Merge remote-tracking branch 'spi/topic/tle62x0' into spi-next
[deliverable/linux.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 /* pers_list is a list of registered personalities protected
62 * by pers_lock.
63 * pers_lock does extra service to protect accesses to
64 * mddev->thread when the mutex cannot be held.
65 */
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68
69 static void md_print_devices(void);
70
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72 static struct workqueue_struct *md_wq;
73 static struct workqueue_struct *md_misc_wq;
74
75 static int remove_and_add_spares(struct mddev *mddev,
76 struct md_rdev *this);
77
78 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
79
80 /*
81 * Default number of read corrections we'll attempt on an rdev
82 * before ejecting it from the array. We divide the read error
83 * count by 2 for every hour elapsed between read errors.
84 */
85 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
86 /*
87 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
88 * is 1000 KB/sec, so the extra system load does not show up that much.
89 * Increase it if you want to have more _guaranteed_ speed. Note that
90 * the RAID driver will use the maximum available bandwidth if the IO
91 * subsystem is idle. There is also an 'absolute maximum' reconstruction
92 * speed limit - in case reconstruction slows down your system despite
93 * idle IO detection.
94 *
95 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
96 * or /sys/block/mdX/md/sync_speed_{min,max}
97 */
98
99 static int sysctl_speed_limit_min = 1000;
100 static int sysctl_speed_limit_max = 200000;
101 static inline int speed_min(struct mddev *mddev)
102 {
103 return mddev->sync_speed_min ?
104 mddev->sync_speed_min : sysctl_speed_limit_min;
105 }
106
107 static inline int speed_max(struct mddev *mddev)
108 {
109 return mddev->sync_speed_max ?
110 mddev->sync_speed_max : sysctl_speed_limit_max;
111 }
112
113 static struct ctl_table_header *raid_table_header;
114
115 static ctl_table raid_table[] = {
116 {
117 .procname = "speed_limit_min",
118 .data = &sysctl_speed_limit_min,
119 .maxlen = sizeof(int),
120 .mode = S_IRUGO|S_IWUSR,
121 .proc_handler = proc_dointvec,
122 },
123 {
124 .procname = "speed_limit_max",
125 .data = &sysctl_speed_limit_max,
126 .maxlen = sizeof(int),
127 .mode = S_IRUGO|S_IWUSR,
128 .proc_handler = proc_dointvec,
129 },
130 { }
131 };
132
133 static ctl_table raid_dir_table[] = {
134 {
135 .procname = "raid",
136 .maxlen = 0,
137 .mode = S_IRUGO|S_IXUGO,
138 .child = raid_table,
139 },
140 { }
141 };
142
143 static ctl_table raid_root_table[] = {
144 {
145 .procname = "dev",
146 .maxlen = 0,
147 .mode = 0555,
148 .child = raid_dir_table,
149 },
150 { }
151 };
152
153 static const struct block_device_operations md_fops;
154
155 static int start_readonly;
156
157 /* bio_clone_mddev
158 * like bio_clone, but with a local bio set
159 */
160
161 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
162 struct mddev *mddev)
163 {
164 struct bio *b;
165
166 if (!mddev || !mddev->bio_set)
167 return bio_alloc(gfp_mask, nr_iovecs);
168
169 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
170 if (!b)
171 return NULL;
172 return b;
173 }
174 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
175
176 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
177 struct mddev *mddev)
178 {
179 if (!mddev || !mddev->bio_set)
180 return bio_clone(bio, gfp_mask);
181
182 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
183 }
184 EXPORT_SYMBOL_GPL(bio_clone_mddev);
185
186 void md_trim_bio(struct bio *bio, int offset, int size)
187 {
188 /* 'bio' is a cloned bio which we need to trim to match
189 * the given offset and size.
190 * This requires adjusting bi_sector, bi_size, and bi_io_vec
191 */
192 int i;
193 struct bio_vec *bvec;
194 int sofar = 0;
195
196 size <<= 9;
197 if (offset == 0 && size == bio->bi_size)
198 return;
199
200 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
201
202 bio_advance(bio, offset << 9);
203
204 bio->bi_size = size;
205
206 /* avoid any complications with bi_idx being non-zero*/
207 if (bio->bi_idx) {
208 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
209 (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
210 bio->bi_vcnt -= bio->bi_idx;
211 bio->bi_idx = 0;
212 }
213 /* Make sure vcnt and last bv are not too big */
214 bio_for_each_segment(bvec, bio, i) {
215 if (sofar + bvec->bv_len > size)
216 bvec->bv_len = size - sofar;
217 if (bvec->bv_len == 0) {
218 bio->bi_vcnt = i;
219 break;
220 }
221 sofar += bvec->bv_len;
222 }
223 }
224 EXPORT_SYMBOL_GPL(md_trim_bio);
225
226 /*
227 * We have a system wide 'event count' that is incremented
228 * on any 'interesting' event, and readers of /proc/mdstat
229 * can use 'poll' or 'select' to find out when the event
230 * count increases.
231 *
232 * Events are:
233 * start array, stop array, error, add device, remove device,
234 * start build, activate spare
235 */
236 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
237 static atomic_t md_event_count;
238 void md_new_event(struct mddev *mddev)
239 {
240 atomic_inc(&md_event_count);
241 wake_up(&md_event_waiters);
242 }
243 EXPORT_SYMBOL_GPL(md_new_event);
244
245 /* Alternate version that can be called from interrupts
246 * when calling sysfs_notify isn't needed.
247 */
248 static void md_new_event_inintr(struct mddev *mddev)
249 {
250 atomic_inc(&md_event_count);
251 wake_up(&md_event_waiters);
252 }
253
254 /*
255 * Enables to iterate over all existing md arrays
256 * all_mddevs_lock protects this list.
257 */
258 static LIST_HEAD(all_mddevs);
259 static DEFINE_SPINLOCK(all_mddevs_lock);
260
261
262 /*
263 * iterates through all used mddevs in the system.
264 * We take care to grab the all_mddevs_lock whenever navigating
265 * the list, and to always hold a refcount when unlocked.
266 * Any code which breaks out of this loop while own
267 * a reference to the current mddev and must mddev_put it.
268 */
269 #define for_each_mddev(_mddev,_tmp) \
270 \
271 for (({ spin_lock(&all_mddevs_lock); \
272 _tmp = all_mddevs.next; \
273 _mddev = NULL;}); \
274 ({ if (_tmp != &all_mddevs) \
275 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
276 spin_unlock(&all_mddevs_lock); \
277 if (_mddev) mddev_put(_mddev); \
278 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
279 _tmp != &all_mddevs;}); \
280 ({ spin_lock(&all_mddevs_lock); \
281 _tmp = _tmp->next;}) \
282 )
283
284
285 /* Rather than calling directly into the personality make_request function,
286 * IO requests come here first so that we can check if the device is
287 * being suspended pending a reconfiguration.
288 * We hold a refcount over the call to ->make_request. By the time that
289 * call has finished, the bio has been linked into some internal structure
290 * and so is visible to ->quiesce(), so we don't need the refcount any more.
291 */
292 static void md_make_request(struct request_queue *q, struct bio *bio)
293 {
294 const int rw = bio_data_dir(bio);
295 struct mddev *mddev = q->queuedata;
296 int cpu;
297 unsigned int sectors;
298
299 if (mddev == NULL || mddev->pers == NULL
300 || !mddev->ready) {
301 bio_io_error(bio);
302 return;
303 }
304 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
305 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
306 return;
307 }
308 smp_rmb(); /* Ensure implications of 'active' are visible */
309 rcu_read_lock();
310 if (mddev->suspended) {
311 DEFINE_WAIT(__wait);
312 for (;;) {
313 prepare_to_wait(&mddev->sb_wait, &__wait,
314 TASK_UNINTERRUPTIBLE);
315 if (!mddev->suspended)
316 break;
317 rcu_read_unlock();
318 schedule();
319 rcu_read_lock();
320 }
321 finish_wait(&mddev->sb_wait, &__wait);
322 }
323 atomic_inc(&mddev->active_io);
324 rcu_read_unlock();
325
326 /*
327 * save the sectors now since our bio can
328 * go away inside make_request
329 */
330 sectors = bio_sectors(bio);
331 mddev->pers->make_request(mddev, bio);
332
333 cpu = part_stat_lock();
334 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
335 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
336 part_stat_unlock();
337
338 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
339 wake_up(&mddev->sb_wait);
340 }
341
342 /* mddev_suspend makes sure no new requests are submitted
343 * to the device, and that any requests that have been submitted
344 * are completely handled.
345 * Once ->stop is called and completes, the module will be completely
346 * unused.
347 */
348 void mddev_suspend(struct mddev *mddev)
349 {
350 BUG_ON(mddev->suspended);
351 mddev->suspended = 1;
352 synchronize_rcu();
353 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
354 mddev->pers->quiesce(mddev, 1);
355
356 del_timer_sync(&mddev->safemode_timer);
357 }
358 EXPORT_SYMBOL_GPL(mddev_suspend);
359
360 void mddev_resume(struct mddev *mddev)
361 {
362 mddev->suspended = 0;
363 wake_up(&mddev->sb_wait);
364 mddev->pers->quiesce(mddev, 0);
365
366 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
367 md_wakeup_thread(mddev->thread);
368 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
369 }
370 EXPORT_SYMBOL_GPL(mddev_resume);
371
372 int mddev_congested(struct mddev *mddev, int bits)
373 {
374 return mddev->suspended;
375 }
376 EXPORT_SYMBOL(mddev_congested);
377
378 /*
379 * Generic flush handling for md
380 */
381
382 static void md_end_flush(struct bio *bio, int err)
383 {
384 struct md_rdev *rdev = bio->bi_private;
385 struct mddev *mddev = rdev->mddev;
386
387 rdev_dec_pending(rdev, mddev);
388
389 if (atomic_dec_and_test(&mddev->flush_pending)) {
390 /* The pre-request flush has finished */
391 queue_work(md_wq, &mddev->flush_work);
392 }
393 bio_put(bio);
394 }
395
396 static void md_submit_flush_data(struct work_struct *ws);
397
398 static void submit_flushes(struct work_struct *ws)
399 {
400 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
401 struct md_rdev *rdev;
402
403 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
404 atomic_set(&mddev->flush_pending, 1);
405 rcu_read_lock();
406 rdev_for_each_rcu(rdev, mddev)
407 if (rdev->raid_disk >= 0 &&
408 !test_bit(Faulty, &rdev->flags)) {
409 /* Take two references, one is dropped
410 * when request finishes, one after
411 * we reclaim rcu_read_lock
412 */
413 struct bio *bi;
414 atomic_inc(&rdev->nr_pending);
415 atomic_inc(&rdev->nr_pending);
416 rcu_read_unlock();
417 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
418 bi->bi_end_io = md_end_flush;
419 bi->bi_private = rdev;
420 bi->bi_bdev = rdev->bdev;
421 atomic_inc(&mddev->flush_pending);
422 submit_bio(WRITE_FLUSH, bi);
423 rcu_read_lock();
424 rdev_dec_pending(rdev, mddev);
425 }
426 rcu_read_unlock();
427 if (atomic_dec_and_test(&mddev->flush_pending))
428 queue_work(md_wq, &mddev->flush_work);
429 }
430
431 static void md_submit_flush_data(struct work_struct *ws)
432 {
433 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
434 struct bio *bio = mddev->flush_bio;
435
436 if (bio->bi_size == 0)
437 /* an empty barrier - all done */
438 bio_endio(bio, 0);
439 else {
440 bio->bi_rw &= ~REQ_FLUSH;
441 mddev->pers->make_request(mddev, bio);
442 }
443
444 mddev->flush_bio = NULL;
445 wake_up(&mddev->sb_wait);
446 }
447
448 void md_flush_request(struct mddev *mddev, struct bio *bio)
449 {
450 spin_lock_irq(&mddev->write_lock);
451 wait_event_lock_irq(mddev->sb_wait,
452 !mddev->flush_bio,
453 mddev->write_lock);
454 mddev->flush_bio = bio;
455 spin_unlock_irq(&mddev->write_lock);
456
457 INIT_WORK(&mddev->flush_work, submit_flushes);
458 queue_work(md_wq, &mddev->flush_work);
459 }
460 EXPORT_SYMBOL(md_flush_request);
461
462 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
463 {
464 struct mddev *mddev = cb->data;
465 md_wakeup_thread(mddev->thread);
466 kfree(cb);
467 }
468 EXPORT_SYMBOL(md_unplug);
469
470 static inline struct mddev *mddev_get(struct mddev *mddev)
471 {
472 atomic_inc(&mddev->active);
473 return mddev;
474 }
475
476 static void mddev_delayed_delete(struct work_struct *ws);
477
478 static void mddev_put(struct mddev *mddev)
479 {
480 struct bio_set *bs = NULL;
481
482 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
483 return;
484 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
485 mddev->ctime == 0 && !mddev->hold_active) {
486 /* Array is not configured at all, and not held active,
487 * so destroy it */
488 list_del_init(&mddev->all_mddevs);
489 bs = mddev->bio_set;
490 mddev->bio_set = NULL;
491 if (mddev->gendisk) {
492 /* We did a probe so need to clean up. Call
493 * queue_work inside the spinlock so that
494 * flush_workqueue() after mddev_find will
495 * succeed in waiting for the work to be done.
496 */
497 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
498 queue_work(md_misc_wq, &mddev->del_work);
499 } else
500 kfree(mddev);
501 }
502 spin_unlock(&all_mddevs_lock);
503 if (bs)
504 bioset_free(bs);
505 }
506
507 void mddev_init(struct mddev *mddev)
508 {
509 mutex_init(&mddev->open_mutex);
510 mutex_init(&mddev->reconfig_mutex);
511 mutex_init(&mddev->bitmap_info.mutex);
512 INIT_LIST_HEAD(&mddev->disks);
513 INIT_LIST_HEAD(&mddev->all_mddevs);
514 init_timer(&mddev->safemode_timer);
515 atomic_set(&mddev->active, 1);
516 atomic_set(&mddev->openers, 0);
517 atomic_set(&mddev->active_io, 0);
518 spin_lock_init(&mddev->write_lock);
519 atomic_set(&mddev->flush_pending, 0);
520 init_waitqueue_head(&mddev->sb_wait);
521 init_waitqueue_head(&mddev->recovery_wait);
522 mddev->reshape_position = MaxSector;
523 mddev->reshape_backwards = 0;
524 mddev->last_sync_action = "none";
525 mddev->resync_min = 0;
526 mddev->resync_max = MaxSector;
527 mddev->level = LEVEL_NONE;
528 }
529 EXPORT_SYMBOL_GPL(mddev_init);
530
531 static struct mddev * mddev_find(dev_t unit)
532 {
533 struct mddev *mddev, *new = NULL;
534
535 if (unit && MAJOR(unit) != MD_MAJOR)
536 unit &= ~((1<<MdpMinorShift)-1);
537
538 retry:
539 spin_lock(&all_mddevs_lock);
540
541 if (unit) {
542 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
543 if (mddev->unit == unit) {
544 mddev_get(mddev);
545 spin_unlock(&all_mddevs_lock);
546 kfree(new);
547 return mddev;
548 }
549
550 if (new) {
551 list_add(&new->all_mddevs, &all_mddevs);
552 spin_unlock(&all_mddevs_lock);
553 new->hold_active = UNTIL_IOCTL;
554 return new;
555 }
556 } else if (new) {
557 /* find an unused unit number */
558 static int next_minor = 512;
559 int start = next_minor;
560 int is_free = 0;
561 int dev = 0;
562 while (!is_free) {
563 dev = MKDEV(MD_MAJOR, next_minor);
564 next_minor++;
565 if (next_minor > MINORMASK)
566 next_minor = 0;
567 if (next_minor == start) {
568 /* Oh dear, all in use. */
569 spin_unlock(&all_mddevs_lock);
570 kfree(new);
571 return NULL;
572 }
573
574 is_free = 1;
575 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
576 if (mddev->unit == dev) {
577 is_free = 0;
578 break;
579 }
580 }
581 new->unit = dev;
582 new->md_minor = MINOR(dev);
583 new->hold_active = UNTIL_STOP;
584 list_add(&new->all_mddevs, &all_mddevs);
585 spin_unlock(&all_mddevs_lock);
586 return new;
587 }
588 spin_unlock(&all_mddevs_lock);
589
590 new = kzalloc(sizeof(*new), GFP_KERNEL);
591 if (!new)
592 return NULL;
593
594 new->unit = unit;
595 if (MAJOR(unit) == MD_MAJOR)
596 new->md_minor = MINOR(unit);
597 else
598 new->md_minor = MINOR(unit) >> MdpMinorShift;
599
600 mddev_init(new);
601
602 goto retry;
603 }
604
605 static inline int mddev_lock(struct mddev * mddev)
606 {
607 return mutex_lock_interruptible(&mddev->reconfig_mutex);
608 }
609
610 static inline int mddev_is_locked(struct mddev *mddev)
611 {
612 return mutex_is_locked(&mddev->reconfig_mutex);
613 }
614
615 static inline int mddev_trylock(struct mddev * mddev)
616 {
617 return mutex_trylock(&mddev->reconfig_mutex);
618 }
619
620 static struct attribute_group md_redundancy_group;
621
622 static void mddev_unlock(struct mddev * mddev)
623 {
624 if (mddev->to_remove) {
625 /* These cannot be removed under reconfig_mutex as
626 * an access to the files will try to take reconfig_mutex
627 * while holding the file unremovable, which leads to
628 * a deadlock.
629 * So hold set sysfs_active while the remove in happeing,
630 * and anything else which might set ->to_remove or my
631 * otherwise change the sysfs namespace will fail with
632 * -EBUSY if sysfs_active is still set.
633 * We set sysfs_active under reconfig_mutex and elsewhere
634 * test it under the same mutex to ensure its correct value
635 * is seen.
636 */
637 struct attribute_group *to_remove = mddev->to_remove;
638 mddev->to_remove = NULL;
639 mddev->sysfs_active = 1;
640 mutex_unlock(&mddev->reconfig_mutex);
641
642 if (mddev->kobj.sd) {
643 if (to_remove != &md_redundancy_group)
644 sysfs_remove_group(&mddev->kobj, to_remove);
645 if (mddev->pers == NULL ||
646 mddev->pers->sync_request == NULL) {
647 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
648 if (mddev->sysfs_action)
649 sysfs_put(mddev->sysfs_action);
650 mddev->sysfs_action = NULL;
651 }
652 }
653 mddev->sysfs_active = 0;
654 } else
655 mutex_unlock(&mddev->reconfig_mutex);
656
657 /* As we've dropped the mutex we need a spinlock to
658 * make sure the thread doesn't disappear
659 */
660 spin_lock(&pers_lock);
661 md_wakeup_thread(mddev->thread);
662 spin_unlock(&pers_lock);
663 }
664
665 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
666 {
667 struct md_rdev *rdev;
668
669 rdev_for_each(rdev, mddev)
670 if (rdev->desc_nr == nr)
671 return rdev;
672
673 return NULL;
674 }
675
676 static struct md_rdev *find_rdev_nr_rcu(struct mddev *mddev, int nr)
677 {
678 struct md_rdev *rdev;
679
680 rdev_for_each_rcu(rdev, mddev)
681 if (rdev->desc_nr == nr)
682 return rdev;
683
684 return NULL;
685 }
686
687 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
688 {
689 struct md_rdev *rdev;
690
691 rdev_for_each(rdev, mddev)
692 if (rdev->bdev->bd_dev == dev)
693 return rdev;
694
695 return NULL;
696 }
697
698 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
699 {
700 struct md_rdev *rdev;
701
702 rdev_for_each_rcu(rdev, mddev)
703 if (rdev->bdev->bd_dev == dev)
704 return rdev;
705
706 return NULL;
707 }
708
709 static struct md_personality *find_pers(int level, char *clevel)
710 {
711 struct md_personality *pers;
712 list_for_each_entry(pers, &pers_list, list) {
713 if (level != LEVEL_NONE && pers->level == level)
714 return pers;
715 if (strcmp(pers->name, clevel)==0)
716 return pers;
717 }
718 return NULL;
719 }
720
721 /* return the offset of the super block in 512byte sectors */
722 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
723 {
724 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
725 return MD_NEW_SIZE_SECTORS(num_sectors);
726 }
727
728 static int alloc_disk_sb(struct md_rdev * rdev)
729 {
730 if (rdev->sb_page)
731 MD_BUG();
732
733 rdev->sb_page = alloc_page(GFP_KERNEL);
734 if (!rdev->sb_page) {
735 printk(KERN_ALERT "md: out of memory.\n");
736 return -ENOMEM;
737 }
738
739 return 0;
740 }
741
742 void md_rdev_clear(struct md_rdev *rdev)
743 {
744 if (rdev->sb_page) {
745 put_page(rdev->sb_page);
746 rdev->sb_loaded = 0;
747 rdev->sb_page = NULL;
748 rdev->sb_start = 0;
749 rdev->sectors = 0;
750 }
751 if (rdev->bb_page) {
752 put_page(rdev->bb_page);
753 rdev->bb_page = NULL;
754 }
755 kfree(rdev->badblocks.page);
756 rdev->badblocks.page = NULL;
757 }
758 EXPORT_SYMBOL_GPL(md_rdev_clear);
759
760 static void super_written(struct bio *bio, int error)
761 {
762 struct md_rdev *rdev = bio->bi_private;
763 struct mddev *mddev = rdev->mddev;
764
765 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
766 printk("md: super_written gets error=%d, uptodate=%d\n",
767 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
768 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
769 md_error(mddev, rdev);
770 }
771
772 if (atomic_dec_and_test(&mddev->pending_writes))
773 wake_up(&mddev->sb_wait);
774 bio_put(bio);
775 }
776
777 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
778 sector_t sector, int size, struct page *page)
779 {
780 /* write first size bytes of page to sector of rdev
781 * Increment mddev->pending_writes before returning
782 * and decrement it on completion, waking up sb_wait
783 * if zero is reached.
784 * If an error occurred, call md_error
785 */
786 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
787
788 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
789 bio->bi_sector = sector;
790 bio_add_page(bio, page, size, 0);
791 bio->bi_private = rdev;
792 bio->bi_end_io = super_written;
793
794 atomic_inc(&mddev->pending_writes);
795 submit_bio(WRITE_FLUSH_FUA, bio);
796 }
797
798 void md_super_wait(struct mddev *mddev)
799 {
800 /* wait for all superblock writes that were scheduled to complete */
801 DEFINE_WAIT(wq);
802 for(;;) {
803 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
804 if (atomic_read(&mddev->pending_writes)==0)
805 break;
806 schedule();
807 }
808 finish_wait(&mddev->sb_wait, &wq);
809 }
810
811 static void bi_complete(struct bio *bio, int error)
812 {
813 complete((struct completion*)bio->bi_private);
814 }
815
816 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
817 struct page *page, int rw, bool metadata_op)
818 {
819 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
820 struct completion event;
821 int ret;
822
823 rw |= REQ_SYNC;
824
825 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
826 rdev->meta_bdev : rdev->bdev;
827 if (metadata_op)
828 bio->bi_sector = sector + rdev->sb_start;
829 else if (rdev->mddev->reshape_position != MaxSector &&
830 (rdev->mddev->reshape_backwards ==
831 (sector >= rdev->mddev->reshape_position)))
832 bio->bi_sector = sector + rdev->new_data_offset;
833 else
834 bio->bi_sector = sector + rdev->data_offset;
835 bio_add_page(bio, page, size, 0);
836 init_completion(&event);
837 bio->bi_private = &event;
838 bio->bi_end_io = bi_complete;
839 submit_bio(rw, bio);
840 wait_for_completion(&event);
841
842 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
843 bio_put(bio);
844 return ret;
845 }
846 EXPORT_SYMBOL_GPL(sync_page_io);
847
848 static int read_disk_sb(struct md_rdev * rdev, int size)
849 {
850 char b[BDEVNAME_SIZE];
851 if (!rdev->sb_page) {
852 MD_BUG();
853 return -EINVAL;
854 }
855 if (rdev->sb_loaded)
856 return 0;
857
858
859 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
860 goto fail;
861 rdev->sb_loaded = 1;
862 return 0;
863
864 fail:
865 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
866 bdevname(rdev->bdev,b));
867 return -EINVAL;
868 }
869
870 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
871 {
872 return sb1->set_uuid0 == sb2->set_uuid0 &&
873 sb1->set_uuid1 == sb2->set_uuid1 &&
874 sb1->set_uuid2 == sb2->set_uuid2 &&
875 sb1->set_uuid3 == sb2->set_uuid3;
876 }
877
878 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
879 {
880 int ret;
881 mdp_super_t *tmp1, *tmp2;
882
883 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
884 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
885
886 if (!tmp1 || !tmp2) {
887 ret = 0;
888 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
889 goto abort;
890 }
891
892 *tmp1 = *sb1;
893 *tmp2 = *sb2;
894
895 /*
896 * nr_disks is not constant
897 */
898 tmp1->nr_disks = 0;
899 tmp2->nr_disks = 0;
900
901 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
902 abort:
903 kfree(tmp1);
904 kfree(tmp2);
905 return ret;
906 }
907
908
909 static u32 md_csum_fold(u32 csum)
910 {
911 csum = (csum & 0xffff) + (csum >> 16);
912 return (csum & 0xffff) + (csum >> 16);
913 }
914
915 static unsigned int calc_sb_csum(mdp_super_t * sb)
916 {
917 u64 newcsum = 0;
918 u32 *sb32 = (u32*)sb;
919 int i;
920 unsigned int disk_csum, csum;
921
922 disk_csum = sb->sb_csum;
923 sb->sb_csum = 0;
924
925 for (i = 0; i < MD_SB_BYTES/4 ; i++)
926 newcsum += sb32[i];
927 csum = (newcsum & 0xffffffff) + (newcsum>>32);
928
929
930 #ifdef CONFIG_ALPHA
931 /* This used to use csum_partial, which was wrong for several
932 * reasons including that different results are returned on
933 * different architectures. It isn't critical that we get exactly
934 * the same return value as before (we always csum_fold before
935 * testing, and that removes any differences). However as we
936 * know that csum_partial always returned a 16bit value on
937 * alphas, do a fold to maximise conformity to previous behaviour.
938 */
939 sb->sb_csum = md_csum_fold(disk_csum);
940 #else
941 sb->sb_csum = disk_csum;
942 #endif
943 return csum;
944 }
945
946
947 /*
948 * Handle superblock details.
949 * We want to be able to handle multiple superblock formats
950 * so we have a common interface to them all, and an array of
951 * different handlers.
952 * We rely on user-space to write the initial superblock, and support
953 * reading and updating of superblocks.
954 * Interface methods are:
955 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
956 * loads and validates a superblock on dev.
957 * if refdev != NULL, compare superblocks on both devices
958 * Return:
959 * 0 - dev has a superblock that is compatible with refdev
960 * 1 - dev has a superblock that is compatible and newer than refdev
961 * so dev should be used as the refdev in future
962 * -EINVAL superblock incompatible or invalid
963 * -othererror e.g. -EIO
964 *
965 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
966 * Verify that dev is acceptable into mddev.
967 * The first time, mddev->raid_disks will be 0, and data from
968 * dev should be merged in. Subsequent calls check that dev
969 * is new enough. Return 0 or -EINVAL
970 *
971 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
972 * Update the superblock for rdev with data in mddev
973 * This does not write to disc.
974 *
975 */
976
977 struct super_type {
978 char *name;
979 struct module *owner;
980 int (*load_super)(struct md_rdev *rdev,
981 struct md_rdev *refdev,
982 int minor_version);
983 int (*validate_super)(struct mddev *mddev,
984 struct md_rdev *rdev);
985 void (*sync_super)(struct mddev *mddev,
986 struct md_rdev *rdev);
987 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
988 sector_t num_sectors);
989 int (*allow_new_offset)(struct md_rdev *rdev,
990 unsigned long long new_offset);
991 };
992
993 /*
994 * Check that the given mddev has no bitmap.
995 *
996 * This function is called from the run method of all personalities that do not
997 * support bitmaps. It prints an error message and returns non-zero if mddev
998 * has a bitmap. Otherwise, it returns 0.
999 *
1000 */
1001 int md_check_no_bitmap(struct mddev *mddev)
1002 {
1003 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1004 return 0;
1005 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1006 mdname(mddev), mddev->pers->name);
1007 return 1;
1008 }
1009 EXPORT_SYMBOL(md_check_no_bitmap);
1010
1011 /*
1012 * load_super for 0.90.0
1013 */
1014 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1015 {
1016 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1017 mdp_super_t *sb;
1018 int ret;
1019
1020 /*
1021 * Calculate the position of the superblock (512byte sectors),
1022 * it's at the end of the disk.
1023 *
1024 * It also happens to be a multiple of 4Kb.
1025 */
1026 rdev->sb_start = calc_dev_sboffset(rdev);
1027
1028 ret = read_disk_sb(rdev, MD_SB_BYTES);
1029 if (ret) return ret;
1030
1031 ret = -EINVAL;
1032
1033 bdevname(rdev->bdev, b);
1034 sb = page_address(rdev->sb_page);
1035
1036 if (sb->md_magic != MD_SB_MAGIC) {
1037 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1038 b);
1039 goto abort;
1040 }
1041
1042 if (sb->major_version != 0 ||
1043 sb->minor_version < 90 ||
1044 sb->minor_version > 91) {
1045 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1046 sb->major_version, sb->minor_version,
1047 b);
1048 goto abort;
1049 }
1050
1051 if (sb->raid_disks <= 0)
1052 goto abort;
1053
1054 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1055 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1056 b);
1057 goto abort;
1058 }
1059
1060 rdev->preferred_minor = sb->md_minor;
1061 rdev->data_offset = 0;
1062 rdev->new_data_offset = 0;
1063 rdev->sb_size = MD_SB_BYTES;
1064 rdev->badblocks.shift = -1;
1065
1066 if (sb->level == LEVEL_MULTIPATH)
1067 rdev->desc_nr = -1;
1068 else
1069 rdev->desc_nr = sb->this_disk.number;
1070
1071 if (!refdev) {
1072 ret = 1;
1073 } else {
1074 __u64 ev1, ev2;
1075 mdp_super_t *refsb = page_address(refdev->sb_page);
1076 if (!uuid_equal(refsb, sb)) {
1077 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1078 b, bdevname(refdev->bdev,b2));
1079 goto abort;
1080 }
1081 if (!sb_equal(refsb, sb)) {
1082 printk(KERN_WARNING "md: %s has same UUID"
1083 " but different superblock to %s\n",
1084 b, bdevname(refdev->bdev, b2));
1085 goto abort;
1086 }
1087 ev1 = md_event(sb);
1088 ev2 = md_event(refsb);
1089 if (ev1 > ev2)
1090 ret = 1;
1091 else
1092 ret = 0;
1093 }
1094 rdev->sectors = rdev->sb_start;
1095 /* Limit to 4TB as metadata cannot record more than that.
1096 * (not needed for Linear and RAID0 as metadata doesn't
1097 * record this size)
1098 */
1099 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1100 rdev->sectors = (2ULL << 32) - 2;
1101
1102 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1103 /* "this cannot possibly happen" ... */
1104 ret = -EINVAL;
1105
1106 abort:
1107 return ret;
1108 }
1109
1110 /*
1111 * validate_super for 0.90.0
1112 */
1113 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1114 {
1115 mdp_disk_t *desc;
1116 mdp_super_t *sb = page_address(rdev->sb_page);
1117 __u64 ev1 = md_event(sb);
1118
1119 rdev->raid_disk = -1;
1120 clear_bit(Faulty, &rdev->flags);
1121 clear_bit(In_sync, &rdev->flags);
1122 clear_bit(WriteMostly, &rdev->flags);
1123
1124 if (mddev->raid_disks == 0) {
1125 mddev->major_version = 0;
1126 mddev->minor_version = sb->minor_version;
1127 mddev->patch_version = sb->patch_version;
1128 mddev->external = 0;
1129 mddev->chunk_sectors = sb->chunk_size >> 9;
1130 mddev->ctime = sb->ctime;
1131 mddev->utime = sb->utime;
1132 mddev->level = sb->level;
1133 mddev->clevel[0] = 0;
1134 mddev->layout = sb->layout;
1135 mddev->raid_disks = sb->raid_disks;
1136 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1137 mddev->events = ev1;
1138 mddev->bitmap_info.offset = 0;
1139 mddev->bitmap_info.space = 0;
1140 /* bitmap can use 60 K after the 4K superblocks */
1141 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1142 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1143 mddev->reshape_backwards = 0;
1144
1145 if (mddev->minor_version >= 91) {
1146 mddev->reshape_position = sb->reshape_position;
1147 mddev->delta_disks = sb->delta_disks;
1148 mddev->new_level = sb->new_level;
1149 mddev->new_layout = sb->new_layout;
1150 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1151 if (mddev->delta_disks < 0)
1152 mddev->reshape_backwards = 1;
1153 } else {
1154 mddev->reshape_position = MaxSector;
1155 mddev->delta_disks = 0;
1156 mddev->new_level = mddev->level;
1157 mddev->new_layout = mddev->layout;
1158 mddev->new_chunk_sectors = mddev->chunk_sectors;
1159 }
1160
1161 if (sb->state & (1<<MD_SB_CLEAN))
1162 mddev->recovery_cp = MaxSector;
1163 else {
1164 if (sb->events_hi == sb->cp_events_hi &&
1165 sb->events_lo == sb->cp_events_lo) {
1166 mddev->recovery_cp = sb->recovery_cp;
1167 } else
1168 mddev->recovery_cp = 0;
1169 }
1170
1171 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1172 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1173 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1174 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1175
1176 mddev->max_disks = MD_SB_DISKS;
1177
1178 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1179 mddev->bitmap_info.file == NULL) {
1180 mddev->bitmap_info.offset =
1181 mddev->bitmap_info.default_offset;
1182 mddev->bitmap_info.space =
1183 mddev->bitmap_info.space;
1184 }
1185
1186 } else if (mddev->pers == NULL) {
1187 /* Insist on good event counter while assembling, except
1188 * for spares (which don't need an event count) */
1189 ++ev1;
1190 if (sb->disks[rdev->desc_nr].state & (
1191 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1192 if (ev1 < mddev->events)
1193 return -EINVAL;
1194 } else if (mddev->bitmap) {
1195 /* if adding to array with a bitmap, then we can accept an
1196 * older device ... but not too old.
