md: don't clear MD_CHANGE_CLEAN in md_update_sb() for external arrays
[deliverable/linux.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/smp_lock.h>
40 #include <linux/buffer_head.h> /* for invalidate_bdev */
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #define DEBUG 0
58 #define dprintk(x...) ((void)(DEBUG && printk(x)))
59
60
61 #ifndef MODULE
62 static void autostart_arrays(int part);
63 #endif
64
65 static LIST_HEAD(pers_list);
66 static DEFINE_SPINLOCK(pers_lock);
67
68 static void md_print_devices(void);
69
70 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
71
72 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
73
74 /*
75 * Default number of read corrections we'll attempt on an rdev
76 * before ejecting it from the array. We divide the read error
77 * count by 2 for every hour elapsed between read errors.
78 */
79 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
80 /*
81 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
82 * is 1000 KB/sec, so the extra system load does not show up that much.
83 * Increase it if you want to have more _guaranteed_ speed. Note that
84 * the RAID driver will use the maximum available bandwidth if the IO
85 * subsystem is idle. There is also an 'absolute maximum' reconstruction
86 * speed limit - in case reconstruction slows down your system despite
87 * idle IO detection.
88 *
89 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
90 * or /sys/block/mdX/md/sync_speed_{min,max}
91 */
92
93 static int sysctl_speed_limit_min = 1000;
94 static int sysctl_speed_limit_max = 200000;
95 static inline int speed_min(mddev_t *mddev)
96 {
97 return mddev->sync_speed_min ?
98 mddev->sync_speed_min : sysctl_speed_limit_min;
99 }
100
101 static inline int speed_max(mddev_t *mddev)
102 {
103 return mddev->sync_speed_max ?
104 mddev->sync_speed_max : sysctl_speed_limit_max;
105 }
106
107 static struct ctl_table_header *raid_table_header;
108
109 static ctl_table raid_table[] = {
110 {
111 .procname = "speed_limit_min",
112 .data = &sysctl_speed_limit_min,
113 .maxlen = sizeof(int),
114 .mode = S_IRUGO|S_IWUSR,
115 .proc_handler = proc_dointvec,
116 },
117 {
118 .procname = "speed_limit_max",
119 .data = &sysctl_speed_limit_max,
120 .maxlen = sizeof(int),
121 .mode = S_IRUGO|S_IWUSR,
122 .proc_handler = proc_dointvec,
123 },
124 { }
125 };
126
127 static ctl_table raid_dir_table[] = {
128 {
129 .procname = "raid",
130 .maxlen = 0,
131 .mode = S_IRUGO|S_IXUGO,
132 .child = raid_table,
133 },
134 { }
135 };
136
137 static ctl_table raid_root_table[] = {
138 {
139 .procname = "dev",
140 .maxlen = 0,
141 .mode = 0555,
142 .child = raid_dir_table,
143 },
144 { }
145 };
146
147 static const struct block_device_operations md_fops;
148
149 static int start_readonly;
150
151 /*
152 * We have a system wide 'event count' that is incremented
153 * on any 'interesting' event, and readers of /proc/mdstat
154 * can use 'poll' or 'select' to find out when the event
155 * count increases.
156 *
157 * Events are:
158 * start array, stop array, error, add device, remove device,
159 * start build, activate spare
160 */
161 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
162 static atomic_t md_event_count;
163 void md_new_event(mddev_t *mddev)
164 {
165 atomic_inc(&md_event_count);
166 wake_up(&md_event_waiters);
167 }
168 EXPORT_SYMBOL_GPL(md_new_event);
169
170 /* Alternate version that can be called from interrupts
171 * when calling sysfs_notify isn't needed.
172 */
173 static void md_new_event_inintr(mddev_t *mddev)
174 {
175 atomic_inc(&md_event_count);
176 wake_up(&md_event_waiters);
177 }
178
179 /*
180 * Enables to iterate over all existing md arrays
181 * all_mddevs_lock protects this list.
182 */
183 static LIST_HEAD(all_mddevs);
184 static DEFINE_SPINLOCK(all_mddevs_lock);
185
186
187 /*
188 * iterates through all used mddevs in the system.
189 * We take care to grab the all_mddevs_lock whenever navigating
190 * the list, and to always hold a refcount when unlocked.
191 * Any code which breaks out of this loop while own
192 * a reference to the current mddev and must mddev_put it.
193 */
194 #define for_each_mddev(mddev,tmp) \
195 \
196 for (({ spin_lock(&all_mddevs_lock); \
197 tmp = all_mddevs.next; \
198 mddev = NULL;}); \
199 ({ if (tmp != &all_mddevs) \
200 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
201 spin_unlock(&all_mddevs_lock); \
202 if (mddev) mddev_put(mddev); \
203 mddev = list_entry(tmp, mddev_t, all_mddevs); \
204 tmp != &all_mddevs;}); \
205 ({ spin_lock(&all_mddevs_lock); \
206 tmp = tmp->next;}) \
207 )
208
209
210 /* Rather than calling directly into the personality make_request function,
211 * IO requests come here first so that we can check if the device is
212 * being suspended pending a reconfiguration.
213 * We hold a refcount over the call to ->make_request. By the time that
214 * call has finished, the bio has been linked into some internal structure
215 * and so is visible to ->quiesce(), so we don't need the refcount any more.
216 */
217 static int md_make_request(struct request_queue *q, struct bio *bio)
218 {
219 const int rw = bio_data_dir(bio);
220 mddev_t *mddev = q->queuedata;
221 int rv;
222 int cpu;
223
224 if (mddev == NULL || mddev->pers == NULL) {
225 bio_io_error(bio);
226 return 0;
227 }
228 rcu_read_lock();
229 if (mddev->suspended || mddev->barrier) {
230 DEFINE_WAIT(__wait);
231 for (;;) {
232 prepare_to_wait(&mddev->sb_wait, &__wait,
233 TASK_UNINTERRUPTIBLE);
234 if (!mddev->suspended && !mddev->barrier)
235 break;
236 rcu_read_unlock();
237 schedule();
238 rcu_read_lock();
239 }
240 finish_wait(&mddev->sb_wait, &__wait);
241 }
242 atomic_inc(&mddev->active_io);
243 rcu_read_unlock();
244
245 rv = mddev->pers->make_request(mddev, bio);
246
247 cpu = part_stat_lock();
248 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
249 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
250 bio_sectors(bio));
251 part_stat_unlock();
252
253 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
254 wake_up(&mddev->sb_wait);
255
256 return rv;
257 }
258
259 /* mddev_suspend makes sure no new requests are submitted
260 * to the device, and that any requests that have been submitted
261 * are completely handled.
262 * Once ->stop is called and completes, the module will be completely
263 * unused.
264 */
265 void mddev_suspend(mddev_t *mddev)
266 {
267 BUG_ON(mddev->suspended);
268 mddev->suspended = 1;
269 synchronize_rcu();
270 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
271 mddev->pers->quiesce(mddev, 1);
272 }
273 EXPORT_SYMBOL_GPL(mddev_suspend);
274
275 void mddev_resume(mddev_t *mddev)
276 {
277 mddev->suspended = 0;
278 wake_up(&mddev->sb_wait);
279 mddev->pers->quiesce(mddev, 0);
280 }
281 EXPORT_SYMBOL_GPL(mddev_resume);
282
283 int mddev_congested(mddev_t *mddev, int bits)
284 {
285 if (mddev->barrier)
286 return 1;
287 return mddev->suspended;
288 }
289 EXPORT_SYMBOL(mddev_congested);
290
291 /*
292 * Generic barrier handling for md
293 */
294
295 #define POST_REQUEST_BARRIER ((void*)1)
296
297 static void md_end_barrier(struct bio *bio, int err)
298 {
299 mdk_rdev_t *rdev = bio->bi_private;
300 mddev_t *mddev = rdev->mddev;
301 if (err == -EOPNOTSUPP && mddev->barrier != POST_REQUEST_BARRIER)
302 set_bit(BIO_EOPNOTSUPP, &mddev->barrier->bi_flags);
303
304 rdev_dec_pending(rdev, mddev);
305
306 if (atomic_dec_and_test(&mddev->flush_pending)) {
307 if (mddev->barrier == POST_REQUEST_BARRIER) {
308 /* This was a post-request barrier */
309 mddev->barrier = NULL;
310 wake_up(&mddev->sb_wait);
311 } else
312 /* The pre-request barrier has finished */
313 schedule_work(&mddev->barrier_work);
314 }
315 bio_put(bio);
316 }
317
318 static void submit_barriers(mddev_t *mddev)
319 {
320 mdk_rdev_t *rdev;
321
322 rcu_read_lock();
323 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
324 if (rdev->raid_disk >= 0 &&
325 !test_bit(Faulty, &rdev->flags)) {
326 /* Take two references, one is dropped
327 * when request finishes, one after
328 * we reclaim rcu_read_lock
329 */
330 struct bio *bi;
331 atomic_inc(&rdev->nr_pending);
332 atomic_inc(&rdev->nr_pending);
333 rcu_read_unlock();
334 bi = bio_alloc(GFP_KERNEL, 0);
335 bi->bi_end_io = md_end_barrier;
336 bi->bi_private = rdev;
337 bi->bi_bdev = rdev->bdev;
338 atomic_inc(&mddev->flush_pending);
339 submit_bio(WRITE_BARRIER, bi);
340 rcu_read_lock();
341 rdev_dec_pending(rdev, mddev);
342 }
343 rcu_read_unlock();
344 }
345
346 static void md_submit_barrier(struct work_struct *ws)
347 {
348 mddev_t *mddev = container_of(ws, mddev_t, barrier_work);
349 struct bio *bio = mddev->barrier;
350
351 atomic_set(&mddev->flush_pending, 1);
352
353 if (test_bit(BIO_EOPNOTSUPP, &bio->bi_flags))
354 bio_endio(bio, -EOPNOTSUPP);
355 else if (bio->bi_size == 0)
356 /* an empty barrier - all done */
357 bio_endio(bio, 0);
358 else {
359 bio->bi_rw &= ~REQ_HARDBARRIER;
360 if (mddev->pers->make_request(mddev, bio))
361 generic_make_request(bio);
362 mddev->barrier = POST_REQUEST_BARRIER;
363 submit_barriers(mddev);
364 }
365 if (atomic_dec_and_test(&mddev->flush_pending)) {
366 mddev->barrier = NULL;
367 wake_up(&mddev->sb_wait);
368 }
369 }
370
371 void md_barrier_request(mddev_t *mddev, struct bio *bio)
372 {
373 spin_lock_irq(&mddev->write_lock);
374 wait_event_lock_irq(mddev->sb_wait,
375 !mddev->barrier,
376 mddev->write_lock, /*nothing*/);
377 mddev->barrier = bio;
378 spin_unlock_irq(&mddev->write_lock);
379
380 atomic_set(&mddev->flush_pending, 1);
381 INIT_WORK(&mddev->barrier_work, md_submit_barrier);
382
383 submit_barriers(mddev);
384
385 if (atomic_dec_and_test(&mddev->flush_pending))
386 schedule_work(&mddev->barrier_work);
387 }
388 EXPORT_SYMBOL(md_barrier_request);
389
390 /* Support for plugging.
391 * This mirrors the plugging support in request_queue, but does not
392 * require having a whole queue
393 */
394 static void plugger_work(struct work_struct *work)
395 {
396 struct plug_handle *plug =
397 container_of(work, struct plug_handle, unplug_work);
398 plug->unplug_fn(plug);
399 }
400 static void plugger_timeout(unsigned long data)
401 {
402 struct plug_handle *plug = (void *)data;
403 kblockd_schedule_work(NULL, &plug->unplug_work);
404 }
405 void plugger_init(struct plug_handle *plug,
406 void (*unplug_fn)(struct plug_handle *))
407 {
408 plug->unplug_flag = 0;
409 plug->unplug_fn = unplug_fn;
410 init_timer(&plug->unplug_timer);
411 plug->unplug_timer.function = plugger_timeout;
412 plug->unplug_timer.data = (unsigned long)plug;
413 INIT_WORK(&plug->unplug_work, plugger_work);
414 }
415 EXPORT_SYMBOL_GPL(plugger_init);
416
417 void plugger_set_plug(struct plug_handle *plug)
418 {
419 if (!test_and_set_bit(PLUGGED_FLAG, &plug->unplug_flag))
420 mod_timer(&plug->unplug_timer, jiffies + msecs_to_jiffies(3)+1);
421 }
422 EXPORT_SYMBOL_GPL(plugger_set_plug);
423
424 int plugger_remove_plug(struct plug_handle *plug)
425 {
426 if (test_and_clear_bit(PLUGGED_FLAG, &plug->unplug_flag)) {
427 del_timer(&plug->unplug_timer);
428 return 1;
429 } else
430 return 0;
431 }
432 EXPORT_SYMBOL_GPL(plugger_remove_plug);
433
434
435 static inline mddev_t *mddev_get(mddev_t *mddev)
436 {
437 atomic_inc(&mddev->active);
438 return mddev;
439 }
440
441 static void mddev_delayed_delete(struct work_struct *ws);
442
443 static void mddev_put(mddev_t *mddev)
444 {
445 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
446 return;
447 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
448 mddev->ctime == 0 && !mddev->hold_active) {
449 /* Array is not configured at all, and not held active,
450 * so destroy it */
451 list_del(&mddev->all_mddevs);
452 if (mddev->gendisk) {
453 /* we did a probe so need to clean up.
454 * Call schedule_work inside the spinlock
455 * so that flush_scheduled_work() after
456 * mddev_find will succeed in waiting for the
457 * work to be done.
458 */
459 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
460 schedule_work(&mddev->del_work);
461 } else
462 kfree(mddev);
463 }
464 spin_unlock(&all_mddevs_lock);
465 }
466
467 void mddev_init(mddev_t *mddev)
468 {
469 mutex_init(&mddev->open_mutex);
470 mutex_init(&mddev->reconfig_mutex);
471 mutex_init(&mddev->bitmap_info.mutex);
472 INIT_LIST_HEAD(&mddev->disks);
473 INIT_LIST_HEAD(&mddev->all_mddevs);
474 init_timer(&mddev->safemode_timer);
475 atomic_set(&mddev->active, 1);
476 atomic_set(&mddev->openers, 0);
477 atomic_set(&mddev->active_io, 0);
478 spin_lock_init(&mddev->write_lock);
479 atomic_set(&mddev->flush_pending, 0);
480 init_waitqueue_head(&mddev->sb_wait);
481 init_waitqueue_head(&mddev->recovery_wait);
482 mddev->reshape_position = MaxSector;
483 mddev->resync_min = 0;
484 mddev->resync_max = MaxSector;
485 mddev->level = LEVEL_NONE;
486 }
487 EXPORT_SYMBOL_GPL(mddev_init);
488
489 static mddev_t * mddev_find(dev_t unit)
490 {
491 mddev_t *mddev, *new = NULL;
492
493 retry:
494 spin_lock(&all_mddevs_lock);
495
496 if (unit) {
497 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
498 if (mddev->unit == unit) {
499 mddev_get(mddev);
500 spin_unlock(&all_mddevs_lock);
501 kfree(new);
502 return mddev;
503 }
504
505 if (new) {
506 list_add(&new->all_mddevs, &all_mddevs);
507 spin_unlock(&all_mddevs_lock);
508 new->hold_active = UNTIL_IOCTL;
509 return new;
510 }
511 } else if (new) {
512 /* find an unused unit number */
513 static int next_minor = 512;
514 int start = next_minor;
515 int is_free = 0;
516 int dev = 0;
517 while (!is_free) {
518 dev = MKDEV(MD_MAJOR, next_minor);
519 next_minor++;
520 if (next_minor > MINORMASK)
521 next_minor = 0;
522 if (next_minor == start) {
523 /* Oh dear, all in use. */
524 spin_unlock(&all_mddevs_lock);
525 kfree(new);
526 return NULL;
527 }
528
529 is_free = 1;
530 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
531 if (mddev->unit == dev) {
532 is_free = 0;
533 break;
534 }
535 }
536 new->unit = dev;
537 new->md_minor = MINOR(dev);
538 new->hold_active = UNTIL_STOP;
539 list_add(&new->all_mddevs, &all_mddevs);
540 spin_unlock(&all_mddevs_lock);
541 return new;
542 }
543 spin_unlock(&all_mddevs_lock);
544
545 new = kzalloc(sizeof(*new), GFP_KERNEL);
546 if (!new)
547 return NULL;
548
549 new->unit = unit;
550 if (MAJOR(unit) == MD_MAJOR)
551 new->md_minor = MINOR(unit);
552 else
553 new->md_minor = MINOR(unit) >> MdpMinorShift;
554
555 mddev_init(new);
556
557 goto retry;
558 }
559
560 static inline int mddev_lock(mddev_t * mddev)
561 {
562 return mutex_lock_interruptible(&mddev->reconfig_mutex);
563 }
564
565 static inline int mddev_is_locked(mddev_t *mddev)
566 {
567 return mutex_is_locked(&mddev->reconfig_mutex);
568 }
569
570 static inline int mddev_trylock(mddev_t * mddev)
571 {
572 return mutex_trylock(&mddev->reconfig_mutex);
573 }
574
575 static struct attribute_group md_redundancy_group;
576
577 static void mddev_unlock(mddev_t * mddev)
578 {
579 if (mddev->to_remove) {
580 /* These cannot be removed under reconfig_mutex as
581 * an access to the files will try to take reconfig_mutex
582 * while holding the file unremovable, which leads to
583 * a deadlock.
584 * So hold set sysfs_active while the remove in happeing,
585 * and anything else which might set ->to_remove or my
586 * otherwise change the sysfs namespace will fail with
587 * -EBUSY if sysfs_active is still set.
588 * We set sysfs_active under reconfig_mutex and elsewhere
589 * test it under the same mutex to ensure its correct value
590 * is seen.
591 */
592 struct attribute_group *to_remove = mddev->to_remove;
593 mddev->to_remove = NULL;
594 mddev->sysfs_active = 1;
595 mutex_unlock(&mddev->reconfig_mutex);
596
597 if (mddev->kobj.sd) {
598 if (to_remove != &md_redundancy_group)
599 sysfs_remove_group(&mddev->kobj, to_remove);
600 if (mddev->pers == NULL ||
601 mddev->pers->sync_request == NULL) {
602 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
603 if (mddev->sysfs_action)
604 sysfs_put(mddev->sysfs_action);
605 mddev->sysfs_action = NULL;
606 }
607 }
608 mddev->sysfs_active = 0;
609 } else
610 mutex_unlock(&mddev->reconfig_mutex);
611
612 md_wakeup_thread(mddev->thread);
613 }
614
615 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
616 {
617 mdk_rdev_t *rdev;
618
619 list_for_each_entry(rdev, &mddev->disks, same_set)
620 if (rdev->desc_nr == nr)
621 return rdev;
622
623 return NULL;
624 }
625
626 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
627 {
628 mdk_rdev_t *rdev;
629
630 list_for_each_entry(rdev, &mddev->disks, same_set)
631 if (rdev->bdev->bd_dev == dev)
632 return rdev;
633
634 return NULL;
635 }
636
637 static struct mdk_personality *find_pers(int level, char *clevel)
638 {
639 struct mdk_personality *pers;
640 list_for_each_entry(pers, &pers_list, list) {
641 if (level != LEVEL_NONE && pers->level == level)
642 return pers;
643 if (strcmp(pers->name, clevel)==0)
644 return pers;
645 }
646 return NULL;
647 }
648
649 /* return the offset of the super block in 512byte sectors */
650 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
651 {
652 sector_t num_sectors = bdev->bd_inode->i_size / 512;
653 return MD_NEW_SIZE_SECTORS(num_sectors);
654 }
655
656 static int alloc_disk_sb(mdk_rdev_t * rdev)
657 {
658 if (rdev->sb_page)
659 MD_BUG();
660
661 rdev->sb_page = alloc_page(GFP_KERNEL);
662 if (!rdev->sb_page) {
663 printk(KERN_ALERT "md: out of memory.\n");
664 return -ENOMEM;
665 }
666
667 return 0;
668 }
669
670 static void free_disk_sb(mdk_rdev_t * rdev)
671 {
672 if (rdev->sb_page) {
673 put_page(rdev->sb_page);
674 rdev->sb_loaded = 0;
675 rdev->sb_page = NULL;
676 rdev->sb_start = 0;
677 rdev->sectors = 0;
678 }
679 }
680
681
682 static void super_written(struct bio *bio, int error)
683 {
684 mdk_rdev_t *rdev = bio->bi_private;
685 mddev_t *mddev = rdev->mddev;
686
687 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
688 printk("md: super_written gets error=%d, uptodate=%d\n",
689 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
690 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
691 md_error(mddev, rdev);
692 }
693
694 if (atomic_dec_and_test(&mddev->pending_writes))
695 wake_up(&mddev->sb_wait);
696 bio_put(bio);
697 }
698
699 static void super_written_barrier(struct bio *bio, int error)
700 {
701 struct bio *bio2 = bio->bi_private;
702 mdk_rdev_t *rdev = bio2->bi_private;
703 mddev_t *mddev = rdev->mddev;
704
705 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
706 error == -EOPNOTSUPP) {
707 unsigned long flags;
708 /* barriers don't appear to be supported :-( */
709 set_bit(BarriersNotsupp, &rdev->flags);
710 mddev->barriers_work = 0;
711 spin_lock_irqsave(&mddev->write_lock, flags);
712 bio2->bi_next = mddev->biolist;
713 mddev->biolist = bio2;
714 spin_unlock_irqrestore(&mddev->write_lock, flags);
715 wake_up(&mddev->sb_wait);
716 bio_put(bio);
717 } else {
718 bio_put(bio2);
719 bio->bi_private = rdev;
720 super_written(bio, error);
721 }
722 }
723
724 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
725 sector_t sector, int size, struct page *page)
726 {
727 /* write first size bytes of page to sector of rdev
728 * Increment mddev->pending_writes before returning
729 * and decrement it on completion, waking up sb_wait
730 * if zero is reached.
731 * If an error occurred, call md_error
732 *
733 * As we might need to resubmit the request if REQ_HARDBARRIER
734 * causes ENOTSUPP, we allocate a spare bio...
735 */
736 struct bio *bio = bio_alloc(GFP_NOIO, 1);
737 int rw = REQ_WRITE | REQ_SYNC | REQ_UNPLUG;
738
739 bio->bi_bdev = rdev->bdev;
740 bio->bi_sector = sector;
741 bio_add_page(bio, page, size, 0);
742 bio->bi_private = rdev;
743 bio->bi_end_io = super_written;
744 bio->bi_rw = rw;
745
746 atomic_inc(&mddev->pending_writes);
747 if (!test_bit(BarriersNotsupp, &rdev->flags)) {
748 struct bio *rbio;
749 rw |= REQ_HARDBARRIER;
750 rbio = bio_clone(bio, GFP_NOIO);
751 rbio->bi_private = bio;
752 rbio->bi_end_io = super_written_barrier;
753 submit_bio(rw, rbio);
754 } else
755 submit_bio(rw, bio);
756 }
757
758 void md_super_wait(mddev_t *mddev)
759 {
760 /* wait for all superblock writes that were scheduled to complete.
761 * if any had to be retried (due to BARRIER problems), retry them
762 */
763 DEFINE_WAIT(wq);
764 for(;;) {
765 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
766 if (atomic_read(&mddev->pending_writes)==0)
767 break;
768 while (mddev->biolist) {
769 struct bio *bio;
770 spin_lock_irq(&mddev->write_lock);
771 bio = mddev->biolist;
772 mddev->biolist = bio->bi_next ;
773 bio->bi_next = NULL;
774 spin_unlock_irq(&mddev->write_lock);
775 submit_bio(bio->bi_rw, bio);
776 }
777 schedule();
778 }
779 finish_wait(&mddev->sb_wait, &wq);
780 }
781
782 static void bi_complete(struct bio *bio, int error)
783 {
784 complete((struct completion*)bio->bi_private);
785 }
786
787 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
788 struct page *page, int rw)
789 {
790 struct bio *bio = bio_alloc(GFP_NOIO, 1);
791 struct completion event;
792 int ret;
793
794 rw |= REQ_SYNC | REQ_UNPLUG;
795
796 bio->bi_bdev = bdev;
797 bio->bi_sector = sector;
798 bio_add_page(bio, page, size, 0);
799 init_completion(&event);
800 bio->bi_private = &event;
801 bio->bi_end_io = bi_complete;
802 submit_bio(rw, bio);
803 wait_for_completion(&event);
804
805 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
806 bio_put(bio);
807 return ret;
808 }
809 EXPORT_SYMBOL_GPL(sync_page_io);
810
811 static int read_disk_sb(mdk_rdev_t * rdev, int size)
812 {
813 char b[BDEVNAME_SIZE];
814 if (!rdev->sb_page) {
815 MD_BUG();
816 return -EINVAL;
817 }
818 if (rdev->sb_loaded)
819 return 0;
820
821
822 if (!sync_page_io(rdev->bdev, rdev->sb_start, size, rdev->sb_page, READ))
823 goto fail;
824 rdev->sb_loaded = 1;
825 return 0;
826
827 fail:
828 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
829 bdevname(rdev->bdev,b));
830 return -EINVAL;
831 }
832
833 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
834 {
835 return sb1->set_uuid0 == sb2->set_uuid0 &&
836 sb1->set_uuid1 == sb2->set_uuid1 &&
837 sb1->set_uuid2 == sb2->set_uuid2 &&
838 sb1->set_uuid3 == sb2->set_uuid3;
839 }
840
841 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
842 {
843 int ret;
844 mdp_super_t *tmp1, *tmp2;
845
846 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
847 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
848
849 if (!tmp1 || !tmp2) {
850 ret = 0;
851 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
852 goto abort;
853 }
854
855 *tmp1 = *sb1;
856 *tmp2 = *sb2;
857
858 /*
859 * nr_disks is not constant
860 */
861 tmp1->nr_disks = 0;
862 tmp2->nr_disks = 0;
863
864 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
865 abort:
866 kfree(tmp1);
867 kfree(tmp2);
868 return ret;
869 }
870
871
872 static u32 md_csum_fold(u32 csum)
873 {
874 csum = (csum & 0xffff) + (csum >> 16);
875 return (csum & 0xffff) + (csum >> 16);
876 }
877
878 static unsigned int calc_sb_csum(mdp_super_t * sb)
879 {
880 u64 newcsum = 0;
881 u32 *sb32 = (u32*)sb;
882 int i;
883 unsigned int disk_csum, csum;
884
885 disk_csum = sb->sb_csum;
886 sb->sb_csum = 0;
887
888 for (i = 0; i < MD_SB_BYTES/4 ; i++)
889 newcsum += sb32[i];
890 csum = (newcsum & 0xffffffff) + (newcsum>>32);
891
892
893 #ifdef CONFIG_ALPHA
894 /* This used to use csum_partial, which was wrong for several
895 * reasons including that different results are returned on
896 * different architectures. It isn't critical that we get exactly
897 * the same return value as before (we always csum_fold before
898 * testing, and that removes any differences). However as we
899 * know that csum_partial always returned a 16bit value on
900 * alphas, do a fold to maximise conformity to previous behaviour.
901 */
902 sb->sb_csum = md_csum_fold(disk_csum);
903 #else
904 sb->sb_csum = disk_csum;
905 #endif
906 return csum;
907 }
908
909
910 /*
911 * Handle superblock details.
912 * We want to be able to handle multiple superblock formats
913 * so we have a common interface to them all, and an array of
914 * different handlers.
915 * We rely on user-space to write the initial superblock, and support
916 * reading and updating of superblocks.
917 * Interface methods are:
918 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
919 * loads and validates a superblock on dev.
920 * if refdev != NULL, compare superblocks on both devices
921 * Return:
922 * 0 - dev has a superblock that is compatible with refdev
923 * 1 - dev has a superblock that is compatible and newer than refdev
924 * so dev should be used as the refdev in future
925 * -EINVAL superblock incompatible or invalid
926 * -othererror e.g. -EIO
927 *
928 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
929 * Verify that dev is acceptable into mddev.
930 * The first time, mddev->raid_disks will be 0, and data from
931 * dev should be merged in. Subsequent calls check that dev
932 * is new enough. Return 0 or -EINVAL
933 *
934 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
935 * Update the superblock for rdev with data in mddev
936 * This does not write to disc.
937 *
938 */
939
940 struct super_type {
941 char *name;
942 struct module *owner;
943 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
944 int minor_version);
945 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
946 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
947 unsigned long long (*rdev_size_change)(mdk_rdev_t *rdev,
948 sector_t num_sectors);
949 };
950
951 /*
952 * Check that the given mddev has no bitmap.
953 *
954 * This function is called from the run method of all personalities that do not
955 * support bitmaps. It prints an error message and returns non-zero if mddev
956 * has a bitmap. Otherwise, it returns 0.
957 *
958 */
959 int md_check_no_bitmap(mddev_t *mddev)
960 {
961 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
962 return 0;
963 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
964 mdname(mddev), mddev->pers->name);
965 return 1;
966 }
967 EXPORT_SYMBOL(md_check_no_bitmap);
968
969 /*
970 * load_super for 0.90.0
971 */
972 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
973 {
974 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
975 mdp_super_t *sb;
976 int ret;
977
978 /*
979 * Calculate the position of the superblock (512byte sectors),
980 * it's at the end of the disk.
981 *
982 * It also happens to be a multiple of 4Kb.
