync, dt, db;
4248 if (mddev->curr_resync == 0)
4249 return sprintf(page, "none\n");
4250 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4251 dt = (jiffies - mddev->resync_mark) / HZ;
4252 if (!dt) dt++;
4253 db = resync - mddev->resync_mark_cnt;
4254 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4255 }
4256
4257 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4258
4259 static ssize_t
4260 sync_completed_show(struct mddev *mddev, char *page)
4261 {
4262 unsigned long long max_sectors, resync;
4263
4264 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4265 return sprintf(page, "none\n");
4266
4267 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4268 max_sectors = mddev->resync_max_sectors;
4269 else
4270 max_sectors = mddev->dev_sectors;
4271
4272 resync = mddev->curr_resync_completed;
4273 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4274 }
4275
4276 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4277
4278 static ssize_t
4279 min_sync_show(struct mddev *mddev, char *page)
4280 {
4281 return sprintf(page, "%llu\n",
4282 (unsigned long long)mddev->resync_min);
4283 }
4284 static ssize_t
4285 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4286 {
4287 unsigned long long min;
4288 if (strict_strtoull(buf, 10, &min))
4289 return -EINVAL;
4290 if (min > mddev->resync_max)
4291 return -EINVAL;
4292 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4293 return -EBUSY;
4294
4295 /* Must be a multiple of chunk_size */
4296 if (mddev->chunk_sectors) {
4297 sector_t temp = min;
4298 if (sector_div(temp, mddev->chunk_sectors))
4299 return -EINVAL;
4300 }
4301 mddev->resync_min = min;
4302
4303 return len;
4304 }
4305
4306 static struct md_sysfs_entry md_min_sync =
4307 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4308
4309 static ssize_t
4310 max_sync_show(struct mddev *mddev, char *page)
4311 {
4312 if (mddev->resync_max == MaxSector)
4313 return sprintf(page, "max\n");
4314 else
4315 return sprintf(page, "%llu\n",
4316 (unsigned long long)mddev->resync_max);
4317 }
4318 static ssize_t
4319 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4320 {
4321 if (strncmp(buf, "max", 3) == 0)
4322 mddev->resync_max = MaxSector;
4323 else {
4324 unsigned long long max;
4325 if (strict_strtoull(buf, 10, &max))
4326 return -EINVAL;
4327 if (max < mddev->resync_min)
4328 return -EINVAL;
4329 if (max < mddev->resync_max &&
4330 mddev->ro == 0 &&
4331 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4332 return -EBUSY;
4333
4334 /* Must be a multiple of chunk_size */
4335 if (mddev->chunk_sectors) {
4336 sector_t temp = max;
4337 if (sector_div(temp, mddev->chunk_sectors))
4338 return -EINVAL;
4339 }
4340 mddev->resync_max = max;
4341 }
4342 wake_up(&mddev->recovery_wait);
4343 return len;
4344 }
4345
4346 static struct md_sysfs_entry md_max_sync =
4347 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4348
4349 static ssize_t
4350 suspend_lo_show(struct mddev *mddev, char *page)
4351 {
4352 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4353 }
4354
4355 static ssize_t
4356 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4357 {
4358 char *e;
4359 unsigned long long new = simple_strtoull(buf, &e, 10);
4360 unsigned long long old = mddev->suspend_lo;
4361
4362 if (mddev->pers == NULL ||
4363 mddev->pers->quiesce == NULL)
4364 return -EINVAL;
4365 if (buf == e || (*e && *e != '\n'))
4366 return -EINVAL;
4367
4368 mddev->suspend_lo = new;
4369 if (new >= old)
4370 /* Shrinking suspended region */
4371 mddev->pers->quiesce(mddev, 2);
4372 else {
4373 /* Expanding suspended region - need to wait */
4374 mddev->pers->quiesce(mddev, 1);
4375 mddev->pers->quiesce(mddev, 0);
4376 }
4377 return len;
4378 }
4379 static struct md_sysfs_entry md_suspend_lo =
4380 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4381
4382
4383 static ssize_t
4384 suspend_hi_show(struct mddev *mddev, char *page)
4385 {
4386 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4387 }
4388
4389 static ssize_t
4390 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4391 {
4392 char *e;
4393 unsigned long long new = simple_strtoull(buf, &e, 10);
4394 unsigned long long old = mddev->suspend_hi;
4395
4396 if (mddev->pers == NULL ||
4397 mddev->pers->quiesce == NULL)
4398 return -EINVAL;
4399 if (buf == e || (*e && *e != '\n'))
4400 return -EINVAL;
4401
4402 mddev->suspend_hi = new;
4403 if (new <= old)
4404 /* Shrinking suspended region */
4405 mddev->pers->quiesce(mddev, 2);
4406 else {
4407 /* Expanding suspended region - need to wait */
4408 mddev->pers->quiesce(mddev, 1);
4409 mddev->pers->quiesce(mddev, 0);
4410 }
4411 return len;
4412 }
4413 static struct md_sysfs_entry md_suspend_hi =
4414 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4415
4416 static ssize_t
4417 reshape_position_show(struct mddev *mddev, char *page)
4418 {
4419 if (mddev->reshape_position != MaxSector)
4420 return sprintf(page, "%llu\n",
4421 (unsigned long long)mddev->reshape_position);
4422 strcpy(page, "none\n");
4423 return 5;
4424 }
4425
4426 static ssize_t
4427 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4428 {
4429 char *e;
4430 unsigned long long new = simple_strtoull(buf, &e, 10);
4431 if (mddev->pers)
4432 return -EBUSY;
4433 if (buf == e || (*e && *e != '\n'))
4434 return -EINVAL;
4435 mddev->reshape_position = new;
4436 mddev->delta_disks = 0;
4437 mddev->new_level = mddev->level;
4438 mddev->new_layout = mddev->layout;
4439 mddev->new_chunk_sectors = mddev->chunk_sectors;
4440 return len;
4441 }
4442
4443 static struct md_sysfs_entry md_reshape_position =
4444 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4445 reshape_position_store);
4446
4447 static ssize_t
4448 array_size_show(struct mddev *mddev, char *page)
4449 {
4450 if (mddev->external_size)
4451 return sprintf(page, "%llu\n",
4452 (unsigned long long)mddev->array_sectors/2);
4453 else
4454 return sprintf(page, "default\n");
4455 }
4456
4457 static ssize_t
4458 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4459 {
4460 sector_t sectors;
4461
4462 if (strncmp(buf, "default", 7) == 0) {
4463 if (mddev->pers)
4464 sectors = mddev->pers->size(mddev, 0, 0);
4465 else
4466 sectors = mddev->array_sectors;
4467
4468 mddev->external_size = 0;
4469 } else {
4470 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4471 return -EINVAL;
4472 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4473 return -E2BIG;
4474
4475 mddev->external_size = 1;
4476 }
4477
4478 mddev->array_sectors = sectors;
4479 if (mddev->pers) {
4480 set_capacity(mddev->gendisk, mddev->array_sectors);
4481 revalidate_disk(mddev->gendisk);
4482 }
4483 return len;
4484 }
4485
4486 static struct md_sysfs_entry md_array_size =
4487 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4488 array_size_store);
4489
4490 static struct attribute *md_default_attrs[] = {
4491 &md_level.attr,
4492 &md_layout.attr,
4493 &md_raid_disks.attr,
4494 &md_chunk_size.attr,
4495 &md_size.attr,
4496 &md_resync_start.attr,
4497 &md_metadata.attr,
4498 &md_new_device.attr,
4499 &md_safe_delay.attr,
4500 &md_array_state.attr,
4501 &md_reshape_position.attr,
4502 &md_array_size.attr,
4503 &max_corr_read_errors.attr,
4504 NULL,
4505 };
4506
4507 static struct attribute *md_redundancy_attrs[] = {
4508 &md_scan_mode.attr,
4509 &md_mismatches.attr,
4510 &md_sync_min.attr,
4511 &md_sync_max.attr,
4512 &md_sync_speed.attr,
4513 &md_sync_force_parallel.attr,
4514 &md_sync_completed.attr,
4515 &md_min_sync.attr,
4516 &md_max_sync.attr,
4517 &md_suspend_lo.attr,
4518 &md_suspend_hi.attr,
4519 &md_bitmap.attr,
4520 &md_degraded.attr,
4521 NULL,
4522 };
4523 static struct attribute_group md_redundancy_group = {
4524 .name = NULL,
4525 .attrs = md_redundancy_attrs,
4526 };
4527
4528
4529 static ssize_t
4530 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4531 {
4532 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4533 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4534 ssize_t rv;
4535
4536 if (!entry->show)
4537 return -EIO;
4538 spin_lock(&all_mddevs_lock);
4539 if (list_empty(&mddev->all_mddevs)) {
4540 spin_unlock(&all_mddevs_lock);
4541 return -EBUSY;
4542 }
4543 mddev_get(mddev);
4544 spin_unlock(&all_mddevs_lock);
4545
4546 rv = mddev_lock(mddev);
4547 if (!rv) {
4548 rv = entry->show(mddev, page);
4549 mddev_unlock(mddev);
4550 }
4551 mddev_put(mddev);
4552 return rv;
4553 }
4554
4555 static ssize_t
4556 md_attr_store(struct kobject *kobj, struct attribute *attr,
4557 const char *page, size_t length)
4558 {
4559 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4560 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4561 ssize_t rv;
4562
4563 if (!entry->store)
4564 return -EIO;
4565 if (!capable(CAP_SYS_ADMIN))
4566 return -EACCES;
4567 spin_lock(&all_mddevs_lock);
4568 if (list_empty(&mddev->all_mddevs)) {
4569 spin_unlock(&all_mddevs_lock);
4570 return -EBUSY;
4571 }
4572 mddev_get(mddev);
4573 spin_unlock(&all_mddevs_lock);
4574 rv = mddev_lock(mddev);
4575 if (!rv) {
4576 rv = entry->store(mddev, page, length);
4577 mddev_unlock(mddev);
4578 }
4579 mddev_put(mddev);
4580 return rv;
4581 }
4582
4583 static void md_free(struct kobject *ko)
4584 {
4585 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4586
4587 if (mddev->sysfs_state)
4588 sysfs_put(mddev->sysfs_state);
4589
4590 if (mddev->gendisk) {
4591 del_gendisk(mddev->gendisk);
4592 put_disk(mddev->gendisk);
4593 }
4594 if (mddev->queue)
4595 blk_cleanup_queue(mddev->queue);
4596
4597 kfree(mddev);
4598 }
4599
4600 static const struct sysfs_ops md_sysfs_ops = {
4601 .show = md_attr_show,
4602 .store = md_attr_store,
4603 };
4604 static struct kobj_type md_ktype = {
4605 .release = md_free,
4606 .sysfs_ops = &md_sysfs_ops,
4607 .default_attrs = md_default_attrs,
4608 };
4609
4610 int mdp_major = 0;
4611
4612 static void mddev_delayed_delete(struct work_struct *ws)
4613 {
4614 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4615
4616 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4617 kobject_del(&mddev->kobj);
4618 kobject_put(&mddev->kobj);
4619 }
4620
4621 static int md_alloc(dev_t dev, char *name)
4622 {
4623 static DEFINE_MUTEX(disks_mutex);
4624 struct mddev *mddev = mddev_find(dev);
4625 struct gendisk *disk;
4626 int partitioned;
4627 int shift;
4628 int unit;
4629 int error;
4630
4631 if (!mddev)
4632 return -ENODEV;
4633
4634 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4635 shift = partitioned ? MdpMinorShift : 0;
4636 unit = MINOR(mddev->unit) >> shift;
4637
4638 /* wait for any previous instance of this device to be
4639 * completely removed (mddev_delayed_delete).
4640 */
4641 flush_workqueue(md_misc_wq);
4642
4643 mutex_lock(&disks_mutex);
4644 error = -EEXIST;
4645 if (mddev->gendisk)
4646 goto abort;
4647
4648 if (name) {
4649 /* Need to ensure that 'name' is not a duplicate.
4650 */
4651 struct mddev *mddev2;
4652 spin_lock(&all_mddevs_lock);
4653
4654 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4655 if (mddev2->gendisk &&
4656 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4657 spin_unlock(&all_mddevs_lock);
4658 goto abort;
4659 }
4660 spin_unlock(&all_mddevs_lock);
4661 }
4662
4663 error = -ENOMEM;
4664 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4665 if (!mddev->queue)
4666 goto abort;
4667 mddev->queue->queuedata = mddev;
4668
4669 blk_queue_make_request(mddev->queue, md_make_request);
4670
4671 disk = alloc_disk(1 << shift);
4672 if (!disk) {
4673 blk_cleanup_queue(mddev->queue);
4674 mddev->queue = NULL;
4675 goto abort;
4676 }
4677 disk->major = MAJOR(mddev->unit);
4678 disk->first_minor = unit << shift;
4679 if (name)
4680 strcpy(disk->disk_name, name);
4681 else if (partitioned)
4682 sprintf(disk->disk_name, "md_d%d", unit);
4683 else
4684 sprintf(disk->disk_name, "md%d", unit);
4685 disk->fops = &md_fops;
4686 disk->private_data = mddev;
4687 disk->queue = mddev->queue;
4688 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4689 /* Allow extended partitions. This makes the
4690 * 'mdp' device redundant, but we can't really
4691 * remove it now.
4692 */
4693 disk->flags |= GENHD_FL_EXT_DEVT;
4694 mddev->gendisk = disk;
4695 /* As soon as we call add_disk(), another thread could get
4696 * through to md_open, so make sure it doesn't get too far
4697 */
4698 mutex_lock(&mddev->open_mutex);
4699 add_disk(disk);
4700
4701 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4702 &disk_to_dev(disk)->kobj, "%s", "md");
4703 if (error) {
4704 /* This isn't possible, but as kobject_init_and_add is marked
4705 * __must_check, we must do something with the result
4706 */
4707 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4708 disk->disk_name);
4709 error = 0;
4710 }
4711 if (mddev->kobj.sd &&
4712 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4713 printk(KERN_DEBUG "pointless warning\n");
4714 mutex_unlock(&mddev->open_mutex);
4715 abort:
4716 mutex_unlock(&disks_mutex);
4717 if (!error && mddev->kobj.sd) {
4718 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4719 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4720 }
4721 mddev_put(mddev);
4722 return error;
4723 }
4724
4725 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4726 {
4727 md_alloc(dev, NULL);
4728 return NULL;
4729 }
4730
4731 static int add_named_array(const char *val, struct kernel_param *kp)
4732 {
4733 /* val must be "md_*" where * is not all digits.
4734 * We allocate an array with a large free minor number, and
4735 * set the name to val. val must not already be an active name.
4736 */
4737 int len = strlen(val);
4738 char buf[DISK_NAME_LEN];
4739
4740 while (len && val[len-1] == '\n')
4741 len--;
4742 if (len >= DISK_NAME_LEN)
4743 return -E2BIG;
4744 strlcpy(buf, val, len+1);
4745 if (strncmp(buf, "md_", 3) != 0)
4746 return -EINVAL;
4747 return md_alloc(0, buf);
4748 }
4749
4750 static void md_safemode_timeout(unsigned long data)
4751 {
4752 struct mddev *mddev = (struct mddev *) data;
4753
4754 if (!atomic_read(&mddev->writes_pending)) {
4755 mddev->safemode = 1;
4756 if (mddev->external)
4757 sysfs_notify_dirent_safe(mddev->sysfs_state);
4758 }
4759 md_wakeup_thread(mddev->thread);
4760 }
4761
4762 static int start_dirty_degraded;
4763
4764 int md_run(struct mddev *mddev)
4765 {
4766 int err;
4767 struct md_rdev *rdev;
4768 struct md_personality *pers;
4769
4770 if (list_empty(&mddev->disks))
4771 /* cannot run an array with no devices.. */
4772 return -EINVAL;
4773
4774 if (mddev->pers)
4775 return -EBUSY;
4776 /* Cannot run until previous stop completes properly */
4777 if (mddev->sysfs_active)
4778 return -EBUSY;
4779
4780 /*
4781 * Analyze all RAID superblock(s)
4782 */
4783 if (!mddev->raid_disks) {
4784 if (!mddev->persistent)
4785 return -EINVAL;
4786 analyze_sbs(mddev);
4787 }
4788
4789 if (mddev->level != LEVEL_NONE)
4790 request_module("md-level-%d", mddev->level);
4791 else if (mddev->clevel[0])
4792 request_module("md-%s", mddev->clevel);
4793
4794 /*
4795 * Drop all container device buffers, from now on
4796 * the only valid external interface is through the md
4797 * device.