1197 */
1198 if (ev1 < mddev->bitmap->events_cleared)
1199 return 0;
1200 } else {
1201 if (ev1 < mddev->events)
1202 /* just a hot-add of a new device, leave raid_disk at -1 */
1203 return 0;
1204 }
1205
1206 if (mddev->level != LEVEL_MULTIPATH) {
1207 desc = sb->disks + rdev->desc_nr;
1208
1209 if (desc->state & (1<<MD_DISK_FAULTY))
1210 set_bit(Faulty, &rdev->flags);
1211 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1212 desc->raid_disk < mddev->raid_disks */) {
1213 set_bit(In_sync, &rdev->flags);
1214 rdev->raid_disk = desc->raid_disk;
1215 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1216 /* active but not in sync implies recovery up to
1217 * reshape position. We don't know exactly where
1218 * that is, so set to zero for now */
1219 if (mddev->minor_version >= 91) {
1220 rdev->recovery_offset = 0;
1221 rdev->raid_disk = desc->raid_disk;
1222 }
1223 }
1224 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1225 set_bit(WriteMostly, &rdev->flags);
1226 } else /* MULTIPATH are always insync */
1227 set_bit(In_sync, &rdev->flags);
1228 return 0;
1229 }
1230
1231 /*
1232 * sync_super for 0.90.0
1233 */
1234 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1235 {
1236 mdp_super_t *sb;
1237 struct md_rdev *rdev2;
1238 int next_spare = mddev->raid_disks;
1239
1240
1241 /* make rdev->sb match mddev data..
1242 *
1243 * 1/ zero out disks
1244 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1245 * 3/ any empty disks < next_spare become removed
1246 *
1247 * disks[0] gets initialised to REMOVED because
1248 * we cannot be sure from other fields if it has
1249 * been initialised or not.
1250 */
1251 int i;
1252 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1253
1254 rdev->sb_size = MD_SB_BYTES;
1255
1256 sb = page_address(rdev->sb_page);
1257
1258 memset(sb, 0, sizeof(*sb));
1259
1260 sb->md_magic = MD_SB_MAGIC;
1261 sb->major_version = mddev->major_version;
1262 sb->patch_version = mddev->patch_version;
1263 sb->gvalid_words = 0; /* ignored */
1264 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1265 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1266 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1267 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1268
1269 sb->ctime = mddev->ctime;
1270 sb->level = mddev->level;
1271 sb->size = mddev->dev_sectors / 2;
1272 sb->raid_disks = mddev->raid_disks;
1273 sb->md_minor = mddev->md_minor;
1274 sb->not_persistent = 0;
1275 sb->utime = mddev->utime;
1276 sb->state = 0;
1277 sb->events_hi = (mddev->events>>32);
1278 sb->events_lo = (u32)mddev->events;
1279
1280 if (mddev->reshape_position == MaxSector)
1281 sb->minor_version = 90;
1282 else {
1283 sb->minor_version = 91;
1284 sb->reshape_position = mddev->reshape_position;
1285 sb->new_level = mddev->new_level;
1286 sb->delta_disks = mddev->delta_disks;
1287 sb->new_layout = mddev->new_layout;
1288 sb->new_chunk = mddev->new_chunk_sectors << 9;
1289 }
1290 mddev->minor_version = sb->minor_version;
1291 if (mddev->in_sync)
1292 {
1293 sb->recovery_cp = mddev->recovery_cp;
1294 sb->cp_events_hi = (mddev->events>>32);
1295 sb->cp_events_lo = (u32)mddev->events;
1296 if (mddev->recovery_cp == MaxSector)
1297 sb->state = (1<< MD_SB_CLEAN);
1298 } else
1299 sb->recovery_cp = 0;
1300
1301 sb->layout = mddev->layout;
1302 sb->chunk_size = mddev->chunk_sectors << 9;
1303
1304 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1305 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1306
1307 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1308 rdev_for_each(rdev2, mddev) {
1309 mdp_disk_t *d;
1310 int desc_nr;
1311 int is_active = test_bit(In_sync, &rdev2->flags);
1312
1313 if (rdev2->raid_disk >= 0 &&
1314 sb->minor_version >= 91)
1315 /* we have nowhere to store the recovery_offset,
1316 * but if it is not below the reshape_position,
1317 * we can piggy-back on that.
1318 */
1319 is_active = 1;
1320 if (rdev2->raid_disk < 0 ||
1321 test_bit(Faulty, &rdev2->flags))
1322 is_active = 0;
1323 if (is_active)
1324 desc_nr = rdev2->raid_disk;
1325 else
1326 desc_nr = next_spare++;
1327 rdev2->desc_nr = desc_nr;
1328 d = &sb->disks[rdev2->desc_nr];
1329 nr_disks++;
1330 d->number = rdev2->desc_nr;
1331 d->major = MAJOR(rdev2->bdev->bd_dev);
1332 d->minor = MINOR(rdev2->bdev->bd_dev);
1333 if (is_active)
1334 d->raid_disk = rdev2->raid_disk;
1335 else
1336 d->raid_disk = rdev2->desc_nr; /* compatibility */
1337 if (test_bit(Faulty, &rdev2->flags))
1338 d->state = (1<<MD_DISK_FAULTY);
1339 else if (is_active) {
1340 d->state = (1<<MD_DISK_ACTIVE);
1341 if (test_bit(In_sync, &rdev2->flags))
1342 d->state |= (1<<MD_DISK_SYNC);
1343 active++;
1344 working++;
1345 } else {
1346 d->state = 0;
1347 spare++;
1348 working++;
1349 }
1350 if (test_bit(WriteMostly, &rdev2->flags))
1351 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1352 }
1353 /* now set the "removed" and "faulty" bits on any missing devices */
1354 for (i=0 ; i < mddev->raid_disks ; i++) {
1355 mdp_disk_t *d = &sb->disks[i];
1356 if (d->state == 0 && d->number == 0) {
1357 d->number = i;
1358 d->raid_disk = i;
1359 d->state = (1<<MD_DISK_REMOVED);
1360 d->state |= (1<<MD_DISK_FAULTY);
1361 failed++;
1362 }
1363 }
1364 sb->nr_disks = nr_disks;
1365 sb->active_disks = active;
1366 sb->working_disks = working;
1367 sb->failed_disks = failed;
1368 sb->spare_disks = spare;
1369
1370 sb->this_disk = sb->disks[rdev->desc_nr];
1371 sb->sb_csum = calc_sb_csum(sb);
1372 }
1373
1374 /*
1375 * rdev_size_change for 0.90.0
1376 */
1377 static unsigned long long
1378 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1379 {
1380 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1381 return 0; /* component must fit device */
1382 if (rdev->mddev->bitmap_info.offset)
1383 return 0; /* can't move bitmap */
1384 rdev->sb_start = calc_dev_sboffset(rdev);
1385 if (!num_sectors || num_sectors > rdev->sb_start)
1386 num_sectors = rdev->sb_start;
1387 /* Limit to 4TB as metadata cannot record more than that.
1388 * 4TB == 2^32 KB, or 2*2^32 sectors.
1389 */
1390 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1391 num_sectors = (2ULL << 32) - 2;
1392 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1393 rdev->sb_page);
1394 md_super_wait(rdev->mddev);
1395 return num_sectors;
1396 }
1397
1398 static int
1399 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1400 {
1401 /* non-zero offset changes not possible with v0.90 */
1402 return new_offset == 0;
1403 }
1404
1405 /*
1406 * version 1 superblock
1407 */
1408
1409 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1410 {
1411 __le32 disk_csum;
1412 u32 csum;
1413 unsigned long long newcsum;
1414 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1415 __le32 *isuper = (__le32*)sb;
1416
1417 disk_csum = sb->sb_csum;
1418 sb->sb_csum = 0;
1419 newcsum = 0;
1420 for (; size >= 4; size -= 4)
1421 newcsum += le32_to_cpu(*isuper++);
1422
1423 if (size == 2)
1424 newcsum += le16_to_cpu(*(__le16*) isuper);
1425
1426 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1427 sb->sb_csum = disk_csum;
1428 return cpu_to_le32(csum);
1429 }
1430
1431 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1432 int acknowledged);
1433 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1434 {
1435 struct mdp_superblock_1 *sb;
1436 int ret;
1437 sector_t sb_start;
1438 sector_t sectors;
1439 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1440 int bmask;
1441
1442 /*
1443 * Calculate the position of the superblock in 512byte sectors.
1444 * It is always aligned to a 4K boundary and
1445 * depeding on minor_version, it can be:
1446 * 0: At least 8K, but less than 12K, from end of device
1447 * 1: At start of device
1448 * 2: 4K from start of device.
1449 */
1450 switch(minor_version) {
1451 case 0:
1452 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1453 sb_start -= 8*2;
1454 sb_start &= ~(sector_t)(4*2-1);
1455 break;
1456 case 1:
1457 sb_start = 0;
1458 break;
1459 case 2:
1460 sb_start = 8;
1461 break;
1462 default:
1463 return -EINVAL;
1464 }
1465 rdev->sb_start = sb_start;
1466
1467 /* superblock is rarely larger than 1K, but it can be larger,
1468 * and it is safe to read 4k, so we do that
1469 */
1470 ret = read_disk_sb(rdev, 4096);
1471 if (ret) return ret;
1472
1473
1474 sb = page_address(rdev->sb_page);
1475
1476 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1477 sb->major_version != cpu_to_le32(1) ||
1478 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1479 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1480 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1481 return -EINVAL;
1482
1483 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1484 printk("md: invalid superblock checksum on %s\n",
1485 bdevname(rdev->bdev,b));
1486 return -EINVAL;
1487 }
1488 if (le64_to_cpu(sb->data_size) < 10) {
1489 printk("md: data_size too small on %s\n",
1490 bdevname(rdev->bdev,b));
1491 return -EINVAL;
1492 }
1493 if (sb->pad0 ||
1494 sb->pad3[0] ||
1495 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1496 /* Some padding is non-zero, might be a new feature */
1497 return -EINVAL;
1498
1499 rdev->preferred_minor = 0xffff;
1500 rdev->data_offset = le64_to_cpu(sb->data_offset);
1501 rdev->new_data_offset = rdev->data_offset;
1502 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1503 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1504 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1505 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1506
1507 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1508 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1509 if (rdev->sb_size & bmask)
1510 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1511
1512 if (minor_version
1513 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1514 return -EINVAL;
1515 if (minor_version
1516 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1517 return -EINVAL;
1518
1519 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1520 rdev->desc_nr = -1;
1521 else
1522 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1523
1524 if (!rdev->bb_page) {
1525 rdev->bb_page = alloc_page(GFP_KERNEL);
1526 if (!rdev->bb_page)
1527 return -ENOMEM;
1528 }
1529 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1530 rdev->badblocks.count == 0) {
1531 /* need to load the bad block list.
1532 * Currently we limit it to one page.
1533 */
1534 s32 offset;
1535 sector_t bb_sector;
1536 u64 *bbp;
1537 int i;
1538 int sectors = le16_to_cpu(sb->bblog_size);
1539 if (sectors > (PAGE_SIZE / 512))
1540 return -EINVAL;
1541 offset = le32_to_cpu(sb->bblog_offset);
1542 if (offset == 0)
1543 return -EINVAL;
1544 bb_sector = (long long)offset;
1545 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1546 rdev->bb_page, READ, true))
1547 return -EIO;
1548 bbp = (u64 *)page_address(rdev->bb_page);
1549 rdev->badblocks.shift = sb->bblog_shift;
1550 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1551 u64 bb = le64_to_cpu(*bbp);
1552 int count = bb & (0x3ff);
1553 u64 sector = bb >> 10;
1554 sector <<= sb->bblog_shift;
1555 count <<= sb->bblog_shift;
1556 if (bb + 1 == 0)
1557 break;
1558 if (md_set_badblocks(&rdev->badblocks,
1559 sector, count, 1) == 0)
1560 return -EINVAL;
1561 }
1562 } else if (sb->bblog_offset != 0)
1563 rdev->badblocks.shift = 0;
1564
1565 if (!refdev) {
1566 ret = 1;
1567 } else {
1568 __u64 ev1, ev2;
1569 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1570
1571 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1572 sb->level != refsb->level ||
1573 sb->layout != refsb->layout ||
1574 sb->chunksize != refsb->chunksize) {
1575 printk(KERN_WARNING "md: %s has strangely different"
1576 " superblock to %s\n",
1577 bdevname(rdev->bdev,b),
1578 bdevname(refdev->bdev,b2));
1579 return -EINVAL;
1580 }
1581 ev1 = le64_to_cpu(sb->events);
1582 ev2 = le64_to_cpu(refsb->events);
1583
1584 if (ev1 > ev2)
1585 ret = 1;
1586 else
1587 ret = 0;
1588 }
1589 if (minor_version) {
1590 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1591 sectors -= rdev->data_offset;
1592 } else
1593 sectors = rdev->sb_start;
1594 if (sectors < le64_to_cpu(sb->data_size))
1595 return -EINVAL;
1596 rdev->sectors = le64_to_cpu(sb->data_size);
1597 return ret;
1598 }
1599
1600 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1601 {
1602 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1603 __u64 ev1 = le64_to_cpu(sb->events);
1604
1605 rdev->raid_disk = -1;
1606 clear_bit(Faulty, &rdev->flags);
1607 clear_bit(In_sync, &rdev->flags);
1608 clear_bit(WriteMostly, &rdev->flags);
1609
1610 if (mddev->raid_disks == 0) {
1611 mddev->major_version = 1;
1612 mddev->patch_version = 0;
1613 mddev->external = 0;
1614 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1615 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1616 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1617 mddev->level = le32_to_cpu(sb->level);
1618 mddev->clevel[0] = 0;
1619 mddev->layout = le32_to_cpu(sb->layout);
1620 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1621 mddev->dev_sectors = le64_to_cpu(sb->size);
1622 mddev->events = ev1;
1623 mddev->bitmap_info.offset = 0;
1624 mddev->bitmap_info.space = 0;
1625 /* Default location for bitmap is 1K after superblock
1626 * using 3K - total of 4K
1627 */
1628 mddev->bitmap_info.default_offset = 1024 >> 9;
1629 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1630 mddev->reshape_backwards = 0;
1631
1632 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1633 memcpy(mddev->uuid, sb->set_uuid, 16);
1634
1635 mddev->max_disks = (4096-256)/2;
1636
1637 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1638 mddev->bitmap_info.file == NULL) {
1639 mddev->bitmap_info.offset =
1640 (__s32)le32_to_cpu(sb->bitmap_offset);
1641 /* Metadata doesn't record how much space is available.
1642 * For 1.0, we assume we can use up to the superblock
1643 * if before, else to 4K beyond superblock.
1644 * For others, assume no change is possible.
1645 */
1646 if (mddev->minor_version > 0)
1647 mddev->bitmap_info.space = 0;
1648 else if (mddev->bitmap_info.offset > 0)
1649 mddev->bitmap_info.space =
1650 8 - mddev->bitmap_info.offset;
1651 else
1652 mddev->bitmap_info.space =
1653 -mddev->bitmap_info.offset;
1654 }
1655
1656 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1657 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1658 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1659 mddev->new_level = le32_to_cpu(sb->new_level);
1660 mddev->new_layout = le32_to_cpu(sb->new_layout);
1661 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1662 if (mddev->delta_disks < 0 ||
1663 (mddev->delta_disks == 0 &&
1664 (le32_to_cpu(sb->feature_map)
1665 & MD_FEATURE_RESHAPE_BACKWARDS)))
1666 mddev->reshape_backwards = 1;
1667 } else {
1668 mddev->reshape_position = MaxSector;
1669 mddev->delta_disks = 0;
1670 mddev->new_level = mddev->level;
1671 mddev->new_layout = mddev->layout;
1672 mddev->new_chunk_sectors = mddev->chunk_sectors;
1673 }
1674
1675 } else if (mddev->pers == NULL) {
1676 /* Insist of good event counter while assembling, except for
1677 * spares (which don't need an event count) */
1678 ++ev1;
1679 if (rdev->desc_nr >= 0 &&
1680 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1681 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1682 if (ev1 < mddev->events)
1683 return -EINVAL;
1684 } else if (mddev->bitmap) {
1685 /* If adding to array with a bitmap, then we can accept an
1686 * older device, but not too old.
1687 */
1688 if (ev1 < mddev->bitmap->events_cleared)
1689 return 0;
1690 } else {
1691 if (ev1 < mddev->events)
1692 /* just a hot-add of a new device, leave raid_disk at -1 */
1693 return 0;
1694 }
1695 if (mddev->level != LEVEL_MULTIPATH) {
1696 int role;
1697 if (rdev->desc_nr < 0 ||
1698 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1699 role = 0xffff;
1700 rdev->desc_nr = -1;
1701 } else
1702 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1703 switch(role) {
1704 case 0xffff: /* spare */
1705 break;
1706 case 0xfffe: /* faulty */
1707 set_bit(Faulty, &rdev->flags);
1708 break;
1709 default:
1710 if ((le32_to_cpu(sb->feature_map) &
1711 MD_FEATURE_RECOVERY_OFFSET))
1712 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1713 else
1714 set_bit(In_sync, &rdev->flags);
1715 rdev->raid_disk = role;
1716 break;
1717 }
1718 if (sb->devflags & WriteMostly1)
1719 set_bit(WriteMostly, &rdev->flags);
1720 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1721 set_bit(Replacement, &rdev->flags);
1722 } else /* MULTIPATH are always insync */
1723 set_bit(In_sync, &rdev->flags);
1724
1725 return 0;
1726 }
1727
1728 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1729 {
1730 struct mdp_superblock_1 *sb;
1731 struct md_rdev *rdev2;
1732 int max_dev, i;
1733 /* make rdev->sb match mddev and rdev data. */
1734
1735 sb = page_address(rdev->sb_page);
1736
1737 sb->feature_map = 0;
1738 sb->pad0 = 0;
1739 sb->recovery_offset = cpu_to_le64(0);
1740 memset(sb->pad3, 0, sizeof(sb->pad3));
1741
1742 sb->utime = cpu_to_le64((__u64)mddev->utime);
1743 sb->events = cpu_to_le64(mddev->events);
1744 if (mddev->in_sync)
1745 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1746 else
1747 sb->resync_offset = cpu_to_le64(0);
1748
1749 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1750
1751 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1752 sb->size = cpu_to_le64(mddev->dev_sectors);
1753 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1754 sb->level = cpu_to_le32(mddev->level);
1755 sb->layout = cpu_to_le32(mddev->layout);
1756
1757 if (test_bit(WriteMostly, &rdev->flags))
1758 sb->devflags |= WriteMostly1;
1759 else
1760 sb->devflags &= ~WriteMostly1;
1761 sb->data_offset = cpu_to_le64(rdev->data_offset);
1762 sb->data_size = cpu_to_le64(rdev->sectors);
1763
1764 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1765 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1766 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1767 }
1768
1769 if (rdev->raid_disk >= 0 &&
1770 !test_bit(In_sync, &rdev->flags)) {
1771 sb->feature_map |=
1772 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1773 sb->recovery_offset =
1774 cpu_to_le64(rdev->recovery_offset);
1775 }
1776 if (test_bit(Replacement, &rdev->flags))
1777 sb->feature_map |=
1778 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1779
1780 if (mddev->reshape_position != MaxSector) {
1781 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1782 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1783 sb->new_layout = cpu_to_le32(mddev->new_layout);
1784 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1785 sb->new_level = cpu_to_le32(mddev->new_level);
1786 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1787 if (mddev->delta_disks == 0 &&
1788 mddev->reshape_backwards)
1789 sb->feature_map
1790 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1791 if (rdev->new_data_offset != rdev->data_offset) {
1792 sb->feature_map
1793 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1794 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1795 - rdev->data_offset));
1796 }
1797 }
1798
1799 if (rdev->badblocks.count == 0)
1800 /* Nothing to do for bad blocks*/ ;
1801 else if (sb->bblog_offset == 0)
1802 /* Cannot record bad blocks on this device */
1803 md_error(mddev, rdev);
1804 else {
1805 struct badblocks *bb = &rdev->badblocks;
1806 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1807 u64 *p = bb->page;
1808 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1809 if (bb->changed) {
1810 unsigned seq;
1811
1812 retry:
1813 seq = read_seqbegin(&bb->lock);
1814
1815 memset(bbp, 0xff, PAGE_SIZE);
1816
1817 for (i = 0 ; i < bb->count ; i++) {
1818 u64 internal_bb = p[i];
1819 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1820 | BB_LEN(internal_bb));
1821 bbp[i] = cpu_to_le64(store_bb);
1822 }
1823 bb->changed = 0;
1824 if (read_seqretry(&bb->lock, seq))
1825 goto retry;
1826
1827 bb->sector = (rdev->sb_start +
1828 (int)le32_to_cpu(sb->bblog_offset));
1829 bb->size = le16_to_cpu(sb->bblog_size);
1830 }
1831 }
1832
1833 max_dev = 0;
1834 rdev_for_each(rdev2, mddev)
1835 if (rdev2->desc_nr+1 > max_dev)
1836 max_dev = rdev2->desc_nr+1;
1837
1838 if (max_dev > le32_to_cpu(sb->max_dev)) {
1839 int bmask;
1840 sb->max_dev = cpu_to_le32(max_dev);
1841 rdev->sb_size = max_dev * 2 + 256;
1842 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1843 if (rdev->sb_size & bmask)
1844 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1845 } else
1846 max_dev = le32_to_cpu(sb->max_dev);
1847
1848 for (i=0; i<max_dev;i++)
1849 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1850
1851 rdev_for_each(rdev2, mddev) {
1852 i = rdev2->desc_nr;
1853 if (test_bit(Faulty, &rdev2->flags))
1854 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1855 else if (test_bit(In_sync, &rdev2->flags))
1856 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1857 else if (rdev2->raid_disk >= 0)
1858 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1859 else
1860 sb->dev_roles[i] = cpu_to_le16(0xffff);
1861 }
1862
1863 sb->sb_csum = calc_sb_1_csum(sb);
1864 }
1865
1866 static unsigned long long
1867 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1868 {
1869 struct mdp_superblock_1 *sb;
1870 sector_t max_sectors;
1871 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1872 return 0; /* component must fit device */
1873 if (rdev->data_offset != rdev->new_data_offset)
1874 return 0; /* too confusing */
1875 if (rdev->sb_start < rdev->data_offset) {
1876 /* minor versions 1 and 2; superblock before data */
1877 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1878 max_sectors -= rdev->data_offset;
1879 if (!num_sectors || num_sectors > max_sectors)
1880 num_sectors = max_sectors;
1881 } else if (rdev->mddev->bitmap_info.offset) {
1882 /* minor version 0 with bitmap we can't move */
1883 return 0;
1884 } else {
1885 /* minor version 0; superblock after data */
1886 sector_t sb_start;
1887 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1888 sb_start &= ~(sector_t)(4*2 - 1);
1889 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1890 if (!num_sectors || num_sectors > max_sectors)
1891 num_sectors = max_sectors;
1892 rdev->sb_start = sb_start;
1893 }
1894 sb = page_address(rdev->sb_page);
1895 sb->data_size = cpu_to_le64(num_sectors);
1896 sb->super_offset = rdev->sb_start;
1897 sb->sb_csum = calc_sb_1_csum(sb);
1898 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1899 rdev->sb_page);
1900 md_super_wait(rdev->mddev);
1901 return num_sectors;
1902
1903 }
1904
1905 static int
1906 super_1_allow_new_offset(struct md_rdev *rdev,
1907 unsigned long long new_offset)
1908 {
1909 /* All necessary checks on new >= old have been done */
1910 struct bitmap *bitmap;
1911 if (new_offset >= rdev->data_offset)
1912 return 1;
1913
1914 /* with 1.0 metadata, there is no metadata to tread on
1915 * so we can always move back */
1916 if (rdev->mddev->minor_version == 0)
1917 return 1;
1918
1919 /* otherwise we must be sure not to step on
1920 * any metadata, so stay:
1921 * 36K beyond start of superblock
1922 * beyond end of badblocks
1923 * beyond write-intent bitmap
1924 */
1925 if (rdev->sb_start + (32+4)*2 > new_offset)
1926 return 0;
1927 bitmap = rdev->mddev->bitmap;
1928 if (bitmap && !rdev->mddev->bitmap_info.file &&
1929 rdev->sb_start + rdev->mddev->bitmap_info.offset +
1930 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1931 return 0;
1932 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1933 return 0;
1934
1935 return 1;
1936 }
1937
1938 static struct super_type super_types[] = {
1939 [0] = {
1940 .name = "0.90.0",
1941 .owner = THIS_MODULE,
1942 .load_super = super_90_load,
1943 .validate_super = super_90_validate,
1944 .sync_super = super_90_sync,
1945 .rdev_size_change = super_90_rdev_size_change,
1946 .allow_new_offset = super_90_allow_new_offset,
1947 },
1948 [1] = {
1949 .name = "md-1",
1950 .owner = THIS_MODULE,
1951 .load_super = super_1_load,
1952 .validate_super = super_1_validate,
1953 .sync_super = super_1_sync,
1954 .rdev_size_change = super_1_rdev_size_change,
1955 .allow_new_offset = super_1_allow_new_offset,
1956 },
1957 };
1958
1959 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1960 {
1961 if (mddev->sync_super) {
1962 mddev->sync_super(mddev, rdev);
1963 return;
1964 }
1965
1966 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1967
1968 super_types[mddev->major_version].sync_super(mddev, rdev);
1969 }
1970
1971 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1972 {
1973 struct md_rdev *rdev, *rdev2;
1974
1975 rcu_read_lock();
1976 rdev_for_each_rcu(rdev, mddev1)
1977 rdev_for_each_rcu(rdev2, mddev2)
1978 if (rdev->bdev->bd_contains ==
1979 rdev2->bdev->bd_contains) {
1980 rcu_read_unlock();
1981 return 1;
1982 }
1983 rcu_read_unlock();
1984 return 0;
1985 }
1986
1987 static LIST_HEAD(pending_raid_disks);
1988
1989 /*
1990 * Try to register data integrity profile for an mddev
1991 *
1992 * This is called when an array is started and after a disk has been kicked
1993 * from the array. It only succeeds if all working and active component devices
1994 * are integrity capable with matching profiles.
1995 */
1996 int md_integrity_register(struct mddev *mddev)
1997 {
1998 struct md_rdev *rdev, *reference = NULL;
1999
2000 if (list_empty(&mddev->disks))
2001 return 0; /* nothing to do */
2002 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
2003 return 0; /* shouldn't register, or already is */
2004 rdev_for_each(rdev, mddev) {
2005 /* skip spares and non-functional disks */
2006 if (test_bit(Faulty, &rdev->flags))
2007 continue;
2008 if (rdev->raid_disk < 0)
2009 continue;
2010 if (!reference) {
2011 /* Use the first rdev as the reference */
2012 reference = rdev;
2013 continue;
2014 }
2015 /* does this rdev's profile match the reference profile? */
2016 if (blk_integrity_compare(reference->bdev->bd_disk,
2017 rdev->bdev->bd_disk) < 0)
2018 return -EINVAL;
2019 }
2020 if (!reference || !bdev_get_integrity(reference->bdev))
2021 return 0;
2022 /*
2023 * All component devices are integrity capable and have matching
2024 * profiles, register the common profile for the md device.
2025 */
2026 if (blk_integrity_register(mddev->gendisk,
2027 bdev_get_integrity(reference->bdev)) != 0) {
2028 printk(KERN_ERR "md: failed to register integrity for %s\n",
2029 mdname(mddev));
2030 return -EINVAL;
2031 }
2032 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2033 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2034 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2035 mdname(mddev));
2036 return -EINVAL;
2037 }
2038 return 0;
2039 }
2040 EXPORT_SYMBOL(md_integrity_register);
2041
2042 /* Disable data integrity if non-capable/non-matching disk is being added */
2043 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2044 {
2045 struct blk_integrity *bi_rdev;
2046 struct blk_integrity *bi_mddev;
2047
2048 if (!mddev->gendisk)
2049 return;
2050
2051 bi_rdev = bdev_get_integrity(rdev->bdev);
2052 bi_mddev = blk_get_integrity(mddev->gendisk);
2053
2054 if (!bi_mddev) /* nothing to do */
2055 return;
2056 if (rdev->raid_disk < 0) /* skip spares */
2057 return;
2058 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2059 rdev->bdev->bd_disk) >= 0)
2060 return;
2061 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2062 blk_integrity_unregister(mddev->gendisk);
2063 }
2064 EXPORT_SYMBOL(md_integrity_add_rdev);
2065
2066 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2067 {
2068 char b[BDEVNAME_SIZE];
2069 struct kobject *ko;
2070 char *s;
2071 int err;
2072
2073 if (rdev->mddev) {
2074 MD_BUG();
2075 return -EINVAL;
2076 }
2077
2078 /* prevent duplicates */
2079 if (find_rdev(mddev, rdev->bdev->bd_dev))
2080 return -EEXIST;
2081
2082 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2083 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2084 rdev->sectors < mddev->dev_sectors)) {
2085 if (mddev->pers) {
2086 /* Cannot change size, so fail
2087 * If mddev->level <= 0, then we don't care
2088 * about aligning sizes (e.g. linear)
2089 */
2090 if (mddev->level > 0)
2091 return -ENOSPC;
2092 } else
2093 mddev->dev_sectors = rdev->sectors;
2094 }
2095
2096 /* Verify rdev->desc_nr is unique.
2097 * If it is -1, assign a free number, else
2098 * check number is not in use
2099 */
2100 if (rdev->desc_nr < 0) {
2101 int choice = 0;
2102 if (mddev->pers) choice = mddev->raid_disks;
2103 while (find_rdev_nr(mddev, choice))
2104 choice++;
2105 rdev->desc_nr = choice;
2106 } else {
2107 if (find_rdev_nr(mddev, rdev->desc_nr))
2108 return -EBUSY;
2109 }
2110 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2111 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2112 mdname(mddev), mddev->max_disks);
2113 return -EBUSY;
2114 }
2115 bdevname(rdev->bdev,b);
2116 while ( (s=strchr(b, '/')) != NULL)
2117 *s = '!';
2118
2119 rdev->mddev = mddev;
2120 printk(KERN_INFO "md: bind<%s>\n", b);
2121
2122 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2123 goto fail;
2124
2125 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2126 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2127 /* failure here is OK */;
2128 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2129
2130 list_add_rcu(&rdev->same_set, &mddev->disks);
2131 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2132
2133 /* May as well allow recovery to be retried once */
2134 mddev->recovery_disabled++;
2135
2136 return 0;
2137
2138 fail:
2139 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2140 b, mdname(mddev));
2141 return err;
2142 }
2143
2144 static void md_delayed_delete(struct work_struct *ws)
2145 {
2146 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2147 kobject_del(&rdev->kobj);
2148 kobject_put(&rdev->kobj);
2149 }
2150
2151 static void unbind_rdev_from_array(struct md_rdev * rdev)
2152 {
2153 char b[BDEVNAME_SIZE];
2154 if (!rdev->mddev) {
2155 MD_BUG();
2156 return;
2157 }
2158 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2159 list_del_rcu(&rdev->same_set);
2160 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2161 rdev->mddev = NULL;
2162 sysfs_remove_link(&rdev->kobj, "block");
2163 sysfs_put(rdev->sysfs_state);
2164 rdev->sysfs_state = NULL;
2165 rdev->badblocks.count = 0;
2166 /* We need to delay this, otherwise we can deadlock when
2167 * writing to 'remove' to "dev/state". We also need
2168 * to delay it due to rcu usage.
2169 */
2170 synchronize_rcu();
2171 INIT_WORK(&rdev->del_work, md_delayed_delete);
2172 kobject_get(&rdev->kobj);
2173 queue_work(md_misc_wq, &rdev->del_work);
2174 }
2175
2176 /*
2177 * prevent the device from being mounted, repartitioned or
2178 * otherwise reused by a RAID array (or any other kernel
2179 * subsystem), by bd_claiming the device.
