Merge tag 'media/v4.2-3' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[deliverable/linux.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 #include "md-cluster.h"
57
58 #ifndef MODULE
59 static void autostart_arrays(int part);
60 #endif
61
62 /* pers_list is a list of registered personalities protected
63 * by pers_lock.
64 * pers_lock does extra service to protect accesses to
65 * mddev->thread when the mutex cannot be held.
66 */
67 static LIST_HEAD(pers_list);
68 static DEFINE_SPINLOCK(pers_lock);
69
70 struct md_cluster_operations *md_cluster_ops;
71 EXPORT_SYMBOL(md_cluster_ops);
72 struct module *md_cluster_mod;
73 EXPORT_SYMBOL(md_cluster_mod);
74
75 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
76 static struct workqueue_struct *md_wq;
77 static struct workqueue_struct *md_misc_wq;
78
79 static int remove_and_add_spares(struct mddev *mddev,
80 struct md_rdev *this);
81 static void mddev_detach(struct mddev *mddev);
82
83 /*
84 * Default number of read corrections we'll attempt on an rdev
85 * before ejecting it from the array. We divide the read error
86 * count by 2 for every hour elapsed between read errors.
87 */
88 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
89 /*
90 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
91 * is 1000 KB/sec, so the extra system load does not show up that much.
92 * Increase it if you want to have more _guaranteed_ speed. Note that
93 * the RAID driver will use the maximum available bandwidth if the IO
94 * subsystem is idle. There is also an 'absolute maximum' reconstruction
95 * speed limit - in case reconstruction slows down your system despite
96 * idle IO detection.
97 *
98 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
99 * or /sys/block/mdX/md/sync_speed_{min,max}
100 */
101
102 static int sysctl_speed_limit_min = 1000;
103 static int sysctl_speed_limit_max = 200000;
104 static inline int speed_min(struct mddev *mddev)
105 {
106 return mddev->sync_speed_min ?
107 mddev->sync_speed_min : sysctl_speed_limit_min;
108 }
109
110 static inline int speed_max(struct mddev *mddev)
111 {
112 return mddev->sync_speed_max ?
113 mddev->sync_speed_max : sysctl_speed_limit_max;
114 }
115
116 static struct ctl_table_header *raid_table_header;
117
118 static struct ctl_table raid_table[] = {
119 {
120 .procname = "speed_limit_min",
121 .data = &sysctl_speed_limit_min,
122 .maxlen = sizeof(int),
123 .mode = S_IRUGO|S_IWUSR,
124 .proc_handler = proc_dointvec,
125 },
126 {
127 .procname = "speed_limit_max",
128 .data = &sysctl_speed_limit_max,
129 .maxlen = sizeof(int),
130 .mode = S_IRUGO|S_IWUSR,
131 .proc_handler = proc_dointvec,
132 },
133 { }
134 };
135
136 static struct ctl_table raid_dir_table[] = {
137 {
138 .procname = "raid",
139 .maxlen = 0,
140 .mode = S_IRUGO|S_IXUGO,
141 .child = raid_table,
142 },
143 { }
144 };
145
146 static struct ctl_table raid_root_table[] = {
147 {
148 .procname = "dev",
149 .maxlen = 0,
150 .mode = 0555,
151 .child = raid_dir_table,
152 },
153 { }
154 };
155
156 static const struct block_device_operations md_fops;
157
158 static int start_readonly;
159
160 /* bio_clone_mddev
161 * like bio_clone, but with a local bio set
162 */
163
164 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
165 struct mddev *mddev)
166 {
167 struct bio *b;
168
169 if (!mddev || !mddev->bio_set)
170 return bio_alloc(gfp_mask, nr_iovecs);
171
172 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
173 if (!b)
174 return NULL;
175 return b;
176 }
177 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
178
179 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
180 struct mddev *mddev)
181 {
182 if (!mddev || !mddev->bio_set)
183 return bio_clone(bio, gfp_mask);
184
185 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
186 }
187 EXPORT_SYMBOL_GPL(bio_clone_mddev);
188
189 /*
190 * We have a system wide 'event count' that is incremented
191 * on any 'interesting' event, and readers of /proc/mdstat
192 * can use 'poll' or 'select' to find out when the event
193 * count increases.
194 *
195 * Events are:
196 * start array, stop array, error, add device, remove device,
197 * start build, activate spare
198 */
199 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
200 static atomic_t md_event_count;
201 void md_new_event(struct mddev *mddev)
202 {
203 atomic_inc(&md_event_count);
204 wake_up(&md_event_waiters);
205 }
206 EXPORT_SYMBOL_GPL(md_new_event);
207
208 /* Alternate version that can be called from interrupts
209 * when calling sysfs_notify isn't needed.
210 */
211 static void md_new_event_inintr(struct mddev *mddev)
212 {
213 atomic_inc(&md_event_count);
214 wake_up(&md_event_waiters);
215 }
216
217 /*
218 * Enables to iterate over all existing md arrays
219 * all_mddevs_lock protects this list.
220 */
221 static LIST_HEAD(all_mddevs);
222 static DEFINE_SPINLOCK(all_mddevs_lock);
223
224 /*
225 * iterates through all used mddevs in the system.
226 * We take care to grab the all_mddevs_lock whenever navigating
227 * the list, and to always hold a refcount when unlocked.
228 * Any code which breaks out of this loop while own
229 * a reference to the current mddev and must mddev_put it.
230 */
231 #define for_each_mddev(_mddev,_tmp) \
232 \
233 for (({ spin_lock(&all_mddevs_lock); \
234 _tmp = all_mddevs.next; \
235 _mddev = NULL;}); \
236 ({ if (_tmp != &all_mddevs) \
237 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
238 spin_unlock(&all_mddevs_lock); \
239 if (_mddev) mddev_put(_mddev); \
240 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
241 _tmp != &all_mddevs;}); \
242 ({ spin_lock(&all_mddevs_lock); \
243 _tmp = _tmp->next;}) \
244 )
245
246 /* Rather than calling directly into the personality make_request function,
247 * IO requests come here first so that we can check if the device is
248 * being suspended pending a reconfiguration.
249 * We hold a refcount over the call to ->make_request. By the time that
250 * call has finished, the bio has been linked into some internal structure
251 * and so is visible to ->quiesce(), so we don't need the refcount any more.
252 */
253 static void md_make_request(struct request_queue *q, struct bio *bio)
254 {
255 const int rw = bio_data_dir(bio);
256 struct mddev *mddev = q->queuedata;
257 unsigned int sectors;
258 int cpu;
259
260 if (mddev == NULL || mddev->pers == NULL
261 || !mddev->ready) {
262 bio_io_error(bio);
263 return;
264 }
265 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
266 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
267 return;
268 }
269 smp_rmb(); /* Ensure implications of 'active' are visible */
270 rcu_read_lock();
271 if (mddev->suspended) {
272 DEFINE_WAIT(__wait);
273 for (;;) {
274 prepare_to_wait(&mddev->sb_wait, &__wait,
275 TASK_UNINTERRUPTIBLE);
276 if (!mddev->suspended)
277 break;
278 rcu_read_unlock();
279 schedule();
280 rcu_read_lock();
281 }
282 finish_wait(&mddev->sb_wait, &__wait);
283 }
284 atomic_inc(&mddev->active_io);
285 rcu_read_unlock();
286
287 /*
288 * save the sectors now since our bio can
289 * go away inside make_request
290 */
291 sectors = bio_sectors(bio);
292 mddev->pers->make_request(mddev, bio);
293
294 cpu = part_stat_lock();
295 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
296 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
297 part_stat_unlock();
298
299 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
300 wake_up(&mddev->sb_wait);
301 }
302
303 /* mddev_suspend makes sure no new requests are submitted
304 * to the device, and that any requests that have been submitted
305 * are completely handled.
306 * Once mddev_detach() is called and completes, the module will be
307 * completely unused.
308 */
309 void mddev_suspend(struct mddev *mddev)
310 {
311 BUG_ON(mddev->suspended);
312 mddev->suspended = 1;
313 synchronize_rcu();
314 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
315 mddev->pers->quiesce(mddev, 1);
316
317 del_timer_sync(&mddev->safemode_timer);
318 }
319 EXPORT_SYMBOL_GPL(mddev_suspend);
320
321 void mddev_resume(struct mddev *mddev)
322 {
323 mddev->suspended = 0;
324 wake_up(&mddev->sb_wait);
325 mddev->pers->quiesce(mddev, 0);
326
327 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
328 md_wakeup_thread(mddev->thread);
329 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
330 }
331 EXPORT_SYMBOL_GPL(mddev_resume);
332
333 int mddev_congested(struct mddev *mddev, int bits)
334 {
335 struct md_personality *pers = mddev->pers;
336 int ret = 0;
337
338 rcu_read_lock();
339 if (mddev->suspended)
340 ret = 1;
341 else if (pers && pers->congested)
342 ret = pers->congested(mddev, bits);
343 rcu_read_unlock();
344 return ret;
345 }
346 EXPORT_SYMBOL_GPL(mddev_congested);
347 static int md_congested(void *data, int bits)
348 {
349 struct mddev *mddev = data;
350 return mddev_congested(mddev, bits);
351 }
352
353 static int md_mergeable_bvec(struct request_queue *q,
354 struct bvec_merge_data *bvm,
355 struct bio_vec *biovec)
356 {
357 struct mddev *mddev = q->queuedata;
358 int ret;
359 rcu_read_lock();
360 if (mddev->suspended) {
361 /* Must always allow one vec */
362 if (bvm->bi_size == 0)
363 ret = biovec->bv_len;
364 else
365 ret = 0;
366 } else {
367 struct md_personality *pers = mddev->pers;
368 if (pers && pers->mergeable_bvec)
369 ret = pers->mergeable_bvec(mddev, bvm, biovec);
370 else
371 ret = biovec->bv_len;
372 }
373 rcu_read_unlock();
374 return ret;
375 }
376 /*
377 * Generic flush handling for md
378 */
379
380 static void md_end_flush(struct bio *bio, int err)
381 {
382 struct md_rdev *rdev = bio->bi_private;
383 struct mddev *mddev = rdev->mddev;
384
385 rdev_dec_pending(rdev, mddev);
386
387 if (atomic_dec_and_test(&mddev->flush_pending)) {
388 /* The pre-request flush has finished */
389 queue_work(md_wq, &mddev->flush_work);
390 }
391 bio_put(bio);
392 }
393
394 static void md_submit_flush_data(struct work_struct *ws);
395
396 static void submit_flushes(struct work_struct *ws)
397 {
398 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
399 struct md_rdev *rdev;
400
401 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
402 atomic_set(&mddev->flush_pending, 1);
403 rcu_read_lock();
404 rdev_for_each_rcu(rdev, mddev)
405 if (rdev->raid_disk >= 0 &&
406 !test_bit(Faulty, &rdev->flags)) {
407 /* Take two references, one is dropped
408 * when request finishes, one after
409 * we reclaim rcu_read_lock
410 */
411 struct bio *bi;
412 atomic_inc(&rdev->nr_pending);
413 atomic_inc(&rdev->nr_pending);
414 rcu_read_unlock();
415 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
416 bi->bi_end_io = md_end_flush;
417 bi->bi_private = rdev;
418 bi->bi_bdev = rdev->bdev;
419 atomic_inc(&mddev->flush_pending);
420 submit_bio(WRITE_FLUSH, bi);
421 rcu_read_lock();
422 rdev_dec_pending(rdev, mddev);
423 }
424 rcu_read_unlock();
425 if (atomic_dec_and_test(&mddev->flush_pending))
426 queue_work(md_wq, &mddev->flush_work);
427 }
428
429 static void md_submit_flush_data(struct work_struct *ws)
430 {
431 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
432 struct bio *bio = mddev->flush_bio;
433
434 if (bio->bi_iter.bi_size == 0)
435 /* an empty barrier - all done */
436 bio_endio(bio, 0);
437 else {
438 bio->bi_rw &= ~REQ_FLUSH;
439 mddev->pers->make_request(mddev, bio);
440 }
441
442 mddev->flush_bio = NULL;
443 wake_up(&mddev->sb_wait);
444 }
445
446 void md_flush_request(struct mddev *mddev, struct bio *bio)
447 {
448 spin_lock_irq(&mddev->lock);
449 wait_event_lock_irq(mddev->sb_wait,
450 !mddev->flush_bio,
451 mddev->lock);
452 mddev->flush_bio = bio;
453 spin_unlock_irq(&mddev->lock);
454
455 INIT_WORK(&mddev->flush_work, submit_flushes);
456 queue_work(md_wq, &mddev->flush_work);
457 }
458 EXPORT_SYMBOL(md_flush_request);
459
460 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
461 {
462 struct mddev *mddev = cb->data;
463 md_wakeup_thread(mddev->thread);
464 kfree(cb);
465 }
466 EXPORT_SYMBOL(md_unplug);
467
468 static inline struct mddev *mddev_get(struct mddev *mddev)
469 {
470 atomic_inc(&mddev->active);
471 return mddev;
472 }
473
474 static void mddev_delayed_delete(struct work_struct *ws);
475
476 static void mddev_put(struct mddev *mddev)
477 {
478 struct bio_set *bs = NULL;
479
480 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
481 return;
482 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
483 mddev->ctime == 0 && !mddev->hold_active) {
484 /* Array is not configured at all, and not held active,
485 * so destroy it */
486 list_del_init(&mddev->all_mddevs);
487 bs = mddev->bio_set;
488 mddev->bio_set = NULL;
489 if (mddev->gendisk) {
490 /* We did a probe so need to clean up. Call
491 * queue_work inside the spinlock so that
492 * flush_workqueue() after mddev_find will
493 * succeed in waiting for the work to be done.
494 */
495 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
496 queue_work(md_misc_wq, &mddev->del_work);
497 } else
498 kfree(mddev);
499 }
500 spin_unlock(&all_mddevs_lock);
501 if (bs)
502 bioset_free(bs);
503 }
504
505 void mddev_init(struct mddev *mddev)
506 {
507 mutex_init(&mddev->open_mutex);
508 mutex_init(&mddev->reconfig_mutex);
509 mutex_init(&mddev->bitmap_info.mutex);
510 INIT_LIST_HEAD(&mddev->disks);
511 INIT_LIST_HEAD(&mddev->all_mddevs);
512 init_timer(&mddev->safemode_timer);
513 atomic_set(&mddev->active, 1);
514 atomic_set(&mddev->openers, 0);
515 atomic_set(&mddev->active_io, 0);
516 spin_lock_init(&mddev->lock);
517 atomic_set(&mddev->flush_pending, 0);
518 init_waitqueue_head(&mddev->sb_wait);
519 init_waitqueue_head(&mddev->recovery_wait);
520 mddev->reshape_position = MaxSector;
521 mddev->reshape_backwards = 0;
522 mddev->last_sync_action = "none";
523 mddev->resync_min = 0;
524 mddev->resync_max = MaxSector;
525 mddev->level = LEVEL_NONE;
526 }
527 EXPORT_SYMBOL_GPL(mddev_init);
528
529 static struct mddev *mddev_find(dev_t unit)
530 {
531 struct mddev *mddev, *new = NULL;
532
533 if (unit && MAJOR(unit) != MD_MAJOR)
534 unit &= ~((1<<MdpMinorShift)-1);
535
536 retry:
537 spin_lock(&all_mddevs_lock);
538
539 if (unit) {
540 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
541 if (mddev->unit == unit) {
542 mddev_get(mddev);
543 spin_unlock(&all_mddevs_lock);
544 kfree(new);
545 return mddev;
546 }
547
548 if (new) {
549 list_add(&new->all_mddevs, &all_mddevs);
550 spin_unlock(&all_mddevs_lock);
551 new->hold_active = UNTIL_IOCTL;
552 return new;
553 }
554 } else if (new) {
555 /* find an unused unit number */
556 static int next_minor = 512;
557 int start = next_minor;
558 int is_free = 0;
559 int dev = 0;
560 while (!is_free) {
561 dev = MKDEV(MD_MAJOR, next_minor);
562 next_minor++;
563 if (next_minor > MINORMASK)
564 next_minor = 0;
565 if (next_minor == start) {
566 /* Oh dear, all in use. */
567 spin_unlock(&all_mddevs_lock);
568 kfree(new);
569 return NULL;
570 }
571
572 is_free = 1;
573 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
574 if (mddev->unit == dev) {
575 is_free = 0;
576 break;
577 }
578 }
579 new->unit = dev;
580 new->md_minor = MINOR(dev);
581 new->hold_active = UNTIL_STOP;
582 list_add(&new->all_mddevs, &all_mddevs);
583 spin_unlock(&all_mddevs_lock);
584 return new;
585 }
586 spin_unlock(&all_mddevs_lock);
587
588 new = kzalloc(sizeof(*new), GFP_KERNEL);
589 if (!new)
590 return NULL;
591
592 new->unit = unit;
593 if (MAJOR(unit) == MD_MAJOR)
594 new->md_minor = MINOR(unit);
595 else
596 new->md_minor = MINOR(unit) >> MdpMinorShift;
597
598 mddev_init(new);
599
600 goto retry;
601 }
602
603 static struct attribute_group md_redundancy_group;
604
605 void mddev_unlock(struct mddev *mddev)
606 {
607 if (mddev->to_remove) {
608 /* These cannot be removed under reconfig_mutex as
609 * an access to the files will try to take reconfig_mutex
610 * while holding the file unremovable, which leads to
611 * a deadlock.
612 * So hold set sysfs_active while the remove in happeing,
613 * and anything else which might set ->to_remove or my
614 * otherwise change the sysfs namespace will fail with
615 * -EBUSY if sysfs_active is still set.
616 * We set sysfs_active under reconfig_mutex and elsewhere
617 * test it under the same mutex to ensure its correct value
618 * is seen.