983 */
984 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
985
986 ret = read_disk_sb(rdev, MD_SB_BYTES);
987 if (ret) return ret;
988
989 ret = -EINVAL;
990
991 bdevname(rdev->bdev, b);
992 sb = (mdp_super_t*)page_address(rdev->sb_page);
993
994 if (sb->md_magic != MD_SB_MAGIC) {
995 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
996 b);
997 goto abort;
998 }
999
1000 if (sb->major_version != 0 ||
1001 sb->minor_version < 90 ||
1002 sb->minor_version > 91) {
1003 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1004 sb->major_version, sb->minor_version,
1005 b);
1006 goto abort;
1007 }
1008
1009 if (sb->raid_disks <= 0)
1010 goto abort;
1011
1012 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1013 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1014 b);
1015 goto abort;
1016 }
1017
1018 rdev->preferred_minor = sb->md_minor;
1019 rdev->data_offset = 0;
1020 rdev->sb_size = MD_SB_BYTES;
1021
1022 if (sb->level == LEVEL_MULTIPATH)
1023 rdev->desc_nr = -1;
1024 else
1025 rdev->desc_nr = sb->this_disk.number;
1026
1027 if (!refdev) {
1028 ret = 1;
1029 } else {
1030 __u64 ev1, ev2;
1031 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
1032 if (!uuid_equal(refsb, sb)) {
1033 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1034 b, bdevname(refdev->bdev,b2));
1035 goto abort;
1036 }
1037 if (!sb_equal(refsb, sb)) {
1038 printk(KERN_WARNING "md: %s has same UUID"
1039 " but different superblock to %s\n",
1040 b, bdevname(refdev->bdev, b2));
1041 goto abort;
1042 }
1043 ev1 = md_event(sb);
1044 ev2 = md_event(refsb);
1045 if (ev1 > ev2)
1046 ret = 1;
1047 else
1048 ret = 0;
1049 }
1050 rdev->sectors = rdev->sb_start;
1051
1052 if (rdev->sectors < sb->size * 2 && sb->level > 1)
1053 /* "this cannot possibly happen" ... */
1054 ret = -EINVAL;
1055
1056 abort:
1057 return ret;
1058 }
1059
1060 /*
1061 * validate_super for 0.90.0
1062 */
1063 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1064 {
1065 mdp_disk_t *desc;
1066 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
1067 __u64 ev1 = md_event(sb);
1068
1069 rdev->raid_disk = -1;
1070 clear_bit(Faulty, &rdev->flags);
1071 clear_bit(In_sync, &rdev->flags);
1072 clear_bit(WriteMostly, &rdev->flags);
1073 clear_bit(BarriersNotsupp, &rdev->flags);
1074
1075 if (mddev->raid_disks == 0) {
1076 mddev->major_version = 0;
1077 mddev->minor_version = sb->minor_version;
1078 mddev->patch_version = sb->patch_version;
1079 mddev->external = 0;
1080 mddev->chunk_sectors = sb->chunk_size >> 9;
1081 mddev->ctime = sb->ctime;
1082 mddev->utime = sb->utime;
1083 mddev->level = sb->level;
1084 mddev->clevel[0] = 0;
1085 mddev->layout = sb->layout;
1086 mddev->raid_disks = sb->raid_disks;
1087 mddev->dev_sectors = sb->size * 2;
1088 mddev->events = ev1;
1089 mddev->bitmap_info.offset = 0;
1090 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1091
1092 if (mddev->minor_version >= 91) {
1093 mddev->reshape_position = sb->reshape_position;
1094 mddev->delta_disks = sb->delta_disks;
1095 mddev->new_level = sb->new_level;
1096 mddev->new_layout = sb->new_layout;
1097 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1098 } else {
1099 mddev->reshape_position = MaxSector;
1100 mddev->delta_disks = 0;
1101 mddev->new_level = mddev->level;
1102 mddev->new_layout = mddev->layout;
1103 mddev->new_chunk_sectors = mddev->chunk_sectors;
1104 }
1105
1106 if (sb->state & (1<<MD_SB_CLEAN))
1107 mddev->recovery_cp = MaxSector;
1108 else {
1109 if (sb->events_hi == sb->cp_events_hi &&
1110 sb->events_lo == sb->cp_events_lo) {
1111 mddev->recovery_cp = sb->recovery_cp;
1112 } else
1113 mddev->recovery_cp = 0;
1114 }
1115
1116 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1117 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1118 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1119 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1120
1121 mddev->max_disks = MD_SB_DISKS;
1122
1123 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1124 mddev->bitmap_info.file == NULL)
1125 mddev->bitmap_info.offset =
1126 mddev->bitmap_info.default_offset;
1127
1128 } else if (mddev->pers == NULL) {
1129 /* Insist on good event counter while assembling, except
1130 * for spares (which don't need an event count) */
1131 ++ev1;
1132 if (sb->disks[rdev->desc_nr].state & (
1133 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1134 if (ev1 < mddev->events)
1135 return -EINVAL;
1136 } else if (mddev->bitmap) {
1137 /* if adding to array with a bitmap, then we can accept an
1138 * older device ... but not too old.
1139 */
1140 if (ev1 < mddev->bitmap->events_cleared)
1141 return 0;
1142 } else {
1143 if (ev1 < mddev->events)
1144 /* just a hot-add of a new device, leave raid_disk at -1 */
1145 return 0;
1146 }
1147
1148 if (mddev->level != LEVEL_MULTIPATH) {
1149 desc = sb->disks + rdev->desc_nr;
1150
1151 if (desc->state & (1<<MD_DISK_FAULTY))
1152 set_bit(Faulty, &rdev->flags);
1153 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1154 desc->raid_disk < mddev->raid_disks */) {
1155 set_bit(In_sync, &rdev->flags);
1156 rdev->raid_disk = desc->raid_disk;
1157 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1158 /* active but not in sync implies recovery up to
1159 * reshape position. We don't know exactly where
1160 * that is, so set to zero for now */
1161 if (mddev->minor_version >= 91) {
1162 rdev->recovery_offset = 0;
1163 rdev->raid_disk = desc->raid_disk;
1164 }
1165 }
1166 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1167 set_bit(WriteMostly, &rdev->flags);
1168 } else /* MULTIPATH are always insync */
1169 set_bit(In_sync, &rdev->flags);
1170 return 0;
1171 }
1172
1173 /*
1174 * sync_super for 0.90.0
1175 */
1176 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1177 {
1178 mdp_super_t *sb;
1179 mdk_rdev_t *rdev2;
1180 int next_spare = mddev->raid_disks;
1181
1182
1183 /* make rdev->sb match mddev data..
1184 *
1185 * 1/ zero out disks
1186 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1187 * 3/ any empty disks < next_spare become removed
1188 *
1189 * disks[0] gets initialised to REMOVED because
1190 * we cannot be sure from other fields if it has
1191 * been initialised or not.
1192 */
1193 int i;
1194 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1195
1196 rdev->sb_size = MD_SB_BYTES;
1197
1198 sb = (mdp_super_t*)page_address(rdev->sb_page);
1199
1200 memset(sb, 0, sizeof(*sb));
1201
1202 sb->md_magic = MD_SB_MAGIC;
1203 sb->major_version = mddev->major_version;
1204 sb->patch_version = mddev->patch_version;
1205 sb->gvalid_words = 0; /* ignored */
1206 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1207 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1208 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1209 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1210
1211 sb->ctime = mddev->ctime;
1212 sb->level = mddev->level;
1213 sb->size = mddev->dev_sectors / 2;
1214 sb->raid_disks = mddev->raid_disks;
1215 sb->md_minor = mddev->md_minor;
1216 sb->not_persistent = 0;
1217 sb->utime = mddev->utime;
1218 sb->state = 0;
1219 sb->events_hi = (mddev->events>>32);
1220 sb->events_lo = (u32)mddev->events;
1221
1222 if (mddev->reshape_position == MaxSector)
1223 sb->minor_version = 90;
1224 else {
1225 sb->minor_version = 91;
1226 sb->reshape_position = mddev->reshape_position;
1227 sb->new_level = mddev->new_level;
1228 sb->delta_disks = mddev->delta_disks;
1229 sb->new_layout = mddev->new_layout;
1230 sb->new_chunk = mddev->new_chunk_sectors << 9;
1231 }
1232 mddev->minor_version = sb->minor_version;
1233 if (mddev->in_sync)
1234 {
1235 sb->recovery_cp = mddev->recovery_cp;
1236 sb->cp_events_hi = (mddev->events>>32);
1237 sb->cp_events_lo = (u32)mddev->events;
1238 if (mddev->recovery_cp == MaxSector)
1239 sb->state = (1<< MD_SB_CLEAN);
1240 } else
1241 sb->recovery_cp = 0;
1242
1243 sb->layout = mddev->layout;
1244 sb->chunk_size = mddev->chunk_sectors << 9;
1245
1246 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1247 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1248
1249 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1250 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1251 mdp_disk_t *d;
1252 int desc_nr;
1253 int is_active = test_bit(In_sync, &rdev2->flags);
1254
1255 if (rdev2->raid_disk >= 0 &&
1256 sb->minor_version >= 91)
1257 /* we have nowhere to store the recovery_offset,
1258 * but if it is not below the reshape_position,
1259 * we can piggy-back on that.
1260 */
1261 is_active = 1;
1262 if (rdev2->raid_disk < 0 ||
1263 test_bit(Faulty, &rdev2->flags))
1264 is_active = 0;
1265 if (is_active)
1266 desc_nr = rdev2->raid_disk;
1267 else
1268 desc_nr = next_spare++;
1269 rdev2->desc_nr = desc_nr;
1270 d = &sb->disks[rdev2->desc_nr];
1271 nr_disks++;
1272 d->number = rdev2->desc_nr;
1273 d->major = MAJOR(rdev2->bdev->bd_dev);
1274 d->minor = MINOR(rdev2->bdev->bd_dev);
1275 if (is_active)
1276 d->raid_disk = rdev2->raid_disk;
1277 else
1278 d->raid_disk = rdev2->desc_nr; /* compatibility */
1279 if (test_bit(Faulty, &rdev2->flags))
1280 d->state = (1<<MD_DISK_FAULTY);
1281 else if (is_active) {
1282 d->state = (1<<MD_DISK_ACTIVE);
1283 if (test_bit(In_sync, &rdev2->flags))
1284 d->state |= (1<<MD_DISK_SYNC);
1285 active++;
1286 working++;
1287 } else {
1288 d->state = 0;
1289 spare++;
1290 working++;
1291 }
1292 if (test_bit(WriteMostly, &rdev2->flags))
1293 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1294 }
1295 /* now set the "removed" and "faulty" bits on any missing devices */
1296 for (i=0 ; i < mddev->raid_disks ; i++) {
1297 mdp_disk_t *d = &sb->disks[i];
1298 if (d->state == 0 && d->number == 0) {
1299 d->number = i;
1300 d->raid_disk = i;
1301 d->state = (1<<MD_DISK_REMOVED);
1302 d->state |= (1<<MD_DISK_FAULTY);
1303 failed++;
1304 }
1305 }
1306 sb->nr_disks = nr_disks;
1307 sb->active_disks = active;
1308 sb->working_disks = working;
1309 sb->failed_disks = failed;
1310 sb->spare_disks = spare;
1311
1312 sb->this_disk = sb->disks[rdev->desc_nr];
1313 sb->sb_csum = calc_sb_csum(sb);
1314 }
1315
1316 /*
1317 * rdev_size_change for 0.90.0
1318 */
1319 static unsigned long long
1320 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1321 {
1322 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1323 return 0; /* component must fit device */
1324 if (rdev->mddev->bitmap_info.offset)
1325 return 0; /* can't move bitmap */
1326 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
1327 if (!num_sectors || num_sectors > rdev->sb_start)
1328 num_sectors = rdev->sb_start;
1329 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1330 rdev->sb_page);
1331 md_super_wait(rdev->mddev);
1332 return num_sectors / 2; /* kB for sysfs */
1333 }
1334
1335
1336 /*
1337 * version 1 superblock
1338 */
1339
1340 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1341 {
1342 __le32 disk_csum;
1343 u32 csum;
1344 unsigned long long newcsum;
1345 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1346 __le32 *isuper = (__le32*)sb;
1347 int i;
1348
1349 disk_csum = sb->sb_csum;
1350 sb->sb_csum = 0;
1351 newcsum = 0;
1352 for (i=0; size>=4; size -= 4 )
1353 newcsum += le32_to_cpu(*isuper++);
1354
1355 if (size == 2)
1356 newcsum += le16_to_cpu(*(__le16*) isuper);
1357
1358 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1359 sb->sb_csum = disk_csum;
1360 return cpu_to_le32(csum);
1361 }
1362
1363 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1364 {
1365 struct mdp_superblock_1 *sb;
1366 int ret;
1367 sector_t sb_start;
1368 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1369 int bmask;
1370
1371 /*
1372 * Calculate the position of the superblock in 512byte sectors.
1373 * It is always aligned to a 4K boundary and
1374 * depeding on minor_version, it can be:
1375 * 0: At least 8K, but less than 12K, from end of device
1376 * 1: At start of device
1377 * 2: 4K from start of device.
1378 */
1379 switch(minor_version) {
1380 case 0:
1381 sb_start = rdev->bdev->bd_inode->i_size >> 9;
1382 sb_start -= 8*2;
1383 sb_start &= ~(sector_t)(4*2-1);
1384 break;
1385 case 1:
1386 sb_start = 0;
1387 break;
1388 case 2:
1389 sb_start = 8;
1390 break;
1391 default:
1392 return -EINVAL;
1393 }
1394 rdev->sb_start = sb_start;
1395
1396 /* superblock is rarely larger than 1K, but it can be larger,
1397 * and it is safe to read 4k, so we do that
1398 */
1399 ret = read_disk_sb(rdev, 4096);
1400 if (ret) return ret;
1401
1402
1403 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1404
1405 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1406 sb->major_version != cpu_to_le32(1) ||
1407 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1408 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1409 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1410 return -EINVAL;
1411
1412 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1413 printk("md: invalid superblock checksum on %s\n",
1414 bdevname(rdev->bdev,b));
1415 return -EINVAL;
1416 }
1417 if (le64_to_cpu(sb->data_size) < 10) {
1418 printk("md: data_size too small on %s\n",
1419 bdevname(rdev->bdev,b));
1420 return -EINVAL;
1421 }
1422
1423 rdev->preferred_minor = 0xffff;
1424 rdev->data_offset = le64_to_cpu(sb->data_offset);
1425 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1426
1427 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1428 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1429 if (rdev->sb_size & bmask)
1430 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1431
1432 if (minor_version
1433 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1434 return -EINVAL;
1435
1436 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1437 rdev->desc_nr = -1;
1438 else
1439 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1440
1441 if (!refdev) {
1442 ret = 1;
1443 } else {
1444 __u64 ev1, ev2;
1445 struct mdp_superblock_1 *refsb =
1446 (struct mdp_superblock_1*)page_address(refdev->sb_page);
1447
1448 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1449 sb->level != refsb->level ||
1450 sb->layout != refsb->layout ||
1451 sb->chunksize != refsb->chunksize) {
1452 printk(KERN_WARNING "md: %s has strangely different"
1453 " superblock to %s\n",
1454 bdevname(rdev->bdev,b),
1455 bdevname(refdev->bdev,b2));
1456 return -EINVAL;
1457 }
1458 ev1 = le64_to_cpu(sb->events);
1459 ev2 = le64_to_cpu(refsb->events);
1460
1461 if (ev1 > ev2)
1462 ret = 1;
1463 else
1464 ret = 0;
1465 }
1466 if (minor_version)
1467 rdev->sectors = (rdev->bdev->bd_inode->i_size >> 9) -
1468 le64_to_cpu(sb->data_offset);
1469 else
1470 rdev->sectors = rdev->sb_start;
1471 if (rdev->sectors < le64_to_cpu(sb->data_size))
1472 return -EINVAL;
1473 rdev->sectors = le64_to_cpu(sb->data_size);
1474 if (le64_to_cpu(sb->size) > rdev->sectors)
1475 return -EINVAL;
1476 return ret;
1477 }
1478
1479 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1480 {
1481 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1482 __u64 ev1 = le64_to_cpu(sb->events);
1483
1484 rdev->raid_disk = -1;
1485 clear_bit(Faulty, &rdev->flags);
1486 clear_bit(In_sync, &rdev->flags);
1487 clear_bit(WriteMostly, &rdev->flags);
1488 clear_bit(BarriersNotsupp, &rdev->flags);
1489
1490 if (mddev->raid_disks == 0) {
1491 mddev->major_version = 1;
1492 mddev->patch_version = 0;
1493 mddev->external = 0;
1494 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1495 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1496 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1497 mddev->level = le32_to_cpu(sb->level);
1498 mddev->clevel[0] = 0;
1499 mddev->layout = le32_to_cpu(sb->layout);
1500 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1501 mddev->dev_sectors = le64_to_cpu(sb->size);
1502 mddev->events = ev1;
1503 mddev->bitmap_info.offset = 0;
1504 mddev->bitmap_info.default_offset = 1024 >> 9;
1505
1506 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1507 memcpy(mddev->uuid, sb->set_uuid, 16);
1508
1509 mddev->max_disks = (4096-256)/2;
1510
1511 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1512 mddev->bitmap_info.file == NULL )
1513 mddev->bitmap_info.offset =
1514 (__s32)le32_to_cpu(sb->bitmap_offset);
1515
1516 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1517 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1518 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1519 mddev->new_level = le32_to_cpu(sb->new_level);
1520 mddev->new_layout = le32_to_cpu(sb->new_layout);
1521 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1522 } else {
1523 mddev->reshape_position = MaxSector;
1524 mddev->delta_disks = 0;
1525 mddev->new_level = mddev->level;
1526 mddev->new_layout = mddev->layout;
1527 mddev->new_chunk_sectors = mddev->chunk_sectors;
1528 }
1529
1530 } else if (mddev->pers == NULL) {
1531 /* Insist of good event counter while assembling, except for
1532 * spares (which don't need an event count) */
1533 ++ev1;
1534 if (rdev->desc_nr >= 0 &&
1535 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1536 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1537 if (ev1 < mddev->events)
1538 return -EINVAL;
1539 } else if (mddev->bitmap) {
1540 /* If adding to array with a bitmap, then we can accept an
1541 * older device, but not too old.
1542 */
1543 if (ev1 < mddev->bitmap->events_cleared)
1544 return 0;
1545 } else {
1546 if (ev1 < mddev->events)
1547 /* just a hot-add of a new device, leave raid_disk at -1 */
1548 return 0;
1549 }
1550 if (mddev->level != LEVEL_MULTIPATH) {
1551 int role;
1552 if (rdev->desc_nr < 0 ||
1553 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1554 role = 0xffff;
1555 rdev->desc_nr = -1;
1556 } else
1557 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1558 switch(role) {
1559 case 0xffff: /* spare */
1560 break;
1561 case 0xfffe: /* faulty */
1562 set_bit(Faulty, &rdev->flags);
1563 break;
1564 default:
1565 if ((le32_to_cpu(sb->feature_map) &
1566 MD_FEATURE_RECOVERY_OFFSET))
1567 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1568 else
1569 set_bit(In_sync, &rdev->flags);
1570 rdev->raid_disk = role;
1571 break;
1572 }
1573 if (sb->devflags & WriteMostly1)
1574 set_bit(WriteMostly, &rdev->flags);
1575 } else /* MULTIPATH are always insync */
1576 set_bit(In_sync, &rdev->flags);
1577
1578 return 0;
1579 }
1580
1581 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1582 {
1583 struct mdp_superblock_1 *sb;
1584 mdk_rdev_t *rdev2;
1585 int max_dev, i;
1586 /* make rdev->sb match mddev and rdev data. */
1587
1588 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1589
1590 sb->feature_map = 0;
1591 sb->pad0 = 0;
1592 sb->recovery_offset = cpu_to_le64(0);
1593 memset(sb->pad1, 0, sizeof(sb->pad1));
1594 memset(sb->pad2, 0, sizeof(sb->pad2));
1595 memset(sb->pad3, 0, sizeof(sb->pad3));
1596
1597 sb->utime = cpu_to_le64((__u64)mddev->utime);
1598 sb->events = cpu_to_le64(mddev->events);
1599 if (mddev->in_sync)
1600 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1601 else
1602 sb->resync_offset = cpu_to_le64(0);
1603
1604 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1605
1606 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1607 sb->size = cpu_to_le64(mddev->dev_sectors);
1608 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1609 sb->level = cpu_to_le32(mddev->level);
1610 sb->layout = cpu_to_le32(mddev->layout);
1611
1612 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1613 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1614 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1615 }
1616
1617 if (rdev->raid_disk >= 0 &&
1618 !test_bit(In_sync, &rdev->flags)) {
1619 sb->feature_map |=
1620 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1621 sb->recovery_offset =
1622 cpu_to_le64(rdev->recovery_offset);
1623 }
1624
1625 if (mddev->reshape_position != MaxSector) {
1626 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1627 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1628 sb->new_layout = cpu_to_le32(mddev->new_layout);
1629 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1630 sb->new_level = cpu_to_le32(mddev->new_level);
1631 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1632 }
1633
1634 max_dev = 0;
1635 list_for_each_entry(rdev2, &mddev->disks, same_set)
1636 if (rdev2->desc_nr+1 > max_dev)
1637 max_dev = rdev2->desc_nr+1;
1638
1639 if (max_dev > le32_to_cpu(sb->max_dev)) {
1640 int bmask;
1641 sb->max_dev = cpu_to_le32(max_dev);
1642 rdev->sb_size = max_dev * 2 + 256;
1643 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1644 if (rdev->sb_size & bmask)
1645 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1646 }
1647 for (i=0; i<max_dev;i++)
1648 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1649
1650 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1651 i = rdev2->desc_nr;
1652 if (test_bit(Faulty, &rdev2->flags))
1653 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1654 else if (test_bit(In_sync, &rdev2->flags))
1655 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1656 else if (rdev2->raid_disk >= 0)
1657 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1658 else
1659 sb->dev_roles[i] = cpu_to_le16(0xffff);
1660 }
1661
1662 sb->sb_csum = calc_sb_1_csum(sb);
1663 }
1664
1665 static unsigned long long
1666 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1667 {
1668 struct mdp_superblock_1 *sb;
1669 sector_t max_sectors;
1670 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1671 return 0; /* component must fit device */
1672 if (rdev->sb_start < rdev->data_offset) {
1673 /* minor versions 1 and 2; superblock before data */
1674 max_sectors = rdev->bdev->bd_inode->i_size >> 9;
1675 max_sectors -= rdev->data_offset;
1676 if (!num_sectors || num_sectors > max_sectors)
1677 num_sectors = max_sectors;
1678 } else if (rdev->mddev->bitmap_info.offset) {
1679 /* minor version 0 with bitmap we can't move */
1680 return 0;
1681 } else {
1682 /* minor version 0; superblock after data */
1683 sector_t sb_start;
1684 sb_start = (rdev->bdev->bd_inode->i_size >> 9) - 8*2;
1685 sb_start &= ~(sector_t)(4*2 - 1);
1686 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1687 if (!num_sectors || num_sectors > max_sectors)
1688 num_sectors = max_sectors;
1689 rdev->sb_start = sb_start;
1690 }
1691 sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page);
1692 sb->data_size = cpu_to_le64(num_sectors);
1693 sb->super_offset = rdev->sb_start;
1694 sb->sb_csum = calc_sb_1_csum(sb);
1695 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1696 rdev->sb_page);
1697 md_super_wait(rdev->mddev);
1698 return num_sectors / 2; /* kB for sysfs */
1699 }
1700
1701 static struct super_type super_types[] = {
1702 [0] = {
1703 .name = "0.90.0",
1704 .owner = THIS_MODULE,
1705 .load_super = super_90_load,
1706 .validate_super = super_90_validate,
1707 .sync_super = super_90_sync,
1708 .rdev_size_change = super_90_rdev_size_change,
1709 },
1710 [1] = {
1711 .name = "md-1",
1712 .owner = THIS_MODULE,
1713 .load_super = super_1_load,
1714 .validate_super = super_1_validate,
1715 .sync_super = super_1_sync,
1716 .rdev_size_change = super_1_rdev_size_change,
1717 },
1718 };
1719
1720 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1721 {
1722 mdk_rdev_t *rdev, *rdev2;
1723
1724 rcu_read_lock();
1725 rdev_for_each_rcu(rdev, mddev1)
1726 rdev_for_each_rcu(rdev2, mddev2)
1727 if (rdev->bdev->bd_contains ==
1728 rdev2->bdev->bd_contains) {
1729 rcu_read_unlock();
1730 return 1;
1731 }
1732 rcu_read_unlock();
1733 return 0;
1734 }
1735
1736 static LIST_HEAD(pending_raid_disks);
1737
1738 /*
1739 * Try to register data integrity profile for an mddev
1740 *
1741 * This is called when an array is started and after a disk has been kicked
1742 * from the array. It only succeeds if all working and active component devices
1743 * are integrity capable with matching profiles.
1744 */
1745 int md_integrity_register(mddev_t *mddev)
1746 {
1747 mdk_rdev_t *rdev, *reference = NULL;
1748
1749 if (list_empty(&mddev->disks))
1750 return 0; /* nothing to do */
1751 if (blk_get_integrity(mddev->gendisk))
1752 return 0; /* already registered */
1753 list_for_each_entry(rdev, &mddev->disks, same_set) {
1754 /* skip spares and non-functional disks */
1755 if (test_bit(Faulty, &rdev->flags))
1756 continue;
1757 if (rdev->raid_disk < 0)
1758 continue;
1759 /*
1760 * If at least one rdev is not integrity capable, we can not
1761 * enable data integrity for the md device.
1762 */
1763 if (!bdev_get_integrity(rdev->bdev))
1764 return -EINVAL;
1765 if (!reference) {
1766 /* Use the first rdev as the reference */
1767 reference = rdev;
1768 continue;
1769 }
1770 /* does this rdev's profile match the reference profile? */
1771 if (blk_integrity_compare(reference->bdev->bd_disk,
1772 rdev->bdev->bd_disk) < 0)
1773 return -EINVAL;
1774 }
1775 /*
1776 * All component devices are integrity capable and have matching
1777 * profiles, register the common profile for the md device.
1778 */
1779 if (blk_integrity_register(mddev->gendisk,
1780 bdev_get_integrity(reference->bdev)) != 0) {
1781 printk(KERN_ERR "md: failed to register integrity for %s\n",
1782 mdname(mddev));
1783 return -EINVAL;
1784 }
1785 printk(KERN_NOTICE "md: data integrity on %s enabled\n",
1786 mdname(mddev));
1787 return 0;
1788 }
1789 EXPORT_SYMBOL(md_integrity_register);
1790
1791 /* Disable data integrity if non-capable/non-matching disk is being added */
1792 void md_integrity_add_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
1793 {
1794 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1795 struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1796
1797 if (!bi_mddev) /* nothing to do */
1798 return;
1799 if (rdev->raid_disk < 0) /* skip spares */
1800 return;
1801 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
1802 rdev->bdev->bd_disk) >= 0)
1803 return;
1804 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
1805 blk_integrity_unregister(mddev->gendisk);
1806 }
1807 EXPORT_SYMBOL(md_integrity_add_rdev);
1808
1809 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1810 {
1811 char b[BDEVNAME_SIZE];
1812 struct kobject *ko;
1813 char *s;
1814 int err;
1815
1816 if (rdev->mddev) {
1817 MD_BUG();
1818 return -EINVAL;
1819 }
1820
1821 /* prevent duplicates */
1822 if (find_rdev(mddev, rdev->bdev->bd_dev))
1823 return -EEXIST;
1824
1825 /* make sure rdev->sectors exceeds mddev->dev_sectors */
1826 if (rdev->sectors && (mddev->dev_sectors == 0 ||
1827 rdev->sectors < mddev->dev_sectors)) {
1828 if (mddev->pers) {
1829 /* Cannot change size, so fail
1830 * If mddev->level <= 0, then we don't care
1831 * about aligning sizes (e.g. linear)
1832 */
1833 if (mddev->level > 0)
1834 return -ENOSPC;
1835 } else
1836 mddev->dev_sectors = rdev->sectors;
1837 }
1838
1839 /* Verify rdev->desc_nr is unique.
1840 * If it is -1, assign a free number, else
1841 * check number is not in use
1842 */
1843 if (rdev->desc_nr < 0) {
1844 int choice = 0;
1845 if (mddev->pers) choice = mddev->raid_disks;
1846 while (find_rdev_nr(mddev, choice))
1847 choice++;
1848 rdev->desc_nr = choice;
1849 } else {
1850 if (find_rdev_nr(mddev, rdev->desc_nr))
1851 return -EBUSY;
1852 }
1853 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
1854 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
1855 mdname(mddev), mddev->max_disks);
1856 return -EBUSY;
1857 }
1858 bdevname(rdev->bdev,b);
1859 while ( (s=strchr(b, '/')) != NULL)
1860 *s = '!';
1861
1862 rdev->mddev = mddev;
1863 printk(KERN_INFO "md: bind<%s>\n", b);
1864
1865 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
1866 goto fail;
1867
1868 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
1869 if (sysfs_create_link(&rdev->kobj, ko, "block"))
1870 /* failure here is OK */;
1871 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
1872
1873 list_add_rcu(&rdev->same_set, &mddev->disks);
1874 bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk);
1875
1876 /* May as well allow recovery to be retried once */
1877 mddev->recovery_disabled = 0;
1878
1879 return 0;
1880
1881 fail:
1882 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1883 b, mdname(mddev));
1884 return err;
1885 }
1886
1887 static void md_delayed_delete(struct work_struct *ws)
1888 {
1889 mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1890 kobject_del(&rdev->kobj);
1891 kobject_put(&rdev->kobj);
1892 }
1893
1894 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1895 {
1896 char b[BDEVNAME_SIZE];
1897 if (!rdev->mddev) {
1898 MD_BUG();
1899 return;
1900 }
1901 bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1902 list_del_rcu(&rdev->same_set);
1903 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1904 rdev->mddev = NULL;
1905 sysfs_remove_link(&rdev->kobj, "block");
1906 sysfs_put(rdev->sysfs_state);
1907 rdev->sysfs_state = NULL;
1908 /* We need to delay this, otherwise we can deadlock when
1909 * writing to 'remove' to "dev/state". We also need
1910 * to delay it due to rcu usage.
