md: discard find_rdev_nr in favour of find_rdev_nr_rcu
[deliverable/linux.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 /* pers_list is a list of registered personalities protected
62 * by pers_lock.
63 * pers_lock does extra service to protect accesses to
64 * mddev->thread when the mutex cannot be held.
65 */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68
69 static void md_print_devices(void);
70
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74
75 static int remove_and_add_spares(struct mddev *mddev,
76 struct md_rdev *this);
77
78 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
79
80 /*
81 * Default number of read corrections we'll attempt on an rdev
82 * before ejecting it from the array. We divide the read error
83 * count by 2 for every hour elapsed between read errors.
84 */
85 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
86 /*
87 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
88 * is 1000 KB/sec, so the extra system load does not show up that much.
89 * Increase it if you want to have more _guaranteed_ speed. Note that
90 * the RAID driver will use the maximum available bandwidth if the IO
91 * subsystem is idle. There is also an 'absolute maximum' reconstruction
92 * speed limit - in case reconstruction slows down your system despite
93 * idle IO detection.
94 *
95 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
96 * or /sys/block/mdX/md/sync_speed_{min,max}
97 */
98
99 static int sysctl_speed_limit_min = 1000;
100 static int sysctl_speed_limit_max = 200000;
101 static inline int speed_min(struct mddev *mddev)
102 {
103 return mddev->sync_speed_min ?
104 mddev->sync_speed_min : sysctl_speed_limit_min;
105 }
106
107 static inline int speed_max(struct mddev *mddev)
108 {
109 return mddev->sync_speed_max ?
110 mddev->sync_speed_max : sysctl_speed_limit_max;
111 }
112
113 static struct ctl_table_header *raid_table_header;
114
115 static struct ctl_table raid_table[] = {
116 {
117 .procname = "speed_limit_min",
118 .data = &sysctl_speed_limit_min,
119 .maxlen = sizeof(int),
120 .mode = S_IRUGO|S_IWUSR,
121 .proc_handler = proc_dointvec,
122 },
123 {
124 .procname = "speed_limit_max",
125 .data = &sysctl_speed_limit_max,
126 .maxlen = sizeof(int),
127 .mode = S_IRUGO|S_IWUSR,
128 .proc_handler = proc_dointvec,
129 },
130 { }
131 };
132
133 static struct ctl_table raid_dir_table[] = {
134 {
135 .procname = "raid",
136 .maxlen = 0,
137 .mode = S_IRUGO|S_IXUGO,
138 .child = raid_table,
139 },
140 { }
141 };
142
143 static struct ctl_table raid_root_table[] = {
144 {
145 .procname = "dev",
146 .maxlen = 0,
147 .mode = 0555,
148 .child = raid_dir_table,
149 },
150 { }
151 };
152
153 static const struct block_device_operations md_fops;
154
155 static int start_readonly;
156
157 /* bio_clone_mddev
158 * like bio_clone, but with a local bio set
159 */
160
161 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
162 struct mddev *mddev)
163 {
164 struct bio *b;
165
166 if (!mddev || !mddev->bio_set)
167 return bio_alloc(gfp_mask, nr_iovecs);
168
169 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
170 if (!b)
171 return NULL;
172 return b;
173 }
174 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
175
176 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
177 struct mddev *mddev)
178 {
179 if (!mddev || !mddev->bio_set)
180 return bio_clone(bio, gfp_mask);
181
182 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
183 }
184 EXPORT_SYMBOL_GPL(bio_clone_mddev);
185
186 /*
187 * We have a system wide 'event count' that is incremented
188 * on any 'interesting' event, and readers of /proc/mdstat
189 * can use 'poll' or 'select' to find out when the event
190 * count increases.
191 *
192 * Events are:
193 * start array, stop array, error, add device, remove device,
194 * start build, activate spare
195 */
196 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
197 static atomic_t md_event_count;
198 void md_new_event(struct mddev *mddev)
199 {
200 atomic_inc(&md_event_count);
201 wake_up(&md_event_waiters);
202 }
203 EXPORT_SYMBOL_GPL(md_new_event);
204
205 /* Alternate version that can be called from interrupts
206 * when calling sysfs_notify isn't needed.
207 */
208 static void md_new_event_inintr(struct mddev *mddev)
209 {
210 atomic_inc(&md_event_count);
211 wake_up(&md_event_waiters);
212 }
213
214 /*
215 * Enables to iterate over all existing md arrays
216 * all_mddevs_lock protects this list.
217 */
218 static LIST_HEAD(all_mddevs);
219 static DEFINE_SPINLOCK(all_mddevs_lock);
220
221
222 /*
223 * iterates through all used mddevs in the system.
224 * We take care to grab the all_mddevs_lock whenever navigating
225 * the list, and to always hold a refcount when unlocked.
226 * Any code which breaks out of this loop while own
227 * a reference to the current mddev and must mddev_put it.
228 */
229 #define for_each_mddev(_mddev,_tmp) \
230 \
231 for (({ spin_lock(&all_mddevs_lock); \
232 _tmp = all_mddevs.next; \
233 _mddev = NULL;}); \
234 ({ if (_tmp != &all_mddevs) \
235 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
236 spin_unlock(&all_mddevs_lock); \
237 if (_mddev) mddev_put(_mddev); \
238 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
239 _tmp != &all_mddevs;}); \
240 ({ spin_lock(&all_mddevs_lock); \
241 _tmp = _tmp->next;}) \
242 )
243
244
245 /* Rather than calling directly into the personality make_request function,
246 * IO requests come here first so that we can check if the device is
247 * being suspended pending a reconfiguration.
248 * We hold a refcount over the call to ->make_request. By the time that
249 * call has finished, the bio has been linked into some internal structure
250 * and so is visible to ->quiesce(), so we don't need the refcount any more.
251 */
252 static void md_make_request(struct request_queue *q, struct bio *bio)
253 {
254 const int rw = bio_data_dir(bio);
255 struct mddev *mddev = q->queuedata;
256 int cpu;
257 unsigned int sectors;
258
259 if (mddev == NULL || mddev->pers == NULL
260 || !mddev->ready) {
261 bio_io_error(bio);
262 return;
263 }
264 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
265 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
266 return;
267 }
268 smp_rmb(); /* Ensure implications of 'active' are visible */
269 rcu_read_lock();
270 if (mddev->suspended) {
271 DEFINE_WAIT(__wait);
272 for (;;) {
273 prepare_to_wait(&mddev->sb_wait, &__wait,
274 TASK_UNINTERRUPTIBLE);
275 if (!mddev->suspended)
276 break;
277 rcu_read_unlock();
278 schedule();
279 rcu_read_lock();
280 }
281 finish_wait(&mddev->sb_wait, &__wait);
282 }
283 atomic_inc(&mddev->active_io);
284 rcu_read_unlock();
285
286 /*
287 * save the sectors now since our bio can
288 * go away inside make_request
289 */
290 sectors = bio_sectors(bio);
291 mddev->pers->make_request(mddev, bio);
292
293 cpu = part_stat_lock();
294 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
295 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
296 part_stat_unlock();
297
298 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
299 wake_up(&mddev->sb_wait);
300 }
301
302 /* mddev_suspend makes sure no new requests are submitted
303 * to the device, and that any requests that have been submitted
304 * are completely handled.
305 * Once ->stop is called and completes, the module will be completely
306 * unused.
307 */
308 void mddev_suspend(struct mddev *mddev)
309 {
310 BUG_ON(mddev->suspended);
311 mddev->suspended = 1;
312 synchronize_rcu();
313 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
314 mddev->pers->quiesce(mddev, 1);
315
316 del_timer_sync(&mddev->safemode_timer);
317 }
318 EXPORT_SYMBOL_GPL(mddev_suspend);
319
320 void mddev_resume(struct mddev *mddev)
321 {
322 mddev->suspended = 0;
323 wake_up(&mddev->sb_wait);
324 mddev->pers->quiesce(mddev, 0);
325
326 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
327 md_wakeup_thread(mddev->thread);
328 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
329 }
330 EXPORT_SYMBOL_GPL(mddev_resume);
331
332 int mddev_congested(struct mddev *mddev, int bits)
333 {
334 return mddev->suspended;
335 }
336 EXPORT_SYMBOL(mddev_congested);
337
338 /*
339 * Generic flush handling for md
340 */
341
342 static void md_end_flush(struct bio *bio, int err)
343 {
344 struct md_rdev *rdev = bio->bi_private;
345 struct mddev *mddev = rdev->mddev;
346
347 rdev_dec_pending(rdev, mddev);
348
349 if (atomic_dec_and_test(&mddev->flush_pending)) {
350 /* The pre-request flush has finished */
351 queue_work(md_wq, &mddev->flush_work);
352 }
353 bio_put(bio);
354 }
355
356 static void md_submit_flush_data(struct work_struct *ws);
357
358 static void submit_flushes(struct work_struct *ws)
359 {
360 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
361 struct md_rdev *rdev;
362
363 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
364 atomic_set(&mddev->flush_pending, 1);
365 rcu_read_lock();
366 rdev_for_each_rcu(rdev, mddev)
367 if (rdev->raid_disk >= 0 &&
368 !test_bit(Faulty, &rdev->flags)) {
369 /* Take two references, one is dropped
370 * when request finishes, one after
371 * we reclaim rcu_read_lock
372 */
373 struct bio *bi;
374 atomic_inc(&rdev->nr_pending);
375 atomic_inc(&rdev->nr_pending);
376 rcu_read_unlock();
377 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
378 bi->bi_end_io = md_end_flush;
379 bi->bi_private = rdev;
380 bi->bi_bdev = rdev->bdev;
381 atomic_inc(&mddev->flush_pending);
382 submit_bio(WRITE_FLUSH, bi);
383 rcu_read_lock();
384 rdev_dec_pending(rdev, mddev);
385 }
386 rcu_read_unlock();
387 if (atomic_dec_and_test(&mddev->flush_pending))
388 queue_work(md_wq, &mddev->flush_work);
389 }
390
391 static void md_submit_flush_data(struct work_struct *ws)
392 {
393 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
394 struct bio *bio = mddev->flush_bio;
395
396 if (bio->bi_iter.bi_size == 0)
397 /* an empty barrier - all done */
398 bio_endio(bio, 0);
399 else {
400 bio->bi_rw &= ~REQ_FLUSH;
401 mddev->pers->make_request(mddev, bio);
402 }
403
404 mddev->flush_bio = NULL;
405 wake_up(&mddev->sb_wait);
406 }
407
408 void md_flush_request(struct mddev *mddev, struct bio *bio)
409 {
410 spin_lock_irq(&mddev->write_lock);
411 wait_event_lock_irq(mddev->sb_wait,
412 !mddev->flush_bio,
413 mddev->write_lock);
414 mddev->flush_bio = bio;
415 spin_unlock_irq(&mddev->write_lock);
416
417 INIT_WORK(&mddev->flush_work, submit_flushes);
418 queue_work(md_wq, &mddev->flush_work);
419 }
420 EXPORT_SYMBOL(md_flush_request);
421
422 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
423 {
424 struct mddev *mddev = cb->data;
425 md_wakeup_thread(mddev->thread);
426 kfree(cb);
427 }
428 EXPORT_SYMBOL(md_unplug);
429
430 static inline struct mddev *mddev_get(struct mddev *mddev)
431 {
432 atomic_inc(&mddev->active);
433 return mddev;
434 }
435
436 static void mddev_delayed_delete(struct work_struct *ws);
437
438 static void mddev_put(struct mddev *mddev)
439 {
440 struct bio_set *bs = NULL;
441
442 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
443 return;
444 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
445 mddev->ctime == 0 && !mddev->hold_active) {
446 /* Array is not configured at all, and not held active,
447 * so destroy it */
448 list_del_init(&mddev->all_mddevs);
449 bs = mddev->bio_set;
450 mddev->bio_set = NULL;
451 if (mddev->gendisk) {
452 /* We did a probe so need to clean up. Call
453 * queue_work inside the spinlock so that
454 * flush_workqueue() after mddev_find will
455 * succeed in waiting for the work to be done.
456 */
457 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
458 queue_work(md_misc_wq, &mddev->del_work);
459 } else
460 kfree(mddev);
461 }
462 spin_unlock(&all_mddevs_lock);
463 if (bs)
464 bioset_free(bs);
465 }
466
467 void mddev_init(struct mddev *mddev)
468 {
469 mutex_init(&mddev->open_mutex);
470 mutex_init(&mddev->reconfig_mutex);
471 mutex_init(&mddev->bitmap_info.mutex);
472 INIT_LIST_HEAD(&mddev->disks);
473 INIT_LIST_HEAD(&mddev->all_mddevs);
474 init_timer(&mddev->safemode_timer);
475 atomic_set(&mddev->active, 1);
476 atomic_set(&mddev->openers, 0);
477 atomic_set(&mddev->active_io, 0);
478 spin_lock_init(&mddev->write_lock);
479 atomic_set(&mddev->flush_pending, 0);
480 init_waitqueue_head(&mddev->sb_wait);
481 init_waitqueue_head(&mddev->recovery_wait);
482 mddev->reshape_position = MaxSector;
483 mddev->reshape_backwards = 0;
484 mddev->last_sync_action = "none";
485 mddev->resync_min = 0;
486 mddev->resync_max = MaxSector;
487 mddev->level = LEVEL_NONE;
488 }
489 EXPORT_SYMBOL_GPL(mddev_init);
490
491 static struct mddev * mddev_find(dev_t unit)
492 {
493 struct mddev *mddev, *new = NULL;
494
495 if (unit && MAJOR(unit) != MD_MAJOR)
496 unit &= ~((1<<MdpMinorShift)-1);
497
498 retry:
499 spin_lock(&all_mddevs_lock);
500
501 if (unit) {
502 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
503 if (mddev->unit == unit) {
504 mddev_get(mddev);
505 spin_unlock(&all_mddevs_lock);
506 kfree(new);
507 return mddev;
508 }
509
510 if (new) {
511 list_add(&new->all_mddevs, &all_mddevs);
512 spin_unlock(&all_mddevs_lock);
513 new->hold_active = UNTIL_IOCTL;
514 return new;
515 }
516 } else if (new) {
517 /* find an unused unit number */
518 static int next_minor = 512;
519 int start = next_minor;
520 int is_free = 0;
521 int dev = 0;
522 while (!is_free) {
523 dev = MKDEV(MD_MAJOR, next_minor);
524 next_minor++;
525 if (next_minor > MINORMASK)
526 next_minor = 0;
527 if (next_minor == start) {
528 /* Oh dear, all in use. */
529 spin_unlock(&all_mddevs_lock);
530 kfree(new);
531 return NULL;
532 }
533
534 is_free = 1;
535 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
536 if (mddev->unit == dev) {
537 is_free = 0;
538 break;
539 }
540 }
541 new->unit = dev;
542 new->md_minor = MINOR(dev);
543 new->hold_active = UNTIL_STOP;
544 list_add(&new->all_mddevs, &all_mddevs);
545 spin_unlock(&all_mddevs_lock);
546 return new;
547 }
548 spin_unlock(&all_mddevs_lock);
549
550 new = kzalloc(sizeof(*new), GFP_KERNEL);
551 if (!new)
552 return NULL;
553
554 new->unit = unit;
555 if (MAJOR(unit) == MD_MAJOR)
556 new->md_minor = MINOR(unit);
557 else
558 new->md_minor = MINOR(unit) >> MdpMinorShift;
559
560 mddev_init(new);
561
562 goto retry;
563 }
564
565 static inline int __must_check mddev_lock(struct mddev * mddev)
566 {
567 return mutex_lock_interruptible(&mddev->reconfig_mutex);
568 }
569
570 /* Sometimes we need to take the lock in a situation where
571 * failure due to interrupts is not acceptable.
572 */
573 static inline void mddev_lock_nointr(struct mddev * mddev)
574 {
575 mutex_lock(&mddev->reconfig_mutex);
576 }
577
578 static inline int mddev_is_locked(struct mddev *mddev)
579 {
580 return mutex_is_locked(&mddev->reconfig_mutex);
581 }
582
583 static inline int mddev_trylock(struct mddev * mddev)
584 {
585 return mutex_trylock(&mddev->reconfig_mutex);
586 }
587
588 static struct attribute_group md_redundancy_group;
589
590 static void mddev_unlock(struct mddev * mddev)
591 {
592 if (mddev->to_remove) {
593 /* These cannot be removed under reconfig_mutex as
594 * an access to the files will try to take reconfig_mutex
595 * while holding the file unremovable, which leads to
596 * a deadlock.
597 * So hold set sysfs_active while the remove in happeing,
598 * and anything else which might set ->to_remove or my
599 * otherwise change the sysfs namespace will fail with
600 * -EBUSY if sysfs_active is still set.
601 * We set sysfs_active under reconfig_mutex and elsewhere
602 * test it under the same mutex to ensure its correct value
603 * is seen.
604 */
605 struct attribute_group *to_remove = mddev->to_remove;
606 mddev->to_remove = NULL;
607 mddev->sysfs_active = 1;
608 mutex_unlock(&mddev->reconfig_mutex);
609
610 if (mddev->kobj.sd) {
611 if (to_remove != &md_redundancy_group)
612 sysfs_remove_group(&mddev->kobj, to_remove);
613 if (mddev->pers == NULL ||
614 mddev->pers->sync_request == NULL) {
615 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
616 if (mddev->sysfs_action)
617 sysfs_put(mddev->sysfs_action);
618 mddev->sysfs_action = NULL;
619 }
620 }
621 mddev->sysfs_active = 0;
622 } else
623 mutex_unlock(&mddev->reconfig_mutex);
624
625 /* As we've dropped the mutex we need a spinlock to
626 * make sure the thread doesn't disappear
627 */
628 spin_lock(&pers_lock);
629 md_wakeup_thread(mddev->thread);
630 spin_unlock(&pers_lock);
631 }
632
633 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
634 {
635 struct md_rdev *rdev;
636
637 rdev_for_each_rcu(rdev, mddev)
638 if (rdev->desc_nr == nr)
639 return rdev;
640
641 return NULL;
642 }
643
644 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
645 {
646 struct md_rdev *rdev;
647
648 rdev_for_each(rdev, mddev)
649 if (rdev->bdev->bd_dev == dev)
650 return rdev;
651
652 return NULL;
653 }
654
655 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
656 {
657 struct md_rdev *rdev;
658
659 rdev_for_each_rcu(rdev, mddev)
660 if (rdev->bdev->bd_dev == dev)
661 return rdev;
662
663 return NULL;
664 }
665
666 static struct md_personality *find_pers(int level, char *clevel)
667 {
668 struct md_personality *pers;
669 list_for_each_entry(pers, &pers_list, list) {
670 if (level != LEVEL_NONE && pers->level == level)
671 return pers;
672 if (strcmp(pers->name, clevel)==0)
673 return pers;
674 }
675 return NULL;
676 }
677
678 /* return the offset of the super block in 512byte sectors */
679 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
680 {
681 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
682 return MD_NEW_SIZE_SECTORS(num_sectors);
683 }
684
685 static int alloc_disk_sb(struct md_rdev * rdev)
686 {
687 if (rdev->sb_page)
688 MD_BUG();
689
690 rdev->sb_page = alloc_page(GFP_KERNEL);
691 if (!rdev->sb_page) {
692 printk(KERN_ALERT "md: out of memory.\n");
693 return -ENOMEM;
694 }
695
696 return 0;
697 }
698
699 void md_rdev_clear(struct md_rdev *rdev)
700 {
701 if (rdev->sb_page) {
702 put_page(rdev->sb_page);
703 rdev->sb_loaded = 0;
704 rdev->sb_page = NULL;
705 rdev->sb_start = 0;
706 rdev->sectors = 0;
707 }
708 if (rdev->bb_page) {
709 put_page(rdev->bb_page);
710 rdev->bb_page = NULL;
711 }
712 kfree(rdev->badblocks.page);
713 rdev->badblocks.page = NULL;
714 }
715 EXPORT_SYMBOL_GPL(md_rdev_clear);
716
717 static void super_written(struct bio *bio, int error)
718 {
719 struct md_rdev *rdev = bio->bi_private;
720 struct mddev *mddev = rdev->mddev;
721
722 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
723 printk("md: super_written gets error=%d, uptodate=%d\n",
724 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
725 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
726 md_error(mddev, rdev);
727 }
728
729 if (atomic_dec_and_test(&mddev->pending_writes))
730 wake_up(&mddev->sb_wait);
731 bio_put(bio);
732 }
733
734 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
735 sector_t sector, int size, struct page *page)
736 {
737 /* write first size bytes of page to sector of rdev
738 * Increment mddev->pending_writes before returning
739 * and decrement it on completion, waking up sb_wait
740 * if zero is reached.
741 * If an error occurred, call md_error
742 */
743 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
744
745 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
746 bio->bi_iter.bi_sector = sector;
747 bio_add_page(bio, page, size, 0);
748 bio->bi_private = rdev;
749 bio->bi_end_io = super_written;
750
751 atomic_inc(&mddev->pending_writes);
752 submit_bio(WRITE_FLUSH_FUA, bio);
753 }
754
755 void md_super_wait(struct mddev *mddev)
756 {
757 /* wait for all superblock writes that were scheduled to complete */
758 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
759 }
760
761 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
762 struct page *page, int rw, bool metadata_op)
763 {
764 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
765 int ret;
766
767 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
768 rdev->meta_bdev : rdev->bdev;
769 if (metadata_op)
770 bio->bi_iter.bi_sector = sector + rdev->sb_start;
771 else if (rdev->mddev->reshape_position != MaxSector &&
772 (rdev->mddev->reshape_backwards ==
773 (sector >= rdev->mddev->reshape_position)))
774 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
775 else
776 bio->bi_iter.bi_sector = sector + rdev->data_offset;
777 bio_add_page(bio, page, size, 0);
778 submit_bio_wait(rw, bio);
779
780 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
781 bio_put(bio);
782 return ret;
783 }
784 EXPORT_SYMBOL_GPL(sync_page_io);
785
786 static int read_disk_sb(struct md_rdev * rdev, int size)
787 {
788 char b[BDEVNAME_SIZE];
789 if (!rdev->sb_page) {
790 MD_BUG();
791 return -EINVAL;
792 }
793 if (rdev->sb_loaded)
794 return 0;
795
796
797 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
798 goto fail;
799 rdev->sb_loaded = 1;
800 return 0;
801
802 fail:
803 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
804 bdevname(rdev->bdev,b));
805 return -EINVAL;
806 }
807
808 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
809 {
810 return sb1->set_uuid0 == sb2->set_uuid0 &&
811 sb1->set_uuid1 == sb2->set_uuid1 &&
812 sb1->set_uuid2 == sb2->set_uuid2 &&
813 sb1->set_uuid3 == sb2->set_uuid3;
814 }
815
816 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
817 {
818 int ret;
819 mdp_super_t *tmp1, *tmp2;
820
821 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
822 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
823
824 if (!tmp1 || !tmp2) {
825 ret = 0;
826 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
827 goto abort;
828 }
829
830 *tmp1 = *sb1;
831 *tmp2 = *sb2;
832
833 /*
834 * nr_disks is not constant
835 */
836 tmp1->nr_disks = 0;
837 tmp2->nr_disks = 0;
838
839 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
840 abort:
841 kfree(tmp1);
842 kfree(tmp2);
843 return ret;
844 }
845
846
847 static u32 md_csum_fold(u32 csum)
848 {
849 csum = (csum & 0xffff) + (csum >> 16);
850 return (csum & 0xffff) + (csum >> 16);
851 }
852
853 static unsigned int calc_sb_csum(mdp_super_t * sb)
854 {
855 u64 newcsum = 0;
856 u32 *sb32 = (u32*)sb;
857 int i;
858 unsigned int disk_csum, csum;
859
860 disk_csum = sb->sb_csum;
861 sb->sb_csum = 0;
862
863 for (i = 0; i < MD_SB_BYTES/4 ; i++)
864 newcsum += sb32[i];
865 csum = (newcsum & 0xffffffff) + (newcsum>>32);
866
867
868 #ifdef CONFIG_ALPHA
869 /* This used to use csum_partial, which was wrong for several
870 * reasons including that different results are returned on
871 * different architectures. It isn't critical that we get exactly
872 * the same return value as before (we always csum_fold before
873 * testing, and that removes any differences). However as we
874 * know that csum_partial always returned a 16bit value on
875 * alphas, do a fold to maximise conformity to previous behaviour.
876 */
877 sb->sb_csum = md_csum_fold(disk_csum);
878 #else
879 sb->sb_csum = disk_csum;
880 #endif
881 return csum;
882 }
883
884
885 /*
886 * Handle superblock details.
887 * We want to be able to handle multiple superblock formats
888 * so we have a common interface to them all, and an array of
889 * different handlers.
890 * We rely on user-space to write the initial superblock, and support
891 * reading and updating of superblocks.
892 * Interface methods are:
893 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
894 * loads and validates a superblock on dev.
895 * if refdev != NULL, compare superblocks on both devices
896 * Return:
897 * 0 - dev has a superblock that is compatible with refdev
898 * 1 - dev has a superblock that is compatible and newer than refdev
899 * so dev should be used as the refdev in future
900 * -EINVAL superblock incompatible or invalid
901 * -othererror e.g. -EIO
902 *
903 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
904 * Verify that dev is acceptable into mddev.
905 * The first time, mddev->raid_disks will be 0, and data from
906 * dev should be merged in. Subsequent calls check that dev
907 * is new enough. Return 0 or -EINVAL
908 *
909 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
910 * Update the superblock for rdev with data in mddev
911 * This does not write to disc.
912 *
913 */
914
915 struct super_type {
916 char *name;
917 struct module *owner;
918 int (*load_super)(struct md_rdev *rdev,
919 struct md_rdev *refdev,
920 int minor_version);
921 int (*validate_super)(struct mddev *mddev,
922 struct md_rdev *rdev);
923 void (*sync_super)(struct mddev *mddev,
924 struct md_rdev *rdev);
925 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
926 sector_t num_sectors);
927 int (*allow_new_offset)(struct md_rdev *rdev,
928 unsigned long long new_offset);
929 };
930
931 /*
932 * Check that the given mddev has no bitmap.
933 *
934 * This function is called from the run method of all personalities that do not
935 * support bitmaps. It prints an error message and returns non-zero if mddev
936 * has a bitmap. Otherwise, it returns 0.
937 *
938 */
939 int md_check_no_bitmap(struct mddev *mddev)
940 {
941 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
942 return 0;
943 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
944 mdname(mddev), mddev->pers->name);
945 return 1;
946 }
947 EXPORT_SYMBOL(md_check_no_bitmap);
948
949 /*
950 * load_super for 0.90.0
951 */
952 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
953 {
954 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
955 mdp_super_t *sb;
956 int ret;
957
958 /*
959 * Calculate the position of the superblock (512byte sectors),
960 * it's at the end of the disk.
961 *
962 * It also happens to be a multiple of 4Kb.
963 */
964 rdev->sb_start = calc_dev_sboffset(rdev);
965
966 ret = read_disk_sb(rdev, MD_SB_BYTES);
967 if (ret) return ret;
968
969 ret = -EINVAL;
970
971 bdevname(rdev->bdev, b);
972 sb = page_address(rdev->sb_page);
973
974 if (sb->md_magic != MD_SB_MAGIC) {
975 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
976 b);
977 goto abort;
978 }
979
980 if (sb->major_version != 0 ||
981 sb->minor_version < 90 ||
982 sb->minor_version > 91) {
983 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
984 sb->major_version, sb->minor_version,
985 b);
986 goto abort;
987 }
988
989 if (sb->raid_disks <= 0)
990 goto abort;
991
992 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
993 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
994 b);
995 goto abort;
996 }
997
998 rdev->preferred_minor = sb->md_minor;
999 rdev->data_offset = 0;
1000 rdev->new_data_offset = 0;
1001 rdev->sb_size = MD_SB_BYTES;
1002 rdev->badblocks.shift = -1;
1003
1004 if (sb->level == LEVEL_MULTIPATH)
1005 rdev->desc_nr = -1;
1006 else
1007 rdev->desc_nr = sb->this_disk.number;
1008
1009 if (!refdev) {
1010 ret = 1;
1011 } else {
1012 __u64 ev1, ev2;
1013 mdp_super_t *refsb = page_address(refdev->sb_page);
1014 if (!uuid_equal(refsb, sb)) {
1015 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1016 b, bdevname(refdev->bdev,b2));
1017 goto abort;
1018 }
1019 if (!sb_equal(refsb, sb)) {
1020 printk(KERN_WARNING "md: %s has same UUID"
1021 " but different superblock to %s\n",
1022 b, bdevname(refdev->bdev, b2));
1023 goto abort;
1024 }
1025 ev1 = md_event(sb);
1026 ev2 = md_event(refsb);
1027 if (ev1 > ev2)
1028 ret = 1;
1029 else
1030 ret = 0;
1031 }
1032 rdev->sectors = rdev->sb_start;
1033 /* Limit to 4TB as metadata cannot record more than that.
1034 * (not needed for Linear and RAID0 as metadata doesn't
1035 * record this size)
1036 */
1037 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1038 rdev->sectors = (2ULL << 32) - 2;
1039
1040 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1041 /* "this cannot possibly happen" ... */
1042 ret = -EINVAL;
1043
1044 abort:
1045 return ret;
1046 }
1047
1048 /*
1049 * validate_super for 0.90.0
1050 */
1051 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1052 {
1053 mdp_disk_t *desc;
1054 mdp_super_t *sb = page_address(rdev->sb_page);
1055 __u64 ev1 = md_event(sb);
1056
1057 rdev->raid_disk = -1;
1058 clear_bit(Faulty, &rdev->flags);
1059 clear_bit(In_sync, &rdev->flags);
1060 clear_bit(Bitmap_sync, &rdev->flags);
1061 clear_bit(WriteMostly, &rdev->flags);
1062
1063 if (mddev->raid_disks == 0) {
1064 mddev->major_version = 0;
1065 mddev->minor_version = sb->minor_version;
1066 mddev->patch_version = sb->patch_version;
1067 mddev->external = 0;
1068 mddev->chunk_sectors = sb->chunk_size >> 9;
1069 mddev->ctime = sb->ctime;
1070 mddev->utime = sb->utime;
1071 mddev->level = sb->level;
1072 mddev->clevel[0] = 0;
1073 mddev->layout = sb->layout;
1074 mddev->raid_disks = sb->raid_disks;
1075 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1076 mddev->events = ev1;
1077 mddev->bitmap_info.offset = 0;
1078 mddev->bitmap_info.space = 0;
1079 /* bitmap can use 60 K after the 4K superblocks */
1080 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1081 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1082 mddev->reshape_backwards = 0;
1083
1084 if (mddev->minor_version >= 91) {
1085 mddev->reshape_position = sb->reshape_position;
1086 mddev->delta_disks = sb->delta_disks;
1087 mddev->new_level = sb->new_level;
1088 mddev->new_layout = sb->new_layout;
1089 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1090 if (mddev->delta_disks < 0)
1091 mddev->reshape_backwards = 1;
1092 } else {
1093 mddev->reshape_position = MaxSector;
1094 mddev->delta_disks = 0;
1095 mddev->new_level = mddev->level;
1096 mddev->new_layout = mddev->layout;
1097 mddev->new_chunk_sectors = mddev->chunk_sectors;
1098 }
1099
1100 if (sb->state & (1<<MD_SB_CLEAN))
1101 mddev->recovery_cp = MaxSector;
1102 else {
1103 if (sb->events_hi == sb->cp_events_hi &&
1104 sb->events_lo == sb->cp_events_lo) {
1105 mddev->recovery_cp = sb->recovery_cp;
1106 } else
1107 mddev->recovery_cp = 0;
1108 }
1109
1110 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1111 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1112 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1113 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1114
1115 mddev->max_disks = MD_SB_DISKS;
1116
1117 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1118 mddev->bitmap_info.file == NULL) {
1119 mddev->bitmap_info.offset =
1120 mddev->bitmap_info.default_offset;
1121 mddev->bitmap_info.space =
1122 mddev->bitmap_info.default_space;
1123 }
1124
1125 } else if (mddev->pers == NULL) {
1126 /* Insist on good event counter while assembling, except
1127 * for spares (which don't need an event count) */
1128 ++ev1;
1129 if (sb->disks[rdev->desc_nr].state & (
1130 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1131 if (ev1 < mddev->events)
1132 return -EINVAL;
1133 } else if (mddev->bitmap) {
1134 /* if adding to array with a bitmap, then we can accept an
1135 * older device ... but not too old.
1136 */
1137 if (ev1 < mddev->bitmap->events_cleared)
1138 return 0;
1139 if (ev1 < mddev->events)
1140 set_bit(Bitmap_sync, &rdev->flags);
1141 } else {
1142 if (ev1 < mddev->events)
1143 /* just a hot-add of a new device, leave raid_disk at -1 */
1144 return 0;
1145 }
1146
1147 if (mddev->level != LEVEL_MULTIPATH) {
1148 desc = sb->disks + rdev->desc_nr;
1149
1150 if (desc->state & (1<<MD_DISK_FAULTY))
1151 set_bit(Faulty, &rdev->flags);
1152 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1153 desc->raid_disk < mddev->raid_disks */) {
1154 set_bit(In_sync, &rdev->flags);
1155 rdev->raid_disk = desc->raid_disk;
1156 rdev->saved_raid_disk = desc->raid_disk;
1157 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1158 /* active but not in sync implies recovery up to
1159 * reshape position. We don't know exactly where
1160 * that is, so set to zero for now */
1161 if (mddev->minor_version >= 91) {
1162 rdev->recovery_offset = 0;
1163 rdev->raid_disk = desc->raid_disk;
1164 }
1165 }
1166 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1167 set_bit(WriteMostly, &rdev->flags);
1168 } else /* MULTIPATH are always insync */
1169 set_bit(In_sync, &rdev->flags);
1170 return 0;
1171 }
1172
1173 /*
1174 * sync_super for 0.90.0
1175 */
1176 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1177 {
1178 mdp_super_t *sb;
1179 struct md_rdev *rdev2;
1180 int next_spare = mddev->raid_disks;
1181
1182
1183 /* make rdev->sb match mddev data..