619 */
620 struct attribute_group *to_remove = mddev->to_remove;
621 mddev->to_remove = NULL;
622 mddev->sysfs_active = 1;
623 mutex_unlock(&mddev->reconfig_mutex);
624
625 if (mddev->kobj.sd) {
626 if (to_remove != &md_redundancy_group)
627 sysfs_remove_group(&mddev->kobj, to_remove);
628 if (mddev->pers == NULL ||
629 mddev->pers->sync_request == NULL) {
630 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
631 if (mddev->sysfs_action)
632 sysfs_put(mddev->sysfs_action);
633 mddev->sysfs_action = NULL;
634 }
635 }
636 mddev->sysfs_active = 0;
637 } else
638 mutex_unlock(&mddev->reconfig_mutex);
639
640 /* As we've dropped the mutex we need a spinlock to
641 * make sure the thread doesn't disappear
642 */
643 spin_lock(&pers_lock);
644 md_wakeup_thread(mddev->thread);
645 spin_unlock(&pers_lock);
646 }
647 EXPORT_SYMBOL_GPL(mddev_unlock);
648
649 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
650 {
651 struct md_rdev *rdev;
652
653 rdev_for_each_rcu(rdev, mddev)
654 if (rdev->desc_nr == nr)
655 return rdev;
656
657 return NULL;
658 }
659 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
660
661 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
662 {
663 struct md_rdev *rdev;
664
665 rdev_for_each(rdev, mddev)
666 if (rdev->bdev->bd_dev == dev)
667 return rdev;
668
669 return NULL;
670 }
671
672 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
673 {
674 struct md_rdev *rdev;
675
676 rdev_for_each_rcu(rdev, mddev)
677 if (rdev->bdev->bd_dev == dev)
678 return rdev;
679
680 return NULL;
681 }
682
683 static struct md_personality *find_pers(int level, char *clevel)
684 {
685 struct md_personality *pers;
686 list_for_each_entry(pers, &pers_list, list) {
687 if (level != LEVEL_NONE && pers->level == level)
688 return pers;
689 if (strcmp(pers->name, clevel)==0)
690 return pers;
691 }
692 return NULL;
693 }
694
695 /* return the offset of the super block in 512byte sectors */
696 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
697 {
698 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
699 return MD_NEW_SIZE_SECTORS(num_sectors);
700 }
701
702 static int alloc_disk_sb(struct md_rdev *rdev)
703 {
704 rdev->sb_page = alloc_page(GFP_KERNEL);
705 if (!rdev->sb_page) {
706 printk(KERN_ALERT "md: out of memory.\n");
707 return -ENOMEM;
708 }
709
710 return 0;
711 }
712
713 void md_rdev_clear(struct md_rdev *rdev)
714 {
715 if (rdev->sb_page) {
716 put_page(rdev->sb_page);
717 rdev->sb_loaded = 0;
718 rdev->sb_page = NULL;
719 rdev->sb_start = 0;
720 rdev->sectors = 0;
721 }
722 if (rdev->bb_page) {
723 put_page(rdev->bb_page);
724 rdev->bb_page = NULL;
725 }
726 kfree(rdev->badblocks.page);
727 rdev->badblocks.page = NULL;
728 }
729 EXPORT_SYMBOL_GPL(md_rdev_clear);
730
731 static void super_written(struct bio *bio, int error)
732 {
733 struct md_rdev *rdev = bio->bi_private;
734 struct mddev *mddev = rdev->mddev;
735
736 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
737 printk("md: super_written gets error=%d, uptodate=%d\n",
738 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
739 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
740 md_error(mddev, rdev);
741 }
742
743 if (atomic_dec_and_test(&mddev->pending_writes))
744 wake_up(&mddev->sb_wait);
745 bio_put(bio);
746 }
747
748 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
749 sector_t sector, int size, struct page *page)
750 {
751 /* write first size bytes of page to sector of rdev
752 * Increment mddev->pending_writes before returning
753 * and decrement it on completion, waking up sb_wait
754 * if zero is reached.
755 * If an error occurred, call md_error
756 */
757 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
758
759 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
760 bio->bi_iter.bi_sector = sector;
761 bio_add_page(bio, page, size, 0);
762 bio->bi_private = rdev;
763 bio->bi_end_io = super_written;
764
765 atomic_inc(&mddev->pending_writes);
766 submit_bio(WRITE_FLUSH_FUA, bio);
767 }
768
769 void md_super_wait(struct mddev *mddev)
770 {
771 /* wait for all superblock writes that were scheduled to complete */
772 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
773 }
774
775 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
776 struct page *page, int rw, bool metadata_op)
777 {
778 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
779 int ret;
780
781 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
782 rdev->meta_bdev : rdev->bdev;
783 if (metadata_op)
784 bio->bi_iter.bi_sector = sector + rdev->sb_start;
785 else if (rdev->mddev->reshape_position != MaxSector &&
786 (rdev->mddev->reshape_backwards ==
787 (sector >= rdev->mddev->reshape_position)))
788 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
789 else
790 bio->bi_iter.bi_sector = sector + rdev->data_offset;
791 bio_add_page(bio, page, size, 0);
792 submit_bio_wait(rw, bio);
793
794 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
795 bio_put(bio);
796 return ret;
797 }
798 EXPORT_SYMBOL_GPL(sync_page_io);
799
800 static int read_disk_sb(struct md_rdev *rdev, int size)
801 {
802 char b[BDEVNAME_SIZE];
803
804 if (rdev->sb_loaded)
805 return 0;
806
807 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
808 goto fail;
809 rdev->sb_loaded = 1;
810 return 0;
811
812 fail:
813 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
814 bdevname(rdev->bdev,b));
815 return -EINVAL;
816 }
817
818 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
819 {
820 return sb1->set_uuid0 == sb2->set_uuid0 &&
821 sb1->set_uuid1 == sb2->set_uuid1 &&
822 sb1->set_uuid2 == sb2->set_uuid2 &&
823 sb1->set_uuid3 == sb2->set_uuid3;
824 }
825
826 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
827 {
828 int ret;
829 mdp_super_t *tmp1, *tmp2;
830
831 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
832 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
833
834 if (!tmp1 || !tmp2) {
835 ret = 0;
836 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
837 goto abort;
838 }
839
840 *tmp1 = *sb1;
841 *tmp2 = *sb2;
842
843 /*
844 * nr_disks is not constant
845 */
846 tmp1->nr_disks = 0;
847 tmp2->nr_disks = 0;
848
849 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
850 abort:
851 kfree(tmp1);
852 kfree(tmp2);
853 return ret;
854 }
855
856 static u32 md_csum_fold(u32 csum)
857 {
858 csum = (csum & 0xffff) + (csum >> 16);
859 return (csum & 0xffff) + (csum >> 16);
860 }
861
862 static unsigned int calc_sb_csum(mdp_super_t *sb)
863 {
864 u64 newcsum = 0;
865 u32 *sb32 = (u32*)sb;
866 int i;
867 unsigned int disk_csum, csum;
868
869 disk_csum = sb->sb_csum;
870 sb->sb_csum = 0;
871
872 for (i = 0; i < MD_SB_BYTES/4 ; i++)
873 newcsum += sb32[i];
874 csum = (newcsum & 0xffffffff) + (newcsum>>32);
875
876 #ifdef CONFIG_ALPHA
877 /* This used to use csum_partial, which was wrong for several
878 * reasons including that different results are returned on
879 * different architectures. It isn't critical that we get exactly
880 * the same return value as before (we always csum_fold before
881 * testing, and that removes any differences). However as we
882 * know that csum_partial always returned a 16bit value on
883 * alphas, do a fold to maximise conformity to previous behaviour.
884 */
885 sb->sb_csum = md_csum_fold(disk_csum);
886 #else
887 sb->sb_csum = disk_csum;
888 #endif
889 return csum;
890 }
891
892 /*
893 * Handle superblock details.
894 * We want to be able to handle multiple superblock formats
895 * so we have a common interface to them all, and an array of
896 * different handlers.
897 * We rely on user-space to write the initial superblock, and support
898 * reading and updating of superblocks.
899 * Interface methods are:
900 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
901 * loads and validates a superblock on dev.
902 * if refdev != NULL, compare superblocks on both devices
903 * Return:
904 * 0 - dev has a superblock that is compatible with refdev
905 * 1 - dev has a superblock that is compatible and newer than refdev
906 * so dev should be used as the refdev in future
907 * -EINVAL superblock incompatible or invalid
908 * -othererror e.g. -EIO
909 *
910 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
911 * Verify that dev is acceptable into mddev.
912 * The first time, mddev->raid_disks will be 0, and data from
913 * dev should be merged in. Subsequent calls check that dev
914 * is new enough. Return 0 or -EINVAL
915 *
916 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
917 * Update the superblock for rdev with data in mddev
918 * This does not write to disc.
919 *
920 */
921
922 struct super_type {
923 char *name;
924 struct module *owner;
925 int (*load_super)(struct md_rdev *rdev,
926 struct md_rdev *refdev,
927 int minor_version);
928 int (*validate_super)(struct mddev *mddev,
929 struct md_rdev *rdev);
930 void (*sync_super)(struct mddev *mddev,
931 struct md_rdev *rdev);
932 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
933 sector_t num_sectors);
934 int (*allow_new_offset)(struct md_rdev *rdev,
935 unsigned long long new_offset);
936 };
937
938 /*
939 * Check that the given mddev has no bitmap.
940 *
941 * This function is called from the run method of all personalities that do not
942 * support bitmaps. It prints an error message and returns non-zero if mddev
943 * has a bitmap. Otherwise, it returns 0.
944 *
945 */
946 int md_check_no_bitmap(struct mddev *mddev)
947 {
948 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
949 return 0;
950 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
951 mdname(mddev), mddev->pers->name);
952 return 1;
953 }
954 EXPORT_SYMBOL(md_check_no_bitmap);
955
956 /*
957 * load_super for 0.90.0
958 */
959 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
960 {
961 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
962 mdp_super_t *sb;
963 int ret;
964
965 /*
966 * Calculate the position of the superblock (512byte sectors),
967 * it's at the end of the disk.
968 *
969 * It also happens to be a multiple of 4Kb.
970 */
971 rdev->sb_start = calc_dev_sboffset(rdev);
972
973 ret = read_disk_sb(rdev, MD_SB_BYTES);
974 if (ret) return ret;
975
976 ret = -EINVAL;
977
978 bdevname(rdev->bdev, b);
979 sb = page_address(rdev->sb_page);
980
981 if (sb->md_magic != MD_SB_MAGIC) {
982 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
983 b);
984 goto abort;
985 }
986
987 if (sb->major_version != 0 ||
988 sb->minor_version < 90 ||
989 sb->minor_version > 91) {
990 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
991 sb->major_version, sb->minor_version,
992 b);
993 goto abort;
994 }
995
996 if (sb->raid_disks <= 0)
997 goto abort;
998
999 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1000 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1001 b);
1002 goto abort;
1003 }
1004
1005 rdev->preferred_minor = sb->md_minor;
1006 rdev->data_offset = 0;
1007 rdev->new_data_offset = 0;
1008 rdev->sb_size = MD_SB_BYTES;
1009 rdev->badblocks.shift = -1;
1010
1011 if (sb->level == LEVEL_MULTIPATH)
1012 rdev->desc_nr = -1;
1013 else
1014 rdev->desc_nr = sb->this_disk.number;
1015
1016 if (!refdev) {
1017 ret = 1;
1018 } else {
1019 __u64 ev1, ev2;
1020 mdp_super_t *refsb = page_address(refdev->sb_page);
1021 if (!uuid_equal(refsb, sb)) {
1022 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1023 b, bdevname(refdev->bdev,b2));
1024 goto abort;
1025 }
1026 if (!sb_equal(refsb, sb)) {
1027 printk(KERN_WARNING "md: %s has same UUID"
1028 " but different superblock to %s\n",
1029 b, bdevname(refdev->bdev, b2));
1030 goto abort;
1031 }
1032 ev1 = md_event(sb);
1033 ev2 = md_event(refsb);
1034 if (ev1 > ev2)
1035 ret = 1;
1036 else
1037 ret = 0;
1038 }
1039 rdev->sectors = rdev->sb_start;
1040 /* Limit to 4TB as metadata cannot record more than that.
1041 * (not needed for Linear and RAID0 as metadata doesn't
1042 * record this size)
1043 */
1044 if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1045 rdev->sectors = (2ULL << 32) - 2;
1046
1047 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1048 /* "this cannot possibly happen" ... */
1049 ret = -EINVAL;
1050
1051 abort:
1052 return ret;
1053 }
1054
1055 /*
1056 * validate_super for 0.90.0
1057 */
1058 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1059 {
1060 mdp_disk_t *desc;
1061 mdp_super_t *sb = page_address(rdev->sb_page);
1062 __u64 ev1 = md_event(sb);
1063
1064 rdev->raid_disk = -1;
1065 clear_bit(Faulty, &rdev->flags);
1066 clear_bit(In_sync, &rdev->flags);
1067 clear_bit(Bitmap_sync, &rdev->flags);
1068 clear_bit(WriteMostly, &rdev->flags);
1069
1070 if (mddev->raid_disks == 0) {
1071 mddev->major_version = 0;
1072 mddev->minor_version = sb->minor_version;
1073 mddev->patch_version = sb->patch_version;
1074 mddev->external = 0;
1075 mddev->chunk_sectors = sb->chunk_size >> 9;
1076 mddev->ctime = sb->ctime;
1077 mddev->utime = sb->utime;
1078 mddev->level = sb->level;
1079 mddev->clevel[0] = 0;
1080 mddev->layout = sb->layout;
1081 mddev->raid_disks = sb->raid_disks;
1082 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1083 mddev->events = ev1;
1084 mddev->bitmap_info.offset = 0;
1085 mddev->bitmap_info.space = 0;
1086 /* bitmap can use 60 K after the 4K superblocks */
1087 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1088 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1089 mddev->reshape_backwards = 0;
1090
1091 if (mddev->minor_version >= 91) {
1092 mddev->reshape_position = sb->reshape_position;
1093 mddev->delta_disks = sb->delta_disks;
1094 mddev->new_level = sb->new_level;
1095 mddev->new_layout = sb->new_layout;
1096 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1097 if (mddev->delta_disks < 0)
1098 mddev->reshape_backwards = 1;
1099 } else {
1100 mddev->reshape_position = MaxSector;
1101 mddev->delta_disks = 0;
1102 mddev->new_level = mddev->level;
1103 mddev->new_layout = mddev->layout;
1104 mddev->new_chunk_sectors = mddev->chunk_sectors;
1105 }
1106
1107 if (sb->state & (1<<MD_SB_CLEAN))
1108 mddev->recovery_cp = MaxSector;
1109 else {
1110 if (sb->events_hi == sb->cp_events_hi &&
1111 sb->events_lo == sb->cp_events_lo) {
1112 mddev->recovery_cp = sb->recovery_cp;
1113 } else
1114 mddev->recovery_cp = 0;
1115 }
1116
1117 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1118 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1119 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1120 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1121
1122 mddev->max_disks = MD_SB_DISKS;
1123
1124 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1125 mddev->bitmap_info.file == NULL) {
1126 mddev->bitmap_info.offset =
1127 mddev->bitmap_info.default_offset;
1128 mddev->bitmap_info.space =
1129 mddev->bitmap_info.default_space;
1130 }
1131
1132 } else if (mddev->pers == NULL) {
1133 /* Insist on good event counter while assembling, except
1134 * for spares (which don't need an event count) */
1135 ++ev1;
1136 if (sb->disks[rdev->desc_nr].state & (
1137 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1138 if (ev1 < mddev->events)
1139 return -EINVAL;
1140 } else if (mddev->bitmap) {
1141 /* if adding to array with a bitmap, then we can accept an
1142 * older device ... but not too old.
1143 */
1144 if (ev1 < mddev->bitmap->events_cleared)
1145 return 0;
1146 if (ev1 < mddev->events)
1147 set_bit(Bitmap_sync, &rdev->flags);
1148 } else {
1149 if (ev1 < mddev->events)
1150 /* just a hot-add of a new device, leave raid_disk at -1 */
1151 return 0;
1152 }
1153
1154 if (mddev->level != LEVEL_MULTIPATH) {
1155 desc = sb->disks + rdev->desc_nr;
1156
1157 if (desc->state & (1<<MD_DISK_FAULTY))
1158 set_bit(Faulty, &rdev->flags);
1159 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1160 desc->raid_disk < mddev->raid_disks */) {
1161 set_bit(In_sync, &rdev->flags);
1162 rdev->raid_disk = desc->raid_disk;
1163 rdev->saved_raid_disk = desc->raid_disk;
1164 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1165 /* active but not in sync implies recovery up to
1166 * reshape position. We don't know exactly where
1167 * that is, so set to zero for now */
1168 if (mddev->minor_version >= 91) {
1169 rdev->recovery_offset = 0;
1170 rdev->raid_disk = desc->raid_disk;
1171 }
1172 }
1173 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1174 set_bit(WriteMostly, &rdev->flags);
1175 } else /* MULTIPATH are always insync */
1176 set_bit(In_sync, &rdev->flags);
1177 return 0;
1178 }
1179
1180 /*
1181 * sync_super for 0.90.0
1182 */
1183 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1184 {
1185 mdp_super_t *sb;
1186 struct md_rdev *rdev2;
1187 int next_spare = mddev->raid_disks;
1188
1189 /* make rdev->sb match mddev data..
1190 *
1191 * 1/ zero out disks
1192 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1193 * 3/ any empty disks < next_spare become removed
1194 *
1195 * disks[0] gets initialised to REMOVED because
1196 * we cannot be sure from other fields if it has
1197 * been initialised or not.
