Merge branch 'for-linus' of git://neil.brown.name/md
[deliverable/linux.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/buffer_head.h> /* for invalidate_bdev */
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/hdreg.h>
43 #include <linux/proc_fs.h>
44 #include <linux/random.h>
45 #include <linux/reboot.h>
46 #include <linux/file.h>
47 #include <linux/delay.h>
48 #include <linux/raid/md_p.h>
49 #include <linux/raid/md_u.h>
50 #include "md.h"
51 #include "bitmap.h"
52
53 #define DEBUG 0
54 #define dprintk(x...) ((void)(DEBUG && printk(x)))
55
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 static LIST_HEAD(pers_list);
62 static DEFINE_SPINLOCK(pers_lock);
63
64 static void md_print_devices(void);
65
66 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
67
68 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
69
70 /*
71 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
72 * is 1000 KB/sec, so the extra system load does not show up that much.
73 * Increase it if you want to have more _guaranteed_ speed. Note that
74 * the RAID driver will use the maximum available bandwidth if the IO
75 * subsystem is idle. There is also an 'absolute maximum' reconstruction
76 * speed limit - in case reconstruction slows down your system despite
77 * idle IO detection.
78 *
79 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
80 * or /sys/block/mdX/md/sync_speed_{min,max}
81 */
82
83 static int sysctl_speed_limit_min = 1000;
84 static int sysctl_speed_limit_max = 200000;
85 static inline int speed_min(mddev_t *mddev)
86 {
87 return mddev->sync_speed_min ?
88 mddev->sync_speed_min : sysctl_speed_limit_min;
89 }
90
91 static inline int speed_max(mddev_t *mddev)
92 {
93 return mddev->sync_speed_max ?
94 mddev->sync_speed_max : sysctl_speed_limit_max;
95 }
96
97 static struct ctl_table_header *raid_table_header;
98
99 static ctl_table raid_table[] = {
100 {
101 .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
102 .procname = "speed_limit_min",
103 .data = &sysctl_speed_limit_min,
104 .maxlen = sizeof(int),
105 .mode = S_IRUGO|S_IWUSR,
106 .proc_handler = &proc_dointvec,
107 },
108 {
109 .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
110 .procname = "speed_limit_max",
111 .data = &sysctl_speed_limit_max,
112 .maxlen = sizeof(int),
113 .mode = S_IRUGO|S_IWUSR,
114 .proc_handler = &proc_dointvec,
115 },
116 { .ctl_name = 0 }
117 };
118
119 static ctl_table raid_dir_table[] = {
120 {
121 .ctl_name = DEV_RAID,
122 .procname = "raid",
123 .maxlen = 0,
124 .mode = S_IRUGO|S_IXUGO,
125 .child = raid_table,
126 },
127 { .ctl_name = 0 }
128 };
129
130 static ctl_table raid_root_table[] = {
131 {
132 .ctl_name = CTL_DEV,
133 .procname = "dev",
134 .maxlen = 0,
135 .mode = 0555,
136 .child = raid_dir_table,
137 },
138 { .ctl_name = 0 }
139 };
140
141 static struct block_device_operations md_fops;
142
143 static int start_readonly;
144
145 /*
146 * We have a system wide 'event count' that is incremented
147 * on any 'interesting' event, and readers of /proc/mdstat
148 * can use 'poll' or 'select' to find out when the event
149 * count increases.
150 *
151 * Events are:
152 * start array, stop array, error, add device, remove device,
153 * start build, activate spare
154 */
155 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
156 static atomic_t md_event_count;
157 void md_new_event(mddev_t *mddev)
158 {
159 atomic_inc(&md_event_count);
160 wake_up(&md_event_waiters);
161 }
162 EXPORT_SYMBOL_GPL(md_new_event);
163
164 /* Alternate version that can be called from interrupts
165 * when calling sysfs_notify isn't needed.
166 */
167 static void md_new_event_inintr(mddev_t *mddev)
168 {
169 atomic_inc(&md_event_count);
170 wake_up(&md_event_waiters);
171 }
172
173 /*
174 * Enables to iterate over all existing md arrays
175 * all_mddevs_lock protects this list.
176 */
177 static LIST_HEAD(all_mddevs);
178 static DEFINE_SPINLOCK(all_mddevs_lock);
179
180
181 /*
182 * iterates through all used mddevs in the system.
183 * We take care to grab the all_mddevs_lock whenever navigating
184 * the list, and to always hold a refcount when unlocked.
185 * Any code which breaks out of this loop while own
186 * a reference to the current mddev and must mddev_put it.
187 */
188 #define for_each_mddev(mddev,tmp) \
189 \
190 for (({ spin_lock(&all_mddevs_lock); \
191 tmp = all_mddevs.next; \
192 mddev = NULL;}); \
193 ({ if (tmp != &all_mddevs) \
194 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
195 spin_unlock(&all_mddevs_lock); \
196 if (mddev) mddev_put(mddev); \
197 mddev = list_entry(tmp, mddev_t, all_mddevs); \
198 tmp != &all_mddevs;}); \
199 ({ spin_lock(&all_mddevs_lock); \
200 tmp = tmp->next;}) \
201 )
202
203
204 /* Rather than calling directly into the personality make_request function,
205 * IO requests come here first so that we can check if the device is
206 * being suspended pending a reconfiguration.
207 * We hold a refcount over the call to ->make_request. By the time that
208 * call has finished, the bio has been linked into some internal structure
209 * and so is visible to ->quiesce(), so we don't need the refcount any more.
210 */
211 static int md_make_request(struct request_queue *q, struct bio *bio)
212 {
213 mddev_t *mddev = q->queuedata;
214 int rv;
215 if (mddev == NULL || mddev->pers == NULL) {
216 bio_io_error(bio);
217 return 0;
218 }
219 rcu_read_lock();
220 if (mddev->suspended) {
221 DEFINE_WAIT(__wait);
222 for (;;) {
223 prepare_to_wait(&mddev->sb_wait, &__wait,
224 TASK_UNINTERRUPTIBLE);
225 if (!mddev->suspended)
226 break;
227 rcu_read_unlock();
228 schedule();
229 rcu_read_lock();
230 }
231 finish_wait(&mddev->sb_wait, &__wait);
232 }
233 atomic_inc(&mddev->active_io);
234 rcu_read_unlock();
235 rv = mddev->pers->make_request(q, bio);
236 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
237 wake_up(&mddev->sb_wait);
238
239 return rv;
240 }
241
242 static void mddev_suspend(mddev_t *mddev)
243 {
244 BUG_ON(mddev->suspended);
245 mddev->suspended = 1;
246 synchronize_rcu();
247 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
248 mddev->pers->quiesce(mddev, 1);
249 md_unregister_thread(mddev->thread);
250 mddev->thread = NULL;
251 /* we now know that no code is executing in the personality module,
252 * except possibly the tail end of a ->bi_end_io function, but that
253 * is certain to complete before the module has a chance to get
254 * unloaded
255 */
256 }
257
258 static void mddev_resume(mddev_t *mddev)
259 {
260 mddev->suspended = 0;
261 wake_up(&mddev->sb_wait);
262 mddev->pers->quiesce(mddev, 0);
263 }
264
265
266 static inline mddev_t *mddev_get(mddev_t *mddev)
267 {
268 atomic_inc(&mddev->active);
269 return mddev;
270 }
271
272 static void mddev_delayed_delete(struct work_struct *ws);
273
274 static void mddev_put(mddev_t *mddev)
275 {
276 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
277 return;
278 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
279 !mddev->hold_active) {
280 list_del(&mddev->all_mddevs);
281 if (mddev->gendisk) {
282 /* we did a probe so need to clean up.
283 * Call schedule_work inside the spinlock
284 * so that flush_scheduled_work() after
285 * mddev_find will succeed in waiting for the
286 * work to be done.
287 */
288 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
289 schedule_work(&mddev->del_work);
290 } else
291 kfree(mddev);
292 }
293 spin_unlock(&all_mddevs_lock);
294 }
295
296 static mddev_t * mddev_find(dev_t unit)
297 {
298 mddev_t *mddev, *new = NULL;
299
300 retry:
301 spin_lock(&all_mddevs_lock);
302
303 if (unit) {
304 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
305 if (mddev->unit == unit) {
306 mddev_get(mddev);
307 spin_unlock(&all_mddevs_lock);
308 kfree(new);
309 return mddev;
310 }
311
312 if (new) {
313 list_add(&new->all_mddevs, &all_mddevs);
314 spin_unlock(&all_mddevs_lock);
315 new->hold_active = UNTIL_IOCTL;
316 return new;
317 }
318 } else if (new) {
319 /* find an unused unit number */
320 static int next_minor = 512;
321 int start = next_minor;
322 int is_free = 0;
323 int dev = 0;
324 while (!is_free) {
325 dev = MKDEV(MD_MAJOR, next_minor);
326 next_minor++;
327 if (next_minor > MINORMASK)
328 next_minor = 0;
329 if (next_minor == start) {
330 /* Oh dear, all in use. */
331 spin_unlock(&all_mddevs_lock);
332 kfree(new);
333 return NULL;
334 }
335
336 is_free = 1;
337 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
338 if (mddev->unit == dev) {
339 is_free = 0;
340 break;
341 }
342 }
343 new->unit = dev;
344 new->md_minor = MINOR(dev);
345 new->hold_active = UNTIL_STOP;
346 list_add(&new->all_mddevs, &all_mddevs);
347 spin_unlock(&all_mddevs_lock);
348 return new;
349 }
350 spin_unlock(&all_mddevs_lock);
351
352 new = kzalloc(sizeof(*new), GFP_KERNEL);
353 if (!new)
354 return NULL;
355
356 new->unit = unit;
357 if (MAJOR(unit) == MD_MAJOR)
358 new->md_minor = MINOR(unit);
359 else
360 new->md_minor = MINOR(unit) >> MdpMinorShift;
361
362 mutex_init(&new->reconfig_mutex);
363 INIT_LIST_HEAD(&new->disks);
364 INIT_LIST_HEAD(&new->all_mddevs);
365 init_timer(&new->safemode_timer);
366 atomic_set(&new->active, 1);
367 atomic_set(&new->openers, 0);
368 atomic_set(&new->active_io, 0);
369 spin_lock_init(&new->write_lock);
370 init_waitqueue_head(&new->sb_wait);
371 init_waitqueue_head(&new->recovery_wait);
372 new->reshape_position = MaxSector;
373 new->resync_min = 0;
374 new->resync_max = MaxSector;
375 new->level = LEVEL_NONE;
376
377 goto retry;
378 }
379
380 static inline int mddev_lock(mddev_t * mddev)
381 {
382 return mutex_lock_interruptible(&mddev->reconfig_mutex);
383 }
384
385 static inline int mddev_is_locked(mddev_t *mddev)
386 {
387 return mutex_is_locked(&mddev->reconfig_mutex);
388 }
389
390 static inline int mddev_trylock(mddev_t * mddev)
391 {
392 return mutex_trylock(&mddev->reconfig_mutex);
393 }
394
395 static inline void mddev_unlock(mddev_t * mddev)
396 {
397 mutex_unlock(&mddev->reconfig_mutex);
398
399 md_wakeup_thread(mddev->thread);
400 }
401
402 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
403 {
404 mdk_rdev_t *rdev;
405
406 list_for_each_entry(rdev, &mddev->disks, same_set)
407 if (rdev->desc_nr == nr)
408 return rdev;
409
410 return NULL;
411 }
412
413 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
414 {
415 mdk_rdev_t *rdev;
416
417 list_for_each_entry(rdev, &mddev->disks, same_set)
418 if (rdev->bdev->bd_dev == dev)
419 return rdev;
420
421 return NULL;
422 }
423
424 static struct mdk_personality *find_pers(int level, char *clevel)
425 {
426 struct mdk_personality *pers;
427 list_for_each_entry(pers, &pers_list, list) {
428 if (level != LEVEL_NONE && pers->level == level)
429 return pers;
430 if (strcmp(pers->name, clevel)==0)
431 return pers;
432 }
433 return NULL;
434 }
435
436 /* return the offset of the super block in 512byte sectors */
437 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
438 {
439 sector_t num_sectors = bdev->bd_inode->i_size / 512;
440 return MD_NEW_SIZE_SECTORS(num_sectors);
441 }
442
443 static sector_t calc_num_sectors(mdk_rdev_t *rdev, unsigned chunk_size)
444 {
445 sector_t num_sectors = rdev->sb_start;
446
447 if (chunk_size)
448 num_sectors &= ~((sector_t)chunk_size/512 - 1);
449 return num_sectors;
450 }
451
452 static int alloc_disk_sb(mdk_rdev_t * rdev)
453 {
454 if (rdev->sb_page)
455 MD_BUG();
456
457 rdev->sb_page = alloc_page(GFP_KERNEL);
458 if (!rdev->sb_page) {
459 printk(KERN_ALERT "md: out of memory.\n");
460 return -ENOMEM;
461 }
462
463 return 0;
464 }
465
466 static void free_disk_sb(mdk_rdev_t * rdev)
467 {
468 if (rdev->sb_page) {
469 put_page(rdev->sb_page);
470 rdev->sb_loaded = 0;
471 rdev->sb_page = NULL;
472 rdev->sb_start = 0;
473 rdev->sectors = 0;
474 }
475 }
476
477
478 static void super_written(struct bio *bio, int error)
479 {
480 mdk_rdev_t *rdev = bio->bi_private;
481 mddev_t *mddev = rdev->mddev;
482
483 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
484 printk("md: super_written gets error=%d, uptodate=%d\n",
485 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
486 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
487 md_error(mddev, rdev);
488 }
489
490 if (atomic_dec_and_test(&mddev->pending_writes))
491 wake_up(&mddev->sb_wait);
492 bio_put(bio);
493 }
494
495 static void super_written_barrier(struct bio *bio, int error)
496 {
497 struct bio *bio2 = bio->bi_private;
498 mdk_rdev_t *rdev = bio2->bi_private;
499 mddev_t *mddev = rdev->mddev;
500
501 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
502 error == -EOPNOTSUPP) {
503 unsigned long flags;
504 /* barriers don't appear to be supported :-( */
505 set_bit(BarriersNotsupp, &rdev->flags);
506 mddev->barriers_work = 0;
507 spin_lock_irqsave(&mddev->write_lock, flags);
508 bio2->bi_next = mddev->biolist;
509 mddev->biolist = bio2;
510 spin_unlock_irqrestore(&mddev->write_lock, flags);
511 wake_up(&mddev->sb_wait);
512 bio_put(bio);
513 } else {
514 bio_put(bio2);
515 bio->bi_private = rdev;
516 super_written(bio, error);
517 }
518 }
519
520 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
521 sector_t sector, int size, struct page *page)
522 {
523 /* write first size bytes of page to sector of rdev
524 * Increment mddev->pending_writes before returning
525 * and decrement it on completion, waking up sb_wait
526 * if zero is reached.
527 * If an error occurred, call md_error
528 *
529 * As we might need to resubmit the request if BIO_RW_BARRIER
530 * causes ENOTSUPP, we allocate a spare bio...
531 */
532 struct bio *bio = bio_alloc(GFP_NOIO, 1);
533 int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNCIO) | (1<<BIO_RW_UNPLUG);
534
535 bio->bi_bdev = rdev->bdev;
536 bio->bi_sector = sector;
537 bio_add_page(bio, page, size, 0);
538 bio->bi_private = rdev;
539 bio->bi_end_io = super_written;
540 bio->bi_rw = rw;
541
542 atomic_inc(&mddev->pending_writes);
543 if (!test_bit(BarriersNotsupp, &rdev->flags)) {
544 struct bio *rbio;
545 rw |= (1<<BIO_RW_BARRIER);
546 rbio = bio_clone(bio, GFP_NOIO);
547 rbio->bi_private = bio;
548 rbio->bi_end_io = super_written_barrier;
549 submit_bio(rw, rbio);
550 } else
551 submit_bio(rw, bio);
552 }
553
554 void md_super_wait(mddev_t *mddev)
555 {
556 /* wait for all superblock writes that were scheduled to complete.
557 * if any had to be retried (due to BARRIER problems), retry them
558 */
559 DEFINE_WAIT(wq);
560 for(;;) {
561 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
562 if (atomic_read(&mddev->pending_writes)==0)
563 break;
564 while (mddev->biolist) {
565 struct bio *bio;
566 spin_lock_irq(&mddev->write_lock);
567 bio = mddev->biolist;
568 mddev->biolist = bio->bi_next ;
569 bio->bi_next = NULL;
570 spin_unlock_irq(&mddev->write_lock);
571 submit_bio(bio->bi_rw, bio);
572 }
573 schedule();
574 }
575 finish_wait(&mddev->sb_wait, &wq);
576 }
577
578 static void bi_complete(struct bio *bio, int error)
579 {
580 complete((struct completion*)bio->bi_private);
581 }
582
583 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
584 struct page *page, int rw)
585 {
586 struct bio *bio = bio_alloc(GFP_NOIO, 1);
587 struct completion event;
588 int ret;
589
590 rw |= (1 << BIO_RW_SYNCIO) | (1 << BIO_RW_UNPLUG);
591
592 bio->bi_bdev = bdev;
593 bio->bi_sector = sector;
594 bio_add_page(bio, page, size, 0);
595 init_completion(&event);
596 bio->bi_private = &event;
597 bio->bi_end_io = bi_complete;
598 submit_bio(rw, bio);
599 wait_for_completion(&event);
600
601 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
602 bio_put(bio);
603 return ret;
604 }
605 EXPORT_SYMBOL_GPL(sync_page_io);
606
607 static int read_disk_sb(mdk_rdev_t * rdev, int size)
608 {
609 char b[BDEVNAME_SIZE];
610 if (!rdev->sb_page) {
611 MD_BUG();
612 return -EINVAL;
613 }
614 if (rdev->sb_loaded)
615 return 0;
616
617
618 if (!sync_page_io(rdev->bdev, rdev->sb_start, size, rdev->sb_page, READ))
619 goto fail;
620 rdev->sb_loaded = 1;
621 return 0;
622
623 fail:
624 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
625 bdevname(rdev->bdev,b));
626 return -EINVAL;
627 }
628
629 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
630 {
631 return sb1->set_uuid0 == sb2->set_uuid0 &&
632 sb1->set_uuid1 == sb2->set_uuid1 &&
633 sb1->set_uuid2 == sb2->set_uuid2 &&
634 sb1->set_uuid3 == sb2->set_uuid3;
635 }
636
637 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
638 {
639 int ret;
640 mdp_super_t *tmp1, *tmp2;
641
642 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
643 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
644
645 if (!tmp1 || !tmp2) {
646 ret = 0;
647 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
648 goto abort;
649 }
650
651 *tmp1 = *sb1;
652 *tmp2 = *sb2;
653
654 /*
655 * nr_disks is not constant
656 */
657 tmp1->nr_disks = 0;
658 tmp2->nr_disks = 0;
659
660 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
661 abort:
662 kfree(tmp1);
663 kfree(tmp2);
664 return ret;
665 }
666
667
668 static u32 md_csum_fold(u32 csum)
669 {
670 csum = (csum & 0xffff) + (csum >> 16);
671 return (csum & 0xffff) + (csum >> 16);
672 }
673
674 static unsigned int calc_sb_csum(mdp_super_t * sb)
675 {
676 u64 newcsum = 0;
677 u32 *sb32 = (u32*)sb;
678 int i;
679 unsigned int disk_csum, csum;
680
681 disk_csum = sb->sb_csum;
682 sb->sb_csum = 0;
683
684 for (i = 0; i < MD_SB_BYTES/4 ; i++)
685 newcsum += sb32[i];
686 csum = (newcsum & 0xffffffff) + (newcsum>>32);
687
688
689 #ifdef CONFIG_ALPHA
690 /* This used to use csum_partial, which was wrong for several
691 * reasons including that different results are returned on
692 * different architectures. It isn't critical that we get exactly
693 * the same return value as before (we always csum_fold before
694 * testing, and that removes any differences). However as we
695 * know that csum_partial always returned a 16bit value on
696 * alphas, do a fold to maximise conformity to previous behaviour.
697 */
698 sb->sb_csum = md_csum_fold(disk_csum);
699 #else
700 sb->sb_csum = disk_csum;
701 #endif
702 return csum;
703 }
704
705
706 /*
707 * Handle superblock details.
708 * We want to be able to handle multiple superblock formats
709 * so we have a common interface to them all, and an array of
710 * different handlers.
711 * We rely on user-space to write the initial superblock, and support
712 * reading and updating of superblocks.
713 * Interface methods are:
714 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
715 * loads and validates a superblock on dev.
716 * if refdev != NULL, compare superblocks on both devices
717 * Return:
718 * 0 - dev has a superblock that is compatible with refdev
719 * 1 - dev has a superblock that is compatible and newer than refdev
720 * so dev should be used as the refdev in future
721 * -EINVAL superblock incompatible or invalid
722 * -othererror e.g. -EIO
723 *
724 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
725 * Verify that dev is acceptable into mddev.
726 * The first time, mddev->raid_disks will be 0, and data from
727 * dev should be merged in. Subsequent calls check that dev
728 * is new enough. Return 0 or -EINVAL
729 *
730 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
731 * Update the superblock for rdev with data in mddev
732 * This does not write to disc.
733 *
734 */
735
736 struct super_type {
737 char *name;
738 struct module *owner;
739 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
740 int minor_version);
741 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
742 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
743 unsigned long long (*rdev_size_change)(mdk_rdev_t *rdev,
744 sector_t num_sectors);
745 };
746
747 /*
748 * load_super for 0.90.0
749 */
750 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
751 {
752 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
753 mdp_super_t *sb;
754 int ret;
755
756 /*
757 * Calculate the position of the superblock (512byte sectors),
758 * it's at the end of the disk.
759 *
760 * It also happens to be a multiple of 4Kb.
761 */
762 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
763
764 ret = read_disk_sb(rdev, MD_SB_BYTES);
765 if (ret) return ret;
766
767 ret = -EINVAL;
768
769 bdevname(rdev->bdev, b);
770 sb = (mdp_super_t*)page_address(rdev->sb_page);
771
772 if (sb->md_magic != MD_SB_MAGIC) {
773 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
774 b);
775 goto abort;
776 }
777
778 if (sb->major_version != 0 ||
779 sb->minor_version < 90 ||
780 sb->minor_version > 91) {
781 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
782 sb->major_version, sb->minor_version,
783 b);
784 goto abort;
785 }
786
787 if (sb->raid_disks <= 0)
788 goto abort;
789
790 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
791 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
792 b);
793 goto abort;
794 }
795
796 rdev->preferred_minor = sb->md_minor;
797 rdev->data_offset = 0;
798 rdev->sb_size = MD_SB_BYTES;
799
800 if (sb->state & (1<<MD_SB_BITMAP_PRESENT)) {
801 if (sb->level != 1 && sb->level != 4
802 && sb->level != 5 && sb->level != 6
803 && sb->level != 10) {
804 /* FIXME use a better test */
805 printk(KERN_WARNING
806 "md: bitmaps not supported for this level.\n");
807 goto abort;
808 }
809 }
810
811 if (sb->level == LEVEL_MULTIPATH)
812 rdev->desc_nr = -1;
813 else
814 rdev->desc_nr = sb->this_disk.number;
815
816 if (!refdev) {
817 ret = 1;
818 } else {
819 __u64 ev1, ev2;
820 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
821 if (!uuid_equal(refsb, sb)) {
822 printk(KERN_WARNING "md: %s has different UUID to %s\n",
823 b, bdevname(refdev->bdev,b2));
824 goto abort;
825 }
826 if (!sb_equal(refsb, sb)) {
827 printk(KERN_WARNING "md: %s has same UUID"
828 " but different superblock to %s\n",
829 b, bdevname(refdev->bdev, b2));
830 goto abort;
831 }
832 ev1 = md_event(sb);
833 ev2 = md_event(refsb);
834 if (ev1 > ev2)
835 ret = 1;
836 else
837 ret = 0;
838 }
839 rdev->sectors = calc_num_sectors(rdev, sb->chunk_size);
840
841 if (rdev->sectors < sb->size * 2 && sb->level > 1)
842 /* "this cannot possibly happen" ... */
843 ret = -EINVAL;
844
845 abort:
846 return ret;
847 }
848
849 /*
850 * validate_super for 0.90.0
851 */
852 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
853 {
854 mdp_disk_t *desc;
855 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
856 __u64 ev1 = md_event(sb);
857
858 rdev->raid_disk = -1;
859 clear_bit(Faulty, &rdev->flags);
860 clear_bit(In_sync, &rdev->flags);
861 clear_bit(WriteMostly, &rdev->flags);
862 clear_bit(BarriersNotsupp, &rdev->flags);
863
864 if (mddev->raid_disks == 0) {
865 mddev->major_version = 0;
866 mddev->minor_version = sb->minor_version;
867 mddev->patch_version = sb->patch_version;
868 mddev->external = 0;
869 mddev->chunk_size = sb->chunk_size;
870 mddev->ctime = sb->ctime;
871 mddev->utime = sb->utime;
872 mddev->level = sb->level;
873 mddev->clevel[0] = 0;
874 mddev->layout = sb->layout;
875 mddev->raid_disks = sb->raid_disks;
876 mddev->dev_sectors = sb->size * 2;
877 mddev->events = ev1;
878 mddev->bitmap_offset = 0;
879 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
880
881 if (mddev->minor_version >= 91) {
882 mddev->reshape_position = sb->reshape_position;
883 mddev->delta_disks = sb->delta_disks;
884 mddev->new_level = sb->new_level;
885 mddev->new_layout = sb->new_layout;
886 mddev->new_chunk = sb->new_chunk;
887 } else {
888 mddev->reshape_position = MaxSector;
889 mddev->delta_disks = 0;
890 mddev->new_level = mddev->level;
891 mddev->new_layout = mddev->layout;
892 mddev->new_chunk = mddev->chunk_size;
893 }
894
895 if (sb->state & (1<<MD_SB_CLEAN))
896 mddev->recovery_cp = MaxSector;
897 else {
898 if (sb->events_hi == sb->cp_events_hi &&
899 sb->events_lo == sb->cp_events_lo) {
900 mddev->recovery_cp = sb->recovery_cp;
901 } else
902 mddev->recovery_cp = 0;
903 }
904
905 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
906 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
907 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
908 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
909
910 mddev->max_disks = MD_SB_DISKS;
911
912 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
913 mddev->bitmap_file == NULL)
914 mddev->bitmap_offset = mddev->default_bitmap_offset;
915
916 } else if (mddev->pers == NULL) {
917 /* Insist on good event counter while assembling */
918 ++ev1;
919 if (ev1 < mddev->events)
920 return -EINVAL;
921 } else if (mddev->bitmap) {
922 /* if adding to array with a bitmap, then we can accept an
923 * older device ... but not too old.
924 */
925 if (ev1 < mddev->bitmap->events_cleared)
926 return 0;
927 } else {
928 if (ev1 < mddev->events)
929 /* just a hot-add of a new device, leave raid_disk at -1 */
930 return 0;
931 }
932
933 if (mddev->level != LEVEL_MULTIPATH) {
934 desc = sb->disks + rdev->desc_nr;
935
936 if (desc->state & (1<<MD_DISK_FAULTY))
937 set_bit(Faulty, &rdev->flags);
938 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
939 desc->raid_disk < mddev->raid_disks */) {
940 set_bit(In_sync, &rdev->flags);
941 rdev->raid_disk = desc->raid_disk;
942 }
943 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
944 set_bit(WriteMostly, &rdev->flags);
945 } else /* MULTIPATH are always insync */
946 set_bit(In_sync, &rdev->flags);
947 return 0;
948 }
949
950 /*
951 * sync_super for 0.90.0
952 */
953 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
954 {
955 mdp_super_t *sb;
956 mdk_rdev_t *rdev2;
957 int next_spare = mddev->raid_disks;
958
959
960 /* make rdev->sb match mddev data..