1184 *
1185 * 1/ zero out disks
1186 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1187 * 3/ any empty disks < next_spare become removed
1188 *
1189 * disks[0] gets initialised to REMOVED because
1190 * we cannot be sure from other fields if it has
1191 * been initialised or not.
1192 */
1193 int i;
1194 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1195
1196 rdev->sb_size = MD_SB_BYTES;
1197
1198 sb = page_address(rdev->sb_page);
1199
1200 memset(sb, 0, sizeof(*sb));
1201
1202 sb->md_magic = MD_SB_MAGIC;
1203 sb->major_version = mddev->major_version;
1204 sb->patch_version = mddev->patch_version;
1205 sb->gvalid_words = 0; /* ignored */
1206 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1207 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1208 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1209 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1210
1211 sb->ctime = mddev->ctime;
1212 sb->level = mddev->level;
1213 sb->size = mddev->dev_sectors / 2;
1214 sb->raid_disks = mddev->raid_disks;
1215 sb->md_minor = mddev->md_minor;
1216 sb->not_persistent = 0;
1217 sb->utime = mddev->utime;
1218 sb->state = 0;
1219 sb->events_hi = (mddev->events>>32);
1220 sb->events_lo = (u32)mddev->events;
1221
1222 if (mddev->reshape_position == MaxSector)
1223 sb->minor_version = 90;
1224 else {
1225 sb->minor_version = 91;
1226 sb->reshape_position = mddev->reshape_position;
1227 sb->new_level = mddev->new_level;
1228 sb->delta_disks = mddev->delta_disks;
1229 sb->new_layout = mddev->new_layout;
1230 sb->new_chunk = mddev->new_chunk_sectors << 9;
1231 }
1232 mddev->minor_version = sb->minor_version;
1233 if (mddev->in_sync)
1234 {
1235 sb->recovery_cp = mddev->recovery_cp;
1236 sb->cp_events_hi = (mddev->events>>32);
1237 sb->cp_events_lo = (u32)mddev->events;
1238 if (mddev->recovery_cp == MaxSector)
1239 sb->state = (1<< MD_SB_CLEAN);
1240 } else
1241 sb->recovery_cp = 0;
1242
1243 sb->layout = mddev->layout;
1244 sb->chunk_size = mddev->chunk_sectors << 9;
1245
1246 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1247 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1248
1249 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1250 rdev_for_each(rdev2, mddev) {
1251 mdp_disk_t *d;
1252 int desc_nr;
1253 int is_active = test_bit(In_sync, &rdev2->flags);
1254
1255 if (rdev2->raid_disk >= 0 &&
1256 sb->minor_version >= 91)
1257 /* we have nowhere to store the recovery_offset,
1258 * but if it is not below the reshape_position,
1259 * we can piggy-back on that.
1260 */
1261 is_active = 1;
1262 if (rdev2->raid_disk < 0 ||
1263 test_bit(Faulty, &rdev2->flags))
1264 is_active = 0;
1265 if (is_active)
1266 desc_nr = rdev2->raid_disk;
1267 else
1268 desc_nr = next_spare++;
1269 rdev2->desc_nr = desc_nr;
1270 d = &sb->disks[rdev2->desc_nr];
1271 nr_disks++;
1272 d->number = rdev2->desc_nr;
1273 d->major = MAJOR(rdev2->bdev->bd_dev);
1274 d->minor = MINOR(rdev2->bdev->bd_dev);
1275 if (is_active)
1276 d->raid_disk = rdev2->raid_disk;
1277 else
1278 d->raid_disk = rdev2->desc_nr; /* compatibility */
1279 if (test_bit(Faulty, &rdev2->flags))
1280 d->state = (1<<MD_DISK_FAULTY);
1281 else if (is_active) {
1282 d->state = (1<<MD_DISK_ACTIVE);
1283 if (test_bit(In_sync, &rdev2->flags))
1284 d->state |= (1<<MD_DISK_SYNC);
1285 active++;
1286 working++;
1287 } else {
1288 d->state = 0;
1289 spare++;
1290 working++;
1291 }
1292 if (test_bit(WriteMostly, &rdev2->flags))
1293 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1294 }
1295 /* now set the "removed" and "faulty" bits on any missing devices */
1296 for (i=0 ; i < mddev->raid_disks ; i++) {
1297 mdp_disk_t *d = &sb->disks[i];
1298 if (d->state == 0 && d->number == 0) {
1299 d->number = i;
1300 d->raid_disk = i;
1301 d->state = (1<<MD_DISK_REMOVED);
1302 d->state |= (1<<MD_DISK_FAULTY);
1303 failed++;
1304 }
1305 }
1306 sb->nr_disks = nr_disks;
1307 sb->active_disks = active;
1308 sb->working_disks = working;
1309 sb->failed_disks = failed;
1310 sb->spare_disks = spare;
1311
1312 sb->this_disk = sb->disks[rdev->desc_nr];
1313 sb->sb_csum = calc_sb_csum(sb);
1314 }
1315
1316 /*
1317 * rdev_size_change for 0.90.0
1318 */
1319 static unsigned long long
1320 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1321 {
1322 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1323 return 0; /* component must fit device */
1324 if (rdev->mddev->bitmap_info.offset)
1325 return 0; /* can't move bitmap */
1326 rdev->sb_start = calc_dev_sboffset(rdev);
1327 if (!num_sectors || num_sectors > rdev->sb_start)
1328 num_sectors = rdev->sb_start;
1329 /* Limit to 4TB as metadata cannot record more than that.
1330 * 4TB == 2^32 KB, or 2*2^32 sectors.
1331 */
1332 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1333 num_sectors = (2ULL << 32) - 2;
1334 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1335 rdev->sb_page);
1336 md_super_wait(rdev->mddev);
1337 return num_sectors;
1338 }
1339
1340 static int
1341 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1342 {
1343 /* non-zero offset changes not possible with v0.90 */
1344 return new_offset == 0;
1345 }
1346
1347 /*
1348 * version 1 superblock
1349 */
1350
1351 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1352 {
1353 __le32 disk_csum;
1354 u32 csum;
1355 unsigned long long newcsum;
1356 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1357 __le32 *isuper = (__le32*)sb;
1358
1359 disk_csum = sb->sb_csum;
1360 sb->sb_csum = 0;
1361 newcsum = 0;
1362 for (; size >= 4; size -= 4)
1363 newcsum += le32_to_cpu(*isuper++);
1364
1365 if (size == 2)
1366 newcsum += le16_to_cpu(*(__le16*) isuper);
1367
1368 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1369 sb->sb_csum = disk_csum;
1370 return cpu_to_le32(csum);
1371 }
1372
1373 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1374 int acknowledged);
1375 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1376 {
1377 struct mdp_superblock_1 *sb;
1378 int ret;
1379 sector_t sb_start;
1380 sector_t sectors;
1381 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1382 int bmask;
1383
1384 /*
1385 * Calculate the position of the superblock in 512byte sectors.
1386 * It is always aligned to a 4K boundary and
1387 * depeding on minor_version, it can be:
1388 * 0: At least 8K, but less than 12K, from end of device
1389 * 1: At start of device
1390 * 2: 4K from start of device.
1391 */
1392 switch(minor_version) {
1393 case 0:
1394 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1395 sb_start -= 8*2;
1396 sb_start &= ~(sector_t)(4*2-1);
1397 break;
1398 case 1:
1399 sb_start = 0;
1400 break;
1401 case 2:
1402 sb_start = 8;
1403 break;
1404 default:
1405 return -EINVAL;
1406 }
1407 rdev->sb_start = sb_start;
1408
1409 /* superblock is rarely larger than 1K, but it can be larger,
1410 * and it is safe to read 4k, so we do that
1411 */
1412 ret = read_disk_sb(rdev, 4096);
1413 if (ret) return ret;
1414
1415
1416 sb = page_address(rdev->sb_page);
1417
1418 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1419 sb->major_version != cpu_to_le32(1) ||
1420 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1421 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1422 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1423 return -EINVAL;
1424
1425 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1426 printk("md: invalid superblock checksum on %s\n",
1427 bdevname(rdev->bdev,b));
1428 return -EINVAL;
1429 }
1430 if (le64_to_cpu(sb->data_size) < 10) {
1431 printk("md: data_size too small on %s\n",
1432 bdevname(rdev->bdev,b));
1433 return -EINVAL;
1434 }
1435 if (sb->pad0 ||
1436 sb->pad3[0] ||
1437 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1438 /* Some padding is non-zero, might be a new feature */
1439 return -EINVAL;
1440
1441 rdev->preferred_minor = 0xffff;
1442 rdev->data_offset = le64_to_cpu(sb->data_offset);
1443 rdev->new_data_offset = rdev->data_offset;
1444 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1445 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1446 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1447 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1448
1449 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1450 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1451 if (rdev->sb_size & bmask)
1452 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1453
1454 if (minor_version
1455 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1456 return -EINVAL;
1457 if (minor_version
1458 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1459 return -EINVAL;
1460
1461 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1462 rdev->desc_nr = -1;
1463 else
1464 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1465
1466 if (!rdev->bb_page) {
1467 rdev->bb_page = alloc_page(GFP_KERNEL);
1468 if (!rdev->bb_page)
1469 return -ENOMEM;
1470 }
1471 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1472 rdev->badblocks.count == 0) {
1473 /* need to load the bad block list.
1474 * Currently we limit it to one page.
1475 */
1476 s32 offset;
1477 sector_t bb_sector;
1478 u64 *bbp;
1479 int i;
1480 int sectors = le16_to_cpu(sb->bblog_size);
1481 if (sectors > (PAGE_SIZE / 512))
1482 return -EINVAL;
1483 offset = le32_to_cpu(sb->bblog_offset);
1484 if (offset == 0)
1485 return -EINVAL;
1486 bb_sector = (long long)offset;
1487 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1488 rdev->bb_page, READ, true))
1489 return -EIO;
1490 bbp = (u64 *)page_address(rdev->bb_page);
1491 rdev->badblocks.shift = sb->bblog_shift;
1492 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1493 u64 bb = le64_to_cpu(*bbp);
1494 int count = bb & (0x3ff);
1495 u64 sector = bb >> 10;
1496 sector <<= sb->bblog_shift;
1497 count <<= sb->bblog_shift;
1498 if (bb + 1 == 0)
1499 break;
1500 if (md_set_badblocks(&rdev->badblocks,
1501 sector, count, 1) == 0)
1502 return -EINVAL;
1503 }
1504 } else if (sb->bblog_offset != 0)
1505 rdev->badblocks.shift = 0;
1506
1507 if (!refdev) {
1508 ret = 1;
1509 } else {
1510 __u64 ev1, ev2;
1511 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1512
1513 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1514 sb->level != refsb->level ||
1515 sb->layout != refsb->layout ||
1516 sb->chunksize != refsb->chunksize) {
1517 printk(KERN_WARNING "md: %s has strangely different"
1518 " superblock to %s\n",
1519 bdevname(rdev->bdev,b),
1520 bdevname(refdev->bdev,b2));
1521 return -EINVAL;
1522 }
1523 ev1 = le64_to_cpu(sb->events);
1524 ev2 = le64_to_cpu(refsb->events);
1525
1526 if (ev1 > ev2)
1527 ret = 1;
1528 else
1529 ret = 0;
1530 }
1531 if (minor_version) {
1532 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1533 sectors -= rdev->data_offset;
1534 } else
1535 sectors = rdev->sb_start;
1536 if (sectors < le64_to_cpu(sb->data_size))
1537 return -EINVAL;
1538 rdev->sectors = le64_to_cpu(sb->data_size);
1539 return ret;
1540 }
1541
1542 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1543 {
1544 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1545 __u64 ev1 = le64_to_cpu(sb->events);
1546
1547 rdev->raid_disk = -1;
1548 clear_bit(Faulty, &rdev->flags);
1549 clear_bit(In_sync, &rdev->flags);
1550 clear_bit(Bitmap_sync, &rdev->flags);
1551 clear_bit(WriteMostly, &rdev->flags);
1552
1553 if (mddev->raid_disks == 0) {
1554 mddev->major_version = 1;
1555 mddev->patch_version = 0;
1556 mddev->external = 0;
1557 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1558 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1559 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1560 mddev->level = le32_to_cpu(sb->level);
1561 mddev->clevel[0] = 0;
1562 mddev->layout = le32_to_cpu(sb->layout);
1563 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1564 mddev->dev_sectors = le64_to_cpu(sb->size);
1565 mddev->events = ev1;
1566 mddev->bitmap_info.offset = 0;
1567 mddev->bitmap_info.space = 0;
1568 /* Default location for bitmap is 1K after superblock
1569 * using 3K - total of 4K
1570 */
1571 mddev->bitmap_info.default_offset = 1024 >> 9;
1572 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1573 mddev->reshape_backwards = 0;
1574
1575 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1576 memcpy(mddev->uuid, sb->set_uuid, 16);
1577
1578 mddev->max_disks = (4096-256)/2;
1579
1580 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1581 mddev->bitmap_info.file == NULL) {
1582 mddev->bitmap_info.offset =
1583 (__s32)le32_to_cpu(sb->bitmap_offset);
1584 /* Metadata doesn't record how much space is available.
1585 * For 1.0, we assume we can use up to the superblock
1586 * if before, else to 4K beyond superblock.
1587 * For others, assume no change is possible.
1588 */
1589 if (mddev->minor_version > 0)
1590 mddev->bitmap_info.space = 0;
1591 else if (mddev->bitmap_info.offset > 0)
1592 mddev->bitmap_info.space =
1593 8 - mddev->bitmap_info.offset;
1594 else
1595 mddev->bitmap_info.space =
1596 -mddev->bitmap_info.offset;
1597 }
1598
1599 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1600 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1601 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1602 mddev->new_level = le32_to_cpu(sb->new_level);
1603 mddev->new_layout = le32_to_cpu(sb->new_layout);
1604 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1605 if (mddev->delta_disks < 0 ||
1606 (mddev->delta_disks == 0 &&
1607 (le32_to_cpu(sb->feature_map)
1608 & MD_FEATURE_RESHAPE_BACKWARDS)))
1609 mddev->reshape_backwards = 1;
1610 } else {
1611 mddev->reshape_position = MaxSector;
1612 mddev->delta_disks = 0;
1613 mddev->new_level = mddev->level;
1614 mddev->new_layout = mddev->layout;
1615 mddev->new_chunk_sectors = mddev->chunk_sectors;
1616 }
1617
1618 } else if (mddev->pers == NULL) {
1619 /* Insist of good event counter while assembling, except for
1620 * spares (which don't need an event count) */
1621 ++ev1;
1622 if (rdev->desc_nr >= 0 &&
1623 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1624 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1625 if (ev1 < mddev->events)
1626 return -EINVAL;
1627 } else if (mddev->bitmap) {
1628 /* If adding to array with a bitmap, then we can accept an
1629 * older device, but not too old.
1630 */
1631 if (ev1 < mddev->bitmap->events_cleared)
1632 return 0;
1633 if (ev1 < mddev->events)
1634 set_bit(Bitmap_sync, &rdev->flags);
1635 } else {
1636 if (ev1 < mddev->events)
1637 /* just a hot-add of a new device, leave raid_disk at -1 */
1638 return 0;
1639 }
1640 if (mddev->level != LEVEL_MULTIPATH) {
1641 int role;
1642 if (rdev->desc_nr < 0 ||
1643 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1644 role = 0xffff;
1645 rdev->desc_nr = -1;
1646 } else
1647 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1648 switch(role) {
1649 case 0xffff: /* spare */
1650 break;
1651 case 0xfffe: /* faulty */
1652 set_bit(Faulty, &rdev->flags);
1653 break;
1654 default:
1655 rdev->saved_raid_disk = role;
1656 if ((le32_to_cpu(sb->feature_map) &
1657 MD_FEATURE_RECOVERY_OFFSET)) {
1658 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1659 if (!(le32_to_cpu(sb->feature_map) &
1660 MD_FEATURE_RECOVERY_BITMAP))
1661 rdev->saved_raid_disk = -1;
1662 } else
1663 set_bit(In_sync, &rdev->flags);
1664 rdev->raid_disk = role;
1665 break;
1666 }
1667 if (sb->devflags & WriteMostly1)
1668 set_bit(WriteMostly, &rdev->flags);
1669 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1670 set_bit(Replacement, &rdev->flags);
1671 } else /* MULTIPATH are always insync */
1672 set_bit(In_sync, &rdev->flags);
1673
1674 return 0;
1675 }
1676
1677 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1678 {
1679 struct mdp_superblock_1 *sb;
1680 struct md_rdev *rdev2;
1681 int max_dev, i;
1682 /* make rdev->sb match mddev and rdev data. */
1683
1684 sb = page_address(rdev->sb_page);
1685
1686 sb->feature_map = 0;
1687 sb->pad0 = 0;
1688 sb->recovery_offset = cpu_to_le64(0);
1689 memset(sb->pad3, 0, sizeof(sb->pad3));
1690
1691 sb->utime = cpu_to_le64((__u64)mddev->utime);
1692 sb->events = cpu_to_le64(mddev->events);
1693 if (mddev->in_sync)
1694 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1695 else
1696 sb->resync_offset = cpu_to_le64(0);
1697
1698 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1699
1700 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1701 sb->size = cpu_to_le64(mddev->dev_sectors);
1702 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1703 sb->level = cpu_to_le32(mddev->level);
1704 sb->layout = cpu_to_le32(mddev->layout);
1705
1706 if (test_bit(WriteMostly, &rdev->flags))
1707 sb->devflags |= WriteMostly1;
1708 else
1709 sb->devflags &= ~WriteMostly1;
1710 sb->data_offset = cpu_to_le64(rdev->data_offset);
1711 sb->data_size = cpu_to_le64(rdev->sectors);
1712
1713 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1714 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1715 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1716 }
1717
1718 if (rdev->raid_disk >= 0 &&
1719 !test_bit(In_sync, &rdev->flags)) {
1720 sb->feature_map |=
1721 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1722 sb->recovery_offset =
1723 cpu_to_le64(rdev->recovery_offset);
1724 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1725 sb->feature_map |=
1726 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1727 }
1728 if (test_bit(Replacement, &rdev->flags))
1729 sb->feature_map |=
1730 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1731
1732 if (mddev->reshape_position != MaxSector) {
1733 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1734 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1735 sb->new_layout = cpu_to_le32(mddev->new_layout);
1736 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1737 sb->new_level = cpu_to_le32(mddev->new_level);
1738 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1739 if (mddev->delta_disks == 0 &&
1740 mddev->reshape_backwards)
1741 sb->feature_map
1742 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1743 if (rdev->new_data_offset != rdev->data_offset) {
1744 sb->feature_map
1745 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1746 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1747 - rdev->data_offset));
1748 }
1749 }
1750
1751 if (rdev->badblocks.count == 0)
1752 /* Nothing to do for bad blocks*/ ;
1753 else if (sb->bblog_offset == 0)
1754 /* Cannot record bad blocks on this device */
1755 md_error(mddev, rdev);
1756 else {
1757 struct badblocks *bb = &rdev->badblocks;
1758 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1759 u64 *p = bb->page;
1760 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1761 if (bb->changed) {
1762 unsigned seq;
1763
1764 retry:
1765 seq = read_seqbegin(&bb->lock);
1766
1767 memset(bbp, 0xff, PAGE_SIZE);
1768
1769 for (i = 0 ; i < bb->count ; i++) {
1770 u64 internal_bb = p[i];
1771 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1772 | BB_LEN(internal_bb));
1773 bbp[i] = cpu_to_le64(store_bb);
1774 }
1775 bb->changed = 0;
1776 if (read_seqretry(&bb->lock, seq))
1777 goto retry;
1778
1779 bb->sector = (rdev->sb_start +
1780 (int)le32_to_cpu(sb->bblog_offset));
1781 bb->size = le16_to_cpu(sb->bblog_size);
1782 }
1783 }
1784
1785 max_dev = 0;
1786 rdev_for_each(rdev2, mddev)
1787 if (rdev2->desc_nr+1 > max_dev)
1788 max_dev = rdev2->desc_nr+1;
1789
1790 if (max_dev > le32_to_cpu(sb->max_dev)) {
1791 int bmask;
1792 sb->max_dev = cpu_to_le32(max_dev);
1793 rdev->sb_size = max_dev * 2 + 256;
1794 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1795 if (rdev->sb_size & bmask)
1796 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1797 } else
1798 max_dev = le32_to_cpu(sb->max_dev);
1799
1800 for (i=0; i<max_dev;i++)
1801 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1802
1803 rdev_for_each(rdev2, mddev) {
1804 i = rdev2->desc_nr;
1805 if (test_bit(Faulty, &rdev2->flags))
1806 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1807 else if (test_bit(In_sync, &rdev2->flags))
1808 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1809 else if (rdev2->raid_disk >= 0)
1810 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1811 else
1812 sb->dev_roles[i] = cpu_to_le16(0xffff);
1813 }
1814
1815 sb->sb_csum = calc_sb_1_csum(sb);
1816 }
1817
1818 static unsigned long long
1819 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1820 {
1821 struct mdp_superblock_1 *sb;
1822 sector_t max_sectors;
1823 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1824 return 0; /* component must fit device */
1825 if (rdev->data_offset != rdev->new_data_offset)
1826 return 0; /* too confusing */
1827 if (rdev->sb_start < rdev->data_offset) {
1828 /* minor versions 1 and 2; superblock before data */
1829 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1830 max_sectors -= rdev->data_offset;
1831 if (!num_sectors || num_sectors > max_sectors)
1832 num_sectors = max_sectors;
1833 } else if (rdev->mddev->bitmap_info.offset) {
1834 /* minor version 0 with bitmap we can't move */
1835 return 0;
1836 } else {
1837 /* minor version 0; superblock after data */
1838 sector_t sb_start;
1839 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1840 sb_start &= ~(sector_t)(4*2 - 1);
1841 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1842 if (!num_sectors || num_sectors > max_sectors)
1843 num_sectors = max_sectors;
1844 rdev->sb_start = sb_start;
1845 }
1846 sb = page_address(rdev->sb_page);
1847 sb->data_size = cpu_to_le64(num_sectors);
1848 sb->super_offset = rdev->sb_start;
1849 sb->sb_csum = calc_sb_1_csum(sb);
1850 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1851 rdev->sb_page);
1852 md_super_wait(rdev->mddev);
1853 return num_sectors;
1854
1855 }
1856
1857 static int
1858 super_1_allow_new_offset(struct md_rdev *rdev,
1859 unsigned long long new_offset)
1860 {
1861 /* All necessary checks on new >= old have been done */
1862 struct bitmap *bitmap;
1863 if (new_offset >= rdev->data_offset)
1864 return 1;
1865
1866 /* with 1.0 metadata, there is no metadata to tread on
1867 * so we can always move back */
1868 if (rdev->mddev->minor_version == 0)
1869 return 1;
1870
1871 /* otherwise we must be sure not to step on
1872 * any metadata, so stay:
1873 * 36K beyond start of superblock
1874 * beyond end of badblocks
1875 * beyond write-intent bitmap
1876 */
1877 if (rdev->sb_start + (32+4)*2 > new_offset)
1878 return 0;
1879 bitmap = rdev->mddev->bitmap;
1880 if (bitmap && !rdev->mddev->bitmap_info.file &&
1881 rdev->sb_start + rdev->mddev->bitmap_info.offset +
1882 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1883 return 0;
1884 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1885 return 0;
1886
1887 return 1;
1888 }
1889
1890 static struct super_type super_types[] = {
1891 [0] = {
1892 .name = "0.90.0",
1893 .owner = THIS_MODULE,
1894 .load_super = super_90_load,
1895 .validate_super = super_90_validate,
1896 .sync_super = super_90_sync,
1897 .rdev_size_change = super_90_rdev_size_change,
1898 .allow_new_offset = super_90_allow_new_offset,
1899 },
1900 [1] = {
1901 .name = "md-1",
1902 .owner = THIS_MODULE,
1903 .load_super = super_1_load,
1904 .validate_super = super_1_validate,
1905 .sync_super = super_1_sync,
1906 .rdev_size_change = super_1_rdev_size_change,
1907 .allow_new_offset = super_1_allow_new_offset,
1908 },
1909 };
1910
1911 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1912 {
1913 if (mddev->sync_super) {
1914 mddev->sync_super(mddev, rdev);
1915 return;
1916 }
1917
1918 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1919
1920 super_types[mddev->major_version].sync_super(mddev, rdev);
1921 }
1922
1923 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1924 {
1925 struct md_rdev *rdev, *rdev2;
1926
1927 rcu_read_lock();
1928 rdev_for_each_rcu(rdev, mddev1)
1929 rdev_for_each_rcu(rdev2, mddev2)
1930 if (rdev->bdev->bd_contains ==
1931 rdev2->bdev->bd_contains) {
1932 rcu_read_unlock();
1933 return 1;
1934 }
1935 rcu_read_unlock();
1936 return 0;
1937 }
1938
1939 static LIST_HEAD(pending_raid_disks);
1940
1941 /*
1942 * Try to register data integrity profile for an mddev
1943 *
1944 * This is called when an array is started and after a disk has been kicked
1945 * from the array. It only succeeds if all working and active component devices
1946 * are integrity capable with matching profiles.
1947 */
1948 int md_integrity_register(struct mddev *mddev)
1949 {
1950 struct md_rdev *rdev, *reference = NULL;
1951
1952 if (list_empty(&mddev->disks))
1953 return 0; /* nothing to do */
1954 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1955 return 0; /* shouldn't register, or already is */
1956 rdev_for_each(rdev, mddev) {
1957 /* skip spares and non-functional disks */
1958 if (test_bit(Faulty, &rdev->flags))
1959 continue;
1960 if (rdev->raid_disk < 0)
1961 continue;
1962 if (!reference) {
1963 /* Use the first rdev as the reference */
1964 reference = rdev;
1965 continue;
1966 }
1967 /* does this rdev's profile match the reference profile? */
1968 if (blk_integrity_compare(reference->bdev->bd_disk,
1969 rdev->bdev->bd_disk) < 0)
1970 return -EINVAL;
1971 }
1972 if (!reference || !bdev_get_integrity(reference->bdev))
1973 return 0;
1974 /*
1975 * All component devices are integrity capable and have matching
1976 * profiles, register the common profile for the md device.
1977 */
1978 if (blk_integrity_register(mddev->gendisk,
1979 bdev_get_integrity(reference->bdev)) != 0) {
1980 printk(KERN_ERR "md: failed to register integrity for %s\n",
1981 mdname(mddev));
1982 return -EINVAL;
1983 }
1984 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1985 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1986 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1987 mdname(mddev));
1988 return -EINVAL;
1989 }
1990 return 0;
1991 }
1992 EXPORT_SYMBOL(md_integrity_register);
1993
1994 /* Disable data integrity if non-capable/non-matching disk is being added */
1995 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1996 {
1997 struct blk_integrity *bi_rdev;
1998 struct blk_integrity *bi_mddev;
1999
2000 if (!mddev->gendisk)
2001 return;
2002
2003 bi_rdev = bdev_get_integrity(rdev->bdev);
2004 bi_mddev = blk_get_integrity(mddev->gendisk);
2005
2006 if (!bi_mddev) /* nothing to do */
2007 return;
2008 if (rdev->raid_disk < 0) /* skip spares */
2009 return;
2010 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2011 rdev->bdev->bd_disk) >= 0)
2012 return;
2013 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2014 blk_integrity_unregister(mddev->gendisk);
2015 }
2016 EXPORT_SYMBOL(md_integrity_add_rdev);
2017
2018 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2019 {
2020 char b[BDEVNAME_SIZE];
2021 struct kobject *ko;
2022 char *s;
2023 int err;
2024
2025 if (rdev->mddev) {
2026 MD_BUG();
2027 return -EINVAL;
2028 }
2029
2030 /* prevent duplicates */
2031 if (find_rdev(mddev, rdev->bdev->bd_dev))
2032 return -EEXIST;
2033
2034 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2035 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2036 rdev->sectors < mddev->dev_sectors)) {
2037 if (mddev->pers) {
2038 /* Cannot change size, so fail
2039 * If mddev->level <= 0, then we don't care
2040 * about aligning sizes (e.g. linear)
2041 */
2042 if (mddev->level > 0)
2043 return -ENOSPC;
2044 } else
2045 mddev->dev_sectors = rdev->sectors;
2046 }
2047
2048 /* Verify rdev->desc_nr is unique.
2049 * If it is -1, assign a free number, else
2050 * check number is not in use
2051 */
2052 rcu_read_lock();
2053 if (rdev->desc_nr < 0) {
2054 int choice = 0;
2055 if (mddev->pers)
2056 choice = mddev->raid_disks;
2057 while (find_rdev_nr_rcu(mddev, choice))
2058 choice++;
2059 rdev->desc_nr = choice;
2060 } else {
2061 if (find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2062 rcu_read_unlock();
2063 return -EBUSY;
2064 }
2065 }
2066 rcu_read_unlock();
2067 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2068 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2069 mdname(mddev), mddev->max_disks);
2070 return -EBUSY;
2071 }
2072 bdevname(rdev->bdev,b);
2073 while ( (s=strchr(b, '/')) != NULL)
2074 *s = '!';
2075
2076 rdev->mddev = mddev;
2077 printk(KERN_INFO "md: bind<%s>\n", b);
2078
2079 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2080 goto fail;
2081
2082 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2083 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2084 /* failure here is OK */;
2085 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2086
2087 list_add_rcu(&rdev->same_set, &mddev->disks);
2088 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2089
2090 /* May as well allow recovery to be retried once */
2091 mddev->recovery_disabled++;
2092
2093 return 0;
2094
2095 fail:
2096 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2097 b, mdname(mddev));
2098 return err;
2099 }
2100
2101 static void md_delayed_delete(struct work_struct *ws)
2102 {
2103 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2104 kobject_del(&rdev->kobj);
2105 kobject_put(&rdev->kobj);
2106 }
2107
2108 static void unbind_rdev_from_array(struct md_rdev * rdev)
2109 {
2110 char b[BDEVNAME_SIZE];
2111 if (!rdev->mddev) {
2112 MD_BUG();
2113 return;
2114 }
2115 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2116 list_del_rcu(&rdev->same_set);
2117 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2118 rdev->mddev = NULL;
2119 sysfs_remove_link(&rdev->kobj, "block");
2120 sysfs_put(rdev->sysfs_state);
2121 rdev->sysfs_state = NULL;
2122 rdev->badblocks.count = 0;
2123 /* We need to delay this, otherwise we can deadlock when
2124 * writing to 'remove' to "dev/state". We also need
2125 * to delay it due to rcu usage.
2126 */
2127 synchronize_rcu();
2128 INIT_WORK(&rdev->del_work, md_delayed_delete);
2129 kobject_get(&rdev->kobj);
2130 queue_work(md_misc_wq, &rdev->del_work);
2131 }
2132
2133 /*
2134 * prevent the device from being mounted, repartitioned or
2135 * otherwise reused by a RAID array (or any other kernel
2136 * subsystem), by bd_claiming the device.