2180 */
2181 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2182 {
2183 int err = 0;
2184 struct block_device *bdev;
2185 char b[BDEVNAME_SIZE];
2186
2187 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2188 shared ? (struct md_rdev *)lock_rdev : rdev);
2189 if (IS_ERR(bdev)) {
2190 printk(KERN_ERR "md: could not open %s.\n",
2191 __bdevname(dev, b));
2192 return PTR_ERR(bdev);
2193 }
2194 rdev->bdev = bdev;
2195 return err;
2196 }
2197
2198 static void unlock_rdev(struct md_rdev *rdev)
2199 {
2200 struct block_device *bdev = rdev->bdev;
2201 rdev->bdev = NULL;
2202 if (!bdev)
2203 MD_BUG();
2204 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2205 }
2206
2207 void md_autodetect_dev(dev_t dev);
2208
2209 static void export_rdev(struct md_rdev * rdev)
2210 {
2211 char b[BDEVNAME_SIZE];
2212 printk(KERN_INFO "md: export_rdev(%s)\n",
2213 bdevname(rdev->bdev,b));
2214 if (rdev->mddev)
2215 MD_BUG();
2216 md_rdev_clear(rdev);
2217 #ifndef MODULE
2218 if (test_bit(AutoDetected, &rdev->flags))
2219 md_autodetect_dev(rdev->bdev->bd_dev);
2220 #endif
2221 unlock_rdev(rdev);
2222 kobject_put(&rdev->kobj);
2223 }
2224
2225 static void kick_rdev_from_array(struct md_rdev * rdev)
2226 {
2227 unbind_rdev_from_array(rdev);
2228 export_rdev(rdev);
2229 }
2230
2231 static void export_array(struct mddev *mddev)
2232 {
2233 struct md_rdev *rdev, *tmp;
2234
2235 rdev_for_each_safe(rdev, tmp, mddev) {
2236 if (!rdev->mddev) {
2237 MD_BUG();
2238 continue;
2239 }
2240 kick_rdev_from_array(rdev);
2241 }
2242 if (!list_empty(&mddev->disks))
2243 MD_BUG();
2244 mddev->raid_disks = 0;
2245 mddev->major_version = 0;
2246 }
2247
2248 static void print_desc(mdp_disk_t *desc)
2249 {
2250 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2251 desc->major,desc->minor,desc->raid_disk,desc->state);
2252 }
2253
2254 static void print_sb_90(mdp_super_t *sb)
2255 {
2256 int i;
2257
2258 printk(KERN_INFO
2259 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2260 sb->major_version, sb->minor_version, sb->patch_version,
2261 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2262 sb->ctime);
2263 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2264 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2265 sb->md_minor, sb->layout, sb->chunk_size);
2266 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
2267 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2268 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2269 sb->failed_disks, sb->spare_disks,
2270 sb->sb_csum, (unsigned long)sb->events_lo);
2271
2272 printk(KERN_INFO);
2273 for (i = 0; i < MD_SB_DISKS; i++) {
2274 mdp_disk_t *desc;
2275
2276 desc = sb->disks + i;
2277 if (desc->number || desc->major || desc->minor ||
2278 desc->raid_disk || (desc->state && (desc->state != 4))) {
2279 printk(" D %2d: ", i);
2280 print_desc(desc);
2281 }
2282 }
2283 printk(KERN_INFO "md: THIS: ");
2284 print_desc(&sb->this_disk);
2285 }
2286
2287 static void print_sb_1(struct mdp_superblock_1 *sb)
2288 {
2289 __u8 *uuid;
2290
2291 uuid = sb->set_uuid;
2292 printk(KERN_INFO
2293 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2294 "md: Name: \"%s\" CT:%llu\n",
2295 le32_to_cpu(sb->major_version),
2296 le32_to_cpu(sb->feature_map),
2297 uuid,
2298 sb->set_name,
2299 (unsigned long long)le64_to_cpu(sb->ctime)
2300 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2301
2302 uuid = sb->device_uuid;
2303 printk(KERN_INFO
2304 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2305 " RO:%llu\n"
2306 "md: Dev:%08x UUID: %pU\n"
2307 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2308 "md: (MaxDev:%u) \n",
2309 le32_to_cpu(sb->level),
2310 (unsigned long long)le64_to_cpu(sb->size),
2311 le32_to_cpu(sb->raid_disks),
2312 le32_to_cpu(sb->layout),
2313 le32_to_cpu(sb->chunksize),
2314 (unsigned long long)le64_to_cpu(sb->data_offset),
2315 (unsigned long long)le64_to_cpu(sb->data_size),
2316 (unsigned long long)le64_to_cpu(sb->super_offset),
2317 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2318 le32_to_cpu(sb->dev_number),
2319 uuid,
2320 sb->devflags,
2321 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2322 (unsigned long long)le64_to_cpu(sb->events),
2323 (unsigned long long)le64_to_cpu(sb->resync_offset),
2324 le32_to_cpu(sb->sb_csum),
2325 le32_to_cpu(sb->max_dev)
2326 );
2327 }
2328
2329 static void print_rdev(struct md_rdev *rdev, int major_version)
2330 {
2331 char b[BDEVNAME_SIZE];
2332 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2333 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2334 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2335 rdev->desc_nr);
2336 if (rdev->sb_loaded) {
2337 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2338 switch (major_version) {
2339 case 0:
2340 print_sb_90(page_address(rdev->sb_page));
2341 break;
2342 case 1:
2343 print_sb_1(page_address(rdev->sb_page));
2344 break;
2345 }
2346 } else
2347 printk(KERN_INFO "md: no rdev superblock!\n");
2348 }
2349
2350 static void md_print_devices(void)
2351 {
2352 struct list_head *tmp;
2353 struct md_rdev *rdev;
2354 struct mddev *mddev;
2355 char b[BDEVNAME_SIZE];
2356
2357 printk("\n");
2358 printk("md: **********************************\n");
2359 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2360 printk("md: **********************************\n");
2361 for_each_mddev(mddev, tmp) {
2362
2363 if (mddev->bitmap)
2364 bitmap_print_sb(mddev->bitmap);
2365 else
2366 printk("%s: ", mdname(mddev));
2367 rdev_for_each(rdev, mddev)
2368 printk("<%s>", bdevname(rdev->bdev,b));
2369 printk("\n");
2370
2371 rdev_for_each(rdev, mddev)
2372 print_rdev(rdev, mddev->major_version);
2373 }
2374 printk("md: **********************************\n");
2375 printk("\n");
2376 }
2377
2378
2379 static void sync_sbs(struct mddev * mddev, int nospares)
2380 {
2381 /* Update each superblock (in-memory image), but
2382 * if we are allowed to, skip spares which already
2383 * have the right event counter, or have one earlier
2384 * (which would mean they aren't being marked as dirty
2385 * with the rest of the array)
2386 */
2387 struct md_rdev *rdev;
2388 rdev_for_each(rdev, mddev) {
2389 if (rdev->sb_events == mddev->events ||
2390 (nospares &&
2391 rdev->raid_disk < 0 &&
2392 rdev->sb_events+1 == mddev->events)) {
2393 /* Don't update this superblock */
2394 rdev->sb_loaded = 2;
2395 } else {
2396 sync_super(mddev, rdev);
2397 rdev->sb_loaded = 1;
2398 }
2399 }
2400 }
2401
2402 static void md_update_sb(struct mddev * mddev, int force_change)
2403 {
2404 struct md_rdev *rdev;
2405 int sync_req;
2406 int nospares = 0;
2407 int any_badblocks_changed = 0;
2408
2409 if (mddev->ro) {
2410 if (force_change)
2411 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2412 return;
2413 }
2414 repeat:
2415 /* First make sure individual recovery_offsets are correct */
2416 rdev_for_each(rdev, mddev) {
2417 if (rdev->raid_disk >= 0 &&
2418 mddev->delta_disks >= 0 &&
2419 !test_bit(In_sync, &rdev->flags) &&
2420 mddev->curr_resync_completed > rdev->recovery_offset)
2421 rdev->recovery_offset = mddev->curr_resync_completed;
2422
2423 }
2424 if (!mddev->persistent) {
2425 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2426 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2427 if (!mddev->external) {
2428 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2429 rdev_for_each(rdev, mddev) {
2430 if (rdev->badblocks.changed) {
2431 rdev->badblocks.changed = 0;
2432 md_ack_all_badblocks(&rdev->badblocks);
2433 md_error(mddev, rdev);
2434 }
2435 clear_bit(Blocked, &rdev->flags);
2436 clear_bit(BlockedBadBlocks, &rdev->flags);
2437 wake_up(&rdev->blocked_wait);
2438 }
2439 }
2440 wake_up(&mddev->sb_wait);
2441 return;
2442 }
2443
2444 spin_lock_irq(&mddev->write_lock);
2445
2446 mddev->utime = get_seconds();
2447
2448 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2449 force_change = 1;
2450 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2451 /* just a clean<-> dirty transition, possibly leave spares alone,
2452 * though if events isn't the right even/odd, we will have to do
2453 * spares after all
2454 */
2455 nospares = 1;
2456 if (force_change)
2457 nospares = 0;
2458 if (mddev->degraded)
2459 /* If the array is degraded, then skipping spares is both
2460 * dangerous and fairly pointless.
2461 * Dangerous because a device that was removed from the array
2462 * might have a event_count that still looks up-to-date,
2463 * so it can be re-added without a resync.
2464 * Pointless because if there are any spares to skip,
2465 * then a recovery will happen and soon that array won't
2466 * be degraded any more and the spare can go back to sleep then.
2467 */
2468 nospares = 0;
2469
2470 sync_req = mddev->in_sync;
2471
2472 /* If this is just a dirty<->clean transition, and the array is clean
2473 * and 'events' is odd, we can roll back to the previous clean state */
2474 if (nospares
2475 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2476 && mddev->can_decrease_events
2477 && mddev->events != 1) {
2478 mddev->events--;
2479 mddev->can_decrease_events = 0;
2480 } else {
2481 /* otherwise we have to go forward and ... */
2482 mddev->events ++;
2483 mddev->can_decrease_events = nospares;
2484 }
2485
2486 if (!mddev->events) {
2487 /*
2488 * oops, this 64-bit counter should never wrap.
2489 * Either we are in around ~1 trillion A.C., assuming
2490 * 1 reboot per second, or we have a bug:
2491 */
2492 MD_BUG();
2493 mddev->events --;
2494 }
2495
2496 rdev_for_each(rdev, mddev) {
2497 if (rdev->badblocks.changed)
2498 any_badblocks_changed++;
2499 if (test_bit(Faulty, &rdev->flags))
2500 set_bit(FaultRecorded, &rdev->flags);
2501 }
2502
2503 sync_sbs(mddev, nospares);
2504 spin_unlock_irq(&mddev->write_lock);
2505
2506 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2507 mdname(mddev), mddev->in_sync);
2508
2509 bitmap_update_sb(mddev->bitmap);
2510 rdev_for_each(rdev, mddev) {
2511 char b[BDEVNAME_SIZE];
2512
2513 if (rdev->sb_loaded != 1)
2514 continue; /* no noise on spare devices */
2515
2516 if (!test_bit(Faulty, &rdev->flags) &&
2517 rdev->saved_raid_disk == -1) {
2518 md_super_write(mddev,rdev,
2519 rdev->sb_start, rdev->sb_size,
2520 rdev->sb_page);
2521 pr_debug("md: (write) %s's sb offset: %llu\n",
2522 bdevname(rdev->bdev, b),
2523 (unsigned long long)rdev->sb_start);
2524 rdev->sb_events = mddev->events;
2525 if (rdev->badblocks.size) {
2526 md_super_write(mddev, rdev,
2527 rdev->badblocks.sector,
2528 rdev->badblocks.size << 9,
2529 rdev->bb_page);
2530 rdev->badblocks.size = 0;
2531 }
2532
2533 } else if (test_bit(Faulty, &rdev->flags))
2534 pr_debug("md: %s (skipping faulty)\n",
2535 bdevname(rdev->bdev, b));
2536 else
2537 pr_debug("(skipping incremental s/r ");
2538
2539 if (mddev->level == LEVEL_MULTIPATH)
2540 /* only need to write one superblock... */
2541 break;
2542 }
2543 md_super_wait(mddev);
2544 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2545
2546 spin_lock_irq(&mddev->write_lock);
2547 if (mddev->in_sync != sync_req ||
2548 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2549 /* have to write it out again */
2550 spin_unlock_irq(&mddev->write_lock);
2551 goto repeat;
2552 }
2553 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2554 spin_unlock_irq(&mddev->write_lock);
2555 wake_up(&mddev->sb_wait);
2556 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2557 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2558
2559 rdev_for_each(rdev, mddev) {
2560 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2561 clear_bit(Blocked, &rdev->flags);
2562
2563 if (any_badblocks_changed)
2564 md_ack_all_badblocks(&rdev->badblocks);
2565 clear_bit(BlockedBadBlocks, &rdev->flags);
2566 wake_up(&rdev->blocked_wait);
2567 }
2568 }
2569
2570 /* words written to sysfs files may, or may not, be \n terminated.
2571 * We want to accept with case. For this we use cmd_match.
2572 */
2573 static int cmd_match(const char *cmd, const char *str)
2574 {
2575 /* See if cmd, written into a sysfs file, matches
2576 * str. They must either be the same, or cmd can
2577 * have a trailing newline
2578 */
2579 while (*cmd && *str && *cmd == *str) {
2580 cmd++;
2581 str++;
2582 }
2583 if (*cmd == '\n')
2584 cmd++;
2585 if (*str || *cmd)
2586 return 0;
2587 return 1;
2588 }
2589
2590 struct rdev_sysfs_entry {
2591 struct attribute attr;
2592 ssize_t (*show)(struct md_rdev *, char *);
2593 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2594 };
2595
2596 static ssize_t
2597 state_show(struct md_rdev *rdev, char *page)
2598 {
2599 char *sep = "";
2600 size_t len = 0;
2601
2602 if (test_bit(Faulty, &rdev->flags) ||
2603 rdev->badblocks.unacked_exist) {
2604 len+= sprintf(page+len, "%sfaulty",sep);
2605 sep = ",";
2606 }
2607 if (test_bit(In_sync, &rdev->flags)) {
2608 len += sprintf(page+len, "%sin_sync",sep);
2609 sep = ",";
2610 }
2611 if (test_bit(WriteMostly, &rdev->flags)) {
2612 len += sprintf(page+len, "%swrite_mostly",sep);
2613 sep = ",";
2614 }
2615 if (test_bit(Blocked, &rdev->flags) ||
2616 (rdev->badblocks.unacked_exist
2617 && !test_bit(Faulty, &rdev->flags))) {
2618 len += sprintf(page+len, "%sblocked", sep);
2619 sep = ",";
2620 }
2621 if (!test_bit(Faulty, &rdev->flags) &&
2622 !test_bit(In_sync, &rdev->flags)) {
2623 len += sprintf(page+len, "%sspare", sep);
2624 sep = ",";
2625 }
2626 if (test_bit(WriteErrorSeen, &rdev->flags)) {
2627 len += sprintf(page+len, "%swrite_error", sep);
2628 sep = ",";
2629 }
2630 if (test_bit(WantReplacement, &rdev->flags)) {
2631 len += sprintf(page+len, "%swant_replacement", sep);
2632 sep = ",";
2633 }
2634 if (test_bit(Replacement, &rdev->flags)) {
2635 len += sprintf(page+len, "%sreplacement", sep);
2636 sep = ",";
2637 }
2638
2639 return len+sprintf(page+len, "\n");
2640 }
2641
2642 static ssize_t
2643 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2644 {
2645 /* can write
2646 * faulty - simulates an error
2647 * remove - disconnects the device
2648 * writemostly - sets write_mostly
2649 * -writemostly - clears write_mostly
2650 * blocked - sets the Blocked flags
2651 * -blocked - clears the Blocked and possibly simulates an error
2652 * insync - sets Insync providing device isn't active
2653 * write_error - sets WriteErrorSeen
2654 * -write_error - clears WriteErrorSeen
2655 */
2656 int err = -EINVAL;
2657 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2658 md_error(rdev->mddev, rdev);
2659 if (test_bit(Faulty, &rdev->flags))
2660 err = 0;
2661 else
2662 err = -EBUSY;
2663 } else if (cmd_match(buf, "remove")) {
2664 if (rdev->raid_disk >= 0)
2665 err = -EBUSY;
2666 else {
2667 struct mddev *mddev = rdev->mddev;
2668 kick_rdev_from_array(rdev);
2669 if (mddev->pers)
2670 md_update_sb(mddev, 1);
2671 md_new_event(mddev);
2672 err = 0;
2673 }
2674 } else if (cmd_match(buf, "writemostly")) {
2675 set_bit(WriteMostly, &rdev->flags);
2676 err = 0;
2677 } else if (cmd_match(buf, "-writemostly")) {
2678 clear_bit(WriteMostly, &rdev->flags);
2679 err = 0;
2680 } else if (cmd_match(buf, "blocked")) {
2681 set_bit(Blocked, &rdev->flags);
2682 err = 0;
2683 } else if (cmd_match(buf, "-blocked")) {
2684 if (!test_bit(Faulty, &rdev->flags) &&
2685 rdev->badblocks.unacked_exist) {
2686 /* metadata handler doesn't understand badblocks,
2687 * so we need to fail the device
2688 */
2689 md_error(rdev->mddev, rdev);
2690 }
2691 clear_bit(Blocked, &rdev->flags);
2692 clear_bit(BlockedBadBlocks, &rdev->flags);
2693 wake_up(&rdev->blocked_wait);
2694 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2695 md_wakeup_thread(rdev->mddev->thread);
2696
2697 err = 0;
2698 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2699 set_bit(In_sync, &rdev->flags);
2700 err = 0;
2701 } else if (cmd_match(buf, "write_error")) {
2702 set_bit(WriteErrorSeen, &rdev->flags);
2703 err = 0;
2704 } else if (cmd_match(buf, "-write_error")) {
2705 clear_bit(WriteErrorSeen, &rdev->flags);
2706 err = 0;
2707 } else if (cmd_match(buf, "want_replacement")) {
2708 /* Any non-spare device that is not a replacement can
2709 * become want_replacement at any time, but we then need to
2710 * check if recovery is needed.
2711 */
2712 if (rdev->raid_disk >= 0 &&
2713 !test_bit(Replacement, &rdev->flags))
2714 set_bit(WantReplacement, &rdev->flags);
2715 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2716 md_wakeup_thread(rdev->mddev->thread);
2717 err = 0;
2718 } else if (cmd_match(buf, "-want_replacement")) {
2719 /* Clearing 'want_replacement' is always allowed.
2720 * Once replacements starts it is too late though.
2721 */
2722 err = 0;
2723 clear_bit(WantReplacement, &rdev->flags);
2724 } else if (cmd_match(buf, "replacement")) {
2725 /* Can only set a device as a replacement when array has not
2726 * yet been started. Once running, replacement is automatic
2727 * from spares, or by assigning 'slot'.
2728 */
2729 if (rdev->mddev->pers)
2730 err = -EBUSY;
2731 else {
2732 set_bit(Replacement, &rdev->flags);
2733 err = 0;
2734 }
2735 } else if (cmd_match(buf, "-replacement")) {
2736 /* Similarly, can only clear Replacement before start */
2737 if (rdev->mddev->pers)
2738 err = -EBUSY;
2739 else {
2740 clear_bit(Replacement, &rdev->flags);
2741 err = 0;
2742 }
2743 }
2744 if (!err)
2745 sysfs_notify_dirent_safe(rdev->sysfs_state);
2746 return err ? err : len;
2747 }
2748 static struct rdev_sysfs_entry rdev_state =
2749 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2750
2751 static ssize_t
2752 errors_show(struct md_rdev *rdev, char *page)
2753 {
2754 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2755 }
2756
2757 static ssize_t
2758 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2759 {
2760 char *e;
2761 unsigned long n = simple_strtoul(buf, &e, 10);
2762 if (*buf && (*e == 0 || *e == '\n')) {
2763 atomic_set(&rdev->corrected_errors, n);
2764 return len;
2765 }
2766 return -EINVAL;
2767 }
2768 static struct rdev_sysfs_entry rdev_errors =
2769 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2770
2771 static ssize_t
2772 slot_show(struct md_rdev *rdev, char *page)
2773 {
2774 if (rdev->raid_disk < 0)
2775 return sprintf(page, "none\n");
2776 else
2777 return sprintf(page, "%d\n", rdev->raid_disk);
2778 }
2779
2780 static ssize_t
2781 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2782 {
2783 char *e;
2784 int err;
2785 int slot = simple_strtoul(buf, &e, 10);
2786 if (strncmp(buf, "none", 4)==0)
2787 slot = -1;
2788 else if (e==buf || (*e && *e!= '\n'))
2789 return -EINVAL;
2790 if (rdev->mddev->pers && slot == -1) {
2791 /* Setting 'slot' on an active array requires also
2792 * updating the 'rd%d' link, and communicating
2793 * with the personality with ->hot_*_disk.
2794 * For now we only support removing
2795 * failed/spare devices. This normally happens automatically,
2796 * but not when the metadata is externally managed.
2797 */
2798 if (rdev->raid_disk == -1)
2799 return -EEXIST;
2800 /* personality does all needed checks */
2801 if (rdev->mddev->pers->hot_remove_disk == NULL)
2802 return -EINVAL;
2803 clear_bit(Blocked, &rdev->flags);
2804 remove_and_add_spares(rdev->mddev, rdev);
2805 if (rdev->raid_disk >= 0)
2806 return -EBUSY;
2807 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2808 md_wakeup_thread(rdev->mddev->thread);
2809 } else if (rdev->mddev->pers) {
2810 /* Activating a spare .. or possibly reactivating
2811 * if we ever get bitmaps working here.
2812 */
2813
2814 if (rdev->raid_disk != -1)
2815 return -EBUSY;
2816
2817 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2818 return -EBUSY;
2819
2820 if (rdev->mddev->pers->hot_add_disk == NULL)
2821 return -EINVAL;
2822
2823 if (slot >= rdev->mddev->raid_disks &&
2824 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2825 return -ENOSPC;
2826
2827 rdev->raid_disk = slot;
2828 if (test_bit(In_sync, &rdev->flags))
2829 rdev->saved_raid_disk = slot;
2830 else
2831 rdev->saved_raid_disk = -1;
2832 clear_bit(In_sync, &rdev->flags);
2833 err = rdev->mddev->pers->
2834 hot_add_disk(rdev->mddev, rdev);
2835 if (err) {
2836 rdev->raid_disk = -1;
2837 return err;
2838 } else
2839 sysfs_notify_dirent_safe(rdev->sysfs_state);
2840 if (sysfs_link_rdev(rdev->mddev, rdev))
2841 /* failure here is OK */;
2842 /* don't wakeup anyone, leave that to userspace. */
2843 } else {
2844 if (slot >= rdev->mddev->raid_disks &&
2845 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2846 return -ENOSPC;
2847 rdev->raid_disk = slot;
2848 /* assume it is working */
2849 clear_bit(Faulty, &rdev->flags);
2850 clear_bit(WriteMostly, &rdev->flags);
2851 set_bit(In_sync, &rdev->flags);
2852 sysfs_notify_dirent_safe(rdev->sysfs_state);
2853 }
2854 return len;
2855 }
2856
2857
2858 static struct rdev_sysfs_entry rdev_slot =
2859 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2860
2861 static ssize_t
2862 offset_show(struct md_rdev *rdev, char *page)
2863 {
2864 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2865 }
2866
2867 static ssize_t
2868 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2869 {
2870 unsigned long long offset;
2871 if (kstrtoull(buf, 10, &offset) < 0)
2872 return -EINVAL;
2873 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2874 return -EBUSY;
2875 if (rdev->sectors && rdev->mddev->external)
2876 /* Must set offset before size, so overlap checks
2877 * can be sane */
2878 return -EBUSY;
2879 rdev->data_offset = offset;
2880 rdev->new_data_offset = offset;
2881 return len;
2882 }
2883
2884 static struct rdev_sysfs_entry rdev_offset =
2885 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2886
2887 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2888 {
2889 return sprintf(page, "%llu\n",
2890 (unsigned long long)rdev->new_data_offset);
2891 }
2892
2893 static ssize_t new_offset_store(struct md_rdev *rdev,
2894 const char *buf, size_t len)
2895 {
2896 unsigned long long new_offset;
2897 struct mddev *mddev = rdev->mddev;
2898
2899 if (kstrtoull(buf, 10, &new_offset) < 0)
2900 return -EINVAL;
2901
2902 if (mddev->sync_thread)
2903 return -EBUSY;
2904 if (new_offset == rdev->data_offset)
2905 /* reset is always permitted */
2906 ;
2907 else if (new_offset > rdev->data_offset) {
2908 /* must not push array size beyond rdev_sectors */
2909 if (new_offset - rdev->data_offset
2910 + mddev->dev_sectors > rdev->sectors)
2911 return -E2BIG;
2912 }
2913 /* Metadata worries about other space details. */
2914
2915 /* decreasing the offset is inconsistent with a backwards
2916 * reshape.
2917 */
2918 if (new_offset < rdev->data_offset &&
2919 mddev->reshape_backwards)
2920 return -EINVAL;
2921 /* Increasing offset is inconsistent with forwards
2922 * reshape. reshape_direction should be set to
2923 * 'backwards' first.
2924 */
2925 if (new_offset > rdev->data_offset &&
2926 !mddev->reshape_backwards)
2927 return -EINVAL;
2928
2929 if (mddev->pers && mddev->persistent &&
2930 !super_types[mddev->major_version]
2931 .allow_new_offset(rdev, new_offset))
2932 return -E2BIG;
2933 rdev->new_data_offset = new_offset;
2934 if (new_offset > rdev->data_offset)
2935 mddev->reshape_backwards = 1;
2936 else if (new_offset < rdev->data_offset)
2937 mddev->reshape_backwards = 0;
2938
2939 return len;
2940 }
2941 static struct rdev_sysfs_entry rdev_new_offset =
2942 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2943
2944 static ssize_t
2945 rdev_size_show(struct md_rdev *rdev, char *page)
2946 {
2947 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2948 }
2949
2950 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2951 {
2952 /* check if two start/length pairs overlap */
2953 if (s1+l1 <= s2)
2954 return 0;
2955 if (s2+l2 <= s1)
2956 return 0;
2957 return 1;
2958 }
2959
2960 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2961 {
2962 unsigned long long blocks;
2963 sector_t new;
2964
2965 if (kstrtoull(buf, 10, &blocks) < 0)
2966 return -EINVAL;
2967
2968 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2969 return -EINVAL; /* sector conversion overflow */
2970
2971 new = blocks * 2;
2972 if (new != blocks * 2)
2973 return -EINVAL; /* unsigned long long to sector_t overflow */
2974
2975 *sectors = new;
2976 return 0;
2977 }
2978
2979 static ssize_t
2980 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2981 {
2982 struct mddev *my_mddev = rdev->mddev;
2983 sector_t oldsectors = rdev->sectors;
2984 sector_t sectors;
2985
2986 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2987 return -EINVAL;
2988 if (rdev->data_offset != rdev->new_data_offset)
2989 return -EINVAL; /* too confusing */
2990 if (my_mddev->pers && rdev->raid_disk >= 0) {
2991 if (my_mddev->persistent) {
2992 sectors = super_types[my_mddev->major_version].
2993 rdev_size_change(rdev, sectors);
2994 if (!sectors)
2995 return -EBUSY;
2996 } else if (!sectors)
2997 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2998 rdev->data_offset;
2999 if (!my_mddev->pers->resize)
3000 /* Cannot change size for RAID0 or Linear etc */
3001 return -EINVAL;
3002 }
3003 if (sectors < my_mddev->dev_sectors)
3004 return -EINVAL; /* component must fit device */
3005
3006 rdev->sectors = sectors;
3007 if (sectors > oldsectors && my_mddev->external) {
3008 /* need to check that all other rdevs with the same ->bdev
3009 * do not overlap. We need to unlock the mddev to avoid
3010 * a deadlock. We have already changed rdev->sectors, and if
3011 * we have to change it back, we will have the lock again.
3012 */
3013 struct mddev *mddev;
3014 int overlap = 0;
3015 struct list_head *tmp;
3016
3017 mddev_unlock(my_mddev);
3018 for_each_mddev(mddev, tmp) {
3019 struct md_rdev *rdev2;
3020
3021 mddev_lock(mddev);
3022 rdev_for_each(rdev2, mddev)
3023 if (rdev->bdev == rdev2->bdev &&
3024 rdev != rdev2 &&
3025 overlaps(rdev->data_offset, rdev->sectors,
3026 rdev2->data_offset,
3027 rdev2->sectors)) {
3028 overlap = 1;
3029 break;
3030 }
3031 mddev_unlock(mddev);
3032 if (overlap) {
3033 mddev_put(mddev);
3034 break;
3035 }
3036 }
3037 mddev_lock(my_mddev);
3038 if (overlap) {
3039 /* Someone else could have slipped in a size
3040 * change here, but doing so is just silly.
3041 * We put oldsectors back because we *know* it is
3042 * safe, and trust userspace not to race with
3043 * itself
3044 */
3045 rdev->sectors = oldsectors;
3046 return -EBUSY;
3047 }
3048 }
3049 return len;
3050 }
3051
3052 static struct rdev_sysfs_entry rdev_size =
3053 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3054
3055
3056 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3057 {
3058 unsigned long long recovery_start = rdev->recovery_offset;
3059
3060 if (test_bit(In_sync, &rdev->flags) ||
3061 recovery_start == MaxSector)
3062 return sprintf(page, "none\n");
3063
3064 return sprintf(page, "%llu\n", recovery_start);
3065 }
3066
3067 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3068 {
3069 unsigned long long recovery_start;
3070
3071 if (cmd_match(buf, "none"))
3072 recovery_start = MaxSector;
3073 else if (kstrtoull(buf, 10, &recovery_start))
3074 return -EINVAL;
3075
3076 if (rdev->mddev->pers &&
3077 rdev->raid_disk >= 0)
3078 return -EBUSY;
3079
3080 rdev->recovery_offset = recovery_start;
3081 if (recovery_start == MaxSector)
3082 set_bit(In_sync, &rdev->flags);
3083 else
3084 clear_bit(In_sync, &rdev->flags);
3085 return len;
3086 }
3087
3088 static struct rdev_sysfs_entry rdev_recovery_start =
3089 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3090
3091
3092 static ssize_t
3093 badblocks_show(struct badblocks *bb, char *page, int unack);
3094 static ssize_t
3095 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
3096
3097 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3098 {
3099 return badblocks_show(&rdev->badblocks, page, 0);
3100 }
3101 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3102 {
3103 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3104 /* Maybe that ack was all we needed */
3105 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3106 wake_up(&rdev->blocked_wait);
3107 return rv;
3108 }
3109 static struct rdev_sysfs_entry rdev_bad_blocks =
3110 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3111
3112
3113 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3114 {
3115 return badblocks_show(&rdev->badblocks, page, 1);
3116 }
3117 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3118 {
3119 return badblocks_store(&rdev->badblocks, page, len, 1);
3120 }
3121 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3122 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3123
3124 static struct attribute *rdev_default_attrs[] = {
3125 &rdev_state.attr,
3126 &rdev_errors.attr,
3127 &rdev_slot.attr,
3128 &rdev_offset.attr,
3129 &rdev_new_offset.attr,
3130 &rdev_size.attr,
3131 &rdev_recovery_start.attr,
3132 &rdev_bad_blocks.attr,
3133 &rdev_unack_bad_blocks.attr,
3134 NULL,
3135 };
3136 static ssize_t
3137 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3138 {
3139 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3140 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3141 struct mddev *mddev = rdev->mddev;
3142 ssize_t rv;
3143
3144 if (!entry->show)
3145 return -EIO;
3146
3147 rv = mddev ? mddev_lock(mddev) : -EBUSY;
3148 if (!rv) {
3149 if (rdev->mddev == NULL)
3150 rv = -EBUSY;
3151 else
3152 rv = entry->show(rdev, page);
3153 mddev_unlock(mddev);
3154 }
3155 return rv;
3156 }
3157
3158 static ssize_t
3159 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3160 const char *page, size_t length)
3161 {
3162 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3163 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3164 ssize_t rv;
3165 struct mddev *mddev = rdev->mddev;
3166
3167 if (!entry->store)
3168 return -EIO;
3169 if (!capable(CAP_SYS_ADMIN))
3170 return -EACCES;
3171 rv = mddev ? mddev_lock(mddev): -EBUSY;
3172 if (!rv) {
3173 if (rdev->mddev == NULL)
3174 rv = -EBUSY;
3175 else
3176 rv = entry->store(rdev, page, length);
3177 mddev_unlock(mddev);
3178 }
3179 return rv;
3180 }
3181
3182 static void rdev_free(struct kobject *ko)
3183 {
3184 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3185 kfree(rdev);
3186 }
3187 static const struct sysfs_ops rdev_sysfs_ops = {
3188 .show = rdev_attr_show,
3189 .store = rdev_attr_store,
3190 };
3191 static struct kobj_type rdev_ktype = {
3192 .release = rdev_free,
3193 .sysfs_ops = &rdev_sysfs_ops,
3194 .default_attrs = rdev_default_attrs,
3195 };
3196
3197 int md_rdev_init(struct md_rdev *rdev)
3198 {
3199 rdev->desc_nr = -1;
3200 rdev->saved_raid_disk = -1;
3201 rdev->raid_disk = -1;
3202 rdev->flags = 0;
3203 rdev->data_offset = 0;
3204 rdev->new_data_offset = 0;
3205 rdev->sb_events = 0;
3206 rdev->last_read_error.tv_sec = 0;
3207 rdev->last_read_error.tv_nsec = 0;
3208 rdev->sb_loaded = 0;
3209 rdev->bb_page = NULL;
3210 atomic_set(&rdev->nr_pending, 0);
3211 atomic_set(&rdev->read_errors, 0);
3212 atomic_set(&rdev->corrected_errors, 0);
3213
3214 INIT_LIST_HEAD(&rdev->same_set);
3215 init_waitqueue_head(&rdev->blocked_wait);
3216
3217 /* Add space to store bad block list.
3218 * This reserves the space even on arrays where it cannot
3219 * be used - I wonder if that matters
3220 */
3221 rdev->badblocks.count = 0;
3222 rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3223 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3224 seqlock_init(&rdev->badblocks.lock);
3225 if (rdev->badblocks.page == NULL)
3226 return -ENOMEM;
3227
3228 return 0;
3229 }
3230 EXPORT_SYMBOL_GPL(md_rdev_init);
3231 /*
3232 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3233 *
3234 * mark the device faulty if:
3235 *
3236 * - the device is nonexistent (zero size)
3237 * - the device has no valid superblock
3238 *
3239 * a faulty rdev _never_ has rdev->sb set.
3240 */
3241 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3242 {
3243 char b[BDEVNAME_SIZE];
3244 int err;
3245 struct md_rdev *rdev;
3246 sector_t size;
3247
3248 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3249 if (!rdev) {
3250 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3251 return ERR_PTR(-ENOMEM);
3252 }
3253
3254 err = md_rdev_init(rdev);
3255 if (err)
3256 goto abort_free;
3257 err = alloc_disk_sb(rdev);
3258 if (err)
3259 goto abort_free;
3260
3261 err = lock_rdev(rdev, newdev, super_format == -2);
3262 if (err)
3263 goto abort_free;
3264
3265 kobject_init(&rdev->kobj, &rdev_ktype);
3266
3267 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3268 if (!size) {
3269 printk(KERN_WARNING
3270 "md: %s has zero or unknown size, marking faulty!\n",
3271 bdevname(rdev->bdev,b));
3272 err = -EINVAL;
3273 goto abort_free;
3274 }
3275
3276 if (super_format >= 0) {
3277 err = super_types[super_format].