961 *
962 * 1/ zero out disks
963 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
964 * 3/ any empty disks < next_spare become removed
965 *
966 * disks[0] gets initialised to REMOVED because
967 * we cannot be sure from other fields if it has
968 * been initialised or not.
969 */
970 int i;
971 int active=0, working=0,failed=0,spare=0,nr_disks=0;
972
973 rdev->sb_size = MD_SB_BYTES;
974
975 sb = (mdp_super_t*)page_address(rdev->sb_page);
976
977 memset(sb, 0, sizeof(*sb));
978
979 sb->md_magic = MD_SB_MAGIC;
980 sb->major_version = mddev->major_version;
981 sb->patch_version = mddev->patch_version;
982 sb->gvalid_words = 0; /* ignored */
983 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
984 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
985 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
986 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
987
988 sb->ctime = mddev->ctime;
989 sb->level = mddev->level;
990 sb->size = mddev->dev_sectors / 2;
991 sb->raid_disks = mddev->raid_disks;
992 sb->md_minor = mddev->md_minor;
993 sb->not_persistent = 0;
994 sb->utime = mddev->utime;
995 sb->state = 0;
996 sb->events_hi = (mddev->events>>32);
997 sb->events_lo = (u32)mddev->events;
998
999 if (mddev->reshape_position == MaxSector)
1000 sb->minor_version = 90;
1001 else {
1002 sb->minor_version = 91;
1003 sb->reshape_position = mddev->reshape_position;
1004 sb->new_level = mddev->new_level;
1005 sb->delta_disks = mddev->delta_disks;
1006 sb->new_layout = mddev->new_layout;
1007 sb->new_chunk = mddev->new_chunk;
1008 }
1009 mddev->minor_version = sb->minor_version;
1010 if (mddev->in_sync)
1011 {
1012 sb->recovery_cp = mddev->recovery_cp;
1013 sb->cp_events_hi = (mddev->events>>32);
1014 sb->cp_events_lo = (u32)mddev->events;
1015 if (mddev->recovery_cp == MaxSector)
1016 sb->state = (1<< MD_SB_CLEAN);
1017 } else
1018 sb->recovery_cp = 0;
1019
1020 sb->layout = mddev->layout;
1021 sb->chunk_size = mddev->chunk_size;
1022
1023 if (mddev->bitmap && mddev->bitmap_file == NULL)
1024 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1025
1026 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1027 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1028 mdp_disk_t *d;
1029 int desc_nr;
1030 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
1031 && !test_bit(Faulty, &rdev2->flags))
1032 desc_nr = rdev2->raid_disk;
1033 else
1034 desc_nr = next_spare++;
1035 rdev2->desc_nr = desc_nr;
1036 d = &sb->disks[rdev2->desc_nr];
1037 nr_disks++;
1038 d->number = rdev2->desc_nr;
1039 d->major = MAJOR(rdev2->bdev->bd_dev);
1040 d->minor = MINOR(rdev2->bdev->bd_dev);
1041 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
1042 && !test_bit(Faulty, &rdev2->flags))
1043 d->raid_disk = rdev2->raid_disk;
1044 else
1045 d->raid_disk = rdev2->desc_nr; /* compatibility */
1046 if (test_bit(Faulty, &rdev2->flags))
1047 d->state = (1<<MD_DISK_FAULTY);
1048 else if (test_bit(In_sync, &rdev2->flags)) {
1049 d->state = (1<<MD_DISK_ACTIVE);
1050 d->state |= (1<<MD_DISK_SYNC);
1051 active++;
1052 working++;
1053 } else {
1054 d->state = 0;
1055 spare++;
1056 working++;
1057 }
1058 if (test_bit(WriteMostly, &rdev2->flags))
1059 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1060 }
1061 /* now set the "removed" and "faulty" bits on any missing devices */
1062 for (i=0 ; i < mddev->raid_disks ; i++) {
1063 mdp_disk_t *d = &sb->disks[i];
1064 if (d->state == 0 && d->number == 0) {
1065 d->number = i;
1066 d->raid_disk = i;
1067 d->state = (1<<MD_DISK_REMOVED);
1068 d->state |= (1<<MD_DISK_FAULTY);
1069 failed++;
1070 }
1071 }
1072 sb->nr_disks = nr_disks;
1073 sb->active_disks = active;
1074 sb->working_disks = working;
1075 sb->failed_disks = failed;
1076 sb->spare_disks = spare;
1077
1078 sb->this_disk = sb->disks[rdev->desc_nr];
1079 sb->sb_csum = calc_sb_csum(sb);
1080 }
1081
1082 /*
1083 * rdev_size_change for 0.90.0
1084 */
1085 static unsigned long long
1086 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1087 {
1088 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1089 return 0; /* component must fit device */
1090 if (rdev->mddev->bitmap_offset)
1091 return 0; /* can't move bitmap */
1092 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
1093 if (!num_sectors || num_sectors > rdev->sb_start)
1094 num_sectors = rdev->sb_start;
1095 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1096 rdev->sb_page);
1097 md_super_wait(rdev->mddev);
1098 return num_sectors / 2; /* kB for sysfs */
1099 }
1100
1101
1102 /*
1103 * version 1 superblock
1104 */
1105
1106 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1107 {
1108 __le32 disk_csum;
1109 u32 csum;
1110 unsigned long long newcsum;
1111 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1112 __le32 *isuper = (__le32*)sb;
1113 int i;
1114
1115 disk_csum = sb->sb_csum;
1116 sb->sb_csum = 0;
1117 newcsum = 0;
1118 for (i=0; size>=4; size -= 4 )
1119 newcsum += le32_to_cpu(*isuper++);
1120
1121 if (size == 2)
1122 newcsum += le16_to_cpu(*(__le16*) isuper);
1123
1124 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1125 sb->sb_csum = disk_csum;
1126 return cpu_to_le32(csum);
1127 }
1128
1129 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1130 {
1131 struct mdp_superblock_1 *sb;
1132 int ret;
1133 sector_t sb_start;
1134 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1135 int bmask;
1136
1137 /*
1138 * Calculate the position of the superblock in 512byte sectors.
1139 * It is always aligned to a 4K boundary and
1140 * depeding on minor_version, it can be:
1141 * 0: At least 8K, but less than 12K, from end of device
1142 * 1: At start of device
1143 * 2: 4K from start of device.
1144 */
1145 switch(minor_version) {
1146 case 0:
1147 sb_start = rdev->bdev->bd_inode->i_size >> 9;
1148 sb_start -= 8*2;
1149 sb_start &= ~(sector_t)(4*2-1);
1150 break;
1151 case 1:
1152 sb_start = 0;
1153 break;
1154 case 2:
1155 sb_start = 8;
1156 break;
1157 default:
1158 return -EINVAL;
1159 }
1160 rdev->sb_start = sb_start;
1161
1162 /* superblock is rarely larger than 1K, but it can be larger,
1163 * and it is safe to read 4k, so we do that
1164 */
1165 ret = read_disk_sb(rdev, 4096);
1166 if (ret) return ret;
1167
1168
1169 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1170
1171 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1172 sb->major_version != cpu_to_le32(1) ||
1173 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1174 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1175 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1176 return -EINVAL;
1177
1178 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1179 printk("md: invalid superblock checksum on %s\n",
1180 bdevname(rdev->bdev,b));
1181 return -EINVAL;
1182 }
1183 if (le64_to_cpu(sb->data_size) < 10) {
1184 printk("md: data_size too small on %s\n",
1185 bdevname(rdev->bdev,b));
1186 return -EINVAL;
1187 }
1188 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET)) {
1189 if (sb->level != cpu_to_le32(1) &&
1190 sb->level != cpu_to_le32(4) &&
1191 sb->level != cpu_to_le32(5) &&
1192 sb->level != cpu_to_le32(6) &&
1193 sb->level != cpu_to_le32(10)) {
1194 printk(KERN_WARNING
1195 "md: bitmaps not supported for this level.\n");
1196 return -EINVAL;
1197 }
1198 }
1199
1200 rdev->preferred_minor = 0xffff;
1201 rdev->data_offset = le64_to_cpu(sb->data_offset);
1202 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1203
1204 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1205 bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
1206 if (rdev->sb_size & bmask)
1207 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1208
1209 if (minor_version
1210 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1211 return -EINVAL;
1212
1213 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1214 rdev->desc_nr = -1;
1215 else
1216 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1217
1218 if (!refdev) {
1219 ret = 1;
1220 } else {
1221 __u64 ev1, ev2;
1222 struct mdp_superblock_1 *refsb =
1223 (struct mdp_superblock_1*)page_address(refdev->sb_page);
1224
1225 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1226 sb->level != refsb->level ||
1227 sb->layout != refsb->layout ||
1228 sb->chunksize != refsb->chunksize) {
1229 printk(KERN_WARNING "md: %s has strangely different"
1230 " superblock to %s\n",
1231 bdevname(rdev->bdev,b),
1232 bdevname(refdev->bdev,b2));
1233 return -EINVAL;
1234 }
1235 ev1 = le64_to_cpu(sb->events);
1236 ev2 = le64_to_cpu(refsb->events);
1237
1238 if (ev1 > ev2)
1239 ret = 1;
1240 else
1241 ret = 0;
1242 }
1243 if (minor_version)
1244 rdev->sectors = (rdev->bdev->bd_inode->i_size >> 9) -
1245 le64_to_cpu(sb->data_offset);
1246 else
1247 rdev->sectors = rdev->sb_start;
1248 if (rdev->sectors < le64_to_cpu(sb->data_size))
1249 return -EINVAL;
1250 rdev->sectors = le64_to_cpu(sb->data_size);
1251 if (le32_to_cpu(sb->chunksize))
1252 rdev->sectors &= ~((sector_t)le32_to_cpu(sb->chunksize) - 1);
1253
1254 if (le64_to_cpu(sb->size) > rdev->sectors)
1255 return -EINVAL;
1256 return ret;
1257 }
1258
1259 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1260 {
1261 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1262 __u64 ev1 = le64_to_cpu(sb->events);
1263
1264 rdev->raid_disk = -1;
1265 clear_bit(Faulty, &rdev->flags);
1266 clear_bit(In_sync, &rdev->flags);
1267 clear_bit(WriteMostly, &rdev->flags);
1268 clear_bit(BarriersNotsupp, &rdev->flags);
1269
1270 if (mddev->raid_disks == 0) {
1271 mddev->major_version = 1;
1272 mddev->patch_version = 0;
1273 mddev->external = 0;
1274 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1275 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1276 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1277 mddev->level = le32_to_cpu(sb->level);
1278 mddev->clevel[0] = 0;
1279 mddev->layout = le32_to_cpu(sb->layout);
1280 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1281 mddev->dev_sectors = le64_to_cpu(sb->size);
1282 mddev->events = ev1;
1283 mddev->bitmap_offset = 0;
1284 mddev->default_bitmap_offset = 1024 >> 9;
1285
1286 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1287 memcpy(mddev->uuid, sb->set_uuid, 16);
1288
1289 mddev->max_disks = (4096-256)/2;
1290
1291 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1292 mddev->bitmap_file == NULL )
1293 mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1294
1295 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1296 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1297 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1298 mddev->new_level = le32_to_cpu(sb->new_level);
1299 mddev->new_layout = le32_to_cpu(sb->new_layout);
1300 mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
1301 } else {
1302 mddev->reshape_position = MaxSector;
1303 mddev->delta_disks = 0;
1304 mddev->new_level = mddev->level;
1305 mddev->new_layout = mddev->layout;
1306 mddev->new_chunk = mddev->chunk_size;
1307 }
1308
1309 } else if (mddev->pers == NULL) {
1310 /* Insist of good event counter while assembling */
1311 ++ev1;
1312 if (ev1 < mddev->events)
1313 return -EINVAL;
1314 } else if (mddev->bitmap) {
1315 /* If adding to array with a bitmap, then we can accept an
1316 * older device, but not too old.
1317 */
1318 if (ev1 < mddev->bitmap->events_cleared)
1319 return 0;
1320 } else {
1321 if (ev1 < mddev->events)
1322 /* just a hot-add of a new device, leave raid_disk at -1 */
1323 return 0;
1324 }
1325 if (mddev->level != LEVEL_MULTIPATH) {
1326 int role;
1327 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1328 switch(role) {
1329 case 0xffff: /* spare */
1330 break;
1331 case 0xfffe: /* faulty */
1332 set_bit(Faulty, &rdev->flags);
1333 break;
1334 default:
1335 if ((le32_to_cpu(sb->feature_map) &
1336 MD_FEATURE_RECOVERY_OFFSET))
1337 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1338 else
1339 set_bit(In_sync, &rdev->flags);
1340 rdev->raid_disk = role;
1341 break;
1342 }
1343 if (sb->devflags & WriteMostly1)
1344 set_bit(WriteMostly, &rdev->flags);
1345 } else /* MULTIPATH are always insync */
1346 set_bit(In_sync, &rdev->flags);
1347
1348 return 0;
1349 }
1350
1351 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1352 {
1353 struct mdp_superblock_1 *sb;
1354 mdk_rdev_t *rdev2;
1355 int max_dev, i;
1356 /* make rdev->sb match mddev and rdev data. */
1357
1358 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1359
1360 sb->feature_map = 0;
1361 sb->pad0 = 0;
1362 sb->recovery_offset = cpu_to_le64(0);
1363 memset(sb->pad1, 0, sizeof(sb->pad1));
1364 memset(sb->pad2, 0, sizeof(sb->pad2));
1365 memset(sb->pad3, 0, sizeof(sb->pad3));
1366
1367 sb->utime = cpu_to_le64((__u64)mddev->utime);
1368 sb->events = cpu_to_le64(mddev->events);
1369 if (mddev->in_sync)
1370 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1371 else
1372 sb->resync_offset = cpu_to_le64(0);
1373
1374 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1375
1376 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1377 sb->size = cpu_to_le64(mddev->dev_sectors);
1378
1379 if (mddev->bitmap && mddev->bitmap_file == NULL) {
1380 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1381 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1382 }
1383
1384 if (rdev->raid_disk >= 0 &&
1385 !test_bit(In_sync, &rdev->flags)) {
1386 if (mddev->curr_resync_completed > rdev->recovery_offset)
1387 rdev->recovery_offset = mddev->curr_resync_completed;
1388 if (rdev->recovery_offset > 0) {
1389 sb->feature_map |=
1390 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1391 sb->recovery_offset =
1392 cpu_to_le64(rdev->recovery_offset);
1393 }
1394 }
1395
1396 if (mddev->reshape_position != MaxSector) {
1397 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1398 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1399 sb->new_layout = cpu_to_le32(mddev->new_layout);
1400 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1401 sb->new_level = cpu_to_le32(mddev->new_level);
1402 sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
1403 }
1404
1405 max_dev = 0;
1406 list_for_each_entry(rdev2, &mddev->disks, same_set)
1407 if (rdev2->desc_nr+1 > max_dev)
1408 max_dev = rdev2->desc_nr+1;
1409
1410 if (max_dev > le32_to_cpu(sb->max_dev))
1411 sb->max_dev = cpu_to_le32(max_dev);
1412 for (i=0; i<max_dev;i++)
1413 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1414
1415 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1416 i = rdev2->desc_nr;
1417 if (test_bit(Faulty, &rdev2->flags))
1418 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1419 else if (test_bit(In_sync, &rdev2->flags))
1420 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1421 else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
1422 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1423 else
1424 sb->dev_roles[i] = cpu_to_le16(0xffff);
1425 }
1426
1427 sb->sb_csum = calc_sb_1_csum(sb);
1428 }
1429
1430 static unsigned long long
1431 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1432 {
1433 struct mdp_superblock_1 *sb;
1434 sector_t max_sectors;
1435 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1436 return 0; /* component must fit device */
1437 if (rdev->sb_start < rdev->data_offset) {
1438 /* minor versions 1 and 2; superblock before data */
1439 max_sectors = rdev->bdev->bd_inode->i_size >> 9;
1440 max_sectors -= rdev->data_offset;
1441 if (!num_sectors || num_sectors > max_sectors)
1442 num_sectors = max_sectors;
1443 } else if (rdev->mddev->bitmap_offset) {
1444 /* minor version 0 with bitmap we can't move */
1445 return 0;
1446 } else {
1447 /* minor version 0; superblock after data */
1448 sector_t sb_start;
1449 sb_start = (rdev->bdev->bd_inode->i_size >> 9) - 8*2;
1450 sb_start &= ~(sector_t)(4*2 - 1);
1451 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1452 if (!num_sectors || num_sectors > max_sectors)
1453 num_sectors = max_sectors;
1454 rdev->sb_start = sb_start;
1455 }
1456 sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page);
1457 sb->data_size = cpu_to_le64(num_sectors);
1458 sb->super_offset = rdev->sb_start;
1459 sb->sb_csum = calc_sb_1_csum(sb);
1460 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1461 rdev->sb_page);
1462 md_super_wait(rdev->mddev);
1463 return num_sectors / 2; /* kB for sysfs */
1464 }
1465
1466 static struct super_type super_types[] = {
1467 [0] = {
1468 .name = "0.90.0",
1469 .owner = THIS_MODULE,
1470 .load_super = super_90_load,
1471 .validate_super = super_90_validate,
1472 .sync_super = super_90_sync,
1473 .rdev_size_change = super_90_rdev_size_change,
1474 },
1475 [1] = {
1476 .name = "md-1",
1477 .owner = THIS_MODULE,
1478 .load_super = super_1_load,
1479 .validate_super = super_1_validate,
1480 .sync_super = super_1_sync,
1481 .rdev_size_change = super_1_rdev_size_change,
1482 },
1483 };
1484
1485 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1486 {
1487 mdk_rdev_t *rdev, *rdev2;
1488
1489 rcu_read_lock();
1490 rdev_for_each_rcu(rdev, mddev1)
1491 rdev_for_each_rcu(rdev2, mddev2)
1492 if (rdev->bdev->bd_contains ==
1493 rdev2->bdev->bd_contains) {
1494 rcu_read_unlock();
1495 return 1;
1496 }
1497 rcu_read_unlock();
1498 return 0;
1499 }
1500
1501 static LIST_HEAD(pending_raid_disks);
1502
1503 static void md_integrity_check(mdk_rdev_t *rdev, mddev_t *mddev)
1504 {
1505 struct mdk_personality *pers = mddev->pers;
1506 struct gendisk *disk = mddev->gendisk;
1507 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1508 struct blk_integrity *bi_mddev = blk_get_integrity(disk);
1509
1510 /* Data integrity passthrough not supported on RAID 4, 5 and 6 */
1511 if (pers && pers->level >= 4 && pers->level <= 6)
1512 return;
1513
1514 /* If rdev is integrity capable, register profile for mddev */
1515 if (!bi_mddev && bi_rdev) {
1516 if (blk_integrity_register(disk, bi_rdev))
1517 printk(KERN_ERR "%s: %s Could not register integrity!\n",
1518 __func__, disk->disk_name);
1519 else
1520 printk(KERN_NOTICE "Enabling data integrity on %s\n",
1521 disk->disk_name);
1522 return;
1523 }
1524
1525 /* Check that mddev and rdev have matching profiles */
1526 if (blk_integrity_compare(disk, rdev->bdev->bd_disk) < 0) {
1527 printk(KERN_ERR "%s: %s/%s integrity mismatch!\n", __func__,
1528 disk->disk_name, rdev->bdev->bd_disk->disk_name);
1529 printk(KERN_NOTICE "Disabling data integrity on %s\n",
1530 disk->disk_name);
1531 blk_integrity_unregister(disk);
1532 }
1533 }
1534
1535 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1536 {
1537 char b[BDEVNAME_SIZE];
1538 struct kobject *ko;
1539 char *s;
1540 int err;
1541
1542 if (rdev->mddev) {
1543 MD_BUG();
1544 return -EINVAL;
1545 }
1546
1547 /* prevent duplicates */
1548 if (find_rdev(mddev, rdev->bdev->bd_dev))
1549 return -EEXIST;
1550
1551 /* make sure rdev->sectors exceeds mddev->dev_sectors */
1552 if (rdev->sectors && (mddev->dev_sectors == 0 ||
1553 rdev->sectors < mddev->dev_sectors)) {
1554 if (mddev->pers) {
1555 /* Cannot change size, so fail
1556 * If mddev->level <= 0, then we don't care
1557 * about aligning sizes (e.g. linear)
1558 */
1559 if (mddev->level > 0)
1560 return -ENOSPC;
1561 } else
1562 mddev->dev_sectors = rdev->sectors;
1563 }
1564
1565 /* Verify rdev->desc_nr is unique.
1566 * If it is -1, assign a free number, else
1567 * check number is not in use
1568 */
1569 if (rdev->desc_nr < 0) {
1570 int choice = 0;
1571 if (mddev->pers) choice = mddev->raid_disks;
1572 while (find_rdev_nr(mddev, choice))
1573 choice++;
1574 rdev->desc_nr = choice;
1575 } else {
1576 if (find_rdev_nr(mddev, rdev->desc_nr))
1577 return -EBUSY;
1578 }
1579 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
1580 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
1581 mdname(mddev), mddev->max_disks);
1582 return -EBUSY;
1583 }
1584 bdevname(rdev->bdev,b);
1585 while ( (s=strchr(b, '/')) != NULL)
1586 *s = '!';
1587
1588 rdev->mddev = mddev;
1589 printk(KERN_INFO "md: bind<%s>\n", b);
1590
1591 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
1592 goto fail;
1593
1594 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
1595 if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) {
1596 kobject_del(&rdev->kobj);
1597 goto fail;
1598 }
1599 rdev->sysfs_state = sysfs_get_dirent(rdev->kobj.sd, "state");
1600
1601 list_add_rcu(&rdev->same_set, &mddev->disks);
1602 bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk);
1603
1604 /* May as well allow recovery to be retried once */
1605 mddev->recovery_disabled = 0;
1606
1607 md_integrity_check(rdev, mddev);
1608 return 0;
1609
1610 fail:
1611 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1612 b, mdname(mddev));
1613 return err;
1614 }
1615
1616 static void md_delayed_delete(struct work_struct *ws)
1617 {
1618 mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1619 kobject_del(&rdev->kobj);
1620 kobject_put(&rdev->kobj);
1621 }
1622
1623 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1624 {
1625 char b[BDEVNAME_SIZE];
1626 if (!rdev->mddev) {
1627 MD_BUG();
1628 return;
1629 }
1630 bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1631 list_del_rcu(&rdev->same_set);
1632 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1633 rdev->mddev = NULL;
1634 sysfs_remove_link(&rdev->kobj, "block");
1635 sysfs_put(rdev->sysfs_state);
1636 rdev->sysfs_state = NULL;
1637 /* We need to delay this, otherwise we can deadlock when
1638 * writing to 'remove' to "dev/state". We also need
1639 * to delay it due to rcu usage.
1640 */
1641 synchronize_rcu();
1642 INIT_WORK(&rdev->del_work, md_delayed_delete);
1643 kobject_get(&rdev->kobj);
1644 schedule_work(&rdev->del_work);
1645 }
1646
1647 /*
1648 * prevent the device from being mounted, repartitioned or
1649 * otherwise reused by a RAID array (or any other kernel
1650 * subsystem), by bd_claiming the device.