4798 */
4799 list_for_each_entry(rdev, &mddev->disks, same_set) {
4800 if (test_bit(Faulty, &rdev->flags))
4801 continue;
4802 sync_blockdev(rdev->bdev);
4803 invalidate_bdev(rdev->bdev);
4804
4805 /* perform some consistency tests on the device.
4806 * We don't want the data to overlap the metadata,
4807 * Internal Bitmap issues have been handled elsewhere.
4808 */
4809 if (rdev->meta_bdev) {
4810 /* Nothing to check */;
4811 } else if (rdev->data_offset < rdev->sb_start) {
4812 if (mddev->dev_sectors &&
4813 rdev->data_offset + mddev->dev_sectors
4814 > rdev->sb_start) {
4815 printk("md: %s: data overlaps metadata\n",
4816 mdname(mddev));
4817 return -EINVAL;
4818 }
4819 } else {
4820 if (rdev->sb_start + rdev->sb_size/512
4821 > rdev->data_offset) {
4822 printk("md: %s: metadata overlaps data\n",
4823 mdname(mddev));
4824 return -EINVAL;
4825 }
4826 }
4827 sysfs_notify_dirent_safe(rdev->sysfs_state);
4828 }
4829
4830 if (mddev->bio_set == NULL)
4831 mddev->bio_set = bioset_create(BIO_POOL_SIZE,
4832 sizeof(struct mddev *));
4833
4834 spin_lock(&pers_lock);
4835 pers = find_pers(mddev->level, mddev->clevel);
4836 if (!pers || !try_module_get(pers->owner)) {
4837 spin_unlock(&pers_lock);
4838 if (mddev->level != LEVEL_NONE)
4839 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4840 mddev->level);
4841 else
4842 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4843 mddev->clevel);
4844 return -EINVAL;
4845 }
4846 mddev->pers = pers;
4847 spin_unlock(&pers_lock);
4848 if (mddev->level != pers->level) {
4849 mddev->level = pers->level;
4850 mddev->new_level = pers->level;
4851 }
4852 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4853
4854 if (mddev->reshape_position != MaxSector &&
4855 pers->start_reshape == NULL) {
4856 /* This personality cannot handle reshaping... */
4857 mddev->pers = NULL;
4858 module_put(pers->owner);
4859 return -EINVAL;
4860 }
4861
4862 if (pers->sync_request) {
4863 /* Warn if this is a potentially silly
4864 * configuration.
4865 */
4866 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4867 struct md_rdev *rdev2;
4868 int warned = 0;
4869
4870 list_for_each_entry(rdev, &mddev->disks, same_set)
4871 list_for_each_entry(rdev2, &mddev->disks, same_set) {
4872 if (rdev < rdev2 &&
4873 rdev->bdev->bd_contains ==
4874 rdev2->bdev->bd_contains) {
4875 printk(KERN_WARNING
4876 "%s: WARNING: %s appears to be"
4877 " on the same physical disk as"
4878 " %s.\n",
4879 mdname(mddev),
4880 bdevname(rdev->bdev,b),
4881 bdevname(rdev2->bdev,b2));
4882 warned = 1;
4883 }
4884 }
4885
4886 if (warned)
4887 printk(KERN_WARNING
4888 "True protection against single-disk"
4889 " failure might be compromised.\n");
4890 }
4891
4892 mddev->recovery = 0;
4893 /* may be over-ridden by personality */
4894 mddev->resync_max_sectors = mddev->dev_sectors;
4895
4896 mddev->ok_start_degraded = start_dirty_degraded;
4897
4898 if (start_readonly && mddev->ro == 0)
4899 mddev->ro = 2; /* read-only, but switch on first write */
4900
4901 err = mddev->pers->run(mddev);
4902 if (err)
4903 printk(KERN_ERR "md: pers->run() failed ...\n");
4904 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4905 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4906 " but 'external_size' not in effect?\n", __func__);
4907 printk(KERN_ERR
4908 "md: invalid array_size %llu > default size %llu\n",
4909 (unsigned long long)mddev->array_sectors / 2,
4910 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4911 err = -EINVAL;
4912 mddev->pers->stop(mddev);
4913 }
4914 if (err == 0 && mddev->pers->sync_request) {
4915 err = bitmap_create(mddev);
4916 if (err) {
4917 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4918 mdname(mddev), err);
4919 mddev->pers->stop(mddev);
4920 }
4921 }
4922 if (err) {
4923 module_put(mddev->pers->owner);
4924 mddev->pers = NULL;
4925 bitmap_destroy(mddev);
4926 return err;
4927 }
4928 if (mddev->pers->sync_request) {
4929 if (mddev->kobj.sd &&
4930 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4931 printk(KERN_WARNING
4932 "md: cannot register extra attributes for %s\n",
4933 mdname(mddev));
4934 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4935 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4936 mddev->ro = 0;
4937
4938 atomic_set(&mddev->writes_pending,0);
4939 atomic_set(&mddev->max_corr_read_errors,
4940 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4941 mddev->safemode = 0;
4942 mddev->safemode_timer.function = md_safemode_timeout;
4943 mddev->safemode_timer.data = (unsigned long) mddev;
4944 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4945 mddev->in_sync = 1;
4946 smp_wmb();
4947 mddev->ready = 1;
4948 list_for_each_entry(rdev, &mddev->disks, same_set)
4949 if (rdev->raid_disk >= 0)
4950 if (sysfs_link_rdev(mddev, rdev))
4951 /* failure here is OK */;
4952
4953 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4954
4955 if (mddev->flags)
4956 md_update_sb(mddev, 0);
4957
4958 md_new_event(mddev);
4959 sysfs_notify_dirent_safe(mddev->sysfs_state);
4960 sysfs_notify_dirent_safe(mddev->sysfs_action);
4961 sysfs_notify(&mddev->kobj, NULL, "degraded");
4962 return 0;
4963 }
4964 EXPORT_SYMBOL_GPL(md_run);
4965
4966 static int do_md_run(struct mddev *mddev)
4967 {
4968 int err;
4969
4970 err = md_run(mddev);
4971 if (err)
4972 goto out;
4973 err = bitmap_load(mddev);
4974 if (err) {
4975 bitmap_destroy(mddev);
4976 goto out;
4977 }
4978
4979 md_wakeup_thread(mddev->thread);
4980 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4981
4982 set_capacity(mddev->gendisk, mddev->array_sectors);
4983 revalidate_disk(mddev->gendisk);
4984 mddev->changed = 1;
4985 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4986 out:
4987 return err;
4988 }
4989
4990 static int restart_array(struct mddev *mddev)
4991 {
4992 struct gendisk *disk = mddev->gendisk;
4993
4994 /* Complain if it has no devices */
4995 if (list_empty(&mddev->disks))
4996 return -ENXIO;
4997 if (!mddev->pers)
4998 return -EINVAL;
4999 if (!mddev->ro)
5000 return -EBUSY;
5001 mddev->safemode = 0;
5002 mddev->ro = 0;
5003 set_disk_ro(disk, 0);
5004 printk(KERN_INFO "md: %s switched to read-write mode.\n",
5005 mdname(mddev));
5006 /* Kick recovery or resync if necessary */
5007 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5008 md_wakeup_thread(mddev->thread);
5009 md_wakeup_thread(mddev->sync_thread);
5010 sysfs_notify_dirent_safe(mddev->sysfs_state);
5011 return 0;
5012 }
5013
5014 /* similar to deny_write_access, but accounts for our holding a reference
5015 * to the file ourselves */
5016 static int deny_bitmap_write_access(struct file * file)
5017 {
5018 struct inode *inode = file->f_mapping->host;
5019
5020 spin_lock(&inode->i_lock);
5021 if (atomic_read(&inode->i_writecount) > 1) {
5022 spin_unlock(&inode->i_lock);
5023 return -ETXTBSY;
5024 }
5025 atomic_set(&inode->i_writecount, -1);
5026 spin_unlock(&inode->i_lock);
5027
5028 return 0;
5029 }
5030
5031 void restore_bitmap_write_access(struct file *file)
5032 {
5033 struct inode *inode = file->f_mapping->host;
5034
5035 spin_lock(&inode->i_lock);
5036 atomic_set(&inode->i_writecount, 1);
5037 spin_unlock(&inode->i_lock);
5038 }
5039
5040 static void md_clean(struct mddev *mddev)
5041 {
5042 mddev->array_sectors = 0;
5043 mddev->external_size = 0;
5044 mddev->dev_sectors = 0;
5045 mddev->raid_disks = 0;
5046 mddev->recovery_cp = 0;
5047 mddev->resync_min = 0;
5048 mddev->resync_max = MaxSector;
5049 mddev->reshape_position = MaxSector;
5050 mddev->external = 0;
5051 mddev->persistent = 0;
5052 mddev->level = LEVEL_NONE;
5053 mddev->clevel[0] = 0;
5054 mddev->flags = 0;
5055 mddev->ro = 0;
5056 mddev->metadata_type[0] = 0;
5057 mddev->chunk_sectors = 0;
5058 mddev->ctime = mddev->utime = 0;
5059 mddev->layout = 0;
5060 mddev->max_disks = 0;
5061 mddev->events = 0;
5062 mddev->can_decrease_events = 0;
5063 mddev->delta_disks = 0;
5064 mddev->new_level = LEVEL_NONE;
5065 mddev->new_layout = 0;
5066 mddev->new_chunk_sectors = 0;
5067 mddev->curr_resync = 0;
5068 mddev->resync_mismatches = 0;
5069 mddev->suspend_lo = mddev->suspend_hi = 0;
5070 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5071 mddev->recovery = 0;
5072 mddev->in_sync = 0;
5073 mddev->changed = 0;
5074 mddev->degraded = 0;
5075 mddev->safemode = 0;
5076 mddev->bitmap_info.offset = 0;
5077 mddev->bitmap_info.default_offset = 0;
5078 mddev->bitmap_info.chunksize = 0;
5079 mddev->bitmap_info.daemon_sleep = 0;
5080 mddev->bitmap_info.max_write_behind = 0;
5081 }
5082
5083 static void __md_stop_writes(struct mddev *mddev)
5084 {
5085 if (mddev->sync_thread) {
5086 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5087 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5088 reap_sync_thread(mddev);
5089 }
5090
5091 del_timer_sync(&mddev->safemode_timer);
5092
5093 bitmap_flush(mddev);
5094 md_super_wait(mddev);
5095
5096 if (!mddev->in_sync || mddev->flags) {
5097 /* mark array as shutdown cleanly */
5098 mddev->in_sync = 1;
5099 md_update_sb(mddev, 1);
5100 }
5101 }
5102
5103 void md_stop_writes(struct mddev *mddev)
5104 {
5105 mddev_lock(mddev);
5106 __md_stop_writes(mddev);
5107 mddev_unlock(mddev);
5108 }
5109 EXPORT_SYMBOL_GPL(md_stop_writes);
5110
5111 void md_stop(struct mddev *mddev)
5112 {
5113 mddev->ready = 0;
5114 mddev->pers->stop(mddev);
5115 if (mddev->pers->sync_request && mddev->to_remove == NULL)
5116 mddev->to_remove = &md_redundancy_group;
5117 module_put(mddev->pers->owner);
5118 mddev->pers = NULL;
5119 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5120 }
5121 EXPORT_SYMBOL_GPL(md_stop);
5122
5123 static int md_set_readonly(struct mddev *mddev, int is_open)
5124 {
5125 int err = 0;
5126 mutex_lock(&mddev->open_mutex);
5127 if (atomic_read(&mddev->openers) > is_open) {
5128 printk("md: %s still in use.\n",mdname(mddev));
5129 err = -EBUSY;
5130 goto out;
5131 }
5132 if (mddev->pers) {
5133 __md_stop_writes(mddev);
5134
5135 err = -ENXIO;
5136 if (mddev->ro==1)
5137 goto out;
5138 mddev->ro = 1;
5139 set_disk_ro(mddev->gendisk, 1);
5140 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5141 sysfs_notify_dirent_safe(mddev->sysfs_state);
5142 err = 0;
5143 }
5144 out:
5145 mutex_unlock(&mddev->open_mutex);
5146 return err;
5147 }
5148
5149 /* mode:
5150 * 0 - completely stop and dis-assemble array
5151 * 2 - stop but do not disassemble array
5152 */
5153 static int do_md_stop(struct mddev * mddev, int mode, int is_open)
5154 {
5155 struct gendisk *disk = mddev->gendisk;
5156 struct md_rdev *rdev;
5157
5158 mutex_lock(&mddev->open_mutex);
5159 if (atomic_read(&mddev->openers) > is_open ||
5160 mddev->sysfs_active) {
5161 printk("md: %s still in use.\n",mdname(mddev));
5162 mutex_unlock(&mddev->open_mutex);
5163 return -EBUSY;
5164 }
5165
5166 if (mddev->pers) {
5167 if (mddev->ro)
5168 set_disk_ro(disk, 0);
5169
5170 __md_stop_writes(mddev);
5171 md_stop(mddev);
5172 mddev->queue->merge_bvec_fn = NULL;
5173 mddev->queue->backing_dev_info.congested_fn = NULL;
5174
5175 /* tell userspace to handle 'inactive' */
5176 sysfs_notify_dirent_safe(mddev->sysfs_state);
5177
5178 list_for_each_entry(rdev, &mddev->disks, same_set)
5179 if (rdev->raid_disk >= 0)
5180 sysfs_unlink_rdev(mddev, rdev);
5181
5182 set_capacity(disk, 0);
5183 mutex_unlock(&mddev->open_mutex);
5184 mddev->changed = 1;
5185 revalidate_disk(disk);
5186
5187 if (mddev->ro)
5188 mddev->ro = 0;
5189 } else
5190 mutex_unlock(&mddev->open_mutex);
5191 /*
5192 * Free resources if final stop
5193 */
5194 if (mode == 0) {
5195 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5196
5197 bitmap_destroy(mddev);
5198 if (mddev->bitmap_info.file) {
5199 restore_bitmap_write_access(mddev->bitmap_info.file);
5200 fput(mddev->bitmap_info.file);
5201 mddev->bitmap_info.file = NULL;
5202 }
5203 mddev->bitmap_info.offset = 0;
5204
5205 export_array(mddev);
5206
5207 md_clean(mddev);
5208 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5209 if (mddev->hold_active == UNTIL_STOP)
5210 mddev->hold_active = 0;
5211 }
5212 blk_integrity_unregister(disk);
5213 md_new_event(mddev);
5214 sysfs_notify_dirent_safe(mddev->sysfs_state);
5215 return 0;
5216 }
5217
5218 #ifndef MODULE
5219 static void autorun_array(struct mddev *mddev)
5220 {
5221 struct md_rdev *rdev;
5222 int err;
5223
5224 if (list_empty(&mddev->disks))
5225 return;
5226
5227 printk(KERN_INFO "md: running: ");
5228
5229 list_for_each_entry(rdev, &mddev->disks, same_set) {
5230 char b[BDEVNAME_SIZE];
5231 printk("<%s>", bdevname(rdev->bdev,b));
5232 }
5233 printk("\n");
5234
5235 err = do_md_run(mddev);
5236 if (err) {
5237 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5238 do_md_stop(mddev, 0, 0);
5239 }
5240 }
5241
5242 /*
5243 * lets try to run arrays based on all disks that have arrived
5244 * until now. (those are in pending_raid_disks)
5245 *
5246 * the method: pick the first pending disk, collect all disks with
5247 * the same UUID, remove all from the pending list and put them into
5248 * the 'same_array' list. Then order this list based on superblock
5249 * update time (freshest comes first), kick out 'old' disks and
5250 * compare superblocks. If everything's fine then run it.