3278 load_super(rdev, NULL, super_minor);
3279 if (err == -EINVAL) {
3280 printk(KERN_WARNING
3281 "md: %s does not have a valid v%d.%d "
3282 "superblock, not importing!\n",
3283 bdevname(rdev->bdev,b),
3284 super_format, super_minor);
3285 goto abort_free;
3286 }
3287 if (err < 0) {
3288 printk(KERN_WARNING
3289 "md: could not read %s's sb, not importing!\n",
3290 bdevname(rdev->bdev,b));
3291 goto abort_free;
3292 }
3293 }
3294
3295 return rdev;
3296
3297 abort_free:
3298 if (rdev->bdev)
3299 unlock_rdev(rdev);
3300 md_rdev_clear(rdev);
3301 kfree(rdev);
3302 return ERR_PTR(err);
3303 }
3304
3305 /*
3306 * Check a full RAID array for plausibility
3307 */
3308
3309
3310 static void analyze_sbs(struct mddev * mddev)
3311 {
3312 int i;
3313 struct md_rdev *rdev, *freshest, *tmp;
3314 char b[BDEVNAME_SIZE];
3315
3316 freshest = NULL;
3317 rdev_for_each_safe(rdev, tmp, mddev)
3318 switch (super_types[mddev->major_version].
3319 load_super(rdev, freshest, mddev->minor_version)) {
3320 case 1:
3321 freshest = rdev;
3322 break;
3323 case 0:
3324 break;
3325 default:
3326 printk( KERN_ERR \
3327 "md: fatal superblock inconsistency in %s"
3328 " -- removing from array\n",
3329 bdevname(rdev->bdev,b));
3330 kick_rdev_from_array(rdev);
3331 }
3332
3333
3334 super_types[mddev->major_version].
3335 validate_super(mddev, freshest);
3336
3337 i = 0;
3338 rdev_for_each_safe(rdev, tmp, mddev) {
3339 if (mddev->max_disks &&
3340 (rdev->desc_nr >= mddev->max_disks ||
3341 i > mddev->max_disks)) {
3342 printk(KERN_WARNING
3343 "md: %s: %s: only %d devices permitted\n",
3344 mdname(mddev), bdevname(rdev->bdev, b),
3345 mddev->max_disks);
3346 kick_rdev_from_array(rdev);
3347 continue;
3348 }
3349 if (rdev != freshest)
3350 if (super_types[mddev->major_version].
3351 validate_super(mddev, rdev)) {
3352 printk(KERN_WARNING "md: kicking non-fresh %s"
3353 " from array!\n",
3354 bdevname(rdev->bdev,b));
3355 kick_rdev_from_array(rdev);
3356 continue;
3357 }
3358 if (mddev->level == LEVEL_MULTIPATH) {
3359 rdev->desc_nr = i++;
3360 rdev->raid_disk = rdev->desc_nr;
3361 set_bit(In_sync, &rdev->flags);
3362 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3363 rdev->raid_disk = -1;
3364 clear_bit(In_sync, &rdev->flags);
3365 }
3366 }
3367 }
3368
3369 /* Read a fixed-point number.
3370 * Numbers in sysfs attributes should be in "standard" units where
3371 * possible, so time should be in seconds.
3372 * However we internally use a a much smaller unit such as
3373 * milliseconds or jiffies.
3374 * This function takes a decimal number with a possible fractional
3375 * component, and produces an integer which is the result of
3376 * multiplying that number by 10^'scale'.
3377 * all without any floating-point arithmetic.
3378 */
3379 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3380 {
3381 unsigned long result = 0;
3382 long decimals = -1;
3383 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3384 if (*cp == '.')
3385 decimals = 0;
3386 else if (decimals < scale) {
3387 unsigned int value;
3388 value = *cp - '0';
3389 result = result * 10 + value;
3390 if (decimals >= 0)
3391 decimals++;
3392 }
3393 cp++;
3394 }
3395 if (*cp == '\n')
3396 cp++;
3397 if (*cp)
3398 return -EINVAL;
3399 if (decimals < 0)
3400 decimals = 0;
3401 while (decimals < scale) {
3402 result *= 10;
3403 decimals ++;
3404 }
3405 *res = result;
3406 return 0;
3407 }
3408
3409
3410 static void md_safemode_timeout(unsigned long data);
3411
3412 static ssize_t
3413 safe_delay_show(struct mddev *mddev, char *page)
3414 {
3415 int msec = (mddev->safemode_delay*1000)/HZ;
3416 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3417 }
3418 static ssize_t
3419 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3420 {
3421 unsigned long msec;
3422
3423 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3424 return -EINVAL;
3425 if (msec == 0)
3426 mddev->safemode_delay = 0;
3427 else {
3428 unsigned long old_delay = mddev->safemode_delay;
3429 mddev->safemode_delay = (msec*HZ)/1000;
3430 if (mddev->safemode_delay == 0)
3431 mddev->safemode_delay = 1;
3432 if (mddev->safemode_delay < old_delay)
3433 md_safemode_timeout((unsigned long)mddev);
3434 }
3435 return len;
3436 }
3437 static struct md_sysfs_entry md_safe_delay =
3438 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3439
3440 static ssize_t
3441 level_show(struct mddev *mddev, char *page)
3442 {
3443 struct md_personality *p = mddev->pers;
3444 if (p)
3445 return sprintf(page, "%s\n", p->name);
3446 else if (mddev->clevel[0])
3447 return sprintf(page, "%s\n", mddev->clevel);
3448 else if (mddev->level != LEVEL_NONE)
3449 return sprintf(page, "%d\n", mddev->level);
3450 else
3451 return 0;
3452 }
3453
3454 static ssize_t
3455 level_store(struct mddev *mddev, const char *buf, size_t len)
3456 {
3457 char clevel[16];
3458 ssize_t rv = len;
3459 struct md_personality *pers;
3460 long level;
3461 void *priv;
3462 struct md_rdev *rdev;
3463
3464 if (mddev->pers == NULL) {
3465 if (len == 0)
3466 return 0;
3467 if (len >= sizeof(mddev->clevel))
3468 return -ENOSPC;
3469 strncpy(mddev->clevel, buf, len);
3470 if (mddev->clevel[len-1] == '\n')
3471 len--;
3472 mddev->clevel[len] = 0;
3473 mddev->level = LEVEL_NONE;
3474 return rv;
3475 }
3476
3477 /* request to change the personality. Need to ensure:
3478 * - array is not engaged in resync/recovery/reshape
3479 * - old personality can be suspended
3480 * - new personality will access other array.
3481 */
3482
3483 if (mddev->sync_thread ||
3484 mddev->reshape_position != MaxSector ||
3485 mddev->sysfs_active)
3486 return -EBUSY;
3487
3488 if (!mddev->pers->quiesce) {
3489 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3490 mdname(mddev), mddev->pers->name);
3491 return -EINVAL;
3492 }
3493
3494 /* Now find the new personality */
3495 if (len == 0 || len >= sizeof(clevel))
3496 return -EINVAL;
3497 strncpy(clevel, buf, len);
3498 if (clevel[len-1] == '\n')
3499 len--;
3500 clevel[len] = 0;
3501 if (kstrtol(clevel, 10, &level))
3502 level = LEVEL_NONE;
3503
3504 if (request_module("md-%s", clevel) != 0)
3505 request_module("md-level-%s", clevel);
3506 spin_lock(&pers_lock);
3507 pers = find_pers(level, clevel);
3508 if (!pers || !try_module_get(pers->owner)) {
3509 spin_unlock(&pers_lock);
3510 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3511 return -EINVAL;
3512 }
3513 spin_unlock(&pers_lock);
3514
3515 if (pers == mddev->pers) {
3516 /* Nothing to do! */
3517 module_put(pers->owner);
3518 return rv;
3519 }
3520 if (!pers->takeover) {
3521 module_put(pers->owner);
3522 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3523 mdname(mddev), clevel);
3524 return -EINVAL;
3525 }
3526
3527 rdev_for_each(rdev, mddev)
3528 rdev->new_raid_disk = rdev->raid_disk;
3529
3530 /* ->takeover must set new_* and/or delta_disks
3531 * if it succeeds, and may set them when it fails.
3532 */
3533 priv = pers->takeover(mddev);
3534 if (IS_ERR(priv)) {
3535 mddev->new_level = mddev->level;
3536 mddev->new_layout = mddev->layout;
3537 mddev->new_chunk_sectors = mddev->chunk_sectors;
3538 mddev->raid_disks -= mddev->delta_disks;
3539 mddev->delta_disks = 0;
3540 mddev->reshape_backwards = 0;
3541 module_put(pers->owner);
3542 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3543 mdname(mddev), clevel);
3544 return PTR_ERR(priv);
3545 }
3546
3547 /* Looks like we have a winner */
3548 mddev_suspend(mddev);
3549 mddev->pers->stop(mddev);
3550
3551 if (mddev->pers->sync_request == NULL &&
3552 pers->sync_request != NULL) {
3553 /* need to add the md_redundancy_group */
3554 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3555 printk(KERN_WARNING
3556 "md: cannot register extra attributes for %s\n",
3557 mdname(mddev));
3558 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3559 }
3560 if (mddev->pers->sync_request != NULL &&
3561 pers->sync_request == NULL) {
3562 /* need to remove the md_redundancy_group */
3563 if (mddev->to_remove == NULL)
3564 mddev->to_remove = &md_redundancy_group;
3565 }
3566
3567 if (mddev->pers->sync_request == NULL &&
3568 mddev->external) {
3569 /* We are converting from a no-redundancy array
3570 * to a redundancy array and metadata is managed
3571 * externally so we need to be sure that writes
3572 * won't block due to a need to transition
3573 * clean->dirty
3574 * until external management is started.
3575 */
3576 mddev->in_sync = 0;
3577 mddev->safemode_delay = 0;
3578 mddev->safemode = 0;
3579 }
3580
3581 rdev_for_each(rdev, mddev) {
3582 if (rdev->raid_disk < 0)
3583 continue;
3584 if (rdev->new_raid_disk >= mddev->raid_disks)
3585 rdev->new_raid_disk = -1;
3586 if (rdev->new_raid_disk == rdev->raid_disk)
3587 continue;
3588 sysfs_unlink_rdev(mddev, rdev);
3589 }
3590 rdev_for_each(rdev, mddev) {
3591 if (rdev->raid_disk < 0)
3592 continue;
3593 if (rdev->new_raid_disk == rdev->raid_disk)
3594 continue;
3595 rdev->raid_disk = rdev->new_raid_disk;
3596 if (rdev->raid_disk < 0)
3597 clear_bit(In_sync, &rdev->flags);
3598 else {
3599 if (sysfs_link_rdev(mddev, rdev))
3600 printk(KERN_WARNING "md: cannot register rd%d"
3601 " for %s after level change\n",
3602 rdev->raid_disk, mdname(mddev));
3603 }
3604 }
3605
3606 module_put(mddev->pers->owner);
3607 mddev->pers = pers;
3608 mddev->private = priv;
3609 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3610 mddev->level = mddev->new_level;
3611 mddev->layout = mddev->new_layout;
3612 mddev->chunk_sectors = mddev->new_chunk_sectors;
3613 mddev->delta_disks = 0;
3614 mddev->reshape_backwards = 0;
3615 mddev->degraded = 0;
3616 if (mddev->pers->sync_request == NULL) {
3617 /* this is now an array without redundancy, so
3618 * it must always be in_sync
3619 */
3620 mddev->in_sync = 1;
3621 del_timer_sync(&mddev->safemode_timer);
3622 }
3623 pers->run(mddev);
3624 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3625 mddev_resume(mddev);
3626 sysfs_notify(&mddev->kobj, NULL, "level");
3627 md_new_event(mddev);
3628 return rv;
3629 }
3630
3631 static struct md_sysfs_entry md_level =
3632 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3633
3634
3635 static ssize_t
3636 layout_show(struct mddev *mddev, char *page)
3637 {
3638 /* just a number, not meaningful for all levels */
3639 if (mddev->reshape_position != MaxSector &&
3640 mddev->layout != mddev->new_layout)
3641 return sprintf(page, "%d (%d)\n",
3642 mddev->new_layout, mddev->layout);
3643 return sprintf(page, "%d\n", mddev->layout);
3644 }
3645
3646 static ssize_t
3647 layout_store(struct mddev *mddev, const char *buf, size_t len)
3648 {
3649 char *e;
3650 unsigned long n = simple_strtoul(buf, &e, 10);
3651
3652 if (!*buf || (*e && *e != '\n'))
3653 return -EINVAL;
3654
3655 if (mddev->pers) {
3656 int err;
3657 if (mddev->pers->check_reshape == NULL)
3658 return -EBUSY;
3659 mddev->new_layout = n;
3660 err = mddev->pers->check_reshape(mddev);
3661 if (err) {
3662 mddev->new_layout = mddev->layout;
3663 return err;
3664 }
3665 } else {
3666 mddev->new_layout = n;
3667 if (mddev->reshape_position == MaxSector)
3668 mddev->layout = n;
3669 }
3670 return len;
3671 }
3672 static struct md_sysfs_entry md_layout =
3673 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3674
3675
3676 static ssize_t
3677 raid_disks_show(struct mddev *mddev, char *page)
3678 {
3679 if (mddev->raid_disks == 0)
3680 return 0;
3681 if (mddev->reshape_position != MaxSector &&
3682 mddev->delta_disks != 0)
3683 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3684 mddev->raid_disks - mddev->delta_disks);
3685 return sprintf(page, "%d\n", mddev->raid_disks);
3686 }
3687
3688 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3689
3690 static ssize_t
3691 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3692 {
3693 char *e;
3694 int rv = 0;
3695 unsigned long n = simple_strtoul(buf, &e, 10);
3696
3697 if (!*buf || (*e && *e != '\n'))
3698 return -EINVAL;
3699
3700 if (mddev->pers)
3701 rv = update_raid_disks(mddev, n);
3702 else if (mddev->reshape_position != MaxSector) {
3703 struct md_rdev *rdev;
3704 int olddisks = mddev->raid_disks - mddev->delta_disks;
3705
3706 rdev_for_each(rdev, mddev) {
3707 if (olddisks < n &&
3708 rdev->data_offset < rdev->new_data_offset)
3709 return -EINVAL;
3710 if (olddisks > n &&
3711 rdev->data_offset > rdev->new_data_offset)
3712 return -EINVAL;
3713 }
3714 mddev->delta_disks = n - olddisks;
3715 mddev->raid_disks = n;
3716 mddev->reshape_backwards = (mddev->delta_disks < 0);
3717 } else
3718 mddev->raid_disks = n;
3719 return rv ? rv : len;
3720 }
3721 static struct md_sysfs_entry md_raid_disks =
3722 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3723
3724 static ssize_t
3725 chunk_size_show(struct mddev *mddev, char *page)
3726 {
3727 if (mddev->reshape_position != MaxSector &&
3728 mddev->chunk_sectors != mddev->new_chunk_sectors)
3729 return sprintf(page, "%d (%d)\n",
3730 mddev->new_chunk_sectors << 9,
3731 mddev->chunk_sectors << 9);
3732 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3733 }
3734
3735 static ssize_t
3736 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3737 {
3738 char *e;
3739 unsigned long n = simple_strtoul(buf, &e, 10);
3740
3741 if (!*buf || (*e && *e != '\n'))
3742 return -EINVAL;
3743
3744 if (mddev->pers) {
3745 int err;
3746 if (mddev->pers->check_reshape == NULL)
3747 return -EBUSY;
3748 mddev->new_chunk_sectors = n >> 9;
3749 err = mddev->pers->check_reshape(mddev);
3750 if (err) {
3751 mddev->new_chunk_sectors = mddev->chunk_sectors;
3752 return err;
3753 }
3754 } else {
3755 mddev->new_chunk_sectors = n >> 9;
3756 if (mddev->reshape_position == MaxSector)
3757 mddev->chunk_sectors = n >> 9;
3758 }
3759 return len;
3760 }
3761 static struct md_sysfs_entry md_chunk_size =
3762 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3763
3764 static ssize_t
3765 resync_start_show(struct mddev *mddev, char *page)
3766 {
3767 if (mddev->recovery_cp == MaxSector)
3768 return sprintf(page, "none\n");
3769 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3770 }
3771
3772 static ssize_t
3773 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3774 {
3775 char *e;
3776 unsigned long long n = simple_strtoull(buf, &e, 10);
3777
3778 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3779 return -EBUSY;
3780 if (cmd_match(buf, "none"))
3781 n = MaxSector;
3782 else if (!*buf || (*e && *e != '\n'))
3783 return -EINVAL;
3784
3785 mddev->recovery_cp = n;
3786 if (mddev->pers)
3787 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3788 return len;
3789 }
3790 static struct md_sysfs_entry md_resync_start =
3791 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3792
3793 /*
3794 * The array state can be:
3795 *
3796 * clear
3797 * No devices, no size, no level
3798 * Equivalent to STOP_ARRAY ioctl
3799 * inactive
3800 * May have some settings, but array is not active
3801 * all IO results in error
3802 * When written, doesn't tear down array, but just stops it
3803 * suspended (not supported yet)
3804 * All IO requests will block. The array can be reconfigured.
3805 * Writing this, if accepted, will block until array is quiescent
3806 * readonly
3807 * no resync can happen. no superblocks get written.
3808 * write requests fail
3809 * read-auto
3810 * like readonly, but behaves like 'clean' on a write request.
3811 *
3812 * clean - no pending writes, but otherwise active.
3813 * When written to inactive array, starts without resync
3814 * If a write request arrives then
3815 * if metadata is known, mark 'dirty' and switch to 'active'.
3816 * if not known, block and switch to write-pending
3817 * If written to an active array that has pending writes, then fails.
3818 * active
3819 * fully active: IO and resync can be happening.
3820 * When written to inactive array, starts with resync
3821 *
3822 * write-pending
3823 * clean, but writes are blocked waiting for 'active' to be written.
3824 *
3825 * active-idle
3826 * like active, but no writes have been seen for a while (100msec).
3827 *
3828 */
3829 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3830 write_pending, active_idle, bad_word};
3831 static char *array_states[] = {
3832 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3833 "write-pending", "active-idle", NULL };
3834
3835 static int match_word(const char *word, char **list)
3836 {
3837 int n;
3838 for (n=0; list[n]; n++)
3839 if (cmd_match(word, list[n]))
3840 break;
3841 return n;
3842 }
3843
3844 static ssize_t
3845 array_state_show(struct mddev *mddev, char *page)
3846 {
3847 enum array_state st = inactive;
3848
3849 if (mddev->pers)
3850 switch(mddev->ro) {
3851 case 1:
3852 st = readonly;
3853 break;
3854 case 2:
3855 st = read_auto;
3856 break;
3857 case 0:
3858 if (mddev->in_sync)
3859 st = clean;
3860 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3861 st = write_pending;
3862 else if (mddev->safemode)
3863 st = active_idle;
3864 else
3865 st = active;
3866 }
3867 else {
3868 if (list_empty(&mddev->disks) &&
3869 mddev->raid_disks == 0 &&
3870 mddev->dev_sectors == 0)
3871 st = clear;
3872 else
3873 st = inactive;
3874 }
3875 return sprintf(page, "%s\n", array_states[st]);
3876 }
3877
3878 static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
3879 static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
3880 static int do_md_run(struct mddev * mddev);
3881 static int restart_array(struct mddev *mddev);
3882
3883 static ssize_t
3884 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3885 {
3886 int err = -EINVAL;
3887 enum array_state st = match_word(buf, array_states);
3888 switch(st) {
3889 case bad_word:
3890 break;
3891 case clear:
3892 /* stopping an active array */
3893 err = do_md_stop(mddev, 0, NULL);
3894 break;
3895 case inactive:
3896 /* stopping an active array */
3897 if (mddev->pers)
3898 err = do_md_stop(mddev, 2, NULL);
3899 else
3900 err = 0; /* already inactive */
3901 break;
3902 case suspended:
3903 break; /* not supported yet */
3904 case readonly:
3905 if (mddev->pers)
3906 err = md_set_readonly(mddev, NULL);
3907 else {
3908 mddev->ro = 1;
3909 set_disk_ro(mddev->gendisk, 1);
3910 err = do_md_run(mddev);
3911 }
3912 break;
3913 case read_auto:
3914 if (mddev->pers) {
3915 if (mddev->ro == 0)
3916 err = md_set_readonly(mddev, NULL);
3917 else if (mddev->ro == 1)
3918 err = restart_array(mddev);
3919 if (err == 0) {
3920 mddev->ro = 2;
3921 set_disk_ro(mddev->gendisk, 0);
3922 }
3923 } else {
3924 mddev->ro = 2;
3925 err = do_md_run(mddev);
3926 }
3927 break;
3928 case clean:
3929 if (mddev->pers) {
3930 restart_array(mddev);
3931 spin_lock_irq(&mddev->write_lock);
3932 if (atomic_read(&mddev->writes_pending) == 0) {
3933 if (mddev->in_sync == 0) {
3934 mddev->in_sync = 1;
3935 if (mddev->safemode == 1)
3936 mddev->safemode = 0;
3937 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3938 }
3939 err = 0;
3940 } else
3941 err = -EBUSY;
3942 spin_unlock_irq(&mddev->write_lock);
3943 } else
3944 err = -EINVAL;
3945 break;
3946 case active:
3947 if (mddev->pers) {
3948 restart_array(mddev);
3949 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3950 wake_up(&mddev->sb_wait);
3951 err = 0;
3952 } else {
3953 mddev->ro = 0;
3954 set_disk_ro(mddev->gendisk, 0);
3955 err = do_md_run(mddev);
3956 }
3957 break;
3958 case write_pending:
3959 case active_idle:
3960 /* these cannot be set */
3961 break;
3962 }
3963 if (err)
3964 return err;
3965 else {
3966 if (mddev->hold_active == UNTIL_IOCTL)
3967 mddev->hold_active = 0;
3968 sysfs_notify_dirent_safe(mddev->sysfs_state);
3969 return len;
3970 }
3971 }
3972 static struct md_sysfs_entry md_array_state =
3973 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3974
3975 static ssize_t
3976 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3977 return sprintf(page, "%d\n",
3978 atomic_read(&mddev->max_corr_read_errors));
3979 }
3980
3981 static ssize_t
3982 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3983 {
3984 char *e;
3985 unsigned long n = simple_strtoul(buf, &e, 10);
3986
3987 if (*buf && (*e == 0 || *e == '\n')) {
3988 atomic_set(&mddev->max_corr_read_errors, n);
3989 return len;
3990 }
3991 return -EINVAL;
3992 }
3993
3994 static struct md_sysfs_entry max_corr_read_errors =
3995 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3996 max_corrected_read_errors_store);
3997
3998 static ssize_t
3999 null_show(struct mddev *mddev, char *page)
4000 {
4001 return -EINVAL;
4002 }
4003
4004 static ssize_t
4005 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4006 {
4007 /* buf must be %d:%d\n? giving major and minor numbers */
4008 /* The new device is added to the array.
4009 * If the array has a persistent superblock, we read the
4010 * superblock to initialise info and check validity.
4011 * Otherwise, only checking done is that in bind_rdev_to_array,
4012 * which mainly checks size.
4013 */
4014 char *e;
4015 int major = simple_strtoul(buf, &e, 10);
4016 int minor;
4017 dev_t dev;
4018 struct md_rdev *rdev;
4019 int err;
4020
4021 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4022 return -EINVAL;
4023 minor = simple_strtoul(e+1, &e, 10);
4024 if (*e && *e != '\n')
4025 return -EINVAL;
4026 dev = MKDEV(major, minor);
4027 if (major != MAJOR(dev) ||
4028 minor != MINOR(dev))
4029 return -EOVERFLOW;
4030
4031
4032 if (mddev->persistent) {
4033 rdev = md_import_device(dev, mddev->major_version,
4034 mddev->minor_version);
4035 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4036 struct md_rdev *rdev0
4037 = list_entry(mddev->disks.next,
4038 struct md_rdev, same_set);
4039 err = super_types[mddev->major_version]
4040 .load_super(rdev, rdev0, mddev->minor_version);
4041 if (err < 0)
4042 goto out;
4043 }
4044 } else if (mddev->external)
4045 rdev = md_import_device(dev, -2, -1);
4046 else
4047 rdev = md_import_device(dev, -1, -1);
4048
4049 if (IS_ERR(rdev))
4050 return PTR_ERR(rdev);
4051 err = bind_rdev_to_array(rdev, mddev);
4052 out:
4053 if (err)
4054 export_rdev(rdev);
4055 return err ? err : len;
4056 }
4057
4058 static struct md_sysfs_entry md_new_device =
4059 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4060
4061 static ssize_t
4062 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4063 {
4064 char *end;
4065 unsigned long chunk, end_chunk;
4066
4067 if (!mddev->bitmap)
4068 goto out;
4069 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4070 while (*buf) {
4071 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4072 if (buf == end) break;
4073 if (*end == '-') { /* range */
4074 buf = end + 1;
4075 end_chunk = simple_strtoul(buf, &end, 0);
4076 if (buf == end) break;
4077 }
4078 if (*end && !isspace(*end)) break;
4079 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4080 buf = skip_spaces(end);
4081 }
4082 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4083 out:
4084 return len;
4085 }
4086
4087 static struct md_sysfs_entry md_bitmap =
4088 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4089
4090 static ssize_t
4091 size_show(struct mddev *mddev, char *page)
4092 {
4093 return sprintf(page, "%llu\n",
4094 (unsigned long long)mddev->dev_sectors / 2);
4095 }
4096
4097 static int update_size(struct mddev *mddev, sector_t num_sectors);
4098
4099 static ssize_t
4100 size_store(struct mddev *mddev, const char *buf, size_t len)
4101 {
4102 /* If array is inactive, we can reduce the component size, but
4103 * not increase it (except from 0).
4104 * If array is active, we can try an on-line resize
4105 */
4106 sector_t sectors;
4107 int err = strict_blocks_to_sectors(buf, &sectors);
4108
4109 if (err < 0)
4110 return err;
4111 if (mddev->pers) {
4112 err = update_size(mddev, sectors);
4113 md_update_sb(mddev, 1);
4114 } else {
4115 if (mddev->dev_sectors == 0 ||
4116 mddev->dev_sectors > sectors)
4117 mddev->dev_sectors = sectors;
4118 else
4119 err = -ENOSPC;
4120 }
4121 return err ? err : len;
4122 }
4123
4124 static struct md_sysfs_entry md_size =
4125 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4126
4127
4128 /* Metadata version.
4129 * This is one of
4130 * 'none' for arrays with no metadata (good luck...)
4131 * 'external' for arrays with externally managed metadata,
4132 * or N.M for internally known formats
4133 */
4134 static ssize_t
4135 metadata_show(struct mddev *mddev, char *page)
4136 {
4137 if (mddev->persistent)
4138 return sprintf(page, "%d.%d\n",
4139 mddev->major_version, mddev->minor_version);
4140 else if (mddev->external)
4141 return sprintf(page, "external:%s\n", mddev->metadata_type);
4142 else
4143 return sprintf(page, "none\n");
4144 }
4145
4146 static ssize_t
4147 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4148 {
4149 int major, minor;
4150 char *e;
4151 /* Changing the details of 'external' metadata is
4152 * always permitted. Otherwise there must be
4153 * no devices attached to the array.
4154 */
4155 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4156 ;
4157 else if (!list_empty(&mddev->disks))
4158 return -EBUSY;
4159
4160 if (cmd_match(buf, "none")) {
4161 mddev->persistent = 0;
4162 mddev->external = 0;
4163 mddev->major_version = 0;
4164 mddev->minor_version = 90;
4165 return len;
4166 }
4167 if (strncmp(buf, "external:", 9) == 0) {
4168 size_t namelen = len-9;
4169 if (namelen >= sizeof(mddev->metadata_type))
4170 namelen = sizeof(mddev->metadata_type)-1;
4171 strncpy(mddev->metadata_type, buf+9, namelen);
4172 mddev->metadata_type[namelen] = 0;
4173 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4174 mddev->metadata_type[--namelen] = 0;
4175 mddev->persistent = 0;
4176 mddev->external = 1;
4177 mddev->major_version = 0;
4178 mddev->minor_version = 90;
4179 return len;
4180 }
4181 major = simple_strtoul(buf, &e, 10);
4182 if (e==buf || *e != '.')