1651 */
1652 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
1653 {
1654 int err = 0;
1655 struct block_device *bdev;
1656 char b[BDEVNAME_SIZE];
1657
1658 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1659 if (IS_ERR(bdev)) {
1660 printk(KERN_ERR "md: could not open %s.\n",
1661 __bdevname(dev, b));
1662 return PTR_ERR(bdev);
1663 }
1664 err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev);
1665 if (err) {
1666 printk(KERN_ERR "md: could not bd_claim %s.\n",
1667 bdevname(bdev, b));
1668 blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1669 return err;
1670 }
1671 if (!shared)
1672 set_bit(AllReserved, &rdev->flags);
1673 rdev->bdev = bdev;
1674 return err;
1675 }
1676
1677 static void unlock_rdev(mdk_rdev_t *rdev)
1678 {
1679 struct block_device *bdev = rdev->bdev;
1680 rdev->bdev = NULL;
1681 if (!bdev)
1682 MD_BUG();
1683 bd_release(bdev);
1684 blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1685 }
1686
1687 void md_autodetect_dev(dev_t dev);
1688
1689 static void export_rdev(mdk_rdev_t * rdev)
1690 {
1691 char b[BDEVNAME_SIZE];
1692 printk(KERN_INFO "md: export_rdev(%s)\n",
1693 bdevname(rdev->bdev,b));
1694 if (rdev->mddev)
1695 MD_BUG();
1696 free_disk_sb(rdev);
1697 #ifndef MODULE
1698 if (test_bit(AutoDetected, &rdev->flags))
1699 md_autodetect_dev(rdev->bdev->bd_dev);
1700 #endif
1701 unlock_rdev(rdev);
1702 kobject_put(&rdev->kobj);
1703 }
1704
1705 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1706 {
1707 unbind_rdev_from_array(rdev);
1708 export_rdev(rdev);
1709 }
1710
1711 static void export_array(mddev_t *mddev)
1712 {
1713 mdk_rdev_t *rdev, *tmp;
1714
1715 rdev_for_each(rdev, tmp, mddev) {
1716 if (!rdev->mddev) {
1717 MD_BUG();
1718 continue;
1719 }
1720 kick_rdev_from_array(rdev);
1721 }
1722 if (!list_empty(&mddev->disks))
1723 MD_BUG();
1724 mddev->raid_disks = 0;
1725 mddev->major_version = 0;
1726 }
1727
1728 static void print_desc(mdp_disk_t *desc)
1729 {
1730 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1731 desc->major,desc->minor,desc->raid_disk,desc->state);
1732 }
1733
1734 static void print_sb_90(mdp_super_t *sb)
1735 {
1736 int i;
1737
1738 printk(KERN_INFO
1739 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1740 sb->major_version, sb->minor_version, sb->patch_version,
1741 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1742 sb->ctime);
1743 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1744 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1745 sb->md_minor, sb->layout, sb->chunk_size);
1746 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
1747 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
1748 sb->utime, sb->state, sb->active_disks, sb->working_disks,
1749 sb->failed_disks, sb->spare_disks,
1750 sb->sb_csum, (unsigned long)sb->events_lo);
1751
1752 printk(KERN_INFO);
1753 for (i = 0; i < MD_SB_DISKS; i++) {
1754 mdp_disk_t *desc;
1755
1756 desc = sb->disks + i;
1757 if (desc->number || desc->major || desc->minor ||
1758 desc->raid_disk || (desc->state && (desc->state != 4))) {
1759 printk(" D %2d: ", i);
1760 print_desc(desc);
1761 }
1762 }
1763 printk(KERN_INFO "md: THIS: ");
1764 print_desc(&sb->this_disk);
1765 }
1766
1767 static void print_sb_1(struct mdp_superblock_1 *sb)
1768 {
1769 __u8 *uuid;
1770
1771 uuid = sb->set_uuid;
1772 printk(KERN_INFO "md: SB: (V:%u) (F:0x%08x) Array-ID:<%02x%02x%02x%02x"
1773 ":%02x%02x:%02x%02x:%02x%02x:%02x%02x%02x%02x%02x%02x>\n"
1774 KERN_INFO "md: Name: \"%s\" CT:%llu\n",
1775 le32_to_cpu(sb->major_version),
1776 le32_to_cpu(sb->feature_map),
1777 uuid[0], uuid[1], uuid[2], uuid[3],
1778 uuid[4], uuid[5], uuid[6], uuid[7],
1779 uuid[8], uuid[9], uuid[10], uuid[11],
1780 uuid[12], uuid[13], uuid[14], uuid[15],
1781 sb->set_name,
1782 (unsigned long long)le64_to_cpu(sb->ctime)
1783 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
1784
1785 uuid = sb->device_uuid;
1786 printk(KERN_INFO "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
1787 " RO:%llu\n"
1788 KERN_INFO "md: Dev:%08x UUID: %02x%02x%02x%02x:%02x%02x:%02x%02x:%02x%02x"
1789 ":%02x%02x%02x%02x%02x%02x\n"
1790 KERN_INFO "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
1791 KERN_INFO "md: (MaxDev:%u) \n",
1792 le32_to_cpu(sb->level),
1793 (unsigned long long)le64_to_cpu(sb->size),
1794 le32_to_cpu(sb->raid_disks),
1795 le32_to_cpu(sb->layout),
1796 le32_to_cpu(sb->chunksize),
1797 (unsigned long long)le64_to_cpu(sb->data_offset),
1798 (unsigned long long)le64_to_cpu(sb->data_size),
1799 (unsigned long long)le64_to_cpu(sb->super_offset),
1800 (unsigned long long)le64_to_cpu(sb->recovery_offset),
1801 le32_to_cpu(sb->dev_number),
1802 uuid[0], uuid[1], uuid[2], uuid[3],
1803 uuid[4], uuid[5], uuid[6], uuid[7],
1804 uuid[8], uuid[9], uuid[10], uuid[11],
1805 uuid[12], uuid[13], uuid[14], uuid[15],
1806 sb->devflags,
1807 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
1808 (unsigned long long)le64_to_cpu(sb->events),
1809 (unsigned long long)le64_to_cpu(sb->resync_offset),
1810 le32_to_cpu(sb->sb_csum),
1811 le32_to_cpu(sb->max_dev)
1812 );
1813 }
1814
1815 static void print_rdev(mdk_rdev_t *rdev, int major_version)
1816 {
1817 char b[BDEVNAME_SIZE];
1818 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
1819 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
1820 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1821 rdev->desc_nr);
1822 if (rdev->sb_loaded) {
1823 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
1824 switch (major_version) {
1825 case 0:
1826 print_sb_90((mdp_super_t*)page_address(rdev->sb_page));
1827 break;
1828 case 1:
1829 print_sb_1((struct mdp_superblock_1 *)page_address(rdev->sb_page));
1830 break;
1831 }
1832 } else
1833 printk(KERN_INFO "md: no rdev superblock!\n");
1834 }
1835
1836 static void md_print_devices(void)
1837 {
1838 struct list_head *tmp;
1839 mdk_rdev_t *rdev;
1840 mddev_t *mddev;
1841 char b[BDEVNAME_SIZE];
1842
1843 printk("\n");
1844 printk("md: **********************************\n");
1845 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
1846 printk("md: **********************************\n");
1847 for_each_mddev(mddev, tmp) {
1848
1849 if (mddev->bitmap)
1850 bitmap_print_sb(mddev->bitmap);
1851 else
1852 printk("%s: ", mdname(mddev));
1853 list_for_each_entry(rdev, &mddev->disks, same_set)
1854 printk("<%s>", bdevname(rdev->bdev,b));
1855 printk("\n");
1856
1857 list_for_each_entry(rdev, &mddev->disks, same_set)
1858 print_rdev(rdev, mddev->major_version);
1859 }
1860 printk("md: **********************************\n");
1861 printk("\n");
1862 }
1863
1864
1865 static void sync_sbs(mddev_t * mddev, int nospares)
1866 {
1867 /* Update each superblock (in-memory image), but
1868 * if we are allowed to, skip spares which already
1869 * have the right event counter, or have one earlier
1870 * (which would mean they aren't being marked as dirty
1871 * with the rest of the array)
1872 */
1873 mdk_rdev_t *rdev;
1874
1875 list_for_each_entry(rdev, &mddev->disks, same_set) {
1876 if (rdev->sb_events == mddev->events ||
1877 (nospares &&
1878 rdev->raid_disk < 0 &&
1879 (rdev->sb_events&1)==0 &&
1880 rdev->sb_events+1 == mddev->events)) {
1881 /* Don't update this superblock */
1882 rdev->sb_loaded = 2;
1883 } else {
1884 super_types[mddev->major_version].
1885 sync_super(mddev, rdev);
1886 rdev->sb_loaded = 1;
1887 }
1888 }
1889 }
1890
1891 static void md_update_sb(mddev_t * mddev, int force_change)
1892 {
1893 mdk_rdev_t *rdev;
1894 int sync_req;
1895 int nospares = 0;
1896
1897 if (mddev->external)
1898 return;
1899 repeat:
1900 spin_lock_irq(&mddev->write_lock);
1901
1902 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1903 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
1904 force_change = 1;
1905 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
1906 /* just a clean<-> dirty transition, possibly leave spares alone,
1907 * though if events isn't the right even/odd, we will have to do
1908 * spares after all
1909 */
1910 nospares = 1;
1911 if (force_change)
1912 nospares = 0;
1913 if (mddev->degraded)
1914 /* If the array is degraded, then skipping spares is both
1915 * dangerous and fairly pointless.
1916 * Dangerous because a device that was removed from the array
1917 * might have a event_count that still looks up-to-date,
1918 * so it can be re-added without a resync.
1919 * Pointless because if there are any spares to skip,
1920 * then a recovery will happen and soon that array won't
1921 * be degraded any more and the spare can go back to sleep then.
1922 */
1923 nospares = 0;
1924
1925 sync_req = mddev->in_sync;
1926 mddev->utime = get_seconds();
1927
1928 /* If this is just a dirty<->clean transition, and the array is clean
1929 * and 'events' is odd, we can roll back to the previous clean state */
1930 if (nospares
1931 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
1932 && (mddev->events & 1)
1933 && mddev->events != 1)
1934 mddev->events--;
1935 else {
1936 /* otherwise we have to go forward and ... */
1937 mddev->events ++;
1938 if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
1939 /* .. if the array isn't clean, insist on an odd 'events' */
1940 if ((mddev->events&1)==0) {
1941 mddev->events++;
1942 nospares = 0;
1943 }
1944 } else {
1945 /* otherwise insist on an even 'events' (for clean states) */
1946 if ((mddev->events&1)) {
1947 mddev->events++;
1948 nospares = 0;
1949 }
1950 }
1951 }
1952
1953 if (!mddev->events) {
1954 /*
1955 * oops, this 64-bit counter should never wrap.
1956 * Either we are in around ~1 trillion A.C., assuming
1957 * 1 reboot per second, or we have a bug:
1958 */
1959 MD_BUG();
1960 mddev->events --;
1961 }
1962
1963 /*
1964 * do not write anything to disk if using
1965 * nonpersistent superblocks
1966 */
1967 if (!mddev->persistent) {
1968 if (!mddev->external)
1969 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1970
1971 spin_unlock_irq(&mddev->write_lock);
1972 wake_up(&mddev->sb_wait);
1973 return;
1974 }
1975 sync_sbs(mddev, nospares);
1976 spin_unlock_irq(&mddev->write_lock);
1977
1978 dprintk(KERN_INFO
1979 "md: updating %s RAID superblock on device (in sync %d)\n",
1980 mdname(mddev),mddev->in_sync);
1981
1982 bitmap_update_sb(mddev->bitmap);
1983 list_for_each_entry(rdev, &mddev->disks, same_set) {
1984 char b[BDEVNAME_SIZE];
1985 dprintk(KERN_INFO "md: ");
1986 if (rdev->sb_loaded != 1)
1987 continue; /* no noise on spare devices */
1988 if (test_bit(Faulty, &rdev->flags))
1989 dprintk("(skipping faulty ");
1990
1991 dprintk("%s ", bdevname(rdev->bdev,b));
1992 if (!test_bit(Faulty, &rdev->flags)) {
1993 md_super_write(mddev,rdev,
1994 rdev->sb_start, rdev->sb_size,
1995 rdev->sb_page);
1996 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1997 bdevname(rdev->bdev,b),
1998 (unsigned long long)rdev->sb_start);
1999 rdev->sb_events = mddev->events;
2000
2001 } else
2002 dprintk(")\n");
2003 if (mddev->level == LEVEL_MULTIPATH)
2004 /* only need to write one superblock... */
2005 break;
2006 }
2007 md_super_wait(mddev);
2008 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2009
2010 spin_lock_irq(&mddev->write_lock);
2011 if (mddev->in_sync != sync_req ||
2012 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2013 /* have to write it out again */
2014 spin_unlock_irq(&mddev->write_lock);
2015 goto repeat;
2016 }
2017 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2018 spin_unlock_irq(&mddev->write_lock);
2019 wake_up(&mddev->sb_wait);
2020
2021 }
2022
2023 /* words written to sysfs files may, or may not, be \n terminated.
2024 * We want to accept with case. For this we use cmd_match.
2025 */
2026 static int cmd_match(const char *cmd, const char *str)
2027 {
2028 /* See if cmd, written into a sysfs file, matches
2029 * str. They must either be the same, or cmd can
2030 * have a trailing newline
2031 */
2032 while (*cmd && *str && *cmd == *str) {
2033 cmd++;
2034 str++;
2035 }
2036 if (*cmd == '\n')
2037 cmd++;
2038 if (*str || *cmd)
2039 return 0;
2040 return 1;
2041 }
2042
2043 struct rdev_sysfs_entry {
2044 struct attribute attr;
2045 ssize_t (*show)(mdk_rdev_t *, char *);
2046 ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
2047 };
2048
2049 static ssize_t
2050 state_show(mdk_rdev_t *rdev, char *page)
2051 {
2052 char *sep = "";
2053 size_t len = 0;
2054
2055 if (test_bit(Faulty, &rdev->flags)) {
2056 len+= sprintf(page+len, "%sfaulty",sep);
2057 sep = ",";
2058 }
2059 if (test_bit(In_sync, &rdev->flags)) {
2060 len += sprintf(page+len, "%sin_sync",sep);
2061 sep = ",";
2062 }
2063 if (test_bit(WriteMostly, &rdev->flags)) {
2064 len += sprintf(page+len, "%swrite_mostly",sep);
2065 sep = ",";
2066 }
2067 if (test_bit(Blocked, &rdev->flags)) {
2068 len += sprintf(page+len, "%sblocked", sep);
2069 sep = ",";
2070 }
2071 if (!test_bit(Faulty, &rdev->flags) &&
2072 !test_bit(In_sync, &rdev->flags)) {
2073 len += sprintf(page+len, "%sspare", sep);
2074 sep = ",";
2075 }
2076 return len+sprintf(page+len, "\n");
2077 }
2078
2079 static ssize_t
2080 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2081 {
2082 /* can write
2083 * faulty - simulates and error
2084 * remove - disconnects the device
2085 * writemostly - sets write_mostly
2086 * -writemostly - clears write_mostly
2087 * blocked - sets the Blocked flag
2088 * -blocked - clears the Blocked flag
2089 */
2090 int err = -EINVAL;
2091 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2092 md_error(rdev->mddev, rdev);
2093 err = 0;
2094 } else if (cmd_match(buf, "remove")) {
2095 if (rdev->raid_disk >= 0)
2096 err = -EBUSY;
2097 else {
2098 mddev_t *mddev = rdev->mddev;
2099 kick_rdev_from_array(rdev);
2100 if (mddev->pers)
2101 md_update_sb(mddev, 1);
2102 md_new_event(mddev);
2103 err = 0;
2104 }
2105 } else if (cmd_match(buf, "writemostly")) {
2106 set_bit(WriteMostly, &rdev->flags);
2107 err = 0;
2108 } else if (cmd_match(buf, "-writemostly")) {
2109 clear_bit(WriteMostly, &rdev->flags);
2110 err = 0;
2111 } else if (cmd_match(buf, "blocked")) {
2112 set_bit(Blocked, &rdev->flags);
2113 err = 0;
2114 } else if (cmd_match(buf, "-blocked")) {
2115 clear_bit(Blocked, &rdev->flags);
2116 wake_up(&rdev->blocked_wait);
2117 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2118 md_wakeup_thread(rdev->mddev->thread);
2119
2120 err = 0;
2121 }
2122 if (!err && rdev->sysfs_state)
2123 sysfs_notify_dirent(rdev->sysfs_state);
2124 return err ? err : len;
2125 }
2126 static struct rdev_sysfs_entry rdev_state =
2127 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2128
2129 static ssize_t
2130 errors_show(mdk_rdev_t *rdev, char *page)
2131 {
2132 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2133 }
2134
2135 static ssize_t
2136 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2137 {
2138 char *e;
2139 unsigned long n = simple_strtoul(buf, &e, 10);
2140 if (*buf && (*e == 0 || *e == '\n')) {
2141 atomic_set(&rdev->corrected_errors, n);
2142 return len;
2143 }
2144 return -EINVAL;
2145 }
2146 static struct rdev_sysfs_entry rdev_errors =
2147 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2148
2149 static ssize_t
2150 slot_show(mdk_rdev_t *rdev, char *page)
2151 {
2152 if (rdev->raid_disk < 0)
2153 return sprintf(page, "none\n");
2154 else
2155 return sprintf(page, "%d\n", rdev->raid_disk);
2156 }
2157
2158 static ssize_t
2159 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2160 {
2161 char *e;
2162 int err;
2163 char nm[20];
2164 int slot = simple_strtoul(buf, &e, 10);
2165 if (strncmp(buf, "none", 4)==0)
2166 slot = -1;
2167 else if (e==buf || (*e && *e!= '\n'))
2168 return -EINVAL;
2169 if (rdev->mddev->pers && slot == -1) {
2170 /* Setting 'slot' on an active array requires also
2171 * updating the 'rd%d' link, and communicating
2172 * with the personality with ->hot_*_disk.
2173 * For now we only support removing
2174 * failed/spare devices. This normally happens automatically,
2175 * but not when the metadata is externally managed.
2176 */
2177 if (rdev->raid_disk == -1)
2178 return -EEXIST;
2179 /* personality does all needed checks */
2180 if (rdev->mddev->pers->hot_add_disk == NULL)
2181 return -EINVAL;
2182 err = rdev->mddev->pers->
2183 hot_remove_disk(rdev->mddev, rdev->raid_disk);
2184 if (err)
2185 return err;
2186 sprintf(nm, "rd%d", rdev->raid_disk);
2187 sysfs_remove_link(&rdev->mddev->kobj, nm);
2188 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2189 md_wakeup_thread(rdev->mddev->thread);
2190 } else if (rdev->mddev->pers) {
2191 mdk_rdev_t *rdev2;
2192 /* Activating a spare .. or possibly reactivating
2193 * if we every get bitmaps working here.
2194 */
2195
2196 if (rdev->raid_disk != -1)
2197 return -EBUSY;
2198
2199 if (rdev->mddev->pers->hot_add_disk == NULL)
2200 return -EINVAL;
2201
2202 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2203 if (rdev2->raid_disk == slot)
2204 return -EEXIST;
2205
2206 rdev->raid_disk = slot;
2207 if (test_bit(In_sync, &rdev->flags))
2208 rdev->saved_raid_disk = slot;
2209 else
2210 rdev->saved_raid_disk = -1;
2211 err = rdev->mddev->pers->
2212 hot_add_disk(rdev->mddev, rdev);
2213 if (err) {
2214 rdev->raid_disk = -1;
2215 return err;
2216 } else
2217 sysfs_notify_dirent(rdev->sysfs_state);
2218 sprintf(nm, "rd%d", rdev->raid_disk);
2219 if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm))
2220 printk(KERN_WARNING
2221 "md: cannot register "
2222 "%s for %s\n",
2223 nm, mdname(rdev->mddev));
2224
2225 /* don't wakeup anyone, leave that to userspace. */
2226 } else {
2227 if (slot >= rdev->mddev->raid_disks)
2228 return -ENOSPC;
2229 rdev->raid_disk = slot;
2230 /* assume it is working */
2231 clear_bit(Faulty, &rdev->flags);
2232 clear_bit(WriteMostly, &rdev->flags);
2233 set_bit(In_sync, &rdev->flags);
2234 sysfs_notify_dirent(rdev->sysfs_state);
2235 }
2236 return len;
2237 }
2238
2239
2240 static struct rdev_sysfs_entry rdev_slot =
2241 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2242
2243 static ssize_t
2244 offset_show(mdk_rdev_t *rdev, char *page)
2245 {
2246 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2247 }
2248
2249 static ssize_t
2250 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2251 {
2252 char *e;
2253 unsigned long long offset = simple_strtoull(buf, &e, 10);
2254 if (e==buf || (*e && *e != '\n'))
2255 return -EINVAL;
2256 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2257 return -EBUSY;
2258 if (rdev->sectors && rdev->mddev->external)
2259 /* Must set offset before size, so overlap checks
2260 * can be sane */
2261 return -EBUSY;
2262 rdev->data_offset = offset;
2263 return len;
2264 }
2265
2266 static struct rdev_sysfs_entry rdev_offset =
2267 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2268
2269 static ssize_t
2270 rdev_size_show(mdk_rdev_t *rdev, char *page)
2271 {
2272 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2273 }
2274
2275 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2276 {
2277 /* check if two start/length pairs overlap */
2278 if (s1+l1 <= s2)
2279 return 0;
2280 if (s2+l2 <= s1)
2281 return 0;
2282 return 1;
2283 }
2284
2285 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2286 {
2287 unsigned long long blocks;
2288 sector_t new;
2289
2290 if (strict_strtoull(buf, 10, &blocks) < 0)
2291 return -EINVAL;
2292
2293 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2294 return -EINVAL; /* sector conversion overflow */
2295
2296 new = blocks * 2;
2297 if (new != blocks * 2)
2298 return -EINVAL; /* unsigned long long to sector_t overflow */
2299
2300 *sectors = new;
2301 return 0;
2302 }
2303
2304 static ssize_t
2305 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2306 {
2307 mddev_t *my_mddev = rdev->mddev;
2308 sector_t oldsectors = rdev->sectors;
2309 sector_t sectors;
2310
2311 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2312 return -EINVAL;
2313 if (my_mddev->pers && rdev->raid_disk >= 0) {
2314 if (my_mddev->persistent) {
2315 sectors = super_types[my_mddev->major_version].
2316 rdev_size_change(rdev, sectors);
2317 if (!sectors)
2318 return -EBUSY;
2319 } else if (!sectors)
2320 sectors = (rdev->bdev->bd_inode->i_size >> 9) -
2321 rdev->data_offset;
2322 }
2323 if (sectors < my_mddev->dev_sectors)
2324 return -EINVAL; /* component must fit device */
2325
2326 rdev->sectors = sectors;
2327 if (sectors > oldsectors && my_mddev->external) {
2328 /* need to check that all other rdevs with the same ->bdev
2329 * do not overlap. We need to unlock the mddev to avoid
2330 * a deadlock. We have already changed rdev->sectors, and if
2331 * we have to change it back, we will have the lock again.
2332 */
2333 mddev_t *mddev;
2334 int overlap = 0;
2335 struct list_head *tmp;
2336
2337 mddev_unlock(my_mddev);
2338 for_each_mddev(mddev, tmp) {
2339 mdk_rdev_t *rdev2;
2340
2341 mddev_lock(mddev);
2342 list_for_each_entry(rdev2, &mddev->disks, same_set)
2343 if (test_bit(AllReserved, &rdev2->flags) ||
2344 (rdev->bdev == rdev2->bdev &&
2345 rdev != rdev2 &&
2346 overlaps(rdev->data_offset, rdev->sectors,
2347 rdev2->data_offset,
2348 rdev2->sectors))) {
2349 overlap = 1;
2350 break;
2351 }
2352 mddev_unlock(mddev);
2353 if (overlap) {
2354 mddev_put(mddev);
2355 break;
2356 }
2357 }
2358 mddev_lock(my_mddev);
2359 if (overlap) {
2360 /* Someone else could have slipped in a size
2361 * change here, but doing so is just silly.
2362 * We put oldsectors back because we *know* it is
2363 * safe, and trust userspace not to race with
2364 * itself
2365 */
2366 rdev->sectors = oldsectors;
2367 return -EBUSY;
2368 }
2369 }
2370 return len;
2371 }
2372
2373 static struct rdev_sysfs_entry rdev_size =
2374 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2375
2376 static struct attribute *rdev_default_attrs[] = {
2377 &rdev_state.attr,
2378 &rdev_errors.attr,
2379 &rdev_slot.attr,
2380 &rdev_offset.attr,
2381 &rdev_size.attr,
2382 NULL,
2383 };
2384 static ssize_t
2385 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2386 {
2387 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2388 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2389 mddev_t *mddev = rdev->mddev;
2390 ssize_t rv;
2391
2392 if (!entry->show)
2393 return -EIO;
2394
2395 rv = mddev ? mddev_lock(mddev) : -EBUSY;
2396 if (!rv) {
2397 if (rdev->mddev == NULL)
2398 rv = -EBUSY;
2399 else
2400 rv = entry->show(rdev, page);
2401 mddev_unlock(mddev);
2402 }
2403 return rv;
2404 }
2405
2406 static ssize_t
2407 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2408 const char *page, size_t length)
2409 {
2410 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2411 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2412 ssize_t rv;
2413 mddev_t *mddev = rdev->mddev;
2414
2415 if (!entry->store)
2416 return -EIO;
2417 if (!capable(CAP_SYS_ADMIN))
2418 return -EACCES;
2419 rv = mddev ? mddev_lock(mddev): -EBUSY;
2420 if (!rv) {
2421 if (rdev->mddev == NULL)
2422 rv = -EBUSY;
2423 else
2424 rv = entry->store(rdev, page, length);
2425 mddev_unlock(mddev);
2426 }
2427 return rv;
2428 }
2429
2430 static void rdev_free(struct kobject *ko)
2431 {
2432 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
2433 kfree(rdev);
2434 }
2435 static struct sysfs_ops rdev_sysfs_ops = {
2436 .show = rdev_attr_show,
2437 .store = rdev_attr_store,
2438 };
2439 static struct kobj_type rdev_ktype = {
2440 .release = rdev_free,
2441 .sysfs_ops = &rdev_sysfs_ops,
2442 .default_attrs = rdev_default_attrs,
2443 };
2444
2445 /*
2446 * Import a device. If 'super_format' >= 0, then sanity check the superblock
2447 *
2448 * mark the device faulty if:
2449 *
2450 * - the device is nonexistent (zero size)
2451 * - the device has no valid superblock
2452 *
2453 * a faulty rdev _never_ has rdev->sb set.
2454 */
2455 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
2456 {
2457 char b[BDEVNAME_SIZE];
2458 int err;
2459 mdk_rdev_t *rdev;
2460 sector_t size;
2461
2462 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
2463 if (!rdev) {
2464 printk(KERN_ERR "md: could not alloc mem for new device!\n");
2465 return ERR_PTR(-ENOMEM);
2466 }
2467
2468 if ((err = alloc_disk_sb(rdev)))
2469 goto abort_free;
2470
2471 err = lock_rdev(rdev, newdev, super_format == -2);
2472 if (err)
2473 goto abort_free;
2474
2475 kobject_init(&rdev->kobj, &rdev_ktype);
2476
2477 rdev->desc_nr = -1;
2478 rdev->saved_raid_disk = -1;
2479 rdev->raid_disk = -1;
2480 rdev->flags = 0;
2481 rdev->data_offset = 0;
2482 rdev->sb_events = 0;
2483 atomic_set(&rdev->nr_pending, 0);
2484 atomic_set(&rdev->read_errors, 0);
2485 atomic_set(&rdev->corrected_errors, 0);
2486
2487 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2488 if (!size) {
2489 printk(KERN_WARNING
2490 "md: %s has zero or unknown size, marking faulty!\n",
2491 bdevname(rdev->bdev,b));
2492 err = -EINVAL;
2493 goto abort_free;
2494 }
2495
2496 if (super_format >= 0) {
2497 err = super_types[super_format].
2498 load_super(rdev, NULL, super_minor);
2499 if (err == -EINVAL) {
2500 printk(KERN_WARNING
2501 "md: %s does not have a valid v%d.%d "
2502 "superblock, not importing!\n",
2503 bdevname(rdev->bdev,b),
2504 super_format, super_minor);
2505 goto abort_free;
2506 }
2507 if (err < 0) {
2508 printk(KERN_WARNING
2509 "md: could not read %s's sb, not importing!\n",
2510 bdevname(rdev->bdev,b));
2511 goto abort_free;
2512 }
2513 }
2514
2515 INIT_LIST_HEAD(&rdev->same_set);
2516 init_waitqueue_head(&rdev->blocked_wait);
2517
2518 return rdev;
2519
2520 abort_free:
2521 if (rdev->sb_page) {
2522 if (rdev->bdev)
2523 unlock_rdev(rdev);
2524 free_disk_sb(rdev);
2525 }
2526 kfree(rdev);
2527 return ERR_PTR(err);
2528 }
2529
2530 /*
2531 * Check a full RAID array for plausibility
2532 */
2533
2534
2535 static void analyze_sbs(mddev_t * mddev)
2536 {
2537 int i;
2538 mdk_rdev_t *rdev, *freshest, *tmp;
2539 char b[BDEVNAME_SIZE];
2540
2541 freshest = NULL;
2542 rdev_for_each(rdev, tmp, mddev)
2543 switch (super_types[mddev->major_version].
2544 load_super(rdev, freshest, mddev->minor_version)) {
2545 case 1:
2546 freshest = rdev;
2547 break;
2548 case 0:
2549 break;
2550 default:
2551 printk( KERN_ERR \
2552 "md: fatal superblock inconsistency in %s"
2553 " -- removing from array\n",
2554 bdevname(rdev->bdev,b));
2555 kick_rdev_from_array(rdev);
2556 }
2557
2558
2559 super_types[mddev->major_version].
2560 validate_super(mddev, freshest);
2561
2562 i = 0;
2563 rdev_for_each(rdev, tmp, mddev) {
2564 if (rdev->desc_nr >= mddev->max_disks ||
2565 i > mddev->max_disks) {
2566 printk(KERN_WARNING
2567 "md: %s: %s: only %d devices permitted\n",
2568 mdname(mddev), bdevname(rdev->bdev, b),
2569 mddev->max_disks);
2570 kick_rdev_from_array(rdev);
2571 continue;
2572 }
2573 if (rdev != freshest)
2574 if (super_types[mddev->major_version].