5251 *
5252 * If "unit" is allocated, then bump its reference count
5253 */
5254 static void autorun_devices(int part)
5255 {
5256 struct md_rdev *rdev0, *rdev, *tmp;
5257 struct mddev *mddev;
5258 char b[BDEVNAME_SIZE];
5259
5260 printk(KERN_INFO "md: autorun ...\n");
5261 while (!list_empty(&pending_raid_disks)) {
5262 int unit;
5263 dev_t dev;
5264 LIST_HEAD(candidates);
5265 rdev0 = list_entry(pending_raid_disks.next,
5266 struct md_rdev, same_set);
5267
5268 printk(KERN_INFO "md: considering %s ...\n",
5269 bdevname(rdev0->bdev,b));
5270 INIT_LIST_HEAD(&candidates);
5271 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5272 if (super_90_load(rdev, rdev0, 0) >= 0) {
5273 printk(KERN_INFO "md: adding %s ...\n",
5274 bdevname(rdev->bdev,b));
5275 list_move(&rdev->same_set, &candidates);
5276 }
5277 /*
5278 * now we have a set of devices, with all of them having
5279 * mostly sane superblocks. It's time to allocate the
5280 * mddev.
5281 */
5282 if (part) {
5283 dev = MKDEV(mdp_major,
5284 rdev0->preferred_minor << MdpMinorShift);
5285 unit = MINOR(dev) >> MdpMinorShift;
5286 } else {
5287 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5288 unit = MINOR(dev);
5289 }
5290 if (rdev0->preferred_minor != unit) {
5291 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5292 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5293 break;
5294 }
5295
5296 md_probe(dev, NULL, NULL);
5297 mddev = mddev_find(dev);
5298 if (!mddev || !mddev->gendisk) {
5299 if (mddev)
5300 mddev_put(mddev);
5301 printk(KERN_ERR
5302 "md: cannot allocate memory for md drive.\n");
5303 break;
5304 }
5305 if (mddev_lock(mddev))
5306 printk(KERN_WARNING "md: %s locked, cannot run\n",
5307 mdname(mddev));
5308 else if (mddev->raid_disks || mddev->major_version
5309 || !list_empty(&mddev->disks)) {
5310 printk(KERN_WARNING
5311 "md: %s already running, cannot run %s\n",
5312 mdname(mddev), bdevname(rdev0->bdev,b));
5313 mddev_unlock(mddev);
5314 } else {
5315 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5316 mddev->persistent = 1;
5317 rdev_for_each_list(rdev, tmp, &candidates) {
5318 list_del_init(&rdev->same_set);
5319 if (bind_rdev_to_array(rdev, mddev))
5320 export_rdev(rdev);
5321 }
5322 autorun_array(mddev);
5323 mddev_unlock(mddev);
5324 }
5325 /* on success, candidates will be empty, on error
5326 * it won't...
5327 */
5328 rdev_for_each_list(rdev, tmp, &candidates) {
5329 list_del_init(&rdev->same_set);
5330 export_rdev(rdev);
5331 }
5332 mddev_put(mddev);
5333 }
5334 printk(KERN_INFO "md: ... autorun DONE.\n");
5335 }
5336 #endif /* !MODULE */
5337
5338 static int get_version(void __user * arg)
5339 {
5340 mdu_version_t ver;
5341
5342 ver.major = MD_MAJOR_VERSION;
5343 ver.minor = MD_MINOR_VERSION;
5344 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5345
5346 if (copy_to_user(arg, &ver, sizeof(ver)))
5347 return -EFAULT;
5348
5349 return 0;
5350 }
5351
5352 static int get_array_info(struct mddev * mddev, void __user * arg)
5353 {
5354 mdu_array_info_t info;
5355 int nr,working,insync,failed,spare;
5356 struct md_rdev *rdev;
5357
5358 nr=working=insync=failed=spare=0;
5359 list_for_each_entry(rdev, &mddev->disks, same_set) {
5360 nr++;
5361 if (test_bit(Faulty, &rdev->flags))
5362 failed++;
5363 else {
5364 working++;
5365 if (test_bit(In_sync, &rdev->flags))
5366 insync++;
5367 else
5368 spare++;
5369 }
5370 }
5371
5372 info.major_version = mddev->major_version;
5373 info.minor_version = mddev->minor_version;
5374 info.patch_version = MD_PATCHLEVEL_VERSION;
5375 info.ctime = mddev->ctime;
5376 info.level = mddev->level;
5377 info.size = mddev->dev_sectors / 2;
5378 if (info.size != mddev->dev_sectors / 2) /* overflow */
5379 info.size = -1;
5380 info.nr_disks = nr;
5381 info.raid_disks = mddev->raid_disks;
5382 info.md_minor = mddev->md_minor;
5383 info.not_persistent= !mddev->persistent;
5384
5385 info.utime = mddev->utime;
5386 info.state = 0;
5387 if (mddev->in_sync)
5388 info.state = (1<<MD_SB_CLEAN);
5389 if (mddev->bitmap && mddev->bitmap_info.offset)
5390 info.state = (1<<MD_SB_BITMAP_PRESENT);
5391 info.active_disks = insync;
5392 info.working_disks = working;
5393 info.failed_disks = failed;
5394 info.spare_disks = spare;
5395
5396 info.layout = mddev->layout;
5397 info.chunk_size = mddev->chunk_sectors << 9;
5398
5399 if (copy_to_user(arg, &info, sizeof(info)))
5400 return -EFAULT;
5401
5402 return 0;
5403 }
5404
5405 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5406 {
5407 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5408 char *ptr, *buf = NULL;
5409 int err = -ENOMEM;
5410
5411 if (md_allow_write(mddev))
5412 file = kmalloc(sizeof(*file), GFP_NOIO);
5413 else
5414 file = kmalloc(sizeof(*file), GFP_KERNEL);
5415
5416 if (!file)
5417 goto out;
5418
5419 /* bitmap disabled, zero the first byte and copy out */
5420 if (!mddev->bitmap || !mddev->bitmap->file) {
5421 file->pathname[0] = '\0';
5422 goto copy_out;
5423 }
5424
5425 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5426 if (!buf)
5427 goto out;
5428
5429 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5430 if (IS_ERR(ptr))
5431 goto out;
5432
5433 strcpy(file->pathname, ptr);
5434
5435 copy_out:
5436 err = 0;
5437 if (copy_to_user(arg, file, sizeof(*file)))
5438 err = -EFAULT;
5439 out:
5440 kfree(buf);
5441 kfree(file);
5442 return err;
5443 }
5444
5445 static int get_disk_info(struct mddev * mddev, void __user * arg)
5446 {
5447 mdu_disk_info_t info;
5448 struct md_rdev *rdev;
5449
5450 if (copy_from_user(&info, arg, sizeof(info)))
5451 return -EFAULT;
5452
5453 rdev = find_rdev_nr(mddev, info.number);
5454 if (rdev) {
5455 info.major = MAJOR(rdev->bdev->bd_dev);
5456 info.minor = MINOR(rdev->bdev->bd_dev);
5457 info.raid_disk = rdev->raid_disk;
5458 info.state = 0;
5459 if (test_bit(Faulty, &rdev->flags))
5460 info.state |= (1<<MD_DISK_FAULTY);
5461 else if (test_bit(In_sync, &rdev->flags)) {
5462 info.state |= (1<<MD_DISK_ACTIVE);
5463 info.state |= (1<<MD_DISK_SYNC);
5464 }
5465 if (test_bit(WriteMostly, &rdev->flags))
5466 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5467 } else {
5468 info.major = info.minor = 0;
5469 info.raid_disk = -1;
5470 info.state = (1<<MD_DISK_REMOVED);
5471 }
5472
5473 if (copy_to_user(arg, &info, sizeof(info)))
5474 return -EFAULT;
5475
5476 return 0;
5477 }
5478
5479 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5480 {
5481 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5482 struct md_rdev *rdev;
5483 dev_t dev = MKDEV(info->major,info->minor);
5484
5485 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5486 return -EOVERFLOW;
5487
5488 if (!mddev->raid_disks) {
5489 int err;
5490 /* expecting a device which has a superblock */
5491 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5492 if (IS_ERR(rdev)) {
5493 printk(KERN_WARNING
5494 "md: md_import_device returned %ld\n",
5495 PTR_ERR(rdev));
5496 return PTR_ERR(rdev);
5497 }
5498 if (!list_empty(&mddev->disks)) {
5499 struct md_rdev *rdev0
5500 = list_entry(mddev->disks.next,
5501 struct md_rdev, same_set);
5502 err = super_types[mddev->major_version]
5503 .load_super(rdev, rdev0, mddev->minor_version);
5504 if (err < 0) {
5505 printk(KERN_WARNING
5506 "md: %s has different UUID to %s\n",
5507 bdevname(rdev->bdev,b),
5508 bdevname(rdev0->bdev,b2));
5509 export_rdev(rdev);
5510 return -EINVAL;
5511 }
5512 }
5513 err = bind_rdev_to_array(rdev, mddev);
5514 if (err)
5515 export_rdev(rdev);
5516 return err;
5517 }
5518
5519 /*
5520 * add_new_disk can be used once the array is assembled
5521 * to add "hot spares". They must already have a superblock
5522 * written
5523 */
5524 if (mddev->pers) {
5525 int err;
5526 if (!mddev->pers->hot_add_disk) {
5527 printk(KERN_WARNING
5528 "%s: personality does not support diskops!\n",
5529 mdname(mddev));
5530 return -EINVAL;
5531 }
5532 if (mddev->persistent)
5533 rdev = md_import_device(dev, mddev->major_version,
5534 mddev->minor_version);
5535 else
5536 rdev = md_import_device(dev, -1, -1);
5537 if (IS_ERR(rdev)) {
5538 printk(KERN_WARNING
5539 "md: md_import_device returned %ld\n",
5540 PTR_ERR(rdev));
5541 return PTR_ERR(rdev);
5542 }
5543 /* set saved_raid_disk if appropriate */
5544 if (!mddev->persistent) {
5545 if (info->state & (1<<MD_DISK_SYNC) &&
5546 info->raid_disk < mddev->raid_disks) {
5547 rdev->raid_disk = info->raid_disk;
5548 set_bit(In_sync, &rdev->flags);
5549 } else
5550 rdev->raid_disk = -1;
5551 } else
5552 super_types[mddev->major_version].
5553 validate_super(mddev, rdev);
5554 if ((info->state & (1<<MD_DISK_SYNC)) &&
5555 (!test_bit(In_sync, &rdev->flags) ||
5556 rdev->raid_disk != info->raid_disk)) {
5557 /* This was a hot-add request, but events doesn't
5558 * match, so reject it.
5559 */
5560 export_rdev(rdev);
5561 return -EINVAL;
5562 }
5563
5564 if (test_bit(In_sync, &rdev->flags))
5565 rdev->saved_raid_disk = rdev->raid_disk;
5566 else
5567 rdev->saved_raid_disk = -1;
5568
5569 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5570 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5571 set_bit(WriteMostly, &rdev->flags);
5572 else
5573 clear_bit(WriteMostly, &rdev->flags);
5574
5575 rdev->raid_disk = -1;
5576 err = bind_rdev_to_array(rdev, mddev);
5577 if (!err && !mddev->pers->hot_remove_disk) {
5578 /* If there is hot_add_disk but no hot_remove_disk
5579 * then added disks for geometry changes,
5580 * and should be added immediately.
5581 */
5582 super_types[mddev->major_version].
5583 validate_super(mddev, rdev);
5584 err = mddev->pers->hot_add_disk(mddev, rdev);
5585 if (err)
5586 unbind_rdev_from_array(rdev);
5587 }
5588 if (err)
5589 export_rdev(rdev);
5590 else
5591 sysfs_notify_dirent_safe(rdev->sysfs_state);
5592
5593 md_update_sb(mddev, 1);
5594 if (mddev->degraded)
5595 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5596 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5597 if (!err)
5598 md_new_event(mddev);
5599 md_wakeup_thread(mddev->thread);
5600 return err;
5601 }
5602
5603 /* otherwise, add_new_disk is only allowed
5604 * for major_version==0 superblocks
5605 */
5606 if (mddev->major_version != 0) {
5607 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5608 mdname(mddev));
5609 return -EINVAL;
5610 }
5611
5612 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5613 int err;
5614 rdev = md_import_device(dev, -1, 0);
5615 if (IS_ERR(rdev)) {
5616 printk(KERN_WARNING
5617 "md: error, md_import_device() returned %ld\n",
5618 PTR_ERR(rdev));
5619 return PTR_ERR(rdev);
5620 }
5621 rdev->desc_nr = info->number;
5622 if (info->raid_disk < mddev->raid_disks)
5623 rdev->raid_disk = info->raid_disk;
5624 else
5625 rdev->raid_disk = -1;
5626
5627 if (rdev->raid_disk < mddev->raid_disks)
5628 if (info->state & (1<<MD_DISK_SYNC))
5629 set_bit(In_sync, &rdev->flags);
5630
5631 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5632 set_bit(WriteMostly, &rdev->flags);
5633
5634 if (!mddev->persistent) {
5635 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5636 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5637 } else
5638 rdev->sb_start = calc_dev_sboffset(rdev);
5639 rdev->sectors = rdev->sb_start;
5640
5641 err = bind_rdev_to_array(rdev, mddev);
5642 if (err) {
5643 export_rdev(rdev);
5644 return err;
5645 }
5646 }
5647
5648 return 0;
5649 }
5650
5651 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5652 {
5653 char b[BDEVNAME_SIZE];
5654 struct md_rdev *rdev;
5655
5656 rdev = find_rdev(mddev, dev);
5657 if (!rdev)
5658 return -ENXIO;
5659
5660 if (rdev->raid_disk >= 0)
5661 goto busy;
5662
5663 kick_rdev_from_array(rdev);
5664 md_update_sb(mddev, 1);
5665 md_new_event(mddev);
5666
5667 return 0;
5668 busy:
5669 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5670 bdevname(rdev->bdev,b), mdname(mddev));
5671 return -EBUSY;
5672 }
5673
5674 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5675 {
5676 char b[BDEVNAME_SIZE];
5677 int err;
5678 struct md_rdev *rdev;
5679
5680 if (!mddev->pers)
5681 return -ENODEV;
5682
5683 if (mddev->major_version != 0) {
5684 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5685 " version-0 superblocks.\n",
5686 mdname(mddev));
5687 return -EINVAL;
5688 }
5689 if (!mddev->pers->hot_add_disk) {
5690 printk(KERN_WARNING
5691 "%s: personality does not support diskops!\n",
5692 mdname(mddev));
5693 return -EINVAL;
5694 }
5695
5696 rdev = md_import_device(dev, -1, 0);
5697 if (IS_ERR(rdev)) {
5698 printk(KERN_WARNING
5699 "md: error, md_import_device() returned %ld\n",
5700 PTR_ERR(rdev));
5701 return -EINVAL;
5702 }
5703
5704 if (mddev->persistent)
5705 rdev->sb_start = calc_dev_sboffset(rdev);
5706 else
5707 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5708
5709 rdev->sectors = rdev->sb_start;
5710
5711 if (test_bit(Faulty, &rdev->flags)) {
5712 printk(KERN_WARNING
5713 "md: can not hot-add faulty %s disk to %s!\n",
5714 bdevname(rdev->bdev,b), mdname(mddev));
5715 err = -EINVAL;
5716 goto abort_export;
5717 }
5718 clear_bit(In_sync, &rdev->flags);
5719 rdev->desc_nr = -1;
5720 rdev->saved_raid_disk = -1;
5721 err = bind_rdev_to_array(rdev, mddev);
5722 if (err)
5723 goto abort_export;
5724
5725 /*
5726 * The rest should better be atomic, we can have disk failures
5727 * noticed in interrupt contexts ...
5728 */
5729
5730 rdev->raid_disk = -1;
5731
5732 md_update_sb(mddev, 1);
5733
5734 /*
5735 * Kick recovery, maybe this spare has to be added to the
5736 * array immediately.