1911 */
1912 synchronize_rcu();
1913 INIT_WORK(&rdev->del_work, md_delayed_delete);
1914 kobject_get(&rdev->kobj);
1915 schedule_work(&rdev->del_work);
1916 }
1917
1918 /*
1919 * prevent the device from being mounted, repartitioned or
1920 * otherwise reused by a RAID array (or any other kernel
1921 * subsystem), by bd_claiming the device.
1922 */
1923 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
1924 {
1925 int err = 0;
1926 struct block_device *bdev;
1927 char b[BDEVNAME_SIZE];
1928
1929 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1930 if (IS_ERR(bdev)) {
1931 printk(KERN_ERR "md: could not open %s.\n",
1932 __bdevname(dev, b));
1933 return PTR_ERR(bdev);
1934 }
1935 err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev);
1936 if (err) {
1937 printk(KERN_ERR "md: could not bd_claim %s.\n",
1938 bdevname(bdev, b));
1939 blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1940 return err;
1941 }
1942 if (!shared)
1943 set_bit(AllReserved, &rdev->flags);
1944 rdev->bdev = bdev;
1945 return err;
1946 }
1947
1948 static void unlock_rdev(mdk_rdev_t *rdev)
1949 {
1950 struct block_device *bdev = rdev->bdev;
1951 rdev->bdev = NULL;
1952 if (!bdev)
1953 MD_BUG();
1954 bd_release(bdev);
1955 blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1956 }
1957
1958 void md_autodetect_dev(dev_t dev);
1959
1960 static void export_rdev(mdk_rdev_t * rdev)
1961 {
1962 char b[BDEVNAME_SIZE];
1963 printk(KERN_INFO "md: export_rdev(%s)\n",
1964 bdevname(rdev->bdev,b));
1965 if (rdev->mddev)
1966 MD_BUG();
1967 free_disk_sb(rdev);
1968 #ifndef MODULE
1969 if (test_bit(AutoDetected, &rdev->flags))
1970 md_autodetect_dev(rdev->bdev->bd_dev);
1971 #endif
1972 unlock_rdev(rdev);
1973 kobject_put(&rdev->kobj);
1974 }
1975
1976 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1977 {
1978 unbind_rdev_from_array(rdev);
1979 export_rdev(rdev);
1980 }
1981
1982 static void export_array(mddev_t *mddev)
1983 {
1984 mdk_rdev_t *rdev, *tmp;
1985
1986 rdev_for_each(rdev, tmp, mddev) {
1987 if (!rdev->mddev) {
1988 MD_BUG();
1989 continue;
1990 }
1991 kick_rdev_from_array(rdev);
1992 }
1993 if (!list_empty(&mddev->disks))
1994 MD_BUG();
1995 mddev->raid_disks = 0;
1996 mddev->major_version = 0;
1997 }
1998
1999 static void print_desc(mdp_disk_t *desc)
2000 {
2001 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2002 desc->major,desc->minor,desc->raid_disk,desc->state);
2003 }
2004
2005 static void print_sb_90(mdp_super_t *sb)
2006 {
2007 int i;
2008
2009 printk(KERN_INFO
2010 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2011 sb->major_version, sb->minor_version, sb->patch_version,
2012 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2013 sb->ctime);
2014 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2015 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2016 sb->md_minor, sb->layout, sb->chunk_size);
2017 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
2018 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2019 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2020 sb->failed_disks, sb->spare_disks,
2021 sb->sb_csum, (unsigned long)sb->events_lo);
2022
2023 printk(KERN_INFO);
2024 for (i = 0; i < MD_SB_DISKS; i++) {
2025 mdp_disk_t *desc;
2026
2027 desc = sb->disks + i;
2028 if (desc->number || desc->major || desc->minor ||
2029 desc->raid_disk || (desc->state && (desc->state != 4))) {
2030 printk(" D %2d: ", i);
2031 print_desc(desc);
2032 }
2033 }
2034 printk(KERN_INFO "md: THIS: ");
2035 print_desc(&sb->this_disk);
2036 }
2037
2038 static void print_sb_1(struct mdp_superblock_1 *sb)
2039 {
2040 __u8 *uuid;
2041
2042 uuid = sb->set_uuid;
2043 printk(KERN_INFO
2044 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2045 "md: Name: \"%s\" CT:%llu\n",
2046 le32_to_cpu(sb->major_version),
2047 le32_to_cpu(sb->feature_map),
2048 uuid,
2049 sb->set_name,
2050 (unsigned long long)le64_to_cpu(sb->ctime)
2051 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2052
2053 uuid = sb->device_uuid;
2054 printk(KERN_INFO
2055 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2056 " RO:%llu\n"
2057 "md: Dev:%08x UUID: %pU\n"
2058 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2059 "md: (MaxDev:%u) \n",
2060 le32_to_cpu(sb->level),
2061 (unsigned long long)le64_to_cpu(sb->size),
2062 le32_to_cpu(sb->raid_disks),
2063 le32_to_cpu(sb->layout),
2064 le32_to_cpu(sb->chunksize),
2065 (unsigned long long)le64_to_cpu(sb->data_offset),
2066 (unsigned long long)le64_to_cpu(sb->data_size),
2067 (unsigned long long)le64_to_cpu(sb->super_offset),
2068 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2069 le32_to_cpu(sb->dev_number),
2070 uuid,
2071 sb->devflags,
2072 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2073 (unsigned long long)le64_to_cpu(sb->events),
2074 (unsigned long long)le64_to_cpu(sb->resync_offset),
2075 le32_to_cpu(sb->sb_csum),
2076 le32_to_cpu(sb->max_dev)
2077 );
2078 }
2079
2080 static void print_rdev(mdk_rdev_t *rdev, int major_version)
2081 {
2082 char b[BDEVNAME_SIZE];
2083 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2084 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2085 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2086 rdev->desc_nr);
2087 if (rdev->sb_loaded) {
2088 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2089 switch (major_version) {
2090 case 0:
2091 print_sb_90((mdp_super_t*)page_address(rdev->sb_page));
2092 break;
2093 case 1:
2094 print_sb_1((struct mdp_superblock_1 *)page_address(rdev->sb_page));
2095 break;
2096 }
2097 } else
2098 printk(KERN_INFO "md: no rdev superblock!\n");
2099 }
2100
2101 static void md_print_devices(void)
2102 {
2103 struct list_head *tmp;
2104 mdk_rdev_t *rdev;
2105 mddev_t *mddev;
2106 char b[BDEVNAME_SIZE];
2107
2108 printk("\n");
2109 printk("md: **********************************\n");
2110 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2111 printk("md: **********************************\n");
2112 for_each_mddev(mddev, tmp) {
2113
2114 if (mddev->bitmap)
2115 bitmap_print_sb(mddev->bitmap);
2116 else
2117 printk("%s: ", mdname(mddev));
2118 list_for_each_entry(rdev, &mddev->disks, same_set)
2119 printk("<%s>", bdevname(rdev->bdev,b));
2120 printk("\n");
2121
2122 list_for_each_entry(rdev, &mddev->disks, same_set)
2123 print_rdev(rdev, mddev->major_version);
2124 }
2125 printk("md: **********************************\n");
2126 printk("\n");
2127 }
2128
2129
2130 static void sync_sbs(mddev_t * mddev, int nospares)
2131 {
2132 /* Update each superblock (in-memory image), but
2133 * if we are allowed to, skip spares which already
2134 * have the right event counter, or have one earlier
2135 * (which would mean they aren't being marked as dirty
2136 * with the rest of the array)
2137 */
2138 mdk_rdev_t *rdev;
2139 list_for_each_entry(rdev, &mddev->disks, same_set) {
2140 if (rdev->sb_events == mddev->events ||
2141 (nospares &&
2142 rdev->raid_disk < 0 &&
2143 rdev->sb_events+1 == mddev->events)) {
2144 /* Don't update this superblock */
2145 rdev->sb_loaded = 2;
2146 } else {
2147 super_types[mddev->major_version].
2148 sync_super(mddev, rdev);
2149 rdev->sb_loaded = 1;
2150 }
2151 }
2152 }
2153
2154 static void md_update_sb(mddev_t * mddev, int force_change)
2155 {
2156 mdk_rdev_t *rdev;
2157 int sync_req;
2158 int nospares = 0;
2159
2160 repeat:
2161 /* First make sure individual recovery_offsets are correct */
2162 list_for_each_entry(rdev, &mddev->disks, same_set) {
2163 if (rdev->raid_disk >= 0 &&
2164 mddev->delta_disks >= 0 &&
2165 !test_bit(In_sync, &rdev->flags) &&
2166 mddev->curr_resync_completed > rdev->recovery_offset)
2167 rdev->recovery_offset = mddev->curr_resync_completed;
2168
2169 }
2170 if (!mddev->persistent) {
2171 if (!mddev->external)
2172 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2173 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2174 wake_up(&mddev->sb_wait);
2175 return;
2176 }
2177
2178 spin_lock_irq(&mddev->write_lock);
2179
2180 mddev->utime = get_seconds();
2181
2182 set_bit(MD_CHANGE_PENDING, &mddev->flags);
2183 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2184 force_change = 1;
2185 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2186 /* just a clean<-> dirty transition, possibly leave spares alone,
2187 * though if events isn't the right even/odd, we will have to do
2188 * spares after all
2189 */
2190 nospares = 1;
2191 if (force_change)
2192 nospares = 0;
2193 if (mddev->degraded)
2194 /* If the array is degraded, then skipping spares is both
2195 * dangerous and fairly pointless.
2196 * Dangerous because a device that was removed from the array
2197 * might have a event_count that still looks up-to-date,
2198 * so it can be re-added without a resync.
2199 * Pointless because if there are any spares to skip,
2200 * then a recovery will happen and soon that array won't
2201 * be degraded any more and the spare can go back to sleep then.
2202 */
2203 nospares = 0;
2204
2205 sync_req = mddev->in_sync;
2206
2207 /* If this is just a dirty<->clean transition, and the array is clean
2208 * and 'events' is odd, we can roll back to the previous clean state */
2209 if (nospares
2210 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2211 && mddev->can_decrease_events
2212 && mddev->events != 1) {
2213 mddev->events--;
2214 mddev->can_decrease_events = 0;
2215 } else {
2216 /* otherwise we have to go forward and ... */
2217 mddev->events ++;
2218 mddev->can_decrease_events = nospares;
2219 }
2220
2221 if (!mddev->events) {
2222 /*
2223 * oops, this 64-bit counter should never wrap.
2224 * Either we are in around ~1 trillion A.C., assuming
2225 * 1 reboot per second, or we have a bug:
2226 */
2227 MD_BUG();
2228 mddev->events --;
2229 }
2230 sync_sbs(mddev, nospares);
2231 spin_unlock_irq(&mddev->write_lock);
2232
2233 dprintk(KERN_INFO
2234 "md: updating %s RAID superblock on device (in sync %d)\n",
2235 mdname(mddev),mddev->in_sync);
2236
2237 bitmap_update_sb(mddev->bitmap);
2238 list_for_each_entry(rdev, &mddev->disks, same_set) {
2239 char b[BDEVNAME_SIZE];
2240 dprintk(KERN_INFO "md: ");
2241 if (rdev->sb_loaded != 1)
2242 continue; /* no noise on spare devices */
2243 if (test_bit(Faulty, &rdev->flags))
2244 dprintk("(skipping faulty ");
2245
2246 dprintk("%s ", bdevname(rdev->bdev,b));
2247 if (!test_bit(Faulty, &rdev->flags)) {
2248 md_super_write(mddev,rdev,
2249 rdev->sb_start, rdev->sb_size,
2250 rdev->sb_page);
2251 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
2252 bdevname(rdev->bdev,b),
2253 (unsigned long long)rdev->sb_start);
2254 rdev->sb_events = mddev->events;
2255
2256 } else
2257 dprintk(")\n");
2258 if (mddev->level == LEVEL_MULTIPATH)
2259 /* only need to write one superblock... */
2260 break;
2261 }
2262 md_super_wait(mddev);
2263 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2264
2265 spin_lock_irq(&mddev->write_lock);
2266 if (mddev->in_sync != sync_req ||
2267 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2268 /* have to write it out again */
2269 spin_unlock_irq(&mddev->write_lock);
2270 goto repeat;
2271 }
2272 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2273 spin_unlock_irq(&mddev->write_lock);
2274 wake_up(&mddev->sb_wait);
2275 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2276 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2277
2278 }
2279
2280 /* words written to sysfs files may, or may not, be \n terminated.
2281 * We want to accept with case. For this we use cmd_match.
2282 */
2283 static int cmd_match(const char *cmd, const char *str)
2284 {
2285 /* See if cmd, written into a sysfs file, matches
2286 * str. They must either be the same, or cmd can
2287 * have a trailing newline
2288 */
2289 while (*cmd && *str && *cmd == *str) {
2290 cmd++;
2291 str++;
2292 }
2293 if (*cmd == '\n')
2294 cmd++;
2295 if (*str || *cmd)
2296 return 0;
2297 return 1;
2298 }
2299
2300 struct rdev_sysfs_entry {
2301 struct attribute attr;
2302 ssize_t (*show)(mdk_rdev_t *, char *);
2303 ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
2304 };
2305
2306 static ssize_t
2307 state_show(mdk_rdev_t *rdev, char *page)
2308 {
2309 char *sep = "";
2310 size_t len = 0;
2311
2312 if (test_bit(Faulty, &rdev->flags)) {
2313 len+= sprintf(page+len, "%sfaulty",sep);
2314 sep = ",";
2315 }
2316 if (test_bit(In_sync, &rdev->flags)) {
2317 len += sprintf(page+len, "%sin_sync",sep);
2318 sep = ",";
2319 }
2320 if (test_bit(WriteMostly, &rdev->flags)) {
2321 len += sprintf(page+len, "%swrite_mostly",sep);
2322 sep = ",";
2323 }
2324 if (test_bit(Blocked, &rdev->flags)) {
2325 len += sprintf(page+len, "%sblocked", sep);
2326 sep = ",";
2327 }
2328 if (!test_bit(Faulty, &rdev->flags) &&
2329 !test_bit(In_sync, &rdev->flags)) {
2330 len += sprintf(page+len, "%sspare", sep);
2331 sep = ",";
2332 }
2333 return len+sprintf(page+len, "\n");
2334 }
2335
2336 static ssize_t
2337 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2338 {
2339 /* can write
2340 * faulty - simulates and error
2341 * remove - disconnects the device
2342 * writemostly - sets write_mostly
2343 * -writemostly - clears write_mostly
2344 * blocked - sets the Blocked flag
2345 * -blocked - clears the Blocked flag
2346 * insync - sets Insync providing device isn't active
2347 */
2348 int err = -EINVAL;
2349 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2350 md_error(rdev->mddev, rdev);
2351 err = 0;
2352 } else if (cmd_match(buf, "remove")) {
2353 if (rdev->raid_disk >= 0)
2354 err = -EBUSY;
2355 else {
2356 mddev_t *mddev = rdev->mddev;
2357 kick_rdev_from_array(rdev);
2358 if (mddev->pers)
2359 md_update_sb(mddev, 1);
2360 md_new_event(mddev);
2361 err = 0;
2362 }
2363 } else if (cmd_match(buf, "writemostly")) {
2364 set_bit(WriteMostly, &rdev->flags);
2365 err = 0;
2366 } else if (cmd_match(buf, "-writemostly")) {
2367 clear_bit(WriteMostly, &rdev->flags);
2368 err = 0;
2369 } else if (cmd_match(buf, "blocked")) {
2370 set_bit(Blocked, &rdev->flags);
2371 err = 0;
2372 } else if (cmd_match(buf, "-blocked")) {
2373 clear_bit(Blocked, &rdev->flags);
2374 wake_up(&rdev->blocked_wait);
2375 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2376 md_wakeup_thread(rdev->mddev->thread);
2377
2378 err = 0;
2379 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2380 set_bit(In_sync, &rdev->flags);
2381 err = 0;
2382 }
2383 if (!err)
2384 sysfs_notify_dirent_safe(rdev->sysfs_state);
2385 return err ? err : len;
2386 }
2387 static struct rdev_sysfs_entry rdev_state =
2388 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2389
2390 static ssize_t
2391 errors_show(mdk_rdev_t *rdev, char *page)
2392 {
2393 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2394 }
2395
2396 static ssize_t
2397 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2398 {
2399 char *e;
2400 unsigned long n = simple_strtoul(buf, &e, 10);
2401 if (*buf && (*e == 0 || *e == '\n')) {
2402 atomic_set(&rdev->corrected_errors, n);
2403 return len;
2404 }
2405 return -EINVAL;
2406 }
2407 static struct rdev_sysfs_entry rdev_errors =
2408 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2409
2410 static ssize_t
2411 slot_show(mdk_rdev_t *rdev, char *page)
2412 {
2413 if (rdev->raid_disk < 0)
2414 return sprintf(page, "none\n");
2415 else
2416 return sprintf(page, "%d\n", rdev->raid_disk);
2417 }
2418
2419 static ssize_t
2420 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2421 {
2422 char *e;
2423 int err;
2424 char nm[20];
2425 int slot = simple_strtoul(buf, &e, 10);
2426 if (strncmp(buf, "none", 4)==0)
2427 slot = -1;
2428 else if (e==buf || (*e && *e!= '\n'))
2429 return -EINVAL;
2430 if (rdev->mddev->pers && slot == -1) {
2431 /* Setting 'slot' on an active array requires also
2432 * updating the 'rd%d' link, and communicating
2433 * with the personality with ->hot_*_disk.
2434 * For now we only support removing
2435 * failed/spare devices. This normally happens automatically,
2436 * but not when the metadata is externally managed.
2437 */
2438 if (rdev->raid_disk == -1)
2439 return -EEXIST;
2440 /* personality does all needed checks */
2441 if (rdev->mddev->pers->hot_add_disk == NULL)
2442 return -EINVAL;
2443 err = rdev->mddev->pers->
2444 hot_remove_disk(rdev->mddev, rdev->raid_disk);
2445 if (err)
2446 return err;
2447 sprintf(nm, "rd%d", rdev->raid_disk);
2448 sysfs_remove_link(&rdev->mddev->kobj, nm);
2449 rdev->raid_disk = -1;
2450 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2451 md_wakeup_thread(rdev->mddev->thread);
2452 } else if (rdev->mddev->pers) {
2453 mdk_rdev_t *rdev2;
2454 /* Activating a spare .. or possibly reactivating
2455 * if we ever get bitmaps working here.
2456 */
2457
2458 if (rdev->raid_disk != -1)
2459 return -EBUSY;
2460
2461 if (rdev->mddev->pers->hot_add_disk == NULL)
2462 return -EINVAL;
2463
2464 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2465 if (rdev2->raid_disk == slot)
2466 return -EEXIST;
2467
2468 rdev->raid_disk = slot;
2469 if (test_bit(In_sync, &rdev->flags))
2470 rdev->saved_raid_disk = slot;
2471 else
2472 rdev->saved_raid_disk = -1;
2473 err = rdev->mddev->pers->
2474 hot_add_disk(rdev->mddev, rdev);
2475 if (err) {
2476 rdev->raid_disk = -1;
2477 return err;
2478 } else
2479 sysfs_notify_dirent_safe(rdev->sysfs_state);
2480 sprintf(nm, "rd%d", rdev->raid_disk);
2481 if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm))
2482 /* failure here is OK */;
2483 /* don't wakeup anyone, leave that to userspace. */
2484 } else {
2485 if (slot >= rdev->mddev->raid_disks)
2486 return -ENOSPC;
2487 rdev->raid_disk = slot;
2488 /* assume it is working */
2489 clear_bit(Faulty, &rdev->flags);
2490 clear_bit(WriteMostly, &rdev->flags);
2491 set_bit(In_sync, &rdev->flags);
2492 sysfs_notify_dirent_safe(rdev->sysfs_state);
2493 }
2494 return len;
2495 }
2496
2497
2498 static struct rdev_sysfs_entry rdev_slot =
2499 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2500
2501 static ssize_t
2502 offset_show(mdk_rdev_t *rdev, char *page)
2503 {
2504 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2505 }
2506
2507 static ssize_t
2508 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2509 {
2510 char *e;
2511 unsigned long long offset = simple_strtoull(buf, &e, 10);
2512 if (e==buf || (*e && *e != '\n'))
2513 return -EINVAL;
2514 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2515 return -EBUSY;
2516 if (rdev->sectors && rdev->mddev->external)
2517 /* Must set offset before size, so overlap checks
2518 * can be sane */
2519 return -EBUSY;
2520 rdev->data_offset = offset;
2521 return len;
2522 }
2523
2524 static struct rdev_sysfs_entry rdev_offset =
2525 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2526
2527 static ssize_t
2528 rdev_size_show(mdk_rdev_t *rdev, char *page)
2529 {
2530 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2531 }
2532
2533 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2534 {
2535 /* check if two start/length pairs overlap */
2536 if (s1+l1 <= s2)
2537 return 0;
2538 if (s2+l2 <= s1)
2539 return 0;
2540 return 1;
2541 }
2542
2543 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2544 {
2545 unsigned long long blocks;
2546 sector_t new;
2547
2548 if (strict_strtoull(buf, 10, &blocks) < 0)
2549 return -EINVAL;
2550
2551 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2552 return -EINVAL; /* sector conversion overflow */
2553
2554 new = blocks * 2;
2555 if (new != blocks * 2)
2556 return -EINVAL; /* unsigned long long to sector_t overflow */
2557
2558 *sectors = new;
2559 return 0;
2560 }
2561
2562 static ssize_t
2563 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2564 {
2565 mddev_t *my_mddev = rdev->mddev;
2566 sector_t oldsectors = rdev->sectors;
2567 sector_t sectors;
2568
2569 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2570 return -EINVAL;
2571 if (my_mddev->pers && rdev->raid_disk >= 0) {
2572 if (my_mddev->persistent) {
2573 sectors = super_types[my_mddev->major_version].
2574 rdev_size_change(rdev, sectors);
2575 if (!sectors)
2576 return -EBUSY;
2577 } else if (!sectors)
2578 sectors = (rdev->bdev->bd_inode->i_size >> 9) -
2579 rdev->data_offset;
2580 }
2581 if (sectors < my_mddev->dev_sectors)
2582 return -EINVAL; /* component must fit device */
2583
2584 rdev->sectors = sectors;
2585 if (sectors > oldsectors && my_mddev->external) {
2586 /* need to check that all other rdevs with the same ->bdev
2587 * do not overlap. We need to unlock the mddev to avoid
2588 * a deadlock. We have already changed rdev->sectors, and if
2589 * we have to change it back, we will have the lock again.
2590 */
2591 mddev_t *mddev;
2592 int overlap = 0;
2593 struct list_head *tmp;
2594
2595 mddev_unlock(my_mddev);
2596 for_each_mddev(mddev, tmp) {
2597 mdk_rdev_t *rdev2;
2598
2599 mddev_lock(mddev);
2600 list_for_each_entry(rdev2, &mddev->disks, same_set)
2601 if (test_bit(AllReserved, &rdev2->flags) ||
2602 (rdev->bdev == rdev2->bdev &&
2603 rdev != rdev2 &&
2604 overlaps(rdev->data_offset, rdev->sectors,
2605 rdev2->data_offset,
2606 rdev2->sectors))) {
2607 overlap = 1;
2608 break;
2609 }
2610 mddev_unlock(mddev);
2611 if (overlap) {
2612 mddev_put(mddev);
2613 break;
2614 }
2615 }
2616 mddev_lock(my_mddev);
2617 if (overlap) {
2618 /* Someone else could have slipped in a size
2619 * change here, but doing so is just silly.
2620 * We put oldsectors back because we *know* it is
2621 * safe, and trust userspace not to race with
2622 * itself
2623 */
2624 rdev->sectors = oldsectors;
2625 return -EBUSY;
2626 }
2627 }
2628 return len;
2629 }
2630
2631 static struct rdev_sysfs_entry rdev_size =
2632 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2633
2634
2635 static ssize_t recovery_start_show(mdk_rdev_t *rdev, char *page)
2636 {
2637 unsigned long long recovery_start = rdev->recovery_offset;
2638
2639 if (test_bit(In_sync, &rdev->flags) ||
2640 recovery_start == MaxSector)
2641 return sprintf(page, "none\n");
2642
2643 return sprintf(page, "%llu\n", recovery_start);
2644 }
2645
2646 static ssize_t recovery_start_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2647 {
2648 unsigned long long recovery_start;
2649
2650 if (cmd_match(buf, "none"))
2651 recovery_start = MaxSector;
2652 else if (strict_strtoull(buf, 10, &recovery_start))
2653 return -EINVAL;
2654
2655 if (rdev->mddev->pers &&
2656 rdev->raid_disk >= 0)
2657 return -EBUSY;
2658
2659 rdev->recovery_offset = recovery_start;
2660 if (recovery_start == MaxSector)
2661 set_bit(In_sync, &rdev->flags);
2662 else
2663 clear_bit(In_sync, &rdev->flags);
2664 return len;
2665 }
2666
2667 static struct rdev_sysfs_entry rdev_recovery_start =
2668 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2669
2670 static struct attribute *rdev_default_attrs[] = {
2671 &rdev_state.attr,
2672 &rdev_errors.attr,
2673 &rdev_slot.attr,
2674 &rdev_offset.attr,
2675 &rdev_size.attr,
2676 &rdev_recovery_start.attr,
2677 NULL,
2678 };
2679 static ssize_t
2680 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2681 {
2682 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2683 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2684 mddev_t *mddev = rdev->mddev;
2685 ssize_t rv;
2686
2687 if (!entry->show)
2688 return -EIO;
2689
2690 rv = mddev ? mddev_lock(mddev) : -EBUSY;
2691 if (!rv) {
2692 if (rdev->mddev == NULL)
2693 rv = -EBUSY;
2694 else
2695 rv = entry->show(rdev, page);
2696 mddev_unlock(mddev);
2697 }
2698 return rv;
2699 }
2700
2701 static ssize_t
2702 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2703 const char *page, size_t length)
2704 {
2705 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2706 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2707 ssize_t rv;
2708 mddev_t *mddev = rdev->mddev;
2709
2710 if (!entry->store)
2711 return -EIO;
2712 if (!capable(CAP_SYS_ADMIN))
2713 return -EACCES;
2714 rv = mddev ? mddev_lock(mddev): -EBUSY;
2715 if (!rv) {
2716 if (rdev->mddev == NULL)
2717 rv = -EBUSY;
2718 else
2719 rv = entry->store(rdev, page, length);
2720 mddev_unlock(mddev);
2721 }
2722 return rv;
2723 }
2724
2725 static void rdev_free(struct kobject *ko)
2726 {
2727 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
2728 kfree(rdev);
2729 }
2730 static const struct sysfs_ops rdev_sysfs_ops = {
2731 .show = rdev_attr_show,
2732 .store = rdev_attr_store,
2733 };
2734 static struct kobj_type rdev_ktype = {
2735 .release = rdev_free,
2736 .sysfs_ops = &rdev_sysfs_ops,
2737 .default_attrs = rdev_default_attrs,
2738 };
2739
2740 void md_rdev_init(mdk_rdev_t *rdev)
2741 {
2742 rdev->desc_nr = -1;
2743 rdev->saved_raid_disk = -1;
2744 rdev->raid_disk = -1;
2745 rdev->flags = 0;
2746 rdev->data_offset = 0;
2747 rdev->sb_events = 0;
2748 rdev->last_read_error.tv_sec = 0;
2749 rdev->last_read_error.tv_nsec = 0;
2750 atomic_set(&rdev->nr_pending, 0);
2751 atomic_set(&rdev->read_errors, 0);
2752 atomic_set(&rdev->corrected_errors, 0);
2753
2754 INIT_LIST_HEAD(&rdev->same_set);
2755 init_waitqueue_head(&rdev->blocked_wait);
2756 }
2757 EXPORT_SYMBOL_GPL(md_rdev_init);
2758 /*
2759 * Import a device. If 'super_format' >= 0, then sanity check the superblock
2760 *
2761 * mark the device faulty if:
2762 *
2763 * - the device is nonexistent (zero size)
2764 * - the device has no valid superblock
2765 *
2766 * a faulty rdev _never_ has rdev->sb set.