2575 validate_super(mddev, rdev)) {
2576 printk(KERN_WARNING "md: kicking non-fresh %s"
2577 " from array!\n",
2578 bdevname(rdev->bdev,b));
2579 kick_rdev_from_array(rdev);
2580 continue;
2581 }
2582 if (mddev->level == LEVEL_MULTIPATH) {
2583 rdev->desc_nr = i++;
2584 rdev->raid_disk = rdev->desc_nr;
2585 set_bit(In_sync, &rdev->flags);
2586 } else if (rdev->raid_disk >= mddev->raid_disks) {
2587 rdev->raid_disk = -1;
2588 clear_bit(In_sync, &rdev->flags);
2589 }
2590 }
2591
2592
2593
2594 if (mddev->recovery_cp != MaxSector &&
2595 mddev->level >= 1)
2596 printk(KERN_ERR "md: %s: raid array is not clean"
2597 " -- starting background reconstruction\n",
2598 mdname(mddev));
2599
2600 }
2601
2602 static void md_safemode_timeout(unsigned long data);
2603
2604 static ssize_t
2605 safe_delay_show(mddev_t *mddev, char *page)
2606 {
2607 int msec = (mddev->safemode_delay*1000)/HZ;
2608 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2609 }
2610 static ssize_t
2611 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2612 {
2613 int scale=1;
2614 int dot=0;
2615 int i;
2616 unsigned long msec;
2617 char buf[30];
2618
2619 /* remove a period, and count digits after it */
2620 if (len >= sizeof(buf))
2621 return -EINVAL;
2622 strlcpy(buf, cbuf, sizeof(buf));
2623 for (i=0; i<len; i++) {
2624 if (dot) {
2625 if (isdigit(buf[i])) {
2626 buf[i-1] = buf[i];
2627 scale *= 10;
2628 }
2629 buf[i] = 0;
2630 } else if (buf[i] == '.') {
2631 dot=1;
2632 buf[i] = 0;
2633 }
2634 }
2635 if (strict_strtoul(buf, 10, &msec) < 0)
2636 return -EINVAL;
2637 msec = (msec * 1000) / scale;
2638 if (msec == 0)
2639 mddev->safemode_delay = 0;
2640 else {
2641 unsigned long old_delay = mddev->safemode_delay;
2642 mddev->safemode_delay = (msec*HZ)/1000;
2643 if (mddev->safemode_delay == 0)
2644 mddev->safemode_delay = 1;
2645 if (mddev->safemode_delay < old_delay)
2646 md_safemode_timeout((unsigned long)mddev);
2647 }
2648 return len;
2649 }
2650 static struct md_sysfs_entry md_safe_delay =
2651 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2652
2653 static ssize_t
2654 level_show(mddev_t *mddev, char *page)
2655 {
2656 struct mdk_personality *p = mddev->pers;
2657 if (p)
2658 return sprintf(page, "%s\n", p->name);
2659 else if (mddev->clevel[0])
2660 return sprintf(page, "%s\n", mddev->clevel);
2661 else if (mddev->level != LEVEL_NONE)
2662 return sprintf(page, "%d\n", mddev->level);
2663 else
2664 return 0;
2665 }
2666
2667 static ssize_t
2668 level_store(mddev_t *mddev, const char *buf, size_t len)
2669 {
2670 char level[16];
2671 ssize_t rv = len;
2672 struct mdk_personality *pers;
2673 void *priv;
2674
2675 if (mddev->pers == NULL) {
2676 if (len == 0)
2677 return 0;
2678 if (len >= sizeof(mddev->clevel))
2679 return -ENOSPC;
2680 strncpy(mddev->clevel, buf, len);
2681 if (mddev->clevel[len-1] == '\n')
2682 len--;
2683 mddev->clevel[len] = 0;
2684 mddev->level = LEVEL_NONE;
2685 return rv;
2686 }
2687
2688 /* request to change the personality. Need to ensure:
2689 * - array is not engaged in resync/recovery/reshape
2690 * - old personality can be suspended
2691 * - new personality will access other array.
2692 */
2693
2694 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
2695 return -EBUSY;
2696
2697 if (!mddev->pers->quiesce) {
2698 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
2699 mdname(mddev), mddev->pers->name);
2700 return -EINVAL;
2701 }
2702
2703 /* Now find the new personality */
2704 if (len == 0 || len >= sizeof(level))
2705 return -EINVAL;
2706 strncpy(level, buf, len);
2707 if (level[len-1] == '\n')
2708 len--;
2709 level[len] = 0;
2710
2711 request_module("md-%s", level);
2712 spin_lock(&pers_lock);
2713 pers = find_pers(LEVEL_NONE, level);
2714 if (!pers || !try_module_get(pers->owner)) {
2715 spin_unlock(&pers_lock);
2716 printk(KERN_WARNING "md: personality %s not loaded\n", level);
2717 return -EINVAL;
2718 }
2719 spin_unlock(&pers_lock);
2720
2721 if (pers == mddev->pers) {
2722 /* Nothing to do! */
2723 module_put(pers->owner);
2724 return rv;
2725 }
2726 if (!pers->takeover) {
2727 module_put(pers->owner);
2728 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
2729 mdname(mddev), level);
2730 return -EINVAL;
2731 }
2732
2733 /* ->takeover must set new_* and/or delta_disks
2734 * if it succeeds, and may set them when it fails.
2735 */
2736 priv = pers->takeover(mddev);
2737 if (IS_ERR(priv)) {
2738 mddev->new_level = mddev->level;
2739 mddev->new_layout = mddev->layout;
2740 mddev->new_chunk = mddev->chunk_size;
2741 mddev->raid_disks -= mddev->delta_disks;
2742 mddev->delta_disks = 0;
2743 module_put(pers->owner);
2744 printk(KERN_WARNING "md: %s: %s would not accept array\n",
2745 mdname(mddev), level);
2746 return PTR_ERR(priv);
2747 }
2748
2749 /* Looks like we have a winner */
2750 mddev_suspend(mddev);
2751 mddev->pers->stop(mddev);
2752 module_put(mddev->pers->owner);
2753 mddev->pers = pers;
2754 mddev->private = priv;
2755 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
2756 mddev->level = mddev->new_level;
2757 mddev->layout = mddev->new_layout;
2758 mddev->chunk_size = mddev->new_chunk;
2759 mddev->delta_disks = 0;
2760 pers->run(mddev);
2761 mddev_resume(mddev);
2762 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2763 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2764 md_wakeup_thread(mddev->thread);
2765 return rv;
2766 }
2767
2768 static struct md_sysfs_entry md_level =
2769 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
2770
2771
2772 static ssize_t
2773 layout_show(mddev_t *mddev, char *page)
2774 {
2775 /* just a number, not meaningful for all levels */
2776 if (mddev->reshape_position != MaxSector &&
2777 mddev->layout != mddev->new_layout)
2778 return sprintf(page, "%d (%d)\n",
2779 mddev->new_layout, mddev->layout);
2780 return sprintf(page, "%d\n", mddev->layout);
2781 }
2782
2783 static ssize_t
2784 layout_store(mddev_t *mddev, const char *buf, size_t len)
2785 {
2786 char *e;
2787 unsigned long n = simple_strtoul(buf, &e, 10);
2788
2789 if (!*buf || (*e && *e != '\n'))
2790 return -EINVAL;
2791
2792 if (mddev->pers) {
2793 int err;
2794 if (mddev->pers->reconfig == NULL)
2795 return -EBUSY;
2796 err = mddev->pers->reconfig(mddev, n, -1);
2797 if (err)
2798 return err;
2799 } else {
2800 mddev->new_layout = n;
2801 if (mddev->reshape_position == MaxSector)
2802 mddev->layout = n;
2803 }
2804 return len;
2805 }
2806 static struct md_sysfs_entry md_layout =
2807 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
2808
2809
2810 static ssize_t
2811 raid_disks_show(mddev_t *mddev, char *page)
2812 {
2813 if (mddev->raid_disks == 0)
2814 return 0;
2815 if (mddev->reshape_position != MaxSector &&
2816 mddev->delta_disks != 0)
2817 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
2818 mddev->raid_disks - mddev->delta_disks);
2819 return sprintf(page, "%d\n", mddev->raid_disks);
2820 }
2821
2822 static int update_raid_disks(mddev_t *mddev, int raid_disks);
2823
2824 static ssize_t
2825 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
2826 {
2827 char *e;
2828 int rv = 0;
2829 unsigned long n = simple_strtoul(buf, &e, 10);
2830
2831 if (!*buf || (*e && *e != '\n'))
2832 return -EINVAL;
2833
2834 if (mddev->pers)
2835 rv = update_raid_disks(mddev, n);
2836 else if (mddev->reshape_position != MaxSector) {
2837 int olddisks = mddev->raid_disks - mddev->delta_disks;
2838 mddev->delta_disks = n - olddisks;
2839 mddev->raid_disks = n;
2840 } else
2841 mddev->raid_disks = n;
2842 return rv ? rv : len;
2843 }
2844 static struct md_sysfs_entry md_raid_disks =
2845 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
2846
2847 static ssize_t
2848 chunk_size_show(mddev_t *mddev, char *page)
2849 {
2850 if (mddev->reshape_position != MaxSector &&
2851 mddev->chunk_size != mddev->new_chunk)
2852 return sprintf(page, "%d (%d)\n", mddev->new_chunk,
2853 mddev->chunk_size);
2854 return sprintf(page, "%d\n", mddev->chunk_size);
2855 }
2856
2857 static ssize_t
2858 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
2859 {
2860 char *e;
2861 unsigned long n = simple_strtoul(buf, &e, 10);
2862
2863 if (!*buf || (*e && *e != '\n'))
2864 return -EINVAL;
2865
2866 if (mddev->pers) {
2867 int err;
2868 if (mddev->pers->reconfig == NULL)
2869 return -EBUSY;
2870 err = mddev->pers->reconfig(mddev, -1, n);
2871 if (err)
2872 return err;
2873 } else {
2874 mddev->new_chunk = n;
2875 if (mddev->reshape_position == MaxSector)
2876 mddev->chunk_size = n;
2877 }
2878 return len;
2879 }
2880 static struct md_sysfs_entry md_chunk_size =
2881 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
2882
2883 static ssize_t
2884 resync_start_show(mddev_t *mddev, char *page)
2885 {
2886 if (mddev->recovery_cp == MaxSector)
2887 return sprintf(page, "none\n");
2888 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
2889 }
2890
2891 static ssize_t
2892 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
2893 {
2894 char *e;
2895 unsigned long long n = simple_strtoull(buf, &e, 10);
2896
2897 if (mddev->pers)
2898 return -EBUSY;
2899 if (!*buf || (*e && *e != '\n'))
2900 return -EINVAL;
2901
2902 mddev->recovery_cp = n;
2903 return len;
2904 }
2905 static struct md_sysfs_entry md_resync_start =
2906 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
2907
2908 /*
2909 * The array state can be:
2910 *
2911 * clear
2912 * No devices, no size, no level
2913 * Equivalent to STOP_ARRAY ioctl
2914 * inactive
2915 * May have some settings, but array is not active
2916 * all IO results in error
2917 * When written, doesn't tear down array, but just stops it
2918 * suspended (not supported yet)
2919 * All IO requests will block. The array can be reconfigured.
2920 * Writing this, if accepted, will block until array is quiescent
2921 * readonly
2922 * no resync can happen. no superblocks get written.
2923 * write requests fail
2924 * read-auto
2925 * like readonly, but behaves like 'clean' on a write request.
2926 *
2927 * clean - no pending writes, but otherwise active.
2928 * When written to inactive array, starts without resync
2929 * If a write request arrives then
2930 * if metadata is known, mark 'dirty' and switch to 'active'.
2931 * if not known, block and switch to write-pending
2932 * If written to an active array that has pending writes, then fails.
2933 * active
2934 * fully active: IO and resync can be happening.
2935 * When written to inactive array, starts with resync
2936 *
2937 * write-pending
2938 * clean, but writes are blocked waiting for 'active' to be written.
2939 *
2940 * active-idle
2941 * like active, but no writes have been seen for a while (100msec).
2942 *
2943 */
2944 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
2945 write_pending, active_idle, bad_word};
2946 static char *array_states[] = {
2947 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
2948 "write-pending", "active-idle", NULL };
2949
2950 static int match_word(const char *word, char **list)
2951 {
2952 int n;
2953 for (n=0; list[n]; n++)
2954 if (cmd_match(word, list[n]))
2955 break;
2956 return n;
2957 }
2958
2959 static ssize_t
2960 array_state_show(mddev_t *mddev, char *page)
2961 {
2962 enum array_state st = inactive;
2963
2964 if (mddev->pers)
2965 switch(mddev->ro) {
2966 case 1:
2967 st = readonly;
2968 break;
2969 case 2:
2970 st = read_auto;
2971 break;
2972 case 0:
2973 if (mddev->in_sync)
2974 st = clean;
2975 else if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
2976 st = write_pending;
2977 else if (mddev->safemode)
2978 st = active_idle;
2979 else
2980 st = active;
2981 }
2982 else {
2983 if (list_empty(&mddev->disks) &&
2984 mddev->raid_disks == 0 &&
2985 mddev->dev_sectors == 0)
2986 st = clear;
2987 else
2988 st = inactive;
2989 }
2990 return sprintf(page, "%s\n", array_states[st]);
2991 }
2992
2993 static int do_md_stop(mddev_t * mddev, int ro, int is_open);
2994 static int do_md_run(mddev_t * mddev);
2995 static int restart_array(mddev_t *mddev);
2996
2997 static ssize_t
2998 array_state_store(mddev_t *mddev, const char *buf, size_t len)
2999 {
3000 int err = -EINVAL;
3001 enum array_state st = match_word(buf, array_states);
3002 switch(st) {
3003 case bad_word:
3004 break;
3005 case clear:
3006 /* stopping an active array */
3007 if (atomic_read(&mddev->openers) > 0)
3008 return -EBUSY;
3009 err = do_md_stop(mddev, 0, 0);
3010 break;
3011 case inactive:
3012 /* stopping an active array */
3013 if (mddev->pers) {
3014 if (atomic_read(&mddev->openers) > 0)
3015 return -EBUSY;
3016 err = do_md_stop(mddev, 2, 0);
3017 } else
3018 err = 0; /* already inactive */
3019 break;
3020 case suspended:
3021 break; /* not supported yet */
3022 case readonly:
3023 if (mddev->pers)
3024 err = do_md_stop(mddev, 1, 0);
3025 else {
3026 mddev->ro = 1;
3027 set_disk_ro(mddev->gendisk, 1);
3028 err = do_md_run(mddev);
3029 }
3030 break;
3031 case read_auto:
3032 if (mddev->pers) {
3033 if (mddev->ro == 0)
3034 err = do_md_stop(mddev, 1, 0);
3035 else if (mddev->ro == 1)
3036 err = restart_array(mddev);
3037 if (err == 0) {
3038 mddev->ro = 2;
3039 set_disk_ro(mddev->gendisk, 0);
3040 }
3041 } else {
3042 mddev->ro = 2;
3043 err = do_md_run(mddev);
3044 }
3045 break;
3046 case clean:
3047 if (mddev->pers) {
3048 restart_array(mddev);
3049 spin_lock_irq(&mddev->write_lock);
3050 if (atomic_read(&mddev->writes_pending) == 0) {
3051 if (mddev->in_sync == 0) {
3052 mddev->in_sync = 1;
3053 if (mddev->safemode == 1)
3054 mddev->safemode = 0;
3055 if (mddev->persistent)
3056 set_bit(MD_CHANGE_CLEAN,
3057 &mddev->flags);
3058 }
3059 err = 0;
3060 } else
3061 err = -EBUSY;
3062 spin_unlock_irq(&mddev->write_lock);
3063 } else {
3064 mddev->ro = 0;
3065 mddev->recovery_cp = MaxSector;
3066 err = do_md_run(mddev);
3067 }
3068 break;
3069 case active:
3070 if (mddev->pers) {
3071 restart_array(mddev);
3072 if (mddev->external)
3073 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
3074 wake_up(&mddev->sb_wait);
3075 err = 0;
3076 } else {
3077 mddev->ro = 0;
3078 set_disk_ro(mddev->gendisk, 0);
3079 err = do_md_run(mddev);
3080 }
3081 break;
3082 case write_pending:
3083 case active_idle:
3084 /* these cannot be set */
3085 break;
3086 }
3087 if (err)
3088 return err;
3089 else {
3090 sysfs_notify_dirent(mddev->sysfs_state);
3091 return len;
3092 }
3093 }
3094 static struct md_sysfs_entry md_array_state =
3095 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3096
3097 static ssize_t
3098 null_show(mddev_t *mddev, char *page)
3099 {
3100 return -EINVAL;
3101 }
3102
3103 static ssize_t
3104 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
3105 {
3106 /* buf must be %d:%d\n? giving major and minor numbers */
3107 /* The new device is added to the array.
3108 * If the array has a persistent superblock, we read the
3109 * superblock to initialise info and check validity.
3110 * Otherwise, only checking done is that in bind_rdev_to_array,
3111 * which mainly checks size.
3112 */
3113 char *e;
3114 int major = simple_strtoul(buf, &e, 10);
3115 int minor;
3116 dev_t dev;
3117 mdk_rdev_t *rdev;
3118 int err;
3119
3120 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3121 return -EINVAL;
3122 minor = simple_strtoul(e+1, &e, 10);
3123 if (*e && *e != '\n')
3124 return -EINVAL;
3125 dev = MKDEV(major, minor);
3126 if (major != MAJOR(dev) ||
3127 minor != MINOR(dev))
3128 return -EOVERFLOW;
3129
3130
3131 if (mddev->persistent) {
3132 rdev = md_import_device(dev, mddev->major_version,
3133 mddev->minor_version);
3134 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3135 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3136 mdk_rdev_t, same_set);
3137 err = super_types[mddev->major_version]
3138 .load_super(rdev, rdev0, mddev->minor_version);
3139 if (err < 0)
3140 goto out;
3141 }
3142 } else if (mddev->external)
3143 rdev = md_import_device(dev, -2, -1);
3144 else
3145 rdev = md_import_device(dev, -1, -1);
3146
3147 if (IS_ERR(rdev))
3148 return PTR_ERR(rdev);
3149 err = bind_rdev_to_array(rdev, mddev);
3150 out:
3151 if (err)
3152 export_rdev(rdev);
3153 return err ? err : len;
3154 }
3155
3156 static struct md_sysfs_entry md_new_device =
3157 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3158
3159 static ssize_t
3160 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
3161 {
3162 char *end;
3163 unsigned long chunk, end_chunk;
3164
3165 if (!mddev->bitmap)
3166 goto out;
3167 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3168 while (*buf) {
3169 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3170 if (buf == end) break;
3171 if (*end == '-') { /* range */
3172 buf = end + 1;
3173 end_chunk = simple_strtoul(buf, &end, 0);
3174 if (buf == end) break;
3175 }
3176 if (*end && !isspace(*end)) break;
3177 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3178 buf = end;
3179 while (isspace(*buf)) buf++;
3180 }
3181 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3182 out:
3183 return len;
3184 }
3185
3186 static struct md_sysfs_entry md_bitmap =
3187 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3188
3189 static ssize_t
3190 size_show(mddev_t *mddev, char *page)
3191 {
3192 return sprintf(page, "%llu\n",
3193 (unsigned long long)mddev->dev_sectors / 2);
3194 }
3195
3196 static int update_size(mddev_t *mddev, sector_t num_sectors);
3197
3198 static ssize_t
3199 size_store(mddev_t *mddev, const char *buf, size_t len)
3200 {
3201 /* If array is inactive, we can reduce the component size, but
3202 * not increase it (except from 0).
3203 * If array is active, we can try an on-line resize
3204 */
3205 sector_t sectors;
3206 int err = strict_blocks_to_sectors(buf, &sectors);
3207
3208 if (err < 0)
3209 return err;
3210 if (mddev->pers) {
3211 err = update_size(mddev, sectors);
3212 md_update_sb(mddev, 1);
3213 } else {
3214 if (mddev->dev_sectors == 0 ||
3215 mddev->dev_sectors > sectors)
3216 mddev->dev_sectors = sectors;
3217 else
3218 err = -ENOSPC;
3219 }
3220 return err ? err : len;
3221 }
3222
3223 static struct md_sysfs_entry md_size =
3224 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3225
3226
3227 /* Metdata version.
3228 * This is one of
3229 * 'none' for arrays with no metadata (good luck...)
3230 * 'external' for arrays with externally managed metadata,
3231 * or N.M for internally known formats
3232 */
3233 static ssize_t
3234 metadata_show(mddev_t *mddev, char *page)
3235 {
3236 if (mddev->persistent)
3237 return sprintf(page, "%d.%d\n",
3238 mddev->major_version, mddev->minor_version);
3239 else if (mddev->external)
3240 return sprintf(page, "external:%s\n", mddev->metadata_type);
3241 else
3242 return sprintf(page, "none\n");
3243 }
3244
3245 static ssize_t
3246 metadata_store(mddev_t *mddev, const char *buf, size_t len)
3247 {
3248 int major, minor;
3249 char *e;
3250 /* Changing the details of 'external' metadata is
3251 * always permitted. Otherwise there must be
3252 * no devices attached to the array.
3253 */
3254 if (mddev->external && strncmp(buf, "external:", 9) == 0)
3255 ;
3256 else if (!list_empty(&mddev->disks))
3257 return -EBUSY;
3258
3259 if (cmd_match(buf, "none")) {
3260 mddev->persistent = 0;
3261 mddev->external = 0;
3262 mddev->major_version = 0;
3263 mddev->minor_version = 90;
3264 return len;
3265 }
3266 if (strncmp(buf, "external:", 9) == 0) {
3267 size_t namelen = len-9;
3268 if (namelen >= sizeof(mddev->metadata_type))
3269 namelen = sizeof(mddev->metadata_type)-1;
3270 strncpy(mddev->metadata_type, buf+9, namelen);
3271 mddev->metadata_type[namelen] = 0;
3272 if (namelen && mddev->metadata_type[namelen-1] == '\n')
3273 mddev->metadata_type[--namelen] = 0;
3274 mddev->persistent = 0;
3275 mddev->external = 1;
3276 mddev->major_version = 0;
3277 mddev->minor_version = 90;
3278 return len;
3279 }
3280 major = simple_strtoul(buf, &e, 10);
3281 if (e==buf || *e != '.')