2137 */
2138 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2139 {
2140 int err = 0;
2141 struct block_device *bdev;
2142 char b[BDEVNAME_SIZE];
2143
2144 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2145 shared ? (struct md_rdev *)lock_rdev : rdev);
2146 if (IS_ERR(bdev)) {
2147 printk(KERN_ERR "md: could not open %s.\n",
2148 __bdevname(dev, b));
2149 return PTR_ERR(bdev);
2150 }
2151 rdev->bdev = bdev;
2152 return err;
2153 }
2154
2155 static void unlock_rdev(struct md_rdev *rdev)
2156 {
2157 struct block_device *bdev = rdev->bdev;
2158 rdev->bdev = NULL;
2159 if (!bdev)
2160 MD_BUG();
2161 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2162 }
2163
2164 void md_autodetect_dev(dev_t dev);
2165
2166 static void export_rdev(struct md_rdev * rdev)
2167 {
2168 char b[BDEVNAME_SIZE];
2169 printk(KERN_INFO "md: export_rdev(%s)\n",
2170 bdevname(rdev->bdev,b));
2171 if (rdev->mddev)
2172 MD_BUG();
2173 md_rdev_clear(rdev);
2174 #ifndef MODULE
2175 if (test_bit(AutoDetected, &rdev->flags))
2176 md_autodetect_dev(rdev->bdev->bd_dev);
2177 #endif
2178 unlock_rdev(rdev);
2179 kobject_put(&rdev->kobj);
2180 }
2181
2182 static void kick_rdev_from_array(struct md_rdev * rdev)
2183 {
2184 unbind_rdev_from_array(rdev);
2185 export_rdev(rdev);
2186 }
2187
2188 static void export_array(struct mddev *mddev)
2189 {
2190 struct md_rdev *rdev, *tmp;
2191
2192 rdev_for_each_safe(rdev, tmp, mddev) {
2193 if (!rdev->mddev) {
2194 MD_BUG();
2195 continue;
2196 }
2197 kick_rdev_from_array(rdev);
2198 }
2199 if (!list_empty(&mddev->disks))
2200 MD_BUG();
2201 mddev->raid_disks = 0;
2202 mddev->major_version = 0;
2203 }
2204
2205 static void print_desc(mdp_disk_t *desc)
2206 {
2207 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2208 desc->major,desc->minor,desc->raid_disk,desc->state);
2209 }
2210
2211 static void print_sb_90(mdp_super_t *sb)
2212 {
2213 int i;
2214
2215 printk(KERN_INFO
2216 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2217 sb->major_version, sb->minor_version, sb->patch_version,
2218 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2219 sb->ctime);
2220 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2221 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2222 sb->md_minor, sb->layout, sb->chunk_size);
2223 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
2224 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2225 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2226 sb->failed_disks, sb->spare_disks,
2227 sb->sb_csum, (unsigned long)sb->events_lo);
2228
2229 printk(KERN_INFO);
2230 for (i = 0; i < MD_SB_DISKS; i++) {
2231 mdp_disk_t *desc;
2232
2233 desc = sb->disks + i;
2234 if (desc->number || desc->major || desc->minor ||
2235 desc->raid_disk || (desc->state && (desc->state != 4))) {
2236 printk(" D %2d: ", i);
2237 print_desc(desc);
2238 }
2239 }
2240 printk(KERN_INFO "md: THIS: ");
2241 print_desc(&sb->this_disk);
2242 }
2243
2244 static void print_sb_1(struct mdp_superblock_1 *sb)
2245 {
2246 __u8 *uuid;
2247
2248 uuid = sb->set_uuid;
2249 printk(KERN_INFO
2250 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2251 "md: Name: \"%s\" CT:%llu\n",
2252 le32_to_cpu(sb->major_version),
2253 le32_to_cpu(sb->feature_map),
2254 uuid,
2255 sb->set_name,
2256 (unsigned long long)le64_to_cpu(sb->ctime)
2257 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2258
2259 uuid = sb->device_uuid;
2260 printk(KERN_INFO
2261 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2262 " RO:%llu\n"
2263 "md: Dev:%08x UUID: %pU\n"
2264 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2265 "md: (MaxDev:%u) \n",
2266 le32_to_cpu(sb->level),
2267 (unsigned long long)le64_to_cpu(sb->size),
2268 le32_to_cpu(sb->raid_disks),
2269 le32_to_cpu(sb->layout),
2270 le32_to_cpu(sb->chunksize),
2271 (unsigned long long)le64_to_cpu(sb->data_offset),
2272 (unsigned long long)le64_to_cpu(sb->data_size),
2273 (unsigned long long)le64_to_cpu(sb->super_offset),
2274 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2275 le32_to_cpu(sb->dev_number),
2276 uuid,
2277 sb->devflags,
2278 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2279 (unsigned long long)le64_to_cpu(sb->events),
2280 (unsigned long long)le64_to_cpu(sb->resync_offset),
2281 le32_to_cpu(sb->sb_csum),
2282 le32_to_cpu(sb->max_dev)
2283 );
2284 }
2285
2286 static void print_rdev(struct md_rdev *rdev, int major_version)
2287 {
2288 char b[BDEVNAME_SIZE];
2289 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2290 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2291 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2292 rdev->desc_nr);
2293 if (rdev->sb_loaded) {
2294 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2295 switch (major_version) {
2296 case 0:
2297 print_sb_90(page_address(rdev->sb_page));
2298 break;
2299 case 1:
2300 print_sb_1(page_address(rdev->sb_page));
2301 break;
2302 }
2303 } else
2304 printk(KERN_INFO "md: no rdev superblock!\n");
2305 }
2306
2307 static void md_print_devices(void)
2308 {
2309 struct list_head *tmp;
2310 struct md_rdev *rdev;
2311 struct mddev *mddev;
2312 char b[BDEVNAME_SIZE];
2313
2314 printk("\n");
2315 printk("md: **********************************\n");
2316 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2317 printk("md: **********************************\n");
2318 for_each_mddev(mddev, tmp) {
2319
2320 if (mddev->bitmap)
2321 bitmap_print_sb(mddev->bitmap);
2322 else
2323 printk("%s: ", mdname(mddev));
2324 rdev_for_each(rdev, mddev)
2325 printk("<%s>", bdevname(rdev->bdev,b));
2326 printk("\n");
2327
2328 rdev_for_each(rdev, mddev)
2329 print_rdev(rdev, mddev->major_version);
2330 }
2331 printk("md: **********************************\n");
2332 printk("\n");
2333 }
2334
2335
2336 static void sync_sbs(struct mddev * mddev, int nospares)
2337 {
2338 /* Update each superblock (in-memory image), but
2339 * if we are allowed to, skip spares which already
2340 * have the right event counter, or have one earlier
2341 * (which would mean they aren't being marked as dirty
2342 * with the rest of the array)
2343 */
2344 struct md_rdev *rdev;
2345 rdev_for_each(rdev, mddev) {
2346 if (rdev->sb_events == mddev->events ||
2347 (nospares &&
2348 rdev->raid_disk < 0 &&
2349 rdev->sb_events+1 == mddev->events)) {
2350 /* Don't update this superblock */
2351 rdev->sb_loaded = 2;
2352 } else {
2353 sync_super(mddev, rdev);
2354 rdev->sb_loaded = 1;
2355 }
2356 }
2357 }
2358
2359 static void md_update_sb(struct mddev * mddev, int force_change)
2360 {
2361 struct md_rdev *rdev;
2362 int sync_req;
2363 int nospares = 0;
2364 int any_badblocks_changed = 0;
2365
2366 if (mddev->ro) {
2367 if (force_change)
2368 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2369 return;
2370 }
2371 repeat:
2372 /* First make sure individual recovery_offsets are correct */
2373 rdev_for_each(rdev, mddev) {
2374 if (rdev->raid_disk >= 0 &&
2375 mddev->delta_disks >= 0 &&
2376 !test_bit(In_sync, &rdev->flags) &&
2377 mddev->curr_resync_completed > rdev->recovery_offset)
2378 rdev->recovery_offset = mddev->curr_resync_completed;
2379
2380 }
2381 if (!mddev->persistent) {
2382 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2383 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2384 if (!mddev->external) {
2385 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2386 rdev_for_each(rdev, mddev) {
2387 if (rdev->badblocks.changed) {
2388 rdev->badblocks.changed = 0;
2389 md_ack_all_badblocks(&rdev->badblocks);
2390 md_error(mddev, rdev);
2391 }
2392 clear_bit(Blocked, &rdev->flags);
2393 clear_bit(BlockedBadBlocks, &rdev->flags);
2394 wake_up(&rdev->blocked_wait);
2395 }
2396 }
2397 wake_up(&mddev->sb_wait);
2398 return;
2399 }
2400
2401 spin_lock_irq(&mddev->write_lock);
2402
2403 mddev->utime = get_seconds();
2404
2405 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2406 force_change = 1;
2407 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2408 /* just a clean<-> dirty transition, possibly leave spares alone,
2409 * though if events isn't the right even/odd, we will have to do
2410 * spares after all
2411 */
2412 nospares = 1;
2413 if (force_change)
2414 nospares = 0;
2415 if (mddev->degraded)
2416 /* If the array is degraded, then skipping spares is both
2417 * dangerous and fairly pointless.
2418 * Dangerous because a device that was removed from the array
2419 * might have a event_count that still looks up-to-date,
2420 * so it can be re-added without a resync.
2421 * Pointless because if there are any spares to skip,
2422 * then a recovery will happen and soon that array won't
2423 * be degraded any more and the spare can go back to sleep then.
2424 */
2425 nospares = 0;
2426
2427 sync_req = mddev->in_sync;
2428
2429 /* If this is just a dirty<->clean transition, and the array is clean
2430 * and 'events' is odd, we can roll back to the previous clean state */
2431 if (nospares
2432 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2433 && mddev->can_decrease_events
2434 && mddev->events != 1) {
2435 mddev->events--;
2436 mddev->can_decrease_events = 0;
2437 } else {
2438 /* otherwise we have to go forward and ... */
2439 mddev->events ++;
2440 mddev->can_decrease_events = nospares;
2441 }
2442
2443 if (!mddev->events) {
2444 /*
2445 * oops, this 64-bit counter should never wrap.
2446 * Either we are in around ~1 trillion A.C., assuming
2447 * 1 reboot per second, or we have a bug:
2448 */
2449 MD_BUG();
2450 mddev->events --;
2451 }
2452
2453 rdev_for_each(rdev, mddev) {
2454 if (rdev->badblocks.changed)
2455 any_badblocks_changed++;
2456 if (test_bit(Faulty, &rdev->flags))
2457 set_bit(FaultRecorded, &rdev->flags);
2458 }
2459
2460 sync_sbs(mddev, nospares);
2461 spin_unlock_irq(&mddev->write_lock);
2462
2463 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2464 mdname(mddev), mddev->in_sync);
2465
2466 bitmap_update_sb(mddev->bitmap);
2467 rdev_for_each(rdev, mddev) {
2468 char b[BDEVNAME_SIZE];
2469
2470 if (rdev->sb_loaded != 1)
2471 continue; /* no noise on spare devices */
2472
2473 if (!test_bit(Faulty, &rdev->flags)) {
2474 md_super_write(mddev,rdev,
2475 rdev->sb_start, rdev->sb_size,
2476 rdev->sb_page);
2477 pr_debug("md: (write) %s's sb offset: %llu\n",
2478 bdevname(rdev->bdev, b),
2479 (unsigned long long)rdev->sb_start);
2480 rdev->sb_events = mddev->events;
2481 if (rdev->badblocks.size) {
2482 md_super_write(mddev, rdev,
2483 rdev->badblocks.sector,
2484 rdev->badblocks.size << 9,
2485 rdev->bb_page);
2486 rdev->badblocks.size = 0;
2487 }
2488
2489 } else
2490 pr_debug("md: %s (skipping faulty)\n",
2491 bdevname(rdev->bdev, b));
2492
2493 if (mddev->level == LEVEL_MULTIPATH)
2494 /* only need to write one superblock... */
2495 break;
2496 }
2497 md_super_wait(mddev);
2498 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2499
2500 spin_lock_irq(&mddev->write_lock);
2501 if (mddev->in_sync != sync_req ||
2502 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2503 /* have to write it out again */
2504 spin_unlock_irq(&mddev->write_lock);
2505 goto repeat;
2506 }
2507 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2508 spin_unlock_irq(&mddev->write_lock);
2509 wake_up(&mddev->sb_wait);
2510 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2511 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2512
2513 rdev_for_each(rdev, mddev) {
2514 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2515 clear_bit(Blocked, &rdev->flags);
2516
2517 if (any_badblocks_changed)
2518 md_ack_all_badblocks(&rdev->badblocks);
2519 clear_bit(BlockedBadBlocks, &rdev->flags);
2520 wake_up(&rdev->blocked_wait);
2521 }
2522 }
2523
2524 /* words written to sysfs files may, or may not, be \n terminated.
2525 * We want to accept with case. For this we use cmd_match.
2526 */
2527 static int cmd_match(const char *cmd, const char *str)
2528 {
2529 /* See if cmd, written into a sysfs file, matches
2530 * str. They must either be the same, or cmd can
2531 * have a trailing newline
2532 */
2533 while (*cmd && *str && *cmd == *str) {
2534 cmd++;
2535 str++;
2536 }
2537 if (*cmd == '\n')
2538 cmd++;
2539 if (*str || *cmd)
2540 return 0;
2541 return 1;
2542 }
2543
2544 struct rdev_sysfs_entry {
2545 struct attribute attr;
2546 ssize_t (*show)(struct md_rdev *, char *);
2547 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2548 };
2549
2550 static ssize_t
2551 state_show(struct md_rdev *rdev, char *page)
2552 {
2553 char *sep = "";
2554 size_t len = 0;
2555
2556 if (test_bit(Faulty, &rdev->flags) ||
2557 rdev->badblocks.unacked_exist) {
2558 len+= sprintf(page+len, "%sfaulty",sep);
2559 sep = ",";
2560 }
2561 if (test_bit(In_sync, &rdev->flags)) {
2562 len += sprintf(page+len, "%sin_sync",sep);
2563 sep = ",";
2564 }
2565 if (test_bit(WriteMostly, &rdev->flags)) {
2566 len += sprintf(page+len, "%swrite_mostly",sep);
2567 sep = ",";
2568 }
2569 if (test_bit(Blocked, &rdev->flags) ||
2570 (rdev->badblocks.unacked_exist
2571 && !test_bit(Faulty, &rdev->flags))) {
2572 len += sprintf(page+len, "%sblocked", sep);
2573 sep = ",";
2574 }
2575 if (!test_bit(Faulty, &rdev->flags) &&
2576 !test_bit(In_sync, &rdev->flags)) {
2577 len += sprintf(page+len, "%sspare", sep);
2578 sep = ",";
2579 }
2580 if (test_bit(WriteErrorSeen, &rdev->flags)) {
2581 len += sprintf(page+len, "%swrite_error", sep);
2582 sep = ",";
2583 }
2584 if (test_bit(WantReplacement, &rdev->flags)) {
2585 len += sprintf(page+len, "%swant_replacement", sep);
2586 sep = ",";
2587 }
2588 if (test_bit(Replacement, &rdev->flags)) {
2589 len += sprintf(page+len, "%sreplacement", sep);
2590 sep = ",";
2591 }
2592
2593 return len+sprintf(page+len, "\n");
2594 }
2595
2596 static ssize_t
2597 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2598 {
2599 /* can write
2600 * faulty - simulates an error
2601 * remove - disconnects the device
2602 * writemostly - sets write_mostly
2603 * -writemostly - clears write_mostly
2604 * blocked - sets the Blocked flags
2605 * -blocked - clears the Blocked and possibly simulates an error
2606 * insync - sets Insync providing device isn't active
2607 * -insync - clear Insync for a device with a slot assigned,
2608 * so that it gets rebuilt based on bitmap
2609 * write_error - sets WriteErrorSeen
2610 * -write_error - clears WriteErrorSeen
2611 */
2612 int err = -EINVAL;
2613 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2614 md_error(rdev->mddev, rdev);
2615 if (test_bit(Faulty, &rdev->flags))
2616 err = 0;
2617 else
2618 err = -EBUSY;
2619 } else if (cmd_match(buf, "remove")) {
2620 if (rdev->raid_disk >= 0)
2621 err = -EBUSY;
2622 else {
2623 struct mddev *mddev = rdev->mddev;
2624 kick_rdev_from_array(rdev);
2625 if (mddev->pers)
2626 md_update_sb(mddev, 1);
2627 md_new_event(mddev);
2628 err = 0;
2629 }
2630 } else if (cmd_match(buf, "writemostly")) {
2631 set_bit(WriteMostly, &rdev->flags);
2632 err = 0;
2633 } else if (cmd_match(buf, "-writemostly")) {
2634 clear_bit(WriteMostly, &rdev->flags);
2635 err = 0;
2636 } else if (cmd_match(buf, "blocked")) {
2637 set_bit(Blocked, &rdev->flags);
2638 err = 0;
2639 } else if (cmd_match(buf, "-blocked")) {
2640 if (!test_bit(Faulty, &rdev->flags) &&
2641 rdev->badblocks.unacked_exist) {
2642 /* metadata handler doesn't understand badblocks,
2643 * so we need to fail the device
2644 */
2645 md_error(rdev->mddev, rdev);
2646 }
2647 clear_bit(Blocked, &rdev->flags);
2648 clear_bit(BlockedBadBlocks, &rdev->flags);
2649 wake_up(&rdev->blocked_wait);
2650 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2651 md_wakeup_thread(rdev->mddev->thread);
2652
2653 err = 0;
2654 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2655 set_bit(In_sync, &rdev->flags);
2656 err = 0;
2657 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
2658 clear_bit(In_sync, &rdev->flags);
2659 rdev->saved_raid_disk = rdev->raid_disk;
2660 rdev->raid_disk = -1;
2661 err = 0;
2662 } else if (cmd_match(buf, "write_error")) {
2663 set_bit(WriteErrorSeen, &rdev->flags);
2664 err = 0;
2665 } else if (cmd_match(buf, "-write_error")) {
2666 clear_bit(WriteErrorSeen, &rdev->flags);
2667 err = 0;
2668 } else if (cmd_match(buf, "want_replacement")) {
2669 /* Any non-spare device that is not a replacement can
2670 * become want_replacement at any time, but we then need to
2671 * check if recovery is needed.
2672 */
2673 if (rdev->raid_disk >= 0 &&
2674 !test_bit(Replacement, &rdev->flags))
2675 set_bit(WantReplacement, &rdev->flags);
2676 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2677 md_wakeup_thread(rdev->mddev->thread);
2678 err = 0;
2679 } else if (cmd_match(buf, "-want_replacement")) {
2680 /* Clearing 'want_replacement' is always allowed.
2681 * Once replacements starts it is too late though.
2682 */
2683 err = 0;
2684 clear_bit(WantReplacement, &rdev->flags);
2685 } else if (cmd_match(buf, "replacement")) {
2686 /* Can only set a device as a replacement when array has not
2687 * yet been started. Once running, replacement is automatic
2688 * from spares, or by assigning 'slot'.
2689 */
2690 if (rdev->mddev->pers)
2691 err = -EBUSY;
2692 else {
2693 set_bit(Replacement, &rdev->flags);
2694 err = 0;
2695 }
2696 } else if (cmd_match(buf, "-replacement")) {
2697 /* Similarly, can only clear Replacement before start */
2698 if (rdev->mddev->pers)
2699 err = -EBUSY;
2700 else {
2701 clear_bit(Replacement, &rdev->flags);
2702 err = 0;
2703 }
2704 }
2705 if (!err)
2706 sysfs_notify_dirent_safe(rdev->sysfs_state);
2707 return err ? err : len;
2708 }
2709 static struct rdev_sysfs_entry rdev_state =
2710 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2711
2712 static ssize_t
2713 errors_show(struct md_rdev *rdev, char *page)
2714 {
2715 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2716 }
2717
2718 static ssize_t
2719 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2720 {
2721 char *e;
2722 unsigned long n = simple_strtoul(buf, &e, 10);
2723 if (*buf && (*e == 0 || *e == '\n')) {
2724 atomic_set(&rdev->corrected_errors, n);
2725 return len;
2726 }
2727 return -EINVAL;
2728 }
2729 static struct rdev_sysfs_entry rdev_errors =
2730 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2731
2732 static ssize_t
2733 slot_show(struct md_rdev *rdev, char *page)
2734 {
2735 if (rdev->raid_disk < 0)
2736 return sprintf(page, "none\n");
2737 else
2738 return sprintf(page, "%d\n", rdev->raid_disk);
2739 }
2740
2741 static ssize_t
2742 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2743 {
2744 char *e;
2745 int err;
2746 int slot = simple_strtoul(buf, &e, 10);
2747 if (strncmp(buf, "none", 4)==0)
2748 slot = -1;
2749 else if (e==buf || (*e && *e!= '\n'))
2750 return -EINVAL;
2751 if (rdev->mddev->pers && slot == -1) {
2752 /* Setting 'slot' on an active array requires also
2753 * updating the 'rd%d' link, and communicating
2754 * with the personality with ->hot_*_disk.
2755 * For now we only support removing
2756 * failed/spare devices. This normally happens automatically,
2757 * but not when the metadata is externally managed.
2758 */
2759 if (rdev->raid_disk == -1)
2760 return -EEXIST;
2761 /* personality does all needed checks */
2762 if (rdev->mddev->pers->hot_remove_disk == NULL)
2763 return -EINVAL;
2764 clear_bit(Blocked, &rdev->flags);
2765 remove_and_add_spares(rdev->mddev, rdev);
2766 if (rdev->raid_disk >= 0)
2767 return -EBUSY;
2768 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2769 md_wakeup_thread(rdev->mddev->thread);
2770 } else if (rdev->mddev->pers) {
2771 /* Activating a spare .. or possibly reactivating
2772 * if we ever get bitmaps working here.
2773 */
2774
2775 if (rdev->raid_disk != -1)
2776 return -EBUSY;
2777
2778 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2779 return -EBUSY;
2780
2781 if (rdev->mddev->pers->hot_add_disk == NULL)
2782 return -EINVAL;
2783
2784 if (slot >= rdev->mddev->raid_disks &&
2785 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2786 return -ENOSPC;
2787
2788 rdev->raid_disk = slot;
2789 if (test_bit(In_sync, &rdev->flags))
2790 rdev->saved_raid_disk = slot;
2791 else
2792 rdev->saved_raid_disk = -1;
2793 clear_bit(In_sync, &rdev->flags);
2794 clear_bit(Bitmap_sync, &rdev->flags);
2795 err = rdev->mddev->pers->
2796 hot_add_disk(rdev->mddev, rdev);
2797 if (err) {
2798 rdev->raid_disk = -1;
2799 return err;
2800 } else
2801 sysfs_notify_dirent_safe(rdev->sysfs_state);
2802 if (sysfs_link_rdev(rdev->mddev, rdev))
2803 /* failure here is OK */;
2804 /* don't wakeup anyone, leave that to userspace. */
2805 } else {
2806 if (slot >= rdev->mddev->raid_disks &&
2807 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2808 return -ENOSPC;
2809 rdev->raid_disk = slot;
2810 /* assume it is working */
2811 clear_bit(Faulty, &rdev->flags);
2812 clear_bit(WriteMostly, &rdev->flags);
2813 set_bit(In_sync, &rdev->flags);
2814 sysfs_notify_dirent_safe(rdev->sysfs_state);
2815 }
2816 return len;
2817 }
2818
2819
2820 static struct rdev_sysfs_entry rdev_slot =
2821 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2822
2823 static ssize_t
2824 offset_show(struct md_rdev *rdev, char *page)
2825 {
2826 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2827 }
2828
2829 static ssize_t
2830 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2831 {
2832 unsigned long long offset;
2833 if (kstrtoull(buf, 10, &offset) < 0)
2834 return -EINVAL;
2835 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2836 return -EBUSY;
2837 if (rdev->sectors && rdev->mddev->external)
2838 /* Must set offset before size, so overlap checks
2839 * can be sane */
2840 return -EBUSY;
2841 rdev->data_offset = offset;
2842 rdev->new_data_offset = offset;
2843 return len;
2844 }
2845
2846 static struct rdev_sysfs_entry rdev_offset =
2847 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2848
2849 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2850 {
2851 return sprintf(page, "%llu\n",
2852 (unsigned long long)rdev->new_data_offset);
2853 }
2854
2855 static ssize_t new_offset_store(struct md_rdev *rdev,
2856 const char *buf, size_t len)
2857 {
2858 unsigned long long new_offset;
2859 struct mddev *mddev = rdev->mddev;
2860
2861 if (kstrtoull(buf, 10, &new_offset) < 0)
2862 return -EINVAL;
2863
2864 if (mddev->sync_thread)
2865 return -EBUSY;
2866 if (new_offset == rdev->data_offset)
2867 /* reset is always permitted */
2868 ;
2869 else if (new_offset > rdev->data_offset) {
2870 /* must not push array size beyond rdev_sectors */
2871 if (new_offset - rdev->data_offset
2872 + mddev->dev_sectors > rdev->sectors)
2873 return -E2BIG;
2874 }
2875 /* Metadata worries about other space details. */
2876
2877 /* decreasing the offset is inconsistent with a backwards
2878 * reshape.
2879 */
2880 if (new_offset < rdev->data_offset &&
2881 mddev->reshape_backwards)
2882 return -EINVAL;
2883 /* Increasing offset is inconsistent with forwards
2884 * reshape. reshape_direction should be set to
2885 * 'backwards' first.
2886 */
2887 if (new_offset > rdev->data_offset &&
2888 !mddev->reshape_backwards)
2889 return -EINVAL;
2890
2891 if (mddev->pers && mddev->persistent &&
2892 !super_types[mddev->major_version]
2893 .allow_new_offset(rdev, new_offset))
2894 return -E2BIG;
2895 rdev->new_data_offset = new_offset;
2896 if (new_offset > rdev->data_offset)
2897 mddev->reshape_backwards = 1;
2898 else if (new_offset < rdev->data_offset)
2899 mddev->reshape_backwards = 0;
2900
2901 return len;
2902 }
2903 static struct rdev_sysfs_entry rdev_new_offset =
2904 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2905
2906 static ssize_t
2907 rdev_size_show(struct md_rdev *rdev, char *page)
2908 {
2909 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2910 }
2911
2912 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2913 {
2914 /* check if two start/length pairs overlap */
2915 if (s1+l1 <= s2)
2916 return 0;
2917 if (s2+l2 <= s1)
2918 return 0;
2919 return 1;
2920 }
2921
2922 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2923 {
2924 unsigned long long blocks;
2925 sector_t new;
2926
2927 if (kstrtoull(buf, 10, &blocks) < 0)
2928 return -EINVAL;
2929
2930 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2931 return -EINVAL; /* sector conversion overflow */
2932
2933 new = blocks * 2;
2934 if (new != blocks * 2)
2935 return -EINVAL; /* unsigned long long to sector_t overflow */
2936
2937 *sectors = new;
2938 return 0;
2939 }
2940
2941 static ssize_t
2942 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2943 {
2944 struct mddev *my_mddev = rdev->mddev;
2945 sector_t oldsectors = rdev->sectors;
2946 sector_t sectors;
2947
2948 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2949 return -EINVAL;
2950 if (rdev->data_offset != rdev->new_data_offset)
2951 return -EINVAL; /* too confusing */
2952 if (my_mddev->pers && rdev->raid_disk >= 0) {
2953 if (my_mddev->persistent) {
2954 sectors = super_types[my_mddev->major_version].
2955 rdev_size_change(rdev, sectors);
2956 if (!sectors)
2957 return -EBUSY;
2958 } else if (!sectors)
2959 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2960 rdev->data_offset;
2961 if (!my_mddev->pers->resize)
2962 /* Cannot change size for RAID0 or Linear etc */
2963 return -EINVAL;
2964 }
2965 if (sectors < my_mddev->dev_sectors)
2966 return -EINVAL; /* component must fit device */
2967
2968 rdev->sectors = sectors;
2969 if (sectors > oldsectors && my_mddev->external) {
2970 /* need to check that all other rdevs with the same ->bdev
2971 * do not overlap. We need to unlock the mddev to avoid
2972 * a deadlock. We have already changed rdev->sectors, and if
2973 * we have to change it back, we will have the lock again.
2974 */
2975 struct mddev *mddev;
2976 int overlap = 0;
2977 struct list_head *tmp;
2978
2979 mddev_unlock(my_mddev);
2980 for_each_mddev(mddev, tmp) {
2981 struct md_rdev *rdev2;
2982
2983 mddev_lock_nointr(mddev);
2984 rdev_for_each(rdev2, mddev)
2985 if (rdev->bdev == rdev2->bdev &&
2986 rdev != rdev2 &&
2987 overlaps(rdev->data_offset, rdev->sectors,
2988 rdev2->data_offset,
2989 rdev2->sectors)) {
2990 overlap = 1;
2991 break;
2992 }
2993 mddev_unlock(mddev);
2994 if (overlap) {
2995 mddev_put(mddev);
2996 break;
2997 }
2998 }
2999 mddev_lock_nointr(my_mddev);
3000 if (overlap) {
3001 /* Someone else could have slipped in a size
3002 * change here, but doing so is just silly.
3003 * We put oldsectors back because we *know* it is
3004 * safe, and trust userspace not to race with
3005 * itself
3006 */
3007 rdev->sectors = oldsectors;
3008 return -EBUSY;
3009 }
3010 }
3011 return len;
3012 }
3013
3014 static struct rdev_sysfs_entry rdev_size =
3015 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3016
3017
3018 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3019 {
3020 unsigned long long recovery_start = rdev->recovery_offset;
3021
3022 if (test_bit(In_sync, &rdev->flags) ||
3023 recovery_start == MaxSector)
3024 return sprintf(page, "none\n");
3025
3026 return sprintf(page, "%llu\n", recovery_start);
3027 }
3028
3029 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3030 {
3031 unsigned long long recovery_start;
3032
3033 if (cmd_match(buf, "none"))
3034 recovery_start = MaxSector;
3035 else if (kstrtoull(buf, 10, &recovery_start))
3036 return -EINVAL;
3037
3038 if (rdev->mddev->pers &&
3039 rdev->raid_disk >= 0)
3040 return -EBUSY;
3041
3042 rdev->recovery_offset = recovery_start;
3043 if (recovery_start == MaxSector)
3044 set_bit(In_sync, &rdev->flags);
3045 else
3046 clear_bit(In_sync, &rdev->flags);
3047 return len;
3048 }
3049
3050 static struct rdev_sysfs_entry rdev_recovery_start =
3051 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3052
3053
3054 static ssize_t
3055 badblocks_show(struct badblocks *bb, char *page, int unack);
3056 static ssize_t
3057 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3058
3059 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3060 {
3061 return badblocks_show(&rdev->badblocks, page, 0);
3062 }
3063 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3064 {
3065 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3066 /* Maybe that ack was all we needed */
3067 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3068 wake_up(&rdev->blocked_wait);
3069 return rv;
3070 }
3071 static struct rdev_sysfs_entry rdev_bad_blocks =
3072 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3073
3074
3075 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3076 {
3077 return badblocks_show(&rdev->badblocks, page, 1);
3078 }
3079 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3080 {
3081 return badblocks_store(&rdev->badblocks, page, len, 1);
3082 }
3083 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3084 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3085
3086 static struct attribute *rdev_default_attrs[] = {
3087 &rdev_state.attr,
3088 &rdev_errors.attr,
3089 &rdev_slot.attr,
3090 &rdev_offset.attr,
3091 &rdev_new_offset.attr,
3092 &rdev_size.attr,
3093 &rdev_recovery_start.attr,
3094 &rdev_bad_blocks.attr,
3095 &rdev_unack_bad_blocks.attr,
3096 NULL,
3097 };
3098 static ssize_t
3099 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3100 {
3101 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3102 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3103 struct mddev *mddev = rdev->mddev;
3104 ssize_t rv;
3105
3106 if (!entry->show)
3107 return -EIO;
3108
3109 rv = mddev ? mddev_lock(mddev) : -EBUSY;
3110 if (!rv) {
3111 if (rdev->mddev == NULL)
3112 rv = -EBUSY;
3113 else
3114 rv = entry->show(rdev, page);
3115 mddev_unlock(mddev);
3116 }
3117 return rv;
3118 }
3119
3120 static ssize_t
3121 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3122 const char *page, size_t length)
3123 {
3124 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3125 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3126 ssize_t rv;
3127 struct mddev *mddev = rdev->mddev;
3128
3129 if (!entry->store)
3130 return -EIO;
3131 if (!capable(CAP_SYS_ADMIN))
3132 return -EACCES;
3133 rv = mddev ? mddev_lock(mddev): -EBUSY;
3134 if (!rv) {
3135 if (rdev->mddev == NULL)
3136 rv = -EBUSY;
3137 else
3138 rv = entry->store(rdev, page, length);
3139 mddev_unlock(mddev);
3140 }
3141 return rv;
3142 }
3143
3144 static void rdev_free(struct kobject *ko)
3145 {
3146 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3147 kfree(rdev);
3148 }
3149 static const struct sysfs_ops rdev_sysfs_ops = {
3150 .show = rdev_attr_show,
3151 .store = rdev_attr_store,
3152 };
3153 static struct kobj_type rdev_ktype = {
3154 .release = rdev_free,
3155 .sysfs_ops = &rdev_sysfs_ops,
3156 .default_attrs = rdev_default_attrs,
3157 };
3158
3159 int md_rdev_init(struct md_rdev *rdev)
3160 {
3161 rdev->desc_nr = -1;
3162 rdev->saved_raid_disk = -1;
3163 rdev->raid_disk = -1;
3164 rdev->flags = 0;
3165 rdev->data_offset = 0;
3166 rdev->new_data_offset = 0;
3167 rdev->sb_events = 0;
3168 rdev->last_read_error.tv_sec = 0;
3169 rdev->last_read_error.tv_nsec = 0;
3170 rdev->sb_loaded = 0;
3171 rdev->bb_page = NULL;
3172 atomic_set(&rdev->nr_pending, 0);
3173 atomic_set(&rdev->read_errors, 0);
3174 atomic_set(&rdev->corrected_errors, 0);
3175
3176 INIT_LIST_HEAD(&rdev->same_set);
3177 init_waitqueue_head(&rdev->blocked_wait);
3178
3179 /* Add space to store bad block list.
3180 * This reserves the space even on arrays where it cannot
3181 * be used - I wonder if that matters
3182 */
3183 rdev->badblocks.count = 0;
3184 rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3185 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3186 seqlock_init(&rdev->badblocks.lock);
3187 if (rdev->badblocks.page == NULL)
3188 return -ENOMEM;
3189
3190 return 0;
3191 }
3192 EXPORT_SYMBOL_GPL(md_rdev_init);
3193 /*
3194 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3195 *
3196 * mark the device faulty if:
3197 *
3198 * - the device is nonexistent (zero size)
3199 * - the device has no valid superblock
3200 *
3201 * a faulty rdev _never_ has rdev->sb set.
3202 */
3203 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3204 {
3205 char b[BDEVNAME_SIZE];
3206 int err;
3207 struct md_rdev *rdev;
3208 sector_t size;
3209
3210 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3211 if (!rdev) {
3212 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3213 return ERR_PTR(-ENOMEM);
3214 }
3215
3216 err = md_rdev_init(rdev);
3217 if (err)
3218 goto abort_free;
3219 err = alloc_disk_sb(rdev);
3220 if (err)
3221 goto abort_free;
3222
3223 err = lock_rdev(rdev, newdev, super_format == -2);
3224 if (err)
3225 goto abort_free;
3226
3227 kobject_init(&rdev->kobj, &rdev_ktype);
3228
3229 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3230 if (!size) {
3231 printk(KERN_WARNING
3232 "md: %s has zero or unknown size, marking faulty!\n",
3233 bdevname(rdev->bdev,b));
3234 err = -EINVAL;
3235 goto abort_free;
3236 }
3237
3238 if (super_format >= 0) {
3239 err = super_types[super_format].
3240 load_super(rdev, NULL, super_minor);
3241 if (err == -EINVAL) {
3242 printk(KERN_WARNING
3243 "md: %s does not have a valid v%d.%d "
3244 "superblock, not importing!\n",
3245 bdevname(rdev->bdev,b),
3246 super_format, super_minor);
3247 goto abort_free;
3248 }
3249 if (err < 0) {
3250 printk(KERN_WARNING
3251 "md: could not read %s's sb, not importing!\n",
3252 bdevname(rdev->bdev,b));
3253 goto abort_free;
3254 }
3255 }
3256
3257 return rdev;
3258
3259 abort_free:
3260 if (rdev->bdev)
3261 unlock_rdev(rdev);
3262 md_rdev_clear(rdev);
3263 kfree(rdev);
3264 return ERR_PTR(err);
3265 }
3266
3267 /*
3268 * Check a full RAID array for plausibility
3269 */
3270
3271
3272 static void analyze_sbs(struct mddev * mddev)
3273 {
3274 int i;
3275 struct md_rdev *rdev, *freshest, *tmp;
3276 char b[BDEVNAME_SIZE];
3277
3278 freshest = NULL;
3279 rdev_for_each_safe(rdev, tmp, mddev)
3280 switch (super_types[mddev->major_version].