2767 */
2768 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
2769 {
2770 char b[BDEVNAME_SIZE];
2771 int err;
2772 mdk_rdev_t *rdev;
2773 sector_t size;
2774
2775 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
2776 if (!rdev) {
2777 printk(KERN_ERR "md: could not alloc mem for new device!\n");
2778 return ERR_PTR(-ENOMEM);
2779 }
2780
2781 md_rdev_init(rdev);
2782 if ((err = alloc_disk_sb(rdev)))
2783 goto abort_free;
2784
2785 err = lock_rdev(rdev, newdev, super_format == -2);
2786 if (err)
2787 goto abort_free;
2788
2789 kobject_init(&rdev->kobj, &rdev_ktype);
2790
2791 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2792 if (!size) {
2793 printk(KERN_WARNING
2794 "md: %s has zero or unknown size, marking faulty!\n",
2795 bdevname(rdev->bdev,b));
2796 err = -EINVAL;
2797 goto abort_free;
2798 }
2799
2800 if (super_format >= 0) {
2801 err = super_types[super_format].
2802 load_super(rdev, NULL, super_minor);
2803 if (err == -EINVAL) {
2804 printk(KERN_WARNING
2805 "md: %s does not have a valid v%d.%d "
2806 "superblock, not importing!\n",
2807 bdevname(rdev->bdev,b),
2808 super_format, super_minor);
2809 goto abort_free;
2810 }
2811 if (err < 0) {
2812 printk(KERN_WARNING
2813 "md: could not read %s's sb, not importing!\n",
2814 bdevname(rdev->bdev,b));
2815 goto abort_free;
2816 }
2817 }
2818
2819 return rdev;
2820
2821 abort_free:
2822 if (rdev->sb_page) {
2823 if (rdev->bdev)
2824 unlock_rdev(rdev);
2825 free_disk_sb(rdev);
2826 }
2827 kfree(rdev);
2828 return ERR_PTR(err);
2829 }
2830
2831 /*
2832 * Check a full RAID array for plausibility
2833 */
2834
2835
2836 static void analyze_sbs(mddev_t * mddev)
2837 {
2838 int i;
2839 mdk_rdev_t *rdev, *freshest, *tmp;
2840 char b[BDEVNAME_SIZE];
2841
2842 freshest = NULL;
2843 rdev_for_each(rdev, tmp, mddev)
2844 switch (super_types[mddev->major_version].
2845 load_super(rdev, freshest, mddev->minor_version)) {
2846 case 1:
2847 freshest = rdev;
2848 break;
2849 case 0:
2850 break;
2851 default:
2852 printk( KERN_ERR \
2853 "md: fatal superblock inconsistency in %s"
2854 " -- removing from array\n",
2855 bdevname(rdev->bdev,b));
2856 kick_rdev_from_array(rdev);
2857 }
2858
2859
2860 super_types[mddev->major_version].
2861 validate_super(mddev, freshest);
2862
2863 i = 0;
2864 rdev_for_each(rdev, tmp, mddev) {
2865 if (mddev->max_disks &&
2866 (rdev->desc_nr >= mddev->max_disks ||
2867 i > mddev->max_disks)) {
2868 printk(KERN_WARNING
2869 "md: %s: %s: only %d devices permitted\n",
2870 mdname(mddev), bdevname(rdev->bdev, b),
2871 mddev->max_disks);
2872 kick_rdev_from_array(rdev);
2873 continue;
2874 }
2875 if (rdev != freshest)
2876 if (super_types[mddev->major_version].
2877 validate_super(mddev, rdev)) {
2878 printk(KERN_WARNING "md: kicking non-fresh %s"
2879 " from array!\n",
2880 bdevname(rdev->bdev,b));
2881 kick_rdev_from_array(rdev);
2882 continue;
2883 }
2884 if (mddev->level == LEVEL_MULTIPATH) {
2885 rdev->desc_nr = i++;
2886 rdev->raid_disk = rdev->desc_nr;
2887 set_bit(In_sync, &rdev->flags);
2888 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
2889 rdev->raid_disk = -1;
2890 clear_bit(In_sync, &rdev->flags);
2891 }
2892 }
2893 }
2894
2895 /* Read a fixed-point number.
2896 * Numbers in sysfs attributes should be in "standard" units where
2897 * possible, so time should be in seconds.
2898 * However we internally use a a much smaller unit such as
2899 * milliseconds or jiffies.
2900 * This function takes a decimal number with a possible fractional
2901 * component, and produces an integer which is the result of
2902 * multiplying that number by 10^'scale'.
2903 * all without any floating-point arithmetic.
2904 */
2905 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
2906 {
2907 unsigned long result = 0;
2908 long decimals = -1;
2909 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
2910 if (*cp == '.')
2911 decimals = 0;
2912 else if (decimals < scale) {
2913 unsigned int value;
2914 value = *cp - '0';
2915 result = result * 10 + value;
2916 if (decimals >= 0)
2917 decimals++;
2918 }
2919 cp++;
2920 }
2921 if (*cp == '\n')
2922 cp++;
2923 if (*cp)
2924 return -EINVAL;
2925 if (decimals < 0)
2926 decimals = 0;
2927 while (decimals < scale) {
2928 result *= 10;
2929 decimals ++;
2930 }
2931 *res = result;
2932 return 0;
2933 }
2934
2935
2936 static void md_safemode_timeout(unsigned long data);
2937
2938 static ssize_t
2939 safe_delay_show(mddev_t *mddev, char *page)
2940 {
2941 int msec = (mddev->safemode_delay*1000)/HZ;
2942 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2943 }
2944 static ssize_t
2945 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2946 {
2947 unsigned long msec;
2948
2949 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
2950 return -EINVAL;
2951 if (msec == 0)
2952 mddev->safemode_delay = 0;
2953 else {
2954 unsigned long old_delay = mddev->safemode_delay;
2955 mddev->safemode_delay = (msec*HZ)/1000;
2956 if (mddev->safemode_delay == 0)
2957 mddev->safemode_delay = 1;
2958 if (mddev->safemode_delay < old_delay)
2959 md_safemode_timeout((unsigned long)mddev);
2960 }
2961 return len;
2962 }
2963 static struct md_sysfs_entry md_safe_delay =
2964 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2965
2966 static ssize_t
2967 level_show(mddev_t *mddev, char *page)
2968 {
2969 struct mdk_personality *p = mddev->pers;
2970 if (p)
2971 return sprintf(page, "%s\n", p->name);
2972 else if (mddev->clevel[0])
2973 return sprintf(page, "%s\n", mddev->clevel);
2974 else if (mddev->level != LEVEL_NONE)
2975 return sprintf(page, "%d\n", mddev->level);
2976 else
2977 return 0;
2978 }
2979
2980 static ssize_t
2981 level_store(mddev_t *mddev, const char *buf, size_t len)
2982 {
2983 char clevel[16];
2984 ssize_t rv = len;
2985 struct mdk_personality *pers;
2986 long level;
2987 void *priv;
2988 mdk_rdev_t *rdev;
2989
2990 if (mddev->pers == NULL) {
2991 if (len == 0)
2992 return 0;
2993 if (len >= sizeof(mddev->clevel))
2994 return -ENOSPC;
2995 strncpy(mddev->clevel, buf, len);
2996 if (mddev->clevel[len-1] == '\n')
2997 len--;
2998 mddev->clevel[len] = 0;
2999 mddev->level = LEVEL_NONE;
3000 return rv;
3001 }
3002
3003 /* request to change the personality. Need to ensure:
3004 * - array is not engaged in resync/recovery/reshape
3005 * - old personality can be suspended
3006 * - new personality will access other array.
3007 */
3008
3009 if (mddev->sync_thread ||
3010 mddev->reshape_position != MaxSector ||
3011 mddev->sysfs_active)
3012 return -EBUSY;
3013
3014 if (!mddev->pers->quiesce) {
3015 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3016 mdname(mddev), mddev->pers->name);
3017 return -EINVAL;
3018 }
3019
3020 /* Now find the new personality */
3021 if (len == 0 || len >= sizeof(clevel))
3022 return -EINVAL;
3023 strncpy(clevel, buf, len);
3024 if (clevel[len-1] == '\n')
3025 len--;
3026 clevel[len] = 0;
3027 if (strict_strtol(clevel, 10, &level))
3028 level = LEVEL_NONE;
3029
3030 if (request_module("md-%s", clevel) != 0)
3031 request_module("md-level-%s", clevel);
3032 spin_lock(&pers_lock);
3033 pers = find_pers(level, clevel);
3034 if (!pers || !try_module_get(pers->owner)) {
3035 spin_unlock(&pers_lock);
3036 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3037 return -EINVAL;
3038 }
3039 spin_unlock(&pers_lock);
3040
3041 if (pers == mddev->pers) {
3042 /* Nothing to do! */
3043 module_put(pers->owner);
3044 return rv;
3045 }
3046 if (!pers->takeover) {
3047 module_put(pers->owner);
3048 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3049 mdname(mddev), clevel);
3050 return -EINVAL;
3051 }
3052
3053 list_for_each_entry(rdev, &mddev->disks, same_set)
3054 rdev->new_raid_disk = rdev->raid_disk;
3055
3056 /* ->takeover must set new_* and/or delta_disks
3057 * if it succeeds, and may set them when it fails.
3058 */
3059 priv = pers->takeover(mddev);
3060 if (IS_ERR(priv)) {
3061 mddev->new_level = mddev->level;
3062 mddev->new_layout = mddev->layout;
3063 mddev->new_chunk_sectors = mddev->chunk_sectors;
3064 mddev->raid_disks -= mddev->delta_disks;
3065 mddev->delta_disks = 0;
3066 module_put(pers->owner);
3067 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3068 mdname(mddev), clevel);
3069 return PTR_ERR(priv);
3070 }
3071
3072 /* Looks like we have a winner */
3073 mddev_suspend(mddev);
3074 mddev->pers->stop(mddev);
3075
3076 if (mddev->pers->sync_request == NULL &&
3077 pers->sync_request != NULL) {
3078 /* need to add the md_redundancy_group */
3079 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3080 printk(KERN_WARNING
3081 "md: cannot register extra attributes for %s\n",
3082 mdname(mddev));
3083 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3084 }
3085 if (mddev->pers->sync_request != NULL &&
3086 pers->sync_request == NULL) {
3087 /* need to remove the md_redundancy_group */
3088 if (mddev->to_remove == NULL)
3089 mddev->to_remove = &md_redundancy_group;
3090 }
3091
3092 if (mddev->pers->sync_request == NULL &&
3093 mddev->external) {
3094 /* We are converting from a no-redundancy array
3095 * to a redundancy array and metadata is managed
3096 * externally so we need to be sure that writes
3097 * won't block due to a need to transition
3098 * clean->dirty
3099 * until external management is started.
3100 */
3101 mddev->in_sync = 0;
3102 mddev->safemode_delay = 0;
3103 mddev->safemode = 0;
3104 }
3105
3106 list_for_each_entry(rdev, &mddev->disks, same_set) {
3107 char nm[20];
3108 if (rdev->raid_disk < 0)
3109 continue;
3110 if (rdev->new_raid_disk > mddev->raid_disks)
3111 rdev->new_raid_disk = -1;
3112 if (rdev->new_raid_disk == rdev->raid_disk)
3113 continue;
3114 sprintf(nm, "rd%d", rdev->raid_disk);
3115 sysfs_remove_link(&mddev->kobj, nm);
3116 }
3117 list_for_each_entry(rdev, &mddev->disks, same_set) {
3118 if (rdev->raid_disk < 0)
3119 continue;
3120 if (rdev->new_raid_disk == rdev->raid_disk)
3121 continue;
3122 rdev->raid_disk = rdev->new_raid_disk;
3123 if (rdev->raid_disk < 0)
3124 clear_bit(In_sync, &rdev->flags);
3125 else {
3126 char nm[20];
3127 sprintf(nm, "rd%d", rdev->raid_disk);
3128 if(sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
3129 printk("md: cannot register %s for %s after level change\n",
3130 nm, mdname(mddev));
3131 }
3132 }
3133
3134 module_put(mddev->pers->owner);
3135 mddev->pers = pers;
3136 mddev->private = priv;
3137 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3138 mddev->level = mddev->new_level;
3139 mddev->layout = mddev->new_layout;
3140 mddev->chunk_sectors = mddev->new_chunk_sectors;
3141 mddev->delta_disks = 0;
3142 if (mddev->pers->sync_request == NULL) {
3143 /* this is now an array without redundancy, so
3144 * it must always be in_sync
3145 */
3146 mddev->in_sync = 1;
3147 del_timer_sync(&mddev->safemode_timer);
3148 }
3149 pers->run(mddev);
3150 mddev_resume(mddev);
3151 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3152 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3153 md_wakeup_thread(mddev->thread);
3154 sysfs_notify(&mddev->kobj, NULL, "level");
3155 md_new_event(mddev);
3156 return rv;
3157 }
3158
3159 static struct md_sysfs_entry md_level =
3160 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3161
3162
3163 static ssize_t
3164 layout_show(mddev_t *mddev, char *page)
3165 {
3166 /* just a number, not meaningful for all levels */
3167 if (mddev->reshape_position != MaxSector &&
3168 mddev->layout != mddev->new_layout)
3169 return sprintf(page, "%d (%d)\n",
3170 mddev->new_layout, mddev->layout);
3171 return sprintf(page, "%d\n", mddev->layout);
3172 }
3173
3174 static ssize_t
3175 layout_store(mddev_t *mddev, const char *buf, size_t len)
3176 {
3177 char *e;
3178 unsigned long n = simple_strtoul(buf, &e, 10);
3179
3180 if (!*buf || (*e && *e != '\n'))
3181 return -EINVAL;
3182
3183 if (mddev->pers) {
3184 int err;
3185 if (mddev->pers->check_reshape == NULL)
3186 return -EBUSY;
3187 mddev->new_layout = n;
3188 err = mddev->pers->check_reshape(mddev);
3189 if (err) {
3190 mddev->new_layout = mddev->layout;
3191 return err;
3192 }
3193 } else {
3194 mddev->new_layout = n;
3195 if (mddev->reshape_position == MaxSector)
3196 mddev->layout = n;
3197 }
3198 return len;
3199 }
3200 static struct md_sysfs_entry md_layout =
3201 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3202
3203
3204 static ssize_t
3205 raid_disks_show(mddev_t *mddev, char *page)
3206 {
3207 if (mddev->raid_disks == 0)
3208 return 0;
3209 if (mddev->reshape_position != MaxSector &&
3210 mddev->delta_disks != 0)
3211 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3212 mddev->raid_disks - mddev->delta_disks);
3213 return sprintf(page, "%d\n", mddev->raid_disks);
3214 }
3215
3216 static int update_raid_disks(mddev_t *mddev, int raid_disks);
3217
3218 static ssize_t
3219 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
3220 {
3221 char *e;
3222 int rv = 0;
3223 unsigned long n = simple_strtoul(buf, &e, 10);
3224
3225 if (!*buf || (*e && *e != '\n'))
3226 return -EINVAL;
3227
3228 if (mddev->pers)
3229 rv = update_raid_disks(mddev, n);
3230 else if (mddev->reshape_position != MaxSector) {
3231 int olddisks = mddev->raid_disks - mddev->delta_disks;
3232 mddev->delta_disks = n - olddisks;
3233 mddev->raid_disks = n;
3234 } else
3235 mddev->raid_disks = n;
3236 return rv ? rv : len;
3237 }
3238 static struct md_sysfs_entry md_raid_disks =
3239 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3240
3241 static ssize_t
3242 chunk_size_show(mddev_t *mddev, char *page)
3243 {
3244 if (mddev->reshape_position != MaxSector &&
3245 mddev->chunk_sectors != mddev->new_chunk_sectors)
3246 return sprintf(page, "%d (%d)\n",
3247 mddev->new_chunk_sectors << 9,
3248 mddev->chunk_sectors << 9);
3249 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3250 }
3251
3252 static ssize_t
3253 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
3254 {
3255 char *e;
3256 unsigned long n = simple_strtoul(buf, &e, 10);
3257
3258 if (!*buf || (*e && *e != '\n'))
3259 return -EINVAL;
3260
3261 if (mddev->pers) {
3262 int err;
3263 if (mddev->pers->check_reshape == NULL)
3264 return -EBUSY;
3265 mddev->new_chunk_sectors = n >> 9;
3266 err = mddev->pers->check_reshape(mddev);
3267 if (err) {
3268 mddev->new_chunk_sectors = mddev->chunk_sectors;
3269 return err;
3270 }
3271 } else {
3272 mddev->new_chunk_sectors = n >> 9;
3273 if (mddev->reshape_position == MaxSector)
3274 mddev->chunk_sectors = n >> 9;
3275 }
3276 return len;
3277 }
3278 static struct md_sysfs_entry md_chunk_size =
3279 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3280
3281 static ssize_t
3282 resync_start_show(mddev_t *mddev, char *page)
3283 {
3284 if (mddev->recovery_cp == MaxSector)
3285 return sprintf(page, "none\n");
3286 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3287 }
3288
3289 static ssize_t
3290 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
3291 {
3292 char *e;
3293 unsigned long long n = simple_strtoull(buf, &e, 10);
3294
3295 if (mddev->pers)
3296 return -EBUSY;
3297 if (cmd_match(buf, "none"))
3298 n = MaxSector;
3299 else if (!*buf || (*e && *e != '\n'))
3300 return -EINVAL;
3301
3302 mddev->recovery_cp = n;
3303 return len;
3304 }
3305 static struct md_sysfs_entry md_resync_start =
3306 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3307
3308 /*
3309 * The array state can be:
3310 *
3311 * clear
3312 * No devices, no size, no level
3313 * Equivalent to STOP_ARRAY ioctl
3314 * inactive
3315 * May have some settings, but array is not active
3316 * all IO results in error
3317 * When written, doesn't tear down array, but just stops it
3318 * suspended (not supported yet)
3319 * All IO requests will block. The array can be reconfigured.
3320 * Writing this, if accepted, will block until array is quiescent
3321 * readonly
3322 * no resync can happen. no superblocks get written.
3323 * write requests fail
3324 * read-auto
3325 * like readonly, but behaves like 'clean' on a write request.
3326 *
3327 * clean - no pending writes, but otherwise active.
3328 * When written to inactive array, starts without resync
3329 * If a write request arrives then
3330 * if metadata is known, mark 'dirty' and switch to 'active'.
3331 * if not known, block and switch to write-pending
3332 * If written to an active array that has pending writes, then fails.
3333 * active
3334 * fully active: IO and resync can be happening.
3335 * When written to inactive array, starts with resync
3336 *
3337 * write-pending
3338 * clean, but writes are blocked waiting for 'active' to be written.
3339 *
3340 * active-idle
3341 * like active, but no writes have been seen for a while (100msec).
3342 *
3343 */
3344 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3345 write_pending, active_idle, bad_word};
3346 static char *array_states[] = {
3347 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3348 "write-pending", "active-idle", NULL };
3349
3350 static int match_word(const char *word, char **list)
3351 {
3352 int n;
3353 for (n=0; list[n]; n++)
3354 if (cmd_match(word, list[n]))
3355 break;
3356 return n;
3357 }
3358
3359 static ssize_t
3360 array_state_show(mddev_t *mddev, char *page)
3361 {
3362 enum array_state st = inactive;
3363
3364 if (mddev->pers)
3365 switch(mddev->ro) {
3366 case 1:
3367 st = readonly;
3368 break;
3369 case 2:
3370 st = read_auto;
3371 break;
3372 case 0:
3373 if (mddev->in_sync)
3374 st = clean;
3375 else if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
3376 st = write_pending;
3377 else if (mddev->safemode)
3378 st = active_idle;
3379 else
3380 st = active;
3381 }
3382 else {
3383 if (list_empty(&mddev->disks) &&
3384 mddev->raid_disks == 0 &&
3385 mddev->dev_sectors == 0)
3386 st = clear;
3387 else
3388 st = inactive;
3389 }
3390 return sprintf(page, "%s\n", array_states[st]);
3391 }
3392
3393 static int do_md_stop(mddev_t * mddev, int ro, int is_open);
3394 static int md_set_readonly(mddev_t * mddev, int is_open);
3395 static int do_md_run(mddev_t * mddev);
3396 static int restart_array(mddev_t *mddev);
3397
3398 static ssize_t
3399 array_state_store(mddev_t *mddev, const char *buf, size_t len)
3400 {
3401 int err = -EINVAL;
3402 enum array_state st = match_word(buf, array_states);
3403 switch(st) {
3404 case bad_word:
3405 break;
3406 case clear:
3407 /* stopping an active array */
3408 if (atomic_read(&mddev->openers) > 0)
3409 return -EBUSY;
3410 err = do_md_stop(mddev, 0, 0);
3411 break;
3412 case inactive:
3413 /* stopping an active array */
3414 if (mddev->pers) {
3415 if (atomic_read(&mddev->openers) > 0)
3416 return -EBUSY;
3417 err = do_md_stop(mddev, 2, 0);
3418 } else
3419 err = 0; /* already inactive */
3420 break;
3421 case suspended:
3422 break; /* not supported yet */
3423 case readonly:
3424 if (mddev->pers)
3425 err = md_set_readonly(mddev, 0);
3426 else {
3427 mddev->ro = 1;
3428 set_disk_ro(mddev->gendisk, 1);
3429 err = do_md_run(mddev);
3430 }
3431 break;
3432 case read_auto:
3433 if (mddev->pers) {
3434 if (mddev->ro == 0)
3435 err = md_set_readonly(mddev, 0);
3436 else if (mddev->ro == 1)
3437 err = restart_array(mddev);
3438 if (err == 0) {
3439 mddev->ro = 2;
3440 set_disk_ro(mddev->gendisk, 0);
3441 }
3442 } else {
3443 mddev->ro = 2;
3444 err = do_md_run(mddev);
3445 }
3446 break;
3447 case clean:
3448 if (mddev->pers) {
3449 restart_array(mddev);
3450 spin_lock_irq(&mddev->write_lock);
3451 if (atomic_read(&mddev->writes_pending) == 0) {
3452 if (mddev->in_sync == 0) {
3453 mddev->in_sync = 1;
3454 if (mddev->safemode == 1)
3455 mddev->safemode = 0;
3456 if (mddev->persistent)
3457 set_bit(MD_CHANGE_CLEAN,
3458 &mddev->flags);
3459 }
3460 err = 0;
3461 } else
3462 err = -EBUSY;
3463 spin_unlock_irq(&mddev->write_lock);
3464 } else
3465 err = -EINVAL;
3466 break;
3467 case active:
3468 if (mddev->pers) {
3469 restart_array(mddev);
3470 if (mddev->external)
3471 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
3472 wake_up(&mddev->sb_wait);
3473 err = 0;
3474 } else {
3475 mddev->ro = 0;
3476 set_disk_ro(mddev->gendisk, 0);
3477 err = do_md_run(mddev);
3478 }
3479 break;
3480 case write_pending:
3481 case active_idle:
3482 /* these cannot be set */
3483 break;
3484 }
3485 if (err)
3486 return err;
3487 else {
3488 sysfs_notify_dirent_safe(mddev->sysfs_state);
3489 return len;
3490 }
3491 }
3492 static struct md_sysfs_entry md_array_state =
3493 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3494
3495 static ssize_t
3496 max_corrected_read_errors_show(mddev_t *mddev, char *page) {
3497 return sprintf(page, "%d\n",
3498 atomic_read(&mddev->max_corr_read_errors));
3499 }
3500
3501 static ssize_t
3502 max_corrected_read_errors_store(mddev_t *mddev, const char *buf, size_t len)
3503 {
3504 char *e;
3505 unsigned long n = simple_strtoul(buf, &e, 10);
3506
3507 if (*buf && (*e == 0 || *e == '\n')) {
3508 atomic_set(&mddev->max_corr_read_errors, n);
3509 return len;
3510 }
3511 return -EINVAL;
3512 }
3513
3514 static struct md_sysfs_entry max_corr_read_errors =
3515 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3516 max_corrected_read_errors_store);
3517
3518 static ssize_t
3519 null_show(mddev_t *mddev, char *page)
3520 {
3521 return -EINVAL;
3522 }
3523
3524 static ssize_t
3525 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
3526 {
3527 /* buf must be %d:%d\n? giving major and minor numbers */
3528 /* The new device is added to the array.
3529 * If the array has a persistent superblock, we read the
3530 * superblock to initialise info and check validity.
3531 * Otherwise, only checking done is that in bind_rdev_to_array,
3532 * which mainly checks size.
3533 */
3534 char *e;
3535 int major = simple_strtoul(buf, &e, 10);
3536 int minor;
3537 dev_t dev;
3538 mdk_rdev_t *rdev;
3539 int err;
3540
3541 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3542 return -EINVAL;
3543 minor = simple_strtoul(e+1, &e, 10);
3544 if (*e && *e != '\n')
3545 return -EINVAL;
3546 dev = MKDEV(major, minor);
3547 if (major != MAJOR(dev) ||
3548 minor != MINOR(dev))
3549 return -EOVERFLOW;
3550
3551
3552 if (mddev->persistent) {
3553 rdev = md_import_device(dev, mddev->major_version,
3554 mddev->minor_version);
3555 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3556 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3557 mdk_rdev_t, same_set);
3558 err = super_types[mddev->major_version]
3559 .load_super(rdev, rdev0, mddev->minor_version);
3560 if (err < 0)
3561 goto out;
3562 }
3563 } else if (mddev->external)
3564 rdev = md_import_device(dev, -2, -1);
3565 else
3566 rdev = md_import_device(dev, -1, -1);
3567
3568 if (IS_ERR(rdev))
3569 return PTR_ERR(rdev);
3570 err = bind_rdev_to_array(rdev, mddev);
3571 out:
3572 if (err)
3573 export_rdev(rdev);
3574 return err ? err : len;
3575 }
3576
3577 static struct md_sysfs_entry md_new_device =
3578 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3579
3580 static ssize_t
3581 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
3582 {
3583 char *end;
3584 unsigned long chunk, end_chunk;
3585
3586 if (!mddev->bitmap)
3587 goto out;
3588 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3589 while (*buf) {
3590 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3591 if (buf == end) break;
3592 if (*end == '-') { /* range */
3593 buf = end + 1;
3594 end_chunk = simple_strtoul(buf, &end, 0);
3595 if (buf == end) break;
3596 }
3597 if (*end && !isspace(*end)) break;
3598 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3599 buf = skip_spaces(end);
3600 }
3601 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3602 out:
3603 return len;
3604 }
3605
3606 static struct md_sysfs_entry md_bitmap =
3607 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3608
3609 static ssize_t
3610 size_show(mddev_t *mddev, char *page)
3611 {
3612 return sprintf(page, "%llu\n",
3613 (unsigned long long)mddev->dev_sectors / 2);
3614 }
3615
3616 static int update_size(mddev_t *mddev, sector_t num_sectors);
3617
3618 static ssize_t
3619 size_store(mddev_t *mddev, const char *buf, size_t len)
3620 {
3621 /* If array is inactive, we can reduce the component size, but
3622 * not increase it (except from 0).
3623 * If array is active, we can try an on-line resize
3624 */
3625 sector_t sectors;
3626 int err = strict_blocks_to_sectors(buf, &sectors);
3627
3628 if (err < 0)
3629 return err;
3630 if (mddev->pers) {
3631 err = update_size(mddev, sectors);
3632 md_update_sb(mddev, 1);
3633 } else {
3634 if (mddev->dev_sectors == 0 ||
3635 mddev->dev_sectors > sectors)
3636 mddev->dev_sectors = sectors;
3637 else
3638 err = -ENOSPC;
3639 }
3640 return err ? err : len;
3641 }
3642
3643 static struct md_sysfs_entry md_size =
3644 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3645
3646
3647 /* Metdata version.
3648 * This is one of
3649 * 'none' for arrays with no metadata (good luck...)
3650 * 'external' for arrays with externally managed metadata,
3651 * or N.M for internally known formats
3652 */
3653 static ssize_t
3654 metadata_show(mddev_t *mddev, char *page)
3655 {
3656 if (mddev->persistent)
3657 return sprintf(page, "%d.%d\n",
3658 mddev->major_version, mddev->minor_version);
3659 else if (mddev->external)
3660 return sprintf(page, "external:%s\n", mddev->metadata_type);
3661 else
3662 return sprintf(page, "none\n");
3663 }
3664
3665 static ssize_t
3666 metadata_store(mddev_t *mddev, const char *buf, size_t len)
3667 {
3668 int major, minor;
3669 char *e;
3670 /* Changing the details of 'external' metadata is
3671 * always permitted. Otherwise there must be
3672 * no devices attached to the array.
3673 */
3674 if (mddev->external && strncmp(buf, "external:", 9) == 0)
3675 ;
3676 else if (!list_empty(&mddev->disks))
3677 return -EBUSY;
3678
3679 if (cmd_match(buf, "none")) {
3680 mddev->persistent = 0;
3681 mddev->external = 0;
3682 mddev->major_version = 0;
3683 mddev->minor_version = 90;
3684 return len;
3685 }
3686 if (strncmp(buf, "external:", 9) == 0) {
3687 size_t namelen = len-9;
3688 if (namelen >= sizeof(mddev->metadata_type))
3689 namelen = sizeof(mddev->metadata_type)-1;
3690 strncpy(mddev->metadata_type, buf+9, namelen);
3691 mddev->metadata_type[namelen] = 0;
3692 if (namelen && mddev->metadata_type[namelen-1] == '\n')
3693 mddev->metadata_type[--namelen] = 0;
3694 mddev->persistent = 0;
3695 mddev->external = 1;
3696 mddev->major_version = 0;
3697 mddev->minor_version = 90;
3698 return len;
3699 }
3700 major = simple_strtoul(buf, &e, 10);
3701 if (e==buf || *e != '.')