3282 return -EINVAL;
3283 buf = e+1;
3284 minor = simple_strtoul(buf, &e, 10);
3285 if (e==buf || (*e && *e != '\n') )
3286 return -EINVAL;
3287 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
3288 return -ENOENT;
3289 mddev->major_version = major;
3290 mddev->minor_version = minor;
3291 mddev->persistent = 1;
3292 mddev->external = 0;
3293 return len;
3294 }
3295
3296 static struct md_sysfs_entry md_metadata =
3297 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
3298
3299 static ssize_t
3300 action_show(mddev_t *mddev, char *page)
3301 {
3302 char *type = "idle";
3303 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3304 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
3305 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3306 type = "reshape";
3307 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3308 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3309 type = "resync";
3310 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
3311 type = "check";
3312 else
3313 type = "repair";
3314 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
3315 type = "recover";
3316 }
3317 return sprintf(page, "%s\n", type);
3318 }
3319
3320 static ssize_t
3321 action_store(mddev_t *mddev, const char *page, size_t len)
3322 {
3323 if (!mddev->pers || !mddev->pers->sync_request)
3324 return -EINVAL;
3325
3326 if (cmd_match(page, "idle")) {
3327 if (mddev->sync_thread) {
3328 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3329 md_unregister_thread(mddev->sync_thread);
3330 mddev->sync_thread = NULL;
3331 mddev->recovery = 0;
3332 }
3333 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3334 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3335 return -EBUSY;
3336 else if (cmd_match(page, "resync"))
3337 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3338 else if (cmd_match(page, "recover")) {
3339 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3340 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3341 } else if (cmd_match(page, "reshape")) {
3342 int err;
3343 if (mddev->pers->start_reshape == NULL)
3344 return -EINVAL;
3345 err = mddev->pers->start_reshape(mddev);
3346 if (err)
3347 return err;
3348 sysfs_notify(&mddev->kobj, NULL, "degraded");
3349 } else {
3350 if (cmd_match(page, "check"))
3351 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3352 else if (!cmd_match(page, "repair"))
3353 return -EINVAL;
3354 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3355 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3356 }
3357 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3358 md_wakeup_thread(mddev->thread);
3359 sysfs_notify_dirent(mddev->sysfs_action);
3360 return len;
3361 }
3362
3363 static ssize_t
3364 mismatch_cnt_show(mddev_t *mddev, char *page)
3365 {
3366 return sprintf(page, "%llu\n",
3367 (unsigned long long) mddev->resync_mismatches);
3368 }
3369
3370 static struct md_sysfs_entry md_scan_mode =
3371 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
3372
3373
3374 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
3375
3376 static ssize_t
3377 sync_min_show(mddev_t *mddev, char *page)
3378 {
3379 return sprintf(page, "%d (%s)\n", speed_min(mddev),
3380 mddev->sync_speed_min ? "local": "system");
3381 }
3382
3383 static ssize_t
3384 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
3385 {
3386 int min;
3387 char *e;
3388 if (strncmp(buf, "system", 6)==0) {
3389 mddev->sync_speed_min = 0;
3390 return len;
3391 }
3392 min = simple_strtoul(buf, &e, 10);
3393 if (buf == e || (*e && *e != '\n') || min <= 0)
3394 return -EINVAL;
3395 mddev->sync_speed_min = min;
3396 return len;
3397 }
3398
3399 static struct md_sysfs_entry md_sync_min =
3400 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
3401
3402 static ssize_t
3403 sync_max_show(mddev_t *mddev, char *page)
3404 {
3405 return sprintf(page, "%d (%s)\n", speed_max(mddev),
3406 mddev->sync_speed_max ? "local": "system");
3407 }
3408
3409 static ssize_t
3410 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
3411 {
3412 int max;
3413 char *e;
3414 if (strncmp(buf, "system", 6)==0) {
3415 mddev->sync_speed_max = 0;
3416 return len;
3417 }
3418 max = simple_strtoul(buf, &e, 10);
3419 if (buf == e || (*e && *e != '\n') || max <= 0)
3420 return -EINVAL;
3421 mddev->sync_speed_max = max;
3422 return len;
3423 }
3424
3425 static struct md_sysfs_entry md_sync_max =
3426 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
3427
3428 static ssize_t
3429 degraded_show(mddev_t *mddev, char *page)
3430 {
3431 return sprintf(page, "%d\n", mddev->degraded);
3432 }
3433 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
3434
3435 static ssize_t
3436 sync_force_parallel_show(mddev_t *mddev, char *page)
3437 {
3438 return sprintf(page, "%d\n", mddev->parallel_resync);
3439 }
3440
3441 static ssize_t
3442 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
3443 {
3444 long n;
3445
3446 if (strict_strtol(buf, 10, &n))
3447 return -EINVAL;
3448
3449 if (n != 0 && n != 1)
3450 return -EINVAL;
3451
3452 mddev->parallel_resync = n;
3453
3454 if (mddev->sync_thread)
3455 wake_up(&resync_wait);
3456
3457 return len;
3458 }
3459
3460 /* force parallel resync, even with shared block devices */
3461 static struct md_sysfs_entry md_sync_force_parallel =
3462 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
3463 sync_force_parallel_show, sync_force_parallel_store);
3464
3465 static ssize_t
3466 sync_speed_show(mddev_t *mddev, char *page)
3467 {
3468 unsigned long resync, dt, db;
3469 if (mddev->curr_resync == 0)
3470 return sprintf(page, "none\n");
3471 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
3472 dt = (jiffies - mddev->resync_mark) / HZ;
3473 if (!dt) dt++;
3474 db = resync - mddev->resync_mark_cnt;
3475 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
3476 }
3477
3478 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
3479
3480 static ssize_t
3481 sync_completed_show(mddev_t *mddev, char *page)
3482 {
3483 unsigned long max_sectors, resync;
3484
3485 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3486 max_sectors = mddev->resync_max_sectors;
3487 else
3488 max_sectors = mddev->dev_sectors;
3489
3490 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
3491 return sprintf(page, "%lu / %lu\n", resync, max_sectors);
3492 }
3493
3494 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
3495
3496 static ssize_t
3497 min_sync_show(mddev_t *mddev, char *page)
3498 {
3499 return sprintf(page, "%llu\n",
3500 (unsigned long long)mddev->resync_min);
3501 }
3502 static ssize_t
3503 min_sync_store(mddev_t *mddev, const char *buf, size_t len)
3504 {
3505 unsigned long long min;
3506 if (strict_strtoull(buf, 10, &min))
3507 return -EINVAL;
3508 if (min > mddev->resync_max)
3509 return -EINVAL;
3510 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3511 return -EBUSY;
3512
3513 /* Must be a multiple of chunk_size */
3514 if (mddev->chunk_size) {
3515 if (min & (sector_t)((mddev->chunk_size>>9)-1))
3516 return -EINVAL;
3517 }
3518 mddev->resync_min = min;
3519
3520 return len;
3521 }
3522
3523 static struct md_sysfs_entry md_min_sync =
3524 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
3525
3526 static ssize_t
3527 max_sync_show(mddev_t *mddev, char *page)
3528 {
3529 if (mddev->resync_max == MaxSector)
3530 return sprintf(page, "max\n");
3531 else
3532 return sprintf(page, "%llu\n",
3533 (unsigned long long)mddev->resync_max);
3534 }
3535 static ssize_t
3536 max_sync_store(mddev_t *mddev, const char *buf, size_t len)
3537 {
3538 if (strncmp(buf, "max", 3) == 0)
3539 mddev->resync_max = MaxSector;
3540 else {
3541 unsigned long long max;
3542 if (strict_strtoull(buf, 10, &max))
3543 return -EINVAL;
3544 if (max < mddev->resync_min)
3545 return -EINVAL;
3546 if (max < mddev->resync_max &&
3547 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3548 return -EBUSY;
3549
3550 /* Must be a multiple of chunk_size */
3551 if (mddev->chunk_size) {
3552 if (max & (sector_t)((mddev->chunk_size>>9)-1))
3553 return -EINVAL;
3554 }
3555 mddev->resync_max = max;
3556 }
3557 wake_up(&mddev->recovery_wait);
3558 return len;
3559 }
3560
3561 static struct md_sysfs_entry md_max_sync =
3562 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
3563
3564 static ssize_t
3565 suspend_lo_show(mddev_t *mddev, char *page)
3566 {
3567 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
3568 }
3569
3570 static ssize_t
3571 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
3572 {
3573 char *e;
3574 unsigned long long new = simple_strtoull(buf, &e, 10);
3575
3576 if (mddev->pers->quiesce == NULL)
3577 return -EINVAL;
3578 if (buf == e || (*e && *e != '\n'))
3579 return -EINVAL;
3580 if (new >= mddev->suspend_hi ||
3581 (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
3582 mddev->suspend_lo = new;
3583 mddev->pers->quiesce(mddev, 2);
3584 return len;
3585 } else
3586 return -EINVAL;
3587 }
3588 static struct md_sysfs_entry md_suspend_lo =
3589 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
3590
3591
3592 static ssize_t
3593 suspend_hi_show(mddev_t *mddev, char *page)
3594 {
3595 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
3596 }
3597
3598 static ssize_t
3599 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
3600 {
3601 char *e;
3602 unsigned long long new = simple_strtoull(buf, &e, 10);
3603
3604 if (mddev->pers->quiesce == NULL)
3605 return -EINVAL;
3606 if (buf == e || (*e && *e != '\n'))
3607 return -EINVAL;
3608 if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
3609 (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
3610 mddev->suspend_hi = new;
3611 mddev->pers->quiesce(mddev, 1);
3612 mddev->pers->quiesce(mddev, 0);
3613 return len;
3614 } else
3615 return -EINVAL;
3616 }
3617 static struct md_sysfs_entry md_suspend_hi =
3618 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
3619
3620 static ssize_t
3621 reshape_position_show(mddev_t *mddev, char *page)
3622 {
3623 if (mddev->reshape_position != MaxSector)
3624 return sprintf(page, "%llu\n",
3625 (unsigned long long)mddev->reshape_position);
3626 strcpy(page, "none\n");
3627 return 5;
3628 }
3629
3630 static ssize_t
3631 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
3632 {
3633 char *e;
3634 unsigned long long new = simple_strtoull(buf, &e, 10);
3635 if (mddev->pers)
3636 return -EBUSY;
3637 if (buf == e || (*e && *e != '\n'))
3638 return -EINVAL;
3639 mddev->reshape_position = new;
3640 mddev->delta_disks = 0;
3641 mddev->new_level = mddev->level;
3642 mddev->new_layout = mddev->layout;
3643 mddev->new_chunk = mddev->chunk_size;
3644 return len;
3645 }
3646
3647 static struct md_sysfs_entry md_reshape_position =
3648 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
3649 reshape_position_store);
3650
3651 static ssize_t
3652 array_size_show(mddev_t *mddev, char *page)
3653 {
3654 if (mddev->external_size)
3655 return sprintf(page, "%llu\n",
3656 (unsigned long long)mddev->array_sectors/2);
3657 else
3658 return sprintf(page, "default\n");
3659 }
3660
3661 static ssize_t
3662 array_size_store(mddev_t *mddev, const char *buf, size_t len)
3663 {
3664 sector_t sectors;
3665
3666 if (strncmp(buf, "default", 7) == 0) {
3667 if (mddev->pers)
3668 sectors = mddev->pers->size(mddev, 0, 0);
3669 else
3670 sectors = mddev->array_sectors;
3671
3672 mddev->external_size = 0;
3673 } else {
3674 if (strict_blocks_to_sectors(buf, &sectors) < 0)
3675 return -EINVAL;
3676 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
3677 return -EINVAL;
3678
3679 mddev->external_size = 1;
3680 }
3681
3682 mddev->array_sectors = sectors;
3683 set_capacity(mddev->gendisk, mddev->array_sectors);
3684 if (mddev->pers) {
3685 struct block_device *bdev = bdget_disk(mddev->gendisk, 0);
3686
3687 if (bdev) {
3688 mutex_lock(&bdev->bd_inode->i_mutex);
3689 i_size_write(bdev->bd_inode,
3690 (loff_t)mddev->array_sectors << 9);
3691 mutex_unlock(&bdev->bd_inode->i_mutex);
3692 bdput(bdev);
3693 }
3694 }
3695
3696 return len;
3697 }
3698
3699 static struct md_sysfs_entry md_array_size =
3700 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
3701 array_size_store);
3702
3703 static struct attribute *md_default_attrs[] = {
3704 &md_level.attr,
3705 &md_layout.attr,
3706 &md_raid_disks.attr,
3707 &md_chunk_size.attr,
3708 &md_size.attr,
3709 &md_resync_start.attr,
3710 &md_metadata.attr,
3711 &md_new_device.attr,
3712 &md_safe_delay.attr,
3713 &md_array_state.attr,
3714 &md_reshape_position.attr,
3715 &md_array_size.attr,
3716 NULL,
3717 };
3718
3719 static struct attribute *md_redundancy_attrs[] = {
3720 &md_scan_mode.attr,
3721 &md_mismatches.attr,
3722 &md_sync_min.attr,
3723 &md_sync_max.attr,
3724 &md_sync_speed.attr,
3725 &md_sync_force_parallel.attr,
3726 &md_sync_completed.attr,
3727 &md_min_sync.attr,
3728 &md_max_sync.attr,
3729 &md_suspend_lo.attr,
3730 &md_suspend_hi.attr,
3731 &md_bitmap.attr,
3732 &md_degraded.attr,
3733 NULL,
3734 };
3735 static struct attribute_group md_redundancy_group = {
3736 .name = NULL,
3737 .attrs = md_redundancy_attrs,
3738 };
3739
3740
3741 static ssize_t
3742 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3743 {
3744 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3745 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3746 ssize_t rv;
3747
3748 if (!entry->show)
3749 return -EIO;
3750 rv = mddev_lock(mddev);
3751 if (!rv) {
3752 rv = entry->show(mddev, page);
3753 mddev_unlock(mddev);
3754 }
3755 return rv;
3756 }
3757
3758 static ssize_t
3759 md_attr_store(struct kobject *kobj, struct attribute *attr,
3760 const char *page, size_t length)
3761 {
3762 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3763 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3764 ssize_t rv;
3765
3766 if (!entry->store)
3767 return -EIO;
3768 if (!capable(CAP_SYS_ADMIN))
3769 return -EACCES;
3770 rv = mddev_lock(mddev);
3771 if (mddev->hold_active == UNTIL_IOCTL)
3772 mddev->hold_active = 0;
3773 if (!rv) {
3774 rv = entry->store(mddev, page, length);
3775 mddev_unlock(mddev);
3776 }
3777 return rv;
3778 }
3779
3780 static void md_free(struct kobject *ko)
3781 {
3782 mddev_t *mddev = container_of(ko, mddev_t, kobj);
3783
3784 if (mddev->sysfs_state)
3785 sysfs_put(mddev->sysfs_state);
3786
3787 if (mddev->gendisk) {
3788 del_gendisk(mddev->gendisk);
3789 put_disk(mddev->gendisk);
3790 }
3791 if (mddev->queue)
3792 blk_cleanup_queue(mddev->queue);
3793
3794 kfree(mddev);
3795 }
3796
3797 static struct sysfs_ops md_sysfs_ops = {
3798 .show = md_attr_show,
3799 .store = md_attr_store,
3800 };
3801 static struct kobj_type md_ktype = {
3802 .release = md_free,
3803 .sysfs_ops = &md_sysfs_ops,
3804 .default_attrs = md_default_attrs,
3805 };
3806
3807 int mdp_major = 0;
3808
3809 static void mddev_delayed_delete(struct work_struct *ws)
3810 {
3811 mddev_t *mddev = container_of(ws, mddev_t, del_work);
3812
3813 if (mddev->private == &md_redundancy_group) {
3814 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
3815 if (mddev->sysfs_action)
3816 sysfs_put(mddev->sysfs_action);
3817 mddev->sysfs_action = NULL;
3818 mddev->private = NULL;
3819 }
3820 kobject_del(&mddev->kobj);
3821 kobject_put(&mddev->kobj);
3822 }
3823
3824 static int md_alloc(dev_t dev, char *name)
3825 {
3826 static DEFINE_MUTEX(disks_mutex);
3827 mddev_t *mddev = mddev_find(dev);
3828 struct gendisk *disk;
3829 int partitioned;
3830 int shift;
3831 int unit;
3832 int error;
3833
3834 if (!mddev)
3835 return -ENODEV;
3836
3837 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
3838 shift = partitioned ? MdpMinorShift : 0;
3839 unit = MINOR(mddev->unit) >> shift;
3840
3841 /* wait for any previous instance if this device
3842 * to be completed removed (mddev_delayed_delete).
3843 */
3844 flush_scheduled_work();
3845
3846 mutex_lock(&disks_mutex);
3847 if (mddev->gendisk) {
3848 mutex_unlock(&disks_mutex);
3849 mddev_put(mddev);
3850 return -EEXIST;
3851 }
3852
3853 if (name) {
3854 /* Need to ensure that 'name' is not a duplicate.
3855 */
3856 mddev_t *mddev2;
3857 spin_lock(&all_mddevs_lock);
3858
3859 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
3860 if (mddev2->gendisk &&
3861 strcmp(mddev2->gendisk->disk_name, name) == 0) {
3862 spin_unlock(&all_mddevs_lock);
3863 return -EEXIST;
3864 }
3865 spin_unlock(&all_mddevs_lock);
3866 }
3867
3868 mddev->queue = blk_alloc_queue(GFP_KERNEL);
3869 if (!mddev->queue) {
3870 mutex_unlock(&disks_mutex);
3871 mddev_put(mddev);
3872 return -ENOMEM;
3873 }
3874 mddev->queue->queuedata = mddev;
3875
3876 /* Can be unlocked because the queue is new: no concurrency */
3877 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, mddev->queue);
3878
3879 blk_queue_make_request(mddev->queue, md_make_request);
3880
3881 disk = alloc_disk(1 << shift);
3882 if (!disk) {
3883 mutex_unlock(&disks_mutex);
3884 blk_cleanup_queue(mddev->queue);
3885 mddev->queue = NULL;
3886 mddev_put(mddev);
3887 return -ENOMEM;
3888 }
3889 disk->major = MAJOR(mddev->unit);
3890 disk->first_minor = unit << shift;
3891 if (name)
3892 strcpy(disk->disk_name, name);
3893 else if (partitioned)
3894 sprintf(disk->disk_name, "md_d%d", unit);
3895 else
3896 sprintf(disk->disk_name, "md%d", unit);
3897 disk->fops = &md_fops;
3898 disk->private_data = mddev;
3899 disk->queue = mddev->queue;
3900 /* Allow extended partitions. This makes the
3901 * 'mdp' device redundant, but we can't really
3902 * remove it now.
3903 */
3904 disk->flags |= GENHD_FL_EXT_DEVT;
3905 add_disk(disk);
3906 mddev->gendisk = disk;
3907 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
3908 &disk_to_dev(disk)->kobj, "%s", "md");
3909 mutex_unlock(&disks_mutex);
3910 if (error)
3911 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
3912 disk->disk_name);
3913 else {
3914 kobject_uevent(&mddev->kobj, KOBJ_ADD);
3915 mddev->sysfs_state = sysfs_get_dirent(mddev->kobj.sd, "array_state");
3916 }
3917 mddev_put(mddev);
3918 return 0;
3919 }
3920
3921 static struct kobject *md_probe(dev_t dev, int *part, void *data)
3922 {
3923 md_alloc(dev, NULL);
3924 return NULL;
3925 }
3926
3927 static int add_named_array(const char *val, struct kernel_param *kp)
3928 {
3929 /* val must be "md_*" where * is not all digits.
3930 * We allocate an array with a large free minor number, and
3931 * set the name to val. val must not already be an active name.
3932 */
3933 int len = strlen(val);
3934 char buf[DISK_NAME_LEN];
3935
3936 while (len && val[len-1] == '\n')
3937 len--;
3938 if (len >= DISK_NAME_LEN)
3939 return -E2BIG;
3940 strlcpy(buf, val, len+1);
3941 if (strncmp(buf, "md_", 3) != 0)
3942 return -EINVAL;
3943 return md_alloc(0, buf);
3944 }
3945
3946 static void md_safemode_timeout(unsigned long data)
3947 {
3948 mddev_t *mddev = (mddev_t *) data;
3949
3950 if (!atomic_read(&mddev->writes_pending)) {
3951 mddev->safemode = 1;
3952 if (mddev->external)
3953 sysfs_notify_dirent(mddev->sysfs_state);
3954 }
3955 md_wakeup_thread(mddev->thread);
3956 }
3957
3958 static int start_dirty_degraded;
3959
3960 static int do_md_run(mddev_t * mddev)
3961 {
3962 int err;
3963 int chunk_size;
3964 mdk_rdev_t *rdev;
3965 struct gendisk *disk;
3966 struct mdk_personality *pers;
3967 char b[BDEVNAME_SIZE];
3968
3969 if (list_empty(&mddev->disks))
3970 /* cannot run an array with no devices.. */
3971 return -EINVAL;
3972
3973 if (mddev->pers)
3974 return -EBUSY;
3975
3976 /*
3977 * Analyze all RAID superblock(s)
3978 */
3979 if (!mddev->raid_disks) {
3980 if (!mddev->persistent)
3981 return -EINVAL;
3982 analyze_sbs(mddev);
3983 }
3984
3985 chunk_size = mddev->chunk_size;
3986
3987 if (chunk_size) {
3988 if (chunk_size > MAX_CHUNK_SIZE) {
3989 printk(KERN_ERR "too big chunk_size: %d > %d\n",
3990 chunk_size, MAX_CHUNK_SIZE);
3991 return -EINVAL;
3992 }
3993 /*
3994 * chunk-size has to be a power of 2
3995 */
3996 if ( (1 << ffz(~chunk_size)) != chunk_size) {
3997 printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
3998 return -EINVAL;
3999 }
4000
4001 /* devices must have minimum size of one chunk */
4002 list_for_each_entry(rdev, &mddev->disks, same_set) {
4003 if (test_bit(Faulty, &rdev->flags))
4004 continue;
4005 if (rdev->sectors < chunk_size / 512) {
4006 printk(KERN_WARNING
4007 "md: Dev %s smaller than chunk_size:"
4008 " %llu < %d\n",
4009 bdevname(rdev->bdev,b),
4010 (unsigned long long)rdev->sectors,
4011 chunk_size / 512);
4012 return -EINVAL;
4013 }
4014 }
4015 }
4016
4017 if (mddev->level != LEVEL_NONE)
4018 request_module("md-level-%d", mddev->level);
4019 else if (mddev->clevel[0])
4020 request_module("md-%s", mddev->clevel);
4021
4022 /*
4023 * Drop all container device buffers, from now on
4024 * the only valid external interface is through the md
4025 * device.
4026 */
4027 list_for_each_entry(rdev, &mddev->disks, same_set) {
4028 if (test_bit(Faulty, &rdev->flags))
4029 continue;
4030 sync_blockdev(rdev->bdev);
4031 invalidate_bdev(rdev->bdev);
4032
4033 /* perform some consistency tests on the device.
4034 * We don't want the data to overlap the metadata,
4035 * Internal Bitmap issues have been handled elsewhere.
4036 */
4037 if (rdev->data_offset < rdev->sb_start) {
4038 if (mddev->dev_sectors &&
4039 rdev->data_offset + mddev->dev_sectors
4040 > rdev->sb_start) {
4041 printk("md: %s: data overlaps metadata\n",
4042 mdname(mddev));
4043 return -EINVAL;
4044 }
4045 } else {
4046 if (rdev->sb_start + rdev->sb_size/512
4047 > rdev->data_offset) {
4048 printk("md: %s: metadata overlaps data\n",
4049 mdname(mddev));
4050 return -EINVAL;
4051 }
4052 }
4053 sysfs_notify_dirent(rdev->sysfs_state);
4054 }
4055
4056 md_probe(mddev->unit, NULL, NULL);
4057 disk = mddev->gendisk;
4058 if (!disk)
4059 return -ENOMEM;
4060
4061 spin_lock(&pers_lock);
4062 pers = find_pers(mddev->level, mddev->clevel);
4063 if (!pers || !try_module_get(pers->owner)) {
4064 spin_unlock(&pers_lock);
4065 if (mddev->level != LEVEL_NONE)
4066 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4067 mddev->level);
4068 else
4069 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4070 mddev->clevel);
4071 return -EINVAL;
4072 }
4073 mddev->pers = pers;
4074 spin_unlock(&pers_lock);
4075 if (mddev->level != pers->level) {
4076 mddev->level = pers->level;
4077 mddev->new_level = pers->level;
4078 }
4079 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4080
4081 if (pers->level >= 4 && pers->level <= 6)
4082 /* Cannot support integrity (yet) */
4083 blk_integrity_unregister(mddev->gendisk);
4084
4085 if (mddev->reshape_position != MaxSector &&
4086 pers->start_reshape == NULL) {
4087 /* This personality cannot handle reshaping... */
4088 mddev->pers = NULL;
4089 module_put(pers->owner);
4090 return -EINVAL;
4091 }
4092
4093 if (pers->sync_request) {
4094 /* Warn if this is a potentially silly
4095 * configuration.
4096 */
4097 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4098 mdk_rdev_t *rdev2;
4099 int warned = 0;
4100
4101 list_for_each_entry(rdev, &mddev->disks, same_set)
4102 list_for_each_entry(rdev2, &mddev->disks, same_set) {
4103 if (rdev < rdev2 &&
4104 rdev->bdev->bd_contains ==
4105 rdev2->bdev->bd_contains) {
4106 printk(KERN_WARNING
4107 "%s: WARNING: %s appears to be"
4108 " on the same physical disk as"
4109 " %s.\n",
4110 mdname(mddev),
4111 bdevname(rdev->bdev,b),
4112 bdevname(rdev2->bdev,b2));
4113 warned = 1;
4114 }
4115 }
4116
4117 if (warned)
4118 printk(KERN_WARNING
4119 "True protection against single-disk"
4120 " failure might be compromised.\n");
4121 }
4122
4123 mddev->recovery = 0;
4124 /* may be over-ridden by personality */
4125 mddev->resync_max_sectors = mddev->dev_sectors;
4126
4127 mddev->barriers_work = 1;
4128 mddev->ok_start_degraded = start_dirty_degraded;
4129
4130 if (start_readonly)
4131 mddev->ro = 2; /* read-only, but switch on first write */
4132
4133 err = mddev->pers->run(mddev);
4134 if (err)
4135 printk(KERN_ERR "md: pers->run() failed ...\n");
4136 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4137 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4138 " but 'external_size' not in effect?\n", __func__);
4139 printk(KERN_ERR
4140 "md: invalid array_size %llu > default size %llu\n",
4141 (unsigned long long)mddev->array_sectors / 2,
4142 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4143 err = -EINVAL;
4144 mddev->pers->stop(mddev);
4145 }
4146 if (err == 0 && mddev->pers->sync_request) {
4147 err = bitmap_create(mddev);
4148 if (err) {
4149 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4150 mdname(mddev), err);
4151 mddev->pers->stop(mddev);
4152 }
4153 }
4154 if (err) {
4155 module_put(mddev->pers->owner);
4156 mddev->pers = NULL;
4157 bitmap_destroy(mddev);
4158 return err;
4159 }
4160 if (mddev->pers->sync_request) {
4161 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4162 printk(KERN_WARNING
4163 "md: cannot register extra attributes for %s\n",
4164 mdname(mddev));
4165 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
4166 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4167 mddev->ro = 0;
4168
4169 atomic_set(&mddev->writes_pending,0);
4170 mddev->safemode = 0;
4171 mddev->safemode_timer.function = md_safemode_timeout;
4172 mddev->safemode_timer.data = (unsigned long) mddev;
4173 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4174 mddev->in_sync = 1;
4175
4176 list_for_each_entry(rdev, &mddev->disks, same_set)
4177 if (rdev->raid_disk >= 0) {
4178 char nm[20];
4179 sprintf(nm, "rd%d", rdev->raid_disk);
4180 if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
4181 printk("md: cannot register %s for %s\n",
4182 nm, mdname(mddev));
4183 }
4184
4185 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4186
4187 if (mddev->flags)
4188 md_update_sb(mddev, 0);
4189
4190 set_capacity(disk, mddev->array_sectors);
4191
4192 /* If there is a partially-recovered drive we need to
4193 * start recovery here. If we leave it to md_check_recovery,
4194 * it will remove the drives and not do the right thing
4195 */
4196 if (mddev->degraded && !mddev->sync_thread) {
4197 int spares = 0;
4198 list_for_each_entry(rdev, &mddev->disks, same_set)
4199 if (rdev->raid_disk >= 0 &&
4200 !test_bit(In_sync, &rdev->flags) &&
4201 !test_bit(Faulty, &rdev->flags))
4202 /* complete an interrupted recovery */
4203 spares++;
4204 if (spares && mddev->pers->sync_request) {
4205 mddev->recovery = 0;
4206 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4207 mddev->sync_thread = md_register_thread(md_do_sync,
4208 mddev,
4209 "%s_resync");
4210 if (!mddev->sync_thread) {
4211 printk(KERN_ERR "%s: could not start resync"
4212 " thread...\n",
4213 mdname(mddev));
4214 /* leave the spares where they are, it shouldn't hurt */
4215 mddev->recovery = 0;
4216 }
4217 }
4218 }
4219 md_wakeup_thread(mddev->thread);
4220 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4221
4222 mddev->changed = 1;
4223 md_new_event(mddev);
4224 sysfs_notify_dirent(mddev->sysfs_state);
4225 if (mddev->sysfs_action)
4226 sysfs_notify_dirent(mddev->sysfs_action);
4227 sysfs_notify(&mddev->kobj, NULL, "degraded");
4228 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4229 return 0;
4230 }
4231
4232 static int restart_array(mddev_t *mddev)
4233 {
4234 struct gendisk *disk = mddev->gendisk;
4235
4236 /* Complain if it has no devices */
4237 if (list_empty(&mddev->disks))
4238 return -ENXIO;
4239 if (!mddev->pers)
4240 return -EINVAL;
4241 if (!mddev->ro)
4242 return -EBUSY;
4243 mddev->safemode = 0;
4244 mddev->ro = 0;
4245 set_disk_ro(disk, 0);
4246 printk(KERN_INFO "md: %s switched to read-write mode.\n",
4247 mdname(mddev));
4248 /* Kick recovery or resync if necessary */
4249 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4250 md_wakeup_thread(mddev->thread);
4251 md_wakeup_thread(mddev->sync_thread);
4252 sysfs_notify_dirent(mddev->sysfs_state);
4253 return 0;
4254 }
4255
4256 /* similar to deny_write_access, but accounts for our holding a reference
4257 * to the file ourselves */
4258 static int deny_bitmap_write_access(struct file * file)
4259 {
4260 struct inode *inode = file->f_mapping->host;
4261
4262 spin_lock(&inode->i_lock);
4263 if (atomic_read(&inode->i_writecount) > 1) {
4264 spin_unlock(&inode->i_lock);
4265 return -ETXTBSY;
4266 }
4267 atomic_set(&inode->i_writecount, -1);
4268 spin_unlock(&inode->i_lock);
4269
4270 return 0;
4271 }
4272
4273 static void restore_bitmap_write_access(struct file *file)
4274 {
4275 struct inode *inode = file->f_mapping->host;
4276
4277 spin_lock(&inode->i_lock);
4278 atomic_set(&inode->i_writecount, 1);
4279 spin_unlock(&inode->i_lock);
4280 }
4281
4282 /* mode:
4283 * 0 - completely stop and dis-assemble array
4284 * 1 - switch to readonly
4285 * 2 - stop but do not disassemble array
4286 */
4287 static int do_md_stop(mddev_t * mddev, int mode, int is_open)
4288 {
4289 int err = 0;
4290 struct gendisk *disk = mddev->gendisk;
4291
4292 if (atomic_read(&mddev->openers) > is_open) {
4293 printk("md: %s still in use.\n",mdname(mddev));
4294 return -EBUSY;
4295 }
4296
4297 if (mddev->pers) {
4298
4299 if (mddev->sync_thread) {
4300 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4301 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4302 md_unregister_thread(mddev->sync_thread);
4303 mddev->sync_thread = NULL;
4304 }
4305
4306 del_timer_sync(&mddev->safemode_timer);
4307
4308 switch(mode) {
4309 case 1: /* readonly */
4310 err = -ENXIO;
4311 if (mddev->ro==1)
4312 goto out;
4313 mddev->ro = 1;
4314 break;
4315 case 0: /* disassemble */
4316 case 2: /* stop */
4317 bitmap_flush(mddev);
4318 md_super_wait(mddev);
4319 if (mddev->ro)
4320 set_disk_ro(disk, 0);
4321
4322 mddev->pers->stop(mddev);
4323 mddev->queue->merge_bvec_fn = NULL;
4324 mddev->queue->unplug_fn = NULL;
4325 mddev->queue->backing_dev_info.congested_fn = NULL;
4326 module_put(mddev->pers->owner);
4327 if (mddev->pers->sync_request)
4328 mddev->private = &md_redundancy_group;
4329 mddev->pers = NULL;
4330 /* tell userspace to handle 'inactive' */
4331 sysfs_notify_dirent(mddev->sysfs_state);
4332
4333 set_capacity(disk, 0);
4334 mddev->changed = 1;
4335
4336 if (mddev->ro)
4337 mddev->ro = 0;
4338 }
4339 if (!mddev->in_sync || mddev->flags) {
4340 /* mark array as shutdown cleanly */
4341 mddev->in_sync = 1;
4342 md_update_sb(mddev, 1);
4343 }
4344 if (mode == 1)
4345 set_disk_ro(disk, 1);
4346 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4347 }
4348
4349 /*
4350 * Free resources if final stop
4351 */
4352 if (mode == 0) {
4353 mdk_rdev_t *rdev;
4354
4355 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
4356
4357 bitmap_destroy(mddev);
4358 if (mddev->bitmap_file) {
4359 restore_bitmap_write_access(mddev->bitmap_file);
4360 fput(mddev->bitmap_file);
4361 mddev->bitmap_file = NULL;
4362 }
4363 mddev->bitmap_offset = 0;
4364
4365 list_for_each_entry(rdev, &mddev->disks, same_set)
4366 if (rdev->raid_disk >= 0) {
4367 char nm[20];
4368 sprintf(nm, "rd%d", rdev->raid_disk);
4369 sysfs_remove_link(&mddev->kobj, nm);
4370 }
4371
4372 /* make sure all md_delayed_delete calls have finished */
4373 flush_scheduled_work();
4374
4375 export_array(mddev);
4376
4377 mddev->array_sectors = 0;
4378 mddev->external_size = 0;
4379 mddev->dev_sectors = 0;
4380 mddev->raid_disks = 0;
4381 mddev->recovery_cp = 0;
4382 mddev->resync_min = 0;
4383 mddev->resync_max = MaxSector;
4384 mddev->reshape_position = MaxSector;
4385 mddev->external = 0;
4386 mddev->persistent = 0;
4387 mddev->level = LEVEL_NONE;
4388 mddev->clevel[0] = 0;
4389 mddev->flags = 0;
4390 mddev->ro = 0;
4391 mddev->metadata_type[0] = 0;
4392 mddev->chunk_size = 0;
4393 mddev->ctime = mddev->utime = 0;
4394 mddev->layout = 0;
4395 mddev->max_disks = 0;
4396 mddev->events = 0;
4397 mddev->delta_disks = 0;
4398 mddev->new_level = LEVEL_NONE;
4399 mddev->new_layout = 0;
4400 mddev->new_chunk = 0;
4401 mddev->curr_resync = 0;
4402 mddev->resync_mismatches = 0;
4403 mddev->suspend_lo = mddev->suspend_hi = 0;
4404 mddev->sync_speed_min = mddev->sync_speed_max = 0;
4405 mddev->recovery = 0;
4406 mddev->in_sync = 0;
4407 mddev->changed = 0;
4408 mddev->degraded = 0;
4409 mddev->barriers_work = 0;
4410 mddev->safemode = 0;
4411 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4412 if (mddev->hold_active == UNTIL_STOP)
4413 mddev->hold_active = 0;
4414
4415 } else if (mddev->pers)
4416 printk(KERN_INFO "md: %s switched to read-only mode.\n",
4417 mdname(mddev));
4418 err = 0;
4419 blk_integrity_unregister(disk);
4420 md_new_event(mddev);
4421 sysfs_notify_dirent(mddev->sysfs_state);
4422 out:
4423 return err;
4424 }
4425
4426 #ifndef MODULE
4427 static void autorun_array(mddev_t *mddev)
4428 {
4429 mdk_rdev_t *rdev;
4430 int err;
4431
4432 if (list_empty(&mddev->disks))
4433 return;
4434
4435 printk(KERN_INFO "md: running: ");
4436
4437 list_for_each_entry(rdev, &mddev->disks, same_set) {
4438 char b[BDEVNAME_SIZE];
4439 printk("<%s>", bdevname(rdev->bdev,b));
4440 }
4441 printk("\n");
4442
4443 err = do_md_run(mddev);
4444 if (err) {
4445 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
4446 do_md_stop(mddev, 0, 0);
4447 }
4448 }
4449
4450 /*
4451 * lets try to run arrays based on all disks that have arrived
4452 * until now. (those are in pending_raid_disks)
4453 *
4454 * the method: pick the first pending disk, collect all disks with
4455 * the same UUID, remove all from the pending list and put them into
4456 * the 'same_array' list. Then order this list based on superblock
4457 * update time (freshest comes first), kick out 'old' disks and
4458 * compare superblocks. If everything's fine then run it.