3281 load_super(rdev, freshest, mddev->minor_version)) {
3282 case 1:
3283 freshest = rdev;
3284 break;
3285 case 0:
3286 break;
3287 default:
3288 printk( KERN_ERR \
3289 "md: fatal superblock inconsistency in %s"
3290 " -- removing from array\n",
3291 bdevname(rdev->bdev,b));
3292 kick_rdev_from_array(rdev);
3293 }
3294
3295
3296 super_types[mddev->major_version].
3297 validate_super(mddev, freshest);
3298
3299 i = 0;
3300 rdev_for_each_safe(rdev, tmp, mddev) {
3301 if (mddev->max_disks &&
3302 (rdev->desc_nr >= mddev->max_disks ||
3303 i > mddev->max_disks)) {
3304 printk(KERN_WARNING
3305 "md: %s: %s: only %d devices permitted\n",
3306 mdname(mddev), bdevname(rdev->bdev, b),
3307 mddev->max_disks);
3308 kick_rdev_from_array(rdev);
3309 continue;
3310 }
3311 if (rdev != freshest)
3312 if (super_types[mddev->major_version].
3313 validate_super(mddev, rdev)) {
3314 printk(KERN_WARNING "md: kicking non-fresh %s"
3315 " from array!\n",
3316 bdevname(rdev->bdev,b));
3317 kick_rdev_from_array(rdev);
3318 continue;
3319 }
3320 if (mddev->level == LEVEL_MULTIPATH) {
3321 rdev->desc_nr = i++;
3322 rdev->raid_disk = rdev->desc_nr;
3323 set_bit(In_sync, &rdev->flags);
3324 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3325 rdev->raid_disk = -1;
3326 clear_bit(In_sync, &rdev->flags);
3327 }
3328 }
3329 }
3330
3331 /* Read a fixed-point number.
3332 * Numbers in sysfs attributes should be in "standard" units where
3333 * possible, so time should be in seconds.
3334 * However we internally use a a much smaller unit such as
3335 * milliseconds or jiffies.
3336 * This function takes a decimal number with a possible fractional
3337 * component, and produces an integer which is the result of
3338 * multiplying that number by 10^'scale'.
3339 * all without any floating-point arithmetic.
3340 */
3341 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3342 {
3343 unsigned long result = 0;
3344 long decimals = -1;
3345 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3346 if (*cp == '.')
3347 decimals = 0;
3348 else if (decimals < scale) {
3349 unsigned int value;
3350 value = *cp - '0';
3351 result = result * 10 + value;
3352 if (decimals >= 0)
3353 decimals++;
3354 }
3355 cp++;
3356 }
3357 if (*cp == '\n')
3358 cp++;
3359 if (*cp)
3360 return -EINVAL;
3361 if (decimals < 0)
3362 decimals = 0;
3363 while (decimals < scale) {
3364 result *= 10;
3365 decimals ++;
3366 }
3367 *res = result;
3368 return 0;
3369 }
3370
3371
3372 static void md_safemode_timeout(unsigned long data);
3373
3374 static ssize_t
3375 safe_delay_show(struct mddev *mddev, char *page)
3376 {
3377 int msec = (mddev->safemode_delay*1000)/HZ;
3378 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3379 }
3380 static ssize_t
3381 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3382 {
3383 unsigned long msec;
3384
3385 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3386 return -EINVAL;
3387 if (msec == 0)
3388 mddev->safemode_delay = 0;
3389 else {
3390 unsigned long old_delay = mddev->safemode_delay;
3391 mddev->safemode_delay = (msec*HZ)/1000;
3392 if (mddev->safemode_delay == 0)
3393 mddev->safemode_delay = 1;
3394 if (mddev->safemode_delay < old_delay || old_delay == 0)
3395 md_safemode_timeout((unsigned long)mddev);
3396 }
3397 return len;
3398 }
3399 static struct md_sysfs_entry md_safe_delay =
3400 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3401
3402 static ssize_t
3403 level_show(struct mddev *mddev, char *page)
3404 {
3405 struct md_personality *p = mddev->pers;
3406 if (p)
3407 return sprintf(page, "%s\n", p->name);
3408 else if (mddev->clevel[0])
3409 return sprintf(page, "%s\n", mddev->clevel);
3410 else if (mddev->level != LEVEL_NONE)
3411 return sprintf(page, "%d\n", mddev->level);
3412 else
3413 return 0;
3414 }
3415
3416 static ssize_t
3417 level_store(struct mddev *mddev, const char *buf, size_t len)
3418 {
3419 char clevel[16];
3420 ssize_t rv = len;
3421 struct md_personality *pers;
3422 long level;
3423 void *priv;
3424 struct md_rdev *rdev;
3425
3426 if (mddev->pers == NULL) {
3427 if (len == 0)
3428 return 0;
3429 if (len >= sizeof(mddev->clevel))
3430 return -ENOSPC;
3431 strncpy(mddev->clevel, buf, len);
3432 if (mddev->clevel[len-1] == '\n')
3433 len--;
3434 mddev->clevel[len] = 0;
3435 mddev->level = LEVEL_NONE;
3436 return rv;
3437 }
3438 if (mddev->ro)
3439 return -EROFS;
3440
3441 /* request to change the personality. Need to ensure:
3442 * - array is not engaged in resync/recovery/reshape
3443 * - old personality can be suspended
3444 * - new personality will access other array.
3445 */
3446
3447 if (mddev->sync_thread ||
3448 mddev->reshape_position != MaxSector ||
3449 mddev->sysfs_active)
3450 return -EBUSY;
3451
3452 if (!mddev->pers->quiesce) {
3453 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3454 mdname(mddev), mddev->pers->name);
3455 return -EINVAL;
3456 }
3457
3458 /* Now find the new personality */
3459 if (len == 0 || len >= sizeof(clevel))
3460 return -EINVAL;
3461 strncpy(clevel, buf, len);
3462 if (clevel[len-1] == '\n')
3463 len--;
3464 clevel[len] = 0;
3465 if (kstrtol(clevel, 10, &level))
3466 level = LEVEL_NONE;
3467
3468 if (request_module("md-%s", clevel) != 0)
3469 request_module("md-level-%s", clevel);
3470 spin_lock(&pers_lock);
3471 pers = find_pers(level, clevel);
3472 if (!pers || !try_module_get(pers->owner)) {
3473 spin_unlock(&pers_lock);
3474 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3475 return -EINVAL;
3476 }
3477 spin_unlock(&pers_lock);
3478
3479 if (pers == mddev->pers) {
3480 /* Nothing to do! */
3481 module_put(pers->owner);
3482 return rv;
3483 }
3484 if (!pers->takeover) {
3485 module_put(pers->owner);
3486 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3487 mdname(mddev), clevel);
3488 return -EINVAL;
3489 }
3490
3491 rdev_for_each(rdev, mddev)
3492 rdev->new_raid_disk = rdev->raid_disk;
3493
3494 /* ->takeover must set new_* and/or delta_disks
3495 * if it succeeds, and may set them when it fails.
3496 */
3497 priv = pers->takeover(mddev);
3498 if (IS_ERR(priv)) {
3499 mddev->new_level = mddev->level;
3500 mddev->new_layout = mddev->layout;
3501 mddev->new_chunk_sectors = mddev->chunk_sectors;
3502 mddev->raid_disks -= mddev->delta_disks;
3503 mddev->delta_disks = 0;
3504 mddev->reshape_backwards = 0;
3505 module_put(pers->owner);
3506 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3507 mdname(mddev), clevel);
3508 return PTR_ERR(priv);
3509 }
3510
3511 /* Looks like we have a winner */
3512 mddev_suspend(mddev);
3513 mddev->pers->stop(mddev);
3514
3515 if (mddev->pers->sync_request == NULL &&
3516 pers->sync_request != NULL) {
3517 /* need to add the md_redundancy_group */
3518 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3519 printk(KERN_WARNING
3520 "md: cannot register extra attributes for %s\n",
3521 mdname(mddev));
3522 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3523 }
3524 if (mddev->pers->sync_request != NULL &&
3525 pers->sync_request == NULL) {
3526 /* need to remove the md_redundancy_group */
3527 if (mddev->to_remove == NULL)
3528 mddev->to_remove = &md_redundancy_group;
3529 }
3530
3531 if (mddev->pers->sync_request == NULL &&
3532 mddev->external) {
3533 /* We are converting from a no-redundancy array
3534 * to a redundancy array and metadata is managed
3535 * externally so we need to be sure that writes
3536 * won't block due to a need to transition
3537 * clean->dirty
3538 * until external management is started.
3539 */
3540 mddev->in_sync = 0;
3541 mddev->safemode_delay = 0;
3542 mddev->safemode = 0;
3543 }
3544
3545 rdev_for_each(rdev, mddev) {
3546 if (rdev->raid_disk < 0)
3547 continue;
3548 if (rdev->new_raid_disk >= mddev->raid_disks)
3549 rdev->new_raid_disk = -1;
3550 if (rdev->new_raid_disk == rdev->raid_disk)
3551 continue;
3552 sysfs_unlink_rdev(mddev, rdev);
3553 }
3554 rdev_for_each(rdev, mddev) {
3555 if (rdev->raid_disk < 0)
3556 continue;
3557 if (rdev->new_raid_disk == rdev->raid_disk)
3558 continue;
3559 rdev->raid_disk = rdev->new_raid_disk;
3560 if (rdev->raid_disk < 0)
3561 clear_bit(In_sync, &rdev->flags);
3562 else {
3563 if (sysfs_link_rdev(mddev, rdev))
3564 printk(KERN_WARNING "md: cannot register rd%d"
3565 " for %s after level change\n",
3566 rdev->raid_disk, mdname(mddev));
3567 }
3568 }
3569
3570 module_put(mddev->pers->owner);
3571 mddev->pers = pers;
3572 mddev->private = priv;
3573 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3574 mddev->level = mddev->new_level;
3575 mddev->layout = mddev->new_layout;
3576 mddev->chunk_sectors = mddev->new_chunk_sectors;
3577 mddev->delta_disks = 0;
3578 mddev->reshape_backwards = 0;
3579 mddev->degraded = 0;
3580 if (mddev->pers->sync_request == NULL) {
3581 /* this is now an array without redundancy, so
3582 * it must always be in_sync
3583 */
3584 mddev->in_sync = 1;
3585 del_timer_sync(&mddev->safemode_timer);
3586 }
3587 blk_set_stacking_limits(&mddev->queue->limits);
3588 pers->run(mddev);
3589 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3590 mddev_resume(mddev);
3591 if (!mddev->thread)
3592 md_update_sb(mddev, 1);
3593 sysfs_notify(&mddev->kobj, NULL, "level");
3594 md_new_event(mddev);
3595 return rv;
3596 }
3597
3598 static struct md_sysfs_entry md_level =
3599 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3600
3601
3602 static ssize_t
3603 layout_show(struct mddev *mddev, char *page)
3604 {
3605 /* just a number, not meaningful for all levels */
3606 if (mddev->reshape_position != MaxSector &&
3607 mddev->layout != mddev->new_layout)
3608 return sprintf(page, "%d (%d)\n",
3609 mddev->new_layout, mddev->layout);
3610 return sprintf(page, "%d\n", mddev->layout);
3611 }
3612
3613 static ssize_t
3614 layout_store(struct mddev *mddev, const char *buf, size_t len)
3615 {
3616 char *e;
3617 unsigned long n = simple_strtoul(buf, &e, 10);
3618
3619 if (!*buf || (*e && *e != '\n'))
3620 return -EINVAL;
3621
3622 if (mddev->pers) {
3623 int err;
3624 if (mddev->pers->check_reshape == NULL)
3625 return -EBUSY;
3626 if (mddev->ro)
3627 return -EROFS;
3628 mddev->new_layout = n;
3629 err = mddev->pers->check_reshape(mddev);
3630 if (err) {
3631 mddev->new_layout = mddev->layout;
3632 return err;
3633 }
3634 } else {
3635 mddev->new_layout = n;
3636 if (mddev->reshape_position == MaxSector)
3637 mddev->layout = n;
3638 }
3639 return len;
3640 }
3641 static struct md_sysfs_entry md_layout =
3642 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3643
3644
3645 static ssize_t
3646 raid_disks_show(struct mddev *mddev, char *page)
3647 {
3648 if (mddev->raid_disks == 0)
3649 return 0;
3650 if (mddev->reshape_position != MaxSector &&
3651 mddev->delta_disks != 0)
3652 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3653 mddev->raid_disks - mddev->delta_disks);
3654 return sprintf(page, "%d\n", mddev->raid_disks);
3655 }
3656
3657 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3658
3659 static ssize_t
3660 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3661 {
3662 char *e;
3663 int rv = 0;
3664 unsigned long n = simple_strtoul(buf, &e, 10);
3665
3666 if (!*buf || (*e && *e != '\n'))
3667 return -EINVAL;
3668
3669 if (mddev->pers)
3670 rv = update_raid_disks(mddev, n);
3671 else if (mddev->reshape_position != MaxSector) {
3672 struct md_rdev *rdev;
3673 int olddisks = mddev->raid_disks - mddev->delta_disks;
3674
3675 rdev_for_each(rdev, mddev) {
3676 if (olddisks < n &&
3677 rdev->data_offset < rdev->new_data_offset)
3678 return -EINVAL;
3679 if (olddisks > n &&
3680 rdev->data_offset > rdev->new_data_offset)
3681 return -EINVAL;
3682 }
3683 mddev->delta_disks = n - olddisks;
3684 mddev->raid_disks = n;
3685 mddev->reshape_backwards = (mddev->delta_disks < 0);
3686 } else
3687 mddev->raid_disks = n;
3688 return rv ? rv : len;
3689 }
3690 static struct md_sysfs_entry md_raid_disks =
3691 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3692
3693 static ssize_t
3694 chunk_size_show(struct mddev *mddev, char *page)
3695 {
3696 if (mddev->reshape_position != MaxSector &&
3697 mddev->chunk_sectors != mddev->new_chunk_sectors)
3698 return sprintf(page, "%d (%d)\n",
3699 mddev->new_chunk_sectors << 9,
3700 mddev->chunk_sectors << 9);
3701 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3702 }
3703
3704 static ssize_t
3705 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3706 {
3707 char *e;
3708 unsigned long n = simple_strtoul(buf, &e, 10);
3709
3710 if (!*buf || (*e && *e != '\n'))
3711 return -EINVAL;
3712
3713 if (mddev->pers) {
3714 int err;
3715 if (mddev->pers->check_reshape == NULL)
3716 return -EBUSY;
3717 if (mddev->ro)
3718 return -EROFS;
3719 mddev->new_chunk_sectors = n >> 9;
3720 err = mddev->pers->check_reshape(mddev);
3721 if (err) {
3722 mddev->new_chunk_sectors = mddev->chunk_sectors;
3723 return err;
3724 }
3725 } else {
3726 mddev->new_chunk_sectors = n >> 9;
3727 if (mddev->reshape_position == MaxSector)
3728 mddev->chunk_sectors = n >> 9;
3729 }
3730 return len;
3731 }
3732 static struct md_sysfs_entry md_chunk_size =
3733 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3734
3735 static ssize_t
3736 resync_start_show(struct mddev *mddev, char *page)
3737 {
3738 if (mddev->recovery_cp == MaxSector)
3739 return sprintf(page, "none\n");
3740 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3741 }
3742
3743 static ssize_t
3744 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3745 {
3746 char *e;
3747 unsigned long long n = simple_strtoull(buf, &e, 10);
3748
3749 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3750 return -EBUSY;
3751 if (cmd_match(buf, "none"))
3752 n = MaxSector;
3753 else if (!*buf || (*e && *e != '\n'))
3754 return -EINVAL;
3755
3756 mddev->recovery_cp = n;
3757 if (mddev->pers)
3758 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3759 return len;
3760 }
3761 static struct md_sysfs_entry md_resync_start =
3762 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3763
3764 /*
3765 * The array state can be:
3766 *
3767 * clear
3768 * No devices, no size, no level
3769 * Equivalent to STOP_ARRAY ioctl
3770 * inactive
3771 * May have some settings, but array is not active
3772 * all IO results in error
3773 * When written, doesn't tear down array, but just stops it
3774 * suspended (not supported yet)
3775 * All IO requests will block. The array can be reconfigured.
3776 * Writing this, if accepted, will block until array is quiescent
3777 * readonly
3778 * no resync can happen. no superblocks get written.
3779 * write requests fail
3780 * read-auto
3781 * like readonly, but behaves like 'clean' on a write request.
3782 *
3783 * clean - no pending writes, but otherwise active.
3784 * When written to inactive array, starts without resync
3785 * If a write request arrives then
3786 * if metadata is known, mark 'dirty' and switch to 'active'.
3787 * if not known, block and switch to write-pending
3788 * If written to an active array that has pending writes, then fails.
3789 * active
3790 * fully active: IO and resync can be happening.
3791 * When written to inactive array, starts with resync
3792 *
3793 * write-pending
3794 * clean, but writes are blocked waiting for 'active' to be written.
3795 *
3796 * active-idle
3797 * like active, but no writes have been seen for a while (100msec).
3798 *
3799 */
3800 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3801 write_pending, active_idle, bad_word};
3802 static char *array_states[] = {
3803 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3804 "write-pending", "active-idle", NULL };
3805
3806 static int match_word(const char *word, char **list)
3807 {
3808 int n;
3809 for (n=0; list[n]; n++)
3810 if (cmd_match(word, list[n]))
3811 break;
3812 return n;
3813 }
3814
3815 static ssize_t
3816 array_state_show(struct mddev *mddev, char *page)
3817 {
3818 enum array_state st = inactive;
3819
3820 if (mddev->pers)
3821 switch(mddev->ro) {
3822 case 1:
3823 st = readonly;
3824 break;
3825 case 2:
3826 st = read_auto;
3827 break;
3828 case 0:
3829 if (mddev->in_sync)
3830 st = clean;
3831 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3832 st = write_pending;
3833 else if (mddev->safemode)
3834 st = active_idle;
3835 else
3836 st = active;
3837 }
3838 else {
3839 if (list_empty(&mddev->disks) &&
3840 mddev->raid_disks == 0 &&
3841 mddev->dev_sectors == 0)
3842 st = clear;
3843 else
3844 st = inactive;
3845 }
3846 return sprintf(page, "%s\n", array_states[st]);
3847 }
3848
3849 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
3850 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
3851 static int do_md_run(struct mddev * mddev);
3852 static int restart_array(struct mddev *mddev);
3853
3854 static ssize_t
3855 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3856 {
3857 int err = -EINVAL;
3858 enum array_state st = match_word(buf, array_states);
3859 switch(st) {
3860 case bad_word:
3861 break;
3862 case clear:
3863 /* stopping an active array */
3864 err = do_md_stop(mddev, 0, NULL);
3865 break;
3866 case inactive:
3867 /* stopping an active array */
3868 if (mddev->pers)
3869 err = do_md_stop(mddev, 2, NULL);
3870 else
3871 err = 0; /* already inactive */
3872 break;
3873 case suspended:
3874 break; /* not supported yet */
3875 case readonly:
3876 if (mddev->pers)
3877 err = md_set_readonly(mddev, NULL);
3878 else {
3879 mddev->ro = 1;
3880 set_disk_ro(mddev->gendisk, 1);
3881 err = do_md_run(mddev);
3882 }
3883 break;
3884 case read_auto:
3885 if (mddev->pers) {
3886 if (mddev->ro == 0)
3887 err = md_set_readonly(mddev, NULL);
3888 else if (mddev->ro == 1)
3889 err = restart_array(mddev);
3890 if (err == 0) {
3891 mddev->ro = 2;
3892 set_disk_ro(mddev->gendisk, 0);
3893 }
3894 } else {
3895 mddev->ro = 2;
3896 err = do_md_run(mddev);
3897 }
3898 break;
3899 case clean:
3900 if (mddev->pers) {
3901 restart_array(mddev);
3902 spin_lock_irq(&mddev->write_lock);
3903 if (atomic_read(&mddev->writes_pending) == 0) {
3904 if (mddev->in_sync == 0) {
3905 mddev->in_sync = 1;
3906 if (mddev->safemode == 1)
3907 mddev->safemode = 0;
3908 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3909 }
3910 err = 0;
3911 } else
3912 err = -EBUSY;
3913 spin_unlock_irq(&mddev->write_lock);
3914 } else
3915 err = -EINVAL;
3916 break;
3917 case active:
3918 if (mddev->pers) {
3919 restart_array(mddev);
3920 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3921 wake_up(&mddev->sb_wait);
3922 err = 0;
3923 } else {
3924 mddev->ro = 0;
3925 set_disk_ro(mddev->gendisk, 0);
3926 err = do_md_run(mddev);
3927 }
3928 break;
3929 case write_pending:
3930 case active_idle:
3931 /* these cannot be set */
3932 break;
3933 }
3934 if (err)
3935 return err;
3936 else {
3937 if (mddev->hold_active == UNTIL_IOCTL)
3938 mddev->hold_active = 0;
3939 sysfs_notify_dirent_safe(mddev->sysfs_state);
3940 return len;
3941 }
3942 }
3943 static struct md_sysfs_entry md_array_state =
3944 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3945
3946 static ssize_t
3947 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3948 return sprintf(page, "%d\n",
3949 atomic_read(&mddev->max_corr_read_errors));
3950 }
3951
3952 static ssize_t
3953 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3954 {
3955 char *e;
3956 unsigned long n = simple_strtoul(buf, &e, 10);
3957
3958 if (*buf && (*e == 0 || *e == '\n')) {
3959 atomic_set(&mddev->max_corr_read_errors, n);
3960 return len;
3961 }
3962 return -EINVAL;
3963 }
3964
3965 static struct md_sysfs_entry max_corr_read_errors =
3966 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3967 max_corrected_read_errors_store);
3968
3969 static ssize_t
3970 null_show(struct mddev *mddev, char *page)
3971 {
3972 return -EINVAL;
3973 }
3974
3975 static ssize_t
3976 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3977 {
3978 /* buf must be %d:%d\n? giving major and minor numbers */
3979 /* The new device is added to the array.
3980 * If the array has a persistent superblock, we read the
3981 * superblock to initialise info and check validity.
3982 * Otherwise, only checking done is that in bind_rdev_to_array,
3983 * which mainly checks size.
3984 */
3985 char *e;
3986 int major = simple_strtoul(buf, &e, 10);
3987 int minor;
3988 dev_t dev;
3989 struct md_rdev *rdev;
3990 int err;
3991
3992 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3993 return -EINVAL;
3994 minor = simple_strtoul(e+1, &e, 10);
3995 if (*e && *e != '\n')
3996 return -EINVAL;
3997 dev = MKDEV(major, minor);
3998 if (major != MAJOR(dev) ||
3999 minor != MINOR(dev))
4000 return -EOVERFLOW;
4001
4002
4003 if (mddev->persistent) {
4004 rdev = md_import_device(dev, mddev->major_version,
4005 mddev->minor_version);
4006 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4007 struct md_rdev *rdev0
4008 = list_entry(mddev->disks.next,
4009 struct md_rdev, same_set);
4010 err = super_types[mddev->major_version]
4011 .load_super(rdev, rdev0, mddev->minor_version);
4012 if (err < 0)
4013 goto out;
4014 }
4015 } else if (mddev->external)
4016 rdev = md_import_device(dev, -2, -1);
4017 else
4018 rdev = md_import_device(dev, -1, -1);
4019
4020 if (IS_ERR(rdev))
4021 return PTR_ERR(rdev);
4022 err = bind_rdev_to_array(rdev, mddev);
4023 out:
4024 if (err)
4025 export_rdev(rdev);
4026 return err ? err : len;
4027 }
4028
4029 static struct md_sysfs_entry md_new_device =
4030 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4031
4032 static ssize_t
4033 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4034 {
4035 char *end;
4036 unsigned long chunk, end_chunk;
4037
4038 if (!mddev->bitmap)
4039 goto out;
4040 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4041 while (*buf) {
4042 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4043 if (buf == end) break;
4044 if (*end == '-') { /* range */
4045 buf = end + 1;
4046 end_chunk = simple_strtoul(buf, &end, 0);
4047 if (buf == end) break;
4048 }
4049 if (*end && !isspace(*end)) break;
4050 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4051 buf = skip_spaces(end);
4052 }
4053 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4054 out:
4055 return len;
4056 }
4057
4058 static struct md_sysfs_entry md_bitmap =
4059 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4060
4061 static ssize_t
4062 size_show(struct mddev *mddev, char *page)
4063 {
4064 return sprintf(page, "%llu\n",
4065 (unsigned long long)mddev->dev_sectors / 2);
4066 }
4067
4068 static int update_size(struct mddev *mddev, sector_t num_sectors);
4069
4070 static ssize_t
4071 size_store(struct mddev *mddev, const char *buf, size_t len)
4072 {
4073 /* If array is inactive, we can reduce the component size, but
4074 * not increase it (except from 0).
4075 * If array is active, we can try an on-line resize
4076 */
4077 sector_t sectors;
4078 int err = strict_blocks_to_sectors(buf, &sectors);
4079
4080 if (err < 0)
4081 return err;
4082 if (mddev->pers) {
4083 err = update_size(mddev, sectors);
4084 md_update_sb(mddev, 1);
4085 } else {
4086 if (mddev->dev_sectors == 0 ||
4087 mddev->dev_sectors > sectors)
4088 mddev->dev_sectors = sectors;
4089 else
4090 err = -ENOSPC;
4091 }
4092 return err ? err : len;
4093 }
4094
4095 static struct md_sysfs_entry md_size =
4096 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4097
4098
4099 /* Metadata version.
4100 * This is one of
4101 * 'none' for arrays with no metadata (good luck...)
4102 * 'external' for arrays with externally managed metadata,
4103 * or N.M for internally known formats
4104 */
4105 static ssize_t
4106 metadata_show(struct mddev *mddev, char *page)
4107 {
4108 if (mddev->persistent)
4109 return sprintf(page, "%d.%d\n",
4110 mddev->major_version, mddev->minor_version);
4111 else if (mddev->external)
4112 return sprintf(page, "external:%s\n", mddev->metadata_type);
4113 else
4114 return sprintf(page, "none\n");
4115 }
4116
4117 static ssize_t
4118 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4119 {
4120 int major, minor;
4121 char *e;
4122 /* Changing the details of 'external' metadata is
4123 * always permitted. Otherwise there must be
4124 * no devices attached to the array.
4125 */
4126 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4127 ;
4128 else if (!list_empty(&mddev->disks))
4129 return -EBUSY;
4130
4131 if (cmd_match(buf, "none")) {
4132 mddev->persistent = 0;
4133 mddev->external = 0;
4134 mddev->major_version = 0;
4135 mddev->minor_version = 90;
4136 return len;
4137 }
4138 if (strncmp(buf, "external:", 9) == 0) {
4139 size_t namelen = len-9;
4140 if (namelen >= sizeof(mddev->metadata_type))
4141 namelen = sizeof(mddev->metadata_type)-1;
4142 strncpy(mddev->metadata_type, buf+9, namelen);
4143 mddev->metadata_type[namelen] = 0;
4144 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4145 mddev->metadata_type[--namelen] = 0;
4146 mddev->persistent = 0;
4147 mddev->external = 1;
4148 mddev->major_version = 0;
4149 mddev->minor_version = 90;
4150 return len;
4151 }
4152 major = simple_strtoul(buf, &e, 10);
4153 if (e==buf || *e != '.')