4183 return -EINVAL;
4184 buf = e+1;
4185 minor = simple_strtoul(buf, &e, 10);
4186 if (e==buf || (*e && *e != '\n') )
4187 return -EINVAL;
4188 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4189 return -ENOENT;
4190 mddev->major_version = major;
4191 mddev->minor_version = minor;
4192 mddev->persistent = 1;
4193 mddev->external = 0;
4194 return len;
4195 }
4196
4197 static struct md_sysfs_entry md_metadata =
4198 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4199
4200 static ssize_t
4201 action_show(struct mddev *mddev, char *page)
4202 {
4203 char *type = "idle";
4204 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4205 type = "frozen";
4206 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4207 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4208 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4209 type = "reshape";
4210 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4211 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4212 type = "resync";
4213 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4214 type = "check";
4215 else
4216 type = "repair";
4217 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4218 type = "recover";
4219 }
4220 return sprintf(page, "%s\n", type);
4221 }
4222
4223 static ssize_t
4224 action_store(struct mddev *mddev, const char *page, size_t len)
4225 {
4226 if (!mddev->pers || !mddev->pers->sync_request)
4227 return -EINVAL;
4228
4229 if (cmd_match(page, "frozen"))
4230 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4231 else
4232 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4233
4234 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4235 if (mddev->sync_thread) {
4236 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4237 md_reap_sync_thread(mddev);
4238 }
4239 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4240 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4241 return -EBUSY;
4242 else if (cmd_match(page, "resync"))
4243 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4244 else if (cmd_match(page, "recover")) {
4245 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4246 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4247 } else if (cmd_match(page, "reshape")) {
4248 int err;
4249 if (mddev->pers->start_reshape == NULL)
4250 return -EINVAL;
4251 err = mddev->pers->start_reshape(mddev);
4252 if (err)
4253 return err;
4254 sysfs_notify(&mddev->kobj, NULL, "degraded");
4255 } else {
4256 if (cmd_match(page, "check"))
4257 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4258 else if (!cmd_match(page, "repair"))
4259 return -EINVAL;
4260 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4261 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4262 }
4263 if (mddev->ro == 2) {
4264 /* A write to sync_action is enough to justify
4265 * canceling read-auto mode
4266 */
4267 mddev->ro = 0;
4268 md_wakeup_thread(mddev->sync_thread);
4269 }
4270 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4271 md_wakeup_thread(mddev->thread);
4272 sysfs_notify_dirent_safe(mddev->sysfs_action);
4273 return len;
4274 }
4275
4276 static struct md_sysfs_entry md_scan_mode =
4277 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4278
4279 static ssize_t
4280 last_sync_action_show(struct mddev *mddev, char *page)
4281 {
4282 return sprintf(page, "%s\n", mddev->last_sync_action);
4283 }
4284
4285 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4286
4287 static ssize_t
4288 mismatch_cnt_show(struct mddev *mddev, char *page)
4289 {
4290 return sprintf(page, "%llu\n",
4291 (unsigned long long)
4292 atomic64_read(&mddev->resync_mismatches));
4293 }
4294
4295 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4296
4297 static ssize_t
4298 sync_min_show(struct mddev *mddev, char *page)
4299 {
4300 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4301 mddev->sync_speed_min ? "local": "system");
4302 }
4303
4304 static ssize_t
4305 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4306 {
4307 int min;
4308 char *e;
4309 if (strncmp(buf, "system", 6)==0) {
4310 mddev->sync_speed_min = 0;
4311 return len;
4312 }
4313 min = simple_strtoul(buf, &e, 10);
4314 if (buf == e || (*e && *e != '\n') || min <= 0)
4315 return -EINVAL;
4316 mddev->sync_speed_min = min;
4317 return len;
4318 }
4319
4320 static struct md_sysfs_entry md_sync_min =
4321 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4322
4323 static ssize_t
4324 sync_max_show(struct mddev *mddev, char *page)
4325 {
4326 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4327 mddev->sync_speed_max ? "local": "system");
4328 }
4329
4330 static ssize_t
4331 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4332 {
4333 int max;
4334 char *e;
4335 if (strncmp(buf, "system", 6)==0) {
4336 mddev->sync_speed_max = 0;
4337 return len;
4338 }
4339 max = simple_strtoul(buf, &e, 10);
4340 if (buf == e || (*e && *e != '\n') || max <= 0)
4341 return -EINVAL;
4342 mddev->sync_speed_max = max;
4343 return len;
4344 }
4345
4346 static struct md_sysfs_entry md_sync_max =
4347 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4348
4349 static ssize_t
4350 degraded_show(struct mddev *mddev, char *page)
4351 {
4352 return sprintf(page, "%d\n", mddev->degraded);
4353 }
4354 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4355
4356 static ssize_t
4357 sync_force_parallel_show(struct mddev *mddev, char *page)
4358 {
4359 return sprintf(page, "%d\n", mddev->parallel_resync);
4360 }
4361
4362 static ssize_t
4363 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4364 {
4365 long n;
4366
4367 if (kstrtol(buf, 10, &n))
4368 return -EINVAL;
4369
4370 if (n != 0 && n != 1)
4371 return -EINVAL;
4372
4373 mddev->parallel_resync = n;
4374
4375 if (mddev->sync_thread)
4376 wake_up(&resync_wait);
4377
4378 return len;
4379 }
4380
4381 /* force parallel resync, even with shared block devices */
4382 static struct md_sysfs_entry md_sync_force_parallel =
4383 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4384 sync_force_parallel_show, sync_force_parallel_store);
4385
4386 static ssize_t
4387 sync_speed_show(struct mddev *mddev, char *page)
4388 {
4389 unsigned long resync, dt, db;
4390 if (mddev->curr_resync == 0)
4391 return sprintf(page, "none\n");
4392 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4393 dt = (jiffies - mddev->resync_mark) / HZ;
4394 if (!dt) dt++;
4395 db = resync - mddev->resync_mark_cnt;
4396 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4397 }
4398
4399 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4400
4401 static ssize_t
4402 sync_completed_show(struct mddev *mddev, char *page)
4403 {
4404 unsigned long long max_sectors, resync;
4405
4406 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4407 return sprintf(page, "none\n");
4408
4409 if (mddev->curr_resync == 1 ||
4410 mddev->curr_resync == 2)
4411 return sprintf(page, "delayed\n");
4412
4413 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4414 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4415 max_sectors = mddev->resync_max_sectors;
4416 else
4417 max_sectors = mddev->dev_sectors;
4418
4419 resync = mddev->curr_resync_completed;
4420 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4421 }
4422
4423 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4424
4425 static ssize_t
4426 min_sync_show(struct mddev *mddev, char *page)
4427 {
4428 return sprintf(page, "%llu\n",
4429 (unsigned long long)mddev->resync_min);
4430 }
4431 static ssize_t
4432 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4433 {
4434 unsigned long long min;
4435 if (kstrtoull(buf, 10, &min))
4436 return -EINVAL;
4437 if (min > mddev->resync_max)
4438 return -EINVAL;
4439 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4440 return -EBUSY;
4441
4442 /* Must be a multiple of chunk_size */
4443 if (mddev->chunk_sectors) {
4444 sector_t temp = min;
4445 if (sector_div(temp, mddev->chunk_sectors))
4446 return -EINVAL;
4447 }
4448 mddev->resync_min = min;
4449
4450 return len;
4451 }
4452
4453 static struct md_sysfs_entry md_min_sync =
4454 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4455
4456 static ssize_t
4457 max_sync_show(struct mddev *mddev, char *page)
4458 {
4459 if (mddev->resync_max == MaxSector)
4460 return sprintf(page, "max\n");
4461 else
4462 return sprintf(page, "%llu\n",
4463 (unsigned long long)mddev->resync_max);
4464 }
4465 static ssize_t
4466 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4467 {
4468 if (strncmp(buf, "max", 3) == 0)
4469 mddev->resync_max = MaxSector;
4470 else {
4471 unsigned long long max;
4472 if (kstrtoull(buf, 10, &max))
4473 return -EINVAL;
4474 if (max < mddev->resync_min)
4475 return -EINVAL;
4476 if (max < mddev->resync_max &&
4477 mddev->ro == 0 &&
4478 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4479 return -EBUSY;
4480
4481 /* Must be a multiple of chunk_size */
4482 if (mddev->chunk_sectors) {
4483 sector_t temp = max;
4484 if (sector_div(temp, mddev->chunk_sectors))
4485 return -EINVAL;
4486 }
4487 mddev->resync_max = max;
4488 }
4489 wake_up(&mddev->recovery_wait);
4490 return len;
4491 }
4492
4493 static struct md_sysfs_entry md_max_sync =
4494 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4495
4496 static ssize_t
4497 suspend_lo_show(struct mddev *mddev, char *page)
4498 {
4499 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4500 }
4501
4502 static ssize_t
4503 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4504 {
4505 char *e;
4506 unsigned long long new = simple_strtoull(buf, &e, 10);
4507 unsigned long long old = mddev->suspend_lo;
4508
4509 if (mddev->pers == NULL ||
4510 mddev->pers->quiesce == NULL)
4511 return -EINVAL;
4512 if (buf == e || (*e && *e != '\n'))
4513 return -EINVAL;
4514
4515 mddev->suspend_lo = new;
4516 if (new >= old)
4517 /* Shrinking suspended region */
4518 mddev->pers->quiesce(mddev, 2);
4519 else {
4520 /* Expanding suspended region - need to wait */
4521 mddev->pers->quiesce(mddev, 1);
4522 mddev->pers->quiesce(mddev, 0);
4523 }
4524 return len;
4525 }
4526 static struct md_sysfs_entry md_suspend_lo =
4527 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4528
4529
4530 static ssize_t
4531 suspend_hi_show(struct mddev *mddev, char *page)
4532 {
4533 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4534 }
4535
4536 static ssize_t
4537 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4538 {
4539 char *e;
4540 unsigned long long new = simple_strtoull(buf, &e, 10);
4541 unsigned long long old = mddev->suspend_hi;
4542
4543 if (mddev->pers == NULL ||
4544 mddev->pers->quiesce == NULL)
4545 return -EINVAL;
4546 if (buf == e || (*e && *e != '\n'))
4547 return -EINVAL;
4548
4549 mddev->suspend_hi = new;
4550 if (new <= old)
4551 /* Shrinking suspended region */
4552 mddev->pers->quiesce(mddev, 2);
4553 else {
4554 /* Expanding suspended region - need to wait */
4555 mddev->pers->quiesce(mddev, 1);
4556 mddev->pers->quiesce(mddev, 0);
4557 }
4558 return len;
4559 }
4560 static struct md_sysfs_entry md_suspend_hi =
4561 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4562
4563 static ssize_t
4564 reshape_position_show(struct mddev *mddev, char *page)
4565 {
4566 if (mddev->reshape_position != MaxSector)
4567 return sprintf(page, "%llu\n",
4568 (unsigned long long)mddev->reshape_position);
4569 strcpy(page, "none\n");
4570 return 5;
4571 }
4572
4573 static ssize_t
4574 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4575 {
4576 struct md_rdev *rdev;
4577 char *e;
4578 unsigned long long new = simple_strtoull(buf, &e, 10);
4579 if (mddev->pers)
4580 return -EBUSY;
4581 if (buf == e || (*e && *e != '\n'))
4582 return -EINVAL;
4583 mddev->reshape_position = new;
4584 mddev->delta_disks = 0;
4585 mddev->reshape_backwards = 0;
4586 mddev->new_level = mddev->level;
4587 mddev->new_layout = mddev->layout;
4588 mddev->new_chunk_sectors = mddev->chunk_sectors;
4589 rdev_for_each(rdev, mddev)
4590 rdev->new_data_offset = rdev->data_offset;
4591 return len;
4592 }
4593
4594 static struct md_sysfs_entry md_reshape_position =
4595 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4596 reshape_position_store);
4597
4598 static ssize_t
4599 reshape_direction_show(struct mddev *mddev, char *page)
4600 {
4601 return sprintf(page, "%s\n",
4602 mddev->reshape_backwards ? "backwards" : "forwards");
4603 }
4604
4605 static ssize_t
4606 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4607 {
4608 int backwards = 0;
4609 if (cmd_match(buf, "forwards"))
4610 backwards = 0;
4611 else if (cmd_match(buf, "backwards"))
4612 backwards = 1;
4613 else
4614 return -EINVAL;
4615 if (mddev->reshape_backwards == backwards)
4616 return len;
4617
4618 /* check if we are allowed to change */
4619 if (mddev->delta_disks)
4620 return -EBUSY;
4621
4622 if (mddev->persistent &&
4623 mddev->major_version == 0)
4624 return -EINVAL;
4625
4626 mddev->reshape_backwards = backwards;
4627 return len;
4628 }
4629
4630 static struct md_sysfs_entry md_reshape_direction =
4631 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4632 reshape_direction_store);
4633
4634 static ssize_t
4635 array_size_show(struct mddev *mddev, char *page)
4636 {
4637 if (mddev->external_size)
4638 return sprintf(page, "%llu\n",
4639 (unsigned long long)mddev->array_sectors/2);
4640 else
4641 return sprintf(page, "default\n");
4642 }
4643
4644 static ssize_t
4645 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4646 {
4647 sector_t sectors;
4648
4649 if (strncmp(buf, "default", 7) == 0) {
4650 if (mddev->pers)
4651 sectors = mddev->pers->size(mddev, 0, 0);
4652 else
4653 sectors = mddev->array_sectors;
4654
4655 mddev->external_size = 0;
4656 } else {
4657 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4658 return -EINVAL;
4659 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4660 return -E2BIG;
4661
4662 mddev->external_size = 1;
4663 }
4664
4665 mddev->array_sectors = sectors;
4666 if (mddev->pers) {
4667 set_capacity(mddev->gendisk, mddev->array_sectors);
4668 revalidate_disk(mddev->gendisk);
4669 }
4670 return len;
4671 }
4672
4673 static struct md_sysfs_entry md_array_size =
4674 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4675 array_size_store);
4676
4677 static struct attribute *md_default_attrs[] = {
4678 &md_level.attr,
4679 &md_layout.attr,
4680 &md_raid_disks.attr,
4681 &md_chunk_size.attr,
4682 &md_size.attr,
4683 &md_resync_start.attr,
4684 &md_metadata.attr,
4685 &md_new_device.attr,
4686 &md_safe_delay.attr,
4687 &md_array_state.attr,
4688 &md_reshape_position.attr,
4689 &md_reshape_direction.attr,
4690 &md_array_size.attr,
4691 &max_corr_read_errors.attr,
4692 NULL,
4693 };
4694
4695 static struct attribute *md_redundancy_attrs[] = {
4696 &md_scan_mode.attr,
4697 &md_last_scan_mode.attr,
4698 &md_mismatches.attr,
4699 &md_sync_min.attr,
4700 &md_sync_max.attr,
4701 &md_sync_speed.attr,
4702 &md_sync_force_parallel.attr,
4703 &md_sync_completed.attr,
4704 &md_min_sync.attr,
4705 &md_max_sync.attr,
4706 &md_suspend_lo.attr,
4707 &md_suspend_hi.attr,
4708 &md_bitmap.attr,
4709 &md_degraded.attr,
4710 NULL,
4711 };
4712 static struct attribute_group md_redundancy_group = {
4713 .name = NULL,
4714 .attrs = md_redundancy_attrs,
4715 };
4716
4717
4718 static ssize_t
4719 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4720 {
4721 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4722 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4723 ssize_t rv;
4724
4725 if (!entry->show)
4726 return -EIO;
4727 spin_lock(&all_mddevs_lock);
4728 if (list_empty(&mddev->all_mddevs)) {
4729 spin_unlock(&all_mddevs_lock);
4730 return -EBUSY;
4731 }
4732 mddev_get(mddev);
4733 spin_unlock(&all_mddevs_lock);
4734
4735 rv = mddev_lock(mddev);
4736 if (!rv) {
4737 rv = entry->show(mddev, page);
4738 mddev_unlock(mddev);
4739 }
4740 mddev_put(mddev);
4741 return rv;
4742 }
4743
4744 static ssize_t
4745 md_attr_store(struct kobject *kobj, struct attribute *attr,
4746 const char *page, size_t length)
4747 {
4748 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4749 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4750 ssize_t rv;
4751
4752 if (!entry->store)
4753 return -EIO;
4754 if (!capable(CAP_SYS_ADMIN))
4755 return -EACCES;
4756 spin_lock(&all_mddevs_lock);
4757 if (list_empty(&mddev->all_mddevs)) {
4758 spin_unlock(&all_mddevs_lock);
4759 return -EBUSY;
4760 }
4761 mddev_get(mddev);
4762 spin_unlock(&all_mddevs_lock);
4763 if (entry->store == new_dev_store)
4764 flush_workqueue(md_misc_wq);
4765 rv = mddev_lock(mddev);
4766 if (!rv) {
4767 rv = entry->store(mddev, page, length);
4768 mddev_unlock(mddev);
4769 }
4770 mddev_put(mddev);
4771 return rv;
4772 }
4773
4774 static void md_free(struct kobject *ko)
4775 {
4776 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4777
4778 if (mddev->sysfs_state)
4779 sysfs_put(mddev->sysfs_state);
4780
4781 if (mddev->gendisk) {
4782 del_gendisk(mddev->gendisk);
4783 put_disk(mddev->gendisk);
4784 }
4785 if (mddev->queue)
4786 blk_cleanup_queue(mddev->queue);
4787
4788 kfree(mddev);
4789 }
4790
4791 static const struct sysfs_ops md_sysfs_ops = {
4792 .show = md_attr_show,
4793 .store = md_attr_store,
4794 };
4795 static struct kobj_type md_ktype = {
4796 .release = md_free,
4797 .sysfs_ops = &md_sysfs_ops,
4798 .default_attrs = md_default_attrs,
4799 };
4800
4801 int mdp_major = 0;
4802
4803 static void mddev_delayed_delete(struct work_struct *ws)
4804 {
4805 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4806
4807 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4808 kobject_del(&mddev->kobj);
4809 kobject_put(&mddev->kobj);
4810 }
4811
4812 static int md_alloc(dev_t dev, char *name)
4813 {
4814 static DEFINE_MUTEX(disks_mutex);
4815 struct mddev *mddev = mddev_find(dev);
4816 struct gendisk *disk;
4817 int partitioned;
4818 int shift;
4819 int unit;
4820 int error;
4821
4822 if (!mddev)
4823 return -ENODEV;
4824
4825 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4826 shift = partitioned ? MdpMinorShift : 0;
4827 unit = MINOR(mddev->unit) >> shift;
4828
4829 /* wait for any previous instance of this device to be
4830 * completely removed (mddev_delayed_delete).
4831 */
4832 flush_workqueue(md_misc_wq);
4833
4834 mutex_lock(&disks_mutex);
4835 error = -EEXIST;
4836 if (mddev->gendisk)
4837 goto abort;
4838
4839 if (name) {
4840 /* Need to ensure that 'name' is not a duplicate.
4841 */
4842 struct mddev *mddev2;
4843 spin_lock(&all_mddevs_lock);
4844
4845 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4846 if (mddev2->gendisk &&
4847 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4848 spin_unlock(&all_mddevs_lock);
4849 goto abort;
4850 }
4851 spin_unlock(&all_mddevs_lock);
4852 }
4853
4854 error = -ENOMEM;
4855 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4856 if (!mddev->queue)
4857 goto abort;
4858 mddev->queue->queuedata = mddev;
4859
4860 blk_queue_make_request(mddev->queue, md_make_request);
4861 blk_set_stacking_limits(&mddev->queue->limits);
4862
4863 disk = alloc_disk(1 << shift);
4864 if (!disk) {
4865 blk_cleanup_queue(mddev->queue);
4866 mddev->queue = NULL;
4867 goto abort;
4868 }
4869 disk->major = MAJOR(mddev->unit);
4870 disk->first_minor = unit << shift;
4871 if (name)
4872 strcpy(disk->disk_name, name);
4873 else if (partitioned)
4874 sprintf(disk->disk_name, "md_d%d", unit);
4875 else
4876 sprintf(disk->disk_name, "md%d", unit);
4877 disk->fops = &md_fops;
4878 disk->private_data = mddev;
4879 disk->queue = mddev->queue;
4880 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4881 /* Allow extended partitions. This makes the
4882 * 'mdp' device redundant, but we can't really
4883 * remove it now.
4884 */
4885 disk->flags |= GENHD_FL_EXT_DEVT;
4886 mddev->gendisk = disk;
4887 /* As soon as we call add_disk(), another thread could get
4888 * through to md_open, so make sure it doesn't get too far
4889 */
4890 mutex_lock(&mddev->open_mutex);
4891 add_disk(disk);
4892
4893 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4894 &disk_to_dev(disk)->kobj, "%s", "md");
4895 if (error) {
4896 /* This isn't possible, but as kobject_init_and_add is marked
4897 * __must_check, we must do something with the result
4898 */
4899 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4900 disk->disk_name);
4901 error = 0;
4902 }
4903 if (mddev->kobj.sd &&
4904 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4905 printk(KERN_DEBUG "pointless warning\n");
4906 mutex_unlock(&mddev->open_mutex);
4907 abort:
4908 mutex_unlock(&disks_mutex);
4909 if (!error && mddev->kobj.sd) {
4910 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4911 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4912 }
4913 mddev_put(mddev);
4914 return error;
4915 }
4916
4917 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4918 {
4919 md_alloc(dev, NULL);
4920 return NULL;
4921 }
4922
4923 static int add_named_array(const char *val, struct kernel_param *kp)
4924 {
4925 /* val must be "md_*" where * is not all digits.
4926 * We allocate an array with a large free minor number, and
4927 * set the name to val. val must not already be an active name.
4928 */
4929 int len = strlen(val);
4930 char buf[DISK_NAME_LEN];
4931
4932 while (len && val[len-1] == '\n')
4933 len--;
4934 if (len >= DISK_NAME_LEN)
4935 return -E2BIG;
4936 strlcpy(buf, val, len+1);
4937 if (strncmp(buf, "md_", 3) != 0)
4938 return -EINVAL;
4939 return md_alloc(0, buf);
4940 }
4941
4942 static void md_safemode_timeout(unsigned long data)
4943 {
4944 struct mddev *mddev = (struct mddev *) data;
4945
4946 if (!atomic_read(&mddev->writes_pending)) {
4947 mddev->safemode = 1;
4948 if (mddev->external)
4949 sysfs_notify_dirent_safe(mddev->sysfs_state);
4950 }
4951 md_wakeup_thread(mddev->thread);
4952 }
4953
4954 static int start_dirty_degraded;
4955
4956 int md_run(struct mddev *mddev)
4957 {
4958 int err;
4959 struct md_rdev *rdev;
4960 struct md_personality *pers;
4961
4962 if (list_empty(&mddev->disks))
4963 /* cannot run an array with no devices.. */
4964 return -EINVAL;
4965
4966 if (mddev->pers)
4967 return -EBUSY;
4968 /* Cannot run until previous stop completes properly */
4969 if (mddev->sysfs_active)
4970 return -EBUSY;
4971
4972 /*
4973 * Analyze all RAID superblock(s)
4974 */
4975 if (!mddev->raid_disks) {
4976 if (!mddev->persistent)
4977 return -EINVAL;
4978 analyze_sbs(mddev);
4979 }
4980
4981 if (mddev->level != LEVEL_NONE)
4982 request_module("md-level-%d", mddev->level);
4983 else if (mddev->clevel[0])
4984 request_module("md-%s", mddev->clevel);
4985
4986 /*
4987 * Drop all container device buffers, from now on
4988 * the only valid external interface is through the md
4989 * device.
4990 */
4991 rdev_for_each(rdev, mddev) {
4992 if (test_bit(Faulty, &rdev->flags))
4993 continue;
4994 sync_blockdev(rdev->bdev);
4995 invalidate_bdev(rdev->bdev);
4996
4997 /* perform some consistency tests on the device.
4998 * We don't want the data to overlap the metadata,
4999 * Internal Bitmap issues have been handled elsewhere.
5000 */
5001 if (rdev->meta_bdev) {
5002 /* Nothing to check */;
5003 } else if (rdev->data_offset < rdev->sb_start) {
5004 if (mddev->dev_sectors &&
5005 rdev->data_offset + mddev->dev_sectors
5006 > rdev->sb_start) {
5007 printk("md: %s: data overlaps metadata\n",
5008 mdname(mddev));
5009 return -EINVAL;
5010 }
5011 } else {
5012 if (rdev->sb_start + rdev->sb_size/512
5013 > rdev->data_offset) {
5014 printk("md: %s: metadata overlaps data\n",
5015 mdname(mddev));
5016 return -EINVAL;
5017 }
5018 }
5019 sysfs_notify_dirent_safe(rdev->sysfs_state);
5020 }
5021
5022 if (mddev->bio_set == NULL)
5023 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5024
5025 spin_lock(&pers_lock);
5026 pers = find_pers(mddev->level, mddev->clevel);
5027 if (!pers || !try_module_get(pers->owner)) {
5028 spin_unlock(&pers_lock);
5029 if (mddev->level != LEVEL_NONE)
5030 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5031 mddev->level);
5032 else
5033 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5034 mddev->clevel);
5035 return -EINVAL;
5036 }
5037 mddev->pers = pers;
5038 spin_unlock(&pers_lock);
5039 if (mddev->level != pers->level) {
5040 mddev->level = pers->level;
5041 mddev->new_level = pers->level;
5042 }
5043 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5044
5045 if (mddev->reshape_position != MaxSector &&
5046 pers->start_reshape == NULL) {
5047 /* This personality cannot handle reshaping... */
5048 mddev->pers = NULL;
5049 module_put(pers->owner);
5050 return -EINVAL;
5051 }
5052
5053 if (pers->sync_request) {
5054 /* Warn if this is a potentially silly
5055 * configuration.
5056 */
5057 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5058 struct md_rdev *rdev2;
5059 int warned = 0;
5060
5061 rdev_for_each(rdev, mddev)
5062 rdev_for_each(rdev2, mddev) {
5063 if (rdev < rdev2 &&
5064 rdev->bdev->bd_contains ==
5065 rdev2->bdev->bd_contains) {
5066 printk(KERN_WARNING
5067 "%s: WARNING: %s appears to be"
5068 " on the same physical disk as"
5069 " %s.\n",
5070 mdname(mddev),
5071 bdevname(rdev->bdev,b),
5072 bdevname(rdev2->bdev,b2));
5073 warned = 1;
5074 }
5075 }
5076
5077 if (warned)
5078 printk(KERN_WARNING
5079 "True protection against single-disk"
5080 " failure might be compromised.\n");
5081 }
5082
5083 mddev->recovery = 0;
5084 /* may be over-ridden by personality */
5085 mddev->resync_max_sectors = mddev->dev_sectors;
5086
5087 mddev->ok_start_degraded = start_dirty_degraded;
5088
5089 if (start_readonly && mddev->ro == 0)
5090 mddev->ro = 2; /* read-only, but switch on first write */
5091
5092 err = mddev->pers->run(mddev);
5093 if (err)
5094 printk(KERN_ERR "md: pers->run() failed ...\n");
5095 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
5096 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5097 " but 'external_size' not in effect?\n", __func__);
5098 printk(KERN_ERR
5099 "md: invalid array_size %llu > default size %llu\n",
5100 (unsigned long long)mddev->array_sectors / 2,
5101 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
5102 err = -EINVAL;
5103 mddev->pers->stop(mddev);
5104 }
5105 if (err == 0 && mddev->pers->sync_request &&
5106 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5107 err = bitmap_create(mddev);
5108 if (err) {
5109 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5110 mdname(mddev), err);
5111 mddev->pers->stop(mddev);
5112 }
5113 }
5114 if (err) {
5115 module_put(mddev->pers->owner);
5116 mddev->pers = NULL;
5117 bitmap_destroy(mddev);
5118 return err;
5119 }
5120 if (mddev->pers->sync_request) {
5121 if (mddev->kobj.sd &&
5122 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5123 printk(KERN_WARNING
5124 "md: cannot register extra attributes for %s\n",
5125 mdname(mddev));
5126 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5127 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5128 mddev->ro = 0;
5129
5130 atomic_set(&mddev->writes_pending,0);
5131 atomic_set(&mddev->max_corr_read_errors,
5132 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5133 mddev->safemode = 0;
5134 mddev->safemode_timer.function = md_safemode_timeout;
5135 mddev->safemode_timer.data = (unsigned long) mddev;
5136 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5137 mddev->in_sync = 1;
5138 smp_wmb();
5139 mddev->ready = 1;
5140 rdev_for_each(rdev, mddev)
5141 if (rdev->raid_disk >= 0)
5142 if (sysfs_link_rdev(mddev, rdev))
5143 /* failure here is OK */;
5144
5145 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5146
5147 if (mddev->flags)
5148 md_update_sb(mddev, 0);
5149
5150 md_new_event(mddev);
5151 sysfs_notify_dirent_safe(mddev->sysfs_state);
5152 sysfs_notify_dirent_safe(mddev->sysfs_action);
5153 sysfs_notify(&mddev->kobj, NULL, "degraded");
5154 return 0;
5155 }
5156 EXPORT_SYMBOL_GPL(md_run);
5157
5158 static int do_md_run(struct mddev *mddev)
5159 {
5160 int err;
5161
5162 err = md_run(mddev);
5163 if (err)
5164 goto out;
5165 err = bitmap_load(mddev);
5166 if (err) {
5167 bitmap_destroy(mddev);
5168 goto out;
5169 }
5170
5171 md_wakeup_thread(mddev->thread);
5172 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5173
5174 set_capacity(mddev->gendisk, mddev->array_sectors);
5175 revalidate_disk(mddev->gendisk);
5176 mddev->changed = 1;
5177 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5178 out:
5179 return err;
5180 }
5181
5182 static int restart_array(struct mddev *mddev)
5183 {
5184 struct gendisk *disk = mddev->gendisk;
5185
5186 /* Complain if it has no devices */
5187 if (list_empty(&mddev->disks))
5188 return -ENXIO;
5189 if (!mddev->pers)
5190 return -EINVAL;
5191 if (!mddev->ro)
5192 return -EBUSY;
5193 mddev->safemode = 0;
5194 mddev->ro = 0;
5195 set_disk_ro(disk, 0);
5196 printk(KERN_INFO "md: %s switched to read-write mode.\n",
5197 mdname(mddev));
5198 /* Kick recovery or resync if necessary */
5199 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5200 md_wakeup_thread(mddev->thread);
5201 md_wakeup_thread(mddev->sync_thread);
5202 sysfs_notify_dirent_safe(mddev->sysfs_state);
5203 return 0;
5204 }
5205
5206 /* similar to deny_write_access, but accounts for our holding a reference
5207 * to the file ourselves */
5208 static int deny_bitmap_write_access(struct file * file)
5209 {
5210 struct inode *inode = file->f_mapping->host;
5211
5212 spin_lock(&inode->i_lock);
5213 if (atomic_read(&inode->i_writecount) > 1) {
5214 spin_unlock(&inode->i_lock);
5215 return -ETXTBSY;
5216 }
5217 atomic_set(&inode->i_writecount, -1);
5218 spin_unlock(&inode->i_lock);
5219
5220 return 0;
5221 }
5222
5223 void restore_bitmap_write_access(struct file *file)
5224 {
5225 struct inode *inode = file->f_mapping->host;
5226
5227 spin_lock(&inode->i_lock);
5228 atomic_set(&inode->i_writecount, 1);
5229 spin_unlock(&inode->i_lock);
5230 }
5231
5232 static void md_clean(struct mddev *mddev)
5233 {
5234 mddev->array_sectors = 0;
5235 mddev->external_size = 0;
5236 mddev->dev_sectors = 0;
5237 mddev->raid_disks = 0;
5238 mddev->recovery_cp = 0;
5239 mddev->resync_min = 0;
5240 mddev->resync_max = MaxSector;
5241 mddev->reshape_position = MaxSector;
5242 mddev->external = 0;
5243 mddev->persistent = 0;
5244 mddev->level = LEVEL_NONE;
5245 mddev->clevel[0] = 0;
5246 mddev->flags = 0;
5247 mddev->ro = 0;
5248 mddev->metadata_type[0] = 0;
5249 mddev->chunk_sectors = 0;
5250 mddev->ctime = mddev->utime = 0;
5251 mddev->layout = 0;
5252 mddev->max_disks = 0;
5253 mddev->events = 0;
5254 mddev->can_decrease_events = 0;
5255 mddev->delta_disks = 0;
5256 mddev->reshape_backwards = 0;
5257 mddev->new_level = LEVEL_NONE;
5258 mddev->new_layout = 0;
5259 mddev->new_chunk_sectors = 0;
5260 mddev->curr_resync = 0;
5261 atomic64_set(&mddev->resync_mismatches, 0);
5262 mddev->suspend_lo = mddev->suspend_hi = 0;
5263 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5264 mddev->recovery = 0;
5265 mddev->in_sync = 0;
5266 mddev->changed = 0;
5267 mddev->degraded = 0;
5268 mddev->safemode = 0;
5269 mddev->merge_check_needed = 0;
5270 mddev->bitmap_info.offset = 0;
5271 mddev->bitmap_info.default_offset = 0;
5272 mddev->bitmap_info.default_space = 0;
5273 mddev->bitmap_info.chunksize = 0;
5274 mddev->bitmap_info.daemon_sleep = 0;
5275 mddev->bitmap_info.max_write_behind = 0;
5276 }
5277
5278 static void __md_stop_writes(struct mddev *mddev)
5279 {
5280 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5281 if (mddev->sync_thread) {
5282 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5283 md_reap_sync_thread(mddev);
5284 }
5285
5286 del_timer_sync(&mddev->safemode_timer);
5287
5288 bitmap_flush(mddev);
5289 md_super_wait(mddev);
5290
5291 if (mddev->ro == 0 &&
5292 (!mddev->in_sync || mddev->flags)) {
5293 /* mark array as shutdown cleanly */
5294 mddev->in_sync = 1;
5295 md_update_sb(mddev, 1);
5296 }
5297 }
5298
5299 void md_stop_writes(struct mddev *mddev)
5300 {
5301 mddev_lock(mddev);
5302 __md_stop_writes(mddev);
5303 mddev_unlock(mddev);
5304 }
5305 EXPORT_SYMBOL_GPL(md_stop_writes);
5306
5307 static void __md_stop(struct mddev *mddev)
5308 {
5309 mddev->ready = 0;
5310 mddev->pers->stop(mddev);
5311 if (mddev->pers->sync_request && mddev->to_remove == NULL)
5312 mddev->to_remove = &md_redundancy_group;
5313 module_put(mddev->pers->owner);
5314 mddev->pers = NULL;
5315 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5316 }
5317
5318 void md_stop(struct mddev *mddev)
5319 {
5320 /* stop the array and free an attached data structures.
5321 * This is called from dm-raid
5322 */
5323 __md_stop(mddev);
5324 bitmap_destroy(mddev);
5325 if (mddev->bio_set)
5326 bioset_free(mddev->bio_set);
5327 }
5328
5329 EXPORT_SYMBOL_GPL(md_stop);
5330
5331 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5332 {
5333 int err = 0;
5334 mutex_lock(&mddev->open_mutex);
5335 if (atomic_read(&mddev->openers) > !!bdev) {
5336 printk("md: %s still in use.\n",mdname(mddev));
5337 err = -EBUSY;
5338 goto out;
5339 }
5340 if (bdev)
5341 sync_blockdev(bdev);
5342 if (mddev->pers) {
5343 __md_stop_writes(mddev);
5344
5345 err = -ENXIO;
5346 if (mddev->ro==1)
5347 goto out;
5348 mddev->ro = 1;
5349 set_disk_ro(mddev->gendisk, 1);
5350 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5351 sysfs_notify_dirent_safe(mddev->sysfs_state);
5352 err = 0;
5353 }
5354 out:
5355 mutex_unlock(&mddev->open_mutex);
5356 return err;
5357 }
5358
5359 /* mode:
5360 * 0 - completely stop and dis-assemble array
5361 * 2 - stop but do not disassemble array
5362 */
5363 static int do_md_stop(struct mddev * mddev, int mode,
5364 struct block_device *bdev)
5365 {
5366 struct gendisk *disk = mddev->gendisk;
5367 struct md_rdev *rdev;
5368
5369 mutex_lock(&mddev->open_mutex);
5370 if (atomic_read(&mddev->openers) > !!bdev ||
5371 mddev->sysfs_active) {
5372 printk("md: %s still in use.\n",mdname(mddev));
5373 mutex_unlock(&mddev->open_mutex);
5374 return -EBUSY;
5375 }
5376 if (bdev)
5377 /* It is possible IO was issued on some other
5378 * open file which was closed before we took ->open_mutex.
5379 * As that was not the last close __blkdev_put will not
5380 * have called sync_blockdev, so we must.
5381 */
5382 sync_blockdev(bdev);
5383
5384 if (mddev->pers) {
5385 if (mddev->ro)
5386 set_disk_ro(disk, 0);
5387
5388 __md_stop_writes(mddev);
5389 __md_stop(mddev);
5390 mddev->queue->merge_bvec_fn = NULL;
5391 mddev->queue->backing_dev_info.congested_fn = NULL;
5392
5393 /* tell userspace to handle 'inactive' */
5394 sysfs_notify_dirent_safe(mddev->sysfs_state);
5395
5396 rdev_for_each(rdev, mddev)
5397 if (rdev->raid_disk >= 0)
5398 sysfs_unlink_rdev(mddev, rdev);
5399
5400 set_capacity(disk, 0);
5401 mutex_unlock(&mddev->open_mutex);
5402 mddev->changed = 1;
5403 revalidate_disk(disk);
5404
5405 if (mddev->ro)
5406 mddev->ro = 0;
5407 } else
5408 mutex_unlock(&mddev->open_mutex);
5409 /*
5410 * Free resources if final stop
5411 */
5412 if (mode == 0) {
5413 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5414
5415 bitmap_destroy(mddev);
5416 if (mddev->bitmap_info.file) {
5417 restore_bitmap_write_access(mddev->bitmap_info.file);
5418 fput(mddev->bitmap_info.file);
5419 mddev->bitmap_info.file = NULL;
5420 }
5421 mddev->bitmap_info.offset = 0;
5422
5423 export_array(mddev);
5424
5425 md_clean(mddev);
5426 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5427 if (mddev->hold_active == UNTIL_STOP)
5428 mddev->hold_active = 0;
5429 }
5430 blk_integrity_unregister(disk);
5431 md_new_event(mddev);
5432 sysfs_notify_dirent_safe(mddev->sysfs_state);
5433 return 0;
5434 }
5435
5436 #ifndef MODULE
5437 static void autorun_array(struct mddev *mddev)
5438 {
5439 struct md_rdev *rdev;
5440 int err;
5441
5442 if (list_empty(&mddev->disks))
5443 return;
5444
5445 printk(KERN_INFO "md: running: ");
5446
5447 rdev_for_each(rdev, mddev) {
5448 char b[BDEVNAME_SIZE];
5449 printk("<%s>", bdevname(rdev->bdev,b));
5450 }
5451 printk("\n");
5452
5453 err = do_md_run(mddev);
5454 if (err) {
5455 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5456 do_md_stop(mddev, 0, NULL);
5457 }
5458 }
5459
5460 /*
5461 * lets try to run arrays based on all disks that have arrived
5462 * until now. (those are in pending_raid_disks)
5463 *
5464 * the method: pick the first pending disk, collect all disks with
5465 * the same UUID, remove all from the pending list and put them into
5466 * the 'same_array' list. Then order this list based on superblock
5467 * update time (freshest comes first), kick out 'old' disks and
5468 * compare superblocks. If everything's fine then run it.