4459 *
4460 * If "unit" is allocated, then bump its reference count
4461 */
4462 static void autorun_devices(int part)
4463 {
4464 mdk_rdev_t *rdev0, *rdev, *tmp;
4465 mddev_t *mddev;
4466 char b[BDEVNAME_SIZE];
4467
4468 printk(KERN_INFO "md: autorun ...\n");
4469 while (!list_empty(&pending_raid_disks)) {
4470 int unit;
4471 dev_t dev;
4472 LIST_HEAD(candidates);
4473 rdev0 = list_entry(pending_raid_disks.next,
4474 mdk_rdev_t, same_set);
4475
4476 printk(KERN_INFO "md: considering %s ...\n",
4477 bdevname(rdev0->bdev,b));
4478 INIT_LIST_HEAD(&candidates);
4479 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
4480 if (super_90_load(rdev, rdev0, 0) >= 0) {
4481 printk(KERN_INFO "md: adding %s ...\n",
4482 bdevname(rdev->bdev,b));
4483 list_move(&rdev->same_set, &candidates);
4484 }
4485 /*
4486 * now we have a set of devices, with all of them having
4487 * mostly sane superblocks. It's time to allocate the
4488 * mddev.
4489 */
4490 if (part) {
4491 dev = MKDEV(mdp_major,
4492 rdev0->preferred_minor << MdpMinorShift);
4493 unit = MINOR(dev) >> MdpMinorShift;
4494 } else {
4495 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
4496 unit = MINOR(dev);
4497 }
4498 if (rdev0->preferred_minor != unit) {
4499 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
4500 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
4501 break;
4502 }
4503
4504 md_probe(dev, NULL, NULL);
4505 mddev = mddev_find(dev);
4506 if (!mddev || !mddev->gendisk) {
4507 if (mddev)
4508 mddev_put(mddev);
4509 printk(KERN_ERR
4510 "md: cannot allocate memory for md drive.\n");
4511 break;
4512 }
4513 if (mddev_lock(mddev))
4514 printk(KERN_WARNING "md: %s locked, cannot run\n",
4515 mdname(mddev));
4516 else if (mddev->raid_disks || mddev->major_version
4517 || !list_empty(&mddev->disks)) {
4518 printk(KERN_WARNING
4519 "md: %s already running, cannot run %s\n",
4520 mdname(mddev), bdevname(rdev0->bdev,b));
4521 mddev_unlock(mddev);
4522 } else {
4523 printk(KERN_INFO "md: created %s\n", mdname(mddev));
4524 mddev->persistent = 1;
4525 rdev_for_each_list(rdev, tmp, &candidates) {
4526 list_del_init(&rdev->same_set);
4527 if (bind_rdev_to_array(rdev, mddev))
4528 export_rdev(rdev);
4529 }
4530 autorun_array(mddev);
4531 mddev_unlock(mddev);
4532 }
4533 /* on success, candidates will be empty, on error
4534 * it won't...
4535 */
4536 rdev_for_each_list(rdev, tmp, &candidates) {
4537 list_del_init(&rdev->same_set);
4538 export_rdev(rdev);
4539 }
4540 mddev_put(mddev);
4541 }
4542 printk(KERN_INFO "md: ... autorun DONE.\n");
4543 }
4544 #endif /* !MODULE */
4545
4546 static int get_version(void __user * arg)
4547 {
4548 mdu_version_t ver;
4549
4550 ver.major = MD_MAJOR_VERSION;
4551 ver.minor = MD_MINOR_VERSION;
4552 ver.patchlevel = MD_PATCHLEVEL_VERSION;
4553
4554 if (copy_to_user(arg, &ver, sizeof(ver)))
4555 return -EFAULT;
4556
4557 return 0;
4558 }
4559
4560 static int get_array_info(mddev_t * mddev, void __user * arg)
4561 {
4562 mdu_array_info_t info;
4563 int nr,working,active,failed,spare;
4564 mdk_rdev_t *rdev;
4565
4566 nr=working=active=failed=spare=0;
4567 list_for_each_entry(rdev, &mddev->disks, same_set) {
4568 nr++;
4569 if (test_bit(Faulty, &rdev->flags))
4570 failed++;
4571 else {
4572 working++;
4573 if (test_bit(In_sync, &rdev->flags))
4574 active++;
4575 else
4576 spare++;
4577 }
4578 }
4579
4580 info.major_version = mddev->major_version;
4581 info.minor_version = mddev->minor_version;
4582 info.patch_version = MD_PATCHLEVEL_VERSION;
4583 info.ctime = mddev->ctime;
4584 info.level = mddev->level;
4585 info.size = mddev->dev_sectors / 2;
4586 if (info.size != mddev->dev_sectors / 2) /* overflow */
4587 info.size = -1;
4588 info.nr_disks = nr;
4589 info.raid_disks = mddev->raid_disks;
4590 info.md_minor = mddev->md_minor;
4591 info.not_persistent= !mddev->persistent;
4592
4593 info.utime = mddev->utime;
4594 info.state = 0;
4595 if (mddev->in_sync)
4596 info.state = (1<<MD_SB_CLEAN);
4597 if (mddev->bitmap && mddev->bitmap_offset)
4598 info.state = (1<<MD_SB_BITMAP_PRESENT);
4599 info.active_disks = active;
4600 info.working_disks = working;
4601 info.failed_disks = failed;
4602 info.spare_disks = spare;
4603
4604 info.layout = mddev->layout;
4605 info.chunk_size = mddev->chunk_size;
4606
4607 if (copy_to_user(arg, &info, sizeof(info)))
4608 return -EFAULT;
4609
4610 return 0;
4611 }
4612
4613 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
4614 {
4615 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
4616 char *ptr, *buf = NULL;
4617 int err = -ENOMEM;
4618
4619 if (md_allow_write(mddev))
4620 file = kmalloc(sizeof(*file), GFP_NOIO);
4621 else
4622 file = kmalloc(sizeof(*file), GFP_KERNEL);
4623
4624 if (!file)
4625 goto out;
4626
4627 /* bitmap disabled, zero the first byte and copy out */
4628 if (!mddev->bitmap || !mddev->bitmap->file) {
4629 file->pathname[0] = '\0';
4630 goto copy_out;
4631 }
4632
4633 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
4634 if (!buf)
4635 goto out;
4636
4637 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
4638 if (IS_ERR(ptr))
4639 goto out;
4640
4641 strcpy(file->pathname, ptr);
4642
4643 copy_out:
4644 err = 0;
4645 if (copy_to_user(arg, file, sizeof(*file)))
4646 err = -EFAULT;
4647 out:
4648 kfree(buf);
4649 kfree(file);
4650 return err;
4651 }
4652
4653 static int get_disk_info(mddev_t * mddev, void __user * arg)
4654 {
4655 mdu_disk_info_t info;
4656 mdk_rdev_t *rdev;
4657
4658 if (copy_from_user(&info, arg, sizeof(info)))
4659 return -EFAULT;
4660
4661 rdev = find_rdev_nr(mddev, info.number);
4662 if (rdev) {
4663 info.major = MAJOR(rdev->bdev->bd_dev);
4664 info.minor = MINOR(rdev->bdev->bd_dev);
4665 info.raid_disk = rdev->raid_disk;
4666 info.state = 0;
4667 if (test_bit(Faulty, &rdev->flags))
4668 info.state |= (1<<MD_DISK_FAULTY);
4669 else if (test_bit(In_sync, &rdev->flags)) {
4670 info.state |= (1<<MD_DISK_ACTIVE);
4671 info.state |= (1<<MD_DISK_SYNC);
4672 }
4673 if (test_bit(WriteMostly, &rdev->flags))
4674 info.state |= (1<<MD_DISK_WRITEMOSTLY);
4675 } else {
4676 info.major = info.minor = 0;
4677 info.raid_disk = -1;
4678 info.state = (1<<MD_DISK_REMOVED);
4679 }
4680
4681 if (copy_to_user(arg, &info, sizeof(info)))
4682 return -EFAULT;
4683
4684 return 0;
4685 }
4686
4687 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
4688 {
4689 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4690 mdk_rdev_t *rdev;
4691 dev_t dev = MKDEV(info->major,info->minor);
4692
4693 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
4694 return -EOVERFLOW;
4695
4696 if (!mddev->raid_disks) {
4697 int err;
4698 /* expecting a device which has a superblock */
4699 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
4700 if (IS_ERR(rdev)) {
4701 printk(KERN_WARNING
4702 "md: md_import_device returned %ld\n",
4703 PTR_ERR(rdev));
4704 return PTR_ERR(rdev);
4705 }
4706 if (!list_empty(&mddev->disks)) {
4707 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
4708 mdk_rdev_t, same_set);
4709 int err = super_types[mddev->major_version]
4710 .load_super(rdev, rdev0, mddev->minor_version);
4711 if (err < 0) {
4712 printk(KERN_WARNING
4713 "md: %s has different UUID to %s\n",
4714 bdevname(rdev->bdev,b),
4715 bdevname(rdev0->bdev,b2));
4716 export_rdev(rdev);
4717 return -EINVAL;
4718 }
4719 }
4720 err = bind_rdev_to_array(rdev, mddev);
4721 if (err)
4722 export_rdev(rdev);
4723 return err;
4724 }
4725
4726 /*
4727 * add_new_disk can be used once the array is assembled
4728 * to add "hot spares". They must already have a superblock
4729 * written
4730 */
4731 if (mddev->pers) {
4732 int err;
4733 if (!mddev->pers->hot_add_disk) {
4734 printk(KERN_WARNING
4735 "%s: personality does not support diskops!\n",
4736 mdname(mddev));
4737 return -EINVAL;
4738 }
4739 if (mddev->persistent)
4740 rdev = md_import_device(dev, mddev->major_version,
4741 mddev->minor_version);
4742 else
4743 rdev = md_import_device(dev, -1, -1);
4744 if (IS_ERR(rdev)) {
4745 printk(KERN_WARNING
4746 "md: md_import_device returned %ld\n",
4747 PTR_ERR(rdev));
4748 return PTR_ERR(rdev);
4749 }
4750 /* set save_raid_disk if appropriate */
4751 if (!mddev->persistent) {
4752 if (info->state & (1<<MD_DISK_SYNC) &&
4753 info->raid_disk < mddev->raid_disks)
4754 rdev->raid_disk = info->raid_disk;
4755 else
4756 rdev->raid_disk = -1;
4757 } else
4758 super_types[mddev->major_version].
4759 validate_super(mddev, rdev);
4760 rdev->saved_raid_disk = rdev->raid_disk;
4761
4762 clear_bit(In_sync, &rdev->flags); /* just to be sure */
4763 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
4764 set_bit(WriteMostly, &rdev->flags);
4765 else
4766 clear_bit(WriteMostly, &rdev->flags);
4767
4768 rdev->raid_disk = -1;
4769 err = bind_rdev_to_array(rdev, mddev);
4770 if (!err && !mddev->pers->hot_remove_disk) {
4771 /* If there is hot_add_disk but no hot_remove_disk
4772 * then added disks for geometry changes,
4773 * and should be added immediately.
4774 */
4775 super_types[mddev->major_version].
4776 validate_super(mddev, rdev);
4777 err = mddev->pers->hot_add_disk(mddev, rdev);
4778 if (err)
4779 unbind_rdev_from_array(rdev);
4780 }
4781 if (err)
4782 export_rdev(rdev);
4783 else
4784 sysfs_notify_dirent(rdev->sysfs_state);
4785
4786 md_update_sb(mddev, 1);
4787 if (mddev->degraded)
4788 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4789 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4790 md_wakeup_thread(mddev->thread);
4791 return err;
4792 }
4793
4794 /* otherwise, add_new_disk is only allowed
4795 * for major_version==0 superblocks
4796 */
4797 if (mddev->major_version != 0) {
4798 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
4799 mdname(mddev));
4800 return -EINVAL;
4801 }
4802
4803 if (!(info->state & (1<<MD_DISK_FAULTY))) {
4804 int err;
4805 rdev = md_import_device(dev, -1, 0);
4806 if (IS_ERR(rdev)) {
4807 printk(KERN_WARNING
4808 "md: error, md_import_device() returned %ld\n",
4809 PTR_ERR(rdev));
4810 return PTR_ERR(rdev);
4811 }
4812 rdev->desc_nr = info->number;
4813 if (info->raid_disk < mddev->raid_disks)
4814 rdev->raid_disk = info->raid_disk;
4815 else
4816 rdev->raid_disk = -1;
4817
4818 if (rdev->raid_disk < mddev->raid_disks)
4819 if (info->state & (1<<MD_DISK_SYNC))
4820 set_bit(In_sync, &rdev->flags);
4821
4822 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
4823 set_bit(WriteMostly, &rdev->flags);
4824
4825 if (!mddev->persistent) {
4826 printk(KERN_INFO "md: nonpersistent superblock ...\n");
4827 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
4828 } else
4829 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
4830 rdev->sectors = calc_num_sectors(rdev, mddev->chunk_size);
4831
4832 err = bind_rdev_to_array(rdev, mddev);
4833 if (err) {
4834 export_rdev(rdev);
4835 return err;
4836 }
4837 }
4838
4839 return 0;
4840 }
4841
4842 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
4843 {
4844 char b[BDEVNAME_SIZE];
4845 mdk_rdev_t *rdev;
4846
4847 rdev = find_rdev(mddev, dev);
4848 if (!rdev)
4849 return -ENXIO;
4850
4851 if (rdev->raid_disk >= 0)
4852 goto busy;
4853
4854 kick_rdev_from_array(rdev);
4855 md_update_sb(mddev, 1);
4856 md_new_event(mddev);
4857
4858 return 0;
4859 busy:
4860 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
4861 bdevname(rdev->bdev,b), mdname(mddev));
4862 return -EBUSY;
4863 }
4864
4865 static int hot_add_disk(mddev_t * mddev, dev_t dev)
4866 {
4867 char b[BDEVNAME_SIZE];
4868 int err;
4869 mdk_rdev_t *rdev;
4870
4871 if (!mddev->pers)
4872 return -ENODEV;
4873
4874 if (mddev->major_version != 0) {
4875 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
4876 " version-0 superblocks.\n",
4877 mdname(mddev));
4878 return -EINVAL;
4879 }
4880 if (!mddev->pers->hot_add_disk) {
4881 printk(KERN_WARNING
4882 "%s: personality does not support diskops!\n",
4883 mdname(mddev));
4884 return -EINVAL;
4885 }
4886
4887 rdev = md_import_device(dev, -1, 0);
4888 if (IS_ERR(rdev)) {
4889 printk(KERN_WARNING
4890 "md: error, md_import_device() returned %ld\n",
4891 PTR_ERR(rdev));
4892 return -EINVAL;
4893 }
4894
4895 if (mddev->persistent)
4896 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
4897 else
4898 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
4899
4900 rdev->sectors = calc_num_sectors(rdev, mddev->chunk_size);
4901
4902 if (test_bit(Faulty, &rdev->flags)) {
4903 printk(KERN_WARNING
4904 "md: can not hot-add faulty %s disk to %s!\n",
4905 bdevname(rdev->bdev,b), mdname(mddev));
4906 err = -EINVAL;
4907 goto abort_export;
4908 }
4909 clear_bit(In_sync, &rdev->flags);
4910 rdev->desc_nr = -1;
4911 rdev->saved_raid_disk = -1;
4912 err = bind_rdev_to_array(rdev, mddev);
4913 if (err)
4914 goto abort_export;
4915
4916 /*
4917 * The rest should better be atomic, we can have disk failures
4918 * noticed in interrupt contexts ...
4919 */
4920
4921 rdev->raid_disk = -1;
4922
4923 md_update_sb(mddev, 1);
4924
4925 /*
4926 * Kick recovery, maybe this spare has to be added to the
4927 * array immediately.
4928 */
4929 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4930 md_wakeup_thread(mddev->thread);
4931 md_new_event(mddev);
4932 return 0;
4933
4934 abort_export:
4935 export_rdev(rdev);
4936 return err;
4937 }
4938
4939 static int set_bitmap_file(mddev_t *mddev, int fd)
4940 {
4941 int err;
4942
4943 if (mddev->pers) {
4944 if (!mddev->pers->quiesce)
4945 return -EBUSY;
4946 if (mddev->recovery || mddev->sync_thread)
4947 return -EBUSY;
4948 /* we should be able to change the bitmap.. */
4949 }
4950
4951
4952 if (fd >= 0) {
4953 if (mddev->bitmap)
4954 return -EEXIST; /* cannot add when bitmap is present */
4955 mddev->bitmap_file = fget(fd);
4956
4957 if (mddev->bitmap_file == NULL) {
4958 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
4959 mdname(mddev));
4960 return -EBADF;
4961 }
4962
4963 err = deny_bitmap_write_access(mddev->bitmap_file);
4964 if (err) {
4965 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
4966 mdname(mddev));
4967 fput(mddev->bitmap_file);
4968 mddev->bitmap_file = NULL;
4969 return err;
4970 }
4971 mddev->bitmap_offset = 0; /* file overrides offset */
4972 } else if (mddev->bitmap == NULL)
4973 return -ENOENT; /* cannot remove what isn't there */
4974 err = 0;
4975 if (mddev->pers) {
4976 mddev->pers->quiesce(mddev, 1);
4977 if (fd >= 0)
4978 err = bitmap_create(mddev);
4979 if (fd < 0 || err) {
4980 bitmap_destroy(mddev);
4981 fd = -1; /* make sure to put the file */
4982 }
4983 mddev->pers->quiesce(mddev, 0);
4984 }
4985 if (fd < 0) {
4986 if (mddev->bitmap_file) {
4987 restore_bitmap_write_access(mddev->bitmap_file);
4988 fput(mddev->bitmap_file);
4989 }
4990 mddev->bitmap_file = NULL;
4991 }
4992
4993 return err;
4994 }
4995
4996 /*
4997 * set_array_info is used two different ways
4998 * The original usage is when creating a new array.
4999 * In this usage, raid_disks is > 0 and it together with
5000 * level, size, not_persistent,layout,chunksize determine the
5001 * shape of the array.
5002 * This will always create an array with a type-0.90.0 superblock.
5003 * The newer usage is when assembling an array.
5004 * In this case raid_disks will be 0, and the major_version field is
5005 * use to determine which style super-blocks are to be found on the devices.
5006 * The minor and patch _version numbers are also kept incase the
5007 * super_block handler wishes to interpret them.
5008 */
5009 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
5010 {
5011
5012 if (info->raid_disks == 0) {
5013 /* just setting version number for superblock loading */
5014 if (info->major_version < 0 ||
5015 info->major_version >= ARRAY_SIZE(super_types) ||
5016 super_types[info->major_version].name == NULL) {
5017 /* maybe try to auto-load a module? */
5018 printk(KERN_INFO
5019 "md: superblock version %d not known\n",
5020 info->major_version);
5021 return -EINVAL;
5022 }
5023 mddev->major_version = info->major_version;
5024 mddev->minor_version = info->minor_version;
5025 mddev->patch_version = info->patch_version;
5026 mddev->persistent = !info->not_persistent;
5027 return 0;
5028 }
5029 mddev->major_version = MD_MAJOR_VERSION;
5030 mddev->minor_version = MD_MINOR_VERSION;
5031 mddev->patch_version = MD_PATCHLEVEL_VERSION;
5032 mddev->ctime = get_seconds();
5033
5034 mddev->level = info->level;
5035 mddev->clevel[0] = 0;
5036 mddev->dev_sectors = 2 * (sector_t)info->size;
5037 mddev->raid_disks = info->raid_disks;
5038 /* don't set md_minor, it is determined by which /dev/md* was
5039 * openned
5040 */
5041 if (info->state & (1<<MD_SB_CLEAN))
5042 mddev->recovery_cp = MaxSector;
5043 else
5044 mddev->recovery_cp = 0;
5045 mddev->persistent = ! info->not_persistent;
5046 mddev->external = 0;
5047
5048 mddev->layout = info->layout;
5049 mddev->chunk_size = info->chunk_size;
5050
5051 mddev->max_disks = MD_SB_DISKS;
5052
5053 if (mddev->persistent)
5054 mddev->flags = 0;
5055 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5056
5057 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
5058 mddev->bitmap_offset = 0;
5059
5060 mddev->reshape_position = MaxSector;
5061
5062 /*
5063 * Generate a 128 bit UUID
5064 */
5065 get_random_bytes(mddev->uuid, 16);
5066
5067 mddev->new_level = mddev->level;
5068 mddev->new_chunk = mddev->chunk_size;
5069 mddev->new_layout = mddev->layout;
5070 mddev->delta_disks = 0;
5071
5072 return 0;
5073 }
5074
5075 void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors)
5076 {
5077 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5078
5079 if (mddev->external_size)
5080 return;
5081
5082 mddev->array_sectors = array_sectors;
5083 }
5084 EXPORT_SYMBOL(md_set_array_sectors);
5085
5086 static int update_size(mddev_t *mddev, sector_t num_sectors)
5087 {
5088 mdk_rdev_t *rdev;
5089 int rv;
5090 int fit = (num_sectors == 0);
5091
5092 if (mddev->pers->resize == NULL)
5093 return -EINVAL;
5094 /* The "num_sectors" is the number of sectors of each device that
5095 * is used. This can only make sense for arrays with redundancy.
5096 * linear and raid0 always use whatever space is available. We can only
5097 * consider changing this number if no resync or reconstruction is
5098 * happening, and if the new size is acceptable. It must fit before the
5099 * sb_start or, if that is <data_offset, it must fit before the size
5100 * of each device. If num_sectors is zero, we find the largest size
5101 * that fits.
5102
5103 */
5104 if (mddev->sync_thread)
5105 return -EBUSY;
5106 if (mddev->bitmap)
5107 /* Sorry, cannot grow a bitmap yet, just remove it,
5108 * grow, and re-add.
5109 */
5110 return -EBUSY;
5111 list_for_each_entry(rdev, &mddev->disks, same_set) {
5112 sector_t avail = rdev->sectors;
5113
5114 if (fit && (num_sectors == 0 || num_sectors > avail))
5115 num_sectors = avail;
5116 if (avail < num_sectors)
5117 return -ENOSPC;
5118 }
5119 rv = mddev->pers->resize(mddev, num_sectors);
5120 if (!rv) {
5121 struct block_device *bdev;
5122
5123 bdev = bdget_disk(mddev->gendisk, 0);
5124 if (bdev) {
5125 mutex_lock(&bdev->bd_inode->i_mutex);
5126 i_size_write(bdev->bd_inode,
5127 (loff_t)mddev->array_sectors << 9);
5128 mutex_unlock(&bdev->bd_inode->i_mutex);
5129 bdput(bdev);
5130 }
5131 }
5132 return rv;
5133 }
5134
5135 static int update_raid_disks(mddev_t *mddev, int raid_disks)
5136 {
5137 int rv;
5138 /* change the number of raid disks */
5139 if (mddev->pers->check_reshape == NULL)
5140 return -EINVAL;
5141 if (raid_disks <= 0 ||
5142 raid_disks >= mddev->max_disks)
5143 return -EINVAL;
5144 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5145 return -EBUSY;
5146 mddev->delta_disks = raid_disks - mddev->raid_disks;
5147
5148 rv = mddev->pers->check_reshape(mddev);
5149 return rv;
5150 }
5151
5152
5153 /*
5154 * update_array_info is used to change the configuration of an
5155 * on-line array.
5156 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5157 * fields in the info are checked against the array.
5158 * Any differences that cannot be handled will cause an error.
5159 * Normally, only one change can be managed at a time.