1198 */
1199 int i;
1200 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1201
1202 rdev->sb_size = MD_SB_BYTES;
1203
1204 sb = page_address(rdev->sb_page);
1205
1206 memset(sb, 0, sizeof(*sb));
1207
1208 sb->md_magic = MD_SB_MAGIC;
1209 sb->major_version = mddev->major_version;
1210 sb->patch_version = mddev->patch_version;
1211 sb->gvalid_words = 0; /* ignored */
1212 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1213 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1214 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1215 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1216
1217 sb->ctime = mddev->ctime;
1218 sb->level = mddev->level;
1219 sb->size = mddev->dev_sectors / 2;
1220 sb->raid_disks = mddev->raid_disks;
1221 sb->md_minor = mddev->md_minor;
1222 sb->not_persistent = 0;
1223 sb->utime = mddev->utime;
1224 sb->state = 0;
1225 sb->events_hi = (mddev->events>>32);
1226 sb->events_lo = (u32)mddev->events;
1227
1228 if (mddev->reshape_position == MaxSector)
1229 sb->minor_version = 90;
1230 else {
1231 sb->minor_version = 91;
1232 sb->reshape_position = mddev->reshape_position;
1233 sb->new_level = mddev->new_level;
1234 sb->delta_disks = mddev->delta_disks;
1235 sb->new_layout = mddev->new_layout;
1236 sb->new_chunk = mddev->new_chunk_sectors << 9;
1237 }
1238 mddev->minor_version = sb->minor_version;
1239 if (mddev->in_sync)
1240 {
1241 sb->recovery_cp = mddev->recovery_cp;
1242 sb->cp_events_hi = (mddev->events>>32);
1243 sb->cp_events_lo = (u32)mddev->events;
1244 if (mddev->recovery_cp == MaxSector)
1245 sb->state = (1<< MD_SB_CLEAN);
1246 } else
1247 sb->recovery_cp = 0;
1248
1249 sb->layout = mddev->layout;
1250 sb->chunk_size = mddev->chunk_sectors << 9;
1251
1252 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1253 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1254
1255 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1256 rdev_for_each(rdev2, mddev) {
1257 mdp_disk_t *d;
1258 int desc_nr;
1259 int is_active = test_bit(In_sync, &rdev2->flags);
1260
1261 if (rdev2->raid_disk >= 0 &&
1262 sb->minor_version >= 91)
1263 /* we have nowhere to store the recovery_offset,
1264 * but if it is not below the reshape_position,
1265 * we can piggy-back on that.
1266 */
1267 is_active = 1;
1268 if (rdev2->raid_disk < 0 ||
1269 test_bit(Faulty, &rdev2->flags))
1270 is_active = 0;
1271 if (is_active)
1272 desc_nr = rdev2->raid_disk;
1273 else
1274 desc_nr = next_spare++;
1275 rdev2->desc_nr = desc_nr;
1276 d = &sb->disks[rdev2->desc_nr];
1277 nr_disks++;
1278 d->number = rdev2->desc_nr;
1279 d->major = MAJOR(rdev2->bdev->bd_dev);
1280 d->minor = MINOR(rdev2->bdev->bd_dev);
1281 if (is_active)
1282 d->raid_disk = rdev2->raid_disk;
1283 else
1284 d->raid_disk = rdev2->desc_nr; /* compatibility */
1285 if (test_bit(Faulty, &rdev2->flags))
1286 d->state = (1<<MD_DISK_FAULTY);
1287 else if (is_active) {
1288 d->state = (1<<MD_DISK_ACTIVE);
1289 if (test_bit(In_sync, &rdev2->flags))
1290 d->state |= (1<<MD_DISK_SYNC);
1291 active++;
1292 working++;
1293 } else {
1294 d->state = 0;
1295 spare++;
1296 working++;
1297 }
1298 if (test_bit(WriteMostly, &rdev2->flags))
1299 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1300 }
1301 /* now set the "removed" and "faulty" bits on any missing devices */
1302 for (i=0 ; i < mddev->raid_disks ; i++) {
1303 mdp_disk_t *d = &sb->disks[i];
1304 if (d->state == 0 && d->number == 0) {
1305 d->number = i;
1306 d->raid_disk = i;
1307 d->state = (1<<MD_DISK_REMOVED);
1308 d->state |= (1<<MD_DISK_FAULTY);
1309 failed++;
1310 }
1311 }
1312 sb->nr_disks = nr_disks;
1313 sb->active_disks = active;
1314 sb->working_disks = working;
1315 sb->failed_disks = failed;
1316 sb->spare_disks = spare;
1317
1318 sb->this_disk = sb->disks[rdev->desc_nr];
1319 sb->sb_csum = calc_sb_csum(sb);
1320 }
1321
1322 /*
1323 * rdev_size_change for 0.90.0
1324 */
1325 static unsigned long long
1326 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1327 {
1328 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1329 return 0; /* component must fit device */
1330 if (rdev->mddev->bitmap_info.offset)
1331 return 0; /* can't move bitmap */
1332 rdev->sb_start = calc_dev_sboffset(rdev);
1333 if (!num_sectors || num_sectors > rdev->sb_start)
1334 num_sectors = rdev->sb_start;
1335 /* Limit to 4TB as metadata cannot record more than that.
1336 * 4TB == 2^32 KB, or 2*2^32 sectors.
1337 */
1338 if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1339 num_sectors = (2ULL << 32) - 2;
1340 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1341 rdev->sb_page);
1342 md_super_wait(rdev->mddev);
1343 return num_sectors;
1344 }
1345
1346 static int
1347 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1348 {
1349 /* non-zero offset changes not possible with v0.90 */
1350 return new_offset == 0;
1351 }
1352
1353 /*
1354 * version 1 superblock
1355 */
1356
1357 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1358 {
1359 __le32 disk_csum;
1360 u32 csum;
1361 unsigned long long newcsum;
1362 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1363 __le32 *isuper = (__le32*)sb;
1364
1365 disk_csum = sb->sb_csum;
1366 sb->sb_csum = 0;
1367 newcsum = 0;
1368 for (; size >= 4; size -= 4)
1369 newcsum += le32_to_cpu(*isuper++);
1370
1371 if (size == 2)
1372 newcsum += le16_to_cpu(*(__le16*) isuper);
1373
1374 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1375 sb->sb_csum = disk_csum;
1376 return cpu_to_le32(csum);
1377 }
1378
1379 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1380 int acknowledged);
1381 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1382 {
1383 struct mdp_superblock_1 *sb;
1384 int ret;
1385 sector_t sb_start;
1386 sector_t sectors;
1387 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1388 int bmask;
1389
1390 /*
1391 * Calculate the position of the superblock in 512byte sectors.
1392 * It is always aligned to a 4K boundary and
1393 * depeding on minor_version, it can be:
1394 * 0: At least 8K, but less than 12K, from end of device
1395 * 1: At start of device
1396 * 2: 4K from start of device.
1397 */
1398 switch(minor_version) {
1399 case 0:
1400 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1401 sb_start -= 8*2;
1402 sb_start &= ~(sector_t)(4*2-1);
1403 break;
1404 case 1:
1405 sb_start = 0;
1406 break;
1407 case 2:
1408 sb_start = 8;
1409 break;
1410 default:
1411 return -EINVAL;
1412 }
1413 rdev->sb_start = sb_start;
1414
1415 /* superblock is rarely larger than 1K, but it can be larger,
1416 * and it is safe to read 4k, so we do that
1417 */
1418 ret = read_disk_sb(rdev, 4096);
1419 if (ret) return ret;
1420
1421 sb = page_address(rdev->sb_page);
1422
1423 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1424 sb->major_version != cpu_to_le32(1) ||
1425 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1426 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1427 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1428 return -EINVAL;
1429
1430 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1431 printk("md: invalid superblock checksum on %s\n",
1432 bdevname(rdev->bdev,b));
1433 return -EINVAL;
1434 }
1435 if (le64_to_cpu(sb->data_size) < 10) {
1436 printk("md: data_size too small on %s\n",
1437 bdevname(rdev->bdev,b));
1438 return -EINVAL;
1439 }
1440 if (sb->pad0 ||
1441 sb->pad3[0] ||
1442 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1443 /* Some padding is non-zero, might be a new feature */
1444 return -EINVAL;
1445
1446 rdev->preferred_minor = 0xffff;
1447 rdev->data_offset = le64_to_cpu(sb->data_offset);
1448 rdev->new_data_offset = rdev->data_offset;
1449 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1450 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1451 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1452 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1453
1454 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1455 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1456 if (rdev->sb_size & bmask)
1457 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1458
1459 if (minor_version
1460 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1461 return -EINVAL;
1462 if (minor_version
1463 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1464 return -EINVAL;
1465
1466 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1467 rdev->desc_nr = -1;
1468 else
1469 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1470
1471 if (!rdev->bb_page) {
1472 rdev->bb_page = alloc_page(GFP_KERNEL);
1473 if (!rdev->bb_page)
1474 return -ENOMEM;
1475 }
1476 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1477 rdev->badblocks.count == 0) {
1478 /* need to load the bad block list.
1479 * Currently we limit it to one page.
1480 */
1481 s32 offset;
1482 sector_t bb_sector;
1483 u64 *bbp;
1484 int i;
1485 int sectors = le16_to_cpu(sb->bblog_size);
1486 if (sectors > (PAGE_SIZE / 512))
1487 return -EINVAL;
1488 offset = le32_to_cpu(sb->bblog_offset);
1489 if (offset == 0)
1490 return -EINVAL;
1491 bb_sector = (long long)offset;
1492 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1493 rdev->bb_page, READ, true))
1494 return -EIO;
1495 bbp = (u64 *)page_address(rdev->bb_page);
1496 rdev->badblocks.shift = sb->bblog_shift;
1497 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1498 u64 bb = le64_to_cpu(*bbp);
1499 int count = bb & (0x3ff);
1500 u64 sector = bb >> 10;
1501 sector <<= sb->bblog_shift;
1502 count <<= sb->bblog_shift;
1503 if (bb + 1 == 0)
1504 break;
1505 if (md_set_badblocks(&rdev->badblocks,
1506 sector, count, 1) == 0)
1507 return -EINVAL;
1508 }
1509 } else if (sb->bblog_offset != 0)
1510 rdev->badblocks.shift = 0;
1511
1512 if (!refdev) {
1513 ret = 1;
1514 } else {
1515 __u64 ev1, ev2;
1516 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1517
1518 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1519 sb->level != refsb->level ||
1520 sb->layout != refsb->layout ||
1521 sb->chunksize != refsb->chunksize) {
1522 printk(KERN_WARNING "md: %s has strangely different"
1523 " superblock to %s\n",
1524 bdevname(rdev->bdev,b),
1525 bdevname(refdev->bdev,b2));
1526 return -EINVAL;
1527 }
1528 ev1 = le64_to_cpu(sb->events);
1529 ev2 = le64_to_cpu(refsb->events);
1530
1531 if (ev1 > ev2)
1532 ret = 1;
1533 else
1534 ret = 0;
1535 }
1536 if (minor_version) {
1537 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1538 sectors -= rdev->data_offset;
1539 } else
1540 sectors = rdev->sb_start;
1541 if (sectors < le64_to_cpu(sb->data_size))
1542 return -EINVAL;
1543 rdev->sectors = le64_to_cpu(sb->data_size);
1544 return ret;
1545 }
1546
1547 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1548 {
1549 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1550 __u64 ev1 = le64_to_cpu(sb->events);
1551
1552 rdev->raid_disk = -1;
1553 clear_bit(Faulty, &rdev->flags);
1554 clear_bit(In_sync, &rdev->flags);
1555 clear_bit(Bitmap_sync, &rdev->flags);
1556 clear_bit(WriteMostly, &rdev->flags);
1557
1558 if (mddev->raid_disks == 0) {
1559 mddev->major_version = 1;
1560 mddev->patch_version = 0;
1561 mddev->external = 0;
1562 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1563 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1564 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1565 mddev->level = le32_to_cpu(sb->level);
1566 mddev->clevel[0] = 0;
1567 mddev->layout = le32_to_cpu(sb->layout);
1568 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1569 mddev->dev_sectors = le64_to_cpu(sb->size);
1570 mddev->events = ev1;
1571 mddev->bitmap_info.offset = 0;
1572 mddev->bitmap_info.space = 0;
1573 /* Default location for bitmap is 1K after superblock
1574 * using 3K - total of 4K
1575 */
1576 mddev->bitmap_info.default_offset = 1024 >> 9;
1577 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1578 mddev->reshape_backwards = 0;
1579
1580 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1581 memcpy(mddev->uuid, sb->set_uuid, 16);
1582
1583 mddev->max_disks = (4096-256)/2;
1584
1585 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1586 mddev->bitmap_info.file == NULL) {
1587 mddev->bitmap_info.offset =
1588 (__s32)le32_to_cpu(sb->bitmap_offset);
1589 /* Metadata doesn't record how much space is available.
1590 * For 1.0, we assume we can use up to the superblock
1591 * if before, else to 4K beyond superblock.
1592 * For others, assume no change is possible.
1593 */
1594 if (mddev->minor_version > 0)
1595 mddev->bitmap_info.space = 0;
1596 else if (mddev->bitmap_info.offset > 0)
1597 mddev->bitmap_info.space =
1598 8 - mddev->bitmap_info.offset;
1599 else
1600 mddev->bitmap_info.space =
1601 -mddev->bitmap_info.offset;
1602 }
1603
1604 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1605 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1606 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1607 mddev->new_level = le32_to_cpu(sb->new_level);
1608 mddev->new_layout = le32_to_cpu(sb->new_layout);
1609 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1610 if (mddev->delta_disks < 0 ||
1611 (mddev->delta_disks == 0 &&
1612 (le32_to_cpu(sb->feature_map)
1613 & MD_FEATURE_RESHAPE_BACKWARDS)))
1614 mddev->reshape_backwards = 1;
1615 } else {
1616 mddev->reshape_position = MaxSector;
1617 mddev->delta_disks = 0;
1618 mddev->new_level = mddev->level;
1619 mddev->new_layout = mddev->layout;
1620 mddev->new_chunk_sectors = mddev->chunk_sectors;
1621 }
1622
1623 } else if (mddev->pers == NULL) {
1624 /* Insist of good event counter while assembling, except for
1625 * spares (which don't need an event count) */
1626 ++ev1;
1627 if (rdev->desc_nr >= 0 &&
1628 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1629 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1630 if (ev1 < mddev->events)
1631 return -EINVAL;
1632 } else if (mddev->bitmap) {
1633 /* If adding to array with a bitmap, then we can accept an
1634 * older device, but not too old.