4154 return -EINVAL;
4155 buf = e+1;
4156 minor = simple_strtoul(buf, &e, 10);
4157 if (e==buf || (*e && *e != '\n') )
4158 return -EINVAL;
4159 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4160 return -ENOENT;
4161 mddev->major_version = major;
4162 mddev->minor_version = minor;
4163 mddev->persistent = 1;
4164 mddev->external = 0;
4165 return len;
4166 }
4167
4168 static struct md_sysfs_entry md_metadata =
4169 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4170
4171 static ssize_t
4172 action_show(struct mddev *mddev, char *page)
4173 {
4174 char *type = "idle";
4175 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4176 type = "frozen";
4177 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4178 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4179 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4180 type = "reshape";
4181 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4182 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4183 type = "resync";
4184 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4185 type = "check";
4186 else
4187 type = "repair";
4188 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4189 type = "recover";
4190 }
4191 return sprintf(page, "%s\n", type);
4192 }
4193
4194 static ssize_t
4195 action_store(struct mddev *mddev, const char *page, size_t len)
4196 {
4197 if (!mddev->pers || !mddev->pers->sync_request)
4198 return -EINVAL;
4199
4200 if (cmd_match(page, "frozen"))
4201 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4202 else
4203 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4204
4205 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4206 if (mddev->sync_thread) {
4207 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4208 md_reap_sync_thread(mddev);
4209 }
4210 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4211 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4212 return -EBUSY;
4213 else if (cmd_match(page, "resync"))
4214 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4215 else if (cmd_match(page, "recover")) {
4216 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4217 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4218 } else if (cmd_match(page, "reshape")) {
4219 int err;
4220 if (mddev->pers->start_reshape == NULL)
4221 return -EINVAL;
4222 err = mddev->pers->start_reshape(mddev);
4223 if (err)
4224 return err;
4225 sysfs_notify(&mddev->kobj, NULL, "degraded");
4226 } else {
4227 if (cmd_match(page, "check"))
4228 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4229 else if (!cmd_match(page, "repair"))
4230 return -EINVAL;
4231 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4232 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4233 }
4234 if (mddev->ro == 2) {
4235 /* A write to sync_action is enough to justify
4236 * canceling read-auto mode
4237 */
4238 mddev->ro = 0;
4239 md_wakeup_thread(mddev->sync_thread);
4240 }
4241 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4242 md_wakeup_thread(mddev->thread);
4243 sysfs_notify_dirent_safe(mddev->sysfs_action);
4244 return len;
4245 }
4246
4247 static struct md_sysfs_entry md_scan_mode =
4248 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4249
4250 static ssize_t
4251 last_sync_action_show(struct mddev *mddev, char *page)
4252 {
4253 return sprintf(page, "%s\n", mddev->last_sync_action);
4254 }
4255
4256 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4257
4258 static ssize_t
4259 mismatch_cnt_show(struct mddev *mddev, char *page)
4260 {
4261 return sprintf(page, "%llu\n",
4262 (unsigned long long)
4263 atomic64_read(&mddev->resync_mismatches));
4264 }
4265
4266 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4267
4268 static ssize_t
4269 sync_min_show(struct mddev *mddev, char *page)
4270 {
4271 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4272 mddev->sync_speed_min ? "local": "system");
4273 }
4274
4275 static ssize_t
4276 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4277 {
4278 int min;
4279 char *e;
4280 if (strncmp(buf, "system", 6)==0) {
4281 mddev->sync_speed_min = 0;
4282 return len;
4283 }
4284 min = simple_strtoul(buf, &e, 10);
4285 if (buf == e || (*e && *e != '\n') || min <= 0)
4286 return -EINVAL;
4287 mddev->sync_speed_min = min;
4288 return len;
4289 }
4290
4291 static struct md_sysfs_entry md_sync_min =
4292 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4293
4294 static ssize_t
4295 sync_max_show(struct mddev *mddev, char *page)
4296 {
4297 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4298 mddev->sync_speed_max ? "local": "system");
4299 }
4300
4301 static ssize_t
4302 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4303 {
4304 int max;
4305 char *e;
4306 if (strncmp(buf, "system", 6)==0) {
4307 mddev->sync_speed_max = 0;
4308 return len;
4309 }
4310 max = simple_strtoul(buf, &e, 10);
4311 if (buf == e || (*e && *e != '\n') || max <= 0)
4312 return -EINVAL;
4313 mddev->sync_speed_max = max;
4314 return len;
4315 }
4316
4317 static struct md_sysfs_entry md_sync_max =
4318 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4319
4320 static ssize_t
4321 degraded_show(struct mddev *mddev, char *page)
4322 {
4323 return sprintf(page, "%d\n", mddev->degraded);
4324 }
4325 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4326
4327 static ssize_t
4328 sync_force_parallel_show(struct mddev *mddev, char *page)
4329 {
4330 return sprintf(page, "%d\n", mddev->parallel_resync);
4331 }
4332
4333 static ssize_t
4334 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4335 {
4336 long n;
4337
4338 if (kstrtol(buf, 10, &n))
4339 return -EINVAL;
4340
4341 if (n != 0 && n != 1)
4342 return -EINVAL;
4343
4344 mddev->parallel_resync = n;
4345
4346 if (mddev->sync_thread)
4347 wake_up(&resync_wait);
4348
4349 return len;
4350 }
4351
4352 /* force parallel resync, even with shared block devices */
4353 static struct md_sysfs_entry md_sync_force_parallel =
4354 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4355 sync_force_parallel_show, sync_force_parallel_store);
4356
4357 static ssize_t
4358 sync_speed_show(struct mddev *mddev, char *page)
4359 {
4360 unsigned long resync, dt, db;
4361 if (mddev->curr_resync == 0)
4362 return sprintf(page, "none\n");
4363 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4364 dt = (jiffies - mddev->resync_mark) / HZ;
4365 if (!dt) dt++;
4366 db = resync - mddev->resync_mark_cnt;
4367 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4368 }
4369
4370 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4371
4372 static ssize_t
4373 sync_completed_show(struct mddev *mddev, char *page)
4374 {
4375 unsigned long long max_sectors, resync;
4376
4377 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4378 return sprintf(page, "none\n");
4379
4380 if (mddev->curr_resync == 1 ||
4381 mddev->curr_resync == 2)
4382 return sprintf(page, "delayed\n");
4383
4384 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4385 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4386 max_sectors = mddev->resync_max_sectors;
4387 else
4388 max_sectors = mddev->dev_sectors;
4389
4390 resync = mddev->curr_resync_completed;
4391 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4392 }
4393
4394 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4395
4396 static ssize_t
4397 min_sync_show(struct mddev *mddev, char *page)
4398 {
4399 return sprintf(page, "%llu\n",
4400 (unsigned long long)mddev->resync_min);
4401 }
4402 static ssize_t
4403 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4404 {
4405 unsigned long long min;
4406 if (kstrtoull(buf, 10, &min))
4407 return -EINVAL;
4408 if (min > mddev->resync_max)
4409 return -EINVAL;
4410 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4411 return -EBUSY;
4412
4413 /* Must be a multiple of chunk_size */
4414 if (mddev->chunk_sectors) {
4415 sector_t temp = min;
4416 if (sector_div(temp, mddev->chunk_sectors))
4417 return -EINVAL;
4418 }
4419 mddev->resync_min = min;
4420
4421 return len;
4422 }
4423
4424 static struct md_sysfs_entry md_min_sync =
4425 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4426
4427 static ssize_t
4428 max_sync_show(struct mddev *mddev, char *page)
4429 {
4430 if (mddev->resync_max == MaxSector)
4431 return sprintf(page, "max\n");
4432 else
4433 return sprintf(page, "%llu\n",
4434 (unsigned long long)mddev->resync_max);
4435 }
4436 static ssize_t
4437 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4438 {
4439 if (strncmp(buf, "max", 3) == 0)
4440 mddev->resync_max = MaxSector;
4441 else {
4442 unsigned long long max;
4443 if (kstrtoull(buf, 10, &max))
4444 return -EINVAL;
4445 if (max < mddev->resync_min)
4446 return -EINVAL;
4447 if (max < mddev->resync_max &&
4448 mddev->ro == 0 &&
4449 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4450 return -EBUSY;
4451
4452 /* Must be a multiple of chunk_size */
4453 if (mddev->chunk_sectors) {
4454 sector_t temp = max;
4455 if (sector_div(temp, mddev->chunk_sectors))
4456 return -EINVAL;
4457 }
4458 mddev->resync_max = max;
4459 }
4460 wake_up(&mddev->recovery_wait);
4461 return len;
4462 }
4463
4464 static struct md_sysfs_entry md_max_sync =
4465 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4466
4467 static ssize_t
4468 suspend_lo_show(struct mddev *mddev, char *page)
4469 {
4470 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4471 }
4472
4473 static ssize_t
4474 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4475 {
4476 char *e;
4477 unsigned long long new = simple_strtoull(buf, &e, 10);
4478 unsigned long long old = mddev->suspend_lo;
4479
4480 if (mddev->pers == NULL ||
4481 mddev->pers->quiesce == NULL)
4482 return -EINVAL;
4483 if (buf == e || (*e && *e != '\n'))
4484 return -EINVAL;
4485
4486 mddev->suspend_lo = new;
4487 if (new >= old)
4488 /* Shrinking suspended region */
4489 mddev->pers->quiesce(mddev, 2);
4490 else {
4491 /* Expanding suspended region - need to wait */
4492 mddev->pers->quiesce(mddev, 1);
4493 mddev->pers->quiesce(mddev, 0);
4494 }
4495 return len;
4496 }
4497 static struct md_sysfs_entry md_suspend_lo =
4498 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4499
4500
4501 static ssize_t
4502 suspend_hi_show(struct mddev *mddev, char *page)
4503 {
4504 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4505 }
4506
4507 static ssize_t
4508 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4509 {
4510 char *e;
4511 unsigned long long new = simple_strtoull(buf, &e, 10);
4512 unsigned long long old = mddev->suspend_hi;
4513
4514 if (mddev->pers == NULL ||
4515 mddev->pers->quiesce == NULL)
4516 return -EINVAL;
4517 if (buf == e || (*e && *e != '\n'))
4518 return -EINVAL;
4519
4520 mddev->suspend_hi = new;
4521 if (new <= old)
4522 /* Shrinking suspended region */
4523 mddev->pers->quiesce(mddev, 2);
4524 else {
4525 /* Expanding suspended region - need to wait */
4526 mddev->pers->quiesce(mddev, 1);
4527 mddev->pers->quiesce(mddev, 0);
4528 }
4529 return len;
4530 }
4531 static struct md_sysfs_entry md_suspend_hi =
4532 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4533
4534 static ssize_t
4535 reshape_position_show(struct mddev *mddev, char *page)
4536 {
4537 if (mddev->reshape_position != MaxSector)
4538 return sprintf(page, "%llu\n",
4539 (unsigned long long)mddev->reshape_position);
4540 strcpy(page, "none\n");
4541 return 5;
4542 }
4543
4544 static ssize_t
4545 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4546 {
4547 struct md_rdev *rdev;
4548 char *e;
4549 unsigned long long new = simple_strtoull(buf, &e, 10);
4550 if (mddev->pers)
4551 return -EBUSY;
4552 if (buf == e || (*e && *e != '\n'))
4553 return -EINVAL;
4554 mddev->reshape_position = new;
4555 mddev->delta_disks = 0;
4556 mddev->reshape_backwards = 0;
4557 mddev->new_level = mddev->level;
4558 mddev->new_layout = mddev->layout;
4559 mddev->new_chunk_sectors = mddev->chunk_sectors;
4560 rdev_for_each(rdev, mddev)
4561 rdev->new_data_offset = rdev->data_offset;
4562 return len;
4563 }
4564
4565 static struct md_sysfs_entry md_reshape_position =
4566 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4567 reshape_position_store);
4568
4569 static ssize_t
4570 reshape_direction_show(struct mddev *mddev, char *page)
4571 {
4572 return sprintf(page, "%s\n",
4573 mddev->reshape_backwards ? "backwards" : "forwards");
4574 }
4575
4576 static ssize_t
4577 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4578 {
4579 int backwards = 0;
4580 if (cmd_match(buf, "forwards"))
4581 backwards = 0;
4582 else if (cmd_match(buf, "backwards"))
4583 backwards = 1;
4584 else
4585 return -EINVAL;
4586 if (mddev->reshape_backwards == backwards)
4587 return len;
4588
4589 /* check if we are allowed to change */
4590 if (mddev->delta_disks)
4591 return -EBUSY;
4592
4593 if (mddev->persistent &&
4594 mddev->major_version == 0)
4595 return -EINVAL;
4596
4597 mddev->reshape_backwards = backwards;
4598 return len;
4599 }
4600
4601 static struct md_sysfs_entry md_reshape_direction =
4602 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4603 reshape_direction_store);
4604
4605 static ssize_t
4606 array_size_show(struct mddev *mddev, char *page)
4607 {
4608 if (mddev->external_size)
4609 return sprintf(page, "%llu\n",
4610 (unsigned long long)mddev->array_sectors/2);
4611 else
4612 return sprintf(page, "default\n");
4613 }
4614
4615 static ssize_t
4616 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4617 {
4618 sector_t sectors;
4619
4620 if (strncmp(buf, "default", 7) == 0) {
4621 if (mddev->pers)
4622 sectors = mddev->pers->size(mddev, 0, 0);
4623 else
4624 sectors = mddev->array_sectors;
4625
4626 mddev->external_size = 0;
4627 } else {
4628 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4629 return -EINVAL;
4630 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4631 return -E2BIG;
4632
4633 mddev->external_size = 1;
4634 }
4635
4636 mddev->array_sectors = sectors;
4637 if (mddev->pers) {
4638 set_capacity(mddev->gendisk, mddev->array_sectors);
4639 revalidate_disk(mddev->gendisk);
4640 }
4641 return len;
4642 }
4643
4644 static struct md_sysfs_entry md_array_size =
4645 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4646 array_size_store);
4647
4648 static struct attribute *md_default_attrs[] = {
4649 &md_level.attr,
4650 &md_layout.attr,
4651 &md_raid_disks.attr,
4652 &md_chunk_size.attr,
4653 &md_size.attr,
4654 &md_resync_start.attr,
4655 &md_metadata.attr,
4656 &md_new_device.attr,
4657 &md_safe_delay.attr,
4658 &md_array_state.attr,
4659 &md_reshape_position.attr,
4660 &md_reshape_direction.attr,
4661 &md_array_size.attr,
4662 &max_corr_read_errors.attr,
4663 NULL,
4664 };
4665
4666 static struct attribute *md_redundancy_attrs[] = {
4667 &md_scan_mode.attr,
4668 &md_last_scan_mode.attr,
4669 &md_mismatches.attr,
4670 &md_sync_min.attr,
4671 &md_sync_max.attr,
4672 &md_sync_speed.attr,
4673 &md_sync_force_parallel.attr,
4674 &md_sync_completed.attr,
4675 &md_min_sync.attr,
4676 &md_max_sync.attr,
4677 &md_suspend_lo.attr,
4678 &md_suspend_hi.attr,
4679 &md_bitmap.attr,
4680 &md_degraded.attr,
4681 NULL,
4682 };
4683 static struct attribute_group md_redundancy_group = {
4684 .name = NULL,
4685 .attrs = md_redundancy_attrs,
4686 };
4687
4688
4689 static ssize_t
4690 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4691 {
4692 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4693 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4694 ssize_t rv;
4695
4696 if (!entry->show)
4697 return -EIO;
4698 spin_lock(&all_mddevs_lock);
4699 if (list_empty(&mddev->all_mddevs)) {
4700 spin_unlock(&all_mddevs_lock);
4701 return -EBUSY;
4702 }
4703 mddev_get(mddev);
4704 spin_unlock(&all_mddevs_lock);
4705
4706 rv = mddev_lock(mddev);
4707 if (!rv) {
4708 rv = entry->show(mddev, page);
4709 mddev_unlock(mddev);
4710 }
4711 mddev_put(mddev);
4712 return rv;
4713 }
4714
4715 static ssize_t
4716 md_attr_store(struct kobject *kobj, struct attribute *attr,
4717 const char *page, size_t length)
4718 {
4719 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4720 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4721 ssize_t rv;
4722
4723 if (!entry->store)
4724 return -EIO;
4725 if (!capable(CAP_SYS_ADMIN))
4726 return -EACCES;
4727 spin_lock(&all_mddevs_lock);
4728 if (list_empty(&mddev->all_mddevs)) {
4729 spin_unlock(&all_mddevs_lock);
4730 return -EBUSY;
4731 }
4732 mddev_get(mddev);
4733 spin_unlock(&all_mddevs_lock);
4734 if (entry->store == new_dev_store)
4735 flush_workqueue(md_misc_wq);
4736 rv = mddev_lock(mddev);
4737 if (!rv) {
4738 rv = entry->store(mddev, page, length);
4739 mddev_unlock(mddev);
4740 }
4741 mddev_put(mddev);
4742 return rv;
4743 }
4744
4745 static void md_free(struct kobject *ko)
4746 {
4747 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4748
4749 if (mddev->sysfs_state)
4750 sysfs_put(mddev->sysfs_state);
4751
4752 if (mddev->gendisk) {
4753 del_gendisk(mddev->gendisk);
4754 put_disk(mddev->gendisk);
4755 }
4756 if (mddev->queue)
4757 blk_cleanup_queue(mddev->queue);
4758
4759 kfree(mddev);
4760 }
4761
4762 static const struct sysfs_ops md_sysfs_ops = {
4763 .show = md_attr_show,
4764 .store = md_attr_store,
4765 };
4766 static struct kobj_type md_ktype = {
4767 .release = md_free,
4768 .sysfs_ops = &md_sysfs_ops,
4769 .default_attrs = md_default_attrs,
4770 };
4771
4772 int mdp_major = 0;
4773
4774 static void mddev_delayed_delete(struct work_struct *ws)
4775 {
4776 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4777
4778 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4779 kobject_del(&mddev->kobj);
4780 kobject_put(&mddev->kobj);
4781 }
4782
4783 static int md_alloc(dev_t dev, char *name)
4784 {
4785 static DEFINE_MUTEX(disks_mutex);
4786 struct mddev *mddev = mddev_find(dev);
4787 struct gendisk *disk;
4788 int partitioned;
4789 int shift;
4790 int unit;
4791 int error;
4792
4793 if (!mddev)
4794 return -ENODEV;
4795
4796 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4797 shift = partitioned ? MdpMinorShift : 0;
4798 unit = MINOR(mddev->unit) >> shift;
4799
4800 /* wait for any previous instance of this device to be
4801 * completely removed (mddev_delayed_delete).
4802 */
4803 flush_workqueue(md_misc_wq);
4804
4805 mutex_lock(&disks_mutex);
4806 error = -EEXIST;
4807 if (mddev->gendisk)
4808 goto abort;
4809
4810 if (name) {
4811 /* Need to ensure that 'name' is not a duplicate.
4812 */
4813 struct mddev *mddev2;
4814 spin_lock(&all_mddevs_lock);
4815
4816 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4817 if (mddev2->gendisk &&
4818 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4819 spin_unlock(&all_mddevs_lock);
4820 goto abort;
4821 }
4822 spin_unlock(&all_mddevs_lock);
4823 }
4824
4825 error = -ENOMEM;
4826 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4827 if (!mddev->queue)
4828 goto abort;
4829 mddev->queue->queuedata = mddev;
4830
4831 blk_queue_make_request(mddev->queue, md_make_request);
4832 blk_set_stacking_limits(&mddev->queue->limits);
4833
4834 disk = alloc_disk(1 << shift);
4835 if (!disk) {
4836 blk_cleanup_queue(mddev->queue);
4837 mddev->queue = NULL;
4838 goto abort;
4839 }
4840 disk->major = MAJOR(mddev->unit);
4841 disk->first_minor = unit << shift;
4842 if (name)
4843 strcpy(disk->disk_name, name);
4844 else if (partitioned)
4845 sprintf(disk->disk_name, "md_d%d", unit);
4846 else
4847 sprintf(disk->disk_name, "md%d", unit);
4848 disk->fops = &md_fops;
4849 disk->private_data = mddev;
4850 disk->queue = mddev->queue;
4851 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4852 /* Allow extended partitions. This makes the
4853 * 'mdp' device redundant, but we can't really
4854 * remove it now.
4855 */
4856 disk->flags |= GENHD_FL_EXT_DEVT;
4857 mddev->gendisk = disk;
4858 /* As soon as we call add_disk(), another thread could get
4859 * through to md_open, so make sure it doesn't get too far
4860 */
4861 mutex_lock(&mddev->open_mutex);
4862 add_disk(disk);
4863
4864 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4865 &disk_to_dev(disk)->kobj, "%s", "md");
4866 if (error) {
4867 /* This isn't possible, but as kobject_init_and_add is marked
4868 * __must_check, we must do something with the result
4869 */
4870 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4871 disk->disk_name);
4872 error = 0;
4873 }
4874 if (mddev->kobj.sd &&
4875 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4876 printk(KERN_DEBUG "pointless warning\n");
4877 mutex_unlock(&mddev->open_mutex);
4878 abort:
4879 mutex_unlock(&disks_mutex);
4880 if (!error && mddev->kobj.sd) {
4881 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4882 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4883 }
4884 mddev_put(mddev);
4885 return error;
4886 }
4887
4888 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4889 {
4890 md_alloc(dev, NULL);
4891 return NULL;
4892 }
4893
4894 static int add_named_array(const char *val, struct kernel_param *kp)
4895 {
4896 /* val must be "md_*" where * is not all digits.
4897 * We allocate an array with a large free minor number, and
4898 * set the name to val. val must not already be an active name.
4899 */
4900 int len = strlen(val);
4901 char buf[DISK_NAME_LEN];
4902
4903 while (len && val[len-1] == '\n')
4904 len--;
4905 if (len >= DISK_NAME_LEN)
4906 return -E2BIG;
4907 strlcpy(buf, val, len+1);
4908 if (strncmp(buf, "md_", 3) != 0)
4909 return -EINVAL;
4910 return md_alloc(0, buf);
4911 }
4912
4913 static void md_safemode_timeout(unsigned long data)
4914 {
4915 struct mddev *mddev = (struct mddev *) data;
4916
4917 if (!atomic_read(&mddev->writes_pending)) {
4918 mddev->safemode = 1;
4919 if (mddev->external)
4920 sysfs_notify_dirent_safe(mddev->sysfs_state);
4921 }
4922 md_wakeup_thread(mddev->thread);
4923 }
4924
4925 static int start_dirty_degraded;
4926
4927 int md_run(struct mddev *mddev)
4928 {
4929 int err;
4930 struct md_rdev *rdev;
4931 struct md_personality *pers;
4932
4933 if (list_empty(&mddev->disks))
4934 /* cannot run an array with no devices.. */
4935 return -EINVAL;
4936
4937 if (mddev->pers)
4938 return -EBUSY;
4939 /* Cannot run until previous stop completes properly */
4940 if (mddev->sysfs_active)
4941 return -EBUSY;
4942
4943 /*
4944 * Analyze all RAID superblock(s)
4945 */
4946 if (!mddev->raid_disks) {
4947 if (!mddev->persistent)
4948 return -EINVAL;
4949 analyze_sbs(mddev);
4950 }
4951
4952 if (mddev->level != LEVEL_NONE)
4953 request_module("md-level-%d", mddev->level);
4954 else if (mddev->clevel[0])
4955 request_module("md-%s", mddev->clevel);
4956
4957 /*
4958 * Drop all container device buffers, from now on
4959 * the only valid external interface is through the md
4960 * device.
4961 */
4962 rdev_for_each(rdev, mddev) {
4963 if (test_bit(Faulty, &rdev->flags))
4964 continue;
4965 sync_blockdev(rdev->bdev);
4966 invalidate_bdev(rdev->bdev);
4967
4968 /* perform some consistency tests on the device.
4969 * We don't want the data to overlap the metadata,
4970 * Internal Bitmap issues have been handled elsewhere.
4971 */
4972 if (rdev->meta_bdev) {
4973 /* Nothing to check */;
4974 } else if (rdev->data_offset < rdev->sb_start) {
4975 if (mddev->dev_sectors &&
4976 rdev->data_offset + mddev->dev_sectors
4977 > rdev->sb_start) {
4978 printk("md: %s: data overlaps metadata\n",
4979 mdname(mddev));
4980 return -EINVAL;
4981 }
4982 } else {
4983 if (rdev->sb_start + rdev->sb_size/512
4984 > rdev->data_offset) {
4985 printk("md: %s: metadata overlaps data\n",
4986 mdname(mddev));
4987 return -EINVAL;
4988 }
4989 }
4990 sysfs_notify_dirent_safe(rdev->sysfs_state);
4991 }
4992
4993 if (mddev->bio_set == NULL)
4994 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
4995
4996 spin_lock(&pers_lock);
4997 pers = find_pers(mddev->level, mddev->clevel);
4998 if (!pers || !try_module_get(pers->owner)) {
4999 spin_unlock(&pers_lock);
5000 if (mddev->level != LEVEL_NONE)
5001 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5002 mddev->level);
5003 else
5004 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5005 mddev->clevel);
5006 return -EINVAL;
5007 }
5008 mddev->pers = pers;
5009 spin_unlock(&pers_lock);
5010 if (mddev->level != pers->level) {
5011 mddev->level = pers->level;
5012 mddev->new_level = pers->level;
5013 }
5014 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5015
5016 if (mddev->reshape_position != MaxSector &&
5017 pers->start_reshape == NULL) {
5018 /* This personality cannot handle reshaping... */
5019 mddev->pers = NULL;
5020 module_put(pers->owner);
5021 return -EINVAL;
5022 }
5023
5024 if (pers->sync_request) {
5025 /* Warn if this is a potentially silly
5026 * configuration.
5027 */
5028 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5029 struct md_rdev *rdev2;
5030 int warned = 0;
5031
5032 rdev_for_each(rdev, mddev)
5033 rdev_for_each(rdev2, mddev) {
5034 if (rdev < rdev2 &&
5035 rdev->bdev->bd_contains ==
5036 rdev2->bdev->bd_contains) {
5037 printk(KERN_WARNING
5038 "%s: WARNING: %s appears to be"
5039 " on the same physical disk as"
5040 " %s.\n",
5041 mdname(mddev),
5042 bdevname(rdev->bdev,b),
5043 bdevname(rdev2->bdev,b2));
5044 warned = 1;
5045 }
5046 }
5047
5048 if (warned)
5049 printk(KERN_WARNING
5050 "True protection against single-disk"
5051 " failure might be compromised.\n");
5052 }
5053
5054 mddev->recovery = 0;
5055 /* may be over-ridden by personality */
5056 mddev->resync_max_sectors = mddev->dev_sectors;
5057
5058 mddev->ok_start_degraded = start_dirty_degraded;
5059
5060 if (start_readonly && mddev->ro == 0)
5061 mddev->ro = 2; /* read-only, but switch on first write */
5062
5063 err = mddev->pers->run(mddev);
5064 if (err)
5065 printk(KERN_ERR "md: pers->run() failed ...\n");
5066 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
5067 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5068 " but 'external_size' not in effect?\n", __func__);
5069 printk(KERN_ERR
5070 "md: invalid array_size %llu > default size %llu\n",
5071 (unsigned long long)mddev->array_sectors / 2,
5072 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
5073 err = -EINVAL;
5074 mddev->pers->stop(mddev);
5075 }
5076 if (err == 0 && mddev->pers->sync_request &&
5077 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5078 err = bitmap_create(mddev);
5079 if (err) {
5080 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5081 mdname(mddev), err);
5082 mddev->pers->stop(mddev);
5083 }
5084 }
5085 if (err) {
5086 module_put(mddev->pers->owner);
5087 mddev->pers = NULL;
5088 bitmap_destroy(mddev);
5089 return err;
5090 }
5091 if (mddev->pers->sync_request) {
5092 if (mddev->kobj.sd &&
5093 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5094 printk(KERN_WARNING
5095 "md: cannot register extra attributes for %s\n",
5096 mdname(mddev));
5097 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5098 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5099 mddev->ro = 0;
5100
5101 atomic_set(&mddev->writes_pending,0);
5102 atomic_set(&mddev->max_corr_read_errors,
5103 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5104 mddev->safemode = 0;
5105 mddev->safemode_timer.function = md_safemode_timeout;
5106 mddev->safemode_timer.data = (unsigned long) mddev;
5107 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5108 mddev->in_sync = 1;
5109 smp_wmb();
5110 mddev->ready = 1;
5111 rdev_for_each(rdev, mddev)
5112 if (rdev->raid_disk >= 0)
5113 if (sysfs_link_rdev(mddev, rdev))
5114 /* failure here is OK */;
5115
5116 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5117
5118 if (mddev->flags & MD_UPDATE_SB_FLAGS)
5119 md_update_sb(mddev, 0);
5120
5121 md_new_event(mddev);
5122 sysfs_notify_dirent_safe(mddev->sysfs_state);
5123 sysfs_notify_dirent_safe(mddev->sysfs_action);
5124 sysfs_notify(&mddev->kobj, NULL, "degraded");
5125 return 0;
5126 }
5127 EXPORT_SYMBOL_GPL(md_run);
5128
5129 static int do_md_run(struct mddev *mddev)
5130 {
5131 int err;
5132
5133 err = md_run(mddev);
5134 if (err)
5135 goto out;
5136 err = bitmap_load(mddev);
5137 if (err) {
5138 bitmap_destroy(mddev);
5139 goto out;
5140 }
5141
5142 md_wakeup_thread(mddev->thread);
5143 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5144
5145 set_capacity(mddev->gendisk, mddev->array_sectors);
5146 revalidate_disk(mddev->gendisk);
5147 mddev->changed = 1;
5148 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5149 out:
5150 return err;
5151 }
5152
5153 static int restart_array(struct mddev *mddev)
5154 {
5155 struct gendisk *disk = mddev->gendisk;
5156
5157 /* Complain if it has no devices */
5158 if (list_empty(&mddev->disks))
5159 return -ENXIO;
5160 if (!mddev->pers)
5161 return -EINVAL;
5162 if (!mddev->ro)
5163 return -EBUSY;
5164 mddev->safemode = 0;
5165 mddev->ro = 0;
5166 set_disk_ro(disk, 0);
5167 printk(KERN_INFO "md: %s switched to read-write mode.\n",
5168 mdname(mddev));
5169 /* Kick recovery or resync if necessary */
5170 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5171 md_wakeup_thread(mddev->thread);
5172 md_wakeup_thread(mddev->sync_thread);
5173 sysfs_notify_dirent_safe(mddev->sysfs_state);
5174 return 0;
5175 }
5176
5177 static void md_clean(struct mddev *mddev)
5178 {
5179 mddev->array_sectors = 0;
5180 mddev->external_size = 0;
5181 mddev->dev_sectors = 0;
5182 mddev->raid_disks = 0;
5183 mddev->recovery_cp = 0;
5184 mddev->resync_min = 0;
5185 mddev->resync_max = MaxSector;
5186 mddev->reshape_position = MaxSector;
5187 mddev->external = 0;
5188 mddev->persistent = 0;
5189 mddev->level = LEVEL_NONE;
5190 mddev->clevel[0] = 0;
5191 mddev->flags = 0;
5192 mddev->ro = 0;
5193 mddev->metadata_type[0] = 0;
5194 mddev->chunk_sectors = 0;
5195 mddev->ctime = mddev->utime = 0;
5196 mddev->layout = 0;
5197 mddev->max_disks = 0;
5198 mddev->events = 0;
5199 mddev->can_decrease_events = 0;
5200 mddev->delta_disks = 0;
5201 mddev->reshape_backwards = 0;
5202 mddev->new_level = LEVEL_NONE;
5203 mddev->new_layout = 0;
5204 mddev->new_chunk_sectors = 0;
5205 mddev->curr_resync = 0;
5206 atomic64_set(&mddev->resync_mismatches, 0);
5207 mddev->suspend_lo = mddev->suspend_hi = 0;
5208 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5209 mddev->recovery = 0;
5210 mddev->in_sync = 0;
5211 mddev->changed = 0;
5212 mddev->degraded = 0;
5213 mddev->safemode = 0;
5214 mddev->merge_check_needed = 0;
5215 mddev->bitmap_info.offset = 0;
5216 mddev->bitmap_info.default_offset = 0;
5217 mddev->bitmap_info.default_space = 0;
5218 mddev->bitmap_info.chunksize = 0;
5219 mddev->bitmap_info.daemon_sleep = 0;
5220 mddev->bitmap_info.max_write_behind = 0;
5221 }
5222
5223 static void __md_stop_writes(struct mddev *mddev)
5224 {
5225 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5226 if (mddev->sync_thread) {
5227 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5228 md_reap_sync_thread(mddev);
5229 }
5230
5231 del_timer_sync(&mddev->safemode_timer);
5232
5233 bitmap_flush(mddev);
5234 md_super_wait(mddev);
5235
5236 if (mddev->ro == 0 &&
5237 (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5238 /* mark array as shutdown cleanly */
5239 mddev->in_sync = 1;
5240 md_update_sb(mddev, 1);
5241 }
5242 }
5243
5244 void md_stop_writes(struct mddev *mddev)
5245 {
5246 mddev_lock_nointr(mddev);
5247 __md_stop_writes(mddev);
5248 mddev_unlock(mddev);
5249 }
5250 EXPORT_SYMBOL_GPL(md_stop_writes);
5251
5252 static void __md_stop(struct mddev *mddev)
5253 {
5254 mddev->ready = 0;
5255 mddev->pers->stop(mddev);
5256 if (mddev->pers->sync_request && mddev->to_remove == NULL)
5257 mddev->to_remove = &md_redundancy_group;
5258 module_put(mddev->pers->owner);
5259 mddev->pers = NULL;
5260 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5261 }
5262
5263 void md_stop(struct mddev *mddev)
5264 {
5265 /* stop the array and free an attached data structures.
5266 * This is called from dm-raid
5267 */
5268 __md_stop(mddev);
5269 bitmap_destroy(mddev);
5270 if (mddev->bio_set)
5271 bioset_free(mddev->bio_set);
5272 }
5273
5274 EXPORT_SYMBOL_GPL(md_stop);
5275
5276 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5277 {
5278 int err = 0;
5279 int did_freeze = 0;
5280
5281 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5282 did_freeze = 1;
5283 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5284 md_wakeup_thread(mddev->thread);
5285 }
5286 if (mddev->sync_thread) {
5287 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5288 /* Thread might be blocked waiting for metadata update
5289 * which will now never happen */
5290 wake_up_process(mddev->sync_thread->tsk);
5291 }
5292 mddev_unlock(mddev);
5293 wait_event(resync_wait, mddev->sync_thread == NULL);
5294 mddev_lock_nointr(mddev);
5295
5296 mutex_lock(&mddev->open_mutex);
5297 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5298 mddev->sync_thread ||
5299 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5300 printk("md: %s still in use.\n",mdname(mddev));
5301 if (did_freeze) {
5302 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5303 md_wakeup_thread(mddev->thread);
5304 }
5305 err = -EBUSY;
5306 goto out;
5307 }
5308 if (mddev->pers) {
5309 __md_stop_writes(mddev);
5310
5311 err = -ENXIO;
5312 if (mddev->ro==1)
5313 goto out;
5314 mddev->ro = 1;
5315 set_disk_ro(mddev->gendisk, 1);
5316 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5317 sysfs_notify_dirent_safe(mddev->sysfs_state);
5318 err = 0;
5319 }
5320 out:
5321 mutex_unlock(&mddev->open_mutex);
5322 return err;
5323 }
5324
5325 /* mode:
5326 * 0 - completely stop and dis-assemble array
5327 * 2 - stop but do not disassemble array
5328 */
5329 static int do_md_stop(struct mddev * mddev, int mode,
5330 struct block_device *bdev)
5331 {
5332 struct gendisk *disk = mddev->gendisk;
5333 struct md_rdev *rdev;
5334 int did_freeze = 0;
5335
5336 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5337 did_freeze = 1;
5338 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5339 md_wakeup_thread(mddev->thread);
5340 }
5341 if (mddev->sync_thread) {
5342 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5343 /* Thread might be blocked waiting for metadata update
5344 * which will now never happen */
5345 wake_up_process(mddev->sync_thread->tsk);
5346 }
5347 mddev_unlock(mddev);
5348 wait_event(resync_wait, mddev->sync_thread == NULL);
5349 mddev_lock_nointr(mddev);
5350
5351 mutex_lock(&mddev->open_mutex);
5352 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5353 mddev->sysfs_active ||
5354 mddev->sync_thread ||
5355 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5356 printk("md: %s still in use.\n",mdname(mddev));
5357 mutex_unlock(&mddev->open_mutex);
5358 if (did_freeze) {
5359 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5360 md_wakeup_thread(mddev->thread);
5361 }
5362 return -EBUSY;
5363 }
5364 if (mddev->pers) {
5365 if (mddev->ro)
5366 set_disk_ro(disk, 0);
5367
5368 __md_stop_writes(mddev);
5369 __md_stop(mddev);
5370 mddev->queue->merge_bvec_fn = NULL;
5371 mddev->queue->backing_dev_info.congested_fn = NULL;
5372
5373 /* tell userspace to handle 'inactive' */
5374 sysfs_notify_dirent_safe(mddev->sysfs_state);
5375
5376 rdev_for_each(rdev, mddev)
5377 if (rdev->raid_disk >= 0)
5378 sysfs_unlink_rdev(mddev, rdev);
5379
5380 set_capacity(disk, 0);
5381 mutex_unlock(&mddev->open_mutex);
5382 mddev->changed = 1;
5383 revalidate_disk(disk);
5384
5385 if (mddev->ro)
5386 mddev->ro = 0;
5387 } else
5388 mutex_unlock(&mddev->open_mutex);
5389 /*
5390 * Free resources if final stop
5391 */
5392 if (mode == 0) {
5393 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5394
5395 bitmap_destroy(mddev);
5396 if (mddev->bitmap_info.file) {
5397 fput(mddev->bitmap_info.file);
5398 mddev->bitmap_info.file = NULL;
5399 }
5400 mddev->bitmap_info.offset = 0;
5401
5402 export_array(mddev);
5403
5404 md_clean(mddev);
5405 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5406 if (mddev->hold_active == UNTIL_STOP)
5407 mddev->hold_active = 0;
5408 }
5409 blk_integrity_unregister(disk);
5410 md_new_event(mddev);
5411 sysfs_notify_dirent_safe(mddev->sysfs_state);
5412 return 0;
5413 }
5414
5415 #ifndef MODULE
5416 static void autorun_array(struct mddev *mddev)
5417 {
5418 struct md_rdev *rdev;
5419 int err;
5420
5421 if (list_empty(&mddev->disks))
5422 return;
5423
5424 printk(KERN_INFO "md: running: ");
5425
5426 rdev_for_each(rdev, mddev) {
5427 char b[BDEVNAME_SIZE];
5428 printk("<%s>", bdevname(rdev->bdev,b));
5429 }
5430 printk("\n");
5431
5432 err = do_md_run(mddev);
5433 if (err) {
5434 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5435 do_md_stop(mddev, 0, NULL);
5436 }
5437 }
5438
5439 /*
5440 * lets try to run arrays based on all disks that have arrived
5441 * until now. (those are in pending_raid_disks)
5442 *
5443 * the method: pick the first pending disk, collect all disks with
5444 * the same UUID, remove all from the pending list and put them into
5445 * the 'same_array' list. Then order this list based on superblock
5446 * update time (freshest comes first), kick out 'old' disks and
5447 * compare superblocks. If everything's fine then run it.
5448 *
5449 * If "unit" is allocated, then bump its reference count
5450 */
5451 static void autorun_devices(int part)
5452 {
5453 struct md_rdev *rdev0, *rdev, *tmp;
5454 struct mddev *mddev;
5455 char b[BDEVNAME_SIZE];
5456
5457 printk(KERN_INFO "md: autorun ...\n");
5458 while (!list_empty(&pending_raid_disks)) {
5459 int unit;
5460 dev_t dev;
5461 LIST_HEAD(candidates);
5462 rdev0 = list_entry(pending_raid_disks.next,
5463 struct md_rdev, same_set);
5464
5465 printk(KERN_INFO "md: considering %s ...\n",
5466 bdevname(rdev0->bdev,b));
5467 INIT_LIST_HEAD(&candidates);
5468 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5469 if (super_90_load(rdev, rdev0, 0) >= 0) {
5470 printk(KERN_INFO "md: adding %s ...\n",
5471 bdevname(rdev->bdev,b));
5472 list_move(&rdev->same_set, &candidates);
5473 }
5474 /*
5475 * now we have a set of devices, with all of them having
5476 * mostly sane superblocks. It's time to allocate the
5477 * mddev.