5160 */
5161 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
5162 {
5163 int rv = 0;
5164 int cnt = 0;
5165 int state = 0;
5166
5167 /* calculate expected state,ignoring low bits */
5168 if (mddev->bitmap && mddev->bitmap_offset)
5169 state |= (1 << MD_SB_BITMAP_PRESENT);
5170
5171 if (mddev->major_version != info->major_version ||
5172 mddev->minor_version != info->minor_version ||
5173 /* mddev->patch_version != info->patch_version || */
5174 mddev->ctime != info->ctime ||
5175 mddev->level != info->level ||
5176 /* mddev->layout != info->layout || */
5177 !mddev->persistent != info->not_persistent||
5178 mddev->chunk_size != info->chunk_size ||
5179 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5180 ((state^info->state) & 0xfffffe00)
5181 )
5182 return -EINVAL;
5183 /* Check there is only one change */
5184 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5185 cnt++;
5186 if (mddev->raid_disks != info->raid_disks)
5187 cnt++;
5188 if (mddev->layout != info->layout)
5189 cnt++;
5190 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5191 cnt++;
5192 if (cnt == 0)
5193 return 0;
5194 if (cnt > 1)
5195 return -EINVAL;
5196
5197 if (mddev->layout != info->layout) {
5198 /* Change layout
5199 * we don't need to do anything at the md level, the
5200 * personality will take care of it all.
5201 */
5202 if (mddev->pers->reconfig == NULL)
5203 return -EINVAL;
5204 else
5205 return mddev->pers->reconfig(mddev, info->layout, -1);
5206 }
5207 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5208 rv = update_size(mddev, (sector_t)info->size * 2);
5209
5210 if (mddev->raid_disks != info->raid_disks)
5211 rv = update_raid_disks(mddev, info->raid_disks);
5212
5213 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5214 if (mddev->pers->quiesce == NULL)
5215 return -EINVAL;
5216 if (mddev->recovery || mddev->sync_thread)
5217 return -EBUSY;
5218 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5219 /* add the bitmap */
5220 if (mddev->bitmap)
5221 return -EEXIST;
5222 if (mddev->default_bitmap_offset == 0)
5223 return -EINVAL;
5224 mddev->bitmap_offset = mddev->default_bitmap_offset;
5225 mddev->pers->quiesce(mddev, 1);
5226 rv = bitmap_create(mddev);
5227 if (rv)
5228 bitmap_destroy(mddev);
5229 mddev->pers->quiesce(mddev, 0);
5230 } else {
5231 /* remove the bitmap */
5232 if (!mddev->bitmap)
5233 return -ENOENT;
5234 if (mddev->bitmap->file)
5235 return -EINVAL;
5236 mddev->pers->quiesce(mddev, 1);
5237 bitmap_destroy(mddev);
5238 mddev->pers->quiesce(mddev, 0);
5239 mddev->bitmap_offset = 0;
5240 }
5241 }
5242 md_update_sb(mddev, 1);
5243 return rv;
5244 }
5245
5246 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
5247 {
5248 mdk_rdev_t *rdev;
5249
5250 if (mddev->pers == NULL)
5251 return -ENODEV;
5252
5253 rdev = find_rdev(mddev, dev);
5254 if (!rdev)
5255 return -ENODEV;
5256
5257 md_error(mddev, rdev);
5258 return 0;
5259 }
5260
5261 /*
5262 * We have a problem here : there is no easy way to give a CHS
5263 * virtual geometry. We currently pretend that we have a 2 heads
5264 * 4 sectors (with a BIG number of cylinders...). This drives
5265 * dosfs just mad... ;-)
5266 */
5267 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
5268 {
5269 mddev_t *mddev = bdev->bd_disk->private_data;
5270
5271 geo->heads = 2;
5272 geo->sectors = 4;
5273 geo->cylinders = get_capacity(mddev->gendisk) / 8;
5274 return 0;
5275 }
5276
5277 static int md_ioctl(struct block_device *bdev, fmode_t mode,
5278 unsigned int cmd, unsigned long arg)
5279 {
5280 int err = 0;
5281 void __user *argp = (void __user *)arg;
5282 mddev_t *mddev = NULL;
5283
5284 if (!capable(CAP_SYS_ADMIN))
5285 return -EACCES;
5286
5287 /*
5288 * Commands dealing with the RAID driver but not any
5289 * particular array:
5290 */
5291 switch (cmd)
5292 {
5293 case RAID_VERSION:
5294 err = get_version(argp);
5295 goto done;
5296
5297 case PRINT_RAID_DEBUG:
5298 err = 0;
5299 md_print_devices();
5300 goto done;
5301
5302 #ifndef MODULE
5303 case RAID_AUTORUN:
5304 err = 0;
5305 autostart_arrays(arg);
5306 goto done;
5307 #endif
5308 default:;
5309 }
5310
5311 /*
5312 * Commands creating/starting a new array:
5313 */
5314
5315 mddev = bdev->bd_disk->private_data;
5316
5317 if (!mddev) {
5318 BUG();
5319 goto abort;
5320 }
5321
5322 err = mddev_lock(mddev);
5323 if (err) {
5324 printk(KERN_INFO
5325 "md: ioctl lock interrupted, reason %d, cmd %d\n",
5326 err, cmd);
5327 goto abort;
5328 }
5329
5330 switch (cmd)
5331 {
5332 case SET_ARRAY_INFO:
5333 {
5334 mdu_array_info_t info;
5335 if (!arg)
5336 memset(&info, 0, sizeof(info));
5337 else if (copy_from_user(&info, argp, sizeof(info))) {
5338 err = -EFAULT;
5339 goto abort_unlock;
5340 }
5341 if (mddev->pers) {
5342 err = update_array_info(mddev, &info);
5343 if (err) {
5344 printk(KERN_WARNING "md: couldn't update"
5345 " array info. %d\n", err);
5346 goto abort_unlock;
5347 }
5348 goto done_unlock;
5349 }
5350 if (!list_empty(&mddev->disks)) {
5351 printk(KERN_WARNING
5352 "md: array %s already has disks!\n",
5353 mdname(mddev));
5354 err = -EBUSY;
5355 goto abort_unlock;
5356 }
5357 if (mddev->raid_disks) {
5358 printk(KERN_WARNING
5359 "md: array %s already initialised!\n",
5360 mdname(mddev));
5361 err = -EBUSY;
5362 goto abort_unlock;
5363 }
5364 err = set_array_info(mddev, &info);
5365 if (err) {
5366 printk(KERN_WARNING "md: couldn't set"
5367 " array info. %d\n", err);
5368 goto abort_unlock;
5369 }
5370 }
5371 goto done_unlock;
5372
5373 default:;
5374 }
5375
5376 /*
5377 * Commands querying/configuring an existing array:
5378 */
5379 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
5380 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
5381 if ((!mddev->raid_disks && !mddev->external)
5382 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
5383 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
5384 && cmd != GET_BITMAP_FILE) {
5385 err = -ENODEV;
5386 goto abort_unlock;
5387 }
5388
5389 /*
5390 * Commands even a read-only array can execute:
5391 */
5392 switch (cmd)
5393 {
5394 case GET_ARRAY_INFO:
5395 err = get_array_info(mddev, argp);
5396 goto done_unlock;
5397
5398 case GET_BITMAP_FILE:
5399 err = get_bitmap_file(mddev, argp);
5400 goto done_unlock;
5401
5402 case GET_DISK_INFO:
5403 err = get_disk_info(mddev, argp);
5404 goto done_unlock;
5405
5406 case RESTART_ARRAY_RW:
5407 err = restart_array(mddev);
5408 goto done_unlock;
5409
5410 case STOP_ARRAY:
5411 err = do_md_stop(mddev, 0, 1);
5412 goto done_unlock;
5413
5414 case STOP_ARRAY_RO:
5415 err = do_md_stop(mddev, 1, 1);
5416 goto done_unlock;
5417
5418 }
5419
5420 /*
5421 * The remaining ioctls are changing the state of the
5422 * superblock, so we do not allow them on read-only arrays.
5423 * However non-MD ioctls (e.g. get-size) will still come through
5424 * here and hit the 'default' below, so only disallow
5425 * 'md' ioctls, and switch to rw mode if started auto-readonly.
5426 */
5427 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
5428 if (mddev->ro == 2) {
5429 mddev->ro = 0;
5430 sysfs_notify_dirent(mddev->sysfs_state);
5431 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5432 md_wakeup_thread(mddev->thread);
5433 } else {
5434 err = -EROFS;
5435 goto abort_unlock;
5436 }
5437 }
5438
5439 switch (cmd)
5440 {
5441 case ADD_NEW_DISK:
5442 {
5443 mdu_disk_info_t info;
5444 if (copy_from_user(&info, argp, sizeof(info)))
5445 err = -EFAULT;
5446 else
5447 err = add_new_disk(mddev, &info);
5448 goto done_unlock;
5449 }
5450
5451 case HOT_REMOVE_DISK:
5452 err = hot_remove_disk(mddev, new_decode_dev(arg));
5453 goto done_unlock;
5454
5455 case HOT_ADD_DISK:
5456 err = hot_add_disk(mddev, new_decode_dev(arg));
5457 goto done_unlock;
5458
5459 case SET_DISK_FAULTY:
5460 err = set_disk_faulty(mddev, new_decode_dev(arg));
5461 goto done_unlock;
5462
5463 case RUN_ARRAY:
5464 err = do_md_run(mddev);
5465 goto done_unlock;
5466
5467 case SET_BITMAP_FILE:
5468 err = set_bitmap_file(mddev, (int)arg);
5469 goto done_unlock;
5470
5471 default:
5472 err = -EINVAL;
5473 goto abort_unlock;
5474 }
5475
5476 done_unlock:
5477 abort_unlock:
5478 if (mddev->hold_active == UNTIL_IOCTL &&
5479 err != -EINVAL)
5480 mddev->hold_active = 0;
5481 mddev_unlock(mddev);
5482
5483 return err;
5484 done:
5485 if (err)
5486 MD_BUG();
5487 abort:
5488 return err;
5489 }
5490
5491 static int md_open(struct block_device *bdev, fmode_t mode)
5492 {
5493 /*
5494 * Succeed if we can lock the mddev, which confirms that
5495 * it isn't being stopped right now.
5496 */
5497 mddev_t *mddev = mddev_find(bdev->bd_dev);
5498 int err;
5499
5500 if (mddev->gendisk != bdev->bd_disk) {
5501 /* we are racing with mddev_put which is discarding this
5502 * bd_disk.
5503 */
5504 mddev_put(mddev);
5505 /* Wait until bdev->bd_disk is definitely gone */
5506 flush_scheduled_work();
5507 /* Then retry the open from the top */
5508 return -ERESTARTSYS;
5509 }
5510 BUG_ON(mddev != bdev->bd_disk->private_data);
5511
5512 if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1)))
5513 goto out;
5514
5515 err = 0;
5516 atomic_inc(&mddev->openers);
5517 mddev_unlock(mddev);
5518
5519 check_disk_change(bdev);
5520 out:
5521 return err;
5522 }
5523
5524 static int md_release(struct gendisk *disk, fmode_t mode)
5525 {
5526 mddev_t *mddev = disk->private_data;
5527
5528 BUG_ON(!mddev);
5529 atomic_dec(&mddev->openers);
5530 mddev_put(mddev);
5531
5532 return 0;
5533 }
5534
5535 static int md_media_changed(struct gendisk *disk)
5536 {
5537 mddev_t *mddev = disk->private_data;
5538
5539 return mddev->changed;
5540 }
5541
5542 static int md_revalidate(struct gendisk *disk)
5543 {
5544 mddev_t *mddev = disk->private_data;
5545
5546 mddev->changed = 0;
5547 return 0;
5548 }
5549 static struct block_device_operations md_fops =
5550 {
5551 .owner = THIS_MODULE,
5552 .open = md_open,
5553 .release = md_release,
5554 .locked_ioctl = md_ioctl,
5555 .getgeo = md_getgeo,
5556 .media_changed = md_media_changed,
5557 .revalidate_disk= md_revalidate,
5558 };
5559
5560 static int md_thread(void * arg)
5561 {
5562 mdk_thread_t *thread = arg;
5563
5564 /*
5565 * md_thread is a 'system-thread', it's priority should be very
5566 * high. We avoid resource deadlocks individually in each
5567 * raid personality. (RAID5 does preallocation) We also use RR and
5568 * the very same RT priority as kswapd, thus we will never get
5569 * into a priority inversion deadlock.
5570 *
5571 * we definitely have to have equal or higher priority than
5572 * bdflush, otherwise bdflush will deadlock if there are too
5573 * many dirty RAID5 blocks.
5574 */
5575
5576 allow_signal(SIGKILL);
5577 while (!kthread_should_stop()) {
5578
5579 /* We need to wait INTERRUPTIBLE so that
5580 * we don't add to the load-average.
5581 * That means we need to be sure no signals are
5582 * pending
5583 */
5584 if (signal_pending(current))
5585 flush_signals(current);
5586
5587 wait_event_interruptible_timeout
5588 (thread->wqueue,
5589 test_bit(THREAD_WAKEUP, &thread->flags)
5590 || kthread_should_stop(),
5591 thread->timeout);
5592
5593 clear_bit(THREAD_WAKEUP, &thread->flags);
5594
5595 thread->run(thread->mddev);
5596 }
5597
5598 return 0;
5599 }
5600
5601 void md_wakeup_thread(mdk_thread_t *thread)
5602 {
5603 if (thread) {
5604 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
5605 set_bit(THREAD_WAKEUP, &thread->flags);
5606 wake_up(&thread->wqueue);
5607 }
5608 }
5609
5610 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
5611 const char *name)
5612 {
5613 mdk_thread_t *thread;
5614
5615 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
5616 if (!thread)
5617 return NULL;
5618
5619 init_waitqueue_head(&thread->wqueue);
5620
5621 thread->run = run;
5622 thread->mddev = mddev;
5623 thread->timeout = MAX_SCHEDULE_TIMEOUT;
5624 thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
5625 if (IS_ERR(thread->tsk)) {
5626 kfree(thread);
5627 return NULL;
5628 }
5629 return thread;
5630 }
5631
5632 void md_unregister_thread(mdk_thread_t *thread)
5633 {
5634 if (!thread)
5635 return;
5636 dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
5637
5638 kthread_stop(thread->tsk);
5639 kfree(thread);
5640 }
5641
5642 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
5643 {
5644 if (!mddev) {
5645 MD_BUG();
5646 return;
5647 }
5648
5649 if (!rdev || test_bit(Faulty, &rdev->flags))
5650 return;
5651
5652 if (mddev->external)
5653 set_bit(Blocked, &rdev->flags);
5654 /*
5655 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
5656 mdname(mddev),
5657 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
5658 __builtin_return_address(0),__builtin_return_address(1),
5659 __builtin_return_address(2),__builtin_return_address(3));
5660 */
5661 if (!mddev->pers)
5662 return;
5663 if (!mddev->pers->error_handler)
5664 return;
5665 mddev->pers->error_handler(mddev,rdev);
5666 if (mddev->degraded)
5667 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5668 set_bit(StateChanged, &rdev->flags);
5669 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5670 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5671 md_wakeup_thread(mddev->thread);
5672 md_new_event_inintr(mddev);
5673 }
5674
5675 /* seq_file implementation /proc/mdstat */
5676
5677 static void status_unused(struct seq_file *seq)
5678 {
5679 int i = 0;
5680 mdk_rdev_t *rdev;
5681
5682 seq_printf(seq, "unused devices: ");
5683
5684 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
5685 char b[BDEVNAME_SIZE];
5686 i++;
5687 seq_printf(seq, "%s ",
5688 bdevname(rdev->bdev,b));
5689 }
5690 if (!i)
5691 seq_printf(seq, "<none>");
5692
5693 seq_printf(seq, "\n");
5694 }
5695
5696
5697 static void status_resync(struct seq_file *seq, mddev_t * mddev)
5698 {
5699 sector_t max_blocks, resync, res;
5700 unsigned long dt, db, rt;
5701 int scale;
5702 unsigned int per_milli;
5703
5704 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
5705
5706 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
5707 max_blocks = mddev->resync_max_sectors >> 1;
5708 else
5709 max_blocks = mddev->dev_sectors / 2;
5710
5711 /*
5712 * Should not happen.
5713 */
5714 if (!max_blocks) {
5715 MD_BUG();
5716 return;
5717 }
5718 /* Pick 'scale' such that (resync>>scale)*1000 will fit
5719 * in a sector_t, and (max_blocks>>scale) will fit in a
5720 * u32, as those are the requirements for sector_div.
5721 * Thus 'scale' must be at least 10
5722 */
5723 scale = 10;
5724 if (sizeof(sector_t) > sizeof(unsigned long)) {
5725 while ( max_blocks/2 > (1ULL<<(scale+32)))
5726 scale++;
5727 }
5728 res = (resync>>scale)*1000;
5729 sector_div(res, (u32)((max_blocks>>scale)+1));
5730
5731 per_milli = res;
5732 {
5733 int i, x = per_milli/50, y = 20-x;
5734 seq_printf(seq, "[");
5735 for (i = 0; i < x; i++)
5736 seq_printf(seq, "=");
5737 seq_printf(seq, ">");
5738 for (i = 0; i < y; i++)
5739 seq_printf(seq, ".");
5740 seq_printf(seq, "] ");
5741 }
5742 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
5743 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
5744 "reshape" :
5745 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
5746 "check" :
5747 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
5748 "resync" : "recovery"))),
5749 per_milli/10, per_milli % 10,
5750 (unsigned long long) resync,
5751 (unsigned long long) max_blocks);
5752
5753 /*
5754 * We do not want to overflow, so the order of operands and
5755 * the * 100 / 100 trick are important. We do a +1 to be
5756 * safe against division by zero. We only estimate anyway.
5757 *
5758 * dt: time from mark until now
5759 * db: blocks written from mark until now
5760 * rt: remaining time
5761 */
5762 dt = ((jiffies - mddev->resync_mark) / HZ);
5763 if (!dt) dt++;
5764 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
5765 - mddev->resync_mark_cnt;
5766 rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100;
5767
5768 seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
5769
5770 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
5771 }
5772
5773 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
5774 {
5775 struct list_head *tmp;
5776 loff_t l = *pos;
5777 mddev_t *mddev;
5778
5779 if (l >= 0x10000)
5780 return NULL;
5781 if (!l--)
5782 /* header */
5783 return (void*)1;
5784
5785 spin_lock(&all_mddevs_lock);
5786 list_for_each(tmp,&all_mddevs)
5787 if (!l--) {
5788 mddev = list_entry(tmp, mddev_t, all_mddevs);
5789 mddev_get(mddev);
5790 spin_unlock(&all_mddevs_lock);
5791 return mddev;
5792 }
5793 spin_unlock(&all_mddevs_lock);
5794 if (!l--)
5795 return (void*)2;/* tail */
5796 return NULL;
5797 }
5798
5799 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
5800 {
5801 struct list_head *tmp;
5802 mddev_t *next_mddev, *mddev = v;
5803
5804 ++*pos;
5805 if (v == (void*)2)
5806 return NULL;
5807
5808 spin_lock(&all_mddevs_lock);
5809 if (v == (void*)1)
5810 tmp = all_mddevs.next;
5811 else
5812 tmp = mddev->all_mddevs.next;
5813 if (tmp != &all_mddevs)
5814 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
5815 else {
5816 next_mddev = (void*)2;
5817 *pos = 0x10000;
5818 }
5819 spin_unlock(&all_mddevs_lock);
5820
5821 if (v != (void*)1)
5822 mddev_put(mddev);
5823 return next_mddev;
5824
5825 }
5826
5827 static void md_seq_stop(struct seq_file *seq, void *v)
5828 {
5829 mddev_t *mddev = v;
5830
5831 if (mddev && v != (void*)1 && v != (void*)2)
5832 mddev_put(mddev);
5833 }
5834
5835 struct mdstat_info {
5836 int event;
5837 };
5838
5839 static int md_seq_show(struct seq_file *seq, void *v)
5840 {
5841 mddev_t *mddev = v;
5842 sector_t sectors;
5843 mdk_rdev_t *rdev;
5844 struct mdstat_info *mi = seq->private;
5845 struct bitmap *bitmap;
5846
5847 if (v == (void*)1) {
5848 struct mdk_personality *pers;
5849 seq_printf(seq, "Personalities : ");
5850 spin_lock(&pers_lock);
5851 list_for_each_entry(pers, &pers_list, list)
5852 seq_printf(seq, "[%s] ", pers->name);
5853
5854 spin_unlock(&pers_lock);
5855 seq_printf(seq, "\n");
5856 mi->event = atomic_read(&md_event_count);
5857 return 0;
5858 }
5859 if (v == (void*)2) {
5860 status_unused(seq);
5861 return 0;
5862 }
5863
5864 if (mddev_lock(mddev) < 0)
5865 return -EINTR;
5866
5867 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
5868 seq_printf(seq, "%s : %sactive", mdname(mddev),
5869 mddev->pers ? "" : "in");
5870 if (mddev->pers) {
5871 if (mddev->ro==1)
5872 seq_printf(seq, " (read-only)");
5873 if (mddev->ro==2)
5874 seq_printf(seq, " (auto-read-only)");
5875 seq_printf(seq, " %s", mddev->pers->name);
5876 }
5877
5878 sectors = 0;
5879 list_for_each_entry(rdev, &mddev->disks, same_set) {
5880 char b[BDEVNAME_SIZE];
5881 seq_printf(seq, " %s[%d]",
5882 bdevname(rdev->bdev,b), rdev->desc_nr);
5883 if (test_bit(WriteMostly, &rdev->flags))
5884 seq_printf(seq, "(W)");
5885 if (test_bit(Faulty, &rdev->flags)) {
5886 seq_printf(seq, "(F)");
5887 continue;
5888 } else if (rdev->raid_disk < 0)
5889 seq_printf(seq, "(S)"); /* spare */
5890 sectors += rdev->sectors;
5891 }
5892
5893 if (!list_empty(&mddev->disks)) {
5894 if (mddev->pers)
5895 seq_printf(seq, "\n %llu blocks",
5896 (unsigned long long)
5897 mddev->array_sectors / 2);
5898 else
5899 seq_printf(seq, "\n %llu blocks",
5900 (unsigned long long)sectors / 2);
5901 }
5902 if (mddev->persistent) {
5903 if (mddev->major_version != 0 ||
5904 mddev->minor_version != 90) {
5905 seq_printf(seq," super %d.%d",
5906 mddev->major_version,
5907 mddev->minor_version);
5908 }
5909 } else if (mddev->external)
5910 seq_printf(seq, " super external:%s",
5911 mddev->metadata_type);
5912 else
5913 seq_printf(seq, " super non-persistent");
5914
5915 if (mddev->pers) {
5916 mddev->pers->status(seq, mddev);
5917 seq_printf(seq, "\n ");
5918 if (mddev->pers->sync_request) {
5919 if (mddev->curr_resync > 2) {
5920 status_resync(seq, mddev);
5921 seq_printf(seq, "\n ");
5922 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
5923 seq_printf(seq, "\tresync=DELAYED\n ");
5924 else if (mddev->recovery_cp < MaxSector)
5925 seq_printf(seq, "\tresync=PENDING\n ");
5926 }
5927 } else
5928 seq_printf(seq, "\n ");
5929
5930 if ((bitmap = mddev->bitmap)) {
5931 unsigned long chunk_kb;
5932 unsigned long flags;
5933 spin_lock_irqsave(&bitmap->lock, flags);
5934 chunk_kb = bitmap->chunksize >> 10;
5935 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
5936 "%lu%s chunk",
5937 bitmap->pages - bitmap->missing_pages,
5938 bitmap->pages,
5939 (bitmap->pages - bitmap->missing_pages)
5940 << (PAGE_SHIFT - 10),
5941 chunk_kb ? chunk_kb : bitmap->chunksize,
5942 chunk_kb ? "KB" : "B");
5943 if (bitmap->file) {
5944 seq_printf(seq, ", file: ");
5945 seq_path(seq, &bitmap->file->f_path, " \t\n");
5946 }
5947
5948 seq_printf(seq, "\n");
5949 spin_unlock_irqrestore(&bitmap->lock, flags);
5950 }
5951
5952 seq_printf(seq, "\n");
5953 }
5954 mddev_unlock(mddev);
5955
5956 return 0;
5957 }
5958
5959 static struct seq_operations md_seq_ops = {
5960 .start = md_seq_start,
5961 .next = md_seq_next,
5962 .stop = md_seq_stop,
5963 .show = md_seq_show,
5964 };
5965
5966 static int md_seq_open(struct inode *inode, struct file *file)
5967 {
5968 int error;
5969 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
5970 if (mi == NULL)
5971 return -ENOMEM;
5972
5973 error = seq_open(file, &md_seq_ops);
5974 if (error)
5975 kfree(mi);
5976 else {
5977 struct seq_file *p = file->private_data;
5978 p->private = mi;
5979 mi->event = atomic_read(&md_event_count);
5980 }
5981 return error;
5982 }
5983
5984 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
5985 {
5986 struct seq_file *m = filp->private_data;
5987 struct mdstat_info *mi = m->private;
5988 int mask;
5989
5990 poll_wait(filp, &md_event_waiters, wait);
5991
5992 /* always allow read */
5993 mask = POLLIN | POLLRDNORM;
5994
5995 if (mi->event != atomic_read(&md_event_count))
5996 mask |= POLLERR | POLLPRI;
5997 return mask;
5998 }
5999
6000 static const struct file_operations md_seq_fops = {
6001 .owner = THIS_MODULE,
6002 .open = md_seq_open,
6003 .read = seq_read,
6004 .llseek = seq_lseek,
6005 .release = seq_release_private,
6006 .poll = mdstat_poll,
6007 };
6008
6009 int register_md_personality(struct mdk_personality *p)
6010 {
6011 spin_lock(&pers_lock);
6012 list_add_tail(&p->list, &pers_list);
6013 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6014 spin_unlock(&pers_lock);
6015 return 0;
6016 }
6017
6018 int unregister_md_personality(struct mdk_personality *p)
6019 {
6020 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6021 spin_lock(&pers_lock);
6022 list_del_init(&p->list);
6023 spin_unlock(&pers_lock);
6024 return 0;
6025 }
6026
6027 static int is_mddev_idle(mddev_t *mddev, int init)
6028 {
6029 mdk_rdev_t * rdev;
6030 int idle;
6031 int curr_events;
6032
6033 idle = 1;
6034 rcu_read_lock();
6035 rdev_for_each_rcu(rdev, mddev) {
6036 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6037 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6038 (int)part_stat_read(&disk->part0, sectors[1]) -
6039 atomic_read(&disk->sync_io);
6040 /* sync IO will cause sync_io to increase before the disk_stats
6041 * as sync_io is counted when a request starts, and
6042 * disk_stats is counted when it completes.
6043 * So resync activity will cause curr_events to be smaller than
6044 * when there was no such activity.
6045 * non-sync IO will cause disk_stat to increase without
6046 * increasing sync_io so curr_events will (eventually)
6047 * be larger than it was before. Once it becomes
6048 * substantially larger, the test below will cause
6049 * the array to appear non-idle, and resync will slow
6050 * down.
6051 * If there is a lot of outstanding resync activity when
6052 * we set last_event to curr_events, then all that activity
6053 * completing might cause the array to appear non-idle
6054 * and resync will be slowed down even though there might
6055 * not have been non-resync activity. This will only
6056 * happen once though. 'last_events' will soon reflect
6057 * the state where there is little or no outstanding
6058 * resync requests, and further resync activity will
6059 * always make curr_events less than last_events.