5737 */
5738 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5739 md_wakeup_thread(mddev->thread);
5740 md_new_event(mddev);
5741 return 0;
5742
5743 abort_export:
5744 export_rdev(rdev);
5745 return err;
5746 }
5747
5748 static int set_bitmap_file(struct mddev *mddev, int fd)
5749 {
5750 int err;
5751
5752 if (mddev->pers) {
5753 if (!mddev->pers->quiesce)
5754 return -EBUSY;
5755 if (mddev->recovery || mddev->sync_thread)
5756 return -EBUSY;
5757 /* we should be able to change the bitmap.. */
5758 }
5759
5760
5761 if (fd >= 0) {
5762 if (mddev->bitmap)
5763 return -EEXIST; /* cannot add when bitmap is present */
5764 mddev->bitmap_info.file = fget(fd);
5765
5766 if (mddev->bitmap_info.file == NULL) {
5767 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5768 mdname(mddev));
5769 return -EBADF;
5770 }
5771
5772 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5773 if (err) {
5774 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5775 mdname(mddev));
5776 fput(mddev->bitmap_info.file);
5777 mddev->bitmap_info.file = NULL;
5778 return err;
5779 }
5780 mddev->bitmap_info.offset = 0; /* file overrides offset */
5781 } else if (mddev->bitmap == NULL)
5782 return -ENOENT; /* cannot remove what isn't there */
5783 err = 0;
5784 if (mddev->pers) {
5785 mddev->pers->quiesce(mddev, 1);
5786 if (fd >= 0) {
5787 err = bitmap_create(mddev);
5788 if (!err)
5789 err = bitmap_load(mddev);
5790 }
5791 if (fd < 0 || err) {
5792 bitmap_destroy(mddev);
5793 fd = -1; /* make sure to put the file */
5794 }
5795 mddev->pers->quiesce(mddev, 0);
5796 }
5797 if (fd < 0) {
5798 if (mddev->bitmap_info.file) {
5799 restore_bitmap_write_access(mddev->bitmap_info.file);
5800 fput(mddev->bitmap_info.file);
5801 }
5802 mddev->bitmap_info.file = NULL;
5803 }
5804
5805 return err;
5806 }
5807
5808 /*
5809 * set_array_info is used two different ways
5810 * The original usage is when creating a new array.
5811 * In this usage, raid_disks is > 0 and it together with
5812 * level, size, not_persistent,layout,chunksize determine the
5813 * shape of the array.
5814 * This will always create an array with a type-0.90.0 superblock.
5815 * The newer usage is when assembling an array.
5816 * In this case raid_disks will be 0, and the major_version field is
5817 * use to determine which style super-blocks are to be found on the devices.
5818 * The minor and patch _version numbers are also kept incase the
5819 * super_block handler wishes to interpret them.
5820 */
5821 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
5822 {
5823
5824 if (info->raid_disks == 0) {
5825 /* just setting version number for superblock loading */
5826 if (info->major_version < 0 ||
5827 info->major_version >= ARRAY_SIZE(super_types) ||
5828 super_types[info->major_version].name == NULL) {
5829 /* maybe try to auto-load a module? */
5830 printk(KERN_INFO
5831 "md: superblock version %d not known\n",
5832 info->major_version);
5833 return -EINVAL;
5834 }
5835 mddev->major_version = info->major_version;
5836 mddev->minor_version = info->minor_version;
5837 mddev->patch_version = info->patch_version;
5838 mddev->persistent = !info->not_persistent;
5839 /* ensure mddev_put doesn't delete this now that there
5840 * is some minimal configuration.
5841 */
5842 mddev->ctime = get_seconds();
5843 return 0;
5844 }
5845 mddev->major_version = MD_MAJOR_VERSION;
5846 mddev->minor_version = MD_MINOR_VERSION;
5847 mddev->patch_version = MD_PATCHLEVEL_VERSION;
5848 mddev->ctime = get_seconds();
5849
5850 mddev->level = info->level;
5851 mddev->clevel[0] = 0;
5852 mddev->dev_sectors = 2 * (sector_t)info->size;
5853 mddev->raid_disks = info->raid_disks;
5854 /* don't set md_minor, it is determined by which /dev/md* was
5855 * openned
5856 */
5857 if (info->state & (1<<MD_SB_CLEAN))
5858 mddev->recovery_cp = MaxSector;
5859 else
5860 mddev->recovery_cp = 0;
5861 mddev->persistent = ! info->not_persistent;
5862 mddev->external = 0;
5863
5864 mddev->layout = info->layout;
5865 mddev->chunk_sectors = info->chunk_size >> 9;
5866
5867 mddev->max_disks = MD_SB_DISKS;
5868
5869 if (mddev->persistent)
5870 mddev->flags = 0;
5871 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5872
5873 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5874 mddev->bitmap_info.offset = 0;
5875
5876 mddev->reshape_position = MaxSector;
5877
5878 /*
5879 * Generate a 128 bit UUID
5880 */
5881 get_random_bytes(mddev->uuid, 16);
5882
5883 mddev->new_level = mddev->level;
5884 mddev->new_chunk_sectors = mddev->chunk_sectors;
5885 mddev->new_layout = mddev->layout;
5886 mddev->delta_disks = 0;
5887
5888 return 0;
5889 }
5890
5891 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
5892 {
5893 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5894
5895 if (mddev->external_size)
5896 return;
5897
5898 mddev->array_sectors = array_sectors;
5899 }
5900 EXPORT_SYMBOL(md_set_array_sectors);
5901
5902 static int update_size(struct mddev *mddev, sector_t num_sectors)
5903 {
5904 struct md_rdev *rdev;
5905 int rv;
5906 int fit = (num_sectors == 0);
5907
5908 if (mddev->pers->resize == NULL)
5909 return -EINVAL;
5910 /* The "num_sectors" is the number of sectors of each device that
5911 * is used. This can only make sense for arrays with redundancy.
5912 * linear and raid0 always use whatever space is available. We can only
5913 * consider changing this number if no resync or reconstruction is
5914 * happening, and if the new size is acceptable. It must fit before the
5915 * sb_start or, if that is <data_offset, it must fit before the size
5916 * of each device. If num_sectors is zero, we find the largest size
5917 * that fits.
5918 */
5919 if (mddev->sync_thread)
5920 return -EBUSY;
5921 if (mddev->bitmap)
5922 /* Sorry, cannot grow a bitmap yet, just remove it,
5923 * grow, and re-add.
5924 */
5925 return -EBUSY;
5926 list_for_each_entry(rdev, &mddev->disks, same_set) {
5927 sector_t avail = rdev->sectors;
5928
5929 if (fit && (num_sectors == 0 || num_sectors > avail))
5930 num_sectors = avail;
5931 if (avail < num_sectors)
5932 return -ENOSPC;
5933 }
5934 rv = mddev->pers->resize(mddev, num_sectors);
5935 if (!rv)
5936 revalidate_disk(mddev->gendisk);
5937 return rv;
5938 }
5939
5940 static int update_raid_disks(struct mddev *mddev, int raid_disks)
5941 {
5942 int rv;
5943 /* change the number of raid disks */
5944 if (mddev->pers->check_reshape == NULL)
5945 return -EINVAL;
5946 if (raid_disks <= 0 ||
5947 (mddev->max_disks && raid_disks >= mddev->max_disks))
5948 return -EINVAL;
5949 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5950 return -EBUSY;
5951 mddev->delta_disks = raid_disks - mddev->raid_disks;
5952
5953 rv = mddev->pers->check_reshape(mddev);
5954 if (rv < 0)
5955 mddev->delta_disks = 0;
5956 return rv;
5957 }
5958
5959
5960 /*
5961 * update_array_info is used to change the configuration of an
5962 * on-line array.
5963 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5964 * fields in the info are checked against the array.
5965 * Any differences that cannot be handled will cause an error.
5966 * Normally, only one change can be managed at a time.
5967 */
5968 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
5969 {
5970 int rv = 0;
5971 int cnt = 0;
5972 int state = 0;
5973
5974 /* calculate expected state,ignoring low bits */
5975 if (mddev->bitmap && mddev->bitmap_info.offset)
5976 state |= (1 << MD_SB_BITMAP_PRESENT);
5977
5978 if (mddev->major_version != info->major_version ||
5979 mddev->minor_version != info->minor_version ||
5980 /* mddev->patch_version != info->patch_version || */
5981 mddev->ctime != info->ctime ||
5982 mddev->level != info->level ||
5983 /* mddev->layout != info->layout || */
5984 !mddev->persistent != info->not_persistent||
5985 mddev->chunk_sectors != info->chunk_size >> 9 ||
5986 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5987 ((state^info->state) & 0xfffffe00)
5988 )
5989 return -EINVAL;
5990 /* Check there is only one change */
5991 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5992 cnt++;
5993 if (mddev->raid_disks != info->raid_disks)
5994 cnt++;
5995 if (mddev->layout != info->layout)
5996 cnt++;
5997 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5998 cnt++;
5999 if (cnt == 0)
6000 return 0;
6001 if (cnt > 1)
6002 return -EINVAL;
6003
6004 if (mddev->layout != info->layout) {
6005 /* Change layout
6006 * we don't need to do anything at the md level, the
6007 * personality will take care of it all.
6008 */
6009 if (mddev->pers->check_reshape == NULL)
6010 return -EINVAL;
6011 else {
6012 mddev->new_layout = info->layout;
6013 rv = mddev->pers->check_reshape(mddev);
6014 if (rv)
6015 mddev->new_layout = mddev->layout;
6016 return rv;
6017 }
6018 }
6019 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6020 rv = update_size(mddev, (sector_t)info->size * 2);
6021
6022 if (mddev->raid_disks != info->raid_disks)
6023 rv = update_raid_disks(mddev, info->raid_disks);
6024
6025 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6026 if (mddev->pers->quiesce == NULL)
6027 return -EINVAL;
6028 if (mddev->recovery || mddev->sync_thread)
6029 return -EBUSY;
6030 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6031 /* add the bitmap */
6032 if (mddev->bitmap)
6033 return -EEXIST;
6034 if (mddev->bitmap_info.default_offset == 0)
6035 return -EINVAL;
6036 mddev->bitmap_info.offset =
6037 mddev->bitmap_info.default_offset;
6038 mddev->pers->quiesce(mddev, 1);
6039 rv = bitmap_create(mddev);
6040 if (!rv)
6041 rv = bitmap_load(mddev);
6042 if (rv)
6043 bitmap_destroy(mddev);
6044 mddev->pers->quiesce(mddev, 0);
6045 } else {
6046 /* remove the bitmap */
6047 if (!mddev->bitmap)
6048 return -ENOENT;
6049 if (mddev->bitmap->file)
6050 return -EINVAL;
6051 mddev->pers->quiesce(mddev, 1);
6052 bitmap_destroy(mddev);
6053 mddev->pers->quiesce(mddev, 0);
6054 mddev->bitmap_info.offset = 0;
6055 }
6056 }
6057 md_update_sb(mddev, 1);
6058 return rv;
6059 }
6060
6061 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6062 {
6063 struct md_rdev *rdev;
6064
6065 if (mddev->pers == NULL)
6066 return -ENODEV;
6067
6068 rdev = find_rdev(mddev, dev);
6069 if (!rdev)
6070 return -ENODEV;
6071
6072 md_error(mddev, rdev);
6073 if (!test_bit(Faulty, &rdev->flags))
6074 return -EBUSY;
6075 return 0;
6076 }
6077
6078 /*
6079 * We have a problem here : there is no easy way to give a CHS
6080 * virtual geometry. We currently pretend that we have a 2 heads
6081 * 4 sectors (with a BIG number of cylinders...). This drives
6082 * dosfs just mad... ;-)
6083 */
6084 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6085 {
6086 struct mddev *mddev = bdev->bd_disk->private_data;
6087
6088 geo->heads = 2;
6089 geo->sectors = 4;
6090 geo->cylinders = mddev->array_sectors / 8;
6091 return 0;
6092 }
6093
6094 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6095 unsigned int cmd, unsigned long arg)
6096 {
6097 int err = 0;
6098 void __user *argp = (void __user *)arg;
6099 struct mddev *mddev = NULL;
6100 int ro;
6101
6102 switch (cmd) {
6103 case RAID_VERSION:
6104 case GET_ARRAY_INFO:
6105 case GET_DISK_INFO:
6106 break;
6107 default:
6108 if (!capable(CAP_SYS_ADMIN))
6109 return -EACCES;
6110 }
6111
6112 /*
6113 * Commands dealing with the RAID driver but not any
6114 * particular array:
6115 */
6116 switch (cmd)
6117 {
6118 case RAID_VERSION:
6119 err = get_version(argp);
6120 goto done;
6121
6122 case PRINT_RAID_DEBUG:
6123 err = 0;
6124 md_print_devices();
6125 goto done;
6126
6127 #ifndef MODULE
6128 case RAID_AUTORUN:
6129 err = 0;
6130 autostart_arrays(arg);
6131 goto done;
6132 #endif
6133 default:;
6134 }
6135
6136 /*
6137 * Commands creating/starting a new array:
6138 */
6139
6140 mddev = bdev->bd_disk->private_data;
6141
6142 if (!mddev) {
6143 BUG();
6144 goto abort;
6145 }
6146
6147 err = mddev_lock(mddev);
6148 if (err) {
6149 printk(KERN_INFO
6150 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6151 err, cmd);
6152 goto abort;
6153 }
6154
6155 switch (cmd)
6156 {
6157 case SET_ARRAY_INFO:
6158 {
6159 mdu_array_info_t info;
6160 if (!arg)
6161 memset(&info, 0, sizeof(info));
6162 else if (copy_from_user(&info, argp, sizeof(info))) {
6163 err = -EFAULT;
6164 goto abort_unlock;
6165 }
6166 if (mddev->pers) {
6167 err = update_array_info(mddev, &info);
6168 if (err) {
6169 printk(KERN_WARNING "md: couldn't update"
6170 " array info. %d\n", err);
6171 goto abort_unlock;
6172 }
6173 goto done_unlock;
6174 }
6175 if (!list_empty(&mddev->disks)) {
6176 printk(KERN_WARNING
6177 "md: array %s already has disks!\n",
6178 mdname(mddev));
6179 err = -EBUSY;
6180 goto abort_unlock;
6181 }
6182 if (mddev->raid_disks) {
6183 printk(KERN_WARNING
6184 "md: array %s already initialised!\n",
6185 mdname(mddev));
6186 err = -EBUSY;
6187 goto abort_unlock;
6188 }
6189 err = set_array_info(mddev, &info);
6190 if (err) {
6191 printk(KERN_WARNING "md: couldn't set"
6192 " array info. %d\n", err);
6193 goto abort_unlock;
6194 }
6195 }
6196 goto done_unlock;
6197
6198 default:;
6199 }
6200
6201 /*
6202 * Commands querying/configuring an existing array:
6203 */
6204 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6205 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6206 if ((!mddev->raid_disks && !mddev->external)
6207 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6208 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6209 && cmd != GET_BITMAP_FILE) {
6210 err = -ENODEV;
6211 goto abort_unlock;
6212 }
6213
6214 /*
6215 * Commands even a read-only array can execute:
6216 */
6217 switch (cmd)
6218 {
6219 case GET_ARRAY_INFO:
6220 err = get_array_info(mddev, argp);
6221 goto done_unlock;
6222
6223 case GET_BITMAP_FILE:
6224 err = get_bitmap_file(mddev, argp);
6225 goto done_unlock;
6226
6227 case GET_DISK_INFO:
6228 err = get_disk_info(mddev, argp);
6229 goto done_unlock;
6230
6231 case RESTART_ARRAY_RW:
6232 err = restart_array(mddev);
6233 goto done_unlock;
6234
6235 case STOP_ARRAY:
6236 err = do_md_stop(mddev, 0, 1);
6237 goto done_unlock;
6238
6239 case STOP_ARRAY_RO:
6240 err = md_set_readonly(mddev, 1);
6241 goto done_unlock;
6242
6243 case BLKROSET:
6244 if (get_user(ro, (int __user *)(arg))) {
6245 err = -EFAULT;
6246 goto done_unlock;
6247 }
6248 err = -EINVAL;
6249
6250 /* if the bdev is going readonly the value of mddev->ro
6251 * does not matter, no writes are coming
6252 */
6253 if (ro)
6254 goto done_unlock;
6255
6256 /* are we are already prepared for writes? */
6257 if (mddev->ro != 1)
6258 goto done_unlock;
6259
6260 /* transitioning to readauto need only happen for
6261 * arrays that call md_write_start
6262 */
6263 if (mddev->pers) {
6264 err = restart_array(mddev);
6265 if (err == 0) {
6266 mddev->ro = 2;
6267 set_disk_ro(mddev->gendisk, 0);
6268 }
6269 }
6270 goto done_unlock;
6271 }
6272
6273 /*
6274 * The remaining ioctls are changing the state of the
6275 * superblock, so we do not allow them on read-only arrays.
6276 * However non-MD ioctls (e.g. get-size) will still come through
6277 * here and hit the 'default' below, so only disallow
6278 * 'md' ioctls, and switch to rw mode if started auto-readonly.