1635 */
1636 if (ev1 < mddev->bitmap->events_cleared)
1637 return 0;
1638 if (ev1 < mddev->events)
1639 set_bit(Bitmap_sync, &rdev->flags);
1640 } else {
1641 if (ev1 < mddev->events)
1642 /* just a hot-add of a new device, leave raid_disk at -1 */
1643 return 0;
1644 }
1645 if (mddev->level != LEVEL_MULTIPATH) {
1646 int role;
1647 if (rdev->desc_nr < 0 ||
1648 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1649 role = 0xffff;
1650 rdev->desc_nr = -1;
1651 } else
1652 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1653 switch(role) {
1654 case 0xffff: /* spare */
1655 break;
1656 case 0xfffe: /* faulty */
1657 set_bit(Faulty, &rdev->flags);
1658 break;
1659 default:
1660 rdev->saved_raid_disk = role;
1661 if ((le32_to_cpu(sb->feature_map) &
1662 MD_FEATURE_RECOVERY_OFFSET)) {
1663 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1664 if (!(le32_to_cpu(sb->feature_map) &
1665 MD_FEATURE_RECOVERY_BITMAP))
1666 rdev->saved_raid_disk = -1;
1667 } else
1668 set_bit(In_sync, &rdev->flags);
1669 rdev->raid_disk = role;
1670 break;
1671 }
1672 if (sb->devflags & WriteMostly1)
1673 set_bit(WriteMostly, &rdev->flags);
1674 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1675 set_bit(Replacement, &rdev->flags);
1676 } else /* MULTIPATH are always insync */
1677 set_bit(In_sync, &rdev->flags);
1678
1679 return 0;
1680 }
1681
1682 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1683 {
1684 struct mdp_superblock_1 *sb;
1685 struct md_rdev *rdev2;
1686 int max_dev, i;
1687 /* make rdev->sb match mddev and rdev data. */
1688
1689 sb = page_address(rdev->sb_page);
1690
1691 sb->feature_map = 0;
1692 sb->pad0 = 0;
1693 sb->recovery_offset = cpu_to_le64(0);
1694 memset(sb->pad3, 0, sizeof(sb->pad3));
1695
1696 sb->utime = cpu_to_le64((__u64)mddev->utime);
1697 sb->events = cpu_to_le64(mddev->events);
1698 if (mddev->in_sync)
1699 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1700 else
1701 sb->resync_offset = cpu_to_le64(0);
1702
1703 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1704
1705 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1706 sb->size = cpu_to_le64(mddev->dev_sectors);
1707 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1708 sb->level = cpu_to_le32(mddev->level);
1709 sb->layout = cpu_to_le32(mddev->layout);
1710
1711 if (test_bit(WriteMostly, &rdev->flags))
1712 sb->devflags |= WriteMostly1;
1713 else
1714 sb->devflags &= ~WriteMostly1;
1715 sb->data_offset = cpu_to_le64(rdev->data_offset);
1716 sb->data_size = cpu_to_le64(rdev->sectors);
1717
1718 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1719 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1720 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1721 }
1722
1723 if (rdev->raid_disk >= 0 &&
1724 !test_bit(In_sync, &rdev->flags)) {
1725 sb->feature_map |=
1726 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1727 sb->recovery_offset =
1728 cpu_to_le64(rdev->recovery_offset);
1729 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1730 sb->feature_map |=
1731 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1732 }
1733 if (test_bit(Replacement, &rdev->flags))
1734 sb->feature_map |=
1735 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1736
1737 if (mddev->reshape_position != MaxSector) {
1738 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1739 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1740 sb->new_layout = cpu_to_le32(mddev->new_layout);
1741 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1742 sb->new_level = cpu_to_le32(mddev->new_level);
1743 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1744 if (mddev->delta_disks == 0 &&
1745 mddev->reshape_backwards)
1746 sb->feature_map
1747 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1748 if (rdev->new_data_offset != rdev->data_offset) {
1749 sb->feature_map
1750 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1751 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1752 - rdev->data_offset));
1753 }
1754 }
1755
1756 if (rdev->badblocks.count == 0)
1757 /* Nothing to do for bad blocks*/ ;
1758 else if (sb->bblog_offset == 0)
1759 /* Cannot record bad blocks on this device */
1760 md_error(mddev, rdev);
1761 else {
1762 struct badblocks *bb = &rdev->badblocks;
1763 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1764 u64 *p = bb->page;
1765 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1766 if (bb->changed) {
1767 unsigned seq;
1768
1769 retry:
1770 seq = read_seqbegin(&bb->lock);
1771
1772 memset(bbp, 0xff, PAGE_SIZE);
1773
1774 for (i = 0 ; i < bb->count ; i++) {
1775 u64 internal_bb = p[i];
1776 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1777 | BB_LEN(internal_bb));
1778 bbp[i] = cpu_to_le64(store_bb);
1779 }
1780 bb->changed = 0;
1781 if (read_seqretry(&bb->lock, seq))
1782 goto retry;
1783
1784 bb->sector = (rdev->sb_start +
1785 (int)le32_to_cpu(sb->bblog_offset));
1786 bb->size = le16_to_cpu(sb->bblog_size);
1787 }
1788 }
1789
1790 max_dev = 0;
1791 rdev_for_each(rdev2, mddev)
1792 if (rdev2->desc_nr+1 > max_dev)
1793 max_dev = rdev2->desc_nr+1;
1794
1795 if (max_dev > le32_to_cpu(sb->max_dev)) {
1796 int bmask;
1797 sb->max_dev = cpu_to_le32(max_dev);
1798 rdev->sb_size = max_dev * 2 + 256;
1799 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1800 if (rdev->sb_size & bmask)
1801 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1802 } else
1803 max_dev = le32_to_cpu(sb->max_dev);
1804
1805 for (i=0; i<max_dev;i++)
1806 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1807
1808 rdev_for_each(rdev2, mddev) {
1809 i = rdev2->desc_nr;
1810 if (test_bit(Faulty, &rdev2->flags))
1811 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1812 else if (test_bit(In_sync, &rdev2->flags))
1813 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1814 else if (rdev2->raid_disk >= 0)
1815 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1816 else
1817 sb->dev_roles[i] = cpu_to_le16(0xffff);
1818 }
1819
1820 sb->sb_csum = calc_sb_1_csum(sb);
1821 }
1822
1823 static unsigned long long
1824 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1825 {
1826 struct mdp_superblock_1 *sb;
1827 sector_t max_sectors;
1828 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1829 return 0; /* component must fit device */
1830 if (rdev->data_offset != rdev->new_data_offset)
1831 return 0; /* too confusing */
1832 if (rdev->sb_start < rdev->data_offset) {
1833 /* minor versions 1 and 2; superblock before data */
1834 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1835 max_sectors -= rdev->data_offset;
1836 if (!num_sectors || num_sectors > max_sectors)
1837 num_sectors = max_sectors;
1838 } else if (rdev->mddev->bitmap_info.offset) {
1839 /* minor version 0 with bitmap we can't move */
1840 return 0;
1841 } else {
1842 /* minor version 0; superblock after data */
1843 sector_t sb_start;
1844 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1845 sb_start &= ~(sector_t)(4*2 - 1);
1846 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1847 if (!num_sectors || num_sectors > max_sectors)
1848 num_sectors = max_sectors;
1849 rdev->sb_start = sb_start;
1850 }
1851 sb = page_address(rdev->sb_page);
1852 sb->data_size = cpu_to_le64(num_sectors);
1853 sb->super_offset = rdev->sb_start;
1854 sb->sb_csum = calc_sb_1_csum(sb);
1855 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1856 rdev->sb_page);
1857 md_super_wait(rdev->mddev);
1858 return num_sectors;
1859
1860 }
1861
1862 static int
1863 super_1_allow_new_offset(struct md_rdev *rdev,
1864 unsigned long long new_offset)
1865 {
1866 /* All necessary checks on new >= old have been done */
1867 struct bitmap *bitmap;
1868 if (new_offset >= rdev->data_offset)
1869 return 1;
1870
1871 /* with 1.0 metadata, there is no metadata to tread on
1872 * so we can always move back */
1873 if (rdev->mddev->minor_version == 0)
1874 return 1;
1875
1876 /* otherwise we must be sure not to step on
1877 * any metadata, so stay:
1878 * 36K beyond start of superblock
1879 * beyond end of badblocks
1880 * beyond write-intent bitmap
1881 */
1882 if (rdev->sb_start + (32+4)*2 > new_offset)
1883 return 0;
1884 bitmap = rdev->mddev->bitmap;
1885 if (bitmap && !rdev->mddev->bitmap_info.file &&
1886 rdev->sb_start + rdev->mddev->bitmap_info.offset +
1887 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1888 return 0;
1889 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1890 return 0;
1891
1892 return 1;
1893 }
1894
1895 static struct super_type super_types[] = {
1896 [0] = {
1897 .name = "0.90.0",
1898 .owner = THIS_MODULE,
1899 .load_super = super_90_load,
1900 .validate_super = super_90_validate,
1901 .sync_super = super_90_sync,
1902 .rdev_size_change = super_90_rdev_size_change,
1903 .allow_new_offset = super_90_allow_new_offset,
1904 },
1905 [1] = {
1906 .name = "md-1",
1907 .owner = THIS_MODULE,
1908 .load_super = super_1_load,
1909 .validate_super = super_1_validate,
1910 .sync_super = super_1_sync,
1911 .rdev_size_change = super_1_rdev_size_change,
1912 .allow_new_offset = super_1_allow_new_offset,
1913 },
1914 };
1915
1916 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1917 {
1918 if (mddev->sync_super) {
1919 mddev->sync_super(mddev, rdev);
1920 return;
1921 }
1922
1923 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1924
1925 super_types[mddev->major_version].sync_super(mddev, rdev);
1926 }
1927
1928 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1929 {
1930 struct md_rdev *rdev, *rdev2;
1931
1932 rcu_read_lock();
1933 rdev_for_each_rcu(rdev, mddev1)
1934 rdev_for_each_rcu(rdev2, mddev2)
1935 if (rdev->bdev->bd_contains ==
1936 rdev2->bdev->bd_contains) {
1937 rcu_read_unlock();
1938 return 1;
1939 }
1940 rcu_read_unlock();
1941 return 0;
1942 }
1943
1944 static LIST_HEAD(pending_raid_disks);
1945
1946 /*
1947 * Try to register data integrity profile for an mddev
1948 *
1949 * This is called when an array is started and after a disk has been kicked
1950 * from the array. It only succeeds if all working and active component devices
1951 * are integrity capable with matching profiles.
1952 */
1953 int md_integrity_register(struct mddev *mddev)
1954 {
1955 struct md_rdev *rdev, *reference = NULL;
1956
1957 if (list_empty(&mddev->disks))
1958 return 0; /* nothing to do */
1959 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1960 return 0; /* shouldn't register, or already is */
1961 rdev_for_each(rdev, mddev) {
1962 /* skip spares and non-functional disks */
1963 if (test_bit(Faulty, &rdev->flags))
1964 continue;
1965 if (rdev->raid_disk < 0)
1966 continue;
1967 if (!reference) {
1968 /* Use the first rdev as the reference */
1969 reference = rdev;
1970 continue;
1971 }
1972 /* does this rdev's profile match the reference profile? */
1973 if (blk_integrity_compare(reference->bdev->bd_disk,
1974 rdev->bdev->bd_disk) < 0)
1975 return -EINVAL;
1976 }
1977 if (!reference || !bdev_get_integrity(reference->bdev))
1978 return 0;
1979 /*
1980 * All component devices are integrity capable and have matching
1981 * profiles, register the common profile for the md device.
1982 */
1983 if (blk_integrity_register(mddev->gendisk,
1984 bdev_get_integrity(reference->bdev)) != 0) {
1985 printk(KERN_ERR "md: failed to register integrity for %s\n",
1986 mdname(mddev));
1987 return -EINVAL;
1988 }
1989 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1990 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1991 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1992 mdname(mddev));
1993 return -EINVAL;
1994 }
1995 return 0;
1996 }
1997 EXPORT_SYMBOL(md_integrity_register);
1998
1999 /* Disable data integrity if non-capable/non-matching disk is being added */
2000 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2001 {
2002 struct blk_integrity *bi_rdev;
2003 struct blk_integrity *bi_mddev;
2004
2005 if (!mddev->gendisk)
2006 return;
2007
2008 bi_rdev = bdev_get_integrity(rdev->bdev);
2009 bi_mddev = blk_get_integrity(mddev->gendisk);
2010
2011 if (!bi_mddev) /* nothing to do */
2012 return;
2013 if (rdev->raid_disk < 0) /* skip spares */
2014 return;
2015 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2016 rdev->bdev->bd_disk) >= 0)
2017 return;
2018 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2019 blk_integrity_unregister(mddev->gendisk);
2020 }
2021 EXPORT_SYMBOL(md_integrity_add_rdev);
2022
2023 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2024 {
2025 char b[BDEVNAME_SIZE];
2026 struct kobject *ko;
2027 int err;
2028
2029 /* prevent duplicates */
2030 if (find_rdev(mddev, rdev->bdev->bd_dev))
2031 return -EEXIST;
2032
2033 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2034 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2035 rdev->sectors < mddev->dev_sectors)) {
2036 if (mddev->pers) {
2037 /* Cannot change size, so fail
2038 * If mddev->level <= 0, then we don't care
2039 * about aligning sizes (e.g. linear)
2040 */
2041 if (mddev->level > 0)
2042 return -ENOSPC;
2043 } else
2044 mddev->dev_sectors = rdev->sectors;
2045 }
2046
2047 /* Verify rdev->desc_nr is unique.
2048 * If it is -1, assign a free number, else
2049 * check number is not in use
2050 */
2051 rcu_read_lock();
2052 if (rdev->desc_nr < 0) {
2053 int choice = 0;
2054 if (mddev->pers)
2055 choice = mddev->raid_disks;
2056 while (md_find_rdev_nr_rcu(mddev, choice))
2057 choice++;
2058 rdev->desc_nr = choice;
2059 } else {
2060 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2061 rcu_read_unlock();
2062 return -EBUSY;
2063 }
2064 }
2065 rcu_read_unlock();
2066 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2067 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2068 mdname(mddev), mddev->max_disks);
2069 return -EBUSY;
2070 }
2071 bdevname(rdev->bdev,b);
2072 strreplace(b, '/', '!');
2073
2074 rdev->mddev = mddev;
2075 printk(KERN_INFO "md: bind<%s>\n", b);
2076
2077 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2078 goto fail;
2079
2080 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2081 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2082 /* failure here is OK */;
2083 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2084
2085 list_add_rcu(&rdev->same_set, &mddev->disks);
2086 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2087
2088 /* May as well allow recovery to be retried once */
2089 mddev->recovery_disabled++;
2090
2091 return 0;
2092
2093 fail:
2094 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2095 b, mdname(mddev));
2096 return err;
2097 }
2098
2099 static void md_delayed_delete(struct work_struct *ws)
2100 {
2101 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2102 kobject_del(&rdev->kobj);
2103 kobject_put(&rdev->kobj);
2104 }
2105
2106 static void unbind_rdev_from_array(struct md_rdev *rdev)
2107 {
2108 char b[BDEVNAME_SIZE];
2109
2110 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2111 list_del_rcu(&rdev->same_set);
2112 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2113 rdev->mddev = NULL;
2114 sysfs_remove_link(&rdev->kobj, "block");
2115 sysfs_put(rdev->sysfs_state);
2116 rdev->sysfs_state = NULL;
2117 rdev->badblocks.count = 0;
2118 /* We need to delay this, otherwise we can deadlock when
2119 * writing to 'remove' to "dev/state". We also need
2120 * to delay it due to rcu usage.
2121 */
2122 synchronize_rcu();
2123 INIT_WORK(&rdev->del_work, md_delayed_delete);
2124 kobject_get(&rdev->kobj);
2125 queue_work(md_misc_wq, &rdev->del_work);
2126 }
2127
2128 /*
2129 * prevent the device from being mounted, repartitioned or
2130 * otherwise reused by a RAID array (or any other kernel
2131 * subsystem), by bd_claiming the device.
2132 */
2133 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2134 {
2135 int err = 0;
2136 struct block_device *bdev;
2137 char b[BDEVNAME_SIZE];
2138
2139 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2140 shared ? (struct md_rdev *)lock_rdev : rdev);
2141 if (IS_ERR(bdev)) {
2142 printk(KERN_ERR "md: could not open %s.\n",
2143 __bdevname(dev, b));
2144 return PTR_ERR(bdev);
2145 }
2146 rdev->bdev = bdev;
2147 return err;
2148 }
2149
2150 static void unlock_rdev(struct md_rdev *rdev)
2151 {
2152 struct block_device *bdev = rdev->bdev;
2153 rdev->bdev = NULL;
2154 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2155 }
2156
2157 void md_autodetect_dev(dev_t dev);
2158
2159 static void export_rdev(struct md_rdev *rdev)
2160 {
2161 char b[BDEVNAME_SIZE];
2162
2163 printk(KERN_INFO "md: export_rdev(%s)\n",
2164 bdevname(rdev->bdev,b));
2165 md_rdev_clear(rdev);
2166 #ifndef MODULE
2167 if (test_bit(AutoDetected, &rdev->flags))
2168 md_autodetect_dev(rdev->bdev->bd_dev);
2169 #endif
2170 unlock_rdev(rdev);
2171 kobject_put(&rdev->kobj);
2172 }
2173
2174 void md_kick_rdev_from_array(struct md_rdev *rdev)
2175 {
2176 unbind_rdev_from_array(rdev);
2177 export_rdev(rdev);
2178 }
2179 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2180
2181 static void export_array(struct mddev *mddev)
2182 {
2183 struct md_rdev *rdev;
2184
2185 while (!list_empty(&mddev->disks)) {
2186 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2187 same_set);
2188 md_kick_rdev_from_array(rdev);
2189 }
2190 mddev->raid_disks = 0;
2191 mddev->major_version = 0;
2192 }
2193
2194 static void sync_sbs(struct mddev *mddev, int nospares)
2195 {
2196 /* Update each superblock (in-memory image), but
2197 * if we are allowed to, skip spares which already
2198 * have the right event counter, or have one earlier
2199 * (which would mean they aren't being marked as dirty
2200 * with the rest of the array)
2201 */
2202 struct md_rdev *rdev;
2203 rdev_for_each(rdev, mddev) {
2204 if (rdev->sb_events == mddev->events ||
2205 (nospares &&
2206 rdev->raid_disk < 0 &&
2207 rdev->sb_events+1 == mddev->events)) {
2208 /* Don't update this superblock */
2209 rdev->sb_loaded = 2;
2210 } else {
2211 sync_super(mddev, rdev);
2212 rdev->sb_loaded = 1;
2213 }
2214 }
2215 }
2216
2217 void md_update_sb(struct mddev *mddev, int force_change)
2218 {
2219 struct md_rdev *rdev;
2220 int sync_req;
2221 int nospares = 0;
2222 int any_badblocks_changed = 0;
2223
2224 if (mddev->ro) {
2225 if (force_change)
2226 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2227 return;
2228 }
2229 repeat:
2230 /* First make sure individual recovery_offsets are correct */
2231 rdev_for_each(rdev, mddev) {
2232 if (rdev->raid_disk >= 0 &&
2233 mddev->delta_disks >= 0 &&
2234 !test_bit(In_sync, &rdev->flags) &&
2235 mddev->curr_resync_completed > rdev->recovery_offset)
2236 rdev->recovery_offset = mddev->curr_resync_completed;
2237
2238 }
2239 if (!mddev->persistent) {
2240 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2241 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2242 if (!mddev->external) {
2243 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2244 rdev_for_each(rdev, mddev) {
2245 if (rdev->badblocks.changed) {
2246 rdev->badblocks.changed = 0;
2247 md_ack_all_badblocks(&rdev->badblocks);
2248 md_error(mddev, rdev);
2249 }
2250 clear_bit(Blocked, &rdev->flags);
2251 clear_bit(BlockedBadBlocks, &rdev->flags);
2252 wake_up(&rdev->blocked_wait);
2253 }
2254 }
2255 wake_up(&mddev->sb_wait);
2256 return;
2257 }
2258
2259 spin_lock(&mddev->lock);
2260
2261 mddev->utime = get_seconds();
2262
2263 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2264 force_change = 1;
2265 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2266 /* just a clean<-> dirty transition, possibly leave spares alone,
2267 * though if events isn't the right even/odd, we will have to do
2268 * spares after all
2269 */
2270 nospares = 1;
2271 if (force_change)
2272 nospares = 0;
2273 if (mddev->degraded)
2274 /* If the array is degraded, then skipping spares is both
2275 * dangerous and fairly pointless.
2276 * Dangerous because a device that was removed from the array
2277 * might have a event_count that still looks up-to-date,
2278 * so it can be re-added without a resync.
2279 * Pointless because if there are any spares to skip,
2280 * then a recovery will happen and soon that array won't
2281 * be degraded any more and the spare can go back to sleep then.
2282 */
2283 nospares = 0;
2284
2285 sync_req = mddev->in_sync;
2286
2287 /* If this is just a dirty<->clean transition, and the array is clean
2288 * and 'events' is odd, we can roll back to the previous clean state */
2289 if (nospares
2290 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2291 && mddev->can_decrease_events
2292 && mddev->events != 1) {
2293 mddev->events--;
2294 mddev->can_decrease_events = 0;
2295 } else {
2296 /* otherwise we have to go forward and ... */
2297 mddev->events ++;
2298 mddev->can_decrease_events = nospares;
2299 }
2300
2301 /*
2302 * This 64-bit counter should never wrap.
2303 * Either we are in around ~1 trillion A.C., assuming
2304 * 1 reboot per second, or we have a bug...