5478 */
5479 if (part) {
5480 dev = MKDEV(mdp_major,
5481 rdev0->preferred_minor << MdpMinorShift);
5482 unit = MINOR(dev) >> MdpMinorShift;
5483 } else {
5484 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5485 unit = MINOR(dev);
5486 }
5487 if (rdev0->preferred_minor != unit) {
5488 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5489 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5490 break;
5491 }
5492
5493 md_probe(dev, NULL, NULL);
5494 mddev = mddev_find(dev);
5495 if (!mddev || !mddev->gendisk) {
5496 if (mddev)
5497 mddev_put(mddev);
5498 printk(KERN_ERR
5499 "md: cannot allocate memory for md drive.\n");
5500 break;
5501 }
5502 if (mddev_lock(mddev))
5503 printk(KERN_WARNING "md: %s locked, cannot run\n",
5504 mdname(mddev));
5505 else if (mddev->raid_disks || mddev->major_version
5506 || !list_empty(&mddev->disks)) {
5507 printk(KERN_WARNING
5508 "md: %s already running, cannot run %s\n",
5509 mdname(mddev), bdevname(rdev0->bdev,b));
5510 mddev_unlock(mddev);
5511 } else {
5512 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5513 mddev->persistent = 1;
5514 rdev_for_each_list(rdev, tmp, &candidates) {
5515 list_del_init(&rdev->same_set);
5516 if (bind_rdev_to_array(rdev, mddev))
5517 export_rdev(rdev);
5518 }
5519 autorun_array(mddev);
5520 mddev_unlock(mddev);
5521 }
5522 /* on success, candidates will be empty, on error
5523 * it won't...
5524 */
5525 rdev_for_each_list(rdev, tmp, &candidates) {
5526 list_del_init(&rdev->same_set);
5527 export_rdev(rdev);
5528 }
5529 mddev_put(mddev);
5530 }
5531 printk(KERN_INFO "md: ... autorun DONE.\n");
5532 }
5533 #endif /* !MODULE */
5534
5535 static int get_version(void __user * arg)
5536 {
5537 mdu_version_t ver;
5538
5539 ver.major = MD_MAJOR_VERSION;
5540 ver.minor = MD_MINOR_VERSION;
5541 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5542
5543 if (copy_to_user(arg, &ver, sizeof(ver)))
5544 return -EFAULT;
5545
5546 return 0;
5547 }
5548
5549 static int get_array_info(struct mddev * mddev, void __user * arg)
5550 {
5551 mdu_array_info_t info;
5552 int nr,working,insync,failed,spare;
5553 struct md_rdev *rdev;
5554
5555 nr = working = insync = failed = spare = 0;
5556 rcu_read_lock();
5557 rdev_for_each_rcu(rdev, mddev) {
5558 nr++;
5559 if (test_bit(Faulty, &rdev->flags))
5560 failed++;
5561 else {
5562 working++;
5563 if (test_bit(In_sync, &rdev->flags))
5564 insync++;
5565 else
5566 spare++;
5567 }
5568 }
5569 rcu_read_unlock();
5570
5571 info.major_version = mddev->major_version;
5572 info.minor_version = mddev->minor_version;
5573 info.patch_version = MD_PATCHLEVEL_VERSION;
5574 info.ctime = mddev->ctime;
5575 info.level = mddev->level;
5576 info.size = mddev->dev_sectors / 2;
5577 if (info.size != mddev->dev_sectors / 2) /* overflow */
5578 info.size = -1;
5579 info.nr_disks = nr;
5580 info.raid_disks = mddev->raid_disks;
5581 info.md_minor = mddev->md_minor;
5582 info.not_persistent= !mddev->persistent;
5583
5584 info.utime = mddev->utime;
5585 info.state = 0;
5586 if (mddev->in_sync)
5587 info.state = (1<<MD_SB_CLEAN);
5588 if (mddev->bitmap && mddev->bitmap_info.offset)
5589 info.state |= (1<<MD_SB_BITMAP_PRESENT);
5590 info.active_disks = insync;
5591 info.working_disks = working;
5592 info.failed_disks = failed;
5593 info.spare_disks = spare;
5594
5595 info.layout = mddev->layout;
5596 info.chunk_size = mddev->chunk_sectors << 9;
5597
5598 if (copy_to_user(arg, &info, sizeof(info)))
5599 return -EFAULT;
5600
5601 return 0;
5602 }
5603
5604 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5605 {
5606 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5607 char *ptr, *buf = NULL;
5608 int err = -ENOMEM;
5609
5610 file = kmalloc(sizeof(*file), GFP_NOIO);
5611
5612 if (!file)
5613 goto out;
5614
5615 /* bitmap disabled, zero the first byte and copy out */
5616 if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5617 file->pathname[0] = '\0';
5618 goto copy_out;
5619 }
5620
5621 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5622 if (!buf)
5623 goto out;
5624
5625 ptr = d_path(&mddev->bitmap->storage.file->f_path,
5626 buf, sizeof(file->pathname));
5627 if (IS_ERR(ptr))
5628 goto out;
5629
5630 strcpy(file->pathname, ptr);
5631
5632 copy_out:
5633 err = 0;
5634 if (copy_to_user(arg, file, sizeof(*file)))
5635 err = -EFAULT;
5636 out:
5637 kfree(buf);
5638 kfree(file);
5639 return err;
5640 }
5641
5642 static int get_disk_info(struct mddev * mddev, void __user * arg)
5643 {
5644 mdu_disk_info_t info;
5645 struct md_rdev *rdev;
5646
5647 if (copy_from_user(&info, arg, sizeof(info)))
5648 return -EFAULT;
5649
5650 rcu_read_lock();
5651 rdev = find_rdev_nr_rcu(mddev, info.number);
5652 if (rdev) {
5653 info.major = MAJOR(rdev->bdev->bd_dev);
5654 info.minor = MINOR(rdev->bdev->bd_dev);
5655 info.raid_disk = rdev->raid_disk;
5656 info.state = 0;
5657 if (test_bit(Faulty, &rdev->flags))
5658 info.state |= (1<<MD_DISK_FAULTY);
5659 else if (test_bit(In_sync, &rdev->flags)) {
5660 info.state |= (1<<MD_DISK_ACTIVE);
5661 info.state |= (1<<MD_DISK_SYNC);
5662 }
5663 if (test_bit(WriteMostly, &rdev->flags))
5664 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5665 } else {
5666 info.major = info.minor = 0;
5667 info.raid_disk = -1;
5668 info.state = (1<<MD_DISK_REMOVED);
5669 }
5670 rcu_read_unlock();
5671
5672 if (copy_to_user(arg, &info, sizeof(info)))
5673 return -EFAULT;
5674
5675 return 0;
5676 }
5677
5678 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5679 {
5680 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5681 struct md_rdev *rdev;
5682 dev_t dev = MKDEV(info->major,info->minor);
5683
5684 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5685 return -EOVERFLOW;
5686
5687 if (!mddev->raid_disks) {
5688 int err;
5689 /* expecting a device which has a superblock */
5690 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5691 if (IS_ERR(rdev)) {
5692 printk(KERN_WARNING
5693 "md: md_import_device returned %ld\n",
5694 PTR_ERR(rdev));
5695 return PTR_ERR(rdev);
5696 }
5697 if (!list_empty(&mddev->disks)) {
5698 struct md_rdev *rdev0
5699 = list_entry(mddev->disks.next,
5700 struct md_rdev, same_set);
5701 err = super_types[mddev->major_version]
5702 .load_super(rdev, rdev0, mddev->minor_version);
5703 if (err < 0) {
5704 printk(KERN_WARNING
5705 "md: %s has different UUID to %s\n",
5706 bdevname(rdev->bdev,b),
5707 bdevname(rdev0->bdev,b2));
5708 export_rdev(rdev);
5709 return -EINVAL;
5710 }
5711 }
5712 err = bind_rdev_to_array(rdev, mddev);
5713 if (err)
5714 export_rdev(rdev);
5715 return err;
5716 }
5717
5718 /*
5719 * add_new_disk can be used once the array is assembled
5720 * to add "hot spares". They must already have a superblock
5721 * written
5722 */
5723 if (mddev->pers) {
5724 int err;
5725 if (!mddev->pers->hot_add_disk) {
5726 printk(KERN_WARNING
5727 "%s: personality does not support diskops!\n",
5728 mdname(mddev));
5729 return -EINVAL;
5730 }
5731 if (mddev->persistent)
5732 rdev = md_import_device(dev, mddev->major_version,
5733 mddev->minor_version);
5734 else
5735 rdev = md_import_device(dev, -1, -1);
5736 if (IS_ERR(rdev)) {
5737 printk(KERN_WARNING
5738 "md: md_import_device returned %ld\n",
5739 PTR_ERR(rdev));
5740 return PTR_ERR(rdev);
5741 }
5742 /* set saved_raid_disk if appropriate */
5743 if (!mddev->persistent) {
5744 if (info->state & (1<<MD_DISK_SYNC) &&
5745 info->raid_disk < mddev->raid_disks) {
5746 rdev->raid_disk = info->raid_disk;
5747 set_bit(In_sync, &rdev->flags);
5748 clear_bit(Bitmap_sync, &rdev->flags);
5749 } else
5750 rdev->raid_disk = -1;
5751 rdev->saved_raid_disk = rdev->raid_disk;
5752 } else
5753 super_types[mddev->major_version].
5754 validate_super(mddev, rdev);
5755 if ((info->state & (1<<MD_DISK_SYNC)) &&
5756 rdev->raid_disk != info->raid_disk) {
5757 /* This was a hot-add request, but events doesn't
5758 * match, so reject it.
5759 */
5760 export_rdev(rdev);
5761 return -EINVAL;
5762 }
5763
5764 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5765 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5766 set_bit(WriteMostly, &rdev->flags);
5767 else
5768 clear_bit(WriteMostly, &rdev->flags);
5769
5770 rdev->raid_disk = -1;
5771 err = bind_rdev_to_array(rdev, mddev);
5772 if (!err && !mddev->pers->hot_remove_disk) {
5773 /* If there is hot_add_disk but no hot_remove_disk
5774 * then added disks for geometry changes,
5775 * and should be added immediately.
5776 */
5777 super_types[mddev->major_version].
5778 validate_super(mddev, rdev);
5779 err = mddev->pers->hot_add_disk(mddev, rdev);
5780 if (err)
5781 unbind_rdev_from_array(rdev);
5782 }
5783 if (err)
5784 export_rdev(rdev);
5785 else
5786 sysfs_notify_dirent_safe(rdev->sysfs_state);
5787
5788 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5789 if (mddev->degraded)
5790 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5791 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5792 if (!err)
5793 md_new_event(mddev);
5794 md_wakeup_thread(mddev->thread);
5795 return err;
5796 }
5797
5798 /* otherwise, add_new_disk is only allowed
5799 * for major_version==0 superblocks
5800 */
5801 if (mddev->major_version != 0) {
5802 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5803 mdname(mddev));
5804 return -EINVAL;
5805 }
5806
5807 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5808 int err;
5809 rdev = md_import_device(dev, -1, 0);
5810 if (IS_ERR(rdev)) {
5811 printk(KERN_WARNING
5812 "md: error, md_import_device() returned %ld\n",
5813 PTR_ERR(rdev));
5814 return PTR_ERR(rdev);
5815 }
5816 rdev->desc_nr = info->number;
5817 if (info->raid_disk < mddev->raid_disks)
5818 rdev->raid_disk = info->raid_disk;
5819 else
5820 rdev->raid_disk = -1;
5821
5822 if (rdev->raid_disk < mddev->raid_disks)
5823 if (info->state & (1<<MD_DISK_SYNC))
5824 set_bit(In_sync, &rdev->flags);
5825
5826 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5827 set_bit(WriteMostly, &rdev->flags);
5828
5829 if (!mddev->persistent) {
5830 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5831 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5832 } else
5833 rdev->sb_start = calc_dev_sboffset(rdev);
5834 rdev->sectors = rdev->sb_start;
5835
5836 err = bind_rdev_to_array(rdev, mddev);
5837 if (err) {
5838 export_rdev(rdev);
5839 return err;
5840 }
5841 }
5842
5843 return 0;
5844 }
5845
5846 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5847 {
5848 char b[BDEVNAME_SIZE];
5849 struct md_rdev *rdev;
5850
5851 rdev = find_rdev(mddev, dev);
5852 if (!rdev)
5853 return -ENXIO;
5854
5855 clear_bit(Blocked, &rdev->flags);
5856 remove_and_add_spares(mddev, rdev);
5857
5858 if (rdev->raid_disk >= 0)
5859 goto busy;
5860
5861 kick_rdev_from_array(rdev);
5862 md_update_sb(mddev, 1);
5863 md_new_event(mddev);
5864
5865 return 0;
5866 busy:
5867 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5868 bdevname(rdev->bdev,b), mdname(mddev));
5869 return -EBUSY;
5870 }
5871
5872 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5873 {
5874 char b[BDEVNAME_SIZE];
5875 int err;
5876 struct md_rdev *rdev;
5877
5878 if (!mddev->pers)
5879 return -ENODEV;
5880
5881 if (mddev->major_version != 0) {
5882 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5883 " version-0 superblocks.\n",
5884 mdname(mddev));
5885 return -EINVAL;
5886 }
5887 if (!mddev->pers->hot_add_disk) {
5888 printk(KERN_WARNING
5889 "%s: personality does not support diskops!\n",
5890 mdname(mddev));
5891 return -EINVAL;
5892 }
5893
5894 rdev = md_import_device(dev, -1, 0);
5895 if (IS_ERR(rdev)) {
5896 printk(KERN_WARNING
5897 "md: error, md_import_device() returned %ld\n",
5898 PTR_ERR(rdev));
5899 return -EINVAL;
5900 }
5901
5902 if (mddev->persistent)
5903 rdev->sb_start = calc_dev_sboffset(rdev);
5904 else
5905 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5906
5907 rdev->sectors = rdev->sb_start;
5908
5909 if (test_bit(Faulty, &rdev->flags)) {
5910 printk(KERN_WARNING
5911 "md: can not hot-add faulty %s disk to %s!\n",
5912 bdevname(rdev->bdev,b), mdname(mddev));
5913 err = -EINVAL;
5914 goto abort_export;
5915 }
5916 clear_bit(In_sync, &rdev->flags);
5917 rdev->desc_nr = -1;
5918 rdev->saved_raid_disk = -1;
5919 err = bind_rdev_to_array(rdev, mddev);
5920 if (err)
5921 goto abort_export;
5922
5923 /*
5924 * The rest should better be atomic, we can have disk failures
5925 * noticed in interrupt contexts ...
5926 */
5927
5928 rdev->raid_disk = -1;
5929
5930 md_update_sb(mddev, 1);
5931
5932 /*
5933 * Kick recovery, maybe this spare has to be added to the
5934 * array immediately.
5935 */
5936 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5937 md_wakeup_thread(mddev->thread);
5938 md_new_event(mddev);
5939 return 0;
5940
5941 abort_export:
5942 export_rdev(rdev);
5943 return err;
5944 }
5945
5946 static int set_bitmap_file(struct mddev *mddev, int fd)
5947 {
5948 int err = 0;
5949
5950 if (mddev->pers) {
5951 if (!mddev->pers->quiesce || !mddev->thread)
5952 return -EBUSY;
5953 if (mddev->recovery || mddev->sync_thread)
5954 return -EBUSY;
5955 /* we should be able to change the bitmap.. */
5956 }
5957
5958
5959 if (fd >= 0) {
5960 struct inode *inode;
5961 if (mddev->bitmap)
5962 return -EEXIST; /* cannot add when bitmap is present */
5963 mddev->bitmap_info.file = fget(fd);
5964
5965 if (mddev->bitmap_info.file == NULL) {
5966 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5967 mdname(mddev));
5968 return -EBADF;
5969 }
5970
5971 inode = mddev->bitmap_info.file->f_mapping->host;
5972 if (!S_ISREG(inode->i_mode)) {
5973 printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
5974 mdname(mddev));
5975 err = -EBADF;
5976 } else if (!(mddev->bitmap_info.file->f_mode & FMODE_WRITE)) {
5977 printk(KERN_ERR "%s: error: bitmap file must open for write\n",
5978 mdname(mddev));
5979 err = -EBADF;
5980 } else if (atomic_read(&inode->i_writecount) != 1) {
5981 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5982 mdname(mddev));
5983 err = -EBUSY;
5984 }
5985 if (err) {
5986 fput(mddev->bitmap_info.file);
5987 mddev->bitmap_info.file = NULL;
5988 return err;
5989 }
5990 mddev->bitmap_info.offset = 0; /* file overrides offset */
5991 } else if (mddev->bitmap == NULL)
5992 return -ENOENT; /* cannot remove what isn't there */
5993 err = 0;
5994 if (mddev->pers) {
5995 mddev->pers->quiesce(mddev, 1);
5996 if (fd >= 0) {
5997 err = bitmap_create(mddev);
5998 if (!err)
5999 err = bitmap_load(mddev);
6000 }
6001 if (fd < 0 || err) {
6002 bitmap_destroy(mddev);
6003 fd = -1; /* make sure to put the file */
6004 }
6005 mddev->pers->quiesce(mddev, 0);
6006 }
6007 if (fd < 0) {
6008 if (mddev->bitmap_info.file)
6009 fput(mddev->bitmap_info.file);
6010 mddev->bitmap_info.file = NULL;
6011 }
6012
6013 return err;
6014 }
6015
6016 /*
6017 * set_array_info is used two different ways
6018 * The original usage is when creating a new array.
6019 * In this usage, raid_disks is > 0 and it together with
6020 * level, size, not_persistent,layout,chunksize determine the
6021 * shape of the array.
6022 * This will always create an array with a type-0.90.0 superblock.
6023 * The newer usage is when assembling an array.
6024 * In this case raid_disks will be 0, and the major_version field is
6025 * use to determine which style super-blocks are to be found on the devices.
6026 * The minor and patch _version numbers are also kept incase the
6027 * super_block handler wishes to interpret them.
6028 */
6029 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
6030 {
6031
6032 if (info->raid_disks == 0) {
6033 /* just setting version number for superblock loading */
6034 if (info->major_version < 0 ||
6035 info->major_version >= ARRAY_SIZE(super_types) ||
6036 super_types[info->major_version].name == NULL) {
6037 /* maybe try to auto-load a module? */
6038 printk(KERN_INFO
6039 "md: superblock version %d not known\n",
6040 info->major_version);
6041 return -EINVAL;
6042 }
6043 mddev->major_version = info->major_version;
6044 mddev->minor_version = info->minor_version;
6045 mddev->patch_version = info->patch_version;
6046 mddev->persistent = !info->not_persistent;
6047 /* ensure mddev_put doesn't delete this now that there
6048 * is some minimal configuration.
6049 */
6050 mddev->ctime = get_seconds();
6051 return 0;
6052 }
6053 mddev->major_version = MD_MAJOR_VERSION;
6054 mddev->minor_version = MD_MINOR_VERSION;
6055 mddev->patch_version = MD_PATCHLEVEL_VERSION;
6056 mddev->ctime = get_seconds();
6057
6058 mddev->level = info->level;
6059 mddev->clevel[0] = 0;
6060 mddev->dev_sectors = 2 * (sector_t)info->size;
6061 mddev->raid_disks = info->raid_disks;
6062 /* don't set md_minor, it is determined by which /dev/md* was
6063 * openned
6064 */
6065 if (info->state & (1<<MD_SB_CLEAN))
6066 mddev->recovery_cp = MaxSector;
6067 else
6068 mddev->recovery_cp = 0;
6069 mddev->persistent = ! info->not_persistent;
6070 mddev->external = 0;
6071
6072 mddev->layout = info->layout;
6073 mddev->chunk_sectors = info->chunk_size >> 9;
6074
6075 mddev->max_disks = MD_SB_DISKS;
6076
6077 if (mddev->persistent)
6078 mddev->flags = 0;
6079 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6080
6081 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6082 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6083 mddev->bitmap_info.offset = 0;
6084
6085 mddev->reshape_position = MaxSector;
6086
6087 /*
6088 * Generate a 128 bit UUID
6089 */
6090 get_random_bytes(mddev->uuid, 16);
6091
6092 mddev->new_level = mddev->level;
6093 mddev->new_chunk_sectors = mddev->chunk_sectors;
6094 mddev->new_layout = mddev->layout;
6095 mddev->delta_disks = 0;
6096 mddev->reshape_backwards = 0;
6097
6098 return 0;
6099 }
6100
6101 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6102 {
6103 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6104
6105 if (mddev->external_size)
6106 return;
6107
6108 mddev->array_sectors = array_sectors;
6109 }
6110 EXPORT_SYMBOL(md_set_array_sectors);
6111
6112 static int update_size(struct mddev *mddev, sector_t num_sectors)
6113 {
6114 struct md_rdev *rdev;
6115 int rv;
6116 int fit = (num_sectors == 0);
6117
6118 if (mddev->pers->resize == NULL)
6119 return -EINVAL;
6120 /* The "num_sectors" is the number of sectors of each device that
6121 * is used. This can only make sense for arrays with redundancy.
6122 * linear and raid0 always use whatever space is available. We can only
6123 * consider changing this number if no resync or reconstruction is
6124 * happening, and if the new size is acceptable. It must fit before the
6125 * sb_start or, if that is <data_offset, it must fit before the size
6126 * of each device. If num_sectors is zero, we find the largest size
6127 * that fits.
6128 */
6129 if (mddev->sync_thread)
6130 return -EBUSY;
6131 if (mddev->ro)
6132 return -EROFS;
6133
6134 rdev_for_each(rdev, mddev) {
6135 sector_t avail = rdev->sectors;
6136
6137 if (fit && (num_sectors == 0 || num_sectors > avail))
6138 num_sectors = avail;
6139 if (avail < num_sectors)
6140 return -ENOSPC;
6141 }
6142 rv = mddev->pers->resize(mddev, num_sectors);
6143 if (!rv)
6144 revalidate_disk(mddev->gendisk);
6145 return rv;
6146 }
6147
6148 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6149 {
6150 int rv;
6151 struct md_rdev *rdev;
6152 /* change the number of raid disks */
6153 if (mddev->pers->check_reshape == NULL)
6154 return -EINVAL;
6155 if (mddev->ro)
6156 return -EROFS;
6157 if (raid_disks <= 0 ||
6158 (mddev->max_disks && raid_disks >= mddev->max_disks))
6159 return -EINVAL;
6160 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
6161 return -EBUSY;
6162
6163 rdev_for_each(rdev, mddev) {
6164 if (mddev->raid_disks < raid_disks &&
6165 rdev->data_offset < rdev->new_data_offset)
6166 return -EINVAL;
6167 if (mddev->raid_disks > raid_disks &&
6168 rdev->data_offset > rdev->new_data_offset)
6169 return -EINVAL;
6170 }
6171
6172 mddev->delta_disks = raid_disks - mddev->raid_disks;
6173 if (mddev->delta_disks < 0)
6174 mddev->reshape_backwards = 1;
6175 else if (mddev->delta_disks > 0)
6176 mddev->reshape_backwards = 0;
6177
6178 rv = mddev->pers->check_reshape(mddev);
6179 if (rv < 0) {
6180 mddev->delta_disks = 0;
6181 mddev->reshape_backwards = 0;
6182 }
6183 return rv;
6184 }
6185
6186
6187 /*
6188 * update_array_info is used to change the configuration of an
6189 * on-line array.
6190 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6191 * fields in the info are checked against the array.
6192 * Any differences that cannot be handled will cause an error.
6193 * Normally, only one change can be managed at a time.
6194 */
6195 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6196 {
6197 int rv = 0;
6198 int cnt = 0;
6199 int state = 0;
6200
6201 /* calculate expected state,ignoring low bits */
6202 if (mddev->bitmap && mddev->bitmap_info.offset)
6203 state |= (1 << MD_SB_BITMAP_PRESENT);
6204
6205 if (mddev->major_version != info->major_version ||
6206 mddev->minor_version != info->minor_version ||
6207 /* mddev->patch_version != info->patch_version || */
6208 mddev->ctime != info->ctime ||
6209 mddev->level != info->level ||
6210 /* mddev->layout != info->layout || */
6211 !mddev->persistent != info->not_persistent||
6212 mddev->chunk_sectors != info->chunk_size >> 9 ||
6213 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6214 ((state^info->state) & 0xfffffe00)
6215 )
6216 return -EINVAL;
6217 /* Check there is only one change */
6218 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6219 cnt++;
6220 if (mddev->raid_disks != info->raid_disks)
6221 cnt++;
6222 if (mddev->layout != info->layout)
6223 cnt++;
6224 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6225 cnt++;
6226 if (cnt == 0)
6227 return 0;
6228 if (cnt > 1)
6229 return -EINVAL;
6230
6231 if (mddev->layout != info->layout) {
6232 /* Change layout
6233 * we don't need to do anything at the md level, the
6234 * personality will take care of it all.
6235 */
6236 if (mddev->pers->check_reshape == NULL)
6237 return -EINVAL;
6238 else {
6239 mddev->new_layout = info->layout;
6240 rv = mddev->pers->check_reshape(mddev);
6241 if (rv)
6242 mddev->new_layout = mddev->layout;
6243 return rv;
6244 }
6245 }
6246 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6247 rv = update_size(mddev, (sector_t)info->size * 2);
6248
6249 if (mddev->raid_disks != info->raid_disks)
6250 rv = update_raid_disks(mddev, info->raid_disks);
6251
6252 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6253 if (mddev->pers->quiesce == NULL || mddev->thread == NULL)
6254 return -EINVAL;
6255 if (mddev->recovery || mddev->sync_thread)
6256 return -EBUSY;
6257 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6258 /* add the bitmap */
6259 if (mddev->bitmap)
6260 return -EEXIST;
6261 if (mddev->bitmap_info.default_offset == 0)
6262 return -EINVAL;
6263 mddev->bitmap_info.offset =
6264 mddev->bitmap_info.default_offset;
6265 mddev->bitmap_info.space =
6266 mddev->bitmap_info.default_space;
6267 mddev->pers->quiesce(mddev, 1);
6268 rv = bitmap_create(mddev);
6269 if (!rv)
6270 rv = bitmap_load(mddev);
6271 if (rv)
6272 bitmap_destroy(mddev);
6273 mddev->pers->quiesce(mddev, 0);
6274 } else {
6275 /* remove the bitmap */
6276 if (!mddev->bitmap)
6277 return -ENOENT;
6278 if (mddev->bitmap->storage.file)
6279 return -EINVAL;
6280 mddev->pers->quiesce(mddev, 1);
6281 bitmap_destroy(mddev);
6282 mddev->pers->quiesce(mddev, 0);
6283 mddev->bitmap_info.offset = 0;
6284 }
6285 }
6286 md_update_sb(mddev, 1);
6287 return rv;
6288 }
6289
6290 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6291 {
6292 struct md_rdev *rdev;
6293 int err = 0;
6294
6295 if (mddev->pers == NULL)
6296 return -ENODEV;
6297
6298 rcu_read_lock();
6299 rdev = find_rdev_rcu(mddev, dev);
6300 if (!rdev)
6301 err = -ENODEV;
6302 else {
6303 md_error(mddev, rdev);
6304 if (!test_bit(Faulty, &rdev->flags))
6305 err = -EBUSY;
6306 }
6307 rcu_read_unlock();
6308 return err;
6309 }
6310
6311 /*
6312 * We have a problem here : there is no easy way to give a CHS
6313 * virtual geometry. We currently pretend that we have a 2 heads
6314 * 4 sectors (with a BIG number of cylinders...). This drives
6315 * dosfs just mad... ;-)
6316 */
6317 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6318 {
6319 struct mddev *mddev = bdev->bd_disk->private_data;
6320
6321 geo->heads = 2;
6322 geo->sectors = 4;
6323 geo->cylinders = mddev->array_sectors / 8;
6324 return 0;
6325 }
6326
6327 static inline bool md_ioctl_valid(unsigned int cmd)
6328 {
6329 switch (cmd) {
6330 case ADD_NEW_DISK:
6331 case BLKROSET:
6332 case GET_ARRAY_INFO:
6333 case GET_BITMAP_FILE:
6334 case GET_DISK_INFO:
6335 case HOT_ADD_DISK:
6336 case HOT_REMOVE_DISK:
6337 case PRINT_RAID_DEBUG:
6338 case RAID_AUTORUN:
6339 case RAID_VERSION:
6340 case RESTART_ARRAY_RW:
6341 case RUN_ARRAY:
6342 case SET_ARRAY_INFO:
6343 case SET_BITMAP_FILE:
6344 case SET_DISK_FAULTY:
6345 case STOP_ARRAY:
6346 case STOP_ARRAY_RO:
6347 return true;
6348 default:
6349 return false;
6350 }
6351 }
6352
6353 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6354 unsigned int cmd, unsigned long arg)
6355 {
6356 int err = 0;
6357 void __user *argp = (void __user *)arg;
6358 struct mddev *mddev = NULL;
6359 int ro;
6360
6361 if (!md_ioctl_valid(cmd))
6362 return -ENOTTY;
6363
6364 switch (cmd) {
6365 case RAID_VERSION:
6366 case GET_ARRAY_INFO:
6367 case GET_DISK_INFO:
6368 break;
6369 default:
6370 if (!capable(CAP_SYS_ADMIN))
6371 return -EACCES;
6372 }
6373
6374 /*
6375 * Commands dealing with the RAID driver but not any
6376 * particular array:
6377 */
6378 switch (cmd) {
6379 case RAID_VERSION:
6380 err = get_version(argp);
6381 goto done;
6382
6383 case PRINT_RAID_DEBUG:
6384 err = 0;
6385 md_print_devices();
6386 goto done;
6387
6388 #ifndef MODULE
6389 case RAID_AUTORUN:
6390 err = 0;
6391 autostart_arrays(arg);
6392 goto done;
6393 #endif
6394 default:;
6395 }
6396
6397 /*
6398 * Commands creating/starting a new array:
6399 */
6400
6401 mddev = bdev->bd_disk->private_data;
6402
6403 if (!mddev) {
6404 BUG();
6405 goto abort;
6406 }
6407
6408 /* Some actions do not requires the mutex */
6409 switch (cmd) {
6410 case GET_ARRAY_INFO:
6411 if (!mddev->raid_disks && !mddev->external)
6412 err = -ENODEV;
6413 else
6414 err = get_array_info(mddev, argp);
6415 goto abort;
6416
6417 case GET_DISK_INFO:
6418 if (!mddev->raid_disks && !mddev->external)
6419 err = -ENODEV;
6420 else
6421 err = get_disk_info(mddev, argp);
6422 goto abort;
6423
6424 case SET_DISK_FAULTY:
6425 err = set_disk_faulty(mddev, new_decode_dev(arg));
6426 goto abort;
6427 }
6428
6429 if (cmd == ADD_NEW_DISK)
6430 /* need to ensure md_delayed_delete() has completed */
6431 flush_workqueue(md_misc_wq);
6432
6433 if (cmd == HOT_REMOVE_DISK)
6434 /* need to ensure recovery thread has run */
6435 wait_event_interruptible_timeout(mddev->sb_wait,
6436 !test_bit(MD_RECOVERY_NEEDED,
6437 &mddev->flags),
6438 msecs_to_jiffies(5000));
6439 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6440 /* Need to flush page cache, and ensure no-one else opens
6441 * and writes
6442 */
6443 mutex_lock(&mddev->open_mutex);
6444 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6445 mutex_unlock(&mddev->open_mutex);
6446 err = -EBUSY;
6447 goto abort;
6448 }
6449 set_bit(MD_STILL_CLOSED, &mddev->flags);
6450 mutex_unlock(&mddev->open_mutex);
6451 sync_blockdev(bdev);
6452 }
6453 err = mddev_lock(mddev);
6454 if (err) {
6455 printk(KERN_INFO
6456 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6457 err, cmd);
6458 goto abort;
6459 }
6460
6461 if (cmd == SET_ARRAY_INFO) {
6462 mdu_array_info_t info;
6463 if (!arg)
6464 memset(&info, 0, sizeof(info));
6465 else if (copy_from_user(&info, argp, sizeof(info))) {
6466 err = -EFAULT;
6467 goto abort_unlock;
6468 }
6469 if (mddev->pers) {
6470 err = update_array_info(mddev, &info);
6471 if (err) {
6472 printk(KERN_WARNING "md: couldn't update"
6473 " array info. %d\n", err);
6474 goto abort_unlock;
6475 }
6476 goto done_unlock;
6477 }
6478 if (!list_empty(&mddev->disks)) {
6479 printk(KERN_WARNING
6480 "md: array %s already has disks!\n",
6481 mdname(mddev));
6482 err = -EBUSY;
6483 goto abort_unlock;
6484 }
6485 if (mddev->raid_disks) {
6486 printk(KERN_WARNING
6487 "md: array %s already initialised!\n",
6488 mdname(mddev));
6489 err = -EBUSY;
6490 goto abort_unlock;
6491 }
6492 err = set_array_info(mddev, &info);
6493 if (err) {
6494 printk(KERN_WARNING "md: couldn't set"
6495 " array info. %d\n", err);
6496 goto abort_unlock;
6497 }
6498 goto done_unlock;
6499 }
6500
6501 /*
6502 * Commands querying/configuring an existing array:
6503 */
6504 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6505 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6506 if ((!mddev->raid_disks && !mddev->external)
6507 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6508 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6509 && cmd != GET_BITMAP_FILE) {
6510 err = -ENODEV;
6511 goto abort_unlock;
6512 }
6513
6514 /*
6515 * Commands even a read-only array can execute:
6516 */
6517 switch (cmd) {
6518 case GET_BITMAP_FILE:
6519 err = get_bitmap_file(mddev, argp);
6520 goto done_unlock;
6521
6522 case RESTART_ARRAY_RW:
6523 err = restart_array(mddev);
6524 goto done_unlock;
6525
6526 case STOP_ARRAY:
6527 err = do_md_stop(mddev, 0, bdev);
6528 goto done_unlock;
6529
6530 case STOP_ARRAY_RO:
6531 err = md_set_readonly(mddev, bdev);
6532 goto done_unlock;
6533
6534 case HOT_REMOVE_DISK:
6535 err = hot_remove_disk(mddev, new_decode_dev(arg));
6536 goto done_unlock;
6537
6538 case ADD_NEW_DISK:
6539 /* We can support ADD_NEW_DISK on read-only arrays
6540 * on if we are re-adding a preexisting device.