5469 *
5470 * If "unit" is allocated, then bump its reference count
5471 */
5472 static void autorun_devices(int part)
5473 {
5474 struct md_rdev *rdev0, *rdev, *tmp;
5475 struct mddev *mddev;
5476 char b[BDEVNAME_SIZE];
5477
5478 printk(KERN_INFO "md: autorun ...\n");
5479 while (!list_empty(&pending_raid_disks)) {
5480 int unit;
5481 dev_t dev;
5482 LIST_HEAD(candidates);
5483 rdev0 = list_entry(pending_raid_disks.next,
5484 struct md_rdev, same_set);
5485
5486 printk(KERN_INFO "md: considering %s ...\n",
5487 bdevname(rdev0->bdev,b));
5488 INIT_LIST_HEAD(&candidates);
5489 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5490 if (super_90_load(rdev, rdev0, 0) >= 0) {
5491 printk(KERN_INFO "md: adding %s ...\n",
5492 bdevname(rdev->bdev,b));
5493 list_move(&rdev->same_set, &candidates);
5494 }
5495 /*
5496 * now we have a set of devices, with all of them having
5497 * mostly sane superblocks. It's time to allocate the
5498 * mddev.
5499 */
5500 if (part) {
5501 dev = MKDEV(mdp_major,
5502 rdev0->preferred_minor << MdpMinorShift);
5503 unit = MINOR(dev) >> MdpMinorShift;
5504 } else {
5505 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5506 unit = MINOR(dev);
5507 }
5508 if (rdev0->preferred_minor != unit) {
5509 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5510 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5511 break;
5512 }
5513
5514 md_probe(dev, NULL, NULL);
5515 mddev = mddev_find(dev);
5516 if (!mddev || !mddev->gendisk) {
5517 if (mddev)
5518 mddev_put(mddev);
5519 printk(KERN_ERR
5520 "md: cannot allocate memory for md drive.\n");
5521 break;
5522 }
5523 if (mddev_lock(mddev))
5524 printk(KERN_WARNING "md: %s locked, cannot run\n",
5525 mdname(mddev));
5526 else if (mddev->raid_disks || mddev->major_version
5527 || !list_empty(&mddev->disks)) {
5528 printk(KERN_WARNING
5529 "md: %s already running, cannot run %s\n",
5530 mdname(mddev), bdevname(rdev0->bdev,b));
5531 mddev_unlock(mddev);
5532 } else {
5533 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5534 mddev->persistent = 1;
5535 rdev_for_each_list(rdev, tmp, &candidates) {
5536 list_del_init(&rdev->same_set);
5537 if (bind_rdev_to_array(rdev, mddev))
5538 export_rdev(rdev);
5539 }
5540 autorun_array(mddev);
5541 mddev_unlock(mddev);
5542 }
5543 /* on success, candidates will be empty, on error
5544 * it won't...
5545 */
5546 rdev_for_each_list(rdev, tmp, &candidates) {
5547 list_del_init(&rdev->same_set);
5548 export_rdev(rdev);
5549 }
5550 mddev_put(mddev);
5551 }
5552 printk(KERN_INFO "md: ... autorun DONE.\n");
5553 }
5554 #endif /* !MODULE */
5555
5556 static int get_version(void __user * arg)
5557 {
5558 mdu_version_t ver;
5559
5560 ver.major = MD_MAJOR_VERSION;
5561 ver.minor = MD_MINOR_VERSION;
5562 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5563
5564 if (copy_to_user(arg, &ver, sizeof(ver)))
5565 return -EFAULT;
5566
5567 return 0;
5568 }
5569
5570 static int get_array_info(struct mddev * mddev, void __user * arg)
5571 {
5572 mdu_array_info_t info;
5573 int nr,working,insync,failed,spare;
5574 struct md_rdev *rdev;
5575
5576 nr = working = insync = failed = spare = 0;
5577 rcu_read_lock();
5578 rdev_for_each_rcu(rdev, mddev) {
5579 nr++;
5580 if (test_bit(Faulty, &rdev->flags))
5581 failed++;
5582 else {
5583 working++;
5584 if (test_bit(In_sync, &rdev->flags))
5585 insync++;
5586 else
5587 spare++;
5588 }
5589 }
5590 rcu_read_unlock();
5591
5592 info.major_version = mddev->major_version;
5593 info.minor_version = mddev->minor_version;
5594 info.patch_version = MD_PATCHLEVEL_VERSION;
5595 info.ctime = mddev->ctime;
5596 info.level = mddev->level;
5597 info.size = mddev->dev_sectors / 2;
5598 if (info.size != mddev->dev_sectors / 2) /* overflow */
5599 info.size = -1;
5600 info.nr_disks = nr;
5601 info.raid_disks = mddev->raid_disks;
5602 info.md_minor = mddev->md_minor;
5603 info.not_persistent= !mddev->persistent;
5604
5605 info.utime = mddev->utime;
5606 info.state = 0;
5607 if (mddev->in_sync)
5608 info.state = (1<<MD_SB_CLEAN);
5609 if (mddev->bitmap && mddev->bitmap_info.offset)
5610 info.state = (1<<MD_SB_BITMAP_PRESENT);
5611 info.active_disks = insync;
5612 info.working_disks = working;
5613 info.failed_disks = failed;
5614 info.spare_disks = spare;
5615
5616 info.layout = mddev->layout;
5617 info.chunk_size = mddev->chunk_sectors << 9;
5618
5619 if (copy_to_user(arg, &info, sizeof(info)))
5620 return -EFAULT;
5621
5622 return 0;
5623 }
5624
5625 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5626 {
5627 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5628 char *ptr, *buf = NULL;
5629 int err = -ENOMEM;
5630
5631 if (md_allow_write(mddev))
5632 file = kmalloc(sizeof(*file), GFP_NOIO);
5633 else
5634 file = kmalloc(sizeof(*file), GFP_KERNEL);
5635
5636 if (!file)
5637 goto out;
5638
5639 /* bitmap disabled, zero the first byte and copy out */
5640 if (!mddev->bitmap || !mddev->bitmap->storage.file) {
5641 file->pathname[0] = '\0';
5642 goto copy_out;
5643 }
5644
5645 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5646 if (!buf)
5647 goto out;
5648
5649 ptr = d_path(&mddev->bitmap->storage.file->f_path,
5650 buf, sizeof(file->pathname));
5651 if (IS_ERR(ptr))
5652 goto out;
5653
5654 strcpy(file->pathname, ptr);
5655
5656 copy_out:
5657 err = 0;
5658 if (copy_to_user(arg, file, sizeof(*file)))
5659 err = -EFAULT;
5660 out:
5661 kfree(buf);
5662 kfree(file);
5663 return err;
5664 }
5665
5666 static int get_disk_info(struct mddev * mddev, void __user * arg)
5667 {
5668 mdu_disk_info_t info;
5669 struct md_rdev *rdev;
5670
5671 if (copy_from_user(&info, arg, sizeof(info)))
5672 return -EFAULT;
5673
5674 rcu_read_lock();
5675 rdev = find_rdev_nr_rcu(mddev, info.number);
5676 if (rdev) {
5677 info.major = MAJOR(rdev->bdev->bd_dev);
5678 info.minor = MINOR(rdev->bdev->bd_dev);
5679 info.raid_disk = rdev->raid_disk;
5680 info.state = 0;
5681 if (test_bit(Faulty, &rdev->flags))
5682 info.state |= (1<<MD_DISK_FAULTY);
5683 else if (test_bit(In_sync, &rdev->flags)) {
5684 info.state |= (1<<MD_DISK_ACTIVE);
5685 info.state |= (1<<MD_DISK_SYNC);
5686 }
5687 if (test_bit(WriteMostly, &rdev->flags))
5688 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5689 } else {
5690 info.major = info.minor = 0;
5691 info.raid_disk = -1;
5692 info.state = (1<<MD_DISK_REMOVED);
5693 }
5694 rcu_read_unlock();
5695
5696 if (copy_to_user(arg, &info, sizeof(info)))
5697 return -EFAULT;
5698
5699 return 0;
5700 }
5701
5702 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5703 {
5704 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5705 struct md_rdev *rdev;
5706 dev_t dev = MKDEV(info->major,info->minor);
5707
5708 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5709 return -EOVERFLOW;
5710
5711 if (!mddev->raid_disks) {
5712 int err;
5713 /* expecting a device which has a superblock */
5714 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5715 if (IS_ERR(rdev)) {
5716 printk(KERN_WARNING
5717 "md: md_import_device returned %ld\n",
5718 PTR_ERR(rdev));
5719 return PTR_ERR(rdev);
5720 }
5721 if (!list_empty(&mddev->disks)) {
5722 struct md_rdev *rdev0
5723 = list_entry(mddev->disks.next,
5724 struct md_rdev, same_set);
5725 err = super_types[mddev->major_version]
5726 .load_super(rdev, rdev0, mddev->minor_version);
5727 if (err < 0) {
5728 printk(KERN_WARNING
5729 "md: %s has different UUID to %s\n",
5730 bdevname(rdev->bdev,b),
5731 bdevname(rdev0->bdev,b2));
5732 export_rdev(rdev);
5733 return -EINVAL;
5734 }
5735 }
5736 err = bind_rdev_to_array(rdev, mddev);
5737 if (err)
5738 export_rdev(rdev);
5739 return err;
5740 }
5741
5742 /*
5743 * add_new_disk can be used once the array is assembled
5744 * to add "hot spares". They must already have a superblock
5745 * written
5746 */
5747 if (mddev->pers) {
5748 int err;
5749 if (!mddev->pers->hot_add_disk) {
5750 printk(KERN_WARNING
5751 "%s: personality does not support diskops!\n",
5752 mdname(mddev));
5753 return -EINVAL;
5754 }
5755 if (mddev->persistent)
5756 rdev = md_import_device(dev, mddev->major_version,
5757 mddev->minor_version);
5758 else
5759 rdev = md_import_device(dev, -1, -1);
5760 if (IS_ERR(rdev)) {
5761 printk(KERN_WARNING
5762 "md: md_import_device returned %ld\n",
5763 PTR_ERR(rdev));
5764 return PTR_ERR(rdev);
5765 }
5766 /* set saved_raid_disk if appropriate */
5767 if (!mddev->persistent) {
5768 if (info->state & (1<<MD_DISK_SYNC) &&
5769 info->raid_disk < mddev->raid_disks) {
5770 rdev->raid_disk = info->raid_disk;
5771 set_bit(In_sync, &rdev->flags);
5772 } else
5773 rdev->raid_disk = -1;
5774 } else
5775 super_types[mddev->major_version].
5776 validate_super(mddev, rdev);
5777 if ((info->state & (1<<MD_DISK_SYNC)) &&
5778 rdev->raid_disk != info->raid_disk) {
5779 /* This was a hot-add request, but events doesn't
5780 * match, so reject it.
5781 */
5782 export_rdev(rdev);
5783 return -EINVAL;
5784 }
5785
5786 if (test_bit(In_sync, &rdev->flags))
5787 rdev->saved_raid_disk = rdev->raid_disk;
5788 else
5789 rdev->saved_raid_disk = -1;
5790
5791 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5792 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5793 set_bit(WriteMostly, &rdev->flags);
5794 else
5795 clear_bit(WriteMostly, &rdev->flags);
5796
5797 rdev->raid_disk = -1;
5798 err = bind_rdev_to_array(rdev, mddev);
5799 if (!err && !mddev->pers->hot_remove_disk) {
5800 /* If there is hot_add_disk but no hot_remove_disk
5801 * then added disks for geometry changes,
5802 * and should be added immediately.
5803 */
5804 super_types[mddev->major_version].
5805 validate_super(mddev, rdev);
5806 err = mddev->pers->hot_add_disk(mddev, rdev);
5807 if (err)
5808 unbind_rdev_from_array(rdev);
5809 }
5810 if (err)
5811 export_rdev(rdev);
5812 else
5813 sysfs_notify_dirent_safe(rdev->sysfs_state);
5814
5815 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5816 if (mddev->degraded)
5817 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5818 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5819 if (!err)
5820 md_new_event(mddev);
5821 md_wakeup_thread(mddev->thread);
5822 return err;
5823 }
5824
5825 /* otherwise, add_new_disk is only allowed
5826 * for major_version==0 superblocks
5827 */
5828 if (mddev->major_version != 0) {
5829 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5830 mdname(mddev));
5831 return -EINVAL;
5832 }
5833
5834 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5835 int err;
5836 rdev = md_import_device(dev, -1, 0);
5837 if (IS_ERR(rdev)) {
5838 printk(KERN_WARNING
5839 "md: error, md_import_device() returned %ld\n",
5840 PTR_ERR(rdev));
5841 return PTR_ERR(rdev);
5842 }
5843 rdev->desc_nr = info->number;
5844 if (info->raid_disk < mddev->raid_disks)
5845 rdev->raid_disk = info->raid_disk;
5846 else
5847 rdev->raid_disk = -1;
5848
5849 if (rdev->raid_disk < mddev->raid_disks)
5850 if (info->state & (1<<MD_DISK_SYNC))
5851 set_bit(In_sync, &rdev->flags);
5852
5853 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5854 set_bit(WriteMostly, &rdev->flags);
5855
5856 if (!mddev->persistent) {
5857 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5858 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5859 } else
5860 rdev->sb_start = calc_dev_sboffset(rdev);
5861 rdev->sectors = rdev->sb_start;
5862
5863 err = bind_rdev_to_array(rdev, mddev);
5864 if (err) {
5865 export_rdev(rdev);
5866 return err;
5867 }
5868 }
5869
5870 return 0;
5871 }
5872
5873 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5874 {
5875 char b[BDEVNAME_SIZE];
5876 struct md_rdev *rdev;
5877
5878 rdev = find_rdev(mddev, dev);
5879 if (!rdev)
5880 return -ENXIO;
5881
5882 clear_bit(Blocked, &rdev->flags);
5883 remove_and_add_spares(mddev, rdev);
5884
5885 if (rdev->raid_disk >= 0)
5886 goto busy;
5887
5888 kick_rdev_from_array(rdev);
5889 md_update_sb(mddev, 1);
5890 md_new_event(mddev);
5891
5892 return 0;
5893 busy:
5894 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5895 bdevname(rdev->bdev,b), mdname(mddev));
5896 return -EBUSY;
5897 }
5898
5899 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5900 {
5901 char b[BDEVNAME_SIZE];
5902 int err;
5903 struct md_rdev *rdev;
5904
5905 if (!mddev->pers)
5906 return -ENODEV;
5907
5908 if (mddev->major_version != 0) {
5909 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5910 " version-0 superblocks.\n",
5911 mdname(mddev));
5912 return -EINVAL;
5913 }
5914 if (!mddev->pers->hot_add_disk) {
5915 printk(KERN_WARNING
5916 "%s: personality does not support diskops!\n",
5917 mdname(mddev));
5918 return -EINVAL;
5919 }
5920
5921 rdev = md_import_device(dev, -1, 0);
5922 if (IS_ERR(rdev)) {
5923 printk(KERN_WARNING
5924 "md: error, md_import_device() returned %ld\n",
5925 PTR_ERR(rdev));
5926 return -EINVAL;
5927 }
5928
5929 if (mddev->persistent)
5930 rdev->sb_start = calc_dev_sboffset(rdev);
5931 else
5932 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5933
5934 rdev->sectors = rdev->sb_start;
5935
5936 if (test_bit(Faulty, &rdev->flags)) {
5937 printk(KERN_WARNING
5938 "md: can not hot-add faulty %s disk to %s!\n",
5939 bdevname(rdev->bdev,b), mdname(mddev));
5940 err = -EINVAL;
5941 goto abort_export;
5942 }
5943 clear_bit(In_sync, &rdev->flags);
5944 rdev->desc_nr = -1;
5945 rdev->saved_raid_disk = -1;
5946 err = bind_rdev_to_array(rdev, mddev);
5947 if (err)
5948 goto abort_export;
5949
5950 /*
5951 * The rest should better be atomic, we can have disk failures
5952 * noticed in interrupt contexts ...
5953 */
5954
5955 rdev->raid_disk = -1;
5956
5957 md_update_sb(mddev, 1);
5958
5959 /*
5960 * Kick recovery, maybe this spare has to be added to the
5961 * array immediately.
5962 */
5963 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5964 md_wakeup_thread(mddev->thread);
5965 md_new_event(mddev);
5966 return 0;
5967
5968 abort_export:
5969 export_rdev(rdev);
5970 return err;
5971 }
5972
5973 static int set_bitmap_file(struct mddev *mddev, int fd)
5974 {
5975 int err;
5976
5977 if (mddev->pers) {
5978 if (!mddev->pers->quiesce)
5979 return -EBUSY;
5980 if (mddev->recovery || mddev->sync_thread)
5981 return -EBUSY;
5982 /* we should be able to change the bitmap.. */
5983 }
5984
5985
5986 if (fd >= 0) {
5987 if (mddev->bitmap)
5988 return -EEXIST; /* cannot add when bitmap is present */
5989 mddev->bitmap_info.file = fget(fd);
5990
5991 if (mddev->bitmap_info.file == NULL) {
5992 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5993 mdname(mddev));
5994 return -EBADF;
5995 }
5996
5997 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5998 if (err) {
5999 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6000 mdname(mddev));
6001 fput(mddev->bitmap_info.file);
6002 mddev->bitmap_info.file = NULL;
6003 return err;
6004 }
6005 mddev->bitmap_info.offset = 0; /* file overrides offset */
6006 } else if (mddev->bitmap == NULL)
6007 return -ENOENT; /* cannot remove what isn't there */
6008 err = 0;
6009 if (mddev->pers) {
6010 mddev->pers->quiesce(mddev, 1);
6011 if (fd >= 0) {
6012 err = bitmap_create(mddev);
6013 if (!err)
6014 err = bitmap_load(mddev);
6015 }
6016 if (fd < 0 || err) {
6017 bitmap_destroy(mddev);
6018 fd = -1; /* make sure to put the file */
6019 }
6020 mddev->pers->quiesce(mddev, 0);
6021 }
6022 if (fd < 0) {
6023 if (mddev->bitmap_info.file) {
6024 restore_bitmap_write_access(mddev->bitmap_info.file);
6025 fput(mddev->bitmap_info.file);
6026 }
6027 mddev->bitmap_info.file = NULL;
6028 }
6029
6030 return err;
6031 }
6032
6033 /*
6034 * set_array_info is used two different ways
6035 * The original usage is when creating a new array.
6036 * In this usage, raid_disks is > 0 and it together with
6037 * level, size, not_persistent,layout,chunksize determine the
6038 * shape of the array.
6039 * This will always create an array with a type-0.90.0 superblock.
6040 * The newer usage is when assembling an array.
6041 * In this case raid_disks will be 0, and the major_version field is
6042 * use to determine which style super-blocks are to be found on the devices.
6043 * The minor and patch _version numbers are also kept incase the
6044 * super_block handler wishes to interpret them.
6045 */
6046 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
6047 {
6048
6049 if (info->raid_disks == 0) {
6050 /* just setting version number for superblock loading */
6051 if (info->major_version < 0 ||
6052 info->major_version >= ARRAY_SIZE(super_types) ||
6053 super_types[info->major_version].name == NULL) {
6054 /* maybe try to auto-load a module? */
6055 printk(KERN_INFO
6056 "md: superblock version %d not known\n",
6057 info->major_version);
6058 return -EINVAL;
6059 }
6060 mddev->major_version = info->major_version;
6061 mddev->minor_version = info->minor_version;
6062 mddev->patch_version = info->patch_version;
6063 mddev->persistent = !info->not_persistent;
6064 /* ensure mddev_put doesn't delete this now that there
6065 * is some minimal configuration.
6066 */
6067 mddev->ctime = get_seconds();
6068 return 0;
6069 }
6070 mddev->major_version = MD_MAJOR_VERSION;
6071 mddev->minor_version = MD_MINOR_VERSION;
6072 mddev->patch_version = MD_PATCHLEVEL_VERSION;
6073 mddev->ctime = get_seconds();
6074
6075 mddev->level = info->level;
6076 mddev->clevel[0] = 0;
6077 mddev->dev_sectors = 2 * (sector_t)info->size;
6078 mddev->raid_disks = info->raid_disks;
6079 /* don't set md_minor, it is determined by which /dev/md* was
6080 * openned
6081 */
6082 if (info->state & (1<<MD_SB_CLEAN))
6083 mddev->recovery_cp = MaxSector;
6084 else
6085 mddev->recovery_cp = 0;
6086 mddev->persistent = ! info->not_persistent;
6087 mddev->external = 0;
6088
6089 mddev->layout = info->layout;
6090 mddev->chunk_sectors = info->chunk_size >> 9;
6091
6092 mddev->max_disks = MD_SB_DISKS;
6093
6094 if (mddev->persistent)
6095 mddev->flags = 0;
6096 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6097
6098 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6099 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6100 mddev->bitmap_info.offset = 0;
6101
6102 mddev->reshape_position = MaxSector;
6103
6104 /*
6105 * Generate a 128 bit UUID
6106 */
6107 get_random_bytes(mddev->uuid, 16);
6108
6109 mddev->new_level = mddev->level;
6110 mddev->new_chunk_sectors = mddev->chunk_sectors;
6111 mddev->new_layout = mddev->layout;
6112 mddev->delta_disks = 0;
6113 mddev->reshape_backwards = 0;
6114
6115 return 0;
6116 }
6117
6118 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6119 {
6120 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6121
6122 if (mddev->external_size)
6123 return;
6124
6125 mddev->array_sectors = array_sectors;
6126 }
6127 EXPORT_SYMBOL(md_set_array_sectors);
6128
6129 static int update_size(struct mddev *mddev, sector_t num_sectors)
6130 {
6131 struct md_rdev *rdev;
6132 int rv;
6133 int fit = (num_sectors == 0);
6134
6135 if (mddev->pers->resize == NULL)
6136 return -EINVAL;
6137 /* The "num_sectors" is the number of sectors of each device that
6138 * is used. This can only make sense for arrays with redundancy.
6139 * linear and raid0 always use whatever space is available. We can only
6140 * consider changing this number if no resync or reconstruction is
6141 * happening, and if the new size is acceptable. It must fit before the
6142 * sb_start or, if that is <data_offset, it must fit before the size
6143 * of each device. If num_sectors is zero, we find the largest size
6144 * that fits.
6145 */
6146 if (mddev->sync_thread)
6147 return -EBUSY;
6148
6149 rdev_for_each(rdev, mddev) {
6150 sector_t avail = rdev->sectors;
6151
6152 if (fit && (num_sectors == 0 || num_sectors > avail))
6153 num_sectors = avail;
6154 if (avail < num_sectors)
6155 return -ENOSPC;
6156 }
6157 rv = mddev->pers->resize(mddev, num_sectors);
6158 if (!rv)
6159 revalidate_disk(mddev->gendisk);
6160 return rv;
6161 }
6162
6163 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6164 {
6165 int rv;
6166 struct md_rdev *rdev;
6167 /* change the number of raid disks */
6168 if (mddev->pers->check_reshape == NULL)
6169 return -EINVAL;
6170 if (raid_disks <= 0 ||
6171 (mddev->max_disks && raid_disks >= mddev->max_disks))
6172 return -EINVAL;
6173 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
6174 return -EBUSY;
6175
6176 rdev_for_each(rdev, mddev) {
6177 if (mddev->raid_disks < raid_disks &&
6178 rdev->data_offset < rdev->new_data_offset)
6179 return -EINVAL;
6180 if (mddev->raid_disks > raid_disks &&
6181 rdev->data_offset > rdev->new_data_offset)
6182 return -EINVAL;
6183 }
6184
6185 mddev->delta_disks = raid_disks - mddev->raid_disks;
6186 if (mddev->delta_disks < 0)
6187 mddev->reshape_backwards = 1;
6188 else if (mddev->delta_disks > 0)
6189 mddev->reshape_backwards = 0;
6190
6191 rv = mddev->pers->check_reshape(mddev);
6192 if (rv < 0) {
6193 mddev->delta_disks = 0;
6194 mddev->reshape_backwards = 0;
6195 }
6196 return rv;
6197 }
6198
6199
6200 /*
6201 * update_array_info is used to change the configuration of an
6202 * on-line array.
6203 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6204 * fields in the info are checked against the array.
6205 * Any differences that cannot be handled will cause an error.
6206 * Normally, only one change can be managed at a time.
6207 */
6208 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6209 {
6210 int rv = 0;
6211 int cnt = 0;
6212 int state = 0;
6213
6214 /* calculate expected state,ignoring low bits */
6215 if (mddev->bitmap && mddev->bitmap_info.offset)
6216 state |= (1 << MD_SB_BITMAP_PRESENT);
6217
6218 if (mddev->major_version != info->major_version ||
6219 mddev->minor_version != info->minor_version ||
6220 /* mddev->patch_version != info->patch_version || */
6221 mddev->ctime != info->ctime ||
6222 mddev->level != info->level ||
6223 /* mddev->layout != info->layout || */
6224 !mddev->persistent != info->not_persistent||
6225 mddev->chunk_sectors != info->chunk_size >> 9 ||
6226 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6227 ((state^info->state) & 0xfffffe00)
6228 )
6229 return -EINVAL;
6230 /* Check there is only one change */
6231 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6232 cnt++;
6233 if (mddev->raid_disks != info->raid_disks)
6234 cnt++;
6235 if (mddev->layout != info->layout)
6236 cnt++;
6237 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6238 cnt++;
6239 if (cnt == 0)
6240 return 0;
6241 if (cnt > 1)
6242 return -EINVAL;
6243
6244 if (mddev->layout != info->layout) {
6245 /* Change layout
6246 * we don't need to do anything at the md level, the
6247 * personality will take care of it all.
6248 */
6249 if (mddev->pers->check_reshape == NULL)
6250 return -EINVAL;
6251 else {
6252 mddev->new_layout = info->layout;
6253 rv = mddev->pers->check_reshape(mddev);
6254 if (rv)
6255 mddev->new_layout = mddev->layout;
6256 return rv;
6257 }
6258 }
6259 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6260 rv = update_size(mddev, (sector_t)info->size * 2);
6261
6262 if (mddev->raid_disks != info->raid_disks)
6263 rv = update_raid_disks(mddev, info->raid_disks);
6264
6265 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6266 if (mddev->pers->quiesce == NULL)
6267 return -EINVAL;
6268 if (mddev->recovery || mddev->sync_thread)
6269 return -EBUSY;
6270 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6271 /* add the bitmap */
6272 if (mddev->bitmap)
6273 return -EEXIST;
6274 if (mddev->bitmap_info.default_offset == 0)
6275 return -EINVAL;
6276 mddev->bitmap_info.offset =
6277 mddev->bitmap_info.default_offset;
6278 mddev->bitmap_info.space =
6279 mddev->bitmap_info.default_space;
6280 mddev->pers->quiesce(mddev, 1);
6281 rv = bitmap_create(mddev);
6282 if (!rv)
6283 rv = bitmap_load(mddev);
6284 if (rv)
6285 bitmap_destroy(mddev);
6286 mddev->pers->quiesce(mddev, 0);
6287 } else {
6288 /* remove the bitmap */
6289 if (!mddev->bitmap)
6290 return -ENOENT;
6291 if (mddev->bitmap->storage.file)
6292 return -EINVAL;
6293 mddev->pers->quiesce(mddev, 1);
6294 bitmap_destroy(mddev);
6295 mddev->pers->quiesce(mddev, 0);
6296 mddev->bitmap_info.offset = 0;
6297 }
6298 }
6299 md_update_sb(mddev, 1);
6300 return rv;
6301 }
6302
6303 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6304 {
6305 struct md_rdev *rdev;
6306 int err = 0;
6307
6308 if (mddev->pers == NULL)
6309 return -ENODEV;
6310
6311 rcu_read_lock();
6312 rdev = find_rdev_rcu(mddev, dev);
6313 if (!rdev)
6314 err = -ENODEV;
6315 else {
6316 md_error(mddev, rdev);
6317 if (!test_bit(Faulty, &rdev->flags))
6318 err = -EBUSY;
6319 }
6320 rcu_read_unlock();
6321 return err;
6322 }
6323
6324 /*
6325 * We have a problem here : there is no easy way to give a CHS
6326 * virtual geometry. We currently pretend that we have a 2 heads
6327 * 4 sectors (with a BIG number of cylinders...). This drives
6328 * dosfs just mad... ;-)
6329 */
6330 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6331 {
6332 struct mddev *mddev = bdev->bd_disk->private_data;
6333
6334 geo->heads = 2;
6335 geo->sectors = 4;
6336 geo->cylinders = mddev->array_sectors / 8;
6337 return 0;
6338 }
6339
6340 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6341 unsigned int cmd, unsigned long arg)
6342 {
6343 int err = 0;
6344 void __user *argp = (void __user *)arg;
6345 struct mddev *mddev = NULL;
6346 int ro;
6347
6348 switch (cmd) {
6349 case RAID_VERSION:
6350 case GET_ARRAY_INFO:
6351 case GET_DISK_INFO:
6352 break;
6353 default:
6354 if (!capable(CAP_SYS_ADMIN))
6355 return -EACCES;
6356 }
6357
6358 /*
6359 * Commands dealing with the RAID driver but not any
6360 * particular array:
6361 */
6362 switch (cmd) {
6363 case RAID_VERSION:
6364 err = get_version(argp);
6365 goto done;
6366
6367 case PRINT_RAID_DEBUG:
6368 err = 0;
6369 md_print_devices();
6370 goto done;
6371
6372 #ifndef MODULE
6373 case RAID_AUTORUN:
6374 err = 0;
6375 autostart_arrays(arg);
6376 goto done;
6377 #endif
6378 default:;
6379 }
6380
6381 /*
6382 * Commands creating/starting a new array:
6383 */
6384
6385 mddev = bdev->bd_disk->private_data;
6386
6387 if (!mddev) {
6388 BUG();
6389 goto abort;
6390 }
6391
6392 /* Some actions do not requires the mutex */
6393 switch (cmd) {
6394 case GET_ARRAY_INFO:
6395 if (!mddev->raid_disks && !mddev->external)
6396 err = -ENODEV;
6397 else
6398 err = get_array_info(mddev, argp);
6399 goto abort;
6400
6401 case GET_DISK_INFO:
6402 if (!mddev->raid_disks && !mddev->external)
6403 err = -ENODEV;
6404 else
6405 err = get_disk_info(mddev, argp);
6406 goto abort;
6407
6408 case SET_DISK_FAULTY:
6409 err = set_disk_faulty(mddev, new_decode_dev(arg));
6410 goto abort;
6411 }
6412
6413 if (cmd == ADD_NEW_DISK)
6414 /* need to ensure md_delayed_delete() has completed */
6415 flush_workqueue(md_misc_wq);
6416
6417 if (cmd == HOT_REMOVE_DISK)
6418 /* need to ensure recovery thread has run */
6419 wait_event_interruptible_timeout(mddev->sb_wait,
6420 !test_bit(MD_RECOVERY_NEEDED,
6421 &mddev->flags),
6422 msecs_to_jiffies(5000));
6423 err = mddev_lock(mddev);
6424 if (err) {
6425 printk(KERN_INFO
6426 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6427 err, cmd);
6428 goto abort;
6429 }
6430
6431 if (cmd == SET_ARRAY_INFO) {
6432 mdu_array_info_t info;
6433 if (!arg)
6434 memset(&info, 0, sizeof(info));
6435 else if (copy_from_user(&info, argp, sizeof(info))) {
6436 err = -EFAULT;
6437 goto abort_unlock;
6438 }
6439 if (mddev->pers) {
6440 err = update_array_info(mddev, &info);
6441 if (err) {
6442 printk(KERN_WARNING "md: couldn't update"
6443 " array info. %d\n", err);
6444 goto abort_unlock;
6445 }
6446 goto done_unlock;
6447 }
6448 if (!list_empty(&mddev->disks)) {
6449 printk(KERN_WARNING
6450 "md: array %s already has disks!\n",
6451 mdname(mddev));
6452 err = -EBUSY;
6453 goto abort_unlock;
6454 }
6455 if (mddev->raid_disks) {
6456 printk(KERN_WARNING
6457 "md: array %s already initialised!\n",
6458 mdname(mddev));
6459 err = -EBUSY;
6460 goto abort_unlock;
6461 }
6462 err = set_array_info(mddev, &info);
6463 if (err) {
6464 printk(KERN_WARNING "md: couldn't set"
6465 " array info. %d\n", err);
6466 goto abort_unlock;
6467 }
6468 goto done_unlock;
6469 }
6470
6471 /*
6472 * Commands querying/configuring an existing array:
6473 */
6474 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6475 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6476 if ((!mddev->raid_disks && !mddev->external)
6477 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6478 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6479 && cmd != GET_BITMAP_FILE) {
6480 err = -ENODEV;
6481 goto abort_unlock;
6482 }
6483
6484 /*
6485 * Commands even a read-only array can execute:
6486 */
6487 switch (cmd) {
6488 case GET_BITMAP_FILE:
6489 err = get_bitmap_file(mddev, argp);
6490 goto done_unlock;
6491
6492 case RESTART_ARRAY_RW:
6493 err = restart_array(mddev);
6494 goto done_unlock;
6495
6496 case STOP_ARRAY:
6497 err = do_md_stop(mddev, 0, bdev);
6498 goto done_unlock;
6499
6500 case STOP_ARRAY_RO:
6501 err = md_set_readonly(mddev, bdev);
6502 goto done_unlock;
6503
6504 case HOT_REMOVE_DISK:
6505 err = hot_remove_disk(mddev, new_decode_dev(arg));
6506 goto done_unlock;
6507
6508 case ADD_NEW_DISK:
6509 /* We can support ADD_NEW_DISK on read-only arrays
6510 * on if we are re-adding a preexisting device.