2305 */
2306 WARN_ON(mddev->events == 0);
2307
2308 rdev_for_each(rdev, mddev) {
2309 if (rdev->badblocks.changed)
2310 any_badblocks_changed++;
2311 if (test_bit(Faulty, &rdev->flags))
2312 set_bit(FaultRecorded, &rdev->flags);
2313 }
2314
2315 sync_sbs(mddev, nospares);
2316 spin_unlock(&mddev->lock);
2317
2318 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2319 mdname(mddev), mddev->in_sync);
2320
2321 bitmap_update_sb(mddev->bitmap);
2322 rdev_for_each(rdev, mddev) {
2323 char b[BDEVNAME_SIZE];
2324
2325 if (rdev->sb_loaded != 1)
2326 continue; /* no noise on spare devices */
2327
2328 if (!test_bit(Faulty, &rdev->flags)) {
2329 md_super_write(mddev,rdev,
2330 rdev->sb_start, rdev->sb_size,
2331 rdev->sb_page);
2332 pr_debug("md: (write) %s's sb offset: %llu\n",
2333 bdevname(rdev->bdev, b),
2334 (unsigned long long)rdev->sb_start);
2335 rdev->sb_events = mddev->events;
2336 if (rdev->badblocks.size) {
2337 md_super_write(mddev, rdev,
2338 rdev->badblocks.sector,
2339 rdev->badblocks.size << 9,
2340 rdev->bb_page);
2341 rdev->badblocks.size = 0;
2342 }
2343
2344 } else
2345 pr_debug("md: %s (skipping faulty)\n",
2346 bdevname(rdev->bdev, b));
2347
2348 if (mddev->level == LEVEL_MULTIPATH)
2349 /* only need to write one superblock... */
2350 break;
2351 }
2352 md_super_wait(mddev);
2353 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2354
2355 spin_lock(&mddev->lock);
2356 if (mddev->in_sync != sync_req ||
2357 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2358 /* have to write it out again */
2359 spin_unlock(&mddev->lock);
2360 goto repeat;
2361 }
2362 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2363 spin_unlock(&mddev->lock);
2364 wake_up(&mddev->sb_wait);
2365 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2366 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2367
2368 rdev_for_each(rdev, mddev) {
2369 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2370 clear_bit(Blocked, &rdev->flags);
2371
2372 if (any_badblocks_changed)
2373 md_ack_all_badblocks(&rdev->badblocks);
2374 clear_bit(BlockedBadBlocks, &rdev->flags);
2375 wake_up(&rdev->blocked_wait);
2376 }
2377 }
2378 EXPORT_SYMBOL(md_update_sb);
2379
2380 static int add_bound_rdev(struct md_rdev *rdev)
2381 {
2382 struct mddev *mddev = rdev->mddev;
2383 int err = 0;
2384
2385 if (!mddev->pers->hot_remove_disk) {
2386 /* If there is hot_add_disk but no hot_remove_disk
2387 * then added disks for geometry changes,
2388 * and should be added immediately.
2389 */
2390 super_types[mddev->major_version].
2391 validate_super(mddev, rdev);
2392 err = mddev->pers->hot_add_disk(mddev, rdev);
2393 if (err) {
2394 unbind_rdev_from_array(rdev);
2395 export_rdev(rdev);
2396 return err;
2397 }
2398 }
2399 sysfs_notify_dirent_safe(rdev->sysfs_state);
2400
2401 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2402 if (mddev->degraded)
2403 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2404 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2405 md_new_event(mddev);
2406 md_wakeup_thread(mddev->thread);
2407 return 0;
2408 }
2409
2410 /* words written to sysfs files may, or may not, be \n terminated.
2411 * We want to accept with case. For this we use cmd_match.
2412 */
2413 static int cmd_match(const char *cmd, const char *str)
2414 {
2415 /* See if cmd, written into a sysfs file, matches
2416 * str. They must either be the same, or cmd can
2417 * have a trailing newline
2418 */
2419 while (*cmd && *str && *cmd == *str) {
2420 cmd++;
2421 str++;
2422 }
2423 if (*cmd == '\n')
2424 cmd++;
2425 if (*str || *cmd)
2426 return 0;
2427 return 1;
2428 }
2429
2430 struct rdev_sysfs_entry {
2431 struct attribute attr;
2432 ssize_t (*show)(struct md_rdev *, char *);
2433 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2434 };
2435
2436 static ssize_t
2437 state_show(struct md_rdev *rdev, char *page)
2438 {
2439 char *sep = "";
2440 size_t len = 0;
2441 unsigned long flags = ACCESS_ONCE(rdev->flags);
2442
2443 if (test_bit(Faulty, &flags) ||
2444 rdev->badblocks.unacked_exist) {
2445 len+= sprintf(page+len, "%sfaulty",sep);
2446 sep = ",";
2447 }
2448 if (test_bit(In_sync, &flags)) {
2449 len += sprintf(page+len, "%sin_sync",sep);
2450 sep = ",";
2451 }
2452 if (test_bit(WriteMostly, &flags)) {
2453 len += sprintf(page+len, "%swrite_mostly",sep);
2454 sep = ",";
2455 }
2456 if (test_bit(Blocked, &flags) ||
2457 (rdev->badblocks.unacked_exist
2458 && !test_bit(Faulty, &flags))) {
2459 len += sprintf(page+len, "%sblocked", sep);
2460 sep = ",";
2461 }
2462 if (!test_bit(Faulty, &flags) &&
2463 !test_bit(In_sync, &flags)) {
2464 len += sprintf(page+len, "%sspare", sep);
2465 sep = ",";
2466 }
2467 if (test_bit(WriteErrorSeen, &flags)) {
2468 len += sprintf(page+len, "%swrite_error", sep);
2469 sep = ",";
2470 }
2471 if (test_bit(WantReplacement, &flags)) {
2472 len += sprintf(page+len, "%swant_replacement", sep);
2473 sep = ",";
2474 }
2475 if (test_bit(Replacement, &flags)) {
2476 len += sprintf(page+len, "%sreplacement", sep);
2477 sep = ",";
2478 }
2479
2480 return len+sprintf(page+len, "\n");
2481 }
2482
2483 static ssize_t
2484 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2485 {
2486 /* can write
2487 * faulty - simulates an error
2488 * remove - disconnects the device
2489 * writemostly - sets write_mostly
2490 * -writemostly - clears write_mostly
2491 * blocked - sets the Blocked flags
2492 * -blocked - clears the Blocked and possibly simulates an error
2493 * insync - sets Insync providing device isn't active
2494 * -insync - clear Insync for a device with a slot assigned,
2495 * so that it gets rebuilt based on bitmap
2496 * write_error - sets WriteErrorSeen
2497 * -write_error - clears WriteErrorSeen
2498 */
2499 int err = -EINVAL;
2500 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2501 md_error(rdev->mddev, rdev);
2502 if (test_bit(Faulty, &rdev->flags))
2503 err = 0;
2504 else
2505 err = -EBUSY;
2506 } else if (cmd_match(buf, "remove")) {
2507 if (rdev->raid_disk >= 0)
2508 err = -EBUSY;
2509 else {
2510 struct mddev *mddev = rdev->mddev;
2511 if (mddev_is_clustered(mddev))
2512 md_cluster_ops->remove_disk(mddev, rdev);
2513 md_kick_rdev_from_array(rdev);
2514 if (mddev_is_clustered(mddev))
2515 md_cluster_ops->metadata_update_start(mddev);
2516 if (mddev->pers)
2517 md_update_sb(mddev, 1);
2518 md_new_event(mddev);
2519 if (mddev_is_clustered(mddev))
2520 md_cluster_ops->metadata_update_finish(mddev);
2521 err = 0;
2522 }
2523 } else if (cmd_match(buf, "writemostly")) {
2524 set_bit(WriteMostly, &rdev->flags);
2525 err = 0;
2526 } else if (cmd_match(buf, "-writemostly")) {
2527 clear_bit(WriteMostly, &rdev->flags);
2528 err = 0;
2529 } else if (cmd_match(buf, "blocked")) {
2530 set_bit(Blocked, &rdev->flags);
2531 err = 0;
2532 } else if (cmd_match(buf, "-blocked")) {
2533 if (!test_bit(Faulty, &rdev->flags) &&
2534 rdev->badblocks.unacked_exist) {
2535 /* metadata handler doesn't understand badblocks,
2536 * so we need to fail the device
2537 */
2538 md_error(rdev->mddev, rdev);
2539 }
2540 clear_bit(Blocked, &rdev->flags);
2541 clear_bit(BlockedBadBlocks, &rdev->flags);
2542 wake_up(&rdev->blocked_wait);
2543 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2544 md_wakeup_thread(rdev->mddev->thread);
2545
2546 err = 0;
2547 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2548 set_bit(In_sync, &rdev->flags);
2549 err = 0;
2550 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
2551 if (rdev->mddev->pers == NULL) {
2552 clear_bit(In_sync, &rdev->flags);
2553 rdev->saved_raid_disk = rdev->raid_disk;
2554 rdev->raid_disk = -1;
2555 err = 0;
2556 }
2557 } else if (cmd_match(buf, "write_error")) {
2558 set_bit(WriteErrorSeen, &rdev->flags);
2559 err = 0;
2560 } else if (cmd_match(buf, "-write_error")) {
2561 clear_bit(WriteErrorSeen, &rdev->flags);
2562 err = 0;
2563 } else if (cmd_match(buf, "want_replacement")) {
2564 /* Any non-spare device that is not a replacement can
2565 * become want_replacement at any time, but we then need to
2566 * check if recovery is needed.
2567 */
2568 if (rdev->raid_disk >= 0 &&
2569 !test_bit(Replacement, &rdev->flags))
2570 set_bit(WantReplacement, &rdev->flags);
2571 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2572 md_wakeup_thread(rdev->mddev->thread);
2573 err = 0;
2574 } else if (cmd_match(buf, "-want_replacement")) {
2575 /* Clearing 'want_replacement' is always allowed.
2576 * Once replacements starts it is too late though.
2577 */
2578 err = 0;
2579 clear_bit(WantReplacement, &rdev->flags);
2580 } else if (cmd_match(buf, "replacement")) {
2581 /* Can only set a device as a replacement when array has not
2582 * yet been started. Once running, replacement is automatic
2583 * from spares, or by assigning 'slot'.
2584 */
2585 if (rdev->mddev->pers)
2586 err = -EBUSY;
2587 else {
2588 set_bit(Replacement, &rdev->flags);
2589 err = 0;
2590 }
2591 } else if (cmd_match(buf, "-replacement")) {
2592 /* Similarly, can only clear Replacement before start */
2593 if (rdev->mddev->pers)
2594 err = -EBUSY;
2595 else {
2596 clear_bit(Replacement, &rdev->flags);
2597 err = 0;
2598 }
2599 } else if (cmd_match(buf, "re-add")) {
2600 if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) {
2601 /* clear_bit is performed _after_ all the devices
2602 * have their local Faulty bit cleared. If any writes
2603 * happen in the meantime in the local node, they
2604 * will land in the local bitmap, which will be synced
2605 * by this node eventually
2606 */
2607 if (!mddev_is_clustered(rdev->mddev) ||
2608 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
2609 clear_bit(Faulty, &rdev->flags);
2610 err = add_bound_rdev(rdev);
2611 }
2612 } else
2613 err = -EBUSY;
2614 }
2615 if (!err)
2616 sysfs_notify_dirent_safe(rdev->sysfs_state);
2617 return err ? err : len;
2618 }
2619 static struct rdev_sysfs_entry rdev_state =
2620 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2621
2622 static ssize_t
2623 errors_show(struct md_rdev *rdev, char *page)
2624 {
2625 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2626 }
2627
2628 static ssize_t
2629 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2630 {
2631 unsigned int n;
2632 int rv;
2633
2634 rv = kstrtouint(buf, 10, &n);
2635 if (rv < 0)
2636 return rv;
2637 atomic_set(&rdev->corrected_errors, n);
2638 return len;
2639 }
2640 static struct rdev_sysfs_entry rdev_errors =
2641 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2642
2643 static ssize_t
2644 slot_show(struct md_rdev *rdev, char *page)
2645 {
2646 if (rdev->raid_disk < 0)
2647 return sprintf(page, "none\n");
2648 else
2649 return sprintf(page, "%d\n", rdev->raid_disk);
2650 }
2651
2652 static ssize_t
2653 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2654 {
2655 int slot;
2656 int err;
2657
2658 if (strncmp(buf, "none", 4)==0)
2659 slot = -1;
2660 else {
2661 err = kstrtouint(buf, 10, (unsigned int *)&slot);
2662 if (err < 0)
2663 return err;
2664 }
2665 if (rdev->mddev->pers && slot == -1) {
2666 /* Setting 'slot' on an active array requires also
2667 * updating the 'rd%d' link, and communicating
2668 * with the personality with ->hot_*_disk.
2669 * For now we only support removing
2670 * failed/spare devices. This normally happens automatically,
2671 * but not when the metadata is externally managed.
2672 */
2673 if (rdev->raid_disk == -1)
2674 return -EEXIST;
2675 /* personality does all needed checks */
2676 if (rdev->mddev->pers->hot_remove_disk == NULL)
2677 return -EINVAL;
2678 clear_bit(Blocked, &rdev->flags);
2679 remove_and_add_spares(rdev->mddev, rdev);
2680 if (rdev->raid_disk >= 0)
2681 return -EBUSY;
2682 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2683 md_wakeup_thread(rdev->mddev->thread);
2684 } else if (rdev->mddev->pers) {
2685 /* Activating a spare .. or possibly reactivating
2686 * if we ever get bitmaps working here.
2687 */
2688
2689 if (rdev->raid_disk != -1)
2690 return -EBUSY;
2691
2692 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2693 return -EBUSY;
2694
2695 if (rdev->mddev->pers->hot_add_disk == NULL)
2696 return -EINVAL;
2697
2698 if (slot >= rdev->mddev->raid_disks &&
2699 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2700 return -ENOSPC;
2701
2702 rdev->raid_disk = slot;
2703 if (test_bit(In_sync, &rdev->flags))
2704 rdev->saved_raid_disk = slot;
2705 else
2706 rdev->saved_raid_disk = -1;
2707 clear_bit(In_sync, &rdev->flags);
2708 clear_bit(Bitmap_sync, &rdev->flags);
2709 err = rdev->mddev->pers->
2710 hot_add_disk(rdev->mddev, rdev);
2711 if (err) {
2712 rdev->raid_disk = -1;
2713 return err;
2714 } else
2715 sysfs_notify_dirent_safe(rdev->sysfs_state);
2716 if (sysfs_link_rdev(rdev->mddev, rdev))
2717 /* failure here is OK */;
2718 /* don't wakeup anyone, leave that to userspace. */
2719 } else {
2720 if (slot >= rdev->mddev->raid_disks &&
2721 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2722 return -ENOSPC;
2723 rdev->raid_disk = slot;
2724 /* assume it is working */
2725 clear_bit(Faulty, &rdev->flags);
2726 clear_bit(WriteMostly, &rdev->flags);
2727 set_bit(In_sync, &rdev->flags);
2728 sysfs_notify_dirent_safe(rdev->sysfs_state);
2729 }
2730 return len;
2731 }
2732
2733 static struct rdev_sysfs_entry rdev_slot =
2734 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2735
2736 static ssize_t
2737 offset_show(struct md_rdev *rdev, char *page)
2738 {
2739 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2740 }
2741
2742 static ssize_t
2743 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2744 {
2745 unsigned long long offset;
2746 if (kstrtoull(buf, 10, &offset) < 0)
2747 return -EINVAL;
2748 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2749 return -EBUSY;
2750 if (rdev->sectors && rdev->mddev->external)
2751 /* Must set offset before size, so overlap checks
2752 * can be sane */
2753 return -EBUSY;
2754 rdev->data_offset = offset;
2755 rdev->new_data_offset = offset;
2756 return len;
2757 }
2758
2759 static struct rdev_sysfs_entry rdev_offset =
2760 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2761
2762 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2763 {
2764 return sprintf(page, "%llu\n",
2765 (unsigned long long)rdev->new_data_offset);
2766 }
2767
2768 static ssize_t new_offset_store(struct md_rdev *rdev,
2769 const char *buf, size_t len)
2770 {
2771 unsigned long long new_offset;
2772 struct mddev *mddev = rdev->mddev;
2773
2774 if (kstrtoull(buf, 10, &new_offset) < 0)
2775 return -EINVAL;
2776
2777 if (mddev->sync_thread ||
2778 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2779 return -EBUSY;
2780 if (new_offset == rdev->data_offset)
2781 /* reset is always permitted */
2782 ;
2783 else if (new_offset > rdev->data_offset) {
2784 /* must not push array size beyond rdev_sectors */
2785 if (new_offset - rdev->data_offset
2786 + mddev->dev_sectors > rdev->sectors)
2787 return -E2BIG;
2788 }
2789 /* Metadata worries about other space details. */
2790
2791 /* decreasing the offset is inconsistent with a backwards
2792 * reshape.
2793 */
2794 if (new_offset < rdev->data_offset &&
2795 mddev->reshape_backwards)
2796 return -EINVAL;
2797 /* Increasing offset is inconsistent with forwards
2798 * reshape. reshape_direction should be set to
2799 * 'backwards' first.