6279 */
6280 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6281 if (mddev->ro == 2) {
6282 mddev->ro = 0;
6283 sysfs_notify_dirent_safe(mddev->sysfs_state);
6284 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6285 md_wakeup_thread(mddev->thread);
6286 } else {
6287 err = -EROFS;
6288 goto abort_unlock;
6289 }
6290 }
6291
6292 switch (cmd)
6293 {
6294 case ADD_NEW_DISK:
6295 {
6296 mdu_disk_info_t info;
6297 if (copy_from_user(&info, argp, sizeof(info)))
6298 err = -EFAULT;
6299 else
6300 err = add_new_disk(mddev, &info);
6301 goto done_unlock;
6302 }
6303
6304 case HOT_REMOVE_DISK:
6305 err = hot_remove_disk(mddev, new_decode_dev(arg));
6306 goto done_unlock;
6307
6308 case HOT_ADD_DISK:
6309 err = hot_add_disk(mddev, new_decode_dev(arg));
6310 goto done_unlock;
6311
6312 case SET_DISK_FAULTY:
6313 err = set_disk_faulty(mddev, new_decode_dev(arg));
6314 goto done_unlock;
6315
6316 case RUN_ARRAY:
6317 err = do_md_run(mddev);
6318 goto done_unlock;
6319
6320 case SET_BITMAP_FILE:
6321 err = set_bitmap_file(mddev, (int)arg);
6322 goto done_unlock;
6323
6324 default:
6325 err = -EINVAL;
6326 goto abort_unlock;
6327 }
6328
6329 done_unlock:
6330 abort_unlock:
6331 if (mddev->hold_active == UNTIL_IOCTL &&
6332 err != -EINVAL)
6333 mddev->hold_active = 0;
6334 mddev_unlock(mddev);
6335
6336 return err;
6337 done:
6338 if (err)
6339 MD_BUG();
6340 abort:
6341 return err;
6342 }
6343 #ifdef CONFIG_COMPAT
6344 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6345 unsigned int cmd, unsigned long arg)
6346 {
6347 switch (cmd) {
6348 case HOT_REMOVE_DISK:
6349 case HOT_ADD_DISK:
6350 case SET_DISK_FAULTY:
6351 case SET_BITMAP_FILE:
6352 /* These take in integer arg, do not convert */
6353 break;
6354 default:
6355 arg = (unsigned long)compat_ptr(arg);
6356 break;
6357 }
6358
6359 return md_ioctl(bdev, mode, cmd, arg);
6360 }
6361 #endif /* CONFIG_COMPAT */
6362
6363 static int md_open(struct block_device *bdev, fmode_t mode)
6364 {
6365 /*
6366 * Succeed if we can lock the mddev, which confirms that
6367 * it isn't being stopped right now.
6368 */
6369 struct mddev *mddev = mddev_find(bdev->bd_dev);
6370 int err;
6371
6372 if (mddev->gendisk != bdev->bd_disk) {
6373 /* we are racing with mddev_put which is discarding this
6374 * bd_disk.
6375 */
6376 mddev_put(mddev);
6377 /* Wait until bdev->bd_disk is definitely gone */
6378 flush_workqueue(md_misc_wq);
6379 /* Then retry the open from the top */
6380 return -ERESTARTSYS;
6381 }
6382 BUG_ON(mddev != bdev->bd_disk->private_data);
6383
6384 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6385 goto out;
6386
6387 err = 0;
6388 atomic_inc(&mddev->openers);
6389 mutex_unlock(&mddev->open_mutex);
6390
6391 check_disk_change(bdev);
6392 out:
6393 return err;
6394 }
6395
6396 static int md_release(struct gendisk *disk, fmode_t mode)
6397 {
6398 struct mddev *mddev = disk->private_data;
6399
6400 BUG_ON(!mddev);
6401 atomic_dec(&mddev->openers);
6402 mddev_put(mddev);
6403
6404 return 0;
6405 }
6406
6407 static int md_media_changed(struct gendisk *disk)
6408 {
6409 struct mddev *mddev = disk->private_data;
6410
6411 return mddev->changed;
6412 }
6413
6414 static int md_revalidate(struct gendisk *disk)
6415 {
6416 struct mddev *mddev = disk->private_data;
6417
6418 mddev->changed = 0;
6419 return 0;
6420 }
6421 static const struct block_device_operations md_fops =
6422 {
6423 .owner = THIS_MODULE,
6424 .open = md_open,
6425 .release = md_release,
6426 .ioctl = md_ioctl,
6427 #ifdef CONFIG_COMPAT
6428 .compat_ioctl = md_compat_ioctl,
6429 #endif
6430 .getgeo = md_getgeo,
6431 .media_changed = md_media_changed,
6432 .revalidate_disk= md_revalidate,
6433 };
6434
6435 static int md_thread(void * arg)
6436 {
6437 struct md_thread *thread = arg;
6438
6439 /*
6440 * md_thread is a 'system-thread', it's priority should be very
6441 * high. We avoid resource deadlocks individually in each
6442 * raid personality. (RAID5 does preallocation) We also use RR and
6443 * the very same RT priority as kswapd, thus we will never get
6444 * into a priority inversion deadlock.
6445 *
6446 * we definitely have to have equal or higher priority than
6447 * bdflush, otherwise bdflush will deadlock if there are too
6448 * many dirty RAID5 blocks.
6449 */
6450
6451 allow_signal(SIGKILL);
6452 while (!kthread_should_stop()) {
6453
6454 /* We need to wait INTERRUPTIBLE so that
6455 * we don't add to the load-average.
6456 * That means we need to be sure no signals are
6457 * pending
6458 */
6459 if (signal_pending(current))
6460 flush_signals(current);
6461
6462 wait_event_interruptible_timeout
6463 (thread->wqueue,
6464 test_bit(THREAD_WAKEUP, &thread->flags)
6465 || kthread_should_stop(),
6466 thread->timeout);
6467
6468 clear_bit(THREAD_WAKEUP, &thread->flags);
6469 if (!kthread_should_stop())
6470 thread->run(thread->mddev);
6471 }
6472
6473 return 0;
6474 }
6475
6476 void md_wakeup_thread(struct md_thread *thread)
6477 {
6478 if (thread) {
6479 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6480 set_bit(THREAD_WAKEUP, &thread->flags);
6481 wake_up(&thread->wqueue);
6482 }
6483 }
6484
6485 struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev,
6486 const char *name)
6487 {
6488 struct md_thread *thread;
6489
6490 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6491 if (!thread)
6492 return NULL;
6493
6494 init_waitqueue_head(&thread->wqueue);
6495
6496 thread->run = run;
6497 thread->mddev = mddev;
6498 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6499 thread->tsk = kthread_run(md_thread, thread,
6500 "%s_%s",
6501 mdname(thread->mddev),
6502 name ?: mddev->pers->name);
6503 if (IS_ERR(thread->tsk)) {
6504 kfree(thread);
6505 return NULL;
6506 }
6507 return thread;
6508 }
6509
6510 void md_unregister_thread(struct md_thread **threadp)
6511 {
6512 struct md_thread *thread = *threadp;
6513 if (!thread)
6514 return;
6515 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6516 /* Locking ensures that mddev_unlock does not wake_up a
6517 * non-existent thread
6518 */
6519 spin_lock(&pers_lock);
6520 *threadp = NULL;
6521 spin_unlock(&pers_lock);
6522
6523 kthread_stop(thread->tsk);
6524 kfree(thread);
6525 }
6526
6527 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6528 {
6529 if (!mddev) {
6530 MD_BUG();
6531 return;
6532 }
6533
6534 if (!rdev || test_bit(Faulty, &rdev->flags))
6535 return;
6536
6537 if (!mddev->pers || !mddev->pers->error_handler)
6538 return;
6539 mddev->pers->error_handler(mddev,rdev);
6540 if (mddev->degraded)
6541 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6542 sysfs_notify_dirent_safe(rdev->sysfs_state);
6543 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6544 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6545 md_wakeup_thread(mddev->thread);
6546 if (mddev->event_work.func)
6547 queue_work(md_misc_wq, &mddev->event_work);
6548 md_new_event_inintr(mddev);
6549 }
6550
6551 /* seq_file implementation /proc/mdstat */
6552
6553 static void status_unused(struct seq_file *seq)
6554 {
6555 int i = 0;
6556 struct md_rdev *rdev;
6557
6558 seq_printf(seq, "unused devices: ");
6559
6560 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6561 char b[BDEVNAME_SIZE];
6562 i++;
6563 seq_printf(seq, "%s ",
6564 bdevname(rdev->bdev,b));
6565 }
6566 if (!i)
6567 seq_printf(seq, "<none>");
6568
6569 seq_printf(seq, "\n");
6570 }
6571
6572
6573 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6574 {
6575 sector_t max_sectors, resync, res;
6576 unsigned long dt, db;
6577 sector_t rt;
6578 int scale;
6579 unsigned int per_milli;
6580
6581 resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6582
6583 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6584 max_sectors = mddev->resync_max_sectors;
6585 else
6586 max_sectors = mddev->dev_sectors;
6587
6588 /*
6589 * Should not happen.
6590 */
6591 if (!max_sectors) {
6592 MD_BUG();
6593 return;
6594 }
6595 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6596 * in a sector_t, and (max_sectors>>scale) will fit in a
6597 * u32, as those are the requirements for sector_div.
6598 * Thus 'scale' must be at least 10
6599 */
6600 scale = 10;
6601 if (sizeof(sector_t) > sizeof(unsigned long)) {
6602 while ( max_sectors/2 > (1ULL<<(scale+32)))
6603 scale++;
6604 }
6605 res = (resync>>scale)*1000;
6606 sector_div(res, (u32)((max_sectors>>scale)+1));
6607
6608 per_milli = res;
6609 {
6610 int i, x = per_milli/50, y = 20-x;
6611 seq_printf(seq, "[");
6612 for (i = 0; i < x; i++)
6613 seq_printf(seq, "=");
6614 seq_printf(seq, ">");
6615 for (i = 0; i < y; i++)
6616 seq_printf(seq, ".");
6617 seq_printf(seq, "] ");
6618 }
6619 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6620 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6621 "reshape" :
6622 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6623 "check" :
6624 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6625 "resync" : "recovery"))),
6626 per_milli/10, per_milli % 10,
6627 (unsigned long long) resync/2,
6628 (unsigned long long) max_sectors/2);
6629
6630 /*
6631 * dt: time from mark until now
6632 * db: blocks written from mark until now
6633 * rt: remaining time
6634 *
6635 * rt is a sector_t, so could be 32bit or 64bit.
6636 * So we divide before multiply in case it is 32bit and close
6637 * to the limit.
6638 * We scale the divisor (db) by 32 to avoid losing precision
6639 * near the end of resync when the number of remaining sectors
6640 * is close to 'db'.
6641 * We then divide rt by 32 after multiplying by db to compensate.
6642 * The '+1' avoids division by zero if db is very small.
6643 */
6644 dt = ((jiffies - mddev->resync_mark) / HZ);
6645 if (!dt) dt++;
6646 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6647 - mddev->resync_mark_cnt;
6648
6649 rt = max_sectors - resync; /* number of remaining sectors */
6650 sector_div(rt, db/32+1);
6651 rt *= dt;
6652 rt >>= 5;
6653
6654 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6655 ((unsigned long)rt % 60)/6);
6656
6657 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6658 }
6659
6660 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6661 {
6662 struct list_head *tmp;
6663 loff_t l = *pos;
6664 struct mddev *mddev;
6665
6666 if (l >= 0x10000)
6667 return NULL;
6668 if (!l--)
6669 /* header */
6670 return (void*)1;
6671
6672 spin_lock(&all_mddevs_lock);
6673 list_for_each(tmp,&all_mddevs)
6674 if (!l--) {
6675 mddev = list_entry(tmp, struct mddev, all_mddevs);
6676 mddev_get(mddev);
6677 spin_unlock(&all_mddevs_lock);
6678 return mddev;
6679 }
6680 spin_unlock(&all_mddevs_lock);
6681 if (!l--)
6682 return (void*)2;/* tail */
6683 return NULL;
6684 }
6685
6686 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6687 {
6688 struct list_head *tmp;
6689 struct mddev *next_mddev, *mddev = v;
6690
6691 ++*pos;
6692 if (v == (void*)2)
6693 return NULL;
6694
6695 spin_lock(&all_mddevs_lock);
6696 if (v == (void*)1)
6697 tmp = all_mddevs.next;
6698 else
6699 tmp = mddev->all_mddevs.next;
6700 if (tmp != &all_mddevs)
6701 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6702 else {
6703 next_mddev = (void*)2;
6704 *pos = 0x10000;
6705 }
6706 spin_unlock(&all_mddevs_lock);
6707
6708 if (v != (void*)1)
6709 mddev_put(mddev);
6710 return next_mddev;
6711
6712 }
6713
6714 static void md_seq_stop(struct seq_file *seq, void *v)
6715 {
6716 struct mddev *mddev = v;
6717
6718 if (mddev && v != (void*)1 && v != (void*)2)
6719 mddev_put(mddev);
6720 }
6721
6722 static int md_seq_show(struct seq_file *seq, void *v)
6723 {
6724 struct mddev *mddev = v;
6725 sector_t sectors;
6726 struct md_rdev *rdev;
6727 struct bitmap *bitmap;
6728
6729 if (v == (void*)1) {
6730 struct md_personality *pers;
6731 seq_printf(seq, "Personalities : ");
6732 spin_lock(&pers_lock);
6733 list_for_each_entry(pers, &pers_list, list)
6734 seq_printf(seq, "[%s] ", pers->name);
6735
6736 spin_unlock(&pers_lock);
6737 seq_printf(seq, "\n");
6738 seq->poll_event = atomic_read(&md_event_count);
6739 return 0;
6740 }
6741 if (v == (void*)2) {
6742 status_unused(seq);
6743 return 0;
6744 }
6745
6746 if (mddev_lock(mddev) < 0)
6747 return -EINTR;
6748
6749 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6750 seq_printf(seq, "%s : %sactive", mdname(mddev),
6751 mddev->pers ? "" : "in");
6752 if (mddev->pers) {
6753 if (mddev->ro==1)
6754 seq_printf(seq, " (read-only)");
6755 if (mddev->ro==2)
6756 seq_printf(seq, " (auto-read-only)");
6757 seq_printf(seq, " %s", mddev->pers->name);
6758 }
6759
6760 sectors = 0;
6761 list_for_each_entry(rdev, &mddev->disks, same_set) {
6762 char b[BDEVNAME_SIZE];
6763 seq_printf(seq, " %s[%d]",
6764 bdevname(rdev->bdev,b), rdev->desc_nr);
6765 if (test_bit(WriteMostly, &rdev->flags))
6766 seq_printf(seq, "(W)");
6767 if (test_bit(Faulty, &rdev->flags)) {
6768 seq_printf(seq, "(F)");
6769 continue;
6770 }
6771 if (rdev->raid_disk < 0)
6772 seq_printf(seq, "(S)"); /* spare */
6773 if (test_bit(Replacement, &rdev->flags))
6774 seq_printf(seq, "(R)");
6775 sectors += rdev->sectors;
6776 }
6777
6778 if (!list_empty(&mddev->disks)) {
6779 if (mddev->pers)
6780 seq_printf(seq, "\n %llu blocks",
6781 (unsigned long long)
6782 mddev->array_sectors / 2);
6783 else
6784 seq_printf(seq, "\n %llu blocks",
6785 (unsigned long long)sectors / 2);
6786 }
6787 if (mddev->persistent) {
6788 if (mddev->major_version != 0 ||
6789 mddev->minor_version != 90) {
6790 seq_printf(seq," super %d.%d",
6791 mddev->major_version,
6792 mddev->minor_version);
6793 }
6794 } else if (mddev->external)
6795 seq_printf(seq, " super external:%s",
6796 mddev->metadata_type);
6797 else
6798 seq_printf(seq, " super non-persistent");
6799
6800 if (mddev->pers) {
6801 mddev->pers->status(seq, mddev);
6802 seq_printf(seq, "\n ");
6803 if (mddev->pers->sync_request) {
6804 if (mddev->curr_resync > 2) {
6805 status_resync(seq, mddev);
6806 seq_printf(seq, "\n ");
6807 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6808 seq_printf(seq, "\tresync=DELAYED\n ");
6809 else if (mddev->recovery_cp < MaxSector)
6810 seq_printf(seq, "\tresync=PENDING\n ");
6811 }
6812 } else
6813 seq_printf(seq, "\n ");
6814
6815 if ((bitmap = mddev->bitmap)) {
6816 unsigned long chunk_kb;
6817 unsigned long flags;
6818 spin_lock_irqsave(&bitmap->lock, flags);
6819 chunk_kb = mddev->bitmap_info.chunksize >> 10;
6820 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6821 "%lu%s chunk",
6822 bitmap->pages - bitmap->missing_pages,
6823 bitmap->pages,
6824 (bitmap->pages - bitmap->missing_pages)
6825 << (PAGE_SHIFT - 10),
6826 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
6827 chunk_kb ? "KB" : "B");
6828 if (bitmap->file) {
6829 seq_printf(seq, ", file: ");
6830 seq_path(seq, &bitmap->file->f_path, " \t\n");
6831 }
6832
6833 seq_printf(seq, "\n");
6834 spin_unlock_irqrestore(&bitmap->lock, flags);
6835 }
6836
6837 seq_printf(seq, "\n");
6838 }
6839 mddev_unlock(mddev);
6840
6841 return 0;
6842 }
6843
6844 static const struct seq_operations md_seq_ops = {
6845 .start = md_seq_start,
6846 .next = md_seq_next,
6847 .stop = md_seq_stop,
6848 .show = md_seq_show,
6849 };
6850
6851 static int md_seq_open(struct inode *inode, struct file *file)
6852 {
6853 struct seq_file *seq;
6854 int error;
6855
6856 error = seq_open(file, &md_seq_ops);
6857 if (error)
6858 return error;
6859
6860 seq = file->private_data;
6861 seq->poll_event = atomic_read(&md_event_count);
6862 return error;
6863 }
6864
6865 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6866 {
6867 struct seq_file *seq = filp->private_data;
6868 int mask;
6869
6870 poll_wait(filp, &md_event_waiters, wait);
6871
6872 /* always allow read */
6873 mask = POLLIN | POLLRDNORM;
6874
6875 if (seq->poll_event != atomic_read(&md_event_count))
6876 mask |= POLLERR | POLLPRI;
6877 return mask;
6878 }
6879
6880 static const struct file_operations md_seq_fops = {
6881 .owner = THIS_MODULE,
6882 .open = md_seq_open,
6883 .read = seq_read,
6884 .llseek = seq_lseek,
6885 .release = seq_release_private,
6886 .poll = mdstat_poll,
6887 };
6888
6889 int register_md_personality(struct md_personality *p)
6890 {
6891 spin_lock(&pers_lock);
6892 list_add_tail(&p->list, &pers_list);
6893 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6894 spin_unlock(&pers_lock);
6895 return 0;
6896 }
6897
6898 int unregister_md_personality(struct md_personality *p)
6899 {
6900 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6901 spin_lock(&pers_lock);
6902 list_del_init(&p->list);
6903 spin_unlock(&pers_lock);
6904 return 0;
6905 }
6906
6907 static int is_mddev_idle(struct mddev *mddev, int init)
6908 {
6909 struct md_rdev * rdev;
6910 int idle;
6911 int curr_events;
6912
6913 idle = 1;
6914 rcu_read_lock();
6915 rdev_for_each_rcu(rdev, mddev) {
6916 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6917 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6918 (int)part_stat_read(&disk->part0, sectors[1]) -
6919 atomic_read(&disk->sync_io);
6920 /* sync IO will cause sync_io to increase before the disk_stats
6921 * as sync_io is counted when a request starts, and
6922 * disk_stats is counted when it completes.