6511 * So require mddev->pers and MD_DISK_SYNC.
6512 */
6513 if (mddev->pers) {
6514 mdu_disk_info_t info;
6515 if (copy_from_user(&info, argp, sizeof(info)))
6516 err = -EFAULT;
6517 else if (!(info.state & (1<<MD_DISK_SYNC)))
6518 /* Need to clear read-only for this */
6519 break;
6520 else
6521 err = add_new_disk(mddev, &info);
6522 goto done_unlock;
6523 }
6524 break;
6525
6526 case BLKROSET:
6527 if (get_user(ro, (int __user *)(arg))) {
6528 err = -EFAULT;
6529 goto done_unlock;
6530 }
6531 err = -EINVAL;
6532
6533 /* if the bdev is going readonly the value of mddev->ro
6534 * does not matter, no writes are coming
6535 */
6536 if (ro)
6537 goto done_unlock;
6538
6539 /* are we are already prepared for writes? */
6540 if (mddev->ro != 1)
6541 goto done_unlock;
6542
6543 /* transitioning to readauto need only happen for
6544 * arrays that call md_write_start
6545 */
6546 if (mddev->pers) {
6547 err = restart_array(mddev);
6548 if (err == 0) {
6549 mddev->ro = 2;
6550 set_disk_ro(mddev->gendisk, 0);
6551 }
6552 }
6553 goto done_unlock;
6554 }
6555
6556 /*
6557 * The remaining ioctls are changing the state of the
6558 * superblock, so we do not allow them on read-only arrays.
6559 * However non-MD ioctls (e.g. get-size) will still come through
6560 * here and hit the 'default' below, so only disallow
6561 * 'md' ioctls, and switch to rw mode if started auto-readonly.
6562 */
6563 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6564 if (mddev->ro == 2) {
6565 mddev->ro = 0;
6566 sysfs_notify_dirent_safe(mddev->sysfs_state);
6567 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6568 /* mddev_unlock will wake thread */
6569 /* If a device failed while we were read-only, we
6570 * need to make sure the metadata is updated now.
6571 */
6572 if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6573 mddev_unlock(mddev);
6574 wait_event(mddev->sb_wait,
6575 !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6576 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6577 mddev_lock(mddev);
6578 }
6579 } else {
6580 err = -EROFS;
6581 goto abort_unlock;
6582 }
6583 }
6584
6585 switch (cmd) {
6586 case ADD_NEW_DISK:
6587 {
6588 mdu_disk_info_t info;
6589 if (copy_from_user(&info, argp, sizeof(info)))
6590 err = -EFAULT;
6591 else
6592 err = add_new_disk(mddev, &info);
6593 goto done_unlock;
6594 }
6595
6596 case HOT_ADD_DISK:
6597 err = hot_add_disk(mddev, new_decode_dev(arg));
6598 goto done_unlock;
6599
6600 case RUN_ARRAY:
6601 err = do_md_run(mddev);
6602 goto done_unlock;
6603
6604 case SET_BITMAP_FILE:
6605 err = set_bitmap_file(mddev, (int)arg);
6606 goto done_unlock;
6607
6608 default:
6609 err = -EINVAL;
6610 goto abort_unlock;
6611 }
6612
6613 done_unlock:
6614 abort_unlock:
6615 if (mddev->hold_active == UNTIL_IOCTL &&
6616 err != -EINVAL)
6617 mddev->hold_active = 0;
6618 mddev_unlock(mddev);
6619
6620 return err;
6621 done:
6622 if (err)
6623 MD_BUG();
6624 abort:
6625 return err;
6626 }
6627 #ifdef CONFIG_COMPAT
6628 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6629 unsigned int cmd, unsigned long arg)
6630 {
6631 switch (cmd) {
6632 case HOT_REMOVE_DISK:
6633 case HOT_ADD_DISK:
6634 case SET_DISK_FAULTY:
6635 case SET_BITMAP_FILE:
6636 /* These take in integer arg, do not convert */
6637 break;
6638 default:
6639 arg = (unsigned long)compat_ptr(arg);
6640 break;
6641 }
6642
6643 return md_ioctl(bdev, mode, cmd, arg);
6644 }
6645 #endif /* CONFIG_COMPAT */
6646
6647 static int md_open(struct block_device *bdev, fmode_t mode)
6648 {
6649 /*
6650 * Succeed if we can lock the mddev, which confirms that
6651 * it isn't being stopped right now.
6652 */
6653 struct mddev *mddev = mddev_find(bdev->bd_dev);
6654 int err;
6655
6656 if (!mddev)
6657 return -ENODEV;
6658
6659 if (mddev->gendisk != bdev->bd_disk) {
6660 /* we are racing with mddev_put which is discarding this
6661 * bd_disk.
6662 */
6663 mddev_put(mddev);
6664 /* Wait until bdev->bd_disk is definitely gone */
6665 flush_workqueue(md_misc_wq);
6666 /* Then retry the open from the top */
6667 return -ERESTARTSYS;
6668 }
6669 BUG_ON(mddev != bdev->bd_disk->private_data);
6670
6671 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6672 goto out;
6673
6674 err = 0;
6675 atomic_inc(&mddev->openers);
6676 mutex_unlock(&mddev->open_mutex);
6677
6678 check_disk_change(bdev);
6679 out:
6680 return err;
6681 }
6682
6683 static void md_release(struct gendisk *disk, fmode_t mode)
6684 {
6685 struct mddev *mddev = disk->private_data;
6686
6687 BUG_ON(!mddev);
6688 atomic_dec(&mddev->openers);
6689 mddev_put(mddev);
6690 }
6691
6692 static int md_media_changed(struct gendisk *disk)
6693 {
6694 struct mddev *mddev = disk->private_data;
6695
6696 return mddev->changed;
6697 }
6698
6699 static int md_revalidate(struct gendisk *disk)
6700 {
6701 struct mddev *mddev = disk->private_data;
6702
6703 mddev->changed = 0;
6704 return 0;
6705 }
6706 static const struct block_device_operations md_fops =
6707 {
6708 .owner = THIS_MODULE,
6709 .open = md_open,
6710 .release = md_release,
6711 .ioctl = md_ioctl,
6712 #ifdef CONFIG_COMPAT
6713 .compat_ioctl = md_compat_ioctl,
6714 #endif
6715 .getgeo = md_getgeo,
6716 .media_changed = md_media_changed,
6717 .revalidate_disk= md_revalidate,
6718 };
6719
6720 static int md_thread(void * arg)
6721 {
6722 struct md_thread *thread = arg;
6723
6724 /*
6725 * md_thread is a 'system-thread', it's priority should be very
6726 * high. We avoid resource deadlocks individually in each
6727 * raid personality. (RAID5 does preallocation) We also use RR and
6728 * the very same RT priority as kswapd, thus we will never get
6729 * into a priority inversion deadlock.
6730 *
6731 * we definitely have to have equal or higher priority than
6732 * bdflush, otherwise bdflush will deadlock if there are too
6733 * many dirty RAID5 blocks.
6734 */
6735
6736 allow_signal(SIGKILL);
6737 while (!kthread_should_stop()) {
6738
6739 /* We need to wait INTERRUPTIBLE so that
6740 * we don't add to the load-average.
6741 * That means we need to be sure no signals are
6742 * pending
6743 */
6744 if (signal_pending(current))
6745 flush_signals(current);
6746
6747 wait_event_interruptible_timeout
6748 (thread->wqueue,
6749 test_bit(THREAD_WAKEUP, &thread->flags)
6750 || kthread_should_stop(),
6751 thread->timeout);
6752
6753 clear_bit(THREAD_WAKEUP, &thread->flags);
6754 if (!kthread_should_stop())
6755 thread->run(thread);
6756 }
6757
6758 return 0;
6759 }
6760
6761 void md_wakeup_thread(struct md_thread *thread)
6762 {
6763 if (thread) {
6764 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6765 set_bit(THREAD_WAKEUP, &thread->flags);
6766 wake_up(&thread->wqueue);
6767 }
6768 }
6769
6770 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
6771 struct mddev *mddev, const char *name)
6772 {
6773 struct md_thread *thread;
6774
6775 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6776 if (!thread)
6777 return NULL;
6778
6779 init_waitqueue_head(&thread->wqueue);
6780
6781 thread->run = run;
6782 thread->mddev = mddev;
6783 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6784 thread->tsk = kthread_run(md_thread, thread,
6785 "%s_%s",
6786 mdname(thread->mddev),
6787 name);
6788 if (IS_ERR(thread->tsk)) {
6789 kfree(thread);
6790 return NULL;
6791 }
6792 return thread;
6793 }
6794
6795 void md_unregister_thread(struct md_thread **threadp)
6796 {
6797 struct md_thread *thread = *threadp;
6798 if (!thread)
6799 return;
6800 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6801 /* Locking ensures that mddev_unlock does not wake_up a
6802 * non-existent thread
6803 */
6804 spin_lock(&pers_lock);
6805 *threadp = NULL;
6806 spin_unlock(&pers_lock);
6807
6808 kthread_stop(thread->tsk);
6809 kfree(thread);
6810 }
6811
6812 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6813 {
6814 if (!mddev) {
6815 MD_BUG();
6816 return;
6817 }
6818
6819 if (!rdev || test_bit(Faulty, &rdev->flags))
6820 return;
6821
6822 if (!mddev->pers || !mddev->pers->error_handler)
6823 return;
6824 mddev->pers->error_handler(mddev,rdev);
6825 if (mddev->degraded)
6826 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6827 sysfs_notify_dirent_safe(rdev->sysfs_state);
6828 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6829 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6830 md_wakeup_thread(mddev->thread);
6831 if (mddev->event_work.func)
6832 queue_work(md_misc_wq, &mddev->event_work);
6833 md_new_event_inintr(mddev);
6834 }
6835
6836 /* seq_file implementation /proc/mdstat */
6837
6838 static void status_unused(struct seq_file *seq)
6839 {
6840 int i = 0;
6841 struct md_rdev *rdev;
6842
6843 seq_printf(seq, "unused devices: ");
6844
6845 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6846 char b[BDEVNAME_SIZE];
6847 i++;
6848 seq_printf(seq, "%s ",
6849 bdevname(rdev->bdev,b));
6850 }
6851 if (!i)
6852 seq_printf(seq, "<none>");
6853
6854 seq_printf(seq, "\n");
6855 }
6856
6857
6858 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6859 {
6860 sector_t max_sectors, resync, res;
6861 unsigned long dt, db;
6862 sector_t rt;
6863 int scale;
6864 unsigned int per_milli;
6865
6866 if (mddev->curr_resync <= 3)
6867 resync = 0;
6868 else
6869 resync = mddev->curr_resync
6870 - atomic_read(&mddev->recovery_active);
6871
6872 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
6873 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6874 max_sectors = mddev->resync_max_sectors;
6875 else
6876 max_sectors = mddev->dev_sectors;
6877
6878 /*
6879 * Should not happen.
6880 */
6881 if (!max_sectors) {
6882 MD_BUG();
6883 return;
6884 }
6885 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6886 * in a sector_t, and (max_sectors>>scale) will fit in a
6887 * u32, as those are the requirements for sector_div.
6888 * Thus 'scale' must be at least 10
6889 */
6890 scale = 10;
6891 if (sizeof(sector_t) > sizeof(unsigned long)) {
6892 while ( max_sectors/2 > (1ULL<<(scale+32)))
6893 scale++;
6894 }
6895 res = (resync>>scale)*1000;
6896 sector_div(res, (u32)((max_sectors>>scale)+1));
6897
6898 per_milli = res;
6899 {
6900 int i, x = per_milli/50, y = 20-x;
6901 seq_printf(seq, "[");
6902 for (i = 0; i < x; i++)
6903 seq_printf(seq, "=");
6904 seq_printf(seq, ">");
6905 for (i = 0; i < y; i++)
6906 seq_printf(seq, ".");
6907 seq_printf(seq, "] ");
6908 }
6909 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6910 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6911 "reshape" :
6912 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6913 "check" :
6914 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6915 "resync" : "recovery"))),
6916 per_milli/10, per_milli % 10,
6917 (unsigned long long) resync/2,
6918 (unsigned long long) max_sectors/2);
6919
6920 /*
6921 * dt: time from mark until now
6922 * db: blocks written from mark until now
6923 * rt: remaining time
6924 *
6925 * rt is a sector_t, so could be 32bit or 64bit.
6926 * So we divide before multiply in case it is 32bit and close
6927 * to the limit.
6928 * We scale the divisor (db) by 32 to avoid losing precision
6929 * near the end of resync when the number of remaining sectors
6930 * is close to 'db'.
6931 * We then divide rt by 32 after multiplying by db to compensate.
6932 * The '+1' avoids division by zero if db is very small.
6933 */
6934 dt = ((jiffies - mddev->resync_mark) / HZ);
6935 if (!dt) dt++;
6936 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6937 - mddev->resync_mark_cnt;
6938
6939 rt = max_sectors - resync; /* number of remaining sectors */
6940 sector_div(rt, db/32+1);
6941 rt *= dt;
6942 rt >>= 5;
6943
6944 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6945 ((unsigned long)rt % 60)/6);
6946
6947 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6948 }
6949
6950 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6951 {
6952 struct list_head *tmp;
6953 loff_t l = *pos;
6954 struct mddev *mddev;
6955
6956 if (l >= 0x10000)
6957 return NULL;
6958 if (!l--)
6959 /* header */
6960 return (void*)1;
6961
6962 spin_lock(&all_mddevs_lock);
6963 list_for_each(tmp,&all_mddevs)
6964 if (!l--) {
6965 mddev = list_entry(tmp, struct mddev, all_mddevs);
6966 mddev_get(mddev);
6967 spin_unlock(&all_mddevs_lock);
6968 return mddev;
6969 }
6970 spin_unlock(&all_mddevs_lock);
6971 if (!l--)
6972 return (void*)2;/* tail */
6973 return NULL;
6974 }
6975
6976 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6977 {
6978 struct list_head *tmp;
6979 struct mddev *next_mddev, *mddev = v;
6980
6981 ++*pos;
6982 if (v == (void*)2)
6983 return NULL;
6984
6985 spin_lock(&all_mddevs_lock);
6986 if (v == (void*)1)
6987 tmp = all_mddevs.next;
6988 else
6989 tmp = mddev->all_mddevs.next;
6990 if (tmp != &all_mddevs)
6991 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6992 else {
6993 next_mddev = (void*)2;
6994 *pos = 0x10000;
6995 }
6996 spin_unlock(&all_mddevs_lock);
6997
6998 if (v != (void*)1)
6999 mddev_put(mddev);
7000 return next_mddev;
7001
7002 }
7003
7004 static void md_seq_stop(struct seq_file *seq, void *v)
7005 {
7006 struct mddev *mddev = v;
7007
7008 if (mddev && v != (void*)1 && v != (void*)2)
7009 mddev_put(mddev);
7010 }
7011
7012 static int md_seq_show(struct seq_file *seq, void *v)
7013 {
7014 struct mddev *mddev = v;
7015 sector_t sectors;
7016 struct md_rdev *rdev;
7017
7018 if (v == (void*)1) {
7019 struct md_personality *pers;
7020 seq_printf(seq, "Personalities : ");
7021 spin_lock(&pers_lock);
7022 list_for_each_entry(pers, &pers_list, list)
7023 seq_printf(seq, "[%s] ", pers->name);
7024
7025 spin_unlock(&pers_lock);
7026 seq_printf(seq, "\n");
7027 seq->poll_event = atomic_read(&md_event_count);
7028 return 0;
7029 }
7030 if (v == (void*)2) {
7031 status_unused(seq);
7032 return 0;
7033 }
7034
7035 if (mddev_lock(mddev) < 0)
7036 return -EINTR;
7037
7038 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7039 seq_printf(seq, "%s : %sactive", mdname(mddev),
7040 mddev->pers ? "" : "in");
7041 if (mddev->pers) {
7042 if (mddev->ro==1)
7043 seq_printf(seq, " (read-only)");
7044 if (mddev->ro==2)
7045 seq_printf(seq, " (auto-read-only)");
7046 seq_printf(seq, " %s", mddev->pers->name);
7047 }
7048
7049 sectors = 0;
7050 rdev_for_each(rdev, mddev) {
7051 char b[BDEVNAME_SIZE];
7052 seq_printf(seq, " %s[%d]",
7053 bdevname(rdev->bdev,b), rdev->desc_nr);
7054 if (test_bit(WriteMostly, &rdev->flags))
7055 seq_printf(seq, "(W)");
7056 if (test_bit(Faulty, &rdev->flags)) {
7057 seq_printf(seq, "(F)");
7058 continue;
7059 }
7060 if (rdev->raid_disk < 0)
7061 seq_printf(seq, "(S)"); /* spare */
7062 if (test_bit(Replacement, &rdev->flags))
7063 seq_printf(seq, "(R)");
7064 sectors += rdev->sectors;
7065 }
7066
7067 if (!list_empty(&mddev->disks)) {
7068 if (mddev->pers)
7069 seq_printf(seq, "\n %llu blocks",
7070 (unsigned long long)
7071 mddev->array_sectors / 2);
7072 else
7073 seq_printf(seq, "\n %llu blocks",
7074 (unsigned long long)sectors / 2);
7075 }
7076 if (mddev->persistent) {
7077 if (mddev->major_version != 0 ||
7078 mddev->minor_version != 90) {
7079 seq_printf(seq," super %d.%d",
7080 mddev->major_version,
7081 mddev->minor_version);
7082 }
7083 } else if (mddev->external)
7084 seq_printf(seq, " super external:%s",
7085 mddev->metadata_type);
7086 else
7087 seq_printf(seq, " super non-persistent");
7088
7089 if (mddev->pers) {
7090 mddev->pers->status(seq, mddev);
7091 seq_printf(seq, "\n ");
7092 if (mddev->pers->sync_request) {
7093 if (mddev->curr_resync > 2) {
7094 status_resync(seq, mddev);
7095 seq_printf(seq, "\n ");
7096 } else if (mddev->curr_resync >= 1)
7097 seq_printf(seq, "\tresync=DELAYED\n ");
7098 else if (mddev->recovery_cp < MaxSector)
7099 seq_printf(seq, "\tresync=PENDING\n ");
7100 }
7101 } else
7102 seq_printf(seq, "\n ");
7103
7104 bitmap_status(seq, mddev->bitmap);
7105
7106 seq_printf(seq, "\n");
7107 }
7108 mddev_unlock(mddev);
7109
7110 return 0;
7111 }
7112
7113 static const struct seq_operations md_seq_ops = {
7114 .start = md_seq_start,
7115 .next = md_seq_next,
7116 .stop = md_seq_stop,
7117 .show = md_seq_show,
7118 };
7119
7120 static int md_seq_open(struct inode *inode, struct file *file)
7121 {
7122 struct seq_file *seq;
7123 int error;
7124
7125 error = seq_open(file, &md_seq_ops);
7126 if (error)
7127 return error;
7128
7129 seq = file->private_data;
7130 seq->poll_event = atomic_read(&md_event_count);
7131 return error;
7132 }
7133
7134 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7135 {
7136 struct seq_file *seq = filp->private_data;
7137 int mask;
7138
7139 poll_wait(filp, &md_event_waiters, wait);
7140
7141 /* always allow read */
7142 mask = POLLIN | POLLRDNORM;
7143
7144 if (seq->poll_event != atomic_read(&md_event_count))
7145 mask |= POLLERR | POLLPRI;
7146 return mask;
7147 }
7148
7149 static const struct file_operations md_seq_fops = {
7150 .owner = THIS_MODULE,
7151 .open = md_seq_open,
7152 .read = seq_read,
7153 .llseek = seq_lseek,
7154 .release = seq_release_private,
7155 .poll = mdstat_poll,
7156 };
7157
7158 int register_md_personality(struct md_personality *p)
7159 {
7160 spin_lock(&pers_lock);
7161 list_add_tail(&p->list, &pers_list);
7162 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
7163 spin_unlock(&pers_lock);
7164 return 0;
7165 }
7166
7167 int unregister_md_personality(struct md_personality *p)
7168 {
7169 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7170 spin_lock(&pers_lock);
7171 list_del_init(&p->list);
7172 spin_unlock(&pers_lock);
7173 return 0;
7174 }
7175
7176 static int is_mddev_idle(struct mddev *mddev, int init)
7177 {
7178 struct md_rdev * rdev;
7179 int idle;
7180 int curr_events;
7181
7182 idle = 1;
7183 rcu_read_lock();
7184 rdev_for_each_rcu(rdev, mddev) {
7185 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7186 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7187 (int)part_stat_read(&disk->part0, sectors[1]) -
7188 atomic_read(&disk->sync_io);
7189 /* sync IO will cause sync_io to increase before the disk_stats
7190 * as sync_io is counted when a request starts, and
7191 * disk_stats is counted when it completes.
7192 * So resync activity will cause curr_events to be smaller than
7193 * when there was no such activity.
7194 * non-sync IO will cause disk_stat to increase without
7195 * increasing sync_io so curr_events will (eventually)
7196 * be larger than it was before. Once it becomes
7197 * substantially larger, the test below will cause
7198 * the array to appear non-idle, and resync will slow
7199 * down.
7200 * If there is a lot of outstanding resync activity when
7201 * we set last_event to curr_events, then all that activity
7202 * completing might cause the array to appear non-idle
7203 * and resync will be slowed down even though there might
7204 * not have been non-resync activity. This will only
7205 * happen once though. 'last_events' will soon reflect
7206 * the state where there is little or no outstanding
7207 * resync requests, and further resync activity will
7208 * always make curr_events less than last_events.
7209 *
7210 */
7211 if (init || curr_events - rdev->last_events > 64) {
7212 rdev->last_events = curr_events;
7213 idle = 0;
7214 }
7215 }
7216 rcu_read_unlock();
7217 return idle;
7218 }
7219
7220 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7221 {
7222 /* another "blocks" (512byte) blocks have been synced */
7223 atomic_sub(blocks, &mddev->recovery_active);
7224 wake_up(&mddev->recovery_wait);
7225 if (!ok) {
7226 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7227 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7228 md_wakeup_thread(mddev->thread);
7229 // stop recovery, signal do_sync ....
7230 }
7231 }
7232
7233
7234 /* md_write_start(mddev, bi)
7235 * If we need to update some array metadata (e.g. 'active' flag
7236 * in superblock) before writing, schedule a superblock update
7237 * and wait for it to complete.
7238 */
7239 void md_write_start(struct mddev *mddev, struct bio *bi)
7240 {
7241 int did_change = 0;
7242 if (bio_data_dir(bi) != WRITE)
7243 return;
7244
7245 BUG_ON(mddev->ro == 1);
7246 if (mddev->ro == 2) {
7247 /* need to switch to read/write */
7248 mddev->ro = 0;
7249 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7250 md_wakeup_thread(mddev->thread);
7251 md_wakeup_thread(mddev->sync_thread);
7252 did_change = 1;
7253 }
7254 atomic_inc(&mddev->writes_pending);
7255 if (mddev->safemode == 1)
7256 mddev->safemode = 0;
7257 if (mddev->in_sync) {
7258 spin_lock_irq(&mddev->write_lock);
7259 if (mddev->in_sync) {
7260 mddev->in_sync = 0;
7261 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7262 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7263 md_wakeup_thread(mddev->thread);
7264 did_change = 1;
7265 }
7266 spin_unlock_irq(&mddev->write_lock);
7267 }
7268 if (did_change)
7269 sysfs_notify_dirent_safe(mddev->sysfs_state);
7270 wait_event(mddev->sb_wait,
7271 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7272 }
7273
7274 void md_write_end(struct mddev *mddev)
7275 {
7276 if (atomic_dec_and_test(&mddev->writes_pending)) {
7277 if (mddev->safemode == 2)
7278 md_wakeup_thread(mddev->thread);
7279 else if (mddev->safemode_delay)
7280 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7281 }
7282 }
7283
7284 /* md_allow_write(mddev)
7285 * Calling this ensures that the array is marked 'active' so that writes
7286 * may proceed without blocking. It is important to call this before
7287 * attempting a GFP_KERNEL allocation while holding the mddev lock.
7288 * Must be called with mddev_lock held.
7289 *
7290 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7291 * is dropped, so return -EAGAIN after notifying userspace.
7292 */
7293 int md_allow_write(struct mddev *mddev)
7294 {
7295 if (!mddev->pers)
7296 return 0;
7297 if (mddev->ro)
7298 return 0;
7299 if (!mddev->pers->sync_request)
7300 return 0;
7301
7302 spin_lock_irq(&mddev->write_lock);
7303 if (mddev->in_sync) {
7304 mddev->in_sync = 0;
7305 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7306 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7307 if (mddev->safemode_delay &&
7308 mddev->safemode == 0)
7309 mddev->safemode = 1;
7310 spin_unlock_irq(&mddev->write_lock);
7311 md_update_sb(mddev, 0);
7312 sysfs_notify_dirent_safe(mddev->sysfs_state);
7313 } else
7314 spin_unlock_irq(&mddev->write_lock);
7315
7316 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7317 return -EAGAIN;
7318 else
7319 return 0;
7320 }
7321 EXPORT_SYMBOL_GPL(md_allow_write);
7322
7323 #define SYNC_MARKS 10
7324 #define SYNC_MARK_STEP (3*HZ)
7325 #define UPDATE_FREQUENCY (5*60*HZ)
7326 void md_do_sync(struct md_thread *thread)
7327 {
7328 struct mddev *mddev = thread->mddev;
7329 struct mddev *mddev2;
7330 unsigned int currspeed = 0,
7331 window;
7332 sector_t max_sectors,j, io_sectors;
7333 unsigned long mark[SYNC_MARKS];
7334 unsigned long update_time;
7335 sector_t mark_cnt[SYNC_MARKS];
7336 int last_mark,m;
7337 struct list_head *tmp;
7338 sector_t last_check;
7339 int skipped = 0;
7340 struct md_rdev *rdev;
7341 char *desc, *action = NULL;
7342 struct blk_plug plug;
7343
7344 /* just incase thread restarts... */
7345 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7346 return;
7347 if (mddev->ro) /* never try to sync a read-only array */
7348 return;
7349
7350 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7351 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7352 desc = "data-check";
7353 action = "check";
7354 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7355 desc = "requested-resync";
7356 action = "repair";
7357 } else
7358 desc = "resync";
7359 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7360 desc = "reshape";
7361 else
7362 desc = "recovery";
7363
7364 mddev->last_sync_action = action ?: desc;
7365
7366 /* we overload curr_resync somewhat here.
7367 * 0 == not engaged in resync at all
7368 * 2 == checking that there is no conflict with another sync
7369 * 1 == like 2, but have yielded to allow conflicting resync to
7370 * commense
7371 * other == active in resync - this many blocks
7372 *
7373 * Before starting a resync we must have set curr_resync to
7374 * 2, and then checked that every "conflicting" array has curr_resync
7375 * less than ours. When we find one that is the same or higher
7376 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7377 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7378 * This will mean we have to start checking from the beginning again.
7379 *
7380 */
7381
7382 do {
7383 mddev->curr_resync = 2;
7384
7385 try_again:
7386 if (kthread_should_stop())
7387 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7388
7389 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7390 goto skip;
7391 for_each_mddev(mddev2, tmp) {
7392 if (mddev2 == mddev)
7393 continue;
7394 if (!mddev->parallel_resync
7395 && mddev2->curr_resync
7396 && match_mddev_units(mddev, mddev2)) {
7397 DEFINE_WAIT(wq);
7398 if (mddev < mddev2 && mddev->curr_resync == 2) {
7399 /* arbitrarily yield */
7400 mddev->curr_resync = 1;
7401 wake_up(&resync_wait);
7402 }
7403 if (mddev > mddev2 && mddev->curr_resync == 1)
7404 /* no need to wait here, we can wait the next
7405 * time 'round when curr_resync == 2
7406 */
7407 continue;
7408 /* We need to wait 'interruptible' so as not to
7409 * contribute to the load average, and not to
7410 * be caught by 'softlockup'
7411 */
7412 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7413 if (!kthread_should_stop() &&
7414 mddev2->curr_resync >= mddev->curr_resync) {
7415 printk(KERN_INFO "md: delaying %s of %s"
7416 " until %s has finished (they"
7417 " share one or more physical units)\n",
7418 desc, mdname(mddev), mdname(mddev2));
7419 mddev_put(mddev2);
7420 if (signal_pending(current))
7421 flush_signals(current);
7422 schedule();
7423 finish_wait(&resync_wait, &wq);
7424 goto try_again;
7425 }
7426 finish_wait(&resync_wait, &wq);
7427 }
7428 }
7429 } while (mddev->curr_resync < 2);
7430
7431 j = 0;
7432 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7433 /* resync follows the size requested by the personality,
7434 * which defaults to physical size, but can be virtual size
7435 */
7436 max_sectors = mddev->resync_max_sectors;
7437 atomic64_set(&mddev->resync_mismatches, 0);
7438 /* we don't use the checkpoint if there's a bitmap */
7439 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7440 j = mddev->resync_min;
7441 else if (!mddev->bitmap)
7442 j = mddev->recovery_cp;
7443
7444 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7445 max_sectors = mddev->resync_max_sectors;
7446 else {
7447 /* recovery follows the physical size of devices */
7448 max_sectors = mddev->dev_sectors;
7449 j = MaxSector;
7450 rcu_read_lock();
7451 rdev_for_each_rcu(rdev, mddev)
7452 if (rdev->raid_disk >= 0 &&
7453 !test_bit(Faulty, &rdev->flags) &&
7454 !test_bit(In_sync, &rdev->flags) &&
7455 rdev->recovery_offset < j)
7456 j = rdev->recovery_offset;
7457 rcu_read_unlock();
7458 }
7459
7460 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7461 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7462 " %d KB/sec/disk.\n", speed_min(mddev));
7463 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7464 "(but not more than %d KB/sec) for %s.\n",
7465 speed_max(mddev), desc);
7466
7467 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7468
7469 io_sectors = 0;
7470 for (m = 0; m < SYNC_MARKS; m++) {
7471 mark[m] = jiffies;
7472 mark_cnt[m] = io_sectors;
7473 }
7474 last_mark = 0;
7475 mddev->resync_mark = mark[last_mark];
7476 mddev->resync_mark_cnt = mark_cnt[last_mark];
7477
7478 /*
7479 * Tune reconstruction:
7480 */
7481 window = 32*(PAGE_SIZE/512);
7482 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7483 window/2, (unsigned long long)max_sectors/2);
7484
7485 atomic_set(&mddev->recovery_active, 0);
7486 last_check = 0;
7487
7488 if (j>2) {
7489 printk(KERN_INFO
7490 "md: resuming %s of %s from checkpoint.\n",
7491 desc, mdname(mddev));
7492 mddev->curr_resync = j;
7493 } else
7494 mddev->curr_resync = 3; /* no longer delayed */
7495 mddev->curr_resync_completed = j;
7496 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7497 md_new_event(mddev);
7498 update_time = jiffies;
7499
7500 blk_start_plug(&plug);
7501 while (j < max_sectors) {
7502 sector_t sectors;
7503
7504 skipped = 0;
7505
7506 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7507 ((mddev->curr_resync > mddev->curr_resync_completed &&
7508 (mddev->curr_resync - mddev->curr_resync_completed)
7509 > (max_sectors >> 4)) ||
7510 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7511 (j - mddev->curr_resync_completed)*2
7512 >= mddev->resync_max - mddev->curr_resync_completed
7513 )) {
7514 /* time to update curr_resync_completed */
7515 wait_event(mddev->recovery_wait,
7516 atomic_read(&mddev->recovery_active) == 0);
7517 mddev->curr_resync_completed = j;
7518 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7519 j > mddev->recovery_cp)
7520 mddev->recovery_cp = j;
7521 update_time = jiffies;
7522 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7523 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7524 }
7525
7526 while (j >= mddev->resync_max && !kthread_should_stop()) {
7527 /* As this condition is controlled by user-space,
7528 * we can block indefinitely, so use '_interruptible'
7529 * to avoid triggering warnings.
7530 */
7531 flush_signals(current); /* just in case */
7532 wait_event_interruptible(mddev->recovery_wait,
7533 mddev->resync_max > j
7534 || kthread_should_stop());
7535 }
7536
7537 if (kthread_should_stop())
7538 goto interrupted;
7539
7540 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7541 currspeed < speed_min(mddev));
7542 if (sectors == 0) {
7543 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7544 goto out;
7545 }
7546
7547 if (!skipped) { /* actual IO requested */
7548 io_sectors += sectors;
7549 atomic_add(sectors, &mddev->recovery_active);
7550 }
7551
7552 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7553 break;
7554
7555 j += sectors;
7556 if (j > 2)
7557 mddev->curr_resync = j;
7558 mddev->curr_mark_cnt = io_sectors;
7559 if (last_check == 0)
7560 /* this is the earliest that rebuild will be
7561 * visible in /proc/mdstat
7562 */
7563 md_new_event(mddev);
7564
7565 if (last_check + window > io_sectors || j == max_sectors)
7566 continue;
7567
7568 last_check = io_sectors;
7569 repeat:
7570 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7571 /* step marks */
7572 int next = (last_mark+1) % SYNC_MARKS;
7573
7574 mddev->resync_mark = mark[next];
7575 mddev->resync_mark_cnt = mark_cnt[next];
7576 mark[next] = jiffies;
7577 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7578 last_mark = next;
7579 }
7580
7581
7582 if (kthread_should_stop())
7583 goto interrupted;
7584
7585
7586 /*
7587 * this loop exits only if either when we are slower than
7588 * the 'hard' speed limit, or the system was IO-idle for
7589 * a jiffy.