2800 */
2801 if (new_offset > rdev->data_offset &&
2802 !mddev->reshape_backwards)
2803 return -EINVAL;
2804
2805 if (mddev->pers && mddev->persistent &&
2806 !super_types[mddev->major_version]
2807 .allow_new_offset(rdev, new_offset))
2808 return -E2BIG;
2809 rdev->new_data_offset = new_offset;
2810 if (new_offset > rdev->data_offset)
2811 mddev->reshape_backwards = 1;
2812 else if (new_offset < rdev->data_offset)
2813 mddev->reshape_backwards = 0;
2814
2815 return len;
2816 }
2817 static struct rdev_sysfs_entry rdev_new_offset =
2818 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2819
2820 static ssize_t
2821 rdev_size_show(struct md_rdev *rdev, char *page)
2822 {
2823 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2824 }
2825
2826 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2827 {
2828 /* check if two start/length pairs overlap */
2829 if (s1+l1 <= s2)
2830 return 0;
2831 if (s2+l2 <= s1)
2832 return 0;
2833 return 1;
2834 }
2835
2836 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2837 {
2838 unsigned long long blocks;
2839 sector_t new;
2840
2841 if (kstrtoull(buf, 10, &blocks) < 0)
2842 return -EINVAL;
2843
2844 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2845 return -EINVAL; /* sector conversion overflow */
2846
2847 new = blocks * 2;
2848 if (new != blocks * 2)
2849 return -EINVAL; /* unsigned long long to sector_t overflow */
2850
2851 *sectors = new;
2852 return 0;
2853 }
2854
2855 static ssize_t
2856 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2857 {
2858 struct mddev *my_mddev = rdev->mddev;
2859 sector_t oldsectors = rdev->sectors;
2860 sector_t sectors;
2861
2862 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2863 return -EINVAL;
2864 if (rdev->data_offset != rdev->new_data_offset)
2865 return -EINVAL; /* too confusing */
2866 if (my_mddev->pers && rdev->raid_disk >= 0) {
2867 if (my_mddev->persistent) {
2868 sectors = super_types[my_mddev->major_version].
2869 rdev_size_change(rdev, sectors);
2870 if (!sectors)
2871 return -EBUSY;
2872 } else if (!sectors)
2873 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2874 rdev->data_offset;
2875 if (!my_mddev->pers->resize)
2876 /* Cannot change size for RAID0 or Linear etc */
2877 return -EINVAL;
2878 }
2879 if (sectors < my_mddev->dev_sectors)
2880 return -EINVAL; /* component must fit device */
2881
2882 rdev->sectors = sectors;
2883 if (sectors > oldsectors && my_mddev->external) {
2884 /* Need to check that all other rdevs with the same
2885 * ->bdev do not overlap. 'rcu' is sufficient to walk
2886 * the rdev lists safely.
2887 * This check does not provide a hard guarantee, it
2888 * just helps avoid dangerous mistakes.
2889 */
2890 struct mddev *mddev;
2891 int overlap = 0;
2892 struct list_head *tmp;
2893
2894 rcu_read_lock();
2895 for_each_mddev(mddev, tmp) {
2896 struct md_rdev *rdev2;
2897
2898 rdev_for_each(rdev2, mddev)
2899 if (rdev->bdev == rdev2->bdev &&
2900 rdev != rdev2 &&
2901 overlaps(rdev->data_offset, rdev->sectors,
2902 rdev2->data_offset,
2903 rdev2->sectors)) {
2904 overlap = 1;
2905 break;
2906 }
2907 if (overlap) {
2908 mddev_put(mddev);
2909 break;
2910 }
2911 }
2912 rcu_read_unlock();
2913 if (overlap) {
2914 /* Someone else could have slipped in a size
2915 * change here, but doing so is just silly.
2916 * We put oldsectors back because we *know* it is
2917 * safe, and trust userspace not to race with
2918 * itself
2919 */
2920 rdev->sectors = oldsectors;
2921 return -EBUSY;
2922 }
2923 }
2924 return len;
2925 }
2926
2927 static struct rdev_sysfs_entry rdev_size =
2928 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2929
2930 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2931 {
2932 unsigned long long recovery_start = rdev->recovery_offset;
2933
2934 if (test_bit(In_sync, &rdev->flags) ||
2935 recovery_start == MaxSector)
2936 return sprintf(page, "none\n");
2937
2938 return sprintf(page, "%llu\n", recovery_start);
2939 }
2940
2941 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2942 {
2943 unsigned long long recovery_start;
2944
2945 if (cmd_match(buf, "none"))
2946 recovery_start = MaxSector;
2947 else if (kstrtoull(buf, 10, &recovery_start))
2948 return -EINVAL;
2949
2950 if (rdev->mddev->pers &&
2951 rdev->raid_disk >= 0)
2952 return -EBUSY;
2953
2954 rdev->recovery_offset = recovery_start;
2955 if (recovery_start == MaxSector)
2956 set_bit(In_sync, &rdev->flags);
2957 else
2958 clear_bit(In_sync, &rdev->flags);
2959 return len;
2960 }
2961
2962 static struct rdev_sysfs_entry rdev_recovery_start =
2963 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2964
2965 static ssize_t
2966 badblocks_show(struct badblocks *bb, char *page, int unack);
2967 static ssize_t
2968 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2969
2970 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2971 {
2972 return badblocks_show(&rdev->badblocks, page, 0);
2973 }
2974 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2975 {
2976 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2977 /* Maybe that ack was all we needed */
2978 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2979 wake_up(&rdev->blocked_wait);
2980 return rv;
2981 }
2982 static struct rdev_sysfs_entry rdev_bad_blocks =
2983 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2984
2985 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2986 {
2987 return badblocks_show(&rdev->badblocks, page, 1);
2988 }
2989 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2990 {
2991 return badblocks_store(&rdev->badblocks, page, len, 1);
2992 }
2993 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2994 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2995
2996 static struct attribute *rdev_default_attrs[] = {
2997 &rdev_state.attr,
2998 &rdev_errors.attr,
2999 &rdev_slot.attr,
3000 &rdev_offset.attr,
3001 &rdev_new_offset.attr,
3002 &rdev_size.attr,
3003 &rdev_recovery_start.attr,
3004 &rdev_bad_blocks.attr,
3005 &rdev_unack_bad_blocks.attr,
3006 NULL,
3007 };
3008 static ssize_t
3009 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3010 {
3011 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3012 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3013
3014 if (!entry->show)
3015 return -EIO;
3016 if (!rdev->mddev)
3017 return -EBUSY;
3018 return entry->show(rdev, page);
3019 }
3020
3021 static ssize_t
3022 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3023 const char *page, size_t length)
3024 {
3025 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3026 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3027 ssize_t rv;
3028 struct mddev *mddev = rdev->mddev;
3029
3030 if (!entry->store)
3031 return -EIO;
3032 if (!capable(CAP_SYS_ADMIN))
3033 return -EACCES;
3034 rv = mddev ? mddev_lock(mddev): -EBUSY;
3035 if (!rv) {
3036 if (rdev->mddev == NULL)
3037 rv = -EBUSY;
3038 else
3039 rv = entry->store(rdev, page, length);
3040 mddev_unlock(mddev);
3041 }
3042 return rv;
3043 }
3044
3045 static void rdev_free(struct kobject *ko)
3046 {
3047 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3048 kfree(rdev);
3049 }
3050 static const struct sysfs_ops rdev_sysfs_ops = {
3051 .show = rdev_attr_show,
3052 .store = rdev_attr_store,
3053 };
3054 static struct kobj_type rdev_ktype = {
3055 .release = rdev_free,
3056 .sysfs_ops = &rdev_sysfs_ops,
3057 .default_attrs = rdev_default_attrs,
3058 };
3059
3060 int md_rdev_init(struct md_rdev *rdev)
3061 {
3062 rdev->desc_nr = -1;
3063 rdev->saved_raid_disk = -1;
3064 rdev->raid_disk = -1;
3065 rdev->flags = 0;
3066 rdev->data_offset = 0;
3067 rdev->new_data_offset = 0;
3068 rdev->sb_events = 0;
3069 rdev->last_read_error.tv_sec = 0;
3070 rdev->last_read_error.tv_nsec = 0;
3071 rdev->sb_loaded = 0;
3072 rdev->bb_page = NULL;
3073 atomic_set(&rdev->nr_pending, 0);
3074 atomic_set(&rdev->read_errors, 0);
3075 atomic_set(&rdev->corrected_errors, 0);
3076
3077 INIT_LIST_HEAD(&rdev->same_set);
3078 init_waitqueue_head(&rdev->blocked_wait);
3079
3080 /* Add space to store bad block list.
3081 * This reserves the space even on arrays where it cannot
3082 * be used - I wonder if that matters
3083 */
3084 rdev->badblocks.count = 0;
3085 rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3086 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3087 seqlock_init(&rdev->badblocks.lock);
3088 if (rdev->badblocks.page == NULL)
3089 return -ENOMEM;
3090
3091 return 0;
3092 }
3093 EXPORT_SYMBOL_GPL(md_rdev_init);
3094 /*
3095 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3096 *
3097 * mark the device faulty if:
3098 *
3099 * - the device is nonexistent (zero size)
3100 * - the device has no valid superblock
3101 *
3102 * a faulty rdev _never_ has rdev->sb set.
3103 */
3104 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3105 {
3106 char b[BDEVNAME_SIZE];
3107 int err;
3108 struct md_rdev *rdev;
3109 sector_t size;
3110
3111 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3112 if (!rdev) {
3113 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3114 return ERR_PTR(-ENOMEM);
3115 }
3116
3117 err = md_rdev_init(rdev);
3118 if (err)
3119 goto abort_free;
3120 err = alloc_disk_sb(rdev);
3121 if (err)
3122 goto abort_free;
3123
3124 err = lock_rdev(rdev, newdev, super_format == -2);
3125 if (err)
3126 goto abort_free;
3127
3128 kobject_init(&rdev->kobj, &rdev_ktype);
3129
3130 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3131 if (!size) {
3132 printk(KERN_WARNING
3133 "md: %s has zero or unknown size, marking faulty!\n",
3134 bdevname(rdev->bdev,b));
3135 err = -EINVAL;
3136 goto abort_free;
3137 }
3138
3139 if (super_format >= 0) {
3140 err = super_types[super_format].
3141 load_super(rdev, NULL, super_minor);
3142 if (err == -EINVAL) {
3143 printk(KERN_WARNING
3144 "md: %s does not have a valid v%d.%d "
3145 "superblock, not importing!\n",
3146 bdevname(rdev->bdev,b),
3147 super_format, super_minor);
3148 goto abort_free;
3149 }
3150 if (err < 0) {
3151 printk(KERN_WARNING
3152 "md: could not read %s's sb, not importing!\n",
3153 bdevname(rdev->bdev,b));
3154 goto abort_free;
3155 }
3156 }
3157
3158 return rdev;
3159
3160 abort_free:
3161 if (rdev->bdev)
3162 unlock_rdev(rdev);
3163 md_rdev_clear(rdev);
3164 kfree(rdev);
3165 return ERR_PTR(err);
3166 }
3167
3168 /*
3169 * Check a full RAID array for plausibility
3170 */
3171
3172 static void analyze_sbs(struct mddev *mddev)
3173 {
3174 int i;
3175 struct md_rdev *rdev, *freshest, *tmp;
3176 char b[BDEVNAME_SIZE];
3177
3178 freshest = NULL;
3179 rdev_for_each_safe(rdev, tmp, mddev)
3180 switch (super_types[mddev->major_version].
3181 load_super(rdev, freshest, mddev->minor_version)) {
3182 case 1:
3183 freshest = rdev;
3184 break;
3185 case 0:
3186 break;
3187 default:
3188 printk( KERN_ERR \
3189 "md: fatal superblock inconsistency in %s"
3190 " -- removing from array\n",
3191 bdevname(rdev->bdev,b));
3192 md_kick_rdev_from_array(rdev);
3193 }
3194
3195 super_types[mddev->major_version].
3196 validate_super(mddev, freshest);
3197
3198 i = 0;
3199 rdev_for_each_safe(rdev, tmp, mddev) {
3200 if (mddev->max_disks &&
3201 (rdev->desc_nr >= mddev->max_disks ||
3202 i > mddev->max_disks)) {
3203 printk(KERN_WARNING
3204 "md: %s: %s: only %d devices permitted\n",
3205 mdname(mddev), bdevname(rdev->bdev, b),
3206 mddev->max_disks);
3207 md_kick_rdev_from_array(rdev);
3208 continue;
3209 }
3210 if (rdev != freshest) {
3211 if (super_types[mddev->major_version].
3212 validate_super(mddev, rdev)) {
3213 printk(KERN_WARNING "md: kicking non-fresh %s"
3214 " from array!\n",
3215 bdevname(rdev->bdev,b));
3216 md_kick_rdev_from_array(rdev);
3217 continue;
3218 }
3219 /* No device should have a Candidate flag
3220 * when reading devices
3221 */
3222 if (test_bit(Candidate, &rdev->flags)) {
3223 pr_info("md: kicking Cluster Candidate %s from array!\n",
3224 bdevname(rdev->bdev, b));
3225 md_kick_rdev_from_array(rdev);
3226 }
3227 }
3228 if (mddev->level == LEVEL_MULTIPATH) {
3229 rdev->desc_nr = i++;
3230 rdev->raid_disk = rdev->desc_nr;
3231 set_bit(In_sync, &rdev->flags);
3232 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3233 rdev->raid_disk = -1;
3234 clear_bit(In_sync, &rdev->flags);
3235 }
3236 }
3237 }
3238
3239 /* Read a fixed-point number.
3240 * Numbers in sysfs attributes should be in "standard" units where
3241 * possible, so time should be in seconds.
3242 * However we internally use a a much smaller unit such as
3243 * milliseconds or jiffies.
3244 * This function takes a decimal number with a possible fractional
3245 * component, and produces an integer which is the result of
3246 * multiplying that number by 10^'scale'.
3247 * all without any floating-point arithmetic.
3248 */
3249 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3250 {
3251 unsigned long result = 0;
3252 long decimals = -1;
3253 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3254 if (*cp == '.')
3255 decimals = 0;
3256 else if (decimals < scale) {
3257 unsigned int value;
3258 value = *cp - '0';
3259 result = result * 10 + value;
3260 if (decimals >= 0)
3261 decimals++;
3262 }
3263 cp++;
3264 }
3265 if (*cp == '\n')
3266 cp++;
3267 if (*cp)
3268 return -EINVAL;
3269 if (decimals < 0)
3270 decimals = 0;
3271 while (decimals < scale) {
3272 result *= 10;
3273 decimals ++;
3274 }
3275 *res = result;
3276 return 0;
3277 }
3278
3279 static void md_safemode_timeout(unsigned long data);
3280
3281 static ssize_t
3282 safe_delay_show(struct mddev *mddev, char *page)
3283 {
3284 int msec = (mddev->safemode_delay*1000)/HZ;
3285 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3286 }
3287 static ssize_t
3288 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3289 {
3290 unsigned long msec;
3291
3292 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3293 return -EINVAL;
3294 if (msec == 0)
3295 mddev->safemode_delay = 0;
3296 else {
3297 unsigned long old_delay = mddev->safemode_delay;
3298 unsigned long new_delay = (msec*HZ)/1000;
3299
3300 if (new_delay == 0)
3301 new_delay = 1;
3302 mddev->safemode_delay = new_delay;
3303 if (new_delay < old_delay || old_delay == 0)
3304 mod_timer(&mddev->safemode_timer, jiffies+1);
3305 }
3306 return len;
3307 }
3308 static struct md_sysfs_entry md_safe_delay =
3309 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3310
3311 static ssize_t
3312 level_show(struct mddev *mddev, char *page)
3313 {
3314 struct md_personality *p;
3315 int ret;
3316 spin_lock(&mddev->lock);
3317 p = mddev->pers;
3318 if (p)
3319 ret = sprintf(page, "%s\n", p->name);
3320 else if (mddev->clevel[0])
3321 ret = sprintf(page, "%s\n", mddev->clevel);
3322 else if (mddev->level != LEVEL_NONE)
3323 ret = sprintf(page, "%d\n", mddev->level);
3324 else
3325 ret = 0;
3326 spin_unlock(&mddev->lock);
3327 return ret;
3328 }
3329
3330 static ssize_t
3331 level_store(struct mddev *mddev, const char *buf, size_t len)
3332 {
3333 char clevel[16];
3334 ssize_t rv;
3335 size_t slen = len;
3336 struct md_personality *pers, *oldpers;
3337 long level;
3338 void *priv, *oldpriv;
3339 struct md_rdev *rdev;
3340
3341 if (slen == 0 || slen >= sizeof(clevel))
3342 return -EINVAL;
3343
3344 rv = mddev_lock(mddev);
3345 if (rv)
3346 return rv;
3347
3348 if (mddev->pers == NULL) {
3349 strncpy(mddev->clevel, buf, slen);
3350 if (mddev->clevel[slen-1] == '\n')
3351 slen--;
3352 mddev->clevel[slen] = 0;
3353 mddev->level = LEVEL_NONE;
3354 rv = len;
3355 goto out_unlock;
3356 }
3357 rv = -EROFS;
3358 if (mddev->ro)
3359 goto out_unlock;
3360
3361 /* request to change the personality. Need to ensure:
3362 * - array is not engaged in resync/recovery/reshape
3363 * - old personality can be suspended
3364 * - new personality will access other array.
3365 */
3366
3367 rv = -EBUSY;
3368 if (mddev->sync_thread ||
3369 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3370 mddev->reshape_position != MaxSector ||
3371 mddev->sysfs_active)
3372 goto out_unlock;
3373
3374 rv = -EINVAL;
3375 if (!mddev->pers->quiesce) {
3376 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3377 mdname(mddev), mddev->pers->name);
3378 goto out_unlock;
3379 }
3380
3381 /* Now find the new personality */
3382 strncpy(clevel, buf, slen);
3383 if (clevel[slen-1] == '\n')
3384 slen--;
3385 clevel[slen] = 0;
3386 if (kstrtol(clevel, 10, &level))
3387 level = LEVEL_NONE;
3388
3389 if (request_module("md-%s", clevel) != 0)
3390 request_module("md-level-%s", clevel);
3391 spin_lock(&pers_lock);
3392 pers = find_pers(level, clevel);
3393 if (!pers || !try_module_get(pers->owner)) {
3394 spin_unlock(&pers_lock);
3395 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3396 rv = -EINVAL;
3397 goto out_unlock;
3398 }
3399 spin_unlock(&pers_lock);
3400
3401 if (pers == mddev->pers) {
3402 /* Nothing to do! */
3403 module_put(pers->owner);
3404 rv = len;
3405 goto out_unlock;
3406 }
3407 if (!pers->takeover) {
3408 module_put(pers->owner);
3409 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3410 mdname(mddev), clevel);
3411 rv = -EINVAL;
3412 goto out_unlock;
3413 }
3414
3415 rdev_for_each(rdev, mddev)
3416 rdev->new_raid_disk = rdev->raid_disk;
3417
3418 /* ->takeover must set new_* and/or delta_disks
3419 * if it succeeds, and may set them when it fails.