6923 * So resync activity will cause curr_events to be smaller than
6924 * when there was no such activity.
6925 * non-sync IO will cause disk_stat to increase without
6926 * increasing sync_io so curr_events will (eventually)
6927 * be larger than it was before. Once it becomes
6928 * substantially larger, the test below will cause
6929 * the array to appear non-idle, and resync will slow
6930 * down.
6931 * If there is a lot of outstanding resync activity when
6932 * we set last_event to curr_events, then all that activity
6933 * completing might cause the array to appear non-idle
6934 * and resync will be slowed down even though there might
6935 * not have been non-resync activity. This will only
6936 * happen once though. 'last_events' will soon reflect
6937 * the state where there is little or no outstanding
6938 * resync requests, and further resync activity will
6939 * always make curr_events less than last_events.
6940 *
6941 */
6942 if (init || curr_events - rdev->last_events > 64) {
6943 rdev->last_events = curr_events;
6944 idle = 0;
6945 }
6946 }
6947 rcu_read_unlock();
6948 return idle;
6949 }
6950
6951 void md_done_sync(struct mddev *mddev, int blocks, int ok)
6952 {
6953 /* another "blocks" (512byte) blocks have been synced */
6954 atomic_sub(blocks, &mddev->recovery_active);
6955 wake_up(&mddev->recovery_wait);
6956 if (!ok) {
6957 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6958 md_wakeup_thread(mddev->thread);
6959 // stop recovery, signal do_sync ....
6960 }
6961 }
6962
6963
6964 /* md_write_start(mddev, bi)
6965 * If we need to update some array metadata (e.g. 'active' flag
6966 * in superblock) before writing, schedule a superblock update
6967 * and wait for it to complete.
6968 */
6969 void md_write_start(struct mddev *mddev, struct bio *bi)
6970 {
6971 int did_change = 0;
6972 if (bio_data_dir(bi) != WRITE)
6973 return;
6974
6975 BUG_ON(mddev->ro == 1);
6976 if (mddev->ro == 2) {
6977 /* need to switch to read/write */
6978 mddev->ro = 0;
6979 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6980 md_wakeup_thread(mddev->thread);
6981 md_wakeup_thread(mddev->sync_thread);
6982 did_change = 1;
6983 }
6984 atomic_inc(&mddev->writes_pending);
6985 if (mddev->safemode == 1)
6986 mddev->safemode = 0;
6987 if (mddev->in_sync) {
6988 spin_lock_irq(&mddev->write_lock);
6989 if (mddev->in_sync) {
6990 mddev->in_sync = 0;
6991 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6992 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6993 md_wakeup_thread(mddev->thread);
6994 did_change = 1;
6995 }
6996 spin_unlock_irq(&mddev->write_lock);
6997 }
6998 if (did_change)
6999 sysfs_notify_dirent_safe(mddev->sysfs_state);
7000 wait_event(mddev->sb_wait,
7001 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7002 }
7003
7004 void md_write_end(struct mddev *mddev)
7005 {
7006 if (atomic_dec_and_test(&mddev->writes_pending)) {
7007 if (mddev->safemode == 2)
7008 md_wakeup_thread(mddev->thread);
7009 else if (mddev->safemode_delay)
7010 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7011 }
7012 }
7013
7014 /* md_allow_write(mddev)
7015 * Calling this ensures that the array is marked 'active' so that writes
7016 * may proceed without blocking. It is important to call this before
7017 * attempting a GFP_KERNEL allocation while holding the mddev lock.
7018 * Must be called with mddev_lock held.
7019 *
7020 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7021 * is dropped, so return -EAGAIN after notifying userspace.
7022 */
7023 int md_allow_write(struct mddev *mddev)
7024 {
7025 if (!mddev->pers)
7026 return 0;
7027 if (mddev->ro)
7028 return 0;
7029 if (!mddev->pers->sync_request)
7030 return 0;
7031
7032 spin_lock_irq(&mddev->write_lock);
7033 if (mddev->in_sync) {
7034 mddev->in_sync = 0;
7035 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7036 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7037 if (mddev->safemode_delay &&
7038 mddev->safemode == 0)
7039 mddev->safemode = 1;
7040 spin_unlock_irq(&mddev->write_lock);
7041 md_update_sb(mddev, 0);
7042 sysfs_notify_dirent_safe(mddev->sysfs_state);
7043 } else
7044 spin_unlock_irq(&mddev->write_lock);
7045
7046 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7047 return -EAGAIN;
7048 else
7049 return 0;
7050 }
7051 EXPORT_SYMBOL_GPL(md_allow_write);
7052
7053 #define SYNC_MARKS 10
7054 #define SYNC_MARK_STEP (3*HZ)
7055 void md_do_sync(struct mddev *mddev)
7056 {
7057 struct mddev *mddev2;
7058 unsigned int currspeed = 0,
7059 window;
7060 sector_t max_sectors,j, io_sectors;
7061 unsigned long mark[SYNC_MARKS];
7062 sector_t mark_cnt[SYNC_MARKS];
7063 int last_mark,m;
7064 struct list_head *tmp;
7065 sector_t last_check;
7066 int skipped = 0;
7067 struct md_rdev *rdev;
7068 char *desc;
7069
7070 /* just incase thread restarts... */
7071 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7072 return;
7073 if (mddev->ro) /* never try to sync a read-only array */
7074 return;
7075
7076 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7077 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7078 desc = "data-check";
7079 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7080 desc = "requested-resync";
7081 else
7082 desc = "resync";
7083 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7084 desc = "reshape";
7085 else
7086 desc = "recovery";
7087
7088 /* we overload curr_resync somewhat here.
7089 * 0 == not engaged in resync at all
7090 * 2 == checking that there is no conflict with another sync
7091 * 1 == like 2, but have yielded to allow conflicting resync to
7092 * commense
7093 * other == active in resync - this many blocks
7094 *
7095 * Before starting a resync we must have set curr_resync to
7096 * 2, and then checked that every "conflicting" array has curr_resync
7097 * less than ours. When we find one that is the same or higher
7098 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7099 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7100 * This will mean we have to start checking from the beginning again.
7101 *
7102 */
7103
7104 do {
7105 mddev->curr_resync = 2;
7106
7107 try_again:
7108 if (kthread_should_stop())
7109 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7110
7111 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7112 goto skip;
7113 for_each_mddev(mddev2, tmp) {
7114 if (mddev2 == mddev)
7115 continue;
7116 if (!mddev->parallel_resync
7117 && mddev2->curr_resync
7118 && match_mddev_units(mddev, mddev2)) {
7119 DEFINE_WAIT(wq);
7120 if (mddev < mddev2 && mddev->curr_resync == 2) {
7121 /* arbitrarily yield */
7122 mddev->curr_resync = 1;
7123 wake_up(&resync_wait);
7124 }
7125 if (mddev > mddev2 && mddev->curr_resync == 1)
7126 /* no need to wait here, we can wait the next
7127 * time 'round when curr_resync == 2
7128 */
7129 continue;
7130 /* We need to wait 'interruptible' so as not to
7131 * contribute to the load average, and not to
7132 * be caught by 'softlockup'
7133 */
7134 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7135 if (!kthread_should_stop() &&
7136 mddev2->curr_resync >= mddev->curr_resync) {
7137 printk(KERN_INFO "md: delaying %s of %s"
7138 " until %s has finished (they"
7139 " share one or more physical units)\n",
7140 desc, mdname(mddev), mdname(mddev2));
7141 mddev_put(mddev2);
7142 if (signal_pending(current))
7143 flush_signals(current);
7144 schedule();
7145 finish_wait(&resync_wait, &wq);
7146 goto try_again;
7147 }
7148 finish_wait(&resync_wait, &wq);
7149 }
7150 }
7151 } while (mddev->curr_resync < 2);
7152
7153 j = 0;
7154 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7155 /* resync follows the size requested by the personality,
7156 * which defaults to physical size, but can be virtual size
7157 */
7158 max_sectors = mddev->resync_max_sectors;
7159 mddev->resync_mismatches = 0;
7160 /* we don't use the checkpoint if there's a bitmap */
7161 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7162 j = mddev->resync_min;
7163 else if (!mddev->bitmap)
7164 j = mddev->recovery_cp;
7165
7166 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7167 max_sectors = mddev->dev_sectors;
7168 else {
7169 /* recovery follows the physical size of devices */
7170 max_sectors = mddev->dev_sectors;
7171 j = MaxSector;
7172 rcu_read_lock();
7173 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7174 if (rdev->raid_disk >= 0 &&
7175 !test_bit(Faulty, &rdev->flags) &&
7176 !test_bit(In_sync, &rdev->flags) &&
7177 rdev->recovery_offset < j)
7178 j = rdev->recovery_offset;
7179 rcu_read_unlock();
7180 }
7181
7182 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7183 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7184 " %d KB/sec/disk.\n", speed_min(mddev));
7185 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7186 "(but not more than %d KB/sec) for %s.\n",
7187 speed_max(mddev), desc);
7188
7189 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7190
7191 io_sectors = 0;
7192 for (m = 0; m < SYNC_MARKS; m++) {
7193 mark[m] = jiffies;
7194 mark_cnt[m] = io_sectors;
7195 }
7196 last_mark = 0;
7197 mddev->resync_mark = mark[last_mark];
7198 mddev->resync_mark_cnt = mark_cnt[last_mark];
7199
7200 /*
7201 * Tune reconstruction:
7202 */
7203 window = 32*(PAGE_SIZE/512);
7204 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7205 window/2, (unsigned long long)max_sectors/2);
7206
7207 atomic_set(&mddev->recovery_active, 0);
7208 last_check = 0;
7209
7210 if (j>2) {
7211 printk(KERN_INFO
7212 "md: resuming %s of %s from checkpoint.\n",
7213 desc, mdname(mddev));
7214 mddev->curr_resync = j;
7215 }
7216 mddev->curr_resync_completed = j;
7217
7218 while (j < max_sectors) {
7219 sector_t sectors;
7220
7221 skipped = 0;
7222
7223 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7224 ((mddev->curr_resync > mddev->curr_resync_completed &&
7225 (mddev->curr_resync - mddev->curr_resync_completed)
7226 > (max_sectors >> 4)) ||
7227 (j - mddev->curr_resync_completed)*2
7228 >= mddev->resync_max - mddev->curr_resync_completed
7229 )) {
7230 /* time to update curr_resync_completed */
7231 wait_event(mddev->recovery_wait,
7232 atomic_read(&mddev->recovery_active) == 0);
7233 mddev->curr_resync_completed = j;
7234 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7235 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7236 }
7237
7238 while (j >= mddev->resync_max && !kthread_should_stop()) {
7239 /* As this condition is controlled by user-space,
7240 * we can block indefinitely, so use '_interruptible'
7241 * to avoid triggering warnings.
7242 */
7243 flush_signals(current); /* just in case */
7244 wait_event_interruptible(mddev->recovery_wait,
7245 mddev->resync_max > j
7246 || kthread_should_stop());
7247 }
7248
7249 if (kthread_should_stop())
7250 goto interrupted;
7251
7252 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7253 currspeed < speed_min(mddev));
7254 if (sectors == 0) {
7255 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7256 goto out;
7257 }
7258
7259 if (!skipped) { /* actual IO requested */
7260 io_sectors += sectors;
7261 atomic_add(sectors, &mddev->recovery_active);
7262 }
7263
7264 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7265 break;
7266
7267 j += sectors;
7268 if (j>1) mddev->curr_resync = j;
7269 mddev->curr_mark_cnt = io_sectors;
7270 if (last_check == 0)
7271 /* this is the earliest that rebuild will be
7272 * visible in /proc/mdstat
7273 */
7274 md_new_event(mddev);
7275
7276 if (last_check + window > io_sectors || j == max_sectors)
7277 continue;
7278
7279 last_check = io_sectors;
7280 repeat:
7281 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7282 /* step marks */
7283 int next = (last_mark+1) % SYNC_MARKS;
7284
7285 mddev->resync_mark = mark[next];
7286 mddev->resync_mark_cnt = mark_cnt[next];
7287 mark[next] = jiffies;
7288 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7289 last_mark = next;
7290 }
7291
7292
7293 if (kthread_should_stop())
7294 goto interrupted;
7295
7296
7297 /*
7298 * this loop exits only if either when we are slower than
7299 * the 'hard' speed limit, or the system was IO-idle for
7300 * a jiffy.