3702 return -EINVAL;
3703 buf = e+1;
3704 minor = simple_strtoul(buf, &e, 10);
3705 if (e==buf || (*e && *e != '\n') )
3706 return -EINVAL;
3707 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
3708 return -ENOENT;
3709 mddev->major_version = major;
3710 mddev->minor_version = minor;
3711 mddev->persistent = 1;
3712 mddev->external = 0;
3713 return len;
3714 }
3715
3716 static struct md_sysfs_entry md_metadata =
3717 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
3718
3719 static ssize_t
3720 action_show(mddev_t *mddev, char *page)
3721 {
3722 char *type = "idle";
3723 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3724 type = "frozen";
3725 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3726 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
3727 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3728 type = "reshape";
3729 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3730 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3731 type = "resync";
3732 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
3733 type = "check";
3734 else
3735 type = "repair";
3736 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
3737 type = "recover";
3738 }
3739 return sprintf(page, "%s\n", type);
3740 }
3741
3742 static ssize_t
3743 action_store(mddev_t *mddev, const char *page, size_t len)
3744 {
3745 if (!mddev->pers || !mddev->pers->sync_request)
3746 return -EINVAL;
3747
3748 if (cmd_match(page, "frozen"))
3749 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3750 else
3751 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3752
3753 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
3754 if (mddev->sync_thread) {
3755 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3756 md_unregister_thread(mddev->sync_thread);
3757 mddev->sync_thread = NULL;
3758 mddev->recovery = 0;
3759 }
3760 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3761 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3762 return -EBUSY;
3763 else if (cmd_match(page, "resync"))
3764 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3765 else if (cmd_match(page, "recover")) {
3766 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3767 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3768 } else if (cmd_match(page, "reshape")) {
3769 int err;
3770 if (mddev->pers->start_reshape == NULL)
3771 return -EINVAL;
3772 err = mddev->pers->start_reshape(mddev);
3773 if (err)
3774 return err;
3775 sysfs_notify(&mddev->kobj, NULL, "degraded");
3776 } else {
3777 if (cmd_match(page, "check"))
3778 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3779 else if (!cmd_match(page, "repair"))
3780 return -EINVAL;
3781 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3782 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3783 }
3784 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3785 md_wakeup_thread(mddev->thread);
3786 sysfs_notify_dirent_safe(mddev->sysfs_action);
3787 return len;
3788 }
3789
3790 static ssize_t
3791 mismatch_cnt_show(mddev_t *mddev, char *page)
3792 {
3793 return sprintf(page, "%llu\n",
3794 (unsigned long long) mddev->resync_mismatches);
3795 }
3796
3797 static struct md_sysfs_entry md_scan_mode =
3798 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
3799
3800
3801 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
3802
3803 static ssize_t
3804 sync_min_show(mddev_t *mddev, char *page)
3805 {
3806 return sprintf(page, "%d (%s)\n", speed_min(mddev),
3807 mddev->sync_speed_min ? "local": "system");
3808 }
3809
3810 static ssize_t
3811 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
3812 {
3813 int min;
3814 char *e;
3815 if (strncmp(buf, "system", 6)==0) {
3816 mddev->sync_speed_min = 0;
3817 return len;
3818 }
3819 min = simple_strtoul(buf, &e, 10);
3820 if (buf == e || (*e && *e != '\n') || min <= 0)
3821 return -EINVAL;
3822 mddev->sync_speed_min = min;
3823 return len;
3824 }
3825
3826 static struct md_sysfs_entry md_sync_min =
3827 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
3828
3829 static ssize_t
3830 sync_max_show(mddev_t *mddev, char *page)
3831 {
3832 return sprintf(page, "%d (%s)\n", speed_max(mddev),
3833 mddev->sync_speed_max ? "local": "system");
3834 }
3835
3836 static ssize_t
3837 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
3838 {
3839 int max;
3840 char *e;
3841 if (strncmp(buf, "system", 6)==0) {
3842 mddev->sync_speed_max = 0;
3843 return len;
3844 }
3845 max = simple_strtoul(buf, &e, 10);
3846 if (buf == e || (*e && *e != '\n') || max <= 0)
3847 return -EINVAL;
3848 mddev->sync_speed_max = max;
3849 return len;
3850 }
3851
3852 static struct md_sysfs_entry md_sync_max =
3853 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
3854
3855 static ssize_t
3856 degraded_show(mddev_t *mddev, char *page)
3857 {
3858 return sprintf(page, "%d\n", mddev->degraded);
3859 }
3860 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
3861
3862 static ssize_t
3863 sync_force_parallel_show(mddev_t *mddev, char *page)
3864 {
3865 return sprintf(page, "%d\n", mddev->parallel_resync);
3866 }
3867
3868 static ssize_t
3869 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
3870 {
3871 long n;
3872
3873 if (strict_strtol(buf, 10, &n))
3874 return -EINVAL;
3875
3876 if (n != 0 && n != 1)
3877 return -EINVAL;
3878
3879 mddev->parallel_resync = n;
3880
3881 if (mddev->sync_thread)
3882 wake_up(&resync_wait);
3883
3884 return len;
3885 }
3886
3887 /* force parallel resync, even with shared block devices */
3888 static struct md_sysfs_entry md_sync_force_parallel =
3889 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
3890 sync_force_parallel_show, sync_force_parallel_store);
3891
3892 static ssize_t
3893 sync_speed_show(mddev_t *mddev, char *page)
3894 {
3895 unsigned long resync, dt, db;
3896 if (mddev->curr_resync == 0)
3897 return sprintf(page, "none\n");
3898 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
3899 dt = (jiffies - mddev->resync_mark) / HZ;
3900 if (!dt) dt++;
3901 db = resync - mddev->resync_mark_cnt;
3902 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
3903 }
3904
3905 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
3906
3907 static ssize_t
3908 sync_completed_show(mddev_t *mddev, char *page)
3909 {
3910 unsigned long max_sectors, resync;
3911
3912 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3913 return sprintf(page, "none\n");
3914
3915 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3916 max_sectors = mddev->resync_max_sectors;
3917 else
3918 max_sectors = mddev->dev_sectors;
3919
3920 resync = mddev->curr_resync_completed;
3921 return sprintf(page, "%lu / %lu\n", resync, max_sectors);
3922 }
3923
3924 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
3925
3926 static ssize_t
3927 min_sync_show(mddev_t *mddev, char *page)
3928 {
3929 return sprintf(page, "%llu\n",
3930 (unsigned long long)mddev->resync_min);
3931 }
3932 static ssize_t
3933 min_sync_store(mddev_t *mddev, const char *buf, size_t len)
3934 {
3935 unsigned long long min;
3936 if (strict_strtoull(buf, 10, &min))
3937 return -EINVAL;
3938 if (min > mddev->resync_max)
3939 return -EINVAL;
3940 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3941 return -EBUSY;
3942
3943 /* Must be a multiple of chunk_size */
3944 if (mddev->chunk_sectors) {
3945 sector_t temp = min;
3946 if (sector_div(temp, mddev->chunk_sectors))
3947 return -EINVAL;
3948 }
3949 mddev->resync_min = min;
3950
3951 return len;
3952 }
3953
3954 static struct md_sysfs_entry md_min_sync =
3955 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
3956
3957 static ssize_t
3958 max_sync_show(mddev_t *mddev, char *page)
3959 {
3960 if (mddev->resync_max == MaxSector)
3961 return sprintf(page, "max\n");
3962 else
3963 return sprintf(page, "%llu\n",
3964 (unsigned long long)mddev->resync_max);
3965 }
3966 static ssize_t
3967 max_sync_store(mddev_t *mddev, const char *buf, size_t len)
3968 {
3969 if (strncmp(buf, "max", 3) == 0)
3970 mddev->resync_max = MaxSector;
3971 else {
3972 unsigned long long max;
3973 if (strict_strtoull(buf, 10, &max))
3974 return -EINVAL;
3975 if (max < mddev->resync_min)
3976 return -EINVAL;
3977 if (max < mddev->resync_max &&
3978 mddev->ro == 0 &&
3979 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3980 return -EBUSY;
3981
3982 /* Must be a multiple of chunk_size */
3983 if (mddev->chunk_sectors) {
3984 sector_t temp = max;
3985 if (sector_div(temp, mddev->chunk_sectors))
3986 return -EINVAL;
3987 }
3988 mddev->resync_max = max;
3989 }
3990 wake_up(&mddev->recovery_wait);
3991 return len;
3992 }
3993
3994 static struct md_sysfs_entry md_max_sync =
3995 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
3996
3997 static ssize_t
3998 suspend_lo_show(mddev_t *mddev, char *page)
3999 {
4000 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4001 }
4002
4003 static ssize_t
4004 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
4005 {
4006 char *e;
4007 unsigned long long new = simple_strtoull(buf, &e, 10);
4008
4009 if (mddev->pers == NULL ||
4010 mddev->pers->quiesce == NULL)
4011 return -EINVAL;
4012 if (buf == e || (*e && *e != '\n'))
4013 return -EINVAL;
4014 if (new >= mddev->suspend_hi ||
4015 (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
4016 mddev->suspend_lo = new;
4017 mddev->pers->quiesce(mddev, 2);
4018 return len;
4019 } else
4020 return -EINVAL;
4021 }
4022 static struct md_sysfs_entry md_suspend_lo =
4023 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4024
4025
4026 static ssize_t
4027 suspend_hi_show(mddev_t *mddev, char *page)
4028 {
4029 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4030 }
4031
4032 static ssize_t
4033 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
4034 {
4035 char *e;
4036 unsigned long long new = simple_strtoull(buf, &e, 10);
4037
4038 if (mddev->pers == NULL ||
4039 mddev->pers->quiesce == NULL)
4040 return -EINVAL;
4041 if (buf == e || (*e && *e != '\n'))
4042 return -EINVAL;
4043 if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
4044 (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
4045 mddev->suspend_hi = new;
4046 mddev->pers->quiesce(mddev, 1);
4047 mddev->pers->quiesce(mddev, 0);
4048 return len;
4049 } else
4050 return -EINVAL;
4051 }
4052 static struct md_sysfs_entry md_suspend_hi =
4053 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4054
4055 static ssize_t
4056 reshape_position_show(mddev_t *mddev, char *page)
4057 {
4058 if (mddev->reshape_position != MaxSector)
4059 return sprintf(page, "%llu\n",
4060 (unsigned long long)mddev->reshape_position);
4061 strcpy(page, "none\n");
4062 return 5;
4063 }
4064
4065 static ssize_t
4066 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
4067 {
4068 char *e;
4069 unsigned long long new = simple_strtoull(buf, &e, 10);
4070 if (mddev->pers)
4071 return -EBUSY;
4072 if (buf == e || (*e && *e != '\n'))
4073 return -EINVAL;
4074 mddev->reshape_position = new;
4075 mddev->delta_disks = 0;
4076 mddev->new_level = mddev->level;
4077 mddev->new_layout = mddev->layout;
4078 mddev->new_chunk_sectors = mddev->chunk_sectors;
4079 return len;
4080 }
4081
4082 static struct md_sysfs_entry md_reshape_position =
4083 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4084 reshape_position_store);
4085
4086 static ssize_t
4087 array_size_show(mddev_t *mddev, char *page)
4088 {
4089 if (mddev->external_size)
4090 return sprintf(page, "%llu\n",
4091 (unsigned long long)mddev->array_sectors/2);
4092 else
4093 return sprintf(page, "default\n");
4094 }
4095
4096 static ssize_t
4097 array_size_store(mddev_t *mddev, const char *buf, size_t len)
4098 {
4099 sector_t sectors;
4100
4101 if (strncmp(buf, "default", 7) == 0) {
4102 if (mddev->pers)
4103 sectors = mddev->pers->size(mddev, 0, 0);
4104 else
4105 sectors = mddev->array_sectors;
4106
4107 mddev->external_size = 0;
4108 } else {
4109 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4110 return -EINVAL;
4111 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4112 return -E2BIG;
4113
4114 mddev->external_size = 1;
4115 }
4116
4117 mddev->array_sectors = sectors;
4118 set_capacity(mddev->gendisk, mddev->array_sectors);
4119 if (mddev->pers)
4120 revalidate_disk(mddev->gendisk);
4121
4122 return len;
4123 }
4124
4125 static struct md_sysfs_entry md_array_size =
4126 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4127 array_size_store);
4128
4129 static struct attribute *md_default_attrs[] = {
4130 &md_level.attr,
4131 &md_layout.attr,
4132 &md_raid_disks.attr,
4133 &md_chunk_size.attr,
4134 &md_size.attr,
4135 &md_resync_start.attr,
4136 &md_metadata.attr,
4137 &md_new_device.attr,
4138 &md_safe_delay.attr,
4139 &md_array_state.attr,
4140 &md_reshape_position.attr,
4141 &md_array_size.attr,
4142 &max_corr_read_errors.attr,
4143 NULL,
4144 };
4145
4146 static struct attribute *md_redundancy_attrs[] = {
4147 &md_scan_mode.attr,
4148 &md_mismatches.attr,
4149 &md_sync_min.attr,
4150 &md_sync_max.attr,
4151 &md_sync_speed.attr,
4152 &md_sync_force_parallel.attr,
4153 &md_sync_completed.attr,
4154 &md_min_sync.attr,
4155 &md_max_sync.attr,
4156 &md_suspend_lo.attr,
4157 &md_suspend_hi.attr,
4158 &md_bitmap.attr,
4159 &md_degraded.attr,
4160 NULL,
4161 };
4162 static struct attribute_group md_redundancy_group = {
4163 .name = NULL,
4164 .attrs = md_redundancy_attrs,
4165 };
4166
4167
4168 static ssize_t
4169 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4170 {
4171 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4172 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4173 ssize_t rv;
4174
4175 if (!entry->show)
4176 return -EIO;
4177 rv = mddev_lock(mddev);
4178 if (!rv) {
4179 rv = entry->show(mddev, page);
4180 mddev_unlock(mddev);
4181 }
4182 return rv;
4183 }
4184
4185 static ssize_t
4186 md_attr_store(struct kobject *kobj, struct attribute *attr,
4187 const char *page, size_t length)
4188 {
4189 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4190 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4191 ssize_t rv;
4192
4193 if (!entry->store)
4194 return -EIO;
4195 if (!capable(CAP_SYS_ADMIN))
4196 return -EACCES;
4197 rv = mddev_lock(mddev);
4198 if (mddev->hold_active == UNTIL_IOCTL)
4199 mddev->hold_active = 0;
4200 if (!rv) {
4201 rv = entry->store(mddev, page, length);
4202 mddev_unlock(mddev);
4203 }
4204 return rv;
4205 }
4206
4207 static void md_free(struct kobject *ko)
4208 {
4209 mddev_t *mddev = container_of(ko, mddev_t, kobj);
4210
4211 if (mddev->sysfs_state)
4212 sysfs_put(mddev->sysfs_state);
4213
4214 if (mddev->gendisk) {
4215 del_gendisk(mddev->gendisk);
4216 put_disk(mddev->gendisk);
4217 }
4218 if (mddev->queue)
4219 blk_cleanup_queue(mddev->queue);
4220
4221 kfree(mddev);
4222 }
4223
4224 static const struct sysfs_ops md_sysfs_ops = {
4225 .show = md_attr_show,
4226 .store = md_attr_store,
4227 };
4228 static struct kobj_type md_ktype = {
4229 .release = md_free,
4230 .sysfs_ops = &md_sysfs_ops,
4231 .default_attrs = md_default_attrs,
4232 };
4233
4234 int mdp_major = 0;
4235
4236 static void mddev_delayed_delete(struct work_struct *ws)
4237 {
4238 mddev_t *mddev = container_of(ws, mddev_t, del_work);
4239
4240 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4241 kobject_del(&mddev->kobj);
4242 kobject_put(&mddev->kobj);
4243 }
4244
4245 static int md_alloc(dev_t dev, char *name)
4246 {
4247 static DEFINE_MUTEX(disks_mutex);
4248 mddev_t *mddev = mddev_find(dev);
4249 struct gendisk *disk;
4250 int partitioned;
4251 int shift;
4252 int unit;
4253 int error;
4254
4255 if (!mddev)
4256 return -ENODEV;
4257
4258 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4259 shift = partitioned ? MdpMinorShift : 0;
4260 unit = MINOR(mddev->unit) >> shift;
4261
4262 /* wait for any previous instance if this device
4263 * to be completed removed (mddev_delayed_delete).
4264 */
4265 flush_scheduled_work();
4266
4267 mutex_lock(&disks_mutex);
4268 error = -EEXIST;
4269 if (mddev->gendisk)
4270 goto abort;
4271
4272 if (name) {
4273 /* Need to ensure that 'name' is not a duplicate.
4274 */
4275 mddev_t *mddev2;
4276 spin_lock(&all_mddevs_lock);
4277
4278 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4279 if (mddev2->gendisk &&
4280 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4281 spin_unlock(&all_mddevs_lock);
4282 goto abort;
4283 }
4284 spin_unlock(&all_mddevs_lock);
4285 }
4286
4287 error = -ENOMEM;
4288 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4289 if (!mddev->queue)
4290 goto abort;
4291 mddev->queue->queuedata = mddev;
4292
4293 /* Can be unlocked because the queue is new: no concurrency */
4294 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, mddev->queue);
4295
4296 blk_queue_make_request(mddev->queue, md_make_request);
4297
4298 disk = alloc_disk(1 << shift);
4299 if (!disk) {
4300 blk_cleanup_queue(mddev->queue);
4301 mddev->queue = NULL;
4302 goto abort;
4303 }
4304 disk->major = MAJOR(mddev->unit);
4305 disk->first_minor = unit << shift;
4306 if (name)
4307 strcpy(disk->disk_name, name);
4308 else if (partitioned)
4309 sprintf(disk->disk_name, "md_d%d", unit);
4310 else
4311 sprintf(disk->disk_name, "md%d", unit);
4312 disk->fops = &md_fops;
4313 disk->private_data = mddev;
4314 disk->queue = mddev->queue;
4315 /* Allow extended partitions. This makes the
4316 * 'mdp' device redundant, but we can't really
4317 * remove it now.
4318 */
4319 disk->flags |= GENHD_FL_EXT_DEVT;
4320 add_disk(disk);
4321 mddev->gendisk = disk;
4322 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4323 &disk_to_dev(disk)->kobj, "%s", "md");
4324 if (error) {
4325 /* This isn't possible, but as kobject_init_and_add is marked
4326 * __must_check, we must do something with the result
4327 */
4328 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4329 disk->disk_name);
4330 error = 0;
4331 }
4332 if (mddev->kobj.sd &&
4333 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4334 printk(KERN_DEBUG "pointless warning\n");
4335 abort:
4336 mutex_unlock(&disks_mutex);
4337 if (!error && mddev->kobj.sd) {
4338 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4339 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4340 }
4341 mddev_put(mddev);
4342 return error;
4343 }
4344
4345 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4346 {
4347 md_alloc(dev, NULL);
4348 return NULL;
4349 }
4350
4351 static int add_named_array(const char *val, struct kernel_param *kp)
4352 {
4353 /* val must be "md_*" where * is not all digits.
4354 * We allocate an array with a large free minor number, and
4355 * set the name to val. val must not already be an active name.
4356 */
4357 int len = strlen(val);
4358 char buf[DISK_NAME_LEN];
4359
4360 while (len && val[len-1] == '\n')
4361 len--;
4362 if (len >= DISK_NAME_LEN)
4363 return -E2BIG;
4364 strlcpy(buf, val, len+1);
4365 if (strncmp(buf, "md_", 3) != 0)
4366 return -EINVAL;
4367 return md_alloc(0, buf);
4368 }
4369
4370 static void md_safemode_timeout(unsigned long data)
4371 {
4372 mddev_t *mddev = (mddev_t *) data;
4373
4374 if (!atomic_read(&mddev->writes_pending)) {
4375 mddev->safemode = 1;
4376 if (mddev->external)
4377 sysfs_notify_dirent_safe(mddev->sysfs_state);
4378 }
4379 md_wakeup_thread(mddev->thread);
4380 }
4381
4382 static int start_dirty_degraded;
4383
4384 int md_run(mddev_t *mddev)
4385 {
4386 int err;
4387 mdk_rdev_t *rdev;
4388 struct mdk_personality *pers;
4389
4390 if (list_empty(&mddev->disks))
4391 /* cannot run an array with no devices.. */
4392 return -EINVAL;
4393
4394 if (mddev->pers)
4395 return -EBUSY;
4396 /* Cannot run until previous stop completes properly */
4397 if (mddev->sysfs_active)
4398 return -EBUSY;
4399
4400 /*
4401 * Analyze all RAID superblock(s)
4402 */
4403 if (!mddev->raid_disks) {
4404 if (!mddev->persistent)
4405 return -EINVAL;
4406 analyze_sbs(mddev);
4407 }
4408
4409 if (mddev->level != LEVEL_NONE)
4410 request_module("md-level-%d", mddev->level);
4411 else if (mddev->clevel[0])
4412 request_module("md-%s", mddev->clevel);
4413
4414 /*
4415 * Drop all container device buffers, from now on
4416 * the only valid external interface is through the md
4417 * device.
4418 */
4419 list_for_each_entry(rdev, &mddev->disks, same_set) {
4420 if (test_bit(Faulty, &rdev->flags))
4421 continue;
4422 sync_blockdev(rdev->bdev);
4423 invalidate_bdev(rdev->bdev);
4424
4425 /* perform some consistency tests on the device.
4426 * We don't want the data to overlap the metadata,
4427 * Internal Bitmap issues have been handled elsewhere.
4428 */
4429 if (rdev->data_offset < rdev->sb_start) {
4430 if (mddev->dev_sectors &&
4431 rdev->data_offset + mddev->dev_sectors
4432 > rdev->sb_start) {
4433 printk("md: %s: data overlaps metadata\n",
4434 mdname(mddev));
4435 return -EINVAL;
4436 }
4437 } else {
4438 if (rdev->sb_start + rdev->sb_size/512
4439 > rdev->data_offset) {
4440 printk("md: %s: metadata overlaps data\n",
4441 mdname(mddev));
4442 return -EINVAL;
4443 }
4444 }
4445 sysfs_notify_dirent_safe(rdev->sysfs_state);
4446 }
4447
4448 spin_lock(&pers_lock);
4449 pers = find_pers(mddev->level, mddev->clevel);
4450 if (!pers || !try_module_get(pers->owner)) {
4451 spin_unlock(&pers_lock);
4452 if (mddev->level != LEVEL_NONE)
4453 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4454 mddev->level);
4455 else
4456 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4457 mddev->clevel);
4458 return -EINVAL;
4459 }
4460 mddev->pers = pers;
4461 spin_unlock(&pers_lock);
4462 if (mddev->level != pers->level) {
4463 mddev->level = pers->level;
4464 mddev->new_level = pers->level;
4465 }
4466 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4467
4468 if (mddev->reshape_position != MaxSector &&
4469 pers->start_reshape == NULL) {
4470 /* This personality cannot handle reshaping... */
4471 mddev->pers = NULL;
4472 module_put(pers->owner);
4473 return -EINVAL;
4474 }
4475
4476 if (pers->sync_request) {
4477 /* Warn if this is a potentially silly
4478 * configuration.