7590 * the system might be non-idle CPU-wise, but we only care
7591 * about not overloading the IO subsystem. (things like an
7592 * e2fsck being done on the RAID array should execute fast)
7593 */
7594 cond_resched();
7595
7596 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7597 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7598
7599 if (currspeed > speed_min(mddev)) {
7600 if ((currspeed > speed_max(mddev)) ||
7601 !is_mddev_idle(mddev, 0)) {
7602 msleep(500);
7603 goto repeat;
7604 }
7605 }
7606 }
7607 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7608 /*
7609 * this also signals 'finished resyncing' to md_stop
7610 */
7611 out:
7612 blk_finish_plug(&plug);
7613 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7614
7615 /* tell personality that we are finished */
7616 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7617
7618 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7619 mddev->curr_resync > 2) {
7620 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7621 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7622 if (mddev->curr_resync >= mddev->recovery_cp) {
7623 printk(KERN_INFO
7624 "md: checkpointing %s of %s.\n",
7625 desc, mdname(mddev));
7626 if (test_bit(MD_RECOVERY_ERROR,
7627 &mddev->recovery))
7628 mddev->recovery_cp =
7629 mddev->curr_resync_completed;
7630 else
7631 mddev->recovery_cp =
7632 mddev->curr_resync;
7633 }
7634 } else
7635 mddev->recovery_cp = MaxSector;
7636 } else {
7637 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7638 mddev->curr_resync = MaxSector;
7639 rcu_read_lock();
7640 rdev_for_each_rcu(rdev, mddev)
7641 if (rdev->raid_disk >= 0 &&
7642 mddev->delta_disks >= 0 &&
7643 !test_bit(Faulty, &rdev->flags) &&
7644 !test_bit(In_sync, &rdev->flags) &&
7645 rdev->recovery_offset < mddev->curr_resync)
7646 rdev->recovery_offset = mddev->curr_resync;
7647 rcu_read_unlock();
7648 }
7649 }
7650 skip:
7651 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7652
7653 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7654 /* We completed so min/max setting can be forgotten if used. */
7655 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7656 mddev->resync_min = 0;
7657 mddev->resync_max = MaxSector;
7658 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7659 mddev->resync_min = mddev->curr_resync_completed;
7660 mddev->curr_resync = 0;
7661 wake_up(&resync_wait);
7662 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7663 md_wakeup_thread(mddev->thread);
7664 return;
7665
7666 interrupted:
7667 /*
7668 * got a signal, exit.
7669 */
7670 printk(KERN_INFO
7671 "md: md_do_sync() got signal ... exiting\n");
7672 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7673 goto out;
7674
7675 }
7676 EXPORT_SYMBOL_GPL(md_do_sync);
7677
7678 static int remove_and_add_spares(struct mddev *mddev,
7679 struct md_rdev *this)
7680 {
7681 struct md_rdev *rdev;
7682 int spares = 0;
7683 int removed = 0;
7684
7685 rdev_for_each(rdev, mddev)
7686 if ((this == NULL || rdev == this) &&
7687 rdev->raid_disk >= 0 &&
7688 !test_bit(Blocked, &rdev->flags) &&
7689 (test_bit(Faulty, &rdev->flags) ||
7690 ! test_bit(In_sync, &rdev->flags)) &&
7691 atomic_read(&rdev->nr_pending)==0) {
7692 if (mddev->pers->hot_remove_disk(
7693 mddev, rdev) == 0) {
7694 sysfs_unlink_rdev(mddev, rdev);
7695 rdev->raid_disk = -1;
7696 removed++;
7697 }
7698 }
7699 if (removed && mddev->kobj.sd)
7700 sysfs_notify(&mddev->kobj, NULL, "degraded");
7701
7702 if (this)
7703 goto no_add;
7704
7705 rdev_for_each(rdev, mddev) {
7706 if (rdev->raid_disk >= 0 &&
7707 !test_bit(In_sync, &rdev->flags) &&
7708 !test_bit(Faulty, &rdev->flags))
7709 spares++;
7710 if (rdev->raid_disk >= 0)
7711 continue;
7712 if (test_bit(Faulty, &rdev->flags))
7713 continue;
7714 if (mddev->ro &&
7715 rdev->saved_raid_disk < 0)
7716 continue;
7717
7718 rdev->recovery_offset = 0;
7719 if (mddev->pers->
7720 hot_add_disk(mddev, rdev) == 0) {
7721 if (sysfs_link_rdev(mddev, rdev))
7722 /* failure here is OK */;
7723 spares++;
7724 md_new_event(mddev);
7725 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7726 }
7727 }
7728 no_add:
7729 if (removed)
7730 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7731 return spares;
7732 }
7733
7734 /*
7735 * This routine is regularly called by all per-raid-array threads to
7736 * deal with generic issues like resync and super-block update.
7737 * Raid personalities that don't have a thread (linear/raid0) do not
7738 * need this as they never do any recovery or update the superblock.
7739 *
7740 * It does not do any resync itself, but rather "forks" off other threads
7741 * to do that as needed.
7742 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7743 * "->recovery" and create a thread at ->sync_thread.
7744 * When the thread finishes it sets MD_RECOVERY_DONE
7745 * and wakeups up this thread which will reap the thread and finish up.
7746 * This thread also removes any faulty devices (with nr_pending == 0).
7747 *
7748 * The overall approach is:
7749 * 1/ if the superblock needs updating, update it.
7750 * 2/ If a recovery thread is running, don't do anything else.
7751 * 3/ If recovery has finished, clean up, possibly marking spares active.
7752 * 4/ If there are any faulty devices, remove them.
7753 * 5/ If array is degraded, try to add spares devices
7754 * 6/ If array has spares or is not in-sync, start a resync thread.
7755 */
7756 void md_check_recovery(struct mddev *mddev)
7757 {
7758 if (mddev->suspended)
7759 return;
7760
7761 if (mddev->bitmap)
7762 bitmap_daemon_work(mddev);
7763
7764 if (signal_pending(current)) {
7765 if (mddev->pers->sync_request && !mddev->external) {
7766 printk(KERN_INFO "md: %s in immediate safe mode\n",
7767 mdname(mddev));
7768 mddev->safemode = 2;
7769 }
7770 flush_signals(current);
7771 }
7772
7773 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7774 return;
7775 if ( ! (
7776 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7777 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7778 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7779 (mddev->external == 0 && mddev->safemode == 1) ||
7780 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7781 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7782 ))
7783 return;
7784
7785 if (mddev_trylock(mddev)) {
7786 int spares = 0;
7787
7788 if (mddev->ro) {
7789 /* On a read-only array we can:
7790 * - remove failed devices
7791 * - add already-in_sync devices if the array itself
7792 * is in-sync.
7793 * As we only add devices that are already in-sync,
7794 * we can activate the spares immediately.
7795 */
7796 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7797 remove_and_add_spares(mddev, NULL);
7798 mddev->pers->spare_active(mddev);
7799 goto unlock;
7800 }
7801
7802 if (!mddev->external) {
7803 int did_change = 0;
7804 spin_lock_irq(&mddev->write_lock);
7805 if (mddev->safemode &&
7806 !atomic_read(&mddev->writes_pending) &&
7807 !mddev->in_sync &&
7808 mddev->recovery_cp == MaxSector) {
7809 mddev->in_sync = 1;
7810 did_change = 1;
7811 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7812 }
7813 if (mddev->safemode == 1)
7814 mddev->safemode = 0;
7815 spin_unlock_irq(&mddev->write_lock);
7816 if (did_change)
7817 sysfs_notify_dirent_safe(mddev->sysfs_state);
7818 }
7819
7820 if (mddev->flags)
7821 md_update_sb(mddev, 0);
7822
7823 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7824 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7825 /* resync/recovery still happening */
7826 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7827 goto unlock;
7828 }
7829 if (mddev->sync_thread) {
7830 md_reap_sync_thread(mddev);
7831 goto unlock;
7832 }
7833 /* Set RUNNING before clearing NEEDED to avoid
7834 * any transients in the value of "sync_action".
7835 */
7836 mddev->curr_resync_completed = 0;
7837 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7838 /* Clear some bits that don't mean anything, but
7839 * might be left set
7840 */
7841 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7842 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7843
7844 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7845 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7846 goto unlock;
7847 /* no recovery is running.
7848 * remove any failed drives, then
7849 * add spares if possible.
7850 * Spares are also removed and re-added, to allow
7851 * the personality to fail the re-add.
7852 */
7853
7854 if (mddev->reshape_position != MaxSector) {
7855 if (mddev->pers->check_reshape == NULL ||
7856 mddev->pers->check_reshape(mddev) != 0)
7857 /* Cannot proceed */
7858 goto unlock;
7859 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7860 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7861 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
7862 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7863 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7864 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7865 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7866 } else if (mddev->recovery_cp < MaxSector) {
7867 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7868 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7869 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7870 /* nothing to be done ... */
7871 goto unlock;
7872
7873 if (mddev->pers->sync_request) {
7874 if (spares) {
7875 /* We are adding a device or devices to an array
7876 * which has the bitmap stored on all devices.
7877 * So make sure all bitmap pages get written
7878 */
7879 bitmap_write_all(mddev->bitmap);
7880 }
7881 mddev->sync_thread = md_register_thread(md_do_sync,
7882 mddev,
7883 "resync");
7884 if (!mddev->sync_thread) {
7885 printk(KERN_ERR "%s: could not start resync"
7886 " thread...\n",
7887 mdname(mddev));
7888 /* leave the spares where they are, it shouldn't hurt */
7889 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7890 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7891 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7892 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7893 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7894 } else
7895 md_wakeup_thread(mddev->sync_thread);
7896 sysfs_notify_dirent_safe(mddev->sysfs_action);
7897 md_new_event(mddev);
7898 }
7899 unlock:
7900 wake_up(&mddev->sb_wait);
7901
7902 if (!mddev->sync_thread) {
7903 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7904 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7905 &mddev->recovery))
7906 if (mddev->sysfs_action)
7907 sysfs_notify_dirent_safe(mddev->sysfs_action);
7908 }
7909 mddev_unlock(mddev);
7910 }
7911 }
7912
7913 void md_reap_sync_thread(struct mddev *mddev)
7914 {
7915 struct md_rdev *rdev;
7916
7917 /* resync has finished, collect result */
7918 md_unregister_thread(&mddev->sync_thread);
7919 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7920 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7921 /* success...*/
7922 /* activate any spares */
7923 if (mddev->pers->spare_active(mddev)) {
7924 sysfs_notify(&mddev->kobj, NULL,
7925 "degraded");
7926 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7927 }
7928 }
7929 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7930 mddev->pers->finish_reshape)
7931 mddev->pers->finish_reshape(mddev);
7932
7933 /* If array is no-longer degraded, then any saved_raid_disk
7934 * information must be scrapped. Also if any device is now
7935 * In_sync we must scrape the saved_raid_disk for that device
7936 * do the superblock for an incrementally recovered device
7937 * written out.
7938 */
7939 rdev_for_each(rdev, mddev)
7940 if (!mddev->degraded ||
7941 test_bit(In_sync, &rdev->flags))
7942 rdev->saved_raid_disk = -1;
7943
7944 md_update_sb(mddev, 1);
7945 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7946 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7947 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7948 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7949 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7950 /* flag recovery needed just to double check */
7951 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7952 sysfs_notify_dirent_safe(mddev->sysfs_action);
7953 md_new_event(mddev);
7954 if (mddev->event_work.func)
7955 queue_work(md_misc_wq, &mddev->event_work);
7956 }
7957
7958 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7959 {
7960 sysfs_notify_dirent_safe(rdev->sysfs_state);
7961 wait_event_timeout(rdev->blocked_wait,
7962 !test_bit(Blocked, &rdev->flags) &&
7963 !test_bit(BlockedBadBlocks, &rdev->flags),
7964 msecs_to_jiffies(5000));
7965 rdev_dec_pending(rdev, mddev);
7966 }
7967 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7968
7969 void md_finish_reshape(struct mddev *mddev)
7970 {
7971 /* called be personality module when reshape completes. */
7972 struct md_rdev *rdev;
7973
7974 rdev_for_each(rdev, mddev) {
7975 if (rdev->data_offset > rdev->new_data_offset)
7976 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
7977 else
7978 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
7979 rdev->data_offset = rdev->new_data_offset;
7980 }
7981 }
7982 EXPORT_SYMBOL(md_finish_reshape);
7983
7984 /* Bad block management.
7985 * We can record which blocks on each device are 'bad' and so just
7986 * fail those blocks, or that stripe, rather than the whole device.
7987 * Entries in the bad-block table are 64bits wide. This comprises:
7988 * Length of bad-range, in sectors: 0-511 for lengths 1-512
7989 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7990 * A 'shift' can be set so that larger blocks are tracked and
7991 * consequently larger devices can be covered.
7992 * 'Acknowledged' flag - 1 bit. - the most significant bit.
7993 *
7994 * Locking of the bad-block table uses a seqlock so md_is_badblock
7995 * might need to retry if it is very unlucky.
7996 * We will sometimes want to check for bad blocks in a bi_end_io function,
7997 * so we use the write_seqlock_irq variant.
7998 *
7999 * When looking for a bad block we specify a range and want to
8000 * know if any block in the range is bad. So we binary-search
8001 * to the last range that starts at-or-before the given endpoint,
8002 * (or "before the sector after the target range")
8003 * then see if it ends after the given start.
8004 * We return
8005 * 0 if there are no known bad blocks in the range
8006 * 1 if there are known bad block which are all acknowledged
8007 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8008 * plus the start/length of the first bad section we overlap.
8009 */
8010 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8011 sector_t *first_bad, int *bad_sectors)
8012 {
8013 int hi;
8014 int lo;
8015 u64 *p = bb->page;
8016 int rv;
8017 sector_t target = s + sectors;
8018 unsigned seq;
8019
8020 if (bb->shift > 0) {
8021 /* round the start down, and the end up */
8022 s >>= bb->shift;
8023 target += (1<<bb->shift) - 1;
8024 target >>= bb->shift;
8025 sectors = target - s;
8026 }
8027 /* 'target' is now the first block after the bad range */
8028
8029 retry:
8030 seq = read_seqbegin(&bb->lock);
8031 lo = 0;
8032 rv = 0;
8033 hi = bb->count;
8034
8035 /* Binary search between lo and hi for 'target'
8036 * i.e. for the last range that starts before 'target'
8037 */
8038 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8039 * are known not to be the last range before target.
8040 * VARIANT: hi-lo is the number of possible
8041 * ranges, and decreases until it reaches 1
8042 */
8043 while (hi - lo > 1) {
8044 int mid = (lo + hi) / 2;
8045 sector_t a = BB_OFFSET(p[mid]);
8046 if (a < target)
8047 /* This could still be the one, earlier ranges
8048 * could not. */
8049 lo = mid;
8050 else
8051 /* This and later ranges are definitely out. */
8052 hi = mid;
8053 }
8054 /* 'lo' might be the last that started before target, but 'hi' isn't */
8055 if (hi > lo) {
8056 /* need to check all range that end after 's' to see if
8057 * any are unacknowledged.
8058 */
8059 while (lo >= 0 &&
8060 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8061 if (BB_OFFSET(p[lo]) < target) {
8062 /* starts before the end, and finishes after
8063 * the start, so they must overlap
8064 */
8065 if (rv != -1 && BB_ACK(p[lo]))
8066 rv = 1;
8067 else
8068 rv = -1;
8069 *first_bad = BB_OFFSET(p[lo]);
8070 *bad_sectors = BB_LEN(p[lo]);
8071 }
8072 lo--;
8073 }
8074 }
8075
8076 if (read_seqretry(&bb->lock, seq))
8077 goto retry;
8078
8079 return rv;
8080 }
8081 EXPORT_SYMBOL_GPL(md_is_badblock);
8082
8083 /*
8084 * Add a range of bad blocks to the table.
8085 * This might extend the table, or might contract it
8086 * if two adjacent ranges can be merged.
8087 * We binary-search to find the 'insertion' point, then
8088 * decide how best to handle it.
8089 */
8090 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8091 int acknowledged)
8092 {
8093 u64 *p;
8094 int lo, hi;
8095 int rv = 1;
8096
8097 if (bb->shift < 0)
8098 /* badblocks are disabled */
8099 return 0;
8100
8101 if (bb->shift) {
8102 /* round the start down, and the end up */
8103 sector_t next = s + sectors;
8104 s >>= bb->shift;
8105 next += (1<<bb->shift) - 1;
8106 next >>= bb->shift;
8107 sectors = next - s;
8108 }
8109
8110 write_seqlock_irq(&bb->lock);
8111
8112 p = bb->page;
8113 lo = 0;
8114 hi = bb->count;
8115 /* Find the last range that starts at-or-before 's' */
8116 while (hi - lo > 1) {
8117 int mid = (lo + hi) / 2;
8118 sector_t a = BB_OFFSET(p[mid]);
8119 if (a <= s)
8120 lo = mid;
8121 else
8122 hi = mid;
8123 }
8124 if (hi > lo && BB_OFFSET(p[lo]) > s)
8125 hi = lo;
8126
8127 if (hi > lo) {
8128 /* we found a range that might merge with the start
8129 * of our new range
8130 */
8131 sector_t a = BB_OFFSET(p[lo]);
8132 sector_t e = a + BB_LEN(p[lo]);
8133 int ack = BB_ACK(p[lo]);
8134 if (e >= s) {
8135 /* Yes, we can merge with a previous range */
8136 if (s == a && s + sectors >= e)
8137 /* new range covers old */
8138 ack = acknowledged;
8139 else
8140 ack = ack && acknowledged;
8141
8142 if (e < s + sectors)
8143 e = s + sectors;
8144 if (e - a <= BB_MAX_LEN) {
8145 p[lo] = BB_MAKE(a, e-a, ack);
8146 s = e;
8147 } else {
8148 /* does not all fit in one range,
8149 * make p[lo] maximal
8150 */
8151 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8152 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8153 s = a + BB_MAX_LEN;
8154 }
8155 sectors = e - s;
8156 }
8157 }
8158 if (sectors && hi < bb->count) {
8159 /* 'hi' points to the first range that starts after 's'.
8160 * Maybe we can merge with the start of that range */
8161 sector_t a = BB_OFFSET(p[hi]);
8162 sector_t e = a + BB_LEN(p[hi]);
8163 int ack = BB_ACK(p[hi]);
8164 if (a <= s + sectors) {
8165 /* merging is possible */
8166 if (e <= s + sectors) {
8167 /* full overlap */
8168 e = s + sectors;
8169 ack = acknowledged;
8170 } else
8171 ack = ack && acknowledged;
8172
8173 a = s;
8174 if (e - a <= BB_MAX_LEN) {
8175 p[hi] = BB_MAKE(a, e-a, ack);
8176 s = e;
8177 } else {
8178 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8179 s = a + BB_MAX_LEN;
8180 }
8181 sectors = e - s;
8182 lo = hi;
8183 hi++;
8184 }
8185 }
8186 if (sectors == 0 && hi < bb->count) {
8187 /* we might be able to combine lo and hi */
8188 /* Note: 's' is at the end of 'lo' */
8189 sector_t a = BB_OFFSET(p[hi]);
8190 int lolen = BB_LEN(p[lo]);
8191 int hilen = BB_LEN(p[hi]);
8192 int newlen = lolen + hilen - (s - a);
8193 if (s >= a && newlen < BB_MAX_LEN) {
8194 /* yes, we can combine them */
8195 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8196 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8197 memmove(p + hi, p + hi + 1,
8198 (bb->count - hi - 1) * 8);
8199 bb->count--;
8200 }
8201 }
8202 while (sectors) {
8203 /* didn't merge (it all).
8204 * Need to add a range just before 'hi' */
8205 if (bb->count >= MD_MAX_BADBLOCKS) {
8206 /* No room for more */
8207 rv = 0;
8208 break;
8209 } else {
8210 int this_sectors = sectors;
8211 memmove(p + hi + 1, p + hi,
8212 (bb->count - hi) * 8);
8213 bb->count++;
8214
8215 if (this_sectors > BB_MAX_LEN)
8216 this_sectors = BB_MAX_LEN;
8217 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8218 sectors -= this_sectors;
8219 s += this_sectors;
8220 }
8221 }
8222
8223 bb->changed = 1;
8224 if (!acknowledged)
8225 bb->unacked_exist = 1;
8226 write_sequnlock_irq(&bb->lock);
8227
8228 return rv;
8229 }
8230
8231 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8232 int is_new)
8233 {
8234 int rv;
8235 if (is_new)
8236 s += rdev->new_data_offset;
8237 else
8238 s += rdev->data_offset;
8239 rv = md_set_badblocks(&rdev->badblocks,
8240 s, sectors, 0);
8241 if (rv) {
8242 /* Make sure they get written out promptly */
8243 sysfs_notify_dirent_safe(rdev->sysfs_state);
8244 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8245 md_wakeup_thread(rdev->mddev->thread);
8246 }
8247 return rv;
8248 }
8249 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8250
8251 /*
8252 * Remove a range of bad blocks from the table.
8253 * This may involve extending the table if we spilt a region,
8254 * but it must not fail. So if the table becomes full, we just
8255 * drop the remove request.
8256 */
8257 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8258 {
8259 u64 *p;
8260 int lo, hi;
8261 sector_t target = s + sectors;
8262 int rv = 0;
8263
8264 if (bb->shift > 0) {
8265 /* When clearing we round the start up and the end down.
8266 * This should not matter as the shift should align with
8267 * the block size and no rounding should ever be needed.
8268 * However it is better the think a block is bad when it
8269 * isn't than to think a block is not bad when it is.
8270 */
8271 s += (1<<bb->shift) - 1;
8272 s >>= bb->shift;
8273 target >>= bb->shift;
8274 sectors = target - s;
8275 }
8276
8277 write_seqlock_irq(&bb->lock);
8278
8279 p = bb->page;
8280 lo = 0;
8281 hi = bb->count;
8282 /* Find the last range that starts before 'target' */
8283 while (hi - lo > 1) {
8284 int mid = (lo + hi) / 2;
8285 sector_t a = BB_OFFSET(p[mid]);
8286 if (a < target)
8287 lo = mid;
8288 else
8289 hi = mid;
8290 }
8291 if (hi > lo) {
8292 /* p[lo] is the last range that could overlap the
8293 * current range. Earlier ranges could also overlap,
8294 * but only this one can overlap the end of the range.
8295 */
8296 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8297 /* Partial overlap, leave the tail of this range */
8298 int ack = BB_ACK(p[lo]);
8299 sector_t a = BB_OFFSET(p[lo]);
8300 sector_t end = a + BB_LEN(p[lo]);
8301
8302 if (a < s) {
8303 /* we need to split this range */
8304 if (bb->count >= MD_MAX_BADBLOCKS) {
8305 rv = 0;
8306 goto out;
8307 }
8308 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8309 bb->count++;
8310 p[lo] = BB_MAKE(a, s-a, ack);
8311 lo++;
8312 }
8313 p[lo] = BB_MAKE(target, end - target, ack);
8314 /* there is no longer an overlap */
8315 hi = lo;
8316 lo--;
8317 }
8318 while (lo >= 0 &&
8319 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8320 /* This range does overlap */
8321 if (BB_OFFSET(p[lo]) < s) {
8322 /* Keep the early parts of this range. */
8323 int ack = BB_ACK(p[lo]);
8324 sector_t start = BB_OFFSET(p[lo]);
8325 p[lo] = BB_MAKE(start, s - start, ack);
8326 /* now low doesn't overlap, so.. */
8327 break;
8328 }
8329 lo--;
8330 }
8331 /* 'lo' is strictly before, 'hi' is strictly after,
8332 * anything between needs to be discarded
8333 */
8334 if (hi - lo > 1) {
8335 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8336 bb->count -= (hi - lo - 1);
8337 }
8338 }
8339
8340 bb->changed = 1;
8341 out:
8342 write_sequnlock_irq(&bb->lock);
8343 return rv;
8344 }
8345
8346 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8347 int is_new)
8348 {
8349 if (is_new)
8350 s += rdev->new_data_offset;
8351 else
8352 s += rdev->data_offset;
8353 return md_clear_badblocks(&rdev->badblocks,
8354 s, sectors);
8355 }
8356 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8357
8358 /*
8359 * Acknowledge all bad blocks in a list.
8360 * This only succeeds if ->changed is clear. It is used by
8361 * in-kernel metadata updates
8362 */
8363 void md_ack_all_badblocks(struct badblocks *bb)
8364 {
8365 if (bb->page == NULL || bb->changed)
8366 /* no point even trying */
8367 return;
8368 write_seqlock_irq(&bb->lock);
8369
8370 if (bb->changed == 0 && bb->unacked_exist) {
8371 u64 *p = bb->page;
8372 int i;
8373 for (i = 0; i < bb->count ; i++) {
8374 if (!BB_ACK(p[i])) {
8375 sector_t start = BB_OFFSET(p[i]);
8376 int len = BB_LEN(p[i]);
8377 p[i] = BB_MAKE(start, len, 1);
8378 }
8379 }
8380 bb->unacked_exist = 0;
8381 }
8382 write_sequnlock_irq(&bb->lock);
8383 }
8384 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8385
8386 /* sysfs access to bad-blocks list.
8387 * We present two files.
8388 * 'bad-blocks' lists sector numbers and lengths of ranges that
8389 * are recorded as bad. The list is truncated to fit within
8390 * the one-page limit of sysfs.
8391 * Writing "sector length" to this file adds an acknowledged
8392 * bad block list.
8393 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8394 * been acknowledged. Writing to this file adds bad blocks
8395 * without acknowledging them. This is largely for testing.
8396 */
8397
8398 static ssize_t
8399 badblocks_show(struct badblocks *bb, char *page, int unack)
8400 {
8401 size_t len;
8402 int i;
8403 u64 *p = bb->page;
8404 unsigned seq;
8405
8406 if (bb->shift < 0)
8407 return 0;
8408
8409 retry:
8410 seq = read_seqbegin(&bb->lock);
8411
8412 len = 0;
8413 i = 0;
8414
8415 while (len < PAGE_SIZE && i < bb->count) {
8416 sector_t s = BB_OFFSET(p[i]);
8417 unsigned int length = BB_LEN(p[i]);
8418 int ack = BB_ACK(p[i]);
8419 i++;
8420
8421 if (unack && ack)
8422 continue;
8423
8424 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8425 (unsigned long long)s << bb->shift,
8426 length << bb->shift);
8427 }
8428 if (unack && len == 0)
8429 bb->unacked_exist = 0;
8430
8431 if (read_seqretry(&bb->lock, seq))
8432 goto retry;
8433
8434 return len;
8435 }
8436
8437 #define DO_DEBUG 1
8438
8439 static ssize_t
8440 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8441 {
8442 unsigned long long sector;
8443 int length;
8444 char newline;
8445 #ifdef DO_DEBUG
8446 /* Allow clearing via sysfs *only* for testing/debugging.
8447 * Normally only a successful write may clear a badblock
8448 */
8449 int clear = 0;
8450 if (page[0] == '-') {
8451 clear = 1;
8452 page++;
8453 }
8454 #endif /* DO_DEBUG */
8455
8456 switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8457 case 3:
8458 if (newline != '\n')
8459 return -EINVAL;
8460 case 2:
8461 if (length <= 0)
8462 return -EINVAL;
8463 break;
8464 default:
8465 return -EINVAL;
8466 }
8467
8468 #ifdef DO_DEBUG
8469 if (clear) {
8470 md_clear_badblocks(bb, sector, length);
8471 return len;
8472 }
8473 #endif /* DO_DEBUG */
8474 if (md_set_badblocks(bb, sector, length, !unack))
8475 return len;
8476 else
8477 return -ENOSPC;
8478 }
8479
8480 static int md_notify_reboot(struct notifier_block *this,
8481 unsigned long code, void *x)
8482 {
8483 struct list_head *tmp;
8484 struct mddev *mddev;
8485 int need_delay = 0;
8486
8487 for_each_mddev(mddev, tmp) {
8488 if (mddev_trylock(mddev)) {
8489 if (mddev->pers)
8490 __md_stop_writes(mddev);
8491 mddev->safemode = 2;
8492 mddev_unlock(mddev);
8493 }
8494 need_delay = 1;
8495 }
8496 /*
8497 * certain more exotic SCSI devices are known to be
8498 * volatile wrt too early system reboots. While the
8499 * right place to handle this issue is the given
8500 * driver, we do want to have a safe RAID driver ...
8501 */
8502 if (need_delay)
8503 mdelay(1000*1);
8504
8505 return NOTIFY_DONE;
8506 }
8507
8508 static struct notifier_block md_notifier = {
8509 .notifier_call = md_notify_reboot,
8510 .next = NULL,
8511 .priority = INT_MAX, /* before any real devices */
8512 };
8513
8514 static void md_geninit(void)
8515 {
8516 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8517
8518 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8519 }
8520
8521 static int __init md_init(void)
8522 {
8523 int ret = -ENOMEM;
8524
8525 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8526 if (!md_wq)
8527 goto err_wq;
8528
8529 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8530 if (!md_misc_wq)
8531 goto err_misc_wq;
8532
8533 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8534 goto err_md;
8535
8536 if ((ret = register_blkdev(0, "mdp")) < 0)
8537 goto err_mdp;
8538 mdp_major = ret;
8539
8540 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8541 md_probe, NULL, NULL);
8542 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8543 md_probe, NULL, NULL);
8544
8545 register_reboot_notifier(&md_notifier);
8546 raid_table_header = register_sysctl_table(raid_root_table);
8547
8548 md_geninit();
8549 return 0;
8550
8551 err_mdp:
8552 unregister_blkdev(MD_MAJOR, "md");
8553 err_md:
8554 destroy_workqueue(md_misc_wq);
8555 err_misc_wq:
8556 destroy_workqueue(md_wq);
8557 err_wq:
8558 return ret;
8559 }
8560
8561 #ifndef MODULE
8562
8563 /*
8564 * Searches all registered partitions for autorun RAID arrays
8565 * at boot time.
8566 */
8567
8568 static LIST_HEAD(all_detected_devices);
8569 struct detected_devices_node {
8570 struct list_head list;
8571 dev_t dev;
8572 };
8573
8574 void md_autodetect_dev(dev_t dev)
8575 {
8576 struct detected_devices_node *node_detected_dev;
8577
8578 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8579 if (node_detected_dev) {
8580 node_detected_dev->dev = dev;
8581 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8582 } else {
8583 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8584 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8585 }
8586 }
8587
8588
8589 static void autostart_arrays(int part)
8590 {
8591 struct md_rdev *rdev;
8592 struct detected_devices_node *node_detected_dev;
8593 dev_t dev;
8594 int i_scanned, i_passed;
8595
8596 i_scanned = 0;
8597 i_passed = 0;
8598
8599 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8600
8601 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8602 i_scanned++;
8603 node_detected_dev = list_entry(all_detected_devices.next,
8604 struct detected_devices_node, list);
8605 list_del(&node_detected_dev->list);
8606 dev = node_detected_dev->dev;
8607 kfree(node_detected_dev);
8608 rdev = md_import_device(dev,0, 90);
8609 if (IS_ERR(rdev))
8610 continue;
8611
8612 if (test_bit(Faulty, &rdev->flags)) {
8613 MD_BUG();
8614 continue;
8615 }
8616 set_bit(AutoDetected, &rdev->flags);
8617 list_add(&rdev->same_set, &pending_raid_disks);
8618 i_passed++;
8619 }
8620
8621 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8622 i_scanned, i_passed);
8623
8624 autorun_devices(part);
8625 }
8626
8627 #endif /* !MODULE */
8628
8629 static __exit void md_exit(void)
8630 {
8631 struct mddev *mddev;
8632 struct list_head *tmp;
8633
8634 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8635 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8636
8637 unregister_blkdev(MD_MAJOR,"md");
8638 unregister_blkdev(mdp_major, "mdp");
8639 unregister_reboot_notifier(&md_notifier);
8640 unregister_sysctl_table(raid_table_header);
8641 remove_proc_entry("mdstat", NULL);
8642 for_each_mddev(mddev, tmp) {
8643 export_array(mddev);
8644 mddev->hold_active = 0;
8645 }
8646 destroy_workqueue(md_misc_wq);
8647 destroy_workqueue(md_wq);
8648 }
8649
8650 subsys_initcall(md_init);
8651 module_exit(md_exit)
8652
8653 static int get_ro(char *buffer, struct kernel_param *kp)
8654 {
8655 return sprintf(buffer, "%d", start_readonly);
8656 }
8657 static int set_ro(const char *val, struct kernel_param *kp)
8658 {
8659 char *e;
8660 int num = simple_strtoul(val, &e, 10);
8661 if (*val && (*e == '\0' || *e == '\n')) {
8662 start_readonly = num;
8663 return 0;
8664 }
8665 return -EINVAL;
8666 }
8667
8668 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8669 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8670
8671 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8672
8673 EXPORT_SYMBOL(register_md_personality);
8674 EXPORT_SYMBOL(unregister_md_personality);
8675 EXPORT_SYMBOL(md_error);
8676 EXPORT_SYMBOL(md_done_sync);
8677 EXPORT_SYMBOL(md_write_start);
8678 EXPORT_SYMBOL(md_write_end);
8679 EXPORT_SYMBOL(md_register_thread);
8680 EXPORT_SYMBOL(md_unregister_thread);
8681 EXPORT_SYMBOL(md_wakeup_thread);
8682 EXPORT_SYMBOL(md_check_recovery);
8683 EXPORT_SYMBOL(md_reap_sync_thread);
8684 MODULE_LICENSE("GPL");
8685 MODULE_DESCRIPTION("MD RAID framework");
8686 MODULE_ALIAS("md");
8687 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
This page took 0.208016 seconds and 5 git commands to generate.