6541 * So require mddev->pers and MD_DISK_SYNC.
6542 */
6543 if (mddev->pers) {
6544 mdu_disk_info_t info;
6545 if (copy_from_user(&info, argp, sizeof(info)))
6546 err = -EFAULT;
6547 else if (!(info.state & (1<<MD_DISK_SYNC)))
6548 /* Need to clear read-only for this */
6549 break;
6550 else
6551 err = add_new_disk(mddev, &info);
6552 goto done_unlock;
6553 }
6554 break;
6555
6556 case BLKROSET:
6557 if (get_user(ro, (int __user *)(arg))) {
6558 err = -EFAULT;
6559 goto done_unlock;
6560 }
6561 err = -EINVAL;
6562
6563 /* if the bdev is going readonly the value of mddev->ro
6564 * does not matter, no writes are coming
6565 */
6566 if (ro)
6567 goto done_unlock;
6568
6569 /* are we are already prepared for writes? */
6570 if (mddev->ro != 1)
6571 goto done_unlock;
6572
6573 /* transitioning to readauto need only happen for
6574 * arrays that call md_write_start
6575 */
6576 if (mddev->pers) {
6577 err = restart_array(mddev);
6578 if (err == 0) {
6579 mddev->ro = 2;
6580 set_disk_ro(mddev->gendisk, 0);
6581 }
6582 }
6583 goto done_unlock;
6584 }
6585
6586 /*
6587 * The remaining ioctls are changing the state of the
6588 * superblock, so we do not allow them on read-only arrays.
6589 * However non-MD ioctls (e.g. get-size) will still come through
6590 * here and hit the 'default' below, so only disallow
6591 * 'md' ioctls, and switch to rw mode if started auto-readonly.
6592 */
6593 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6594 if (mddev->ro == 2) {
6595 mddev->ro = 0;
6596 sysfs_notify_dirent_safe(mddev->sysfs_state);
6597 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6598 /* mddev_unlock will wake thread */
6599 /* If a device failed while we were read-only, we
6600 * need to make sure the metadata is updated now.
6601 */
6602 if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6603 mddev_unlock(mddev);
6604 wait_event(mddev->sb_wait,
6605 !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6606 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6607 mddev_lock_nointr(mddev);
6608 }
6609 } else {
6610 err = -EROFS;
6611 goto abort_unlock;
6612 }
6613 }
6614
6615 switch (cmd) {
6616 case ADD_NEW_DISK:
6617 {
6618 mdu_disk_info_t info;
6619 if (copy_from_user(&info, argp, sizeof(info)))
6620 err = -EFAULT;
6621 else
6622 err = add_new_disk(mddev, &info);
6623 goto done_unlock;
6624 }
6625
6626 case HOT_ADD_DISK:
6627 err = hot_add_disk(mddev, new_decode_dev(arg));
6628 goto done_unlock;
6629
6630 case RUN_ARRAY:
6631 err = do_md_run(mddev);
6632 goto done_unlock;
6633
6634 case SET_BITMAP_FILE:
6635 err = set_bitmap_file(mddev, (int)arg);
6636 goto done_unlock;
6637
6638 default:
6639 err = -EINVAL;
6640 goto abort_unlock;
6641 }
6642
6643 done_unlock:
6644 abort_unlock:
6645 if (mddev->hold_active == UNTIL_IOCTL &&
6646 err != -EINVAL)
6647 mddev->hold_active = 0;
6648 mddev_unlock(mddev);
6649
6650 return err;
6651 done:
6652 if (err)
6653 MD_BUG();
6654 abort:
6655 return err;
6656 }
6657 #ifdef CONFIG_COMPAT
6658 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6659 unsigned int cmd, unsigned long arg)
6660 {
6661 switch (cmd) {
6662 case HOT_REMOVE_DISK:
6663 case HOT_ADD_DISK:
6664 case SET_DISK_FAULTY:
6665 case SET_BITMAP_FILE:
6666 /* These take in integer arg, do not convert */
6667 break;
6668 default:
6669 arg = (unsigned long)compat_ptr(arg);
6670 break;
6671 }
6672
6673 return md_ioctl(bdev, mode, cmd, arg);
6674 }
6675 #endif /* CONFIG_COMPAT */
6676
6677 static int md_open(struct block_device *bdev, fmode_t mode)
6678 {
6679 /*
6680 * Succeed if we can lock the mddev, which confirms that
6681 * it isn't being stopped right now.
6682 */
6683 struct mddev *mddev = mddev_find(bdev->bd_dev);
6684 int err;
6685
6686 if (!mddev)
6687 return -ENODEV;
6688
6689 if (mddev->gendisk != bdev->bd_disk) {
6690 /* we are racing with mddev_put which is discarding this
6691 * bd_disk.
6692 */
6693 mddev_put(mddev);
6694 /* Wait until bdev->bd_disk is definitely gone */
6695 flush_workqueue(md_misc_wq);
6696 /* Then retry the open from the top */
6697 return -ERESTARTSYS;
6698 }
6699 BUG_ON(mddev != bdev->bd_disk->private_data);
6700
6701 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6702 goto out;
6703
6704 err = 0;
6705 atomic_inc(&mddev->openers);
6706 clear_bit(MD_STILL_CLOSED, &mddev->flags);
6707 mutex_unlock(&mddev->open_mutex);
6708
6709 check_disk_change(bdev);
6710 out:
6711 return err;
6712 }
6713
6714 static void md_release(struct gendisk *disk, fmode_t mode)
6715 {
6716 struct mddev *mddev = disk->private_data;
6717
6718 BUG_ON(!mddev);
6719 atomic_dec(&mddev->openers);
6720 mddev_put(mddev);
6721 }
6722
6723 static int md_media_changed(struct gendisk *disk)
6724 {
6725 struct mddev *mddev = disk->private_data;
6726
6727 return mddev->changed;
6728 }
6729
6730 static int md_revalidate(struct gendisk *disk)
6731 {
6732 struct mddev *mddev = disk->private_data;
6733
6734 mddev->changed = 0;
6735 return 0;
6736 }
6737 static const struct block_device_operations md_fops =
6738 {
6739 .owner = THIS_MODULE,
6740 .open = md_open,
6741 .release = md_release,
6742 .ioctl = md_ioctl,
6743 #ifdef CONFIG_COMPAT
6744 .compat_ioctl = md_compat_ioctl,
6745 #endif
6746 .getgeo = md_getgeo,
6747 .media_changed = md_media_changed,
6748 .revalidate_disk= md_revalidate,
6749 };
6750
6751 static int md_thread(void * arg)
6752 {
6753 struct md_thread *thread = arg;
6754
6755 /*
6756 * md_thread is a 'system-thread', it's priority should be very
6757 * high. We avoid resource deadlocks individually in each
6758 * raid personality. (RAID5 does preallocation) We also use RR and
6759 * the very same RT priority as kswapd, thus we will never get
6760 * into a priority inversion deadlock.
6761 *
6762 * we definitely have to have equal or higher priority than
6763 * bdflush, otherwise bdflush will deadlock if there are too
6764 * many dirty RAID5 blocks.
6765 */
6766
6767 allow_signal(SIGKILL);
6768 while (!kthread_should_stop()) {
6769
6770 /* We need to wait INTERRUPTIBLE so that
6771 * we don't add to the load-average.
6772 * That means we need to be sure no signals are
6773 * pending
6774 */
6775 if (signal_pending(current))
6776 flush_signals(current);
6777
6778 wait_event_interruptible_timeout
6779 (thread->wqueue,
6780 test_bit(THREAD_WAKEUP, &thread->flags)
6781 || kthread_should_stop(),
6782 thread->timeout);
6783
6784 clear_bit(THREAD_WAKEUP, &thread->flags);
6785 if (!kthread_should_stop())
6786 thread->run(thread);
6787 }
6788
6789 return 0;
6790 }
6791
6792 void md_wakeup_thread(struct md_thread *thread)
6793 {
6794 if (thread) {
6795 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6796 set_bit(THREAD_WAKEUP, &thread->flags);
6797 wake_up(&thread->wqueue);
6798 }
6799 }
6800
6801 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6802 struct mddev *mddev, const char *name)
6803 {
6804 struct md_thread *thread;
6805
6806 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6807 if (!thread)
6808 return NULL;
6809
6810 init_waitqueue_head(&thread->wqueue);
6811
6812 thread->run = run;
6813 thread->mddev = mddev;
6814 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6815 thread->tsk = kthread_run(md_thread, thread,
6816 "%s_%s",
6817 mdname(thread->mddev),
6818 name);
6819 if (IS_ERR(thread->tsk)) {
6820 kfree(thread);
6821 return NULL;
6822 }
6823 return thread;
6824 }
6825
6826 void md_unregister_thread(struct md_thread **threadp)
6827 {
6828 struct md_thread *thread = *threadp;
6829 if (!thread)
6830 return;
6831 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6832 /* Locking ensures that mddev_unlock does not wake_up a
6833 * non-existent thread
6834 */
6835 spin_lock(&pers_lock);
6836 *threadp = NULL;
6837 spin_unlock(&pers_lock);
6838
6839 kthread_stop(thread->tsk);
6840 kfree(thread);
6841 }
6842
6843 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6844 {
6845 if (!mddev) {
6846 MD_BUG();
6847 return;
6848 }
6849
6850 if (!rdev || test_bit(Faulty, &rdev->flags))
6851 return;
6852
6853 if (!mddev->pers || !mddev->pers->error_handler)
6854 return;
6855 mddev->pers->error_handler(mddev,rdev);
6856 if (mddev->degraded)
6857 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6858 sysfs_notify_dirent_safe(rdev->sysfs_state);
6859 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6860 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6861 md_wakeup_thread(mddev->thread);
6862 if (mddev->event_work.func)
6863 queue_work(md_misc_wq, &mddev->event_work);
6864 md_new_event_inintr(mddev);
6865 }
6866
6867 /* seq_file implementation /proc/mdstat */
6868
6869 static void status_unused(struct seq_file *seq)
6870 {
6871 int i = 0;
6872 struct md_rdev *rdev;
6873
6874 seq_printf(seq, "unused devices: ");
6875
6876 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6877 char b[BDEVNAME_SIZE];
6878 i++;
6879 seq_printf(seq, "%s ",
6880 bdevname(rdev->bdev,b));
6881 }
6882 if (!i)
6883 seq_printf(seq, "<none>");
6884
6885 seq_printf(seq, "\n");
6886 }
6887
6888
6889 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6890 {
6891 sector_t max_sectors, resync, res;
6892 unsigned long dt, db;
6893 sector_t rt;
6894 int scale;
6895 unsigned int per_milli;
6896
6897 if (mddev->curr_resync <= 3)
6898 resync = 0;
6899 else
6900 resync = mddev->curr_resync
6901 - atomic_read(&mddev->recovery_active);
6902
6903 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6904 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6905 max_sectors = mddev->resync_max_sectors;
6906 else
6907 max_sectors = mddev->dev_sectors;
6908
6909 /*
6910 * Should not happen.
6911 */
6912 if (!max_sectors) {
6913 MD_BUG();
6914 return;
6915 }
6916 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6917 * in a sector_t, and (max_sectors>>scale) will fit in a
6918 * u32, as those are the requirements for sector_div.
6919 * Thus 'scale' must be at least 10
6920 */
6921 scale = 10;
6922 if (sizeof(sector_t) > sizeof(unsigned long)) {
6923 while ( max_sectors/2 > (1ULL<<(scale+32)))
6924 scale++;
6925 }
6926 res = (resync>>scale)*1000;
6927 sector_div(res, (u32)((max_sectors>>scale)+1));
6928
6929 per_milli = res;
6930 {
6931 int i, x = per_milli/50, y = 20-x;
6932 seq_printf(seq, "[");
6933 for (i = 0; i < x; i++)
6934 seq_printf(seq, "=");
6935 seq_printf(seq, ">");
6936 for (i = 0; i < y; i++)
6937 seq_printf(seq, ".");
6938 seq_printf(seq, "] ");
6939 }
6940 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6941 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6942 "reshape" :
6943 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6944 "check" :
6945 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6946 "resync" : "recovery"))),
6947 per_milli/10, per_milli % 10,
6948 (unsigned long long) resync/2,
6949 (unsigned long long) max_sectors/2);
6950
6951 /*
6952 * dt: time from mark until now
6953 * db: blocks written from mark until now
6954 * rt: remaining time
6955 *
6956 * rt is a sector_t, so could be 32bit or 64bit.
6957 * So we divide before multiply in case it is 32bit and close
6958 * to the limit.
6959 * We scale the divisor (db) by 32 to avoid losing precision
6960 * near the end of resync when the number of remaining sectors
6961 * is close to 'db'.
6962 * We then divide rt by 32 after multiplying by db to compensate.
6963 * The '+1' avoids division by zero if db is very small.
6964 */
6965 dt = ((jiffies - mddev->resync_mark) / HZ);
6966 if (!dt) dt++;
6967 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6968 - mddev->resync_mark_cnt;
6969
6970 rt = max_sectors - resync; /* number of remaining sectors */
6971 sector_div(rt, db/32+1);
6972 rt *= dt;
6973 rt >>= 5;
6974
6975 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6976 ((unsigned long)rt % 60)/6);
6977
6978 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6979 }
6980
6981 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6982 {
6983 struct list_head *tmp;
6984 loff_t l = *pos;
6985 struct mddev *mddev;
6986
6987 if (l >= 0x10000)
6988 return NULL;
6989 if (!l--)
6990 /* header */
6991 return (void*)1;
6992
6993 spin_lock(&all_mddevs_lock);
6994 list_for_each(tmp,&all_mddevs)
6995 if (!l--) {
6996 mddev = list_entry(tmp, struct mddev, all_mddevs);
6997 mddev_get(mddev);
6998 spin_unlock(&all_mddevs_lock);
6999 return mddev;
7000 }
7001 spin_unlock(&all_mddevs_lock);
7002 if (!l--)
7003 return (void*)2;/* tail */
7004 return NULL;
7005 }
7006
7007 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7008 {
7009 struct list_head *tmp;
7010 struct mddev *next_mddev, *mddev = v;
7011
7012 ++*pos;
7013 if (v == (void*)2)
7014 return NULL;
7015
7016 spin_lock(&all_mddevs_lock);
7017 if (v == (void*)1)
7018 tmp = all_mddevs.next;
7019 else
7020 tmp = mddev->all_mddevs.next;
7021 if (tmp != &all_mddevs)
7022 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7023 else {
7024 next_mddev = (void*)2;
7025 *pos = 0x10000;
7026 }
7027 spin_unlock(&all_mddevs_lock);
7028
7029 if (v != (void*)1)
7030 mddev_put(mddev);
7031 return next_mddev;
7032
7033 }
7034
7035 static void md_seq_stop(struct seq_file *seq, void *v)
7036 {
7037 struct mddev *mddev = v;
7038
7039 if (mddev && v != (void*)1 && v != (void*)2)
7040 mddev_put(mddev);
7041 }
7042
7043 static int md_seq_show(struct seq_file *seq, void *v)
7044 {
7045 struct mddev *mddev = v;
7046 sector_t sectors;
7047 struct md_rdev *rdev;
7048
7049 if (v == (void*)1) {
7050 struct md_personality *pers;
7051 seq_printf(seq, "Personalities : ");
7052 spin_lock(&pers_lock);
7053 list_for_each_entry(pers, &pers_list, list)
7054 seq_printf(seq, "[%s] ", pers->name);
7055
7056 spin_unlock(&pers_lock);
7057 seq_printf(seq, "\n");
7058 seq->poll_event = atomic_read(&md_event_count);
7059 return 0;
7060 }
7061 if (v == (void*)2) {
7062 status_unused(seq);
7063 return 0;
7064 }
7065
7066 if (mddev_lock(mddev) < 0)
7067 return -EINTR;
7068
7069 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7070 seq_printf(seq, "%s : %sactive", mdname(mddev),
7071 mddev->pers ? "" : "in");
7072 if (mddev->pers) {
7073 if (mddev->ro==1)
7074 seq_printf(seq, " (read-only)");
7075 if (mddev->ro==2)
7076 seq_printf(seq, " (auto-read-only)");
7077 seq_printf(seq, " %s", mddev->pers->name);
7078 }
7079
7080 sectors = 0;
7081 rdev_for_each(rdev, mddev) {
7082 char b[BDEVNAME_SIZE];
7083 seq_printf(seq, " %s[%d]",
7084 bdevname(rdev->bdev,b), rdev->desc_nr);
7085 if (test_bit(WriteMostly, &rdev->flags))
7086 seq_printf(seq, "(W)");
7087 if (test_bit(Faulty, &rdev->flags)) {
7088 seq_printf(seq, "(F)");
7089 continue;
7090 }
7091 if (rdev->raid_disk < 0)
7092 seq_printf(seq, "(S)"); /* spare */
7093 if (test_bit(Replacement, &rdev->flags))
7094 seq_printf(seq, "(R)");
7095 sectors += rdev->sectors;
7096 }
7097
7098 if (!list_empty(&mddev->disks)) {
7099 if (mddev->pers)
7100 seq_printf(seq, "\n %llu blocks",
7101 (unsigned long long)
7102 mddev->array_sectors / 2);
7103 else
7104 seq_printf(seq, "\n %llu blocks",
7105 (unsigned long long)sectors / 2);
7106 }
7107 if (mddev->persistent) {
7108 if (mddev->major_version != 0 ||
7109 mddev->minor_version != 90) {
7110 seq_printf(seq," super %d.%d",
7111 mddev->major_version,
7112 mddev->minor_version);
7113 }
7114 } else if (mddev->external)
7115 seq_printf(seq, " super external:%s",
7116 mddev->metadata_type);
7117 else
7118 seq_printf(seq, " super non-persistent");
7119
7120 if (mddev->pers) {
7121 mddev->pers->status(seq, mddev);
7122 seq_printf(seq, "\n ");
7123 if (mddev->pers->sync_request) {
7124 if (mddev->curr_resync > 2) {
7125 status_resync(seq, mddev);
7126 seq_printf(seq, "\n ");
7127 } else if (mddev->curr_resync >= 1)
7128 seq_printf(seq, "\tresync=DELAYED\n ");
7129 else if (mddev->recovery_cp < MaxSector)
7130 seq_printf(seq, "\tresync=PENDING\n ");
7131 }
7132 } else
7133 seq_printf(seq, "\n ");
7134
7135 bitmap_status(seq, mddev->bitmap);
7136
7137 seq_printf(seq, "\n");
7138 }
7139 mddev_unlock(mddev);
7140
7141 return 0;
7142 }
7143
7144 static const struct seq_operations md_seq_ops = {
7145 .start = md_seq_start,
7146 .next = md_seq_next,
7147 .stop = md_seq_stop,
7148 .show = md_seq_show,
7149 };
7150
7151 static int md_seq_open(struct inode *inode, struct file *file)
7152 {
7153 struct seq_file *seq;
7154 int error;
7155
7156 error = seq_open(file, &md_seq_ops);
7157 if (error)
7158 return error;
7159
7160 seq = file->private_data;
7161 seq->poll_event = atomic_read(&md_event_count);
7162 return error;
7163 }
7164
7165 static int md_unloading;
7166 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7167 {
7168 struct seq_file *seq = filp->private_data;
7169 int mask;
7170
7171 if (md_unloading)
7172 return POLLIN|POLLRDNORM|POLLERR|POLLPRI;;
7173 poll_wait(filp, &md_event_waiters, wait);
7174
7175 /* always allow read */
7176 mask = POLLIN | POLLRDNORM;
7177
7178 if (seq->poll_event != atomic_read(&md_event_count))
7179 mask |= POLLERR | POLLPRI;
7180 return mask;
7181 }
7182
7183 static const struct file_operations md_seq_fops = {
7184 .owner = THIS_MODULE,
7185 .open = md_seq_open,
7186 .read = seq_read,
7187 .llseek = seq_lseek,
7188 .release = seq_release_private,
7189 .poll = mdstat_poll,
7190 };
7191
7192 int register_md_personality(struct md_personality *p)
7193 {
7194 spin_lock(&pers_lock);
7195 list_add_tail(&p->list, &pers_list);
7196 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
7197 spin_unlock(&pers_lock);
7198 return 0;
7199 }
7200
7201 int unregister_md_personality(struct md_personality *p)
7202 {
7203 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7204 spin_lock(&pers_lock);
7205 list_del_init(&p->list);
7206 spin_unlock(&pers_lock);
7207 return 0;
7208 }
7209
7210 static int is_mddev_idle(struct mddev *mddev, int init)
7211 {
7212 struct md_rdev * rdev;
7213 int idle;
7214 int curr_events;
7215
7216 idle = 1;
7217 rcu_read_lock();
7218 rdev_for_each_rcu(rdev, mddev) {
7219 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7220 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7221 (int)part_stat_read(&disk->part0, sectors[1]) -
7222 atomic_read(&disk->sync_io);
7223 /* sync IO will cause sync_io to increase before the disk_stats
7224 * as sync_io is counted when a request starts, and
7225 * disk_stats is counted when it completes.
7226 * So resync activity will cause curr_events to be smaller than
7227 * when there was no such activity.
7228 * non-sync IO will cause disk_stat to increase without
7229 * increasing sync_io so curr_events will (eventually)
7230 * be larger than it was before. Once it becomes
7231 * substantially larger, the test below will cause
7232 * the array to appear non-idle, and resync will slow
7233 * down.
7234 * If there is a lot of outstanding resync activity when
7235 * we set last_event to curr_events, then all that activity
7236 * completing might cause the array to appear non-idle
7237 * and resync will be slowed down even though there might
7238 * not have been non-resync activity. This will only
7239 * happen once though. 'last_events' will soon reflect
7240 * the state where there is little or no outstanding
7241 * resync requests, and further resync activity will
7242 * always make curr_events less than last_events.
7243 *
7244 */
7245 if (init || curr_events - rdev->last_events > 64) {
7246 rdev->last_events = curr_events;
7247 idle = 0;
7248 }
7249 }
7250 rcu_read_unlock();
7251 return idle;
7252 }
7253
7254 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7255 {
7256 /* another "blocks" (512byte) blocks have been synced */
7257 atomic_sub(blocks, &mddev->recovery_active);
7258 wake_up(&mddev->recovery_wait);
7259 if (!ok) {
7260 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7261 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7262 md_wakeup_thread(mddev->thread);
7263 // stop recovery, signal do_sync ....
7264 }
7265 }
7266
7267
7268 /* md_write_start(mddev, bi)
7269 * If we need to update some array metadata (e.g. 'active' flag
7270 * in superblock) before writing, schedule a superblock update
7271 * and wait for it to complete.
7272 */
7273 void md_write_start(struct mddev *mddev, struct bio *bi)
7274 {
7275 int did_change = 0;
7276 if (bio_data_dir(bi) != WRITE)
7277 return;
7278
7279 BUG_ON(mddev->ro == 1);
7280 if (mddev->ro == 2) {
7281 /* need to switch to read/write */
7282 mddev->ro = 0;
7283 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7284 md_wakeup_thread(mddev->thread);
7285 md_wakeup_thread(mddev->sync_thread);
7286 did_change = 1;
7287 }
7288 atomic_inc(&mddev->writes_pending);
7289 if (mddev->safemode == 1)
7290 mddev->safemode = 0;
7291 if (mddev->in_sync) {
7292 spin_lock_irq(&mddev->write_lock);
7293 if (mddev->in_sync) {
7294 mddev->in_sync = 0;
7295 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7296 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7297 md_wakeup_thread(mddev->thread);
7298 did_change = 1;
7299 }
7300 spin_unlock_irq(&mddev->write_lock);
7301 }
7302 if (did_change)
7303 sysfs_notify_dirent_safe(mddev->sysfs_state);
7304 wait_event(mddev->sb_wait,
7305 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7306 }
7307
7308 void md_write_end(struct mddev *mddev)
7309 {
7310 if (atomic_dec_and_test(&mddev->writes_pending)) {
7311 if (mddev->safemode == 2)
7312 md_wakeup_thread(mddev->thread);
7313 else if (mddev->safemode_delay)
7314 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7315 }
7316 }
7317
7318 /* md_allow_write(mddev)
7319 * Calling this ensures that the array is marked 'active' so that writes
7320 * may proceed without blocking. It is important to call this before
7321 * attempting a GFP_KERNEL allocation while holding the mddev lock.
7322 * Must be called with mddev_lock held.
7323 *
7324 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7325 * is dropped, so return -EAGAIN after notifying userspace.
7326 */
7327 int md_allow_write(struct mddev *mddev)
7328 {
7329 if (!mddev->pers)
7330 return 0;
7331 if (mddev->ro)
7332 return 0;
7333 if (!mddev->pers->sync_request)
7334 return 0;
7335
7336 spin_lock_irq(&mddev->write_lock);
7337 if (mddev->in_sync) {
7338 mddev->in_sync = 0;
7339 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7340 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7341 if (mddev->safemode_delay &&
7342 mddev->safemode == 0)
7343 mddev->safemode = 1;
7344 spin_unlock_irq(&mddev->write_lock);
7345 md_update_sb(mddev, 0);
7346 sysfs_notify_dirent_safe(mddev->sysfs_state);
7347 } else
7348 spin_unlock_irq(&mddev->write_lock);
7349
7350 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7351 return -EAGAIN;
7352 else
7353 return 0;
7354 }
7355 EXPORT_SYMBOL_GPL(md_allow_write);
7356
7357 #define SYNC_MARKS 10
7358 #define SYNC_MARK_STEP (3*HZ)
7359 #define UPDATE_FREQUENCY (5*60*HZ)
7360 void md_do_sync(struct md_thread *thread)
7361 {
7362 struct mddev *mddev = thread->mddev;
7363 struct mddev *mddev2;
7364 unsigned int currspeed = 0,
7365 window;
7366 sector_t max_sectors,j, io_sectors, recovery_done;
7367 unsigned long mark[SYNC_MARKS];
7368 unsigned long update_time;
7369 sector_t mark_cnt[SYNC_MARKS];
7370 int last_mark,m;
7371 struct list_head *tmp;
7372 sector_t last_check;
7373 int skipped = 0;
7374 struct md_rdev *rdev;
7375 char *desc, *action = NULL;
7376 struct blk_plug plug;
7377
7378 /* just incase thread restarts... */
7379 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7380 return;
7381 if (mddev->ro) {/* never try to sync a read-only array */
7382 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7383 return;
7384 }
7385
7386 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7387 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7388 desc = "data-check";
7389 action = "check";
7390 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7391 desc = "requested-resync";
7392 action = "repair";
7393 } else
7394 desc = "resync";
7395 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7396 desc = "reshape";
7397 else
7398 desc = "recovery";
7399
7400 mddev->last_sync_action = action ?: desc;
7401
7402 /* we overload curr_resync somewhat here.
7403 * 0 == not engaged in resync at all
7404 * 2 == checking that there is no conflict with another sync
7405 * 1 == like 2, but have yielded to allow conflicting resync to
7406 * commense
7407 * other == active in resync - this many blocks
7408 *
7409 * Before starting a resync we must have set curr_resync to
7410 * 2, and then checked that every "conflicting" array has curr_resync
7411 * less than ours. When we find one that is the same or higher
7412 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7413 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7414 * This will mean we have to start checking from the beginning again.
7415 *
7416 */
7417
7418 do {
7419 mddev->curr_resync = 2;
7420
7421 try_again:
7422 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7423 goto skip;
7424 for_each_mddev(mddev2, tmp) {
7425 if (mddev2 == mddev)
7426 continue;
7427 if (!mddev->parallel_resync
7428 && mddev2->curr_resync
7429 && match_mddev_units(mddev, mddev2)) {
7430 DEFINE_WAIT(wq);
7431 if (mddev < mddev2 && mddev->curr_resync == 2) {
7432 /* arbitrarily yield */
7433 mddev->curr_resync = 1;
7434 wake_up(&resync_wait);
7435 }
7436 if (mddev > mddev2 && mddev->curr_resync == 1)
7437 /* no need to wait here, we can wait the next
7438 * time 'round when curr_resync == 2
7439 */
7440 continue;
7441 /* We need to wait 'interruptible' so as not to
7442 * contribute to the load average, and not to
7443 * be caught by 'softlockup'
7444 */
7445 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7446 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7447 mddev2->curr_resync >= mddev->curr_resync) {
7448 printk(KERN_INFO "md: delaying %s of %s"
7449 " until %s has finished (they"
7450 " share one or more physical units)\n",
7451 desc, mdname(mddev), mdname(mddev2));
7452 mddev_put(mddev2);
7453 if (signal_pending(current))
7454 flush_signals(current);
7455 schedule();
7456 finish_wait(&resync_wait, &wq);
7457 goto try_again;
7458 }
7459 finish_wait(&resync_wait, &wq);
7460 }
7461 }
7462 } while (mddev->curr_resync < 2);
7463
7464 j = 0;
7465 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7466 /* resync follows the size requested by the personality,
7467 * which defaults to physical size, but can be virtual size
7468 */
7469 max_sectors = mddev->resync_max_sectors;
7470 atomic64_set(&mddev->resync_mismatches, 0);
7471 /* we don't use the checkpoint if there's a bitmap */
7472 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7473 j = mddev->resync_min;
7474 else if (!mddev->bitmap)
7475 j = mddev->recovery_cp;
7476
7477 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7478 max_sectors = mddev->resync_max_sectors;
7479 else {
7480 /* recovery follows the physical size of devices */
7481 max_sectors = mddev->dev_sectors;
7482 j = MaxSector;
7483 rcu_read_lock();
7484 rdev_for_each_rcu(rdev, mddev)
7485 if (rdev->raid_disk >= 0 &&
7486 !test_bit(Faulty, &rdev->flags) &&
7487 !test_bit(In_sync, &rdev->flags) &&
7488 rdev->recovery_offset < j)
7489 j = rdev->recovery_offset;
7490 rcu_read_unlock();
7491
7492 /* If there is a bitmap, we need to make sure all
7493 * writes that started before we added a spare
7494 * complete before we start doing a recovery.
7495 * Otherwise the write might complete and (via
7496 * bitmap_endwrite) set a bit in the bitmap after the
7497 * recovery has checked that bit and skipped that
7498 * region.
7499 */
7500 if (mddev->bitmap) {
7501 mddev->pers->quiesce(mddev, 1);
7502 mddev->pers->quiesce(mddev, 0);
7503 }
7504 }
7505
7506 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7507 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7508 " %d KB/sec/disk.\n", speed_min(mddev));
7509 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7510 "(but not more than %d KB/sec) for %s.\n",
7511 speed_max(mddev), desc);
7512
7513 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7514
7515 io_sectors = 0;
7516 for (m = 0; m < SYNC_MARKS; m++) {
7517 mark[m] = jiffies;
7518 mark_cnt[m] = io_sectors;
7519 }
7520 last_mark = 0;
7521 mddev->resync_mark = mark[last_mark];
7522 mddev->resync_mark_cnt = mark_cnt[last_mark];
7523
7524 /*
7525 * Tune reconstruction:
7526 */
7527 window = 32*(PAGE_SIZE/512);
7528 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7529 window/2, (unsigned long long)max_sectors/2);
7530
7531 atomic_set(&mddev->recovery_active, 0);
7532 last_check = 0;
7533
7534 if (j>2) {
7535 printk(KERN_INFO
7536 "md: resuming %s of %s from checkpoint.\n",
7537 desc, mdname(mddev));
7538 mddev->curr_resync = j;
7539 } else
7540 mddev->curr_resync = 3; /* no longer delayed */
7541 mddev->curr_resync_completed = j;
7542 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7543 md_new_event(mddev);
7544 update_time = jiffies;
7545
7546 blk_start_plug(&plug);
7547 while (j < max_sectors) {
7548 sector_t sectors;
7549
7550 skipped = 0;
7551
7552 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7553 ((mddev->curr_resync > mddev->curr_resync_completed &&
7554 (mddev->curr_resync - mddev->curr_resync_completed)
7555 > (max_sectors >> 4)) ||
7556 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7557 (j - mddev->curr_resync_completed)*2
7558 >= mddev->resync_max - mddev->curr_resync_completed
7559 )) {
7560 /* time to update curr_resync_completed */
7561 wait_event(mddev->recovery_wait,
7562 atomic_read(&mddev->recovery_active) == 0);
7563 mddev->curr_resync_completed = j;
7564 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7565 j > mddev->recovery_cp)
7566 mddev->recovery_cp = j;
7567 update_time = jiffies;
7568 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7569 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7570 }
7571
7572 while (j >= mddev->resync_max &&
7573 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7574 /* As this condition is controlled by user-space,
7575 * we can block indefinitely, so use '_interruptible'
7576 * to avoid triggering warnings.
7577 */
7578 flush_signals(current); /* just in case */
7579 wait_event_interruptible(mddev->recovery_wait,
7580 mddev->resync_max > j
7581 || test_bit(MD_RECOVERY_INTR,
7582 &mddev->recovery));
7583 }
7584
7585 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7586 break;
7587
7588 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7589 currspeed < speed_min(mddev));
7590 if (sectors == 0) {
7591 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7592 break;
7593 }
7594
7595 if (!skipped) { /* actual IO requested */
7596 io_sectors += sectors;
7597 atomic_add(sectors, &mddev->recovery_active);
7598 }
7599
7600 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7601 break;
7602
7603 j += sectors;
7604 if (j > 2)
7605 mddev->curr_resync = j;
7606 mddev->curr_mark_cnt = io_sectors;
7607 if (last_check == 0)
7608 /* this is the earliest that rebuild will be
7609 * visible in /proc/mdstat
7610 */
7611 md_new_event(mddev);
7612
7613 if (last_check + window > io_sectors || j == max_sectors)
7614 continue;
7615
7616 last_check = io_sectors;
7617 repeat:
7618 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7619 /* step marks */
7620 int next = (last_mark+1) % SYNC_MARKS;
7621
7622 mddev->resync_mark = mark[next];
7623 mddev->resync_mark_cnt = mark_cnt[next];
7624 mark[next] = jiffies;
7625 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7626 last_mark = next;
7627 }
7628
7629 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7630 break;
7631
7632 /*
7633 * this loop exits only if either when we are slower than
7634 * the 'hard' speed limit, or the system was IO-idle for
7635 * a jiffy.