4479 */
4480 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4481 mdk_rdev_t *rdev2;
4482 int warned = 0;
4483
4484 list_for_each_entry(rdev, &mddev->disks, same_set)
4485 list_for_each_entry(rdev2, &mddev->disks, same_set) {
4486 if (rdev < rdev2 &&
4487 rdev->bdev->bd_contains ==
4488 rdev2->bdev->bd_contains) {
4489 printk(KERN_WARNING
4490 "%s: WARNING: %s appears to be"
4491 " on the same physical disk as"
4492 " %s.\n",
4493 mdname(mddev),
4494 bdevname(rdev->bdev,b),
4495 bdevname(rdev2->bdev,b2));
4496 warned = 1;
4497 }
4498 }
4499
4500 if (warned)
4501 printk(KERN_WARNING
4502 "True protection against single-disk"
4503 " failure might be compromised.\n");
4504 }
4505
4506 mddev->recovery = 0;
4507 /* may be over-ridden by personality */
4508 mddev->resync_max_sectors = mddev->dev_sectors;
4509
4510 mddev->barriers_work = 1;
4511 mddev->ok_start_degraded = start_dirty_degraded;
4512
4513 if (start_readonly && mddev->ro == 0)
4514 mddev->ro = 2; /* read-only, but switch on first write */
4515
4516 err = mddev->pers->run(mddev);
4517 if (err)
4518 printk(KERN_ERR "md: pers->run() failed ...\n");
4519 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4520 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4521 " but 'external_size' not in effect?\n", __func__);
4522 printk(KERN_ERR
4523 "md: invalid array_size %llu > default size %llu\n",
4524 (unsigned long long)mddev->array_sectors / 2,
4525 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4526 err = -EINVAL;
4527 mddev->pers->stop(mddev);
4528 }
4529 if (err == 0 && mddev->pers->sync_request) {
4530 err = bitmap_create(mddev);
4531 if (err) {
4532 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4533 mdname(mddev), err);
4534 mddev->pers->stop(mddev);
4535 }
4536 }
4537 if (err) {
4538 module_put(mddev->pers->owner);
4539 mddev->pers = NULL;
4540 bitmap_destroy(mddev);
4541 return err;
4542 }
4543 if (mddev->pers->sync_request) {
4544 if (mddev->kobj.sd &&
4545 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4546 printk(KERN_WARNING
4547 "md: cannot register extra attributes for %s\n",
4548 mdname(mddev));
4549 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4550 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4551 mddev->ro = 0;
4552
4553 atomic_set(&mddev->writes_pending,0);
4554 atomic_set(&mddev->max_corr_read_errors,
4555 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4556 mddev->safemode = 0;
4557 mddev->safemode_timer.function = md_safemode_timeout;
4558 mddev->safemode_timer.data = (unsigned long) mddev;
4559 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4560 mddev->in_sync = 1;
4561
4562 list_for_each_entry(rdev, &mddev->disks, same_set)
4563 if (rdev->raid_disk >= 0) {
4564 char nm[20];
4565 sprintf(nm, "rd%d", rdev->raid_disk);
4566 if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
4567 /* failure here is OK */;
4568 }
4569
4570 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4571
4572 if (mddev->flags)
4573 md_update_sb(mddev, 0);
4574
4575 md_wakeup_thread(mddev->thread);
4576 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4577
4578 md_new_event(mddev);
4579 sysfs_notify_dirent_safe(mddev->sysfs_state);
4580 sysfs_notify_dirent_safe(mddev->sysfs_action);
4581 sysfs_notify(&mddev->kobj, NULL, "degraded");
4582 return 0;
4583 }
4584 EXPORT_SYMBOL_GPL(md_run);
4585
4586 static int do_md_run(mddev_t *mddev)
4587 {
4588 int err;
4589
4590 err = md_run(mddev);
4591 if (err)
4592 goto out;
4593 err = bitmap_load(mddev);
4594 if (err) {
4595 bitmap_destroy(mddev);
4596 goto out;
4597 }
4598 set_capacity(mddev->gendisk, mddev->array_sectors);
4599 revalidate_disk(mddev->gendisk);
4600 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4601 out:
4602 return err;
4603 }
4604
4605 static int restart_array(mddev_t *mddev)
4606 {
4607 struct gendisk *disk = mddev->gendisk;
4608
4609 /* Complain if it has no devices */
4610 if (list_empty(&mddev->disks))
4611 return -ENXIO;
4612 if (!mddev->pers)
4613 return -EINVAL;
4614 if (!mddev->ro)
4615 return -EBUSY;
4616 mddev->safemode = 0;
4617 mddev->ro = 0;
4618 set_disk_ro(disk, 0);
4619 printk(KERN_INFO "md: %s switched to read-write mode.\n",
4620 mdname(mddev));
4621 /* Kick recovery or resync if necessary */
4622 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4623 md_wakeup_thread(mddev->thread);
4624 md_wakeup_thread(mddev->sync_thread);
4625 sysfs_notify_dirent_safe(mddev->sysfs_state);
4626 return 0;
4627 }
4628
4629 /* similar to deny_write_access, but accounts for our holding a reference
4630 * to the file ourselves */
4631 static int deny_bitmap_write_access(struct file * file)
4632 {
4633 struct inode *inode = file->f_mapping->host;
4634
4635 spin_lock(&inode->i_lock);
4636 if (atomic_read(&inode->i_writecount) > 1) {
4637 spin_unlock(&inode->i_lock);
4638 return -ETXTBSY;
4639 }
4640 atomic_set(&inode->i_writecount, -1);
4641 spin_unlock(&inode->i_lock);
4642
4643 return 0;
4644 }
4645
4646 void restore_bitmap_write_access(struct file *file)
4647 {
4648 struct inode *inode = file->f_mapping->host;
4649
4650 spin_lock(&inode->i_lock);
4651 atomic_set(&inode->i_writecount, 1);
4652 spin_unlock(&inode->i_lock);
4653 }
4654
4655 static void md_clean(mddev_t *mddev)
4656 {
4657 mddev->array_sectors = 0;
4658 mddev->external_size = 0;
4659 mddev->dev_sectors = 0;
4660 mddev->raid_disks = 0;
4661 mddev->recovery_cp = 0;
4662 mddev->resync_min = 0;
4663 mddev->resync_max = MaxSector;
4664 mddev->reshape_position = MaxSector;
4665 mddev->external = 0;
4666 mddev->persistent = 0;
4667 mddev->level = LEVEL_NONE;
4668 mddev->clevel[0] = 0;
4669 mddev->flags = 0;
4670 mddev->ro = 0;
4671 mddev->metadata_type[0] = 0;
4672 mddev->chunk_sectors = 0;
4673 mddev->ctime = mddev->utime = 0;
4674 mddev->layout = 0;
4675 mddev->max_disks = 0;
4676 mddev->events = 0;
4677 mddev->can_decrease_events = 0;
4678 mddev->delta_disks = 0;
4679 mddev->new_level = LEVEL_NONE;
4680 mddev->new_layout = 0;
4681 mddev->new_chunk_sectors = 0;
4682 mddev->curr_resync = 0;
4683 mddev->resync_mismatches = 0;
4684 mddev->suspend_lo = mddev->suspend_hi = 0;
4685 mddev->sync_speed_min = mddev->sync_speed_max = 0;
4686 mddev->recovery = 0;
4687 mddev->in_sync = 0;
4688 mddev->degraded = 0;
4689 mddev->barriers_work = 0;
4690 mddev->safemode = 0;
4691 mddev->bitmap_info.offset = 0;
4692 mddev->bitmap_info.default_offset = 0;
4693 mddev->bitmap_info.chunksize = 0;
4694 mddev->bitmap_info.daemon_sleep = 0;
4695 mddev->bitmap_info.max_write_behind = 0;
4696 mddev->plug = NULL;
4697 }
4698
4699 void md_stop_writes(mddev_t *mddev)
4700 {
4701 if (mddev->sync_thread) {
4702 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4703 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4704 md_unregister_thread(mddev->sync_thread);
4705 mddev->sync_thread = NULL;
4706 }
4707
4708 del_timer_sync(&mddev->safemode_timer);
4709
4710 bitmap_flush(mddev);
4711 md_super_wait(mddev);
4712
4713 if (!mddev->in_sync || mddev->flags) {
4714 /* mark array as shutdown cleanly */
4715 mddev->in_sync = 1;
4716 md_update_sb(mddev, 1);
4717 }
4718 }
4719 EXPORT_SYMBOL_GPL(md_stop_writes);
4720
4721 void md_stop(mddev_t *mddev)
4722 {
4723 mddev->pers->stop(mddev);
4724 if (mddev->pers->sync_request && mddev->to_remove == NULL)
4725 mddev->to_remove = &md_redundancy_group;
4726 module_put(mddev->pers->owner);
4727 mddev->pers = NULL;
4728 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4729 }
4730 EXPORT_SYMBOL_GPL(md_stop);
4731
4732 static int md_set_readonly(mddev_t *mddev, int is_open)
4733 {
4734 int err = 0;
4735 mutex_lock(&mddev->open_mutex);
4736 if (atomic_read(&mddev->openers) > is_open) {
4737 printk("md: %s still in use.\n",mdname(mddev));
4738 err = -EBUSY;
4739 goto out;
4740 }
4741 if (mddev->pers) {
4742 md_stop_writes(mddev);
4743
4744 err = -ENXIO;
4745 if (mddev->ro==1)
4746 goto out;
4747 mddev->ro = 1;
4748 set_disk_ro(mddev->gendisk, 1);
4749 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4750 sysfs_notify_dirent_safe(mddev->sysfs_state);
4751 err = 0;
4752 }
4753 out:
4754 mutex_unlock(&mddev->open_mutex);
4755 return err;
4756 }
4757
4758 /* mode:
4759 * 0 - completely stop and dis-assemble array
4760 * 2 - stop but do not disassemble array
4761 */
4762 static int do_md_stop(mddev_t * mddev, int mode, int is_open)
4763 {
4764 struct gendisk *disk = mddev->gendisk;
4765 mdk_rdev_t *rdev;
4766
4767 mutex_lock(&mddev->open_mutex);
4768 if (atomic_read(&mddev->openers) > is_open ||
4769 mddev->sysfs_active) {
4770 printk("md: %s still in use.\n",mdname(mddev));
4771 mutex_unlock(&mddev->open_mutex);
4772 return -EBUSY;
4773 }
4774
4775 if (mddev->pers) {
4776 if (mddev->ro)
4777 set_disk_ro(disk, 0);
4778
4779 md_stop_writes(mddev);
4780 md_stop(mddev);
4781 mddev->queue->merge_bvec_fn = NULL;
4782 mddev->queue->unplug_fn = NULL;
4783 mddev->queue->backing_dev_info.congested_fn = NULL;
4784
4785 /* tell userspace to handle 'inactive' */
4786 sysfs_notify_dirent_safe(mddev->sysfs_state);
4787
4788 list_for_each_entry(rdev, &mddev->disks, same_set)
4789 if (rdev->raid_disk >= 0) {
4790 char nm[20];
4791 sprintf(nm, "rd%d", rdev->raid_disk);
4792 sysfs_remove_link(&mddev->kobj, nm);
4793 }
4794
4795 set_capacity(disk, 0);
4796 mutex_unlock(&mddev->open_mutex);
4797 revalidate_disk(disk);
4798
4799 if (mddev->ro)
4800 mddev->ro = 0;
4801 } else
4802 mutex_unlock(&mddev->open_mutex);
4803 /*
4804 * Free resources if final stop
4805 */
4806 if (mode == 0) {
4807 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
4808
4809 bitmap_destroy(mddev);
4810 if (mddev->bitmap_info.file) {
4811 restore_bitmap_write_access(mddev->bitmap_info.file);
4812 fput(mddev->bitmap_info.file);
4813 mddev->bitmap_info.file = NULL;
4814 }
4815 mddev->bitmap_info.offset = 0;
4816
4817 export_array(mddev);
4818
4819 md_clean(mddev);
4820 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4821 if (mddev->hold_active == UNTIL_STOP)
4822 mddev->hold_active = 0;
4823 }
4824 blk_integrity_unregister(disk);
4825 md_new_event(mddev);
4826 sysfs_notify_dirent_safe(mddev->sysfs_state);
4827 return 0;
4828 }
4829
4830 #ifndef MODULE
4831 static void autorun_array(mddev_t *mddev)
4832 {
4833 mdk_rdev_t *rdev;
4834 int err;
4835
4836 if (list_empty(&mddev->disks))
4837 return;
4838
4839 printk(KERN_INFO "md: running: ");
4840
4841 list_for_each_entry(rdev, &mddev->disks, same_set) {
4842 char b[BDEVNAME_SIZE];
4843 printk("<%s>", bdevname(rdev->bdev,b));
4844 }
4845 printk("\n");
4846
4847 err = do_md_run(mddev);
4848 if (err) {
4849 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
4850 do_md_stop(mddev, 0, 0);
4851 }
4852 }
4853
4854 /*
4855 * lets try to run arrays based on all disks that have arrived
4856 * until now. (those are in pending_raid_disks)
4857 *
4858 * the method: pick the first pending disk, collect all disks with
4859 * the same UUID, remove all from the pending list and put them into
4860 * the 'same_array' list. Then order this list based on superblock
4861 * update time (freshest comes first), kick out 'old' disks and
4862 * compare superblocks. If everything's fine then run it.
4863 *
4864 * If "unit" is allocated, then bump its reference count
4865 */
4866 static void autorun_devices(int part)
4867 {
4868 mdk_rdev_t *rdev0, *rdev, *tmp;
4869 mddev_t *mddev;
4870 char b[BDEVNAME_SIZE];
4871
4872 printk(KERN_INFO "md: autorun ...\n");
4873 while (!list_empty(&pending_raid_disks)) {
4874 int unit;
4875 dev_t dev;
4876 LIST_HEAD(candidates);
4877 rdev0 = list_entry(pending_raid_disks.next,
4878 mdk_rdev_t, same_set);
4879
4880 printk(KERN_INFO "md: considering %s ...\n",
4881 bdevname(rdev0->bdev,b));
4882 INIT_LIST_HEAD(&candidates);
4883 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
4884 if (super_90_load(rdev, rdev0, 0) >= 0) {
4885 printk(KERN_INFO "md: adding %s ...\n",
4886 bdevname(rdev->bdev,b));
4887 list_move(&rdev->same_set, &candidates);
4888 }
4889 /*
4890 * now we have a set of devices, with all of them having
4891 * mostly sane superblocks. It's time to allocate the
4892 * mddev.
4893 */
4894 if (part) {
4895 dev = MKDEV(mdp_major,
4896 rdev0->preferred_minor << MdpMinorShift);
4897 unit = MINOR(dev) >> MdpMinorShift;
4898 } else {
4899 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
4900 unit = MINOR(dev);
4901 }
4902 if (rdev0->preferred_minor != unit) {
4903 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
4904 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
4905 break;
4906 }
4907
4908 md_probe(dev, NULL, NULL);
4909 mddev = mddev_find(dev);
4910 if (!mddev || !mddev->gendisk) {
4911 if (mddev)
4912 mddev_put(mddev);
4913 printk(KERN_ERR
4914 "md: cannot allocate memory for md drive.\n");
4915 break;
4916 }
4917 if (mddev_lock(mddev))
4918 printk(KERN_WARNING "md: %s locked, cannot run\n",
4919 mdname(mddev));
4920 else if (mddev->raid_disks || mddev->major_version
4921 || !list_empty(&mddev->disks)) {
4922 printk(KERN_WARNING
4923 "md: %s already running, cannot run %s\n",
4924 mdname(mddev), bdevname(rdev0->bdev,b));
4925 mddev_unlock(mddev);
4926 } else {
4927 printk(KERN_INFO "md: created %s\n", mdname(mddev));
4928 mddev->persistent = 1;
4929 rdev_for_each_list(rdev, tmp, &candidates) {
4930 list_del_init(&rdev->same_set);
4931 if (bind_rdev_to_array(rdev, mddev))
4932 export_rdev(rdev);
4933 }
4934 autorun_array(mddev);
4935 mddev_unlock(mddev);
4936 }
4937 /* on success, candidates will be empty, on error
4938 * it won't...
4939 */
4940 rdev_for_each_list(rdev, tmp, &candidates) {
4941 list_del_init(&rdev->same_set);
4942 export_rdev(rdev);
4943 }
4944 mddev_put(mddev);
4945 }
4946 printk(KERN_INFO "md: ... autorun DONE.\n");
4947 }
4948 #endif /* !MODULE */
4949
4950 static int get_version(void __user * arg)
4951 {
4952 mdu_version_t ver;
4953
4954 ver.major = MD_MAJOR_VERSION;
4955 ver.minor = MD_MINOR_VERSION;
4956 ver.patchlevel = MD_PATCHLEVEL_VERSION;
4957
4958 if (copy_to_user(arg, &ver, sizeof(ver)))
4959 return -EFAULT;
4960
4961 return 0;
4962 }
4963
4964 static int get_array_info(mddev_t * mddev, void __user * arg)
4965 {
4966 mdu_array_info_t info;
4967 int nr,working,insync,failed,spare;
4968 mdk_rdev_t *rdev;
4969
4970 nr=working=insync=failed=spare=0;
4971 list_for_each_entry(rdev, &mddev->disks, same_set) {
4972 nr++;
4973 if (test_bit(Faulty, &rdev->flags))
4974 failed++;
4975 else {
4976 working++;
4977 if (test_bit(In_sync, &rdev->flags))
4978 insync++;
4979 else
4980 spare++;
4981 }
4982 }
4983
4984 info.major_version = mddev->major_version;
4985 info.minor_version = mddev->minor_version;
4986 info.patch_version = MD_PATCHLEVEL_VERSION;
4987 info.ctime = mddev->ctime;
4988 info.level = mddev->level;
4989 info.size = mddev->dev_sectors / 2;
4990 if (info.size != mddev->dev_sectors / 2) /* overflow */
4991 info.size = -1;
4992 info.nr_disks = nr;
4993 info.raid_disks = mddev->raid_disks;
4994 info.md_minor = mddev->md_minor;
4995 info.not_persistent= !mddev->persistent;
4996
4997 info.utime = mddev->utime;
4998 info.state = 0;
4999 if (mddev->in_sync)
5000 info.state = (1<<MD_SB_CLEAN);
5001 if (mddev->bitmap && mddev->bitmap_info.offset)
5002 info.state = (1<<MD_SB_BITMAP_PRESENT);
5003 info.active_disks = insync;
5004 info.working_disks = working;
5005 info.failed_disks = failed;
5006 info.spare_disks = spare;
5007
5008 info.layout = mddev->layout;
5009 info.chunk_size = mddev->chunk_sectors << 9;
5010
5011 if (copy_to_user(arg, &info, sizeof(info)))
5012 return -EFAULT;
5013
5014 return 0;
5015 }
5016
5017 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
5018 {
5019 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5020 char *ptr, *buf = NULL;
5021 int err = -ENOMEM;
5022
5023 if (md_allow_write(mddev))
5024 file = kmalloc(sizeof(*file), GFP_NOIO);
5025 else
5026 file = kmalloc(sizeof(*file), GFP_KERNEL);
5027
5028 if (!file)
5029 goto out;
5030
5031 /* bitmap disabled, zero the first byte and copy out */
5032 if (!mddev->bitmap || !mddev->bitmap->file) {
5033 file->pathname[0] = '\0';
5034 goto copy_out;
5035 }
5036
5037 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5038 if (!buf)
5039 goto out;
5040
5041 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5042 if (IS_ERR(ptr))
5043 goto out;
5044
5045 strcpy(file->pathname, ptr);
5046
5047 copy_out:
5048 err = 0;
5049 if (copy_to_user(arg, file, sizeof(*file)))
5050 err = -EFAULT;
5051 out:
5052 kfree(buf);
5053 kfree(file);
5054 return err;
5055 }
5056
5057 static int get_disk_info(mddev_t * mddev, void __user * arg)
5058 {
5059 mdu_disk_info_t info;
5060 mdk_rdev_t *rdev;
5061
5062 if (copy_from_user(&info, arg, sizeof(info)))
5063 return -EFAULT;
5064
5065 rdev = find_rdev_nr(mddev, info.number);
5066 if (rdev) {
5067 info.major = MAJOR(rdev->bdev->bd_dev);
5068 info.minor = MINOR(rdev->bdev->bd_dev);
5069 info.raid_disk = rdev->raid_disk;
5070 info.state = 0;
5071 if (test_bit(Faulty, &rdev->flags))
5072 info.state |= (1<<MD_DISK_FAULTY);
5073 else if (test_bit(In_sync, &rdev->flags)) {
5074 info.state |= (1<<MD_DISK_ACTIVE);
5075 info.state |= (1<<MD_DISK_SYNC);
5076 }
5077 if (test_bit(WriteMostly, &rdev->flags))
5078 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5079 } else {
5080 info.major = info.minor = 0;
5081 info.raid_disk = -1;
5082 info.state = (1<<MD_DISK_REMOVED);
5083 }
5084
5085 if (copy_to_user(arg, &info, sizeof(info)))
5086 return -EFAULT;
5087
5088 return 0;
5089 }
5090
5091 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
5092 {
5093 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5094 mdk_rdev_t *rdev;
5095 dev_t dev = MKDEV(info->major,info->minor);
5096
5097 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5098 return -EOVERFLOW;
5099
5100 if (!mddev->raid_disks) {
5101 int err;
5102 /* expecting a device which has a superblock */
5103 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5104 if (IS_ERR(rdev)) {
5105 printk(KERN_WARNING
5106 "md: md_import_device returned %ld\n",
5107 PTR_ERR(rdev));
5108 return PTR_ERR(rdev);
5109 }
5110 if (!list_empty(&mddev->disks)) {
5111 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
5112 mdk_rdev_t, same_set);
5113 err = super_types[mddev->major_version]
5114 .load_super(rdev, rdev0, mddev->minor_version);
5115 if (err < 0) {
5116 printk(KERN_WARNING
5117 "md: %s has different UUID to %s\n",
5118 bdevname(rdev->bdev,b),
5119 bdevname(rdev0->bdev,b2));
5120 export_rdev(rdev);
5121 return -EINVAL;
5122 }
5123 }
5124 err = bind_rdev_to_array(rdev, mddev);
5125 if (err)
5126 export_rdev(rdev);
5127 return err;
5128 }
5129
5130 /*
5131 * add_new_disk can be used once the array is assembled
5132 * to add "hot spares". They must already have a superblock
5133 * written
5134 */
5135 if (mddev->pers) {
5136 int err;
5137 if (!mddev->pers->hot_add_disk) {
5138 printk(KERN_WARNING
5139 "%s: personality does not support diskops!\n",
5140 mdname(mddev));
5141 return -EINVAL;
5142 }
5143 if (mddev->persistent)
5144 rdev = md_import_device(dev, mddev->major_version,
5145 mddev->minor_version);
5146 else
5147 rdev = md_import_device(dev, -1, -1);
5148 if (IS_ERR(rdev)) {
5149 printk(KERN_WARNING
5150 "md: md_import_device returned %ld\n",
5151 PTR_ERR(rdev));
5152 return PTR_ERR(rdev);
5153 }
5154 /* set save_raid_disk if appropriate */
5155 if (!mddev->persistent) {
5156 if (info->state & (1<<MD_DISK_SYNC) &&
5157 info->raid_disk < mddev->raid_disks)
5158 rdev->raid_disk = info->raid_disk;
5159 else
5160 rdev->raid_disk = -1;
5161 } else
5162 super_types[mddev->major_version].
5163 validate_super(mddev, rdev);
5164 rdev->saved_raid_disk = rdev->raid_disk;
5165
5166 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5167 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5168 set_bit(WriteMostly, &rdev->flags);
5169 else
5170 clear_bit(WriteMostly, &rdev->flags);
5171
5172 rdev->raid_disk = -1;
5173 err = bind_rdev_to_array(rdev, mddev);
5174 if (!err && !mddev->pers->hot_remove_disk) {
5175 /* If there is hot_add_disk but no hot_remove_disk
5176 * then added disks for geometry changes,
5177 * and should be added immediately.
5178 */
5179 super_types[mddev->major_version].
5180 validate_super(mddev, rdev);
5181 err = mddev->pers->hot_add_disk(mddev, rdev);
5182 if (err)
5183 unbind_rdev_from_array(rdev);
5184 }
5185 if (err)
5186 export_rdev(rdev);
5187 else
5188 sysfs_notify_dirent_safe(rdev->sysfs_state);
5189
5190 md_update_sb(mddev, 1);
5191 if (mddev->degraded)
5192 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5193 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5194 md_wakeup_thread(mddev->thread);
5195 return err;
5196 }
5197
5198 /* otherwise, add_new_disk is only allowed
5199 * for major_version==0 superblocks
5200 */
5201 if (mddev->major_version != 0) {
5202 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5203 mdname(mddev));
5204 return -EINVAL;
5205 }
5206
5207 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5208 int err;
5209 rdev = md_import_device(dev, -1, 0);
5210 if (IS_ERR(rdev)) {
5211 printk(KERN_WARNING
5212 "md: error, md_import_device() returned %ld\n",
5213 PTR_ERR(rdev));
5214 return PTR_ERR(rdev);
5215 }
5216 rdev->desc_nr = info->number;
5217 if (info->raid_disk < mddev->raid_disks)
5218 rdev->raid_disk = info->raid_disk;
5219 else
5220 rdev->raid_disk = -1;
5221
5222 if (rdev->raid_disk < mddev->raid_disks)
5223 if (info->state & (1<<MD_DISK_SYNC))
5224 set_bit(In_sync, &rdev->flags);
5225
5226 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5227 set_bit(WriteMostly, &rdev->flags);
5228
5229 if (!mddev->persistent) {
5230 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5231 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
5232 } else
5233 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
5234 rdev->sectors = rdev->sb_start;
5235
5236 err = bind_rdev_to_array(rdev, mddev);
5237 if (err) {
5238 export_rdev(rdev);
5239 return err;
5240 }
5241 }
5242
5243 return 0;
5244 }
5245
5246 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
5247 {
5248 char b[BDEVNAME_SIZE];
5249 mdk_rdev_t *rdev;
5250
5251 rdev = find_rdev(mddev, dev);
5252 if (!rdev)
5253 return -ENXIO;
5254
5255 if (rdev->raid_disk >= 0)
5256 goto busy;
5257
5258 kick_rdev_from_array(rdev);
5259 md_update_sb(mddev, 1);
5260 md_new_event(mddev);
5261
5262 return 0;
5263 busy:
5264 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5265 bdevname(rdev->bdev,b), mdname(mddev));
5266 return -EBUSY;
5267 }
5268
5269 static int hot_add_disk(mddev_t * mddev, dev_t dev)
5270 {
5271 char b[BDEVNAME_SIZE];
5272 int err;
5273 mdk_rdev_t *rdev;
5274
5275 if (!mddev->pers)
5276 return -ENODEV;
5277
5278 if (mddev->major_version != 0) {
5279 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5280 " version-0 superblocks.\n",
5281 mdname(mddev));
5282 return -EINVAL;
5283 }
5284 if (!mddev->pers->hot_add_disk) {
5285 printk(KERN_WARNING
5286 "%s: personality does not support diskops!\n",
5287 mdname(mddev));
5288 return -EINVAL;
5289 }
5290
5291 rdev = md_import_device(dev, -1, 0);
5292 if (IS_ERR(rdev)) {
5293 printk(KERN_WARNING
5294 "md: error, md_import_device() returned %ld\n",
5295 PTR_ERR(rdev));
5296 return -EINVAL;
5297 }
5298
5299 if (mddev->persistent)
5300 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
5301 else
5302 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
5303
5304 rdev->sectors = rdev->sb_start;
5305
5306 if (test_bit(Faulty, &rdev->flags)) {
5307 printk(KERN_WARNING
5308 "md: can not hot-add faulty %s disk to %s!\n",
5309 bdevname(rdev->bdev,b), mdname(mddev));
5310 err = -EINVAL;
5311 goto abort_export;
5312 }
5313 clear_bit(In_sync, &rdev->flags);
5314 rdev->desc_nr = -1;
5315 rdev->saved_raid_disk = -1;
5316 err = bind_rdev_to_array(rdev, mddev);
5317 if (err)
5318 goto abort_export;
5319
5320 /*
5321 * The rest should better be atomic, we can have disk failures
5322 * noticed in interrupt contexts ...
5323 */
5324
5325 rdev->raid_disk = -1;
5326
5327 md_update_sb(mddev, 1);
5328
5329 /*
5330 * Kick recovery, maybe this spare has to be added to the
5331 * array immediately.
5332 */
5333 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5334 md_wakeup_thread(mddev->thread);
5335 md_new_event(mddev);
5336 return 0;
5337
5338 abort_export:
5339 export_rdev(rdev);
5340 return err;
5341 }
5342
5343 static int set_bitmap_file(mddev_t *mddev, int fd)
5344 {
5345 int err;
5346
5347 if (mddev->pers) {
5348 if (!mddev->pers->quiesce)
5349 return -EBUSY;
5350 if (mddev->recovery || mddev->sync_thread)
5351 return -EBUSY;
5352 /* we should be able to change the bitmap.. */
5353 }
5354
5355
5356 if (fd >= 0) {
5357 if (mddev->bitmap)
5358 return -EEXIST; /* cannot add when bitmap is present */
5359 mddev->bitmap_info.file = fget(fd);
5360
5361 if (mddev->bitmap_info.file == NULL) {
5362 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5363 mdname(mddev));
5364 return -EBADF;
5365 }
5366
5367 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5368 if (err) {
5369 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5370 mdname(mddev));
5371 fput(mddev->bitmap_info.file);
5372 mddev->bitmap_info.file = NULL;
5373 return err;
5374 }
5375 mddev->bitmap_info.offset = 0; /* file overrides offset */
5376 } else if (mddev->bitmap == NULL)
5377 return -ENOENT; /* cannot remove what isn't there */
5378 err = 0;
5379 if (mddev->pers) {
5380 mddev->pers->quiesce(mddev, 1);
5381 if (fd >= 0) {
5382 err = bitmap_create(mddev);
5383 if (!err)
5384 err = bitmap_load(mddev);
5385 }
5386 if (fd < 0 || err) {
5387 bitmap_destroy(mddev);
5388 fd = -1; /* make sure to put the file */
5389 }
5390 mddev->pers->quiesce(mddev, 0);
5391 }
5392 if (fd < 0) {
5393 if (mddev->bitmap_info.file) {
5394 restore_bitmap_write_access(mddev->bitmap_info.file);
5395 fput(mddev->bitmap_info.file);
5396 }
5397 mddev->bitmap_info.file = NULL;
5398 }
5399
5400 return err;
5401 }
5402
5403 /*
5404 * set_array_info is used two different ways
5405 * The original usage is when creating a new array.
5406 * In this usage, raid_disks is > 0 and it together with
5407 * level, size, not_persistent,layout,chunksize determine the
5408 * shape of the array.
5409 * This will always create an array with a type-0.90.0 superblock.
5410 * The newer usage is when assembling an array.
5411 * In this case raid_disks will be 0, and the major_version field is
5412 * use to determine which style super-blocks are to be found on the devices.
5413 * The minor and patch _version numbers are also kept incase the
5414 * super_block handler wishes to interpret them.
5415 */
5416 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
5417 {
5418
5419 if (info->raid_disks == 0) {
5420 /* just setting version number for superblock loading */
5421 if (info->major_version < 0 ||
5422 info->major_version >= ARRAY_SIZE(super_types) ||
5423 super_types[info->major_version].name == NULL) {
5424 /* maybe try to auto-load a module? */
5425 printk(KERN_INFO
5426 "md: superblock version %d not known\n",
5427 info->major_version);
5428 return -EINVAL;
5429 }
5430 mddev->major_version = info->major_version;
5431 mddev->minor_version = info->minor_version;
5432 mddev->patch_version = info->patch_version;
5433 mddev->persistent = !info->not_persistent;
5434 /* ensure mddev_put doesn't delete this now that there
5435 * is some minimal configuration.
5436 */
5437 mddev->ctime = get_seconds();
5438 return 0;
5439 }
5440 mddev->major_version = MD_MAJOR_VERSION;
5441 mddev->minor_version = MD_MINOR_VERSION;
5442 mddev->patch_version = MD_PATCHLEVEL_VERSION;
5443 mddev->ctime = get_seconds();
5444
5445 mddev->level = info->level;
5446 mddev->clevel[0] = 0;
5447 mddev->dev_sectors = 2 * (sector_t)info->size;
5448 mddev->raid_disks = info->raid_disks;
5449 /* don't set md_minor, it is determined by which /dev/md* was
5450 * openned
5451 */
5452 if (info->state & (1<<MD_SB_CLEAN))
5453 mddev->recovery_cp = MaxSector;
5454 else
5455 mddev->recovery_cp = 0;
5456 mddev->persistent = ! info->not_persistent;
5457 mddev->external = 0;
5458
5459 mddev->layout = info->layout;
5460 mddev->chunk_sectors = info->chunk_size >> 9;
5461
5462 mddev->max_disks = MD_SB_DISKS;
5463
5464 if (mddev->persistent)
5465 mddev->flags = 0;
5466 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5467
5468 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5469 mddev->bitmap_info.offset = 0;
5470
5471 mddev->reshape_position = MaxSector;
5472
5473 /*
5474 * Generate a 128 bit UUID
5475 */
5476 get_random_bytes(mddev->uuid, 16);
5477
5478 mddev->new_level = mddev->level;
5479 mddev->new_chunk_sectors = mddev->chunk_sectors;
5480 mddev->new_layout = mddev->layout;
5481 mddev->delta_disks = 0;
5482
5483 return 0;
5484 }
5485
5486 void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors)
5487 {
5488 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5489
5490 if (mddev->external_size)
5491 return;
5492
5493 mddev->array_sectors = array_sectors;
5494 }
5495 EXPORT_SYMBOL(md_set_array_sectors);
5496
5497 static int update_size(mddev_t *mddev, sector_t num_sectors)
5498 {
5499 mdk_rdev_t *rdev;
5500 int rv;
5501 int fit = (num_sectors == 0);
5502
5503 if (mddev->pers->resize == NULL)
5504 return -EINVAL;
5505 /* The "num_sectors" is the number of sectors of each device that
5506 * is used. This can only make sense for arrays with redundancy.
5507 * linear and raid0 always use whatever space is available. We can only
5508 * consider changing this number if no resync or reconstruction is
5509 * happening, and if the new size is acceptable. It must fit before the
5510 * sb_start or, if that is <data_offset, it must fit before the size
5511 * of each device. If num_sectors is zero, we find the largest size
5512 * that fits.
5513
5514 */
5515 if (mddev->sync_thread)
5516 return -EBUSY;
5517 if (mddev->bitmap)
5518 /* Sorry, cannot grow a bitmap yet, just remove it,
5519 * grow, and re-add.
5520 */
5521 return -EBUSY;
5522 list_for_each_entry(rdev, &mddev->disks, same_set) {
5523 sector_t avail = rdev->sectors;
5524
5525 if (fit && (num_sectors == 0 || num_sectors > avail))
5526 num_sectors = avail;
5527 if (avail < num_sectors)
5528 return -ENOSPC;
5529 }
5530 rv = mddev->pers->resize(mddev, num_sectors);
5531 if (!rv)
5532 revalidate_disk(mddev->gendisk);
5533 return rv;
5534 }
5535
5536 static int update_raid_disks(mddev_t *mddev, int raid_disks)
5537 {
5538 int rv;
5539 /* change the number of raid disks */
5540 if (mddev->pers->check_reshape == NULL)
5541 return -EINVAL;
5542 if (raid_disks <= 0 ||
5543 (mddev->max_disks && raid_disks >= mddev->max_disks))
5544 return -EINVAL;
5545 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5546 return -EBUSY;
5547 mddev->delta_disks = raid_disks - mddev->raid_disks;
5548
5549 rv = mddev->pers->check_reshape(mddev);
5550 return rv;
5551 }
5552
5553
5554 /*
5555 * update_array_info is used to change the configuration of an
5556 * on-line array.