6060 *
6061 */
6062 if (init || curr_events - rdev->last_events > 64) {
6063 rdev->last_events = curr_events;
6064 idle = 0;
6065 }
6066 }
6067 rcu_read_unlock();
6068 return idle;
6069 }
6070
6071 void md_done_sync(mddev_t *mddev, int blocks, int ok)
6072 {
6073 /* another "blocks" (512byte) blocks have been synced */
6074 atomic_sub(blocks, &mddev->recovery_active);
6075 wake_up(&mddev->recovery_wait);
6076 if (!ok) {
6077 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6078 md_wakeup_thread(mddev->thread);
6079 // stop recovery, signal do_sync ....
6080 }
6081 }
6082
6083
6084 /* md_write_start(mddev, bi)
6085 * If we need to update some array metadata (e.g. 'active' flag
6086 * in superblock) before writing, schedule a superblock update
6087 * and wait for it to complete.
6088 */
6089 void md_write_start(mddev_t *mddev, struct bio *bi)
6090 {
6091 int did_change = 0;
6092 if (bio_data_dir(bi) != WRITE)
6093 return;
6094
6095 BUG_ON(mddev->ro == 1);
6096 if (mddev->ro == 2) {
6097 /* need to switch to read/write */
6098 mddev->ro = 0;
6099 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6100 md_wakeup_thread(mddev->thread);
6101 md_wakeup_thread(mddev->sync_thread);
6102 did_change = 1;
6103 }
6104 atomic_inc(&mddev->writes_pending);
6105 if (mddev->safemode == 1)
6106 mddev->safemode = 0;
6107 if (mddev->in_sync) {
6108 spin_lock_irq(&mddev->write_lock);
6109 if (mddev->in_sync) {
6110 mddev->in_sync = 0;
6111 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6112 md_wakeup_thread(mddev->thread);
6113 did_change = 1;
6114 }
6115 spin_unlock_irq(&mddev->write_lock);
6116 }
6117 if (did_change)
6118 sysfs_notify_dirent(mddev->sysfs_state);
6119 wait_event(mddev->sb_wait,
6120 !test_bit(MD_CHANGE_CLEAN, &mddev->flags) &&
6121 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6122 }
6123
6124 void md_write_end(mddev_t *mddev)
6125 {
6126 if (atomic_dec_and_test(&mddev->writes_pending)) {
6127 if (mddev->safemode == 2)
6128 md_wakeup_thread(mddev->thread);
6129 else if (mddev->safemode_delay)
6130 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6131 }
6132 }
6133
6134 /* md_allow_write(mddev)
6135 * Calling this ensures that the array is marked 'active' so that writes
6136 * may proceed without blocking. It is important to call this before
6137 * attempting a GFP_KERNEL allocation while holding the mddev lock.
6138 * Must be called with mddev_lock held.
6139 *
6140 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6141 * is dropped, so return -EAGAIN after notifying userspace.
6142 */
6143 int md_allow_write(mddev_t *mddev)
6144 {
6145 if (!mddev->pers)
6146 return 0;
6147 if (mddev->ro)
6148 return 0;
6149 if (!mddev->pers->sync_request)
6150 return 0;
6151
6152 spin_lock_irq(&mddev->write_lock);
6153 if (mddev->in_sync) {
6154 mddev->in_sync = 0;
6155 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6156 if (mddev->safemode_delay &&
6157 mddev->safemode == 0)
6158 mddev->safemode = 1;
6159 spin_unlock_irq(&mddev->write_lock);
6160 md_update_sb(mddev, 0);
6161 sysfs_notify_dirent(mddev->sysfs_state);
6162 } else
6163 spin_unlock_irq(&mddev->write_lock);
6164
6165 if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
6166 return -EAGAIN;
6167 else
6168 return 0;
6169 }
6170 EXPORT_SYMBOL_GPL(md_allow_write);
6171
6172 #define SYNC_MARKS 10
6173 #define SYNC_MARK_STEP (3*HZ)
6174 void md_do_sync(mddev_t *mddev)
6175 {
6176 mddev_t *mddev2;
6177 unsigned int currspeed = 0,
6178 window;
6179 sector_t max_sectors,j, io_sectors;
6180 unsigned long mark[SYNC_MARKS];
6181 sector_t mark_cnt[SYNC_MARKS];
6182 int last_mark,m;
6183 struct list_head *tmp;
6184 sector_t last_check;
6185 int skipped = 0;
6186 mdk_rdev_t *rdev;
6187 char *desc;
6188
6189 /* just incase thread restarts... */
6190 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
6191 return;
6192 if (mddev->ro) /* never try to sync a read-only array */
6193 return;
6194
6195 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6196 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
6197 desc = "data-check";
6198 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6199 desc = "requested-resync";
6200 else
6201 desc = "resync";
6202 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6203 desc = "reshape";
6204 else
6205 desc = "recovery";
6206
6207 /* we overload curr_resync somewhat here.
6208 * 0 == not engaged in resync at all
6209 * 2 == checking that there is no conflict with another sync
6210 * 1 == like 2, but have yielded to allow conflicting resync to
6211 * commense
6212 * other == active in resync - this many blocks
6213 *
6214 * Before starting a resync we must have set curr_resync to
6215 * 2, and then checked that every "conflicting" array has curr_resync
6216 * less than ours. When we find one that is the same or higher
6217 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
6218 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
6219 * This will mean we have to start checking from the beginning again.
6220 *
6221 */
6222
6223 do {
6224 mddev->curr_resync = 2;
6225
6226 try_again:
6227 if (kthread_should_stop()) {
6228 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6229 goto skip;
6230 }
6231 for_each_mddev(mddev2, tmp) {
6232 if (mddev2 == mddev)
6233 continue;
6234 if (!mddev->parallel_resync
6235 && mddev2->curr_resync
6236 && match_mddev_units(mddev, mddev2)) {
6237 DEFINE_WAIT(wq);
6238 if (mddev < mddev2 && mddev->curr_resync == 2) {
6239 /* arbitrarily yield */
6240 mddev->curr_resync = 1;
6241 wake_up(&resync_wait);
6242 }
6243 if (mddev > mddev2 && mddev->curr_resync == 1)
6244 /* no need to wait here, we can wait the next
6245 * time 'round when curr_resync == 2
6246 */
6247 continue;
6248 /* We need to wait 'interruptible' so as not to
6249 * contribute to the load average, and not to
6250 * be caught by 'softlockup'
6251 */
6252 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
6253 if (!kthread_should_stop() &&
6254 mddev2->curr_resync >= mddev->curr_resync) {
6255 printk(KERN_INFO "md: delaying %s of %s"
6256 " until %s has finished (they"
6257 " share one or more physical units)\n",
6258 desc, mdname(mddev), mdname(mddev2));
6259 mddev_put(mddev2);
6260 if (signal_pending(current))
6261 flush_signals(current);
6262 schedule();
6263 finish_wait(&resync_wait, &wq);
6264 goto try_again;
6265 }
6266 finish_wait(&resync_wait, &wq);
6267 }
6268 }
6269 } while (mddev->curr_resync < 2);
6270
6271 j = 0;
6272 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6273 /* resync follows the size requested by the personality,
6274 * which defaults to physical size, but can be virtual size
6275 */
6276 max_sectors = mddev->resync_max_sectors;
6277 mddev->resync_mismatches = 0;
6278 /* we don't use the checkpoint if there's a bitmap */
6279 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6280 j = mddev->resync_min;
6281 else if (!mddev->bitmap)
6282 j = mddev->recovery_cp;
6283
6284 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6285 max_sectors = mddev->dev_sectors;
6286 else {
6287 /* recovery follows the physical size of devices */
6288 max_sectors = mddev->dev_sectors;
6289 j = MaxSector;
6290 list_for_each_entry(rdev, &mddev->disks, same_set)
6291 if (rdev->raid_disk >= 0 &&
6292 !test_bit(Faulty, &rdev->flags) &&
6293 !test_bit(In_sync, &rdev->flags) &&
6294 rdev->recovery_offset < j)
6295 j = rdev->recovery_offset;
6296 }
6297
6298 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
6299 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
6300 " %d KB/sec/disk.\n", speed_min(mddev));
6301 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
6302 "(but not more than %d KB/sec) for %s.\n",
6303 speed_max(mddev), desc);
6304
6305 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
6306
6307 io_sectors = 0;
6308 for (m = 0; m < SYNC_MARKS; m++) {
6309 mark[m] = jiffies;
6310 mark_cnt[m] = io_sectors;
6311 }
6312 last_mark = 0;
6313 mddev->resync_mark = mark[last_mark];
6314 mddev->resync_mark_cnt = mark_cnt[last_mark];
6315
6316 /*
6317 * Tune reconstruction:
6318 */
6319 window = 32*(PAGE_SIZE/512);
6320 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
6321 window/2,(unsigned long long) max_sectors/2);
6322
6323 atomic_set(&mddev->recovery_active, 0);
6324 last_check = 0;
6325
6326 if (j>2) {
6327 printk(KERN_INFO
6328 "md: resuming %s of %s from checkpoint.\n",
6329 desc, mdname(mddev));
6330 mddev->curr_resync = j;
6331 }
6332
6333 while (j < max_sectors) {
6334 sector_t sectors;
6335
6336 skipped = 0;
6337 if (j >= mddev->resync_max) {
6338 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6339 wait_event(mddev->recovery_wait,
6340 mddev->resync_max > j
6341 || kthread_should_stop());
6342 }
6343 if (kthread_should_stop())
6344 goto interrupted;
6345
6346 if (mddev->curr_resync > mddev->curr_resync_completed &&
6347 (mddev->curr_resync - mddev->curr_resync_completed)
6348 > (max_sectors >> 4)) {
6349 /* time to update curr_resync_completed */
6350 blk_unplug(mddev->queue);
6351 wait_event(mddev->recovery_wait,
6352 atomic_read(&mddev->recovery_active) == 0);
6353 mddev->curr_resync_completed =
6354 mddev->curr_resync;
6355 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6356 }
6357 sectors = mddev->pers->sync_request(mddev, j, &skipped,
6358 currspeed < speed_min(mddev));
6359 if (sectors == 0) {
6360 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6361 goto out;
6362 }
6363
6364 if (!skipped) { /* actual IO requested */
6365 io_sectors += sectors;
6366 atomic_add(sectors, &mddev->recovery_active);
6367 }
6368
6369 j += sectors;
6370 if (j>1) mddev->curr_resync = j;
6371 mddev->curr_mark_cnt = io_sectors;
6372 if (last_check == 0)
6373 /* this is the earliers that rebuilt will be
6374 * visible in /proc/mdstat
6375 */
6376 md_new_event(mddev);
6377
6378 if (last_check + window > io_sectors || j == max_sectors)
6379 continue;
6380
6381 last_check = io_sectors;
6382
6383 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6384 break;
6385
6386 repeat:
6387 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
6388 /* step marks */
6389 int next = (last_mark+1) % SYNC_MARKS;
6390
6391 mddev->resync_mark = mark[next];
6392 mddev->resync_mark_cnt = mark_cnt[next];
6393 mark[next] = jiffies;
6394 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
6395 last_mark = next;
6396 }
6397
6398
6399 if (kthread_should_stop())
6400 goto interrupted;
6401
6402
6403 /*
6404 * this loop exits only if either when we are slower than
6405 * the 'hard' speed limit, or the system was IO-idle for
6406 * a jiffy.
6407 * the system might be non-idle CPU-wise, but we only care
6408 * about not overloading the IO subsystem. (things like an
6409 * e2fsck being done on the RAID array should execute fast)
6410 */
6411 blk_unplug(mddev->queue);
6412 cond_resched();
6413
6414 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
6415 /((jiffies-mddev->resync_mark)/HZ +1) +1;
6416
6417 if (currspeed > speed_min(mddev)) {
6418 if ((currspeed > speed_max(mddev)) ||
6419 !is_mddev_idle(mddev, 0)) {
6420 msleep(500);
6421 goto repeat;
6422 }
6423 }
6424 }
6425 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
6426 /*
6427 * this also signals 'finished resyncing' to md_stop
6428 */
6429 out:
6430 blk_unplug(mddev->queue);
6431
6432 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
6433
6434 /* tell personality that we are finished */
6435 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
6436
6437 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
6438 mddev->curr_resync > 2) {
6439 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6440 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6441 if (mddev->curr_resync >= mddev->recovery_cp) {
6442 printk(KERN_INFO
6443 "md: checkpointing %s of %s.\n",
6444 desc, mdname(mddev));
6445 mddev->recovery_cp = mddev->curr_resync;
6446 }
6447 } else
6448 mddev->recovery_cp = MaxSector;
6449 } else {
6450 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6451 mddev->curr_resync = MaxSector;
6452 list_for_each_entry(rdev, &mddev->disks, same_set)
6453 if (rdev->raid_disk >= 0 &&
6454 !test_bit(Faulty, &rdev->flags) &&
6455 !test_bit(In_sync, &rdev->flags) &&
6456 rdev->recovery_offset < mddev->curr_resync)
6457 rdev->recovery_offset = mddev->curr_resync;
6458 }
6459 }
6460 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6461
6462 skip:
6463 mddev->curr_resync = 0;
6464 mddev->resync_min = 0;
6465 mddev->resync_max = MaxSector;
6466 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6467 wake_up(&resync_wait);
6468 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
6469 md_wakeup_thread(mddev->thread);
6470 return;
6471
6472 interrupted:
6473 /*
6474 * got a signal, exit.
6475 */
6476 printk(KERN_INFO
6477 "md: md_do_sync() got signal ... exiting\n");
6478 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6479 goto out;
6480
6481 }
6482 EXPORT_SYMBOL_GPL(md_do_sync);
6483
6484
6485 static int remove_and_add_spares(mddev_t *mddev)
6486 {
6487 mdk_rdev_t *rdev;
6488 int spares = 0;
6489
6490 mddev->curr_resync_completed = 0;
6491
6492 list_for_each_entry(rdev, &mddev->disks, same_set)
6493 if (rdev->raid_disk >= 0 &&
6494 !test_bit(Blocked, &rdev->flags) &&
6495 (test_bit(Faulty, &rdev->flags) ||
6496 ! test_bit(In_sync, &rdev->flags)) &&
6497 atomic_read(&rdev->nr_pending)==0) {
6498 if (mddev->pers->hot_remove_disk(
6499 mddev, rdev->raid_disk)==0) {
6500 char nm[20];
6501 sprintf(nm,"rd%d", rdev->raid_disk);
6502 sysfs_remove_link(&mddev->kobj, nm);
6503 rdev->raid_disk = -1;
6504 }
6505 }
6506
6507 if (mddev->degraded && ! mddev->ro && !mddev->recovery_disabled) {
6508 list_for_each_entry(rdev, &mddev->disks, same_set) {
6509 if (rdev->raid_disk >= 0 &&
6510 !test_bit(In_sync, &rdev->flags) &&
6511 !test_bit(Blocked, &rdev->flags))
6512 spares++;
6513 if (rdev->raid_disk < 0
6514 && !test_bit(Faulty, &rdev->flags)) {
6515 rdev->recovery_offset = 0;
6516 if (mddev->pers->
6517 hot_add_disk(mddev, rdev) == 0) {
6518 char nm[20];
6519 sprintf(nm, "rd%d", rdev->raid_disk);
6520 if (sysfs_create_link(&mddev->kobj,
6521 &rdev->kobj, nm))
6522 printk(KERN_WARNING
6523 "md: cannot register "
6524 "%s for %s\n",
6525 nm, mdname(mddev));
6526 spares++;
6527 md_new_event(mddev);
6528 } else
6529 break;
6530 }
6531 }
6532 }
6533 return spares;
6534 }
6535 /*
6536 * This routine is regularly called by all per-raid-array threads to
6537 * deal with generic issues like resync and super-block update.
6538 * Raid personalities that don't have a thread (linear/raid0) do not
6539 * need this as they never do any recovery or update the superblock.
6540 *
6541 * It does not do any resync itself, but rather "forks" off other threads
6542 * to do that as needed.
6543 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
6544 * "->recovery" and create a thread at ->sync_thread.
6545 * When the thread finishes it sets MD_RECOVERY_DONE
6546 * and wakeups up this thread which will reap the thread and finish up.
6547 * This thread also removes any faulty devices (with nr_pending == 0).
6548 *
6549 * The overall approach is:
6550 * 1/ if the superblock needs updating, update it.
6551 * 2/ If a recovery thread is running, don't do anything else.
6552 * 3/ If recovery has finished, clean up, possibly marking spares active.
6553 * 4/ If there are any faulty devices, remove them.
6554 * 5/ If array is degraded, try to add spares devices
6555 * 6/ If array has spares or is not in-sync, start a resync thread.
6556 */
6557 void md_check_recovery(mddev_t *mddev)
6558 {
6559 mdk_rdev_t *rdev;
6560
6561
6562 if (mddev->bitmap)
6563 bitmap_daemon_work(mddev->bitmap);
6564
6565 if (mddev->ro)
6566 return;
6567
6568 if (signal_pending(current)) {
6569 if (mddev->pers->sync_request && !mddev->external) {
6570 printk(KERN_INFO "md: %s in immediate safe mode\n",
6571 mdname(mddev));
6572 mddev->safemode = 2;
6573 }
6574 flush_signals(current);
6575 }
6576
6577 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
6578 return;
6579 if ( ! (
6580 (mddev->flags && !mddev->external) ||
6581 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
6582 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
6583 (mddev->external == 0 && mddev->safemode == 1) ||
6584 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
6585 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
6586 ))
6587 return;
6588
6589 if (mddev_trylock(mddev)) {
6590 int spares = 0;
6591
6592 if (mddev->ro) {
6593 /* Only thing we do on a ro array is remove
6594 * failed devices.
6595 */
6596 remove_and_add_spares(mddev);
6597 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6598 goto unlock;
6599 }
6600
6601 if (!mddev->external) {
6602 int did_change = 0;
6603 spin_lock_irq(&mddev->write_lock);
6604 if (mddev->safemode &&
6605 !atomic_read(&mddev->writes_pending) &&
6606 !mddev->in_sync &&
6607 mddev->recovery_cp == MaxSector) {
6608 mddev->in_sync = 1;
6609 did_change = 1;
6610 if (mddev->persistent)
6611 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6612 }
6613 if (mddev->safemode == 1)
6614 mddev->safemode = 0;
6615 spin_unlock_irq(&mddev->write_lock);
6616 if (did_change)
6617 sysfs_notify_dirent(mddev->sysfs_state);
6618 }
6619
6620 if (mddev->flags)
6621 md_update_sb(mddev, 0);
6622
6623 list_for_each_entry(rdev, &mddev->disks, same_set)
6624 if (test_and_clear_bit(StateChanged, &rdev->flags))
6625 sysfs_notify_dirent(rdev->sysfs_state);
6626
6627
6628 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
6629 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
6630 /* resync/recovery still happening */
6631 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6632 goto unlock;
6633 }
6634 if (mddev->sync_thread) {
6635 /* resync has finished, collect result */
6636 md_unregister_thread(mddev->sync_thread);
6637 mddev->sync_thread = NULL;
6638 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
6639 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
6640 /* success...*/
6641 /* activate any spares */
6642 if (mddev->pers->spare_active(mddev))
6643 sysfs_notify(&mddev->kobj, NULL,
6644 "degraded");
6645 }
6646 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
6647 mddev->pers->finish_reshape)
6648 mddev->pers->finish_reshape(mddev);
6649 md_update_sb(mddev, 1);
6650
6651 /* if array is no-longer degraded, then any saved_raid_disk
6652 * information must be scrapped
6653 */
6654 if (!mddev->degraded)
6655 list_for_each_entry(rdev, &mddev->disks, same_set)
6656 rdev->saved_raid_disk = -1;
6657
6658 mddev->recovery = 0;
6659 /* flag recovery needed just to double check */
6660 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6661 sysfs_notify_dirent(mddev->sysfs_action);
6662 md_new_event(mddev);
6663 goto unlock;
6664 }
6665 /* Set RUNNING before clearing NEEDED to avoid
6666 * any transients in the value of "sync_action".
6667 */
6668 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6669 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6670 /* Clear some bits that don't mean anything, but
6671 * might be left set
6672 */
6673 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
6674 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
6675
6676 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
6677 goto unlock;
6678 /* no recovery is running.
6679 * remove any failed drives, then
6680 * add spares if possible.
6681 * Spare are also removed and re-added, to allow
6682 * the personality to fail the re-add.
6683 */
6684
6685 if (mddev->reshape_position != MaxSector) {
6686 if (mddev->pers->check_reshape(mddev) != 0)
6687 /* Cannot proceed */
6688 goto unlock;
6689 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6690 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6691 } else if ((spares = remove_and_add_spares(mddev))) {
6692 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6693 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6694 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
6695 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6696 } else if (mddev->recovery_cp < MaxSector) {
6697 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6698 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6699 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6700 /* nothing to be done ... */
6701 goto unlock;
6702
6703 if (mddev->pers->sync_request) {
6704 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
6705 /* We are adding a device or devices to an array
6706 * which has the bitmap stored on all devices.
6707 * So make sure all bitmap pages get written
6708 */
6709 bitmap_write_all(mddev->bitmap);
6710 }
6711 mddev->sync_thread = md_register_thread(md_do_sync,
6712 mddev,
6713 "%s_resync");
6714 if (!mddev->sync_thread) {
6715 printk(KERN_ERR "%s: could not start resync"
6716 " thread...\n",
6717 mdname(mddev));
6718 /* leave the spares where they are, it shouldn't hurt */
6719 mddev->recovery = 0;
6720 } else
6721 md_wakeup_thread(mddev->sync_thread);
6722 sysfs_notify_dirent(mddev->sysfs_action);
6723 md_new_event(mddev);
6724 }
6725 unlock:
6726 if (!mddev->sync_thread) {
6727 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6728 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
6729 &mddev->recovery))
6730 if (mddev->sysfs_action)
6731 sysfs_notify_dirent(mddev->sysfs_action);
6732 }
6733 mddev_unlock(mddev);
6734 }
6735 }
6736
6737 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
6738 {
6739 sysfs_notify_dirent(rdev->sysfs_state);
6740 wait_event_timeout(rdev->blocked_wait,
6741 !test_bit(Blocked, &rdev->flags),
6742 msecs_to_jiffies(5000));
6743 rdev_dec_pending(rdev, mddev);
6744 }
6745 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
6746
6747 static int md_notify_reboot(struct notifier_block *this,
6748 unsigned long code, void *x)
6749 {
6750 struct list_head *tmp;
6751 mddev_t *mddev;
6752
6753 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
6754
6755 printk(KERN_INFO "md: stopping all md devices.\n");
6756
6757 for_each_mddev(mddev, tmp)
6758 if (mddev_trylock(mddev)) {
6759 /* Force a switch to readonly even array
6760 * appears to still be in use. Hence
6761 * the '100'.
6762 */
6763 do_md_stop(mddev, 1, 100);
6764 mddev_unlock(mddev);
6765 }
6766 /*
6767 * certain more exotic SCSI devices are known to be
6768 * volatile wrt too early system reboots. While the
6769 * right place to handle this issue is the given
6770 * driver, we do want to have a safe RAID driver ...
6771 */
6772 mdelay(1000*1);
6773 }
6774 return NOTIFY_DONE;
6775 }
6776
6777 static struct notifier_block md_notifier = {
6778 .notifier_call = md_notify_reboot,
6779 .next = NULL,
6780 .priority = INT_MAX, /* before any real devices */
6781 };
6782
6783 static void md_geninit(void)
6784 {
6785 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
6786
6787 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
6788 }
6789
6790 static int __init md_init(void)
6791 {
6792 if (register_blkdev(MD_MAJOR, "md"))
6793 return -1;
6794 if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
6795 unregister_blkdev(MD_MAJOR, "md");
6796 return -1;
6797 }
6798 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
6799 md_probe, NULL, NULL);
6800 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
6801 md_probe, NULL, NULL);
6802
6803 register_reboot_notifier(&md_notifier);
6804 raid_table_header = register_sysctl_table(raid_root_table);
6805
6806 md_geninit();
6807 return 0;
6808 }
6809
6810
6811 #ifndef MODULE
6812
6813 /*
6814 * Searches all registered partitions for autorun RAID arrays
6815 * at boot time.
6816 */
6817
6818 static LIST_HEAD(all_detected_devices);
6819 struct detected_devices_node {
6820 struct list_head list;
6821 dev_t dev;
6822 };
6823
6824 void md_autodetect_dev(dev_t dev)
6825 {
6826 struct detected_devices_node *node_detected_dev;
6827
6828 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
6829 if (node_detected_dev) {
6830 node_detected_dev->dev = dev;
6831 list_add_tail(&node_detected_dev->list, &all_detected_devices);
6832 } else {
6833 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
6834 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
6835 }
6836 }
6837
6838
6839 static void autostart_arrays(int part)
6840 {
6841 mdk_rdev_t *rdev;
6842 struct detected_devices_node *node_detected_dev;
6843 dev_t dev;
6844 int i_scanned, i_passed;
6845
6846 i_scanned = 0;
6847 i_passed = 0;
6848
6849 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
6850
6851 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
6852 i_scanned++;
6853 node_detected_dev = list_entry(all_detected_devices.next,
6854 struct detected_devices_node, list);
6855 list_del(&node_detected_dev->list);
6856 dev = node_detected_dev->dev;
6857 kfree(node_detected_dev);
6858 rdev = md_import_device(dev,0, 90);
6859 if (IS_ERR(rdev))
6860 continue;
6861
6862 if (test_bit(Faulty, &rdev->flags)) {
6863 MD_BUG();
6864 continue;
6865 }
6866 set_bit(AutoDetected, &rdev->flags);
6867 list_add(&rdev->same_set, &pending_raid_disks);
6868 i_passed++;
6869 }
6870
6871 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
6872 i_scanned, i_passed);
6873
6874 autorun_devices(part);
6875 }
6876
6877 #endif /* !MODULE */
6878
6879 static __exit void md_exit(void)
6880 {
6881 mddev_t *mddev;
6882 struct list_head *tmp;
6883
6884 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
6885 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
6886
6887 unregister_blkdev(MD_MAJOR,"md");
6888 unregister_blkdev(mdp_major, "mdp");
6889 unregister_reboot_notifier(&md_notifier);
6890 unregister_sysctl_table(raid_table_header);
6891 remove_proc_entry("mdstat", NULL);
6892 for_each_mddev(mddev, tmp) {
6893 export_array(mddev);
6894 mddev->hold_active = 0;
6895 }
6896 }
6897
6898 subsys_initcall(md_init);
6899 module_exit(md_exit)
6900
6901 static int get_ro(char *buffer, struct kernel_param *kp)
6902 {
6903 return sprintf(buffer, "%d", start_readonly);
6904 }
6905 static int set_ro(const char *val, struct kernel_param *kp)
6906 {
6907 char *e;
6908 int num = simple_strtoul(val, &e, 10);
6909 if (*val && (*e == '\0' || *e == '\n')) {
6910 start_readonly = num;
6911 return 0;
6912 }
6913 return -EINVAL;
6914 }
6915
6916 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
6917 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
6918
6919 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
6920
6921 EXPORT_SYMBOL(register_md_personality);
6922 EXPORT_SYMBOL(unregister_md_personality);
6923 EXPORT_SYMBOL(md_error);
6924 EXPORT_SYMBOL(md_done_sync);
6925 EXPORT_SYMBOL(md_write_start);
6926 EXPORT_SYMBOL(md_write_end);
6927 EXPORT_SYMBOL(md_register_thread);
6928 EXPORT_SYMBOL(md_unregister_thread);
6929 EXPORT_SYMBOL(md_wakeup_thread);
6930 EXPORT_SYMBOL(md_check_recovery);
6931 MODULE_LICENSE("GPL");
6932 MODULE_ALIAS("md");
6933 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
This page took 0.179331 seconds and 5 git commands to generate.