3420 */
3421 priv = pers->takeover(mddev);
3422 if (IS_ERR(priv)) {
3423 mddev->new_level = mddev->level;
3424 mddev->new_layout = mddev->layout;
3425 mddev->new_chunk_sectors = mddev->chunk_sectors;
3426 mddev->raid_disks -= mddev->delta_disks;
3427 mddev->delta_disks = 0;
3428 mddev->reshape_backwards = 0;
3429 module_put(pers->owner);
3430 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3431 mdname(mddev), clevel);
3432 rv = PTR_ERR(priv);
3433 goto out_unlock;
3434 }
3435
3436 /* Looks like we have a winner */
3437 mddev_suspend(mddev);
3438 mddev_detach(mddev);
3439
3440 spin_lock(&mddev->lock);
3441 oldpers = mddev->pers;
3442 oldpriv = mddev->private;
3443 mddev->pers = pers;
3444 mddev->private = priv;
3445 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3446 mddev->level = mddev->new_level;
3447 mddev->layout = mddev->new_layout;
3448 mddev->chunk_sectors = mddev->new_chunk_sectors;
3449 mddev->delta_disks = 0;
3450 mddev->reshape_backwards = 0;
3451 mddev->degraded = 0;
3452 spin_unlock(&mddev->lock);
3453
3454 if (oldpers->sync_request == NULL &&
3455 mddev->external) {
3456 /* We are converting from a no-redundancy array
3457 * to a redundancy array and metadata is managed
3458 * externally so we need to be sure that writes
3459 * won't block due to a need to transition
3460 * clean->dirty
3461 * until external management is started.
3462 */
3463 mddev->in_sync = 0;
3464 mddev->safemode_delay = 0;
3465 mddev->safemode = 0;
3466 }
3467
3468 oldpers->free(mddev, oldpriv);
3469
3470 if (oldpers->sync_request == NULL &&
3471 pers->sync_request != NULL) {
3472 /* need to add the md_redundancy_group */
3473 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3474 printk(KERN_WARNING
3475 "md: cannot register extra attributes for %s\n",
3476 mdname(mddev));
3477 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3478 }
3479 if (oldpers->sync_request != NULL &&
3480 pers->sync_request == NULL) {
3481 /* need to remove the md_redundancy_group */
3482 if (mddev->to_remove == NULL)
3483 mddev->to_remove = &md_redundancy_group;
3484 }
3485
3486 rdev_for_each(rdev, mddev) {
3487 if (rdev->raid_disk < 0)
3488 continue;
3489 if (rdev->new_raid_disk >= mddev->raid_disks)
3490 rdev->new_raid_disk = -1;
3491 if (rdev->new_raid_disk == rdev->raid_disk)
3492 continue;
3493 sysfs_unlink_rdev(mddev, rdev);
3494 }
3495 rdev_for_each(rdev, mddev) {
3496 if (rdev->raid_disk < 0)
3497 continue;
3498 if (rdev->new_raid_disk == rdev->raid_disk)
3499 continue;
3500 rdev->raid_disk = rdev->new_raid_disk;
3501 if (rdev->raid_disk < 0)
3502 clear_bit(In_sync, &rdev->flags);
3503 else {
3504 if (sysfs_link_rdev(mddev, rdev))
3505 printk(KERN_WARNING "md: cannot register rd%d"
3506 " for %s after level change\n",
3507 rdev->raid_disk, mdname(mddev));
3508 }
3509 }
3510
3511 if (pers->sync_request == NULL) {
3512 /* this is now an array without redundancy, so
3513 * it must always be in_sync
3514 */
3515 mddev->in_sync = 1;
3516 del_timer_sync(&mddev->safemode_timer);
3517 }
3518 blk_set_stacking_limits(&mddev->queue->limits);
3519 pers->run(mddev);
3520 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3521 mddev_resume(mddev);
3522 if (!mddev->thread)
3523 md_update_sb(mddev, 1);
3524 sysfs_notify(&mddev->kobj, NULL, "level");
3525 md_new_event(mddev);
3526 rv = len;
3527 out_unlock:
3528 mddev_unlock(mddev);
3529 return rv;
3530 }
3531
3532 static struct md_sysfs_entry md_level =
3533 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3534
3535 static ssize_t
3536 layout_show(struct mddev *mddev, char *page)
3537 {
3538 /* just a number, not meaningful for all levels */
3539 if (mddev->reshape_position != MaxSector &&
3540 mddev->layout != mddev->new_layout)
3541 return sprintf(page, "%d (%d)\n",
3542 mddev->new_layout, mddev->layout);
3543 return sprintf(page, "%d\n", mddev->layout);
3544 }
3545
3546 static ssize_t
3547 layout_store(struct mddev *mddev, const char *buf, size_t len)
3548 {
3549 unsigned int n;
3550 int err;
3551
3552 err = kstrtouint(buf, 10, &n);
3553 if (err < 0)
3554 return err;
3555 err = mddev_lock(mddev);
3556 if (err)
3557 return err;
3558
3559 if (mddev->pers) {
3560 if (mddev->pers->check_reshape == NULL)
3561 err = -EBUSY;
3562 else if (mddev->ro)
3563 err = -EROFS;
3564 else {
3565 mddev->new_layout = n;
3566 err = mddev->pers->check_reshape(mddev);
3567 if (err)
3568 mddev->new_layout = mddev->layout;
3569 }
3570 } else {
3571 mddev->new_layout = n;
3572 if (mddev->reshape_position == MaxSector)
3573 mddev->layout = n;
3574 }
3575 mddev_unlock(mddev);
3576 return err ?: len;
3577 }
3578 static struct md_sysfs_entry md_layout =
3579 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3580
3581 static ssize_t
3582 raid_disks_show(struct mddev *mddev, char *page)
3583 {
3584 if (mddev->raid_disks == 0)
3585 return 0;
3586 if (mddev->reshape_position != MaxSector &&
3587 mddev->delta_disks != 0)
3588 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3589 mddev->raid_disks - mddev->delta_disks);
3590 return sprintf(page, "%d\n", mddev->raid_disks);
3591 }
3592
3593 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3594
3595 static ssize_t
3596 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3597 {
3598 unsigned int n;
3599 int err;
3600
3601 err = kstrtouint(buf, 10, &n);
3602 if (err < 0)
3603 return err;
3604
3605 err = mddev_lock(mddev);
3606 if (err)
3607 return err;
3608 if (mddev->pers)
3609 err = update_raid_disks(mddev, n);
3610 else if (mddev->reshape_position != MaxSector) {
3611 struct md_rdev *rdev;
3612 int olddisks = mddev->raid_disks - mddev->delta_disks;
3613
3614 err = -EINVAL;
3615 rdev_for_each(rdev, mddev) {
3616 if (olddisks < n &&
3617 rdev->data_offset < rdev->new_data_offset)
3618 goto out_unlock;
3619 if (olddisks > n &&
3620 rdev->data_offset > rdev->new_data_offset)
3621 goto out_unlock;
3622 }
3623 err = 0;
3624 mddev->delta_disks = n - olddisks;
3625 mddev->raid_disks = n;
3626 mddev->reshape_backwards = (mddev->delta_disks < 0);
3627 } else
3628 mddev->raid_disks = n;
3629 out_unlock:
3630 mddev_unlock(mddev);
3631 return err ? err : len;
3632 }
3633 static struct md_sysfs_entry md_raid_disks =
3634 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3635
3636 static ssize_t
3637 chunk_size_show(struct mddev *mddev, char *page)
3638 {
3639 if (mddev->reshape_position != MaxSector &&
3640 mddev->chunk_sectors != mddev->new_chunk_sectors)
3641 return sprintf(page, "%d (%d)\n",
3642 mddev->new_chunk_sectors << 9,
3643 mddev->chunk_sectors << 9);
3644 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3645 }
3646
3647 static ssize_t
3648 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3649 {
3650 unsigned long n;
3651 int err;
3652
3653 err = kstrtoul(buf, 10, &n);
3654 if (err < 0)
3655 return err;
3656
3657 err = mddev_lock(mddev);
3658 if (err)
3659 return err;
3660 if (mddev->pers) {
3661 if (mddev->pers->check_reshape == NULL)
3662 err = -EBUSY;
3663 else if (mddev->ro)
3664 err = -EROFS;
3665 else {
3666 mddev->new_chunk_sectors = n >> 9;
3667 err = mddev->pers->check_reshape(mddev);
3668 if (err)
3669 mddev->new_chunk_sectors = mddev->chunk_sectors;
3670 }
3671 } else {
3672 mddev->new_chunk_sectors = n >> 9;
3673 if (mddev->reshape_position == MaxSector)
3674 mddev->chunk_sectors = n >> 9;
3675 }
3676 mddev_unlock(mddev);
3677 return err ?: len;
3678 }
3679 static struct md_sysfs_entry md_chunk_size =
3680 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3681
3682 static ssize_t
3683 resync_start_show(struct mddev *mddev, char *page)
3684 {
3685 if (mddev->recovery_cp == MaxSector)
3686 return sprintf(page, "none\n");
3687 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3688 }
3689
3690 static ssize_t
3691 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3692 {
3693 unsigned long long n;
3694 int err;
3695
3696 if (cmd_match(buf, "none"))
3697 n = MaxSector;
3698 else {
3699 err = kstrtoull(buf, 10, &n);
3700 if (err < 0)
3701 return err;
3702 if (n != (sector_t)n)
3703 return -EINVAL;
3704 }
3705
3706 err = mddev_lock(mddev);
3707 if (err)
3708 return err;
3709 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3710 err = -EBUSY;
3711
3712 if (!err) {
3713 mddev->recovery_cp = n;
3714 if (mddev->pers)
3715 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3716 }
3717 mddev_unlock(mddev);
3718 return err ?: len;
3719 }
3720 static struct md_sysfs_entry md_resync_start =
3721 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
3722 resync_start_show, resync_start_store);
3723
3724 /*
3725 * The array state can be:
3726 *
3727 * clear
3728 * No devices, no size, no level
3729 * Equivalent to STOP_ARRAY ioctl
3730 * inactive
3731 * May have some settings, but array is not active
3732 * all IO results in error
3733 * When written, doesn't tear down array, but just stops it
3734 * suspended (not supported yet)
3735 * All IO requests will block. The array can be reconfigured.
3736 * Writing this, if accepted, will block until array is quiescent
3737 * readonly
3738 * no resync can happen. no superblocks get written.
3739 * write requests fail
3740 * read-auto
3741 * like readonly, but behaves like 'clean' on a write request.
3742 *
3743 * clean - no pending writes, but otherwise active.
3744 * When written to inactive array, starts without resync
3745 * If a write request arrives then
3746 * if metadata is known, mark 'dirty' and switch to 'active'.
3747 * if not known, block and switch to write-pending
3748 * If written to an active array that has pending writes, then fails.
3749 * active
3750 * fully active: IO and resync can be happening.
3751 * When written to inactive array, starts with resync
3752 *
3753 * write-pending
3754 * clean, but writes are blocked waiting for 'active' to be written.
3755 *
3756 * active-idle
3757 * like active, but no writes have been seen for a while (100msec).
3758 *
3759 */
3760 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3761 write_pending, active_idle, bad_word};
3762 static char *array_states[] = {
3763 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3764 "write-pending", "active-idle", NULL };
3765
3766 static int match_word(const char *word, char **list)
3767 {
3768 int n;
3769 for (n=0; list[n]; n++)
3770 if (cmd_match(word, list[n]))
3771 break;
3772 return n;
3773 }
3774
3775 static ssize_t
3776 array_state_show(struct mddev *mddev, char *page)
3777 {
3778 enum array_state st = inactive;
3779
3780 if (mddev->pers)
3781 switch(mddev->ro) {
3782 case 1:
3783 st = readonly;
3784 break;
3785 case 2:
3786 st = read_auto;
3787 break;
3788 case 0:
3789 if (mddev->in_sync)
3790 st = clean;
3791 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3792 st = write_pending;
3793 else if (mddev->safemode)
3794 st = active_idle;
3795 else
3796 st = active;
3797 }
3798 else {
3799 if (list_empty(&mddev->disks) &&
3800 mddev->raid_disks == 0 &&
3801 mddev->dev_sectors == 0)
3802 st = clear;
3803 else
3804 st = inactive;
3805 }
3806 return sprintf(page, "%s\n", array_states[st]);
3807 }
3808
3809 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3810 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3811 static int do_md_run(struct mddev *mddev);
3812 static int restart_array(struct mddev *mddev);
3813
3814 static ssize_t
3815 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3816 {
3817 int err;
3818 enum array_state st = match_word(buf, array_states);
3819
3820 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
3821 /* don't take reconfig_mutex when toggling between
3822 * clean and active
3823 */
3824 spin_lock(&mddev->lock);
3825 if (st == active) {
3826 restart_array(mddev);
3827 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3828 wake_up(&mddev->sb_wait);
3829 err = 0;
3830 } else /* st == clean */ {
3831 restart_array(mddev);
3832 if (atomic_read(&mddev->writes_pending) == 0) {
3833 if (mddev->in_sync == 0) {
3834 mddev->in_sync = 1;
3835 if (mddev->safemode == 1)
3836 mddev->safemode = 0;
3837 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3838 }
3839 err = 0;
3840 } else
3841 err = -EBUSY;
3842 }
3843 spin_unlock(&mddev->lock);
3844 return err ?: len;
3845 }
3846 err = mddev_lock(mddev);
3847 if (err)
3848 return err;
3849 err = -EINVAL;
3850 switch(st) {
3851 case bad_word:
3852 break;
3853 case clear:
3854 /* stopping an active array */
3855 err = do_md_stop(mddev, 0, NULL);
3856 break;
3857 case inactive:
3858 /* stopping an active array */
3859 if (mddev->pers)
3860 err = do_md_stop(mddev, 2, NULL);
3861 else
3862 err = 0; /* already inactive */
3863 break;
3864 case suspended:
3865 break; /* not supported yet */
3866 case readonly:
3867 if (mddev->pers)
3868 err = md_set_readonly(mddev, NULL);
3869 else {
3870 mddev->ro = 1;
3871 set_disk_ro(mddev->gendisk, 1);
3872 err = do_md_run(mddev);
3873 }
3874 break;
3875 case read_auto:
3876 if (mddev->pers) {
3877 if (mddev->ro == 0)
3878 err = md_set_readonly(mddev, NULL);
3879 else if (mddev->ro == 1)
3880 err = restart_array(mddev);
3881 if (err == 0) {
3882 mddev->ro = 2;
3883 set_disk_ro(mddev->gendisk, 0);
3884 }
3885 } else {
3886 mddev->ro = 2;
3887 err = do_md_run(mddev);
3888 }
3889 break;
3890 case clean:
3891 if (mddev->pers) {
3892 restart_array(mddev);
3893 spin_lock(&mddev->lock);
3894 if (atomic_read(&mddev->writes_pending) == 0) {
3895 if (mddev->in_sync == 0) {
3896 mddev->in_sync = 1;
3897 if (mddev->safemode == 1)
3898 mddev->safemode = 0;
3899 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3900 }
3901 err = 0;
3902 } else
3903 err = -EBUSY;
3904 spin_unlock(&mddev->lock);
3905 } else
3906 err = -EINVAL;
3907 break;
3908 case active:
3909 if (mddev->pers) {
3910 restart_array(mddev);
3911 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3912 wake_up(&mddev->sb_wait);
3913 err = 0;
3914 } else {
3915 mddev->ro = 0;
3916 set_disk_ro(mddev->gendisk, 0);
3917 err = do_md_run(mddev);
3918 }
3919 break;
3920 case write_pending:
3921 case active_idle:
3922 /* these cannot be set */
3923 break;
3924 }
3925
3926 if (!err) {
3927 if (mddev->hold_active == UNTIL_IOCTL)
3928 mddev->hold_active = 0;
3929 sysfs_notify_dirent_safe(mddev->sysfs_state);
3930 }
3931 mddev_unlock(mddev);
3932 return err ?: len;
3933 }
3934 static struct md_sysfs_entry md_array_state =
3935 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3936
3937 static ssize_t
3938 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3939 return sprintf(page, "%d\n",
3940 atomic_read(&mddev->max_corr_read_errors));
3941 }
3942
3943 static ssize_t
3944 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3945 {
3946 unsigned int n;
3947 int rv;
3948
3949 rv = kstrtouint(buf, 10, &n);
3950 if (rv < 0)
3951 return rv;
3952 atomic_set(&mddev->max_corr_read_errors, n);
3953 return len;
3954 }
3955
3956 static struct md_sysfs_entry max_corr_read_errors =
3957 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3958 max_corrected_read_errors_store);
3959
3960 static ssize_t
3961 null_show(struct mddev *mddev, char *page)
3962 {
3963 return -EINVAL;
3964 }
3965
3966 static ssize_t
3967 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3968 {
3969 /* buf must be %d:%d\n? giving major and minor numbers */
3970 /* The new device is added to the array.
3971 * If the array has a persistent superblock, we read the
3972 * superblock to initialise info and check validity.
3973 * Otherwise, only checking done is that in bind_rdev_to_array,
3974 * which mainly checks size.