5557 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5558 * fields in the info are checked against the array.
5559 * Any differences that cannot be handled will cause an error.
5560 * Normally, only one change can be managed at a time.
5561 */
5562 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
5563 {
5564 int rv = 0;
5565 int cnt = 0;
5566 int state = 0;
5567
5568 /* calculate expected state,ignoring low bits */
5569 if (mddev->bitmap && mddev->bitmap_info.offset)
5570 state |= (1 << MD_SB_BITMAP_PRESENT);
5571
5572 if (mddev->major_version != info->major_version ||
5573 mddev->minor_version != info->minor_version ||
5574 /* mddev->patch_version != info->patch_version || */
5575 mddev->ctime != info->ctime ||
5576 mddev->level != info->level ||
5577 /* mddev->layout != info->layout || */
5578 !mddev->persistent != info->not_persistent||
5579 mddev->chunk_sectors != info->chunk_size >> 9 ||
5580 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5581 ((state^info->state) & 0xfffffe00)
5582 )
5583 return -EINVAL;
5584 /* Check there is only one change */
5585 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5586 cnt++;
5587 if (mddev->raid_disks != info->raid_disks)
5588 cnt++;
5589 if (mddev->layout != info->layout)
5590 cnt++;
5591 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5592 cnt++;
5593 if (cnt == 0)
5594 return 0;
5595 if (cnt > 1)
5596 return -EINVAL;
5597
5598 if (mddev->layout != info->layout) {
5599 /* Change layout
5600 * we don't need to do anything at the md level, the
5601 * personality will take care of it all.
5602 */
5603 if (mddev->pers->check_reshape == NULL)
5604 return -EINVAL;
5605 else {
5606 mddev->new_layout = info->layout;
5607 rv = mddev->pers->check_reshape(mddev);
5608 if (rv)
5609 mddev->new_layout = mddev->layout;
5610 return rv;
5611 }
5612 }
5613 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5614 rv = update_size(mddev, (sector_t)info->size * 2);
5615
5616 if (mddev->raid_disks != info->raid_disks)
5617 rv = update_raid_disks(mddev, info->raid_disks);
5618
5619 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5620 if (mddev->pers->quiesce == NULL)
5621 return -EINVAL;
5622 if (mddev->recovery || mddev->sync_thread)
5623 return -EBUSY;
5624 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5625 /* add the bitmap */
5626 if (mddev->bitmap)
5627 return -EEXIST;
5628 if (mddev->bitmap_info.default_offset == 0)
5629 return -EINVAL;
5630 mddev->bitmap_info.offset =
5631 mddev->bitmap_info.default_offset;
5632 mddev->pers->quiesce(mddev, 1);
5633 rv = bitmap_create(mddev);
5634 if (!rv)
5635 rv = bitmap_load(mddev);
5636 if (rv)
5637 bitmap_destroy(mddev);
5638 mddev->pers->quiesce(mddev, 0);
5639 } else {
5640 /* remove the bitmap */
5641 if (!mddev->bitmap)
5642 return -ENOENT;
5643 if (mddev->bitmap->file)
5644 return -EINVAL;
5645 mddev->pers->quiesce(mddev, 1);
5646 bitmap_destroy(mddev);
5647 mddev->pers->quiesce(mddev, 0);
5648 mddev->bitmap_info.offset = 0;
5649 }
5650 }
5651 md_update_sb(mddev, 1);
5652 return rv;
5653 }
5654
5655 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
5656 {
5657 mdk_rdev_t *rdev;
5658
5659 if (mddev->pers == NULL)
5660 return -ENODEV;
5661
5662 rdev = find_rdev(mddev, dev);
5663 if (!rdev)
5664 return -ENODEV;
5665
5666 md_error(mddev, rdev);
5667 return 0;
5668 }
5669
5670 /*
5671 * We have a problem here : there is no easy way to give a CHS
5672 * virtual geometry. We currently pretend that we have a 2 heads
5673 * 4 sectors (with a BIG number of cylinders...). This drives
5674 * dosfs just mad... ;-)
5675 */
5676 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
5677 {
5678 mddev_t *mddev = bdev->bd_disk->private_data;
5679
5680 geo->heads = 2;
5681 geo->sectors = 4;
5682 geo->cylinders = mddev->array_sectors / 8;
5683 return 0;
5684 }
5685
5686 static int md_ioctl(struct block_device *bdev, fmode_t mode,
5687 unsigned int cmd, unsigned long arg)
5688 {
5689 int err = 0;
5690 void __user *argp = (void __user *)arg;
5691 mddev_t *mddev = NULL;
5692 int ro;
5693
5694 if (!capable(CAP_SYS_ADMIN))
5695 return -EACCES;
5696
5697 /*
5698 * Commands dealing with the RAID driver but not any
5699 * particular array:
5700 */
5701 switch (cmd)
5702 {
5703 case RAID_VERSION:
5704 err = get_version(argp);
5705 goto done;
5706
5707 case PRINT_RAID_DEBUG:
5708 err = 0;
5709 md_print_devices();
5710 goto done;
5711
5712 #ifndef MODULE
5713 case RAID_AUTORUN:
5714 err = 0;
5715 autostart_arrays(arg);
5716 goto done;
5717 #endif
5718 default:;
5719 }
5720
5721 /*
5722 * Commands creating/starting a new array:
5723 */
5724
5725 mddev = bdev->bd_disk->private_data;
5726
5727 if (!mddev) {
5728 BUG();
5729 goto abort;
5730 }
5731
5732 err = mddev_lock(mddev);
5733 if (err) {
5734 printk(KERN_INFO
5735 "md: ioctl lock interrupted, reason %d, cmd %d\n",
5736 err, cmd);
5737 goto abort;
5738 }
5739
5740 switch (cmd)
5741 {
5742 case SET_ARRAY_INFO:
5743 {
5744 mdu_array_info_t info;
5745 if (!arg)
5746 memset(&info, 0, sizeof(info));
5747 else if (copy_from_user(&info, argp, sizeof(info))) {
5748 err = -EFAULT;
5749 goto abort_unlock;
5750 }
5751 if (mddev->pers) {
5752 err = update_array_info(mddev, &info);
5753 if (err) {
5754 printk(KERN_WARNING "md: couldn't update"
5755 " array info. %d\n", err);
5756 goto abort_unlock;
5757 }
5758 goto done_unlock;
5759 }
5760 if (!list_empty(&mddev->disks)) {
5761 printk(KERN_WARNING
5762 "md: array %s already has disks!\n",
5763 mdname(mddev));
5764 err = -EBUSY;
5765 goto abort_unlock;
5766 }
5767 if (mddev->raid_disks) {
5768 printk(KERN_WARNING
5769 "md: array %s already initialised!\n",
5770 mdname(mddev));
5771 err = -EBUSY;
5772 goto abort_unlock;
5773 }
5774 err = set_array_info(mddev, &info);
5775 if (err) {
5776 printk(KERN_WARNING "md: couldn't set"
5777 " array info. %d\n", err);
5778 goto abort_unlock;
5779 }
5780 }
5781 goto done_unlock;
5782
5783 default:;
5784 }
5785
5786 /*
5787 * Commands querying/configuring an existing array:
5788 */
5789 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
5790 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
5791 if ((!mddev->raid_disks && !mddev->external)
5792 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
5793 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
5794 && cmd != GET_BITMAP_FILE) {
5795 err = -ENODEV;
5796 goto abort_unlock;
5797 }
5798
5799 /*
5800 * Commands even a read-only array can execute:
5801 */
5802 switch (cmd)
5803 {
5804 case GET_ARRAY_INFO:
5805 err = get_array_info(mddev, argp);
5806 goto done_unlock;
5807
5808 case GET_BITMAP_FILE:
5809 err = get_bitmap_file(mddev, argp);
5810 goto done_unlock;
5811
5812 case GET_DISK_INFO:
5813 err = get_disk_info(mddev, argp);
5814 goto done_unlock;
5815
5816 case RESTART_ARRAY_RW:
5817 err = restart_array(mddev);
5818 goto done_unlock;
5819
5820 case STOP_ARRAY:
5821 err = do_md_stop(mddev, 0, 1);
5822 goto done_unlock;
5823
5824 case STOP_ARRAY_RO:
5825 err = md_set_readonly(mddev, 1);
5826 goto done_unlock;
5827
5828 case BLKROSET:
5829 if (get_user(ro, (int __user *)(arg))) {
5830 err = -EFAULT;
5831 goto done_unlock;
5832 }
5833 err = -EINVAL;
5834
5835 /* if the bdev is going readonly the value of mddev->ro
5836 * does not matter, no writes are coming
5837 */
5838 if (ro)
5839 goto done_unlock;
5840
5841 /* are we are already prepared for writes? */
5842 if (mddev->ro != 1)
5843 goto done_unlock;
5844
5845 /* transitioning to readauto need only happen for
5846 * arrays that call md_write_start
5847 */
5848 if (mddev->pers) {
5849 err = restart_array(mddev);
5850 if (err == 0) {
5851 mddev->ro = 2;
5852 set_disk_ro(mddev->gendisk, 0);
5853 }
5854 }
5855 goto done_unlock;
5856 }
5857
5858 /*
5859 * The remaining ioctls are changing the state of the
5860 * superblock, so we do not allow them on read-only arrays.
5861 * However non-MD ioctls (e.g. get-size) will still come through
5862 * here and hit the 'default' below, so only disallow
5863 * 'md' ioctls, and switch to rw mode if started auto-readonly.
5864 */
5865 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
5866 if (mddev->ro == 2) {
5867 mddev->ro = 0;
5868 sysfs_notify_dirent_safe(mddev->sysfs_state);
5869 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5870 md_wakeup_thread(mddev->thread);
5871 } else {
5872 err = -EROFS;
5873 goto abort_unlock;
5874 }
5875 }
5876
5877 switch (cmd)
5878 {
5879 case ADD_NEW_DISK:
5880 {
5881 mdu_disk_info_t info;
5882 if (copy_from_user(&info, argp, sizeof(info)))
5883 err = -EFAULT;
5884 else
5885 err = add_new_disk(mddev, &info);
5886 goto done_unlock;
5887 }
5888
5889 case HOT_REMOVE_DISK:
5890 err = hot_remove_disk(mddev, new_decode_dev(arg));
5891 goto done_unlock;
5892
5893 case HOT_ADD_DISK:
5894 err = hot_add_disk(mddev, new_decode_dev(arg));
5895 goto done_unlock;
5896
5897 case SET_DISK_FAULTY:
5898 err = set_disk_faulty(mddev, new_decode_dev(arg));
5899 goto done_unlock;
5900
5901 case RUN_ARRAY:
5902 err = do_md_run(mddev);
5903 goto done_unlock;
5904
5905 case SET_BITMAP_FILE:
5906 err = set_bitmap_file(mddev, (int)arg);
5907 goto done_unlock;
5908
5909 default:
5910 err = -EINVAL;
5911 goto abort_unlock;
5912 }
5913
5914 done_unlock:
5915 abort_unlock:
5916 if (mddev->hold_active == UNTIL_IOCTL &&
5917 err != -EINVAL)
5918 mddev->hold_active = 0;
5919 mddev_unlock(mddev);
5920
5921 return err;
5922 done:
5923 if (err)
5924 MD_BUG();
5925 abort:
5926 return err;
5927 }
5928 #ifdef CONFIG_COMPAT
5929 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
5930 unsigned int cmd, unsigned long arg)
5931 {
5932 switch (cmd) {
5933 case HOT_REMOVE_DISK:
5934 case HOT_ADD_DISK:
5935 case SET_DISK_FAULTY:
5936 case SET_BITMAP_FILE:
5937 /* These take in integer arg, do not convert */
5938 break;
5939 default:
5940 arg = (unsigned long)compat_ptr(arg);
5941 break;
5942 }
5943
5944 return md_ioctl(bdev, mode, cmd, arg);
5945 }
5946 #endif /* CONFIG_COMPAT */
5947
5948 static int md_open(struct block_device *bdev, fmode_t mode)
5949 {
5950 /*
5951 * Succeed if we can lock the mddev, which confirms that
5952 * it isn't being stopped right now.
5953 */
5954 mddev_t *mddev = mddev_find(bdev->bd_dev);
5955 int err;
5956
5957 lock_kernel();
5958 if (mddev->gendisk != bdev->bd_disk) {
5959 /* we are racing with mddev_put which is discarding this
5960 * bd_disk.
5961 */
5962 mddev_put(mddev);
5963 /* Wait until bdev->bd_disk is definitely gone */
5964 flush_scheduled_work();
5965 /* Then retry the open from the top */
5966 unlock_kernel();
5967 return -ERESTARTSYS;
5968 }
5969 BUG_ON(mddev != bdev->bd_disk->private_data);
5970
5971 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
5972 goto out;
5973
5974 err = 0;
5975 atomic_inc(&mddev->openers);
5976 mutex_unlock(&mddev->open_mutex);
5977
5978 check_disk_size_change(mddev->gendisk, bdev);
5979 out:
5980 unlock_kernel();
5981 return err;
5982 }
5983
5984 static int md_release(struct gendisk *disk, fmode_t mode)
5985 {
5986 mddev_t *mddev = disk->private_data;
5987
5988 BUG_ON(!mddev);
5989 lock_kernel();
5990 atomic_dec(&mddev->openers);
5991 mddev_put(mddev);
5992 unlock_kernel();
5993
5994 return 0;
5995 }
5996 static const struct block_device_operations md_fops =
5997 {
5998 .owner = THIS_MODULE,
5999 .open = md_open,
6000 .release = md_release,
6001 .ioctl = md_ioctl,
6002 #ifdef CONFIG_COMPAT
6003 .compat_ioctl = md_compat_ioctl,
6004 #endif
6005 .getgeo = md_getgeo,
6006 };
6007
6008 static int md_thread(void * arg)
6009 {
6010 mdk_thread_t *thread = arg;
6011
6012 /*
6013 * md_thread is a 'system-thread', it's priority should be very
6014 * high. We avoid resource deadlocks individually in each
6015 * raid personality. (RAID5 does preallocation) We also use RR and
6016 * the very same RT priority as kswapd, thus we will never get
6017 * into a priority inversion deadlock.
6018 *
6019 * we definitely have to have equal or higher priority than
6020 * bdflush, otherwise bdflush will deadlock if there are too
6021 * many dirty RAID5 blocks.
6022 */
6023
6024 allow_signal(SIGKILL);
6025 while (!kthread_should_stop()) {
6026
6027 /* We need to wait INTERRUPTIBLE so that
6028 * we don't add to the load-average.
6029 * That means we need to be sure no signals are
6030 * pending
6031 */
6032 if (signal_pending(current))
6033 flush_signals(current);
6034
6035 wait_event_interruptible_timeout
6036 (thread->wqueue,
6037 test_bit(THREAD_WAKEUP, &thread->flags)
6038 || kthread_should_stop(),
6039 thread->timeout);
6040
6041 clear_bit(THREAD_WAKEUP, &thread->flags);
6042
6043 thread->run(thread->mddev);
6044 }
6045
6046 return 0;
6047 }
6048
6049 void md_wakeup_thread(mdk_thread_t *thread)
6050 {
6051 if (thread) {
6052 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
6053 set_bit(THREAD_WAKEUP, &thread->flags);
6054 wake_up(&thread->wqueue);
6055 }
6056 }
6057
6058 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
6059 const char *name)
6060 {
6061 mdk_thread_t *thread;
6062
6063 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
6064 if (!thread)
6065 return NULL;
6066
6067 init_waitqueue_head(&thread->wqueue);
6068
6069 thread->run = run;
6070 thread->mddev = mddev;
6071 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6072 thread->tsk = kthread_run(md_thread, thread,
6073 "%s_%s",
6074 mdname(thread->mddev),
6075 name ?: mddev->pers->name);
6076 if (IS_ERR(thread->tsk)) {
6077 kfree(thread);
6078 return NULL;
6079 }
6080 return thread;
6081 }
6082
6083 void md_unregister_thread(mdk_thread_t *thread)
6084 {
6085 if (!thread)
6086 return;
6087 dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6088
6089 kthread_stop(thread->tsk);
6090 kfree(thread);
6091 }
6092
6093 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
6094 {
6095 if (!mddev) {
6096 MD_BUG();
6097 return;
6098 }
6099
6100 if (!rdev || test_bit(Faulty, &rdev->flags))
6101 return;
6102
6103 if (mddev->external)
6104 set_bit(Blocked, &rdev->flags);
6105 /*
6106 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
6107 mdname(mddev),
6108 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
6109 __builtin_return_address(0),__builtin_return_address(1),
6110 __builtin_return_address(2),__builtin_return_address(3));
6111 */
6112 if (!mddev->pers)
6113 return;
6114 if (!mddev->pers->error_handler)
6115 return;
6116 mddev->pers->error_handler(mddev,rdev);
6117 if (mddev->degraded)
6118 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6119 sysfs_notify_dirent_safe(rdev->sysfs_state);
6120 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6121 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6122 md_wakeup_thread(mddev->thread);
6123 if (mddev->event_work.func)
6124 schedule_work(&mddev->event_work);
6125 md_new_event_inintr(mddev);
6126 }
6127
6128 /* seq_file implementation /proc/mdstat */
6129
6130 static void status_unused(struct seq_file *seq)
6131 {
6132 int i = 0;
6133 mdk_rdev_t *rdev;
6134
6135 seq_printf(seq, "unused devices: ");
6136
6137 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6138 char b[BDEVNAME_SIZE];
6139 i++;
6140 seq_printf(seq, "%s ",
6141 bdevname(rdev->bdev,b));
6142 }
6143 if (!i)
6144 seq_printf(seq, "<none>");
6145
6146 seq_printf(seq, "\n");
6147 }
6148
6149
6150 static void status_resync(struct seq_file *seq, mddev_t * mddev)
6151 {
6152 sector_t max_sectors, resync, res;
6153 unsigned long dt, db;
6154 sector_t rt;
6155 int scale;
6156 unsigned int per_milli;
6157
6158 resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6159
6160 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6161 max_sectors = mddev->resync_max_sectors;
6162 else
6163 max_sectors = mddev->dev_sectors;
6164
6165 /*
6166 * Should not happen.
6167 */
6168 if (!max_sectors) {
6169 MD_BUG();
6170 return;
6171 }
6172 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6173 * in a sector_t, and (max_sectors>>scale) will fit in a
6174 * u32, as those are the requirements for sector_div.
6175 * Thus 'scale' must be at least 10
6176 */
6177 scale = 10;
6178 if (sizeof(sector_t) > sizeof(unsigned long)) {
6179 while ( max_sectors/2 > (1ULL<<(scale+32)))
6180 scale++;
6181 }
6182 res = (resync>>scale)*1000;
6183 sector_div(res, (u32)((max_sectors>>scale)+1));
6184
6185 per_milli = res;
6186 {
6187 int i, x = per_milli/50, y = 20-x;
6188 seq_printf(seq, "[");
6189 for (i = 0; i < x; i++)
6190 seq_printf(seq, "=");
6191 seq_printf(seq, ">");
6192 for (i = 0; i < y; i++)
6193 seq_printf(seq, ".");
6194 seq_printf(seq, "] ");
6195 }
6196 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6197 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6198 "reshape" :
6199 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6200 "check" :
6201 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6202 "resync" : "recovery"))),
6203 per_milli/10, per_milli % 10,
6204 (unsigned long long) resync/2,
6205 (unsigned long long) max_sectors/2);
6206
6207 /*
6208 * dt: time from mark until now
6209 * db: blocks written from mark until now
6210 * rt: remaining time
6211 *
6212 * rt is a sector_t, so could be 32bit or 64bit.
6213 * So we divide before multiply in case it is 32bit and close
6214 * to the limit.
6215 * We scale the divisor (db) by 32 to avoid loosing precision
6216 * near the end of resync when the number of remaining sectors
6217 * is close to 'db'.
6218 * We then divide rt by 32 after multiplying by db to compensate.
6219 * The '+1' avoids division by zero if db is very small.
6220 */
6221 dt = ((jiffies - mddev->resync_mark) / HZ);
6222 if (!dt) dt++;
6223 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6224 - mddev->resync_mark_cnt;
6225
6226 rt = max_sectors - resync; /* number of remaining sectors */
6227 sector_div(rt, db/32+1);
6228 rt *= dt;
6229 rt >>= 5;
6230
6231 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6232 ((unsigned long)rt % 60)/6);
6233
6234 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6235 }
6236
6237 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6238 {
6239 struct list_head *tmp;
6240 loff_t l = *pos;
6241 mddev_t *mddev;
6242
6243 if (l >= 0x10000)
6244 return NULL;
6245 if (!l--)
6246 /* header */
6247 return (void*)1;
6248
6249 spin_lock(&all_mddevs_lock);
6250 list_for_each(tmp,&all_mddevs)
6251 if (!l--) {
6252 mddev = list_entry(tmp, mddev_t, all_mddevs);
6253 mddev_get(mddev);
6254 spin_unlock(&all_mddevs_lock);
6255 return mddev;
6256 }
6257 spin_unlock(&all_mddevs_lock);
6258 if (!l--)
6259 return (void*)2;/* tail */
6260 return NULL;
6261 }
6262
6263 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6264 {
6265 struct list_head *tmp;
6266 mddev_t *next_mddev, *mddev = v;
6267
6268 ++*pos;
6269 if (v == (void*)2)
6270 return NULL;
6271
6272 spin_lock(&all_mddevs_lock);
6273 if (v == (void*)1)
6274 tmp = all_mddevs.next;
6275 else
6276 tmp = mddev->all_mddevs.next;
6277 if (tmp != &all_mddevs)
6278 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
6279 else {
6280 next_mddev = (void*)2;
6281 *pos = 0x10000;
6282 }
6283 spin_unlock(&all_mddevs_lock);
6284
6285 if (v != (void*)1)
6286 mddev_put(mddev);
6287 return next_mddev;
6288
6289 }
6290
6291 static void md_seq_stop(struct seq_file *seq, void *v)
6292 {
6293 mddev_t *mddev = v;
6294
6295 if (mddev && v != (void*)1 && v != (void*)2)
6296 mddev_put(mddev);
6297 }
6298
6299 struct mdstat_info {
6300 int event;
6301 };
6302
6303 static int md_seq_show(struct seq_file *seq, void *v)
6304 {
6305 mddev_t *mddev = v;
6306 sector_t sectors;
6307 mdk_rdev_t *rdev;
6308 struct mdstat_info *mi = seq->private;
6309 struct bitmap *bitmap;
6310
6311 if (v == (void*)1) {
6312 struct mdk_personality *pers;
6313 seq_printf(seq, "Personalities : ");
6314 spin_lock(&pers_lock);
6315 list_for_each_entry(pers, &pers_list, list)
6316 seq_printf(seq, "[%s] ", pers->name);
6317
6318 spin_unlock(&pers_lock);
6319 seq_printf(seq, "\n");
6320 mi->event = atomic_read(&md_event_count);
6321 return 0;
6322 }
6323 if (v == (void*)2) {
6324 status_unused(seq);
6325 return 0;
6326 }
6327
6328 if (mddev_lock(mddev) < 0)
6329 return -EINTR;
6330
6331 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6332 seq_printf(seq, "%s : %sactive", mdname(mddev),
6333 mddev->pers ? "" : "in");
6334 if (mddev->pers) {
6335 if (mddev->ro==1)
6336 seq_printf(seq, " (read-only)");
6337 if (mddev->ro==2)
6338 seq_printf(seq, " (auto-read-only)");
6339 seq_printf(seq, " %s", mddev->pers->name);
6340 }
6341
6342 sectors = 0;
6343 list_for_each_entry(rdev, &mddev->disks, same_set) {
6344 char b[BDEVNAME_SIZE];
6345 seq_printf(seq, " %s[%d]",
6346 bdevname(rdev->bdev,b), rdev->desc_nr);
6347 if (test_bit(WriteMostly, &rdev->flags))
6348 seq_printf(seq, "(W)");
6349 if (test_bit(Faulty, &rdev->flags)) {
6350 seq_printf(seq, "(F)");
6351 continue;
6352 } else if (rdev->raid_disk < 0)
6353 seq_printf(seq, "(S)"); /* spare */
6354 sectors += rdev->sectors;
6355 }
6356
6357 if (!list_empty(&mddev->disks)) {
6358 if (mddev->pers)
6359 seq_printf(seq, "\n %llu blocks",
6360 (unsigned long long)
6361 mddev->array_sectors / 2);
6362 else
6363 seq_printf(seq, "\n %llu blocks",
6364 (unsigned long long)sectors / 2);
6365 }
6366 if (mddev->persistent) {
6367 if (mddev->major_version != 0 ||
6368 mddev->minor_version != 90) {
6369 seq_printf(seq," super %d.%d",
6370 mddev->major_version,
6371 mddev->minor_version);
6372 }
6373 } else if (mddev->external)
6374 seq_printf(seq, " super external:%s",
6375 mddev->metadata_type);
6376 else
6377 seq_printf(seq, " super non-persistent");
6378
6379 if (mddev->pers) {
6380 mddev->pers->status(seq, mddev);
6381 seq_printf(seq, "\n ");
6382 if (mddev->pers->sync_request) {
6383 if (mddev->curr_resync > 2) {
6384 status_resync(seq, mddev);
6385 seq_printf(seq, "\n ");
6386 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6387 seq_printf(seq, "\tresync=DELAYED\n ");
6388 else if (mddev->recovery_cp < MaxSector)
6389 seq_printf(seq, "\tresync=PENDING\n ");
6390 }
6391 } else
6392 seq_printf(seq, "\n ");
6393
6394 if ((bitmap = mddev->bitmap)) {
6395 unsigned long chunk_kb;
6396 unsigned long flags;
6397 spin_lock_irqsave(&bitmap->lock, flags);
6398 chunk_kb = mddev->bitmap_info.chunksize >> 10;
6399 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6400 "%lu%s chunk",
6401 bitmap->pages - bitmap->missing_pages,
6402 bitmap->pages,
6403 (bitmap->pages - bitmap->missing_pages)
6404 << (PAGE_SHIFT - 10),
6405 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
6406 chunk_kb ? "KB" : "B");
6407 if (bitmap->file) {
6408 seq_printf(seq, ", file: ");
6409 seq_path(seq, &bitmap->file->f_path, " \t\n");
6410 }
6411
6412 seq_printf(seq, "\n");
6413 spin_unlock_irqrestore(&bitmap->lock, flags);
6414 }
6415
6416 seq_printf(seq, "\n");
6417 }
6418 mddev_unlock(mddev);
6419
6420 return 0;
6421 }
6422
6423 static const struct seq_operations md_seq_ops = {
6424 .start = md_seq_start,
6425 .next = md_seq_next,
6426 .stop = md_seq_stop,
6427 .show = md_seq_show,
6428 };
6429
6430 static int md_seq_open(struct inode *inode, struct file *file)
6431 {
6432 int error;
6433 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
6434 if (mi == NULL)
6435 return -ENOMEM;
6436
6437 error = seq_open(file, &md_seq_ops);
6438 if (error)
6439 kfree(mi);
6440 else {
6441 struct seq_file *p = file->private_data;
6442 p->private = mi;
6443 mi->event = atomic_read(&md_event_count);
6444 }
6445 return error;
6446 }
6447
6448 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6449 {
6450 struct seq_file *m = filp->private_data;
6451 struct mdstat_info *mi = m->private;
6452 int mask;
6453
6454 poll_wait(filp, &md_event_waiters, wait);
6455
6456 /* always allow read */
6457 mask = POLLIN | POLLRDNORM;
6458
6459 if (mi->event != atomic_read(&md_event_count))
6460 mask |= POLLERR | POLLPRI;
6461 return mask;
6462 }
6463
6464 static const struct file_operations md_seq_fops = {
6465 .owner = THIS_MODULE,
6466 .open = md_seq_open,
6467 .read = seq_read,
6468 .llseek = seq_lseek,
6469 .release = seq_release_private,
6470 .poll = mdstat_poll,
6471 };
6472
6473 int register_md_personality(struct mdk_personality *p)
6474 {
6475 spin_lock(&pers_lock);
6476 list_add_tail(&p->list, &pers_list);
6477 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6478 spin_unlock(&pers_lock);
6479 return 0;
6480 }
6481
6482 int unregister_md_personality(struct mdk_personality *p)
6483 {
6484 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6485 spin_lock(&pers_lock);
6486 list_del_init(&p->list);
6487 spin_unlock(&pers_lock);
6488 return 0;
6489 }
6490
6491 static int is_mddev_idle(mddev_t *mddev, int init)
6492 {
6493 mdk_rdev_t * rdev;
6494 int idle;
6495 int curr_events;
6496
6497 idle = 1;
6498 rcu_read_lock();
6499 rdev_for_each_rcu(rdev, mddev) {
6500 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6501 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6502 (int)part_stat_read(&disk->part0, sectors[1]) -
6503 atomic_read(&disk->sync_io);
6504 /* sync IO will cause sync_io to increase before the disk_stats
6505 * as sync_io is counted when a request starts, and
6506 * disk_stats is counted when it completes.