7636 * the system might be non-idle CPU-wise, but we only care
7637 * about not overloading the IO subsystem. (things like an
7638 * e2fsck being done on the RAID array should execute fast)
7639 */
7640 cond_resched();
7641
7642 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
7643 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
7644 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7645
7646 if (currspeed > speed_min(mddev)) {
7647 if ((currspeed > speed_max(mddev)) ||
7648 !is_mddev_idle(mddev, 0)) {
7649 msleep(500);
7650 goto repeat;
7651 }
7652 }
7653 }
7654 printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
7655 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
7656 ? "interrupted" : "done");
7657 /*
7658 * this also signals 'finished resyncing' to md_stop
7659 */
7660 blk_finish_plug(&plug);
7661 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7662
7663 /* tell personality that we are finished */
7664 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7665
7666 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7667 mddev->curr_resync > 2) {
7668 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7669 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7670 if (mddev->curr_resync >= mddev->recovery_cp) {
7671 printk(KERN_INFO
7672 "md: checkpointing %s of %s.\n",
7673 desc, mdname(mddev));
7674 if (test_bit(MD_RECOVERY_ERROR,
7675 &mddev->recovery))
7676 mddev->recovery_cp =
7677 mddev->curr_resync_completed;
7678 else
7679 mddev->recovery_cp =
7680 mddev->curr_resync;
7681 }
7682 } else
7683 mddev->recovery_cp = MaxSector;
7684 } else {
7685 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7686 mddev->curr_resync = MaxSector;
7687 rcu_read_lock();
7688 rdev_for_each_rcu(rdev, mddev)
7689 if (rdev->raid_disk >= 0 &&
7690 mddev->delta_disks >= 0 &&
7691 !test_bit(Faulty, &rdev->flags) &&
7692 !test_bit(In_sync, &rdev->flags) &&
7693 rdev->recovery_offset < mddev->curr_resync)
7694 rdev->recovery_offset = mddev->curr_resync;
7695 rcu_read_unlock();
7696 }
7697 }
7698 skip:
7699 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7700
7701 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7702 /* We completed so min/max setting can be forgotten if used. */
7703 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7704 mddev->resync_min = 0;
7705 mddev->resync_max = MaxSector;
7706 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7707 mddev->resync_min = mddev->curr_resync_completed;
7708 mddev->curr_resync = 0;
7709 wake_up(&resync_wait);
7710 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7711 md_wakeup_thread(mddev->thread);
7712 return;
7713 }
7714 EXPORT_SYMBOL_GPL(md_do_sync);
7715
7716 static int remove_and_add_spares(struct mddev *mddev,
7717 struct md_rdev *this)
7718 {
7719 struct md_rdev *rdev;
7720 int spares = 0;
7721 int removed = 0;
7722
7723 rdev_for_each(rdev, mddev)
7724 if ((this == NULL || rdev == this) &&
7725 rdev->raid_disk >= 0 &&
7726 !test_bit(Blocked, &rdev->flags) &&
7727 (test_bit(Faulty, &rdev->flags) ||
7728 ! test_bit(In_sync, &rdev->flags)) &&
7729 atomic_read(&rdev->nr_pending)==0) {
7730 if (mddev->pers->hot_remove_disk(
7731 mddev, rdev) == 0) {
7732 sysfs_unlink_rdev(mddev, rdev);
7733 rdev->raid_disk = -1;
7734 removed++;
7735 }
7736 }
7737 if (removed && mddev->kobj.sd)
7738 sysfs_notify(&mddev->kobj, NULL, "degraded");
7739
7740 if (this)
7741 goto no_add;
7742
7743 rdev_for_each(rdev, mddev) {
7744 if (rdev->raid_disk >= 0 &&
7745 !test_bit(In_sync, &rdev->flags) &&
7746 !test_bit(Faulty, &rdev->flags))
7747 spares++;
7748 if (rdev->raid_disk >= 0)
7749 continue;
7750 if (test_bit(Faulty, &rdev->flags))
7751 continue;
7752 if (mddev->ro &&
7753 ! (rdev->saved_raid_disk >= 0 &&
7754 !test_bit(Bitmap_sync, &rdev->flags)))
7755 continue;
7756
7757 if (rdev->saved_raid_disk < 0)
7758 rdev->recovery_offset = 0;
7759 if (mddev->pers->
7760 hot_add_disk(mddev, rdev) == 0) {
7761 if (sysfs_link_rdev(mddev, rdev))
7762 /* failure here is OK */;
7763 spares++;
7764 md_new_event(mddev);
7765 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7766 }
7767 }
7768 no_add:
7769 if (removed)
7770 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7771 return spares;
7772 }
7773
7774 /*
7775 * This routine is regularly called by all per-raid-array threads to
7776 * deal with generic issues like resync and super-block update.
7777 * Raid personalities that don't have a thread (linear/raid0) do not
7778 * need this as they never do any recovery or update the superblock.
7779 *
7780 * It does not do any resync itself, but rather "forks" off other threads
7781 * to do that as needed.
7782 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7783 * "->recovery" and create a thread at ->sync_thread.
7784 * When the thread finishes it sets MD_RECOVERY_DONE
7785 * and wakeups up this thread which will reap the thread and finish up.
7786 * This thread also removes any faulty devices (with nr_pending == 0).
7787 *
7788 * The overall approach is:
7789 * 1/ if the superblock needs updating, update it.
7790 * 2/ If a recovery thread is running, don't do anything else.
7791 * 3/ If recovery has finished, clean up, possibly marking spares active.
7792 * 4/ If there are any faulty devices, remove them.
7793 * 5/ If array is degraded, try to add spares devices
7794 * 6/ If array has spares or is not in-sync, start a resync thread.
7795 */
7796 void md_check_recovery(struct mddev *mddev)
7797 {
7798 if (mddev->suspended)
7799 return;
7800
7801 if (mddev->bitmap)
7802 bitmap_daemon_work(mddev);
7803
7804 if (signal_pending(current)) {
7805 if (mddev->pers->sync_request && !mddev->external) {
7806 printk(KERN_INFO "md: %s in immediate safe mode\n",
7807 mdname(mddev));
7808 mddev->safemode = 2;
7809 }
7810 flush_signals(current);
7811 }
7812
7813 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7814 return;
7815 if ( ! (
7816 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
7817 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7818 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7819 (mddev->external == 0 && mddev->safemode == 1) ||
7820 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7821 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7822 ))
7823 return;
7824
7825 if (mddev_trylock(mddev)) {
7826 int spares = 0;
7827
7828 if (mddev->ro) {
7829 /* On a read-only array we can:
7830 * - remove failed devices
7831 * - add already-in_sync devices if the array itself
7832 * is in-sync.
7833 * As we only add devices that are already in-sync,
7834 * we can activate the spares immediately.
7835 */
7836 remove_and_add_spares(mddev, NULL);
7837 /* There is no thread, but we need to call
7838 * ->spare_active and clear saved_raid_disk
7839 */
7840 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7841 md_reap_sync_thread(mddev);
7842 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7843 goto unlock;
7844 }
7845
7846 if (!mddev->external) {
7847 int did_change = 0;
7848 spin_lock_irq(&mddev->write_lock);
7849 if (mddev->safemode &&
7850 !atomic_read(&mddev->writes_pending) &&
7851 !mddev->in_sync &&
7852 mddev->recovery_cp == MaxSector) {
7853 mddev->in_sync = 1;
7854 did_change = 1;
7855 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7856 }
7857 if (mddev->safemode == 1)
7858 mddev->safemode = 0;
7859 spin_unlock_irq(&mddev->write_lock);
7860 if (did_change)
7861 sysfs_notify_dirent_safe(mddev->sysfs_state);
7862 }
7863
7864 if (mddev->flags & MD_UPDATE_SB_FLAGS)
7865 md_update_sb(mddev, 0);
7866
7867 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7868 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7869 /* resync/recovery still happening */
7870 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7871 goto unlock;
7872 }
7873 if (mddev->sync_thread) {
7874 md_reap_sync_thread(mddev);
7875 goto unlock;
7876 }
7877 /* Set RUNNING before clearing NEEDED to avoid
7878 * any transients in the value of "sync_action".
7879 */
7880 mddev->curr_resync_completed = 0;
7881 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7882 /* Clear some bits that don't mean anything, but
7883 * might be left set
7884 */
7885 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7886 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7887
7888 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7889 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7890 goto unlock;
7891 /* no recovery is running.
7892 * remove any failed drives, then
7893 * add spares if possible.
7894 * Spares are also removed and re-added, to allow
7895 * the personality to fail the re-add.
7896 */
7897
7898 if (mddev->reshape_position != MaxSector) {
7899 if (mddev->pers->check_reshape == NULL ||
7900 mddev->pers->check_reshape(mddev) != 0)
7901 /* Cannot proceed */
7902 goto unlock;
7903 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7904 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7905 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
7906 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7907 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7908 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7909 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7910 } else if (mddev->recovery_cp < MaxSector) {
7911 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7912 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7913 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7914 /* nothing to be done ... */
7915 goto unlock;
7916
7917 if (mddev->pers->sync_request) {
7918 if (spares) {
7919 /* We are adding a device or devices to an array
7920 * which has the bitmap stored on all devices.
7921 * So make sure all bitmap pages get written
7922 */
7923 bitmap_write_all(mddev->bitmap);
7924 }
7925 mddev->sync_thread = md_register_thread(md_do_sync,
7926 mddev,
7927 "resync");
7928 if (!mddev->sync_thread) {
7929 printk(KERN_ERR "%s: could not start resync"
7930 " thread...\n",
7931 mdname(mddev));
7932 /* leave the spares where they are, it shouldn't hurt */
7933 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7934 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7935 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7936 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7937 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7938 } else
7939 md_wakeup_thread(mddev->sync_thread);
7940 sysfs_notify_dirent_safe(mddev->sysfs_action);
7941 md_new_event(mddev);
7942 }
7943 unlock:
7944 wake_up(&mddev->sb_wait);
7945
7946 if (!mddev->sync_thread) {
7947 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7948 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7949 &mddev->recovery))
7950 if (mddev->sysfs_action)
7951 sysfs_notify_dirent_safe(mddev->sysfs_action);
7952 }
7953 mddev_unlock(mddev);
7954 }
7955 }
7956
7957 void md_reap_sync_thread(struct mddev *mddev)
7958 {
7959 struct md_rdev *rdev;
7960
7961 /* resync has finished, collect result */
7962 md_unregister_thread(&mddev->sync_thread);
7963 wake_up(&resync_wait);
7964 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7965 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7966 /* success...*/
7967 /* activate any spares */
7968 if (mddev->pers->spare_active(mddev)) {
7969 sysfs_notify(&mddev->kobj, NULL,
7970 "degraded");
7971 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7972 }
7973 }
7974 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7975 mddev->pers->finish_reshape)
7976 mddev->pers->finish_reshape(mddev);
7977
7978 /* If array is no-longer degraded, then any saved_raid_disk
7979 * information must be scrapped.
7980 */
7981 if (!mddev->degraded)
7982 rdev_for_each(rdev, mddev)
7983 rdev->saved_raid_disk = -1;
7984
7985 md_update_sb(mddev, 1);
7986 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7987 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7988 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7989 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7990 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7991 /* flag recovery needed just to double check */
7992 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7993 sysfs_notify_dirent_safe(mddev->sysfs_action);
7994 md_new_event(mddev);
7995 if (mddev->event_work.func)
7996 queue_work(md_misc_wq, &mddev->event_work);
7997 }
7998
7999 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8000 {
8001 sysfs_notify_dirent_safe(rdev->sysfs_state);
8002 wait_event_timeout(rdev->blocked_wait,
8003 !test_bit(Blocked, &rdev->flags) &&
8004 !test_bit(BlockedBadBlocks, &rdev->flags),
8005 msecs_to_jiffies(5000));
8006 rdev_dec_pending(rdev, mddev);
8007 }
8008 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8009
8010 void md_finish_reshape(struct mddev *mddev)
8011 {
8012 /* called be personality module when reshape completes. */
8013 struct md_rdev *rdev;
8014
8015 rdev_for_each(rdev, mddev) {
8016 if (rdev->data_offset > rdev->new_data_offset)
8017 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8018 else
8019 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8020 rdev->data_offset = rdev->new_data_offset;
8021 }
8022 }
8023 EXPORT_SYMBOL(md_finish_reshape);
8024
8025 /* Bad block management.
8026 * We can record which blocks on each device are 'bad' and so just
8027 * fail those blocks, or that stripe, rather than the whole device.
8028 * Entries in the bad-block table are 64bits wide. This comprises:
8029 * Length of bad-range, in sectors: 0-511 for lengths 1-512
8030 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8031 * A 'shift' can be set so that larger blocks are tracked and
8032 * consequently larger devices can be covered.
8033 * 'Acknowledged' flag - 1 bit. - the most significant bit.
8034 *
8035 * Locking of the bad-block table uses a seqlock so md_is_badblock
8036 * might need to retry if it is very unlucky.
8037 * We will sometimes want to check for bad blocks in a bi_end_io function,
8038 * so we use the write_seqlock_irq variant.
8039 *
8040 * When looking for a bad block we specify a range and want to
8041 * know if any block in the range is bad. So we binary-search
8042 * to the last range that starts at-or-before the given endpoint,
8043 * (or "before the sector after the target range")
8044 * then see if it ends after the given start.
8045 * We return
8046 * 0 if there are no known bad blocks in the range
8047 * 1 if there are known bad block which are all acknowledged
8048 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8049 * plus the start/length of the first bad section we overlap.
8050 */
8051 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8052 sector_t *first_bad, int *bad_sectors)
8053 {
8054 int hi;
8055 int lo;
8056 u64 *p = bb->page;
8057 int rv;
8058 sector_t target = s + sectors;
8059 unsigned seq;
8060
8061 if (bb->shift > 0) {
8062 /* round the start down, and the end up */
8063 s >>= bb->shift;
8064 target += (1<<bb->shift) - 1;
8065 target >>= bb->shift;
8066 sectors = target - s;
8067 }
8068 /* 'target' is now the first block after the bad range */
8069
8070 retry:
8071 seq = read_seqbegin(&bb->lock);
8072 lo = 0;
8073 rv = 0;
8074 hi = bb->count;
8075
8076 /* Binary search between lo and hi for 'target'
8077 * i.e. for the last range that starts before 'target'
8078 */
8079 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8080 * are known not to be the last range before target.
8081 * VARIANT: hi-lo is the number of possible
8082 * ranges, and decreases until it reaches 1
8083 */
8084 while (hi - lo > 1) {
8085 int mid = (lo + hi) / 2;
8086 sector_t a = BB_OFFSET(p[mid]);
8087 if (a < target)
8088 /* This could still be the one, earlier ranges
8089 * could not. */
8090 lo = mid;
8091 else
8092 /* This and later ranges are definitely out. */
8093 hi = mid;
8094 }
8095 /* 'lo' might be the last that started before target, but 'hi' isn't */
8096 if (hi > lo) {
8097 /* need to check all range that end after 's' to see if
8098 * any are unacknowledged.
8099 */
8100 while (lo >= 0 &&
8101 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8102 if (BB_OFFSET(p[lo]) < target) {
8103 /* starts before the end, and finishes after
8104 * the start, so they must overlap
8105 */
8106 if (rv != -1 && BB_ACK(p[lo]))
8107 rv = 1;
8108 else
8109 rv = -1;
8110 *first_bad = BB_OFFSET(p[lo]);
8111 *bad_sectors = BB_LEN(p[lo]);
8112 }
8113 lo--;
8114 }
8115 }
8116
8117 if (read_seqretry(&bb->lock, seq))
8118 goto retry;
8119
8120 return rv;
8121 }
8122 EXPORT_SYMBOL_GPL(md_is_badblock);
8123
8124 /*
8125 * Add a range of bad blocks to the table.
8126 * This might extend the table, or might contract it
8127 * if two adjacent ranges can be merged.
8128 * We binary-search to find the 'insertion' point, then
8129 * decide how best to handle it.
8130 */
8131 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8132 int acknowledged)
8133 {
8134 u64 *p;
8135 int lo, hi;
8136 int rv = 1;
8137 unsigned long flags;
8138
8139 if (bb->shift < 0)
8140 /* badblocks are disabled */
8141 return 0;
8142
8143 if (bb->shift) {
8144 /* round the start down, and the end up */
8145 sector_t next = s + sectors;
8146 s >>= bb->shift;
8147 next += (1<<bb->shift) - 1;
8148 next >>= bb->shift;
8149 sectors = next - s;
8150 }
8151
8152 write_seqlock_irqsave(&bb->lock, flags);
8153
8154 p = bb->page;
8155 lo = 0;
8156 hi = bb->count;
8157 /* Find the last range that starts at-or-before 's' */
8158 while (hi - lo > 1) {
8159 int mid = (lo + hi) / 2;
8160 sector_t a = BB_OFFSET(p[mid]);
8161 if (a <= s)
8162 lo = mid;
8163 else
8164 hi = mid;
8165 }
8166 if (hi > lo && BB_OFFSET(p[lo]) > s)
8167 hi = lo;
8168
8169 if (hi > lo) {
8170 /* we found a range that might merge with the start
8171 * of our new range
8172 */
8173 sector_t a = BB_OFFSET(p[lo]);
8174 sector_t e = a + BB_LEN(p[lo]);
8175 int ack = BB_ACK(p[lo]);
8176 if (e >= s) {
8177 /* Yes, we can merge with a previous range */
8178 if (s == a && s + sectors >= e)
8179 /* new range covers old */
8180 ack = acknowledged;
8181 else
8182 ack = ack && acknowledged;
8183
8184 if (e < s + sectors)
8185 e = s + sectors;
8186 if (e - a <= BB_MAX_LEN) {
8187 p[lo] = BB_MAKE(a, e-a, ack);
8188 s = e;
8189 } else {
8190 /* does not all fit in one range,
8191 * make p[lo] maximal
8192 */
8193 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8194 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8195 s = a + BB_MAX_LEN;
8196 }
8197 sectors = e - s;
8198 }
8199 }
8200 if (sectors && hi < bb->count) {
8201 /* 'hi' points to the first range that starts after 's'.
8202 * Maybe we can merge with the start of that range */
8203 sector_t a = BB_OFFSET(p[hi]);
8204 sector_t e = a + BB_LEN(p[hi]);
8205 int ack = BB_ACK(p[hi]);
8206 if (a <= s + sectors) {
8207 /* merging is possible */
8208 if (e <= s + sectors) {
8209 /* full overlap */
8210 e = s + sectors;
8211 ack = acknowledged;
8212 } else
8213 ack = ack && acknowledged;
8214
8215 a = s;
8216 if (e - a <= BB_MAX_LEN) {
8217 p[hi] = BB_MAKE(a, e-a, ack);
8218 s = e;
8219 } else {
8220 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8221 s = a + BB_MAX_LEN;
8222 }
8223 sectors = e - s;
8224 lo = hi;
8225 hi++;
8226 }
8227 }
8228 if (sectors == 0 && hi < bb->count) {
8229 /* we might be able to combine lo and hi */
8230 /* Note: 's' is at the end of 'lo' */
8231 sector_t a = BB_OFFSET(p[hi]);
8232 int lolen = BB_LEN(p[lo]);
8233 int hilen = BB_LEN(p[hi]);
8234 int newlen = lolen + hilen - (s - a);
8235 if (s >= a && newlen < BB_MAX_LEN) {
8236 /* yes, we can combine them */
8237 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8238 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8239 memmove(p + hi, p + hi + 1,
8240 (bb->count - hi - 1) * 8);
8241 bb->count--;
8242 }
8243 }
8244 while (sectors) {
8245 /* didn't merge (it all).
8246 * Need to add a range just before 'hi' */
8247 if (bb->count >= MD_MAX_BADBLOCKS) {
8248 /* No room for more */
8249 rv = 0;
8250 break;
8251 } else {
8252 int this_sectors = sectors;
8253 memmove(p + hi + 1, p + hi,
8254 (bb->count - hi) * 8);
8255 bb->count++;
8256
8257 if (this_sectors > BB_MAX_LEN)
8258 this_sectors = BB_MAX_LEN;
8259 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8260 sectors -= this_sectors;
8261 s += this_sectors;
8262 }
8263 }
8264
8265 bb->changed = 1;
8266 if (!acknowledged)
8267 bb->unacked_exist = 1;
8268 write_sequnlock_irqrestore(&bb->lock, flags);
8269
8270 return rv;
8271 }
8272
8273 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8274 int is_new)
8275 {
8276 int rv;
8277 if (is_new)
8278 s += rdev->new_data_offset;
8279 else
8280 s += rdev->data_offset;
8281 rv = md_set_badblocks(&rdev->badblocks,
8282 s, sectors, 0);
8283 if (rv) {
8284 /* Make sure they get written out promptly */
8285 sysfs_notify_dirent_safe(rdev->sysfs_state);
8286 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8287 md_wakeup_thread(rdev->mddev->thread);
8288 }
8289 return rv;
8290 }
8291 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8292
8293 /*
8294 * Remove a range of bad blocks from the table.
8295 * This may involve extending the table if we spilt a region,
8296 * but it must not fail. So if the table becomes full, we just
8297 * drop the remove request.
8298 */
8299 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8300 {
8301 u64 *p;
8302 int lo, hi;
8303 sector_t target = s + sectors;
8304 int rv = 0;
8305
8306 if (bb->shift > 0) {
8307 /* When clearing we round the start up and the end down.
8308 * This should not matter as the shift should align with
8309 * the block size and no rounding should ever be needed.
8310 * However it is better the think a block is bad when it
8311 * isn't than to think a block is not bad when it is.
8312 */
8313 s += (1<<bb->shift) - 1;
8314 s >>= bb->shift;
8315 target >>= bb->shift;
8316 sectors = target - s;
8317 }
8318
8319 write_seqlock_irq(&bb->lock);
8320
8321 p = bb->page;
8322 lo = 0;
8323 hi = bb->count;
8324 /* Find the last range that starts before 'target' */
8325 while (hi - lo > 1) {
8326 int mid = (lo + hi) / 2;
8327 sector_t a = BB_OFFSET(p[mid]);
8328 if (a < target)
8329 lo = mid;
8330 else
8331 hi = mid;
8332 }
8333 if (hi > lo) {
8334 /* p[lo] is the last range that could overlap the
8335 * current range. Earlier ranges could also overlap,
8336 * but only this one can overlap the end of the range.
8337 */
8338 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8339 /* Partial overlap, leave the tail of this range */
8340 int ack = BB_ACK(p[lo]);
8341 sector_t a = BB_OFFSET(p[lo]);
8342 sector_t end = a + BB_LEN(p[lo]);
8343
8344 if (a < s) {
8345 /* we need to split this range */
8346 if (bb->count >= MD_MAX_BADBLOCKS) {
8347 rv = -ENOSPC;
8348 goto out;
8349 }
8350 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8351 bb->count++;
8352 p[lo] = BB_MAKE(a, s-a, ack);
8353 lo++;
8354 }
8355 p[lo] = BB_MAKE(target, end - target, ack);
8356 /* there is no longer an overlap */
8357 hi = lo;
8358 lo--;
8359 }
8360 while (lo >= 0 &&
8361 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8362 /* This range does overlap */
8363 if (BB_OFFSET(p[lo]) < s) {
8364 /* Keep the early parts of this range. */
8365 int ack = BB_ACK(p[lo]);
8366 sector_t start = BB_OFFSET(p[lo]);
8367 p[lo] = BB_MAKE(start, s - start, ack);
8368 /* now low doesn't overlap, so.. */
8369 break;
8370 }
8371 lo--;
8372 }
8373 /* 'lo' is strictly before, 'hi' is strictly after,
8374 * anything between needs to be discarded
8375 */
8376 if (hi - lo > 1) {
8377 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8378 bb->count -= (hi - lo - 1);
8379 }
8380 }
8381
8382 bb->changed = 1;
8383 out:
8384 write_sequnlock_irq(&bb->lock);
8385 return rv;
8386 }
8387
8388 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8389 int is_new)
8390 {
8391 if (is_new)
8392 s += rdev->new_data_offset;
8393 else
8394 s += rdev->data_offset;
8395 return md_clear_badblocks(&rdev->badblocks,
8396 s, sectors);
8397 }
8398 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8399
8400 /*
8401 * Acknowledge all bad blocks in a list.
8402 * This only succeeds if ->changed is clear. It is used by
8403 * in-kernel metadata updates
8404 */
8405 void md_ack_all_badblocks(struct badblocks *bb)
8406 {
8407 if (bb->page == NULL || bb->changed)
8408 /* no point even trying */
8409 return;
8410 write_seqlock_irq(&bb->lock);
8411
8412 if (bb->changed == 0 && bb->unacked_exist) {
8413 u64 *p = bb->page;
8414 int i;
8415 for (i = 0; i < bb->count ; i++) {
8416 if (!BB_ACK(p[i])) {
8417 sector_t start = BB_OFFSET(p[i]);
8418 int len = BB_LEN(p[i]);
8419 p[i] = BB_MAKE(start, len, 1);
8420 }
8421 }
8422 bb->unacked_exist = 0;
8423 }
8424 write_sequnlock_irq(&bb->lock);
8425 }
8426 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8427
8428 /* sysfs access to bad-blocks list.
8429 * We present two files.
8430 * 'bad-blocks' lists sector numbers and lengths of ranges that
8431 * are recorded as bad. The list is truncated to fit within
8432 * the one-page limit of sysfs.
8433 * Writing "sector length" to this file adds an acknowledged
8434 * bad block list.
8435 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8436 * been acknowledged. Writing to this file adds bad blocks
8437 * without acknowledging them. This is largely for testing.
8438 */
8439
8440 static ssize_t
8441 badblocks_show(struct badblocks *bb, char *page, int unack)
8442 {
8443 size_t len;
8444 int i;
8445 u64 *p = bb->page;
8446 unsigned seq;
8447
8448 if (bb->shift < 0)
8449 return 0;
8450
8451 retry:
8452 seq = read_seqbegin(&bb->lock);
8453
8454 len = 0;
8455 i = 0;
8456
8457 while (len < PAGE_SIZE && i < bb->count) {
8458 sector_t s = BB_OFFSET(p[i]);
8459 unsigned int length = BB_LEN(p[i]);
8460 int ack = BB_ACK(p[i]);
8461 i++;
8462
8463 if (unack && ack)
8464 continue;
8465
8466 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8467 (unsigned long long)s << bb->shift,
8468 length << bb->shift);
8469 }
8470 if (unack && len == 0)
8471 bb->unacked_exist = 0;
8472
8473 if (read_seqretry(&bb->lock, seq))
8474 goto retry;
8475
8476 return len;
8477 }
8478
8479 #define DO_DEBUG 1
8480
8481 static ssize_t
8482 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8483 {
8484 unsigned long long sector;
8485 int length;
8486 char newline;
8487 #ifdef DO_DEBUG
8488 /* Allow clearing via sysfs *only* for testing/debugging.
8489 * Normally only a successful write may clear a badblock
8490 */
8491 int clear = 0;
8492 if (page[0] == '-') {
8493 clear = 1;
8494 page++;
8495 }
8496 #endif /* DO_DEBUG */
8497
8498 switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8499 case 3:
8500 if (newline != '\n')
8501 return -EINVAL;
8502 case 2:
8503 if (length <= 0)
8504 return -EINVAL;
8505 break;
8506 default:
8507 return -EINVAL;
8508 }
8509
8510 #ifdef DO_DEBUG
8511 if (clear) {
8512 md_clear_badblocks(bb, sector, length);
8513 return len;
8514 }
8515 #endif /* DO_DEBUG */
8516 if (md_set_badblocks(bb, sector, length, !unack))
8517 return len;
8518 else
8519 return -ENOSPC;
8520 }
8521
8522 static int md_notify_reboot(struct notifier_block *this,
8523 unsigned long code, void *x)
8524 {
8525 struct list_head *tmp;
8526 struct mddev *mddev;
8527 int need_delay = 0;
8528
8529 for_each_mddev(mddev, tmp) {
8530 if (mddev_trylock(mddev)) {
8531 if (mddev->pers)
8532 __md_stop_writes(mddev);
8533 if (mddev->persistent)
8534 mddev->safemode = 2;
8535 mddev_unlock(mddev);
8536 }
8537 need_delay = 1;
8538 }
8539 /*
8540 * certain more exotic SCSI devices are known to be
8541 * volatile wrt too early system reboots. While the
8542 * right place to handle this issue is the given
8543 * driver, we do want to have a safe RAID driver ...
8544 */
8545 if (need_delay)
8546 mdelay(1000*1);
8547
8548 return NOTIFY_DONE;
8549 }
8550
8551 static struct notifier_block md_notifier = {
8552 .notifier_call = md_notify_reboot,
8553 .next = NULL,
8554 .priority = INT_MAX, /* before any real devices */
8555 };
8556
8557 static void md_geninit(void)
8558 {
8559 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8560
8561 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8562 }
8563
8564 static int __init md_init(void)
8565 {
8566 int ret = -ENOMEM;
8567
8568 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8569 if (!md_wq)
8570 goto err_wq;
8571
8572 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8573 if (!md_misc_wq)
8574 goto err_misc_wq;
8575
8576 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8577 goto err_md;
8578
8579 if ((ret = register_blkdev(0, "mdp")) < 0)
8580 goto err_mdp;
8581 mdp_major = ret;
8582
8583 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8584 md_probe, NULL, NULL);
8585 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8586 md_probe, NULL, NULL);
8587
8588 register_reboot_notifier(&md_notifier);
8589 raid_table_header = register_sysctl_table(raid_root_table);
8590
8591 md_geninit();
8592 return 0;
8593
8594 err_mdp:
8595 unregister_blkdev(MD_MAJOR, "md");
8596 err_md:
8597 destroy_workqueue(md_misc_wq);
8598 err_misc_wq:
8599 destroy_workqueue(md_wq);
8600 err_wq:
8601 return ret;
8602 }
8603
8604 #ifndef MODULE
8605
8606 /*
8607 * Searches all registered partitions for autorun RAID arrays
8608 * at boot time.
8609 */
8610
8611 static LIST_HEAD(all_detected_devices);
8612 struct detected_devices_node {
8613 struct list_head list;
8614 dev_t dev;
8615 };
8616
8617 void md_autodetect_dev(dev_t dev)
8618 {
8619 struct detected_devices_node *node_detected_dev;
8620
8621 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8622 if (node_detected_dev) {
8623 node_detected_dev->dev = dev;
8624 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8625 } else {
8626 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8627 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8628 }
8629 }
8630
8631
8632 static void autostart_arrays(int part)
8633 {
8634 struct md_rdev *rdev;
8635 struct detected_devices_node *node_detected_dev;
8636 dev_t dev;
8637 int i_scanned, i_passed;
8638
8639 i_scanned = 0;
8640 i_passed = 0;
8641
8642 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8643
8644 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8645 i_scanned++;
8646 node_detected_dev = list_entry(all_detected_devices.next,
8647 struct detected_devices_node, list);
8648 list_del(&node_detected_dev->list);
8649 dev = node_detected_dev->dev;
8650 kfree(node_detected_dev);
8651 rdev = md_import_device(dev,0, 90);
8652 if (IS_ERR(rdev))
8653 continue;
8654
8655 if (test_bit(Faulty, &rdev->flags)) {
8656 MD_BUG();
8657 continue;
8658 }
8659 set_bit(AutoDetected, &rdev->flags);
8660 list_add(&rdev->same_set, &pending_raid_disks);
8661 i_passed++;
8662 }
8663
8664 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8665 i_scanned, i_passed);
8666
8667 autorun_devices(part);
8668 }
8669
8670 #endif /* !MODULE */
8671
8672 static __exit void md_exit(void)
8673 {
8674 struct mddev *mddev;
8675 struct list_head *tmp;
8676 int delay = 1;
8677
8678 blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
8679 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8680
8681 unregister_blkdev(MD_MAJOR,"md");
8682 unregister_blkdev(mdp_major, "mdp");
8683 unregister_reboot_notifier(&md_notifier);
8684 unregister_sysctl_table(raid_table_header);
8685
8686 /* We cannot unload the modules while some process is
8687 * waiting for us in select() or poll() - wake them up
8688 */
8689 md_unloading = 1;
8690 while (waitqueue_active(&md_event_waiters)) {
8691 /* not safe to leave yet */
8692 wake_up(&md_event_waiters);
8693 msleep(delay);
8694 delay += delay;
8695 }
8696 remove_proc_entry("mdstat", NULL);
8697
8698 for_each_mddev(mddev, tmp) {
8699 export_array(mddev);
8700 mddev->hold_active = 0;
8701 }
8702 destroy_workqueue(md_misc_wq);
8703 destroy_workqueue(md_wq);
8704 }
8705
8706 subsys_initcall(md_init);
8707 module_exit(md_exit)
8708
8709 static int get_ro(char *buffer, struct kernel_param *kp)
8710 {
8711 return sprintf(buffer, "%d", start_readonly);
8712 }
8713 static int set_ro(const char *val, struct kernel_param *kp)
8714 {
8715 char *e;
8716 int num = simple_strtoul(val, &e, 10);
8717 if (*val && (*e == '\0' || *e == '\n')) {
8718 start_readonly = num;
8719 return 0;
8720 }
8721 return -EINVAL;
8722 }
8723
8724 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8725 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8726
8727 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8728
8729 EXPORT_SYMBOL(register_md_personality);
8730 EXPORT_SYMBOL(unregister_md_personality);
8731 EXPORT_SYMBOL(md_error);
8732 EXPORT_SYMBOL(md_done_sync);
8733 EXPORT_SYMBOL(md_write_start);
8734 EXPORT_SYMBOL(md_write_end);
8735 EXPORT_SYMBOL(md_register_thread);
8736 EXPORT_SYMBOL(md_unregister_thread);
8737 EXPORT_SYMBOL(md_wakeup_thread);
8738 EXPORT_SYMBOL(md_check_recovery);
8739 EXPORT_SYMBOL(md_reap_sync_thread);
8740 MODULE_LICENSE("GPL");
8741 MODULE_DESCRIPTION("MD RAID framework");
8742 MODULE_ALIAS("md");
8743 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
This page took 0.221973 seconds and 5 git commands to generate.