7301 * the system might be non-idle CPU-wise, but we only care
7302 * about not overloading the IO subsystem. (things like an
7303 * e2fsck being done on the RAID array should execute fast)
7304 */
7305 cond_resched();
7306
7307 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7308 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7309
7310 if (currspeed > speed_min(mddev)) {
7311 if ((currspeed > speed_max(mddev)) ||
7312 !is_mddev_idle(mddev, 0)) {
7313 msleep(500);
7314 goto repeat;
7315 }
7316 }
7317 }
7318 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7319 /*
7320 * this also signals 'finished resyncing' to md_stop
7321 */
7322 out:
7323 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7324
7325 /* tell personality that we are finished */
7326 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7327
7328 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7329 mddev->curr_resync > 2) {
7330 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7331 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7332 if (mddev->curr_resync >= mddev->recovery_cp) {
7333 printk(KERN_INFO
7334 "md: checkpointing %s of %s.\n",
7335 desc, mdname(mddev));
7336 mddev->recovery_cp = mddev->curr_resync;
7337 }
7338 } else
7339 mddev->recovery_cp = MaxSector;
7340 } else {
7341 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7342 mddev->curr_resync = MaxSector;
7343 rcu_read_lock();
7344 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7345 if (rdev->raid_disk >= 0 &&
7346 mddev->delta_disks >= 0 &&
7347 !test_bit(Faulty, &rdev->flags) &&
7348 !test_bit(In_sync, &rdev->flags) &&
7349 rdev->recovery_offset < mddev->curr_resync)
7350 rdev->recovery_offset = mddev->curr_resync;
7351 rcu_read_unlock();
7352 }
7353 }
7354 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7355
7356 skip:
7357 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7358 /* We completed so min/max setting can be forgotten if used. */
7359 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7360 mddev->resync_min = 0;
7361 mddev->resync_max = MaxSector;
7362 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7363 mddev->resync_min = mddev->curr_resync_completed;
7364 mddev->curr_resync = 0;
7365 wake_up(&resync_wait);
7366 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7367 md_wakeup_thread(mddev->thread);
7368 return;
7369
7370 interrupted:
7371 /*
7372 * got a signal, exit.
7373 */
7374 printk(KERN_INFO
7375 "md: md_do_sync() got signal ... exiting\n");
7376 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7377 goto out;
7378
7379 }
7380 EXPORT_SYMBOL_GPL(md_do_sync);
7381
7382 static int remove_and_add_spares(struct mddev *mddev)
7383 {
7384 struct md_rdev *rdev;
7385 int spares = 0;
7386 int removed = 0;
7387
7388 mddev->curr_resync_completed = 0;
7389
7390 list_for_each_entry(rdev, &mddev->disks, same_set)
7391 if (rdev->raid_disk >= 0 &&
7392 !test_bit(Blocked, &rdev->flags) &&
7393 (test_bit(Faulty, &rdev->flags) ||
7394 ! test_bit(In_sync, &rdev->flags)) &&
7395 atomic_read(&rdev->nr_pending)==0) {
7396 if (mddev->pers->hot_remove_disk(
7397 mddev, rdev) == 0) {
7398 sysfs_unlink_rdev(mddev, rdev);
7399 rdev->raid_disk = -1;
7400 removed++;
7401 }
7402 }
7403 if (removed)
7404 sysfs_notify(&mddev->kobj, NULL,
7405 "degraded");
7406
7407
7408 list_for_each_entry(rdev, &mddev->disks, same_set) {
7409 if (rdev->raid_disk >= 0 &&
7410 !test_bit(In_sync, &rdev->flags) &&
7411 !test_bit(Faulty, &rdev->flags))
7412 spares++;
7413 if (rdev->raid_disk < 0
7414 && !test_bit(Faulty, &rdev->flags)) {
7415 rdev->recovery_offset = 0;
7416 if (mddev->pers->
7417 hot_add_disk(mddev, rdev) == 0) {
7418 if (sysfs_link_rdev(mddev, rdev))
7419 /* failure here is OK */;
7420 spares++;
7421 md_new_event(mddev);
7422 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7423 }
7424 }
7425 }
7426 return spares;
7427 }
7428
7429 static void reap_sync_thread(struct mddev *mddev)
7430 {
7431 struct md_rdev *rdev;
7432
7433 /* resync has finished, collect result */
7434 md_unregister_thread(&mddev->sync_thread);
7435 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7436 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7437 /* success...*/
7438 /* activate any spares */
7439 if (mddev->pers->spare_active(mddev))
7440 sysfs_notify(&mddev->kobj, NULL,
7441 "degraded");
7442 }
7443 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7444 mddev->pers->finish_reshape)
7445 mddev->pers->finish_reshape(mddev);
7446
7447 /* If array is no-longer degraded, then any saved_raid_disk
7448 * information must be scrapped. Also if any device is now
7449 * In_sync we must scrape the saved_raid_disk for that device
7450 * do the superblock for an incrementally recovered device
7451 * written out.
7452 */
7453 list_for_each_entry(rdev, &mddev->disks, same_set)
7454 if (!mddev->degraded ||
7455 test_bit(In_sync, &rdev->flags))
7456 rdev->saved_raid_disk = -1;
7457
7458 md_update_sb(mddev, 1);
7459 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7460 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7461 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7462 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7463 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7464 /* flag recovery needed just to double check */
7465 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7466 sysfs_notify_dirent_safe(mddev->sysfs_action);
7467 md_new_event(mddev);
7468 if (mddev->event_work.func)
7469 queue_work(md_misc_wq, &mddev->event_work);
7470 }
7471
7472 /*
7473 * This routine is regularly called by all per-raid-array threads to
7474 * deal with generic issues like resync and super-block update.
7475 * Raid personalities that don't have a thread (linear/raid0) do not
7476 * need this as they never do any recovery or update the superblock.
7477 *
7478 * It does not do any resync itself, but rather "forks" off other threads
7479 * to do that as needed.
7480 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7481 * "->recovery" and create a thread at ->sync_thread.
7482 * When the thread finishes it sets MD_RECOVERY_DONE
7483 * and wakeups up this thread which will reap the thread and finish up.
7484 * This thread also removes any faulty devices (with nr_pending == 0).
7485 *
7486 * The overall approach is:
7487 * 1/ if the superblock needs updating, update it.
7488 * 2/ If a recovery thread is running, don't do anything else.
7489 * 3/ If recovery has finished, clean up, possibly marking spares active.
7490 * 4/ If there are any faulty devices, remove them.
7491 * 5/ If array is degraded, try to add spares devices
7492 * 6/ If array has spares or is not in-sync, start a resync thread.
7493 */
7494 void md_check_recovery(struct mddev *mddev)
7495 {
7496 if (mddev->suspended)
7497 return;
7498
7499 if (mddev->bitmap)
7500 bitmap_daemon_work(mddev);
7501
7502 if (signal_pending(current)) {
7503 if (mddev->pers->sync_request && !mddev->external) {
7504 printk(KERN_INFO "md: %s in immediate safe mode\n",
7505 mdname(mddev));
7506 mddev->safemode = 2;
7507 }
7508 flush_signals(current);
7509 }
7510
7511 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7512 return;
7513 if ( ! (
7514 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7515 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7516 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7517 (mddev->external == 0 && mddev->safemode == 1) ||
7518 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7519 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7520 ))
7521 return;
7522
7523 if (mddev_trylock(mddev)) {
7524 int spares = 0;
7525
7526 if (mddev->ro) {
7527 /* Only thing we do on a ro array is remove
7528 * failed devices.
7529 */
7530 struct md_rdev *rdev;
7531 list_for_each_entry(rdev, &mddev->disks, same_set)
7532 if (rdev->raid_disk >= 0 &&
7533 !test_bit(Blocked, &rdev->flags) &&
7534 test_bit(Faulty, &rdev->flags) &&
7535 atomic_read(&rdev->nr_pending)==0) {
7536 if (mddev->pers->hot_remove_disk(
7537 mddev, rdev) == 0) {
7538 sysfs_unlink_rdev(mddev, rdev);
7539 rdev->raid_disk = -1;
7540 }
7541 }
7542 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7543 goto unlock;
7544 }
7545
7546 if (!mddev->external) {
7547 int did_change = 0;
7548 spin_lock_irq(&mddev->write_lock);
7549 if (mddev->safemode &&
7550 !atomic_read(&mddev->writes_pending) &&
7551 !mddev->in_sync &&
7552 mddev->recovery_cp == MaxSector) {
7553 mddev->in_sync = 1;
7554 did_change = 1;
7555 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7556 }
7557 if (mddev->safemode == 1)
7558 mddev->safemode = 0;
7559 spin_unlock_irq(&mddev->write_lock);
7560 if (did_change)
7561 sysfs_notify_dirent_safe(mddev->sysfs_state);
7562 }
7563
7564 if (mddev->flags)
7565 md_update_sb(mddev, 0);
7566
7567 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7568 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7569 /* resync/recovery still happening */
7570 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7571 goto unlock;
7572 }
7573 if (mddev->sync_thread) {
7574 reap_sync_thread(mddev);
7575 goto unlock;
7576 }
7577 /* Set RUNNING before clearing NEEDED to avoid
7578 * any transients in the value of "sync_action".
7579 */
7580 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7581 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7582 /* Clear some bits that don't mean anything, but
7583 * might be left set
7584 */
7585 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7586 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7587
7588 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7589 goto unlock;
7590 /* no recovery is running.
7591 * remove any failed drives, then
7592 * add spares if possible.
7593 * Spare are also removed and re-added, to allow
7594 * the personality to fail the re-add.
7595 */
7596
7597 if (mddev->reshape_position != MaxSector) {
7598 if (mddev->pers->check_reshape == NULL ||
7599 mddev->pers->check_reshape(mddev) != 0)
7600 /* Cannot proceed */
7601 goto unlock;
7602 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7603 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7604 } else if ((spares = remove_and_add_spares(mddev))) {
7605 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7606 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7607 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7608 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7609 } else if (mddev->recovery_cp < MaxSector) {
7610 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7611 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7612 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7613 /* nothing to be done ... */
7614 goto unlock;
7615
7616 if (mddev->pers->sync_request) {
7617 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7618 /* We are adding a device or devices to an array
7619 * which has the bitmap stored on all devices.
7620 * So make sure all bitmap pages get written
7621 */
7622 bitmap_write_all(mddev->bitmap);
7623 }
7624 mddev->sync_thread = md_register_thread(md_do_sync,
7625 mddev,
7626 "resync");
7627 if (!mddev->sync_thread) {
7628 printk(KERN_ERR "%s: could not start resync"
7629 " thread...\n",
7630 mdname(mddev));
7631 /* leave the spares where they are, it shouldn't hurt */
7632 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7633 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7634 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7635 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7636 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7637 } else
7638 md_wakeup_thread(mddev->sync_thread);
7639 sysfs_notify_dirent_safe(mddev->sysfs_action);
7640 md_new_event(mddev);
7641 }
7642 unlock:
7643 if (!mddev->sync_thread) {
7644 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7645 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7646 &mddev->recovery))
7647 if (mddev->sysfs_action)
7648 sysfs_notify_dirent_safe(mddev->sysfs_action);
7649 }
7650 mddev_unlock(mddev);
7651 }
7652 }
7653
7654 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7655 {
7656 sysfs_notify_dirent_safe(rdev->sysfs_state);
7657 wait_event_timeout(rdev->blocked_wait,
7658 !test_bit(Blocked, &rdev->flags) &&
7659 !test_bit(BlockedBadBlocks, &rdev->flags),
7660 msecs_to_jiffies(5000));
7661 rdev_dec_pending(rdev, mddev);
7662 }
7663 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7664
7665
7666 /* Bad block management.
7667 * We can record which blocks on each device are 'bad' and so just
7668 * fail those blocks, or that stripe, rather than the whole device.
7669 * Entries in the bad-block table are 64bits wide. This comprises:
7670 * Length of bad-range, in sectors: 0-511 for lengths 1-512
7671 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7672 * A 'shift' can be set so that larger blocks are tracked and
7673 * consequently larger devices can be covered.
7674 * 'Acknowledged' flag - 1 bit. - the most significant bit.
7675 *
7676 * Locking of the bad-block table uses a seqlock so md_is_badblock
7677 * might need to retry if it is very unlucky.
7678 * We will sometimes want to check for bad blocks in a bi_end_io function,
7679 * so we use the write_seqlock_irq variant.
7680 *
7681 * When looking for a bad block we specify a range and want to
7682 * know if any block in the range is bad. So we binary-search
7683 * to the last range that starts at-or-before the given endpoint,
7684 * (or "before the sector after the target range")
7685 * then see if it ends after the given start.
7686 * We return
7687 * 0 if there are no known bad blocks in the range
7688 * 1 if there are known bad block which are all acknowledged
7689 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7690 * plus the start/length of the first bad section we overlap.
7691 */
7692 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7693 sector_t *first_bad, int *bad_sectors)
7694 {
7695 int hi;
7696 int lo = 0;
7697 u64 *p = bb->page;
7698 int rv = 0;
7699 sector_t target = s + sectors;
7700 unsigned seq;
7701
7702 if (bb->shift > 0) {
7703 /* round the start down, and the end up */
7704 s >>= bb->shift;
7705 target += (1<<bb->shift) - 1;
7706 target >>= bb->shift;
7707 sectors = target - s;
7708 }
7709 /* 'target' is now the first block after the bad range */
7710
7711 retry:
7712 seq = read_seqbegin(&bb->lock);
7713
7714 hi = bb->count;
7715
7716 /* Binary search between lo and hi for 'target'
7717 * i.e. for the last range that starts before 'target'
7718 */
7719 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7720 * are known not to be the last range before target.
7721 * VARIANT: hi-lo is the number of possible
7722 * ranges, and decreases until it reaches 1
7723 */
7724 while (hi - lo > 1) {
7725 int mid = (lo + hi) / 2;
7726 sector_t a = BB_OFFSET(p[mid]);
7727 if (a < target)
7728 /* This could still be the one, earlier ranges
7729 * could not. */
7730 lo = mid;
7731 else
7732 /* This and later ranges are definitely out. */
7733 hi = mid;
7734 }
7735 /* 'lo' might be the last that started before target, but 'hi' isn't */
7736 if (hi > lo) {
7737 /* need to check all range that end after 's' to see if
7738 * any are unacknowledged.
7739 */
7740 while (lo >= 0 &&
7741 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7742 if (BB_OFFSET(p[lo]) < target) {
7743 /* starts before the end, and finishes after
7744 * the start, so they must overlap
7745 */
7746 if (rv != -1 && BB_ACK(p[lo]))
7747 rv = 1;
7748 else
7749 rv = -1;
7750 *first_bad = BB_OFFSET(p[lo]);
7751 *bad_sectors = BB_LEN(p[lo]);
7752 }
7753 lo--;
7754 }
7755 }
7756
7757 if (read_seqretry(&bb->lock, seq))
7758 goto retry;
7759
7760 return rv;
7761 }
7762 EXPORT_SYMBOL_GPL(md_is_badblock);
7763
7764 /*
7765 * Add a range of bad blocks to the table.
7766 * This might extend the table, or might contract it
7767 * if two adjacent ranges can be merged.
7768 * We binary-search to find the 'insertion' point, then
7769 * decide how best to handle it.
7770 */
7771 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7772 int acknowledged)
7773 {
7774 u64 *p;
7775 int lo, hi;
7776 int rv = 1;
7777
7778 if (bb->shift < 0)
7779 /* badblocks are disabled */
7780 return 0;
7781
7782 if (bb->shift) {
7783 /* round the start down, and the end up */
7784 sector_t next = s + sectors;
7785 s >>= bb->shift;
7786 next += (1<<bb->shift) - 1;
7787 next >>= bb->shift;
7788 sectors = next - s;
7789 }
7790
7791 write_seqlock_irq(&bb->lock);
7792
7793 p = bb->page;
7794 lo = 0;
7795 hi = bb->count;
7796 /* Find the last range that starts at-or-before 's' */
7797 while (hi - lo > 1) {
7798 int mid = (lo + hi) / 2;
7799 sector_t a = BB_OFFSET(p[mid]);
7800 if (a <= s)
7801 lo = mid;
7802 else
7803 hi = mid;
7804 }
7805 if (hi > lo && BB_OFFSET(p[lo]) > s)
7806 hi = lo;
7807
7808 if (hi > lo) {
7809 /* we found a range that might merge with the start
7810 * of our new range
7811 */
7812 sector_t a = BB_OFFSET(p[lo]);
7813 sector_t e = a + BB_LEN(p[lo]);
7814 int ack = BB_ACK(p[lo]);
7815 if (e >= s) {
7816 /* Yes, we can merge with a previous range */
7817 if (s == a && s + sectors >= e)
7818 /* new range covers old */
7819 ack = acknowledged;
7820 else
7821 ack = ack && acknowledged;
7822
7823 if (e < s + sectors)
7824 e = s + sectors;
7825 if (e - a <= BB_MAX_LEN) {
7826 p[lo] = BB_MAKE(a, e-a, ack);
7827 s = e;
7828 } else {
7829 /* does not all fit in one range,
7830 * make p[lo] maximal
7831 */
7832 if (BB_LEN(p[lo]) != BB_MAX_LEN)
7833 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
7834 s = a + BB_MAX_LEN;
7835 }
7836 sectors = e - s;
7837 }
7838 }
7839 if (sectors && hi < bb->count) {
7840 /* 'hi' points to the first range that starts after 's'.