6507 * So resync activity will cause curr_events to be smaller than
6508 * when there was no such activity.
6509 * non-sync IO will cause disk_stat to increase without
6510 * increasing sync_io so curr_events will (eventually)
6511 * be larger than it was before. Once it becomes
6512 * substantially larger, the test below will cause
6513 * the array to appear non-idle, and resync will slow
6514 * down.
6515 * If there is a lot of outstanding resync activity when
6516 * we set last_event to curr_events, then all that activity
6517 * completing might cause the array to appear non-idle
6518 * and resync will be slowed down even though there might
6519 * not have been non-resync activity. This will only
6520 * happen once though. 'last_events' will soon reflect
6521 * the state where there is little or no outstanding
6522 * resync requests, and further resync activity will
6523 * always make curr_events less than last_events.
6524 *
6525 */
6526 if (init || curr_events - rdev->last_events > 64) {
6527 rdev->last_events = curr_events;
6528 idle = 0;
6529 }
6530 }
6531 rcu_read_unlock();
6532 return idle;
6533 }
6534
6535 void md_done_sync(mddev_t *mddev, int blocks, int ok)
6536 {
6537 /* another "blocks" (512byte) blocks have been synced */
6538 atomic_sub(blocks, &mddev->recovery_active);
6539 wake_up(&mddev->recovery_wait);
6540 if (!ok) {
6541 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6542 md_wakeup_thread(mddev->thread);
6543 // stop recovery, signal do_sync ....
6544 }
6545 }
6546
6547
6548 /* md_write_start(mddev, bi)
6549 * If we need to update some array metadata (e.g. 'active' flag
6550 * in superblock) before writing, schedule a superblock update
6551 * and wait for it to complete.
6552 */
6553 void md_write_start(mddev_t *mddev, struct bio *bi)
6554 {
6555 int did_change = 0;
6556 if (bio_data_dir(bi) != WRITE)
6557 return;
6558
6559 BUG_ON(mddev->ro == 1);
6560 if (mddev->ro == 2) {
6561 /* need to switch to read/write */
6562 mddev->ro = 0;
6563 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6564 md_wakeup_thread(mddev->thread);
6565 md_wakeup_thread(mddev->sync_thread);
6566 did_change = 1;
6567 }
6568 atomic_inc(&mddev->writes_pending);
6569 if (mddev->safemode == 1)
6570 mddev->safemode = 0;
6571 if (mddev->in_sync) {
6572 spin_lock_irq(&mddev->write_lock);
6573 if (mddev->in_sync) {
6574 mddev->in_sync = 0;
6575 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6576 md_wakeup_thread(mddev->thread);
6577 did_change = 1;
6578 }
6579 spin_unlock_irq(&mddev->write_lock);
6580 }
6581 if (did_change)
6582 sysfs_notify_dirent_safe(mddev->sysfs_state);
6583 wait_event(mddev->sb_wait,
6584 !test_bit(MD_CHANGE_CLEAN, &mddev->flags) &&
6585 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6586 }
6587
6588 void md_write_end(mddev_t *mddev)
6589 {
6590 if (atomic_dec_and_test(&mddev->writes_pending)) {
6591 if (mddev->safemode == 2)
6592 md_wakeup_thread(mddev->thread);
6593 else if (mddev->safemode_delay)
6594 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6595 }
6596 }
6597
6598 /* md_allow_write(mddev)
6599 * Calling this ensures that the array is marked 'active' so that writes
6600 * may proceed without blocking. It is important to call this before
6601 * attempting a GFP_KERNEL allocation while holding the mddev lock.
6602 * Must be called with mddev_lock held.
6603 *
6604 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6605 * is dropped, so return -EAGAIN after notifying userspace.
6606 */
6607 int md_allow_write(mddev_t *mddev)
6608 {
6609 if (!mddev->pers)
6610 return 0;
6611 if (mddev->ro)
6612 return 0;
6613 if (!mddev->pers->sync_request)
6614 return 0;
6615
6616 spin_lock_irq(&mddev->write_lock);
6617 if (mddev->in_sync) {
6618 mddev->in_sync = 0;
6619 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6620 if (mddev->safemode_delay &&
6621 mddev->safemode == 0)
6622 mddev->safemode = 1;
6623 spin_unlock_irq(&mddev->write_lock);
6624 md_update_sb(mddev, 0);
6625 sysfs_notify_dirent_safe(mddev->sysfs_state);
6626 } else
6627 spin_unlock_irq(&mddev->write_lock);
6628
6629 if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
6630 return -EAGAIN;
6631 else
6632 return 0;
6633 }
6634 EXPORT_SYMBOL_GPL(md_allow_write);
6635
6636 void md_unplug(mddev_t *mddev)
6637 {
6638 if (mddev->queue)
6639 blk_unplug(mddev->queue);
6640 if (mddev->plug)
6641 mddev->plug->unplug_fn(mddev->plug);
6642 }
6643
6644 #define SYNC_MARKS 10
6645 #define SYNC_MARK_STEP (3*HZ)
6646 void md_do_sync(mddev_t *mddev)
6647 {
6648 mddev_t *mddev2;
6649 unsigned int currspeed = 0,
6650 window;
6651 sector_t max_sectors,j, io_sectors;
6652 unsigned long mark[SYNC_MARKS];
6653 sector_t mark_cnt[SYNC_MARKS];
6654 int last_mark,m;
6655 struct list_head *tmp;
6656 sector_t last_check;
6657 int skipped = 0;
6658 mdk_rdev_t *rdev;
6659 char *desc;
6660
6661 /* just incase thread restarts... */
6662 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
6663 return;
6664 if (mddev->ro) /* never try to sync a read-only array */
6665 return;
6666
6667 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6668 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
6669 desc = "data-check";
6670 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6671 desc = "requested-resync";
6672 else
6673 desc = "resync";
6674 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6675 desc = "reshape";
6676 else
6677 desc = "recovery";
6678
6679 /* we overload curr_resync somewhat here.
6680 * 0 == not engaged in resync at all
6681 * 2 == checking that there is no conflict with another sync
6682 * 1 == like 2, but have yielded to allow conflicting resync to
6683 * commense
6684 * other == active in resync - this many blocks
6685 *
6686 * Before starting a resync we must have set curr_resync to
6687 * 2, and then checked that every "conflicting" array has curr_resync
6688 * less than ours. When we find one that is the same or higher
6689 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
6690 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
6691 * This will mean we have to start checking from the beginning again.
6692 *
6693 */
6694
6695 do {
6696 mddev->curr_resync = 2;
6697
6698 try_again:
6699 if (kthread_should_stop())
6700 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6701
6702 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6703 goto skip;
6704 for_each_mddev(mddev2, tmp) {
6705 if (mddev2 == mddev)
6706 continue;
6707 if (!mddev->parallel_resync
6708 && mddev2->curr_resync
6709 && match_mddev_units(mddev, mddev2)) {
6710 DEFINE_WAIT(wq);
6711 if (mddev < mddev2 && mddev->curr_resync == 2) {
6712 /* arbitrarily yield */
6713 mddev->curr_resync = 1;
6714 wake_up(&resync_wait);
6715 }
6716 if (mddev > mddev2 && mddev->curr_resync == 1)
6717 /* no need to wait here, we can wait the next
6718 * time 'round when curr_resync == 2
6719 */
6720 continue;
6721 /* We need to wait 'interruptible' so as not to
6722 * contribute to the load average, and not to
6723 * be caught by 'softlockup'
6724 */
6725 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
6726 if (!kthread_should_stop() &&
6727 mddev2->curr_resync >= mddev->curr_resync) {
6728 printk(KERN_INFO "md: delaying %s of %s"
6729 " until %s has finished (they"
6730 " share one or more physical units)\n",
6731 desc, mdname(mddev), mdname(mddev2));
6732 mddev_put(mddev2);
6733 if (signal_pending(current))
6734 flush_signals(current);
6735 schedule();
6736 finish_wait(&resync_wait, &wq);
6737 goto try_again;
6738 }
6739 finish_wait(&resync_wait, &wq);
6740 }
6741 }
6742 } while (mddev->curr_resync < 2);
6743
6744 j = 0;
6745 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6746 /* resync follows the size requested by the personality,
6747 * which defaults to physical size, but can be virtual size
6748 */
6749 max_sectors = mddev->resync_max_sectors;
6750 mddev->resync_mismatches = 0;
6751 /* we don't use the checkpoint if there's a bitmap */
6752 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6753 j = mddev->resync_min;
6754 else if (!mddev->bitmap)
6755 j = mddev->recovery_cp;
6756
6757 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6758 max_sectors = mddev->dev_sectors;
6759 else {
6760 /* recovery follows the physical size of devices */
6761 max_sectors = mddev->dev_sectors;
6762 j = MaxSector;
6763 rcu_read_lock();
6764 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
6765 if (rdev->raid_disk >= 0 &&
6766 !test_bit(Faulty, &rdev->flags) &&
6767 !test_bit(In_sync, &rdev->flags) &&
6768 rdev->recovery_offset < j)
6769 j = rdev->recovery_offset;
6770 rcu_read_unlock();
6771 }
6772
6773 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
6774 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
6775 " %d KB/sec/disk.\n", speed_min(mddev));
6776 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
6777 "(but not more than %d KB/sec) for %s.\n",
6778 speed_max(mddev), desc);
6779
6780 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
6781
6782 io_sectors = 0;
6783 for (m = 0; m < SYNC_MARKS; m++) {
6784 mark[m] = jiffies;
6785 mark_cnt[m] = io_sectors;
6786 }
6787 last_mark = 0;
6788 mddev->resync_mark = mark[last_mark];
6789 mddev->resync_mark_cnt = mark_cnt[last_mark];
6790
6791 /*
6792 * Tune reconstruction:
6793 */
6794 window = 32*(PAGE_SIZE/512);
6795 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
6796 window/2,(unsigned long long) max_sectors/2);
6797
6798 atomic_set(&mddev->recovery_active, 0);
6799 last_check = 0;
6800
6801 if (j>2) {
6802 printk(KERN_INFO
6803 "md: resuming %s of %s from checkpoint.\n",
6804 desc, mdname(mddev));
6805 mddev->curr_resync = j;
6806 }
6807 mddev->curr_resync_completed = mddev->curr_resync;
6808
6809 while (j < max_sectors) {
6810 sector_t sectors;
6811
6812 skipped = 0;
6813
6814 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
6815 ((mddev->curr_resync > mddev->curr_resync_completed &&
6816 (mddev->curr_resync - mddev->curr_resync_completed)
6817 > (max_sectors >> 4)) ||
6818 (j - mddev->curr_resync_completed)*2
6819 >= mddev->resync_max - mddev->curr_resync_completed
6820 )) {
6821 /* time to update curr_resync_completed */
6822 md_unplug(mddev);
6823 wait_event(mddev->recovery_wait,
6824 atomic_read(&mddev->recovery_active) == 0);
6825 mddev->curr_resync_completed =
6826 mddev->curr_resync;
6827 if (mddev->persistent)
6828 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6829 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6830 }
6831
6832 while (j >= mddev->resync_max && !kthread_should_stop()) {
6833 /* As this condition is controlled by user-space,
6834 * we can block indefinitely, so use '_interruptible'
6835 * to avoid triggering warnings.
6836 */
6837 flush_signals(current); /* just in case */
6838 wait_event_interruptible(mddev->recovery_wait,
6839 mddev->resync_max > j
6840 || kthread_should_stop());
6841 }
6842
6843 if (kthread_should_stop())
6844 goto interrupted;
6845
6846 sectors = mddev->pers->sync_request(mddev, j, &skipped,
6847 currspeed < speed_min(mddev));
6848 if (sectors == 0) {
6849 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6850 goto out;
6851 }
6852
6853 if (!skipped) { /* actual IO requested */
6854 io_sectors += sectors;
6855 atomic_add(sectors, &mddev->recovery_active);
6856 }
6857
6858 j += sectors;
6859 if (j>1) mddev->curr_resync = j;
6860 mddev->curr_mark_cnt = io_sectors;
6861 if (last_check == 0)
6862 /* this is the earliers that rebuilt will be
6863 * visible in /proc/mdstat
6864 */
6865 md_new_event(mddev);
6866
6867 if (last_check + window > io_sectors || j == max_sectors)
6868 continue;
6869
6870 last_check = io_sectors;
6871
6872 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6873 break;
6874
6875 repeat:
6876 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
6877 /* step marks */
6878 int next = (last_mark+1) % SYNC_MARKS;
6879
6880 mddev->resync_mark = mark[next];
6881 mddev->resync_mark_cnt = mark_cnt[next];
6882 mark[next] = jiffies;
6883 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
6884 last_mark = next;
6885 }
6886
6887
6888 if (kthread_should_stop())
6889 goto interrupted;
6890
6891
6892 /*
6893 * this loop exits only if either when we are slower than
6894 * the 'hard' speed limit, or the system was IO-idle for
6895 * a jiffy.
6896 * the system might be non-idle CPU-wise, but we only care
6897 * about not overloading the IO subsystem. (things like an
6898 * e2fsck being done on the RAID array should execute fast)
6899 */
6900 md_unplug(mddev);
6901 cond_resched();
6902
6903 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
6904 /((jiffies-mddev->resync_mark)/HZ +1) +1;
6905
6906 if (currspeed > speed_min(mddev)) {
6907 if ((currspeed > speed_max(mddev)) ||
6908 !is_mddev_idle(mddev, 0)) {
6909 msleep(500);
6910 goto repeat;
6911 }
6912 }
6913 }
6914 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
6915 /*
6916 * this also signals 'finished resyncing' to md_stop
6917 */
6918 out:
6919 md_unplug(mddev);
6920
6921 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
6922
6923 /* tell personality that we are finished */
6924 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
6925
6926 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
6927 mddev->curr_resync > 2) {
6928 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6929 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6930 if (mddev->curr_resync >= mddev->recovery_cp) {
6931 printk(KERN_INFO
6932 "md: checkpointing %s of %s.\n",
6933 desc, mdname(mddev));
6934 mddev->recovery_cp = mddev->curr_resync;
6935 }
6936 } else
6937 mddev->recovery_cp = MaxSector;
6938 } else {
6939 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6940 mddev->curr_resync = MaxSector;
6941 rcu_read_lock();
6942 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
6943 if (rdev->raid_disk >= 0 &&
6944 mddev->delta_disks >= 0 &&
6945 !test_bit(Faulty, &rdev->flags) &&
6946 !test_bit(In_sync, &rdev->flags) &&
6947 rdev->recovery_offset < mddev->curr_resync)
6948 rdev->recovery_offset = mddev->curr_resync;
6949 rcu_read_unlock();
6950 }
6951 }
6952 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6953
6954 skip:
6955 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6956 /* We completed so min/max setting can be forgotten if used. */
6957 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6958 mddev->resync_min = 0;
6959 mddev->resync_max = MaxSector;
6960 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6961 mddev->resync_min = mddev->curr_resync_completed;
6962 mddev->curr_resync = 0;
6963 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6964 mddev->curr_resync_completed = 0;
6965 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6966 wake_up(&resync_wait);
6967 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
6968 md_wakeup_thread(mddev->thread);
6969 return;
6970
6971 interrupted:
6972 /*
6973 * got a signal, exit.
6974 */
6975 printk(KERN_INFO
6976 "md: md_do_sync() got signal ... exiting\n");
6977 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6978 goto out;
6979
6980 }
6981 EXPORT_SYMBOL_GPL(md_do_sync);
6982
6983
6984 static int remove_and_add_spares(mddev_t *mddev)
6985 {
6986 mdk_rdev_t *rdev;
6987 int spares = 0;
6988
6989 mddev->curr_resync_completed = 0;
6990
6991 list_for_each_entry(rdev, &mddev->disks, same_set)
6992 if (rdev->raid_disk >= 0 &&
6993 !test_bit(Blocked, &rdev->flags) &&
6994 (test_bit(Faulty, &rdev->flags) ||
6995 ! test_bit(In_sync, &rdev->flags)) &&
6996 atomic_read(&rdev->nr_pending)==0) {
6997 if (mddev->pers->hot_remove_disk(
6998 mddev, rdev->raid_disk)==0) {
6999 char nm[20];
7000 sprintf(nm,"rd%d", rdev->raid_disk);
7001 sysfs_remove_link(&mddev->kobj, nm);
7002 rdev->raid_disk = -1;
7003 }
7004 }
7005
7006 if (mddev->degraded && ! mddev->ro && !mddev->recovery_disabled) {
7007 list_for_each_entry(rdev, &mddev->disks, same_set) {
7008 if (rdev->raid_disk >= 0 &&
7009 !test_bit(In_sync, &rdev->flags) &&
7010 !test_bit(Blocked, &rdev->flags))
7011 spares++;
7012 if (rdev->raid_disk < 0
7013 && !test_bit(Faulty, &rdev->flags)) {
7014 rdev->recovery_offset = 0;
7015 if (mddev->pers->
7016 hot_add_disk(mddev, rdev) == 0) {
7017 char nm[20];
7018 sprintf(nm, "rd%d", rdev->raid_disk);
7019 if (sysfs_create_link(&mddev->kobj,
7020 &rdev->kobj, nm))
7021 /* failure here is OK */;
7022 spares++;
7023 md_new_event(mddev);
7024 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7025 } else
7026 break;
7027 }
7028 }
7029 }
7030 return spares;
7031 }
7032 /*
7033 * This routine is regularly called by all per-raid-array threads to
7034 * deal with generic issues like resync and super-block update.
7035 * Raid personalities that don't have a thread (linear/raid0) do not
7036 * need this as they never do any recovery or update the superblock.
7037 *
7038 * It does not do any resync itself, but rather "forks" off other threads
7039 * to do that as needed.
7040 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7041 * "->recovery" and create a thread at ->sync_thread.
7042 * When the thread finishes it sets MD_RECOVERY_DONE
7043 * and wakeups up this thread which will reap the thread and finish up.
7044 * This thread also removes any faulty devices (with nr_pending == 0).
7045 *
7046 * The overall approach is:
7047 * 1/ if the superblock needs updating, update it.
7048 * 2/ If a recovery thread is running, don't do anything else.
7049 * 3/ If recovery has finished, clean up, possibly marking spares active.
7050 * 4/ If there are any faulty devices, remove them.
7051 * 5/ If array is degraded, try to add spares devices
7052 * 6/ If array has spares or is not in-sync, start a resync thread.
7053 */
7054 void md_check_recovery(mddev_t *mddev)
7055 {
7056 mdk_rdev_t *rdev;
7057
7058
7059 if (mddev->bitmap)
7060 bitmap_daemon_work(mddev);
7061
7062 if (mddev->ro)
7063 return;
7064
7065 if (signal_pending(current)) {
7066 if (mddev->pers->sync_request && !mddev->external) {
7067 printk(KERN_INFO "md: %s in immediate safe mode\n",
7068 mdname(mddev));
7069 mddev->safemode = 2;
7070 }
7071 flush_signals(current);
7072 }
7073
7074 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7075 return;
7076 if ( ! (
7077 (mddev->flags && !mddev->external) ||
7078 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7079 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7080 (mddev->external == 0 && mddev->safemode == 1) ||
7081 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7082 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7083 ))
7084 return;
7085
7086 if (mddev_trylock(mddev)) {
7087 int spares = 0;
7088
7089 if (mddev->ro) {
7090 /* Only thing we do on a ro array is remove
7091 * failed devices.
7092 */
7093 remove_and_add_spares(mddev);
7094 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7095 goto unlock;
7096 }
7097
7098 if (!mddev->external) {
7099 int did_change = 0;
7100 spin_lock_irq(&mddev->write_lock);
7101 if (mddev->safemode &&
7102 !atomic_read(&mddev->writes_pending) &&
7103 !mddev->in_sync &&
7104 mddev->recovery_cp == MaxSector) {
7105 mddev->in_sync = 1;
7106 did_change = 1;
7107 if (mddev->persistent)
7108 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7109 }
7110 if (mddev->safemode == 1)
7111 mddev->safemode = 0;
7112 spin_unlock_irq(&mddev->write_lock);
7113 if (did_change)
7114 sysfs_notify_dirent_safe(mddev->sysfs_state);
7115 }
7116
7117 if (mddev->flags)
7118 md_update_sb(mddev, 0);
7119
7120 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7121 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7122 /* resync/recovery still happening */
7123 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7124 goto unlock;
7125 }
7126 if (mddev->sync_thread) {
7127 /* resync has finished, collect result */
7128 md_unregister_thread(mddev->sync_thread);
7129 mddev->sync_thread = NULL;
7130 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7131 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7132 /* success...*/
7133 /* activate any spares */
7134 if (mddev->pers->spare_active(mddev))
7135 sysfs_notify(&mddev->kobj, NULL,
7136 "degraded");
7137 }
7138 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7139 mddev->pers->finish_reshape)
7140 mddev->pers->finish_reshape(mddev);
7141 md_update_sb(mddev, 1);
7142
7143 /* if array is no-longer degraded, then any saved_raid_disk
7144 * information must be scrapped
7145 */
7146 if (!mddev->degraded)
7147 list_for_each_entry(rdev, &mddev->disks, same_set)
7148 rdev->saved_raid_disk = -1;
7149
7150 mddev->recovery = 0;
7151 /* flag recovery needed just to double check */
7152 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7153 sysfs_notify_dirent_safe(mddev->sysfs_action);
7154 md_new_event(mddev);
7155 goto unlock;
7156 }
7157 /* Set RUNNING before clearing NEEDED to avoid
7158 * any transients in the value of "sync_action".
7159 */
7160 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7161 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7162 /* Clear some bits that don't mean anything, but
7163 * might be left set
7164 */
7165 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7166 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7167
7168 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7169 goto unlock;
7170 /* no recovery is running.
7171 * remove any failed drives, then
7172 * add spares if possible.
7173 * Spare are also removed and re-added, to allow
7174 * the personality to fail the re-add.
7175 */
7176
7177 if (mddev->reshape_position != MaxSector) {
7178 if (mddev->pers->check_reshape == NULL ||
7179 mddev->pers->check_reshape(mddev) != 0)
7180 /* Cannot proceed */
7181 goto unlock;
7182 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7183 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7184 } else if ((spares = remove_and_add_spares(mddev))) {
7185 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7186 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7187 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7188 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7189 } else if (mddev->recovery_cp < MaxSector) {
7190 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7191 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7192 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7193 /* nothing to be done ... */
7194 goto unlock;
7195
7196 if (mddev->pers->sync_request) {
7197 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7198 /* We are adding a device or devices to an array
7199 * which has the bitmap stored on all devices.
7200 * So make sure all bitmap pages get written
7201 */
7202 bitmap_write_all(mddev->bitmap);
7203 }
7204 mddev->sync_thread = md_register_thread(md_do_sync,
7205 mddev,
7206 "resync");
7207 if (!mddev->sync_thread) {
7208 printk(KERN_ERR "%s: could not start resync"
7209 " thread...\n",
7210 mdname(mddev));
7211 /* leave the spares where they are, it shouldn't hurt */
7212 mddev->recovery = 0;
7213 } else
7214 md_wakeup_thread(mddev->sync_thread);
7215 sysfs_notify_dirent_safe(mddev->sysfs_action);
7216 md_new_event(mddev);
7217 }
7218 unlock:
7219 if (!mddev->sync_thread) {
7220 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7221 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7222 &mddev->recovery))
7223 if (mddev->sysfs_action)
7224 sysfs_notify_dirent_safe(mddev->sysfs_action);
7225 }
7226 mddev_unlock(mddev);
7227 }
7228 }
7229
7230 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
7231 {
7232 sysfs_notify_dirent_safe(rdev->sysfs_state);
7233 wait_event_timeout(rdev->blocked_wait,
7234 !test_bit(Blocked, &rdev->flags),
7235 msecs_to_jiffies(5000));
7236 rdev_dec_pending(rdev, mddev);
7237 }
7238 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7239
7240 static int md_notify_reboot(struct notifier_block *this,
7241 unsigned long code, void *x)
7242 {
7243 struct list_head *tmp;
7244 mddev_t *mddev;
7245
7246 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
7247
7248 printk(KERN_INFO "md: stopping all md devices.\n");
7249
7250 for_each_mddev(mddev, tmp)
7251 if (mddev_trylock(mddev)) {
7252 /* Force a switch to readonly even array
7253 * appears to still be in use. Hence
7254 * the '100'.
7255 */
7256 md_set_readonly(mddev, 100);
7257 mddev_unlock(mddev);
7258 }
7259 /*
7260 * certain more exotic SCSI devices are known to be
7261 * volatile wrt too early system reboots. While the
7262 * right place to handle this issue is the given
7263 * driver, we do want to have a safe RAID driver ...
7264 */
7265 mdelay(1000*1);
7266 }
7267 return NOTIFY_DONE;
7268 }
7269
7270 static struct notifier_block md_notifier = {
7271 .notifier_call = md_notify_reboot,
7272 .next = NULL,
7273 .priority = INT_MAX, /* before any real devices */
7274 };
7275
7276 static void md_geninit(void)
7277 {
7278 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
7279
7280 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
7281 }
7282
7283 static int __init md_init(void)
7284 {
7285 if (register_blkdev(MD_MAJOR, "md"))
7286 return -1;
7287 if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
7288 unregister_blkdev(MD_MAJOR, "md");
7289 return -1;
7290 }
7291 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
7292 md_probe, NULL, NULL);
7293 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
7294 md_probe, NULL, NULL);
7295
7296 register_reboot_notifier(&md_notifier);
7297 raid_table_header = register_sysctl_table(raid_root_table);
7298
7299 md_geninit();
7300 return 0;
7301 }
7302
7303
7304 #ifndef MODULE
7305
7306 /*
7307 * Searches all registered partitions for autorun RAID arrays
7308 * at boot time.
7309 */
7310
7311 static LIST_HEAD(all_detected_devices);
7312 struct detected_devices_node {
7313 struct list_head list;
7314 dev_t dev;
7315 };
7316
7317 void md_autodetect_dev(dev_t dev)
7318 {
7319 struct detected_devices_node *node_detected_dev;
7320
7321 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
7322 if (node_detected_dev) {
7323 node_detected_dev->dev = dev;
7324 list_add_tail(&node_detected_dev->list, &all_detected_devices);
7325 } else {
7326 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
7327 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
7328 }
7329 }
7330
7331
7332 static void autostart_arrays(int part)
7333 {
7334 mdk_rdev_t *rdev;
7335 struct detected_devices_node *node_detected_dev;
7336 dev_t dev;
7337 int i_scanned, i_passed;
7338
7339 i_scanned = 0;
7340 i_passed = 0;
7341
7342 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
7343
7344 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
7345 i_scanned++;
7346 node_detected_dev = list_entry(all_detected_devices.next,
7347 struct detected_devices_node, list);
7348 list_del(&node_detected_dev->list);
7349 dev = node_detected_dev->dev;
7350 kfree(node_detected_dev);
7351 rdev = md_import_device(dev,0, 90);
7352 if (IS_ERR(rdev))
7353 continue;
7354
7355 if (test_bit(Faulty, &rdev->flags)) {
7356 MD_BUG();
7357 continue;
7358 }
7359 set_bit(AutoDetected, &rdev->flags);
7360 list_add(&rdev->same_set, &pending_raid_disks);
7361 i_passed++;
7362 }
7363
7364 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
7365 i_scanned, i_passed);
7366
7367 autorun_devices(part);
7368 }
7369
7370 #endif /* !MODULE */
7371
7372 static __exit void md_exit(void)
7373 {
7374 mddev_t *mddev;
7375 struct list_head *tmp;
7376
7377 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
7378 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
7379
7380 unregister_blkdev(MD_MAJOR,"md");
7381 unregister_blkdev(mdp_major, "mdp");
7382 unregister_reboot_notifier(&md_notifier);
7383 unregister_sysctl_table(raid_table_header);
7384 remove_proc_entry("mdstat", NULL);
7385 for_each_mddev(mddev, tmp) {
7386 export_array(mddev);
7387 mddev->hold_active = 0;
7388 }
7389 }
7390
7391 subsys_initcall(md_init);
7392 module_exit(md_exit)
7393
7394 static int get_ro(char *buffer, struct kernel_param *kp)
7395 {
7396 return sprintf(buffer, "%d", start_readonly);
7397 }
7398 static int set_ro(const char *val, struct kernel_param *kp)
7399 {
7400 char *e;
7401 int num = simple_strtoul(val, &e, 10);
7402 if (*val && (*e == '\0' || *e == '\n')) {
7403 start_readonly = num;
7404 return 0;
7405 }
7406 return -EINVAL;
7407 }
7408
7409 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
7410 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
7411
7412 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
7413
7414 EXPORT_SYMBOL(register_md_personality);
7415 EXPORT_SYMBOL(unregister_md_personality);
7416 EXPORT_SYMBOL(md_error);
7417 EXPORT_SYMBOL(md_done_sync);
7418 EXPORT_SYMBOL(md_write_start);
7419 EXPORT_SYMBOL(md_write_end);
7420 EXPORT_SYMBOL(md_register_thread);
7421 EXPORT_SYMBOL(md_unregister_thread);
7422 EXPORT_SYMBOL(md_wakeup_thread);
7423 EXPORT_SYMBOL(md_check_recovery);
7424 MODULE_LICENSE("GPL");
7425 MODULE_DESCRIPTION("MD RAID framework");
7426 MODULE_ALIAS("md");
7427 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
This page took 0.186673 seconds and 5 git commands to generate.