7841 * Maybe we can merge with the start of that range */
7842 sector_t a = BB_OFFSET(p[hi]);
7843 sector_t e = a + BB_LEN(p[hi]);
7844 int ack = BB_ACK(p[hi]);
7845 if (a <= s + sectors) {
7846 /* merging is possible */
7847 if (e <= s + sectors) {
7848 /* full overlap */
7849 e = s + sectors;
7850 ack = acknowledged;
7851 } else
7852 ack = ack && acknowledged;
7853
7854 a = s;
7855 if (e - a <= BB_MAX_LEN) {
7856 p[hi] = BB_MAKE(a, e-a, ack);
7857 s = e;
7858 } else {
7859 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
7860 s = a + BB_MAX_LEN;
7861 }
7862 sectors = e - s;
7863 lo = hi;
7864 hi++;
7865 }
7866 }
7867 if (sectors == 0 && hi < bb->count) {
7868 /* we might be able to combine lo and hi */
7869 /* Note: 's' is at the end of 'lo' */
7870 sector_t a = BB_OFFSET(p[hi]);
7871 int lolen = BB_LEN(p[lo]);
7872 int hilen = BB_LEN(p[hi]);
7873 int newlen = lolen + hilen - (s - a);
7874 if (s >= a && newlen < BB_MAX_LEN) {
7875 /* yes, we can combine them */
7876 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
7877 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
7878 memmove(p + hi, p + hi + 1,
7879 (bb->count - hi - 1) * 8);
7880 bb->count--;
7881 }
7882 }
7883 while (sectors) {
7884 /* didn't merge (it all).
7885 * Need to add a range just before 'hi' */
7886 if (bb->count >= MD_MAX_BADBLOCKS) {
7887 /* No room for more */
7888 rv = 0;
7889 break;
7890 } else {
7891 int this_sectors = sectors;
7892 memmove(p + hi + 1, p + hi,
7893 (bb->count - hi) * 8);
7894 bb->count++;
7895
7896 if (this_sectors > BB_MAX_LEN)
7897 this_sectors = BB_MAX_LEN;
7898 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
7899 sectors -= this_sectors;
7900 s += this_sectors;
7901 }
7902 }
7903
7904 bb->changed = 1;
7905 if (!acknowledged)
7906 bb->unacked_exist = 1;
7907 write_sequnlock_irq(&bb->lock);
7908
7909 return rv;
7910 }
7911
7912 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
7913 int acknowledged)
7914 {
7915 int rv = md_set_badblocks(&rdev->badblocks,
7916 s + rdev->data_offset, sectors, acknowledged);
7917 if (rv) {
7918 /* Make sure they get written out promptly */
7919 sysfs_notify_dirent_safe(rdev->sysfs_state);
7920 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
7921 md_wakeup_thread(rdev->mddev->thread);
7922 }
7923 return rv;
7924 }
7925 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
7926
7927 /*
7928 * Remove a range of bad blocks from the table.
7929 * This may involve extending the table if we spilt a region,
7930 * but it must not fail. So if the table becomes full, we just
7931 * drop the remove request.
7932 */
7933 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
7934 {
7935 u64 *p;
7936 int lo, hi;
7937 sector_t target = s + sectors;
7938 int rv = 0;
7939
7940 if (bb->shift > 0) {
7941 /* When clearing we round the start up and the end down.
7942 * This should not matter as the shift should align with
7943 * the block size and no rounding should ever be needed.
7944 * However it is better the think a block is bad when it
7945 * isn't than to think a block is not bad when it is.
7946 */
7947 s += (1<<bb->shift) - 1;
7948 s >>= bb->shift;
7949 target >>= bb->shift;
7950 sectors = target - s;
7951 }
7952
7953 write_seqlock_irq(&bb->lock);
7954
7955 p = bb->page;
7956 lo = 0;
7957 hi = bb->count;
7958 /* Find the last range that starts before 'target' */
7959 while (hi - lo > 1) {
7960 int mid = (lo + hi) / 2;
7961 sector_t a = BB_OFFSET(p[mid]);
7962 if (a < target)
7963 lo = mid;
7964 else
7965 hi = mid;
7966 }
7967 if (hi > lo) {
7968 /* p[lo] is the last range that could overlap the
7969 * current range. Earlier ranges could also overlap,
7970 * but only this one can overlap the end of the range.
7971 */
7972 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
7973 /* Partial overlap, leave the tail of this range */
7974 int ack = BB_ACK(p[lo]);
7975 sector_t a = BB_OFFSET(p[lo]);
7976 sector_t end = a + BB_LEN(p[lo]);
7977
7978 if (a < s) {
7979 /* we need to split this range */
7980 if (bb->count >= MD_MAX_BADBLOCKS) {
7981 rv = 0;
7982 goto out;
7983 }
7984 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
7985 bb->count++;
7986 p[lo] = BB_MAKE(a, s-a, ack);
7987 lo++;
7988 }
7989 p[lo] = BB_MAKE(target, end - target, ack);
7990 /* there is no longer an overlap */
7991 hi = lo;
7992 lo--;
7993 }
7994 while (lo >= 0 &&
7995 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7996 /* This range does overlap */
7997 if (BB_OFFSET(p[lo]) < s) {
7998 /* Keep the early parts of this range. */
7999 int ack = BB_ACK(p[lo]);
8000 sector_t start = BB_OFFSET(p[lo]);
8001 p[lo] = BB_MAKE(start, s - start, ack);
8002 /* now low doesn't overlap, so.. */
8003 break;
8004 }
8005 lo--;
8006 }
8007 /* 'lo' is strictly before, 'hi' is strictly after,
8008 * anything between needs to be discarded
8009 */
8010 if (hi - lo > 1) {
8011 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8012 bb->count -= (hi - lo - 1);
8013 }
8014 }
8015
8016 bb->changed = 1;
8017 out:
8018 write_sequnlock_irq(&bb->lock);
8019 return rv;
8020 }
8021
8022 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors)
8023 {
8024 return md_clear_badblocks(&rdev->badblocks,
8025 s + rdev->data_offset,
8026 sectors);
8027 }
8028 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8029
8030 /*
8031 * Acknowledge all bad blocks in a list.
8032 * This only succeeds if ->changed is clear. It is used by
8033 * in-kernel metadata updates
8034 */
8035 void md_ack_all_badblocks(struct badblocks *bb)
8036 {
8037 if (bb->page == NULL || bb->changed)
8038 /* no point even trying */
8039 return;
8040 write_seqlock_irq(&bb->lock);
8041
8042 if (bb->changed == 0) {
8043 u64 *p = bb->page;
8044 int i;
8045 for (i = 0; i < bb->count ; i++) {
8046 if (!BB_ACK(p[i])) {
8047 sector_t start = BB_OFFSET(p[i]);
8048 int len = BB_LEN(p[i]);
8049 p[i] = BB_MAKE(start, len, 1);
8050 }
8051 }
8052 bb->unacked_exist = 0;
8053 }
8054 write_sequnlock_irq(&bb->lock);
8055 }
8056 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8057
8058 /* sysfs access to bad-blocks list.
8059 * We present two files.
8060 * 'bad-blocks' lists sector numbers and lengths of ranges that
8061 * are recorded as bad. The list is truncated to fit within
8062 * the one-page limit of sysfs.
8063 * Writing "sector length" to this file adds an acknowledged
8064 * bad block list.
8065 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8066 * been acknowledged. Writing to this file adds bad blocks
8067 * without acknowledging them. This is largely for testing.
8068 */
8069
8070 static ssize_t
8071 badblocks_show(struct badblocks *bb, char *page, int unack)
8072 {
8073 size_t len;
8074 int i;
8075 u64 *p = bb->page;
8076 unsigned seq;
8077
8078 if (bb->shift < 0)
8079 return 0;
8080
8081 retry:
8082 seq = read_seqbegin(&bb->lock);
8083
8084 len = 0;
8085 i = 0;
8086
8087 while (len < PAGE_SIZE && i < bb->count) {
8088 sector_t s = BB_OFFSET(p[i]);
8089 unsigned int length = BB_LEN(p[i]);
8090 int ack = BB_ACK(p[i]);
8091 i++;
8092
8093 if (unack && ack)
8094 continue;
8095
8096 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8097 (unsigned long long)s << bb->shift,
8098 length << bb->shift);
8099 }
8100 if (unack && len == 0)
8101 bb->unacked_exist = 0;
8102
8103 if (read_seqretry(&bb->lock, seq))
8104 goto retry;
8105
8106 return len;
8107 }
8108
8109 #define DO_DEBUG 1
8110
8111 static ssize_t
8112 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8113 {
8114 unsigned long long sector;
8115 int length;
8116 char newline;
8117 #ifdef DO_DEBUG
8118 /* Allow clearing via sysfs *only* for testing/debugging.
8119 * Normally only a successful write may clear a badblock
8120 */
8121 int clear = 0;
8122 if (page[0] == '-') {
8123 clear = 1;
8124 page++;
8125 }
8126 #endif /* DO_DEBUG */
8127
8128 switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8129 case 3:
8130 if (newline != '\n')
8131 return -EINVAL;
8132 case 2:
8133 if (length <= 0)
8134 return -EINVAL;
8135 break;
8136 default:
8137 return -EINVAL;
8138 }
8139
8140 #ifdef DO_DEBUG
8141 if (clear) {
8142 md_clear_badblocks(bb, sector, length);
8143 return len;
8144 }
8145 #endif /* DO_DEBUG */
8146 if (md_set_badblocks(bb, sector, length, !unack))
8147 return len;
8148 else
8149 return -ENOSPC;
8150 }
8151
8152 static int md_notify_reboot(struct notifier_block *this,
8153 unsigned long code, void *x)
8154 {
8155 struct list_head *tmp;
8156 struct mddev *mddev;
8157 int need_delay = 0;
8158
8159 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
8160
8161 printk(KERN_INFO "md: stopping all md devices.\n");
8162
8163 for_each_mddev(mddev, tmp) {
8164 if (mddev_trylock(mddev)) {
8165 /* Force a switch to readonly even array
8166 * appears to still be in use. Hence
8167 * the '100'.
8168 */
8169 md_set_readonly(mddev, 100);
8170 mddev_unlock(mddev);
8171 }
8172 need_delay = 1;
8173 }
8174 /*
8175 * certain more exotic SCSI devices are known to be
8176 * volatile wrt too early system reboots. While the
8177 * right place to handle this issue is the given
8178 * driver, we do want to have a safe RAID driver ...
8179 */
8180 if (need_delay)
8181 mdelay(1000*1);
8182 }
8183 return NOTIFY_DONE;
8184 }
8185
8186 static struct notifier_block md_notifier = {
8187 .notifier_call = md_notify_reboot,
8188 .next = NULL,
8189 .priority = INT_MAX, /* before any real devices */
8190 };
8191
8192 static void md_geninit(void)
8193 {
8194 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8195
8196 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8197 }
8198
8199 static int __init md_init(void)
8200 {
8201 int ret = -ENOMEM;
8202
8203 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8204 if (!md_wq)
8205 goto err_wq;
8206
8207 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8208 if (!md_misc_wq)
8209 goto err_misc_wq;
8210
8211 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8212 goto err_md;
8213
8214 if ((ret = register_blkdev(0, "mdp")) < 0)
8215 goto err_mdp;
8216 mdp_major = ret;
8217
8218 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8219 md_probe, NULL, NULL);
8220 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8221 md_probe, NULL, NULL);
8222
8223 register_reboot_notifier(&md_notifier);
8224 raid_table_header = register_sysctl_table(raid_root_table);
8225
8226 md_geninit();
8227 return 0;
8228
8229 err_mdp:
8230 unregister_blkdev(MD_MAJOR, "md");
8231 err_md:
8232 destroy_workqueue(md_misc_wq);
8233 err_misc_wq:
8234 destroy_workqueue(md_wq);
8235 err_wq:
8236 return ret;
8237 }
8238
8239 #ifndef MODULE
8240
8241 /*
8242 * Searches all registered partitions for autorun RAID arrays
8243 * at boot time.
8244 */
8245
8246 static LIST_HEAD(all_detected_devices);
8247 struct detected_devices_node {
8248 struct list_head list;
8249 dev_t dev;
8250 };
8251
8252 void md_autodetect_dev(dev_t dev)
8253 {
8254 struct detected_devices_node *node_detected_dev;
8255
8256 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8257 if (node_detected_dev) {
8258 node_detected_dev->dev = dev;
8259 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8260 } else {
8261 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8262 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8263 }
8264 }
8265
8266
8267 static void autostart_arrays(int part)
8268 {
8269 struct md_rdev *rdev;
8270 struct detected_devices_node *node_detected_dev;
8271 dev_t dev;
8272 int i_scanned, i_passed;
8273
8274 i_scanned = 0;
8275 i_passed = 0;
8276
8277 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8278
8279 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8280 i_scanned++;
8281 node_detected_dev = list_entry(all_detected_devices.next,
8282 struct detected_devices_node, list);
8283 list_del(&node_detected_dev->list);
8284 dev = node_detected_dev->dev;
8285 kfree(node_detected_dev);
8286 rdev = md_import_device(dev,0, 90);
8287 if (IS_ERR(rdev))
8288 continue;
8289
8290 if (test_bit(Faulty, &rdev->flags)) {
8291 MD_BUG();
8292 continue;
8293 }
8294 set_bit(AutoDetected, &rdev->flags);
8295 list_add(&rdev->same_set, &pending_raid_disks);
8296 i_passed++;
8297 }
8298
8299 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8300 i_scanned, i_passed);
8301
8302 autorun_devices(part);
8303 }
8304
8305 #endif /* !MODULE */
8306
8307 static __exit void md_exit(void)
8308 {
8309 struct mddev *mddev;
8310 struct list_head *tmp;
8311
8312 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8313 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8314
8315 unregister_blkdev(MD_MAJOR,"md");
8316 unregister_blkdev(mdp_major, "mdp");
8317 unregister_reboot_notifier(&md_notifier);
8318 unregister_sysctl_table(raid_table_header);
8319 remove_proc_entry("mdstat", NULL);
8320 for_each_mddev(mddev, tmp) {
8321 export_array(mddev);
8322 mddev->hold_active = 0;
8323 }
8324 destroy_workqueue(md_misc_wq);
8325 destroy_workqueue(md_wq);
8326 }
8327
8328 subsys_initcall(md_init);
8329 module_exit(md_exit)
8330
8331 static int get_ro(char *buffer, struct kernel_param *kp)
8332 {
8333 return sprintf(buffer, "%d", start_readonly);
8334 }
8335 static int set_ro(const char *val, struct kernel_param *kp)
8336 {
8337 char *e;
8338 int num = simple_strtoul(val, &e, 10);
8339 if (*val && (*e == '\0' || *e == '\n')) {
8340 start_readonly = num;
8341 return 0;
8342 }
8343 return -EINVAL;
8344 }
8345
8346 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8347 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8348
8349 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8350
8351 EXPORT_SYMBOL(register_md_personality);
8352 EXPORT_SYMBOL(unregister_md_personality);
8353 EXPORT_SYMBOL(md_error);
8354 EXPORT_SYMBOL(md_done_sync);
8355 EXPORT_SYMBOL(md_write_start);
8356 EXPORT_SYMBOL(md_write_end);
8357 EXPORT_SYMBOL(md_register_thread);
8358 EXPORT_SYMBOL(md_unregister_thread);
8359 EXPORT_SYMBOL(md_wakeup_thread);
8360 EXPORT_SYMBOL(md_check_recovery);
8361 MODULE_LICENSE("GPL");
8362 MODULE_DESCRIPTION("MD RAID framework");
8363 MODULE_ALIAS("md");
8364 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
This page took 0.292895 seconds and 4 git commands to generate.