3975 */
3976 char *e;
3977 int major = simple_strtoul(buf, &e, 10);
3978 int minor;
3979 dev_t dev;
3980 struct md_rdev *rdev;
3981 int err;
3982
3983 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3984 return -EINVAL;
3985 minor = simple_strtoul(e+1, &e, 10);
3986 if (*e && *e != '\n')
3987 return -EINVAL;
3988 dev = MKDEV(major, minor);
3989 if (major != MAJOR(dev) ||
3990 minor != MINOR(dev))
3991 return -EOVERFLOW;
3992
3993 flush_workqueue(md_misc_wq);
3994
3995 err = mddev_lock(mddev);
3996 if (err)
3997 return err;
3998 if (mddev->persistent) {
3999 rdev = md_import_device(dev, mddev->major_version,
4000 mddev->minor_version);
4001 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4002 struct md_rdev *rdev0
4003 = list_entry(mddev->disks.next,
4004 struct md_rdev, same_set);
4005 err = super_types[mddev->major_version]
4006 .load_super(rdev, rdev0, mddev->minor_version);
4007 if (err < 0)
4008 goto out;
4009 }
4010 } else if (mddev->external)
4011 rdev = md_import_device(dev, -2, -1);
4012 else
4013 rdev = md_import_device(dev, -1, -1);
4014
4015 if (IS_ERR(rdev)) {
4016 mddev_unlock(mddev);
4017 return PTR_ERR(rdev);
4018 }
4019 err = bind_rdev_to_array(rdev, mddev);
4020 out:
4021 if (err)
4022 export_rdev(rdev);
4023 mddev_unlock(mddev);
4024 return err ? err : len;
4025 }
4026
4027 static struct md_sysfs_entry md_new_device =
4028 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4029
4030 static ssize_t
4031 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4032 {
4033 char *end;
4034 unsigned long chunk, end_chunk;
4035 int err;
4036
4037 err = mddev_lock(mddev);
4038 if (err)
4039 return err;
4040 if (!mddev->bitmap)
4041 goto out;
4042 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4043 while (*buf) {
4044 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4045 if (buf == end) break;
4046 if (*end == '-') { /* range */
4047 buf = end + 1;
4048 end_chunk = simple_strtoul(buf, &end, 0);
4049 if (buf == end) break;
4050 }
4051 if (*end && !isspace(*end)) break;
4052 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4053 buf = skip_spaces(end);
4054 }
4055 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4056 out:
4057 mddev_unlock(mddev);
4058 return len;
4059 }
4060
4061 static struct md_sysfs_entry md_bitmap =
4062 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4063
4064 static ssize_t
4065 size_show(struct mddev *mddev, char *page)
4066 {
4067 return sprintf(page, "%llu\n",
4068 (unsigned long long)mddev->dev_sectors / 2);
4069 }
4070
4071 static int update_size(struct mddev *mddev, sector_t num_sectors);
4072
4073 static ssize_t
4074 size_store(struct mddev *mddev, const char *buf, size_t len)
4075 {
4076 /* If array is inactive, we can reduce the component size, but
4077 * not increase it (except from 0).
4078 * If array is active, we can try an on-line resize
4079 */
4080 sector_t sectors;
4081 int err = strict_blocks_to_sectors(buf, &sectors);
4082
4083 if (err < 0)
4084 return err;
4085 err = mddev_lock(mddev);
4086 if (err)
4087 return err;
4088 if (mddev->pers) {
4089 if (mddev_is_clustered(mddev))
4090 md_cluster_ops->metadata_update_start(mddev);
4091 err = update_size(mddev, sectors);
4092 md_update_sb(mddev, 1);
4093 if (mddev_is_clustered(mddev))
4094 md_cluster_ops->metadata_update_finish(mddev);
4095 } else {
4096 if (mddev->dev_sectors == 0 ||
4097 mddev->dev_sectors > sectors)
4098 mddev->dev_sectors = sectors;
4099 else
4100 err = -ENOSPC;
4101 }
4102 mddev_unlock(mddev);
4103 return err ? err : len;
4104 }
4105
4106 static struct md_sysfs_entry md_size =
4107 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4108
4109 /* Metadata version.
4110 * This is one of
4111 * 'none' for arrays with no metadata (good luck...)
4112 * 'external' for arrays with externally managed metadata,
4113 * or N.M for internally known formats
4114 */
4115 static ssize_t
4116 metadata_show(struct mddev *mddev, char *page)
4117 {
4118 if (mddev->persistent)
4119 return sprintf(page, "%d.%d\n",
4120 mddev->major_version, mddev->minor_version);
4121 else if (mddev->external)
4122 return sprintf(page, "external:%s\n", mddev->metadata_type);
4123 else
4124 return sprintf(page, "none\n");
4125 }
4126
4127 static ssize_t
4128 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4129 {
4130 int major, minor;
4131 char *e;
4132 int err;
4133 /* Changing the details of 'external' metadata is
4134 * always permitted. Otherwise there must be
4135 * no devices attached to the array.
4136 */
4137
4138 err = mddev_lock(mddev);
4139 if (err)
4140 return err;
4141 err = -EBUSY;
4142 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4143 ;
4144 else if (!list_empty(&mddev->disks))
4145 goto out_unlock;
4146
4147 err = 0;
4148 if (cmd_match(buf, "none")) {
4149 mddev->persistent = 0;
4150 mddev->external = 0;
4151 mddev->major_version = 0;
4152 mddev->minor_version = 90;
4153 goto out_unlock;
4154 }
4155 if (strncmp(buf, "external:", 9) == 0) {
4156 size_t namelen = len-9;
4157 if (namelen >= sizeof(mddev->metadata_type))
4158 namelen = sizeof(mddev->metadata_type)-1;
4159 strncpy(mddev->metadata_type, buf+9, namelen);
4160 mddev->metadata_type[namelen] = 0;
4161 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4162 mddev->metadata_type[--namelen] = 0;
4163 mddev->persistent = 0;
4164 mddev->external = 1;
4165 mddev->major_version = 0;
4166 mddev->minor_version = 90;
4167 goto out_unlock;
4168 }
4169 major = simple_strtoul(buf, &e, 10);
4170 err = -EINVAL;
4171 if (e==buf || *e != '.')
4172 goto out_unlock;
4173 buf = e+1;
4174 minor = simple_strtoul(buf, &e, 10);
4175 if (e==buf || (*e && *e != '\n') )
4176 goto out_unlock;
4177 err = -ENOENT;
4178 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4179 goto out_unlock;
4180 mddev->major_version = major;
4181 mddev->minor_version = minor;
4182 mddev->persistent = 1;
4183 mddev->external = 0;
4184 err = 0;
4185 out_unlock:
4186 mddev_unlock(mddev);
4187 return err ?: len;
4188 }
4189
4190 static struct md_sysfs_entry md_metadata =
4191 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4192
4193 static ssize_t
4194 action_show(struct mddev *mddev, char *page)
4195 {
4196 char *type = "idle";
4197 unsigned long recovery = mddev->recovery;
4198 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4199 type = "frozen";
4200 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4201 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4202 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4203 type = "reshape";
4204 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4205 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4206 type = "resync";
4207 else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4208 type = "check";
4209 else
4210 type = "repair";
4211 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4212 type = "recover";
4213 }
4214 return sprintf(page, "%s\n", type);
4215 }
4216
4217 static ssize_t
4218 action_store(struct mddev *mddev, const char *page, size_t len)
4219 {
4220 if (!mddev->pers || !mddev->pers->sync_request)
4221 return -EINVAL;
4222
4223
4224 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4225 if (cmd_match(page, "frozen"))
4226 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4227 else
4228 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4229 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4230 mddev_lock(mddev) == 0) {
4231 flush_workqueue(md_misc_wq);
4232 if (mddev->sync_thread) {
4233 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4234 md_reap_sync_thread(mddev);
4235 }
4236 mddev_unlock(mddev);
4237 }
4238 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4239 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4240 return -EBUSY;
4241 else if (cmd_match(page, "resync"))
4242 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4243 else if (cmd_match(page, "recover")) {
4244 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4245 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4246 } else if (cmd_match(page, "reshape")) {
4247 int err;
4248 if (mddev->pers->start_reshape == NULL)
4249 return -EINVAL;
4250 err = mddev_lock(mddev);
4251 if (!err) {
4252 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4253 err = mddev->pers->start_reshape(mddev);
4254 mddev_unlock(mddev);
4255 }
4256 if (err)
4257 return err;
4258 sysfs_notify(&mddev->kobj, NULL, "degraded");
4259 } else {
4260 if (cmd_match(page, "check"))
4261 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4262 else if (!cmd_match(page, "repair"))
4263 return -EINVAL;
4264 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4265 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4266 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4267 }
4268 if (mddev->ro == 2) {
4269 /* A write to sync_action is enough to justify
4270 * canceling read-auto mode
4271 */
4272 mddev->ro = 0;
4273 md_wakeup_thread(mddev->sync_thread);
4274 }
4275 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4276 md_wakeup_thread(mddev->thread);
4277 sysfs_notify_dirent_safe(mddev->sysfs_action);
4278 return len;
4279 }
4280
4281 static struct md_sysfs_entry md_scan_mode =
4282 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4283
4284 static ssize_t
4285 last_sync_action_show(struct mddev *mddev, char *page)
4286 {
4287 return sprintf(page, "%s\n", mddev->last_sync_action);
4288 }
4289
4290 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4291
4292 static ssize_t
4293 mismatch_cnt_show(struct mddev *mddev, char *page)
4294 {
4295 return sprintf(page, "%llu\n",
4296 (unsigned long long)
4297 atomic64_read(&mddev->resync_mismatches));
4298 }
4299
4300 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4301
4302 static ssize_t
4303 sync_min_show(struct mddev *mddev, char *page)
4304 {
4305 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4306 mddev->sync_speed_min ? "local": "system");
4307 }
4308
4309 static ssize_t
4310 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4311 {
4312 unsigned int min;
4313 int rv;
4314
4315 if (strncmp(buf, "system", 6)==0) {
4316 min = 0;
4317 } else {
4318 rv = kstrtouint(buf, 10, &min);
4319 if (rv < 0)
4320 return rv;
4321 if (min == 0)
4322 return -EINVAL;
4323 }
4324 mddev->sync_speed_min = min;
4325 return len;
4326 }
4327
4328 static struct md_sysfs_entry md_sync_min =
4329 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4330
4331 static ssize_t
4332 sync_max_show(struct mddev *mddev, char *page)
4333 {
4334 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4335 mddev->sync_speed_max ? "local": "system");
4336 }
4337
4338 static ssize_t
4339 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4340 {
4341 unsigned int max;
4342 int rv;
4343
4344 if (strncmp(buf, "system", 6)==0) {
4345 max = 0;
4346 } else {
4347 rv = kstrtouint(buf, 10, &max);
4348 if (rv < 0)
4349 return rv;
4350 if (max == 0)
4351 return -EINVAL;
4352 }
4353 mddev->sync_speed_max = max;
4354 return len;
4355 }
4356
4357 static struct md_sysfs_entry md_sync_max =
4358 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4359
4360 static ssize_t
4361 degraded_show(struct mddev *mddev, char *page)
4362 {
4363 return sprintf(page, "%d\n", mddev->degraded);
4364 }
4365 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4366
4367 static ssize_t
4368 sync_force_parallel_show(struct mddev *mddev, char *page)
4369 {
4370 return sprintf(page, "%d\n", mddev->parallel_resync);
4371 }
4372
4373 static ssize_t
4374 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4375 {
4376 long n;
4377
4378 if (kstrtol(buf, 10, &n))
4379 return -EINVAL;
4380
4381 if (n != 0 && n != 1)
4382 return -EINVAL;
4383
4384 mddev->parallel_resync = n;
4385
4386 if (mddev->sync_thread)
4387 wake_up(&resync_wait);
4388
4389 return len;
4390 }
4391
4392 /* force parallel resync, even with shared block devices */
4393 static struct md_sysfs_entry md_sync_force_parallel =
4394 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4395 sync_force_parallel_show, sync_force_parallel_store);
4396
4397 static ssize_t
4398 sync_speed_show(struct mddev *mddev, char *page)
4399 {
4400 unsigned long resync, dt, db;
4401 if (mddev->curr_resync == 0)
4402 return sprintf(page, "none\n");
4403 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4404 dt = (jiffies - mddev->resync_mark) / HZ;
4405 if (!dt) dt++;
4406 db = resync - mddev->resync_mark_cnt;
4407 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4408 }
4409
4410 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4411
4412 static ssize_t
4413 sync_completed_show(struct mddev *mddev, char *page)
4414 {
4415 unsigned long long max_sectors, resync;
4416
4417 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4418 return sprintf(page, "none\n");
4419
4420 if (mddev->curr_resync == 1 ||
4421 mddev->curr_resync == 2)
4422 return sprintf(page, "delayed\n");
4423
4424 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4425 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4426 max_sectors = mddev->resync_max_sectors;
4427 else
4428 max_sectors = mddev->dev_sectors;
4429
4430 resync = mddev->curr_resync_completed;
4431 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4432 }
4433
4434 static struct md_sysfs_entry md_sync_completed =
4435 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4436
4437 static ssize_t
4438 min_sync_show(struct mddev *mddev, char *page)
4439 {
4440 return sprintf(page, "%llu\n",
4441 (unsigned long long)mddev->resync_min);
4442 }
4443 static ssize_t
4444 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4445 {
4446 unsigned long long min;
4447 int err;
4448
4449 if (kstrtoull(buf, 10, &min))
4450 return -EINVAL;
4451
4452 spin_lock(&mddev->lock);
4453 err = -EINVAL;
4454 if (min > mddev->resync_max)
4455 goto out_unlock;
4456
4457 err = -EBUSY;
4458 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4459 goto out_unlock;
4460
4461 /* Round down to multiple of 4K for safety */
4462 mddev->resync_min = round_down(min, 8);
4463 err = 0;
4464
4465 out_unlock:
4466 spin_unlock(&mddev->lock);
4467 return err ?: len;
4468 }
4469
4470 static struct md_sysfs_entry md_min_sync =
4471 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4472
4473 static ssize_t
4474 max_sync_show(struct mddev *mddev, char *page)
4475 {
4476 if (mddev->resync_max == MaxSector)
4477 return sprintf(page, "max\n");
4478 else
4479 return sprintf(page, "%llu\n",
4480 (unsigned long long)mddev->resync_max);
4481 }
4482 static ssize_t
4483 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4484 {
4485 int err;
4486 spin_lock(&mddev->lock);
4487 if (strncmp(buf, "max", 3) == 0)
4488 mddev->resync_max = MaxSector;
4489 else {
4490 unsigned long long max;
4491 int chunk;
4492
4493 err = -EINVAL;
4494 if (kstrtoull(buf, 10, &max))
4495 goto out_unlock;
4496 if (max < mddev->resync_min)
4497 goto out_unlock;
4498
4499 err = -EBUSY;
4500 if (max < mddev->resync_max &&
4501 mddev->ro == 0 &&
4502 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4503 goto out_unlock;
4504
4505 /* Must be a multiple of chunk_size */
4506 chunk = mddev->chunk_sectors;
4507 if (chunk) {
4508 sector_t temp = max;
4509
4510 err = -EINVAL;
4511 if (sector_div(temp, chunk))
4512 goto out_unlock;
4513 }
4514 mddev->resync_max = max;
4515 }
4516 wake_up(&mddev->recovery_wait);
4517 err = 0;
4518 out_unlock:
4519 spin_unlock(&mddev->lock);
4520 return err ?: len;
4521 }
4522
4523 static struct md_sysfs_entry md_max_sync =
4524 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4525
4526 static ssize_t
4527 suspend_lo_show(struct mddev *mddev, char *page)
4528 {
4529 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4530 }
4531
4532 static ssize_t
4533 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4534 {
4535 unsigned long long old, new;
4536 int err;
4537
4538 err = kstrtoull(buf, 10, &new);
4539 if (err < 0)
4540 return err;
4541 if (new != (sector_t)new)
4542 return -EINVAL;
4543
4544 err = mddev_lock(mddev);
4545 if (err)
4546 return err;
4547 err = -EINVAL;
4548 if (mddev->pers == NULL ||
4549 mddev->pers->quiesce == NULL)
4550 goto unlock;
4551 old = mddev->suspend_lo;
4552 mddev->suspend_lo = new;
4553 if (new >= old)
4554 /* Shrinking suspended region */
4555 mddev->pers->quiesce(mddev, 2);
4556 else {
4557 /* Expanding suspended region - need to wait */
4558 mddev->pers->quiesce(mddev, 1);
4559 mddev->pers->quiesce(mddev, 0);
4560 }
4561 err = 0;
4562 unlock:
4563 mddev_unlock(mddev);
4564 return err ?: len;
4565 }
4566 static struct md_sysfs_entry md_suspend_lo =
4567 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4568
4569 static ssize_t
4570 suspend_hi_show(struct mddev *mddev, char *page)
4571 {
4572 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4573 }
4574
4575 static ssize_t
4576 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4577 {
4578 unsigned long long old, new;
4579 int err;
4580
4581 err = kstrtoull(buf, 10, &new);
4582 if (err < 0)
4583 return err;
4584 if (new != (sector_t)new)
4585 return -EINVAL;
4586
4587 err = mddev_lock(mddev);
4588 if (err)
4589 return err;
4590 err = -EINVAL;
4591 if (mddev->pers == NULL ||
4592 mddev->pers->quiesce == NULL)
4593 goto unlock;
4594 old = mddev->suspend_hi;
4595 mddev->suspend_hi = new;
4596 if (new <= old)
4597 /* Shrinking suspended region */
4598 mddev->pers->quiesce(mddev, 2);
4599 else {
4600 /* Expanding suspended region - need to wait */
4601 mddev->pers->quiesce(mddev, 1);
4602 mddev->pers->quiesce(mddev, 0);
4603 }
4604 err = 0;
4605 unlock:
4606 mddev_unlock(mddev);
4607 return err ?: len;
4608 }
4609 static struct md_sysfs_entry md_suspend_hi =
4610 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4611
4612 static ssize_t
4613 reshape_position_show(struct mddev *mddev, char *page)
4614 {
4615 if (mddev->reshape_position != MaxSector)
4616 return sprintf(page, "%llu\n",
4617 (unsigned long long)mddev->reshape_position);
4618 strcpy(page, "none\n");
4619 return 5;
4620 }
4621
4622 static ssize_t
4623 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4624 {
4625 struct md_rdev *rdev;
4626 unsigned long long new;
4627 int err;
4628
4629 err = kstrtoull(buf, 10, &new);
4630 if (err < 0)
4631 return err;
4632 if (new != (sector_t)new)
4633 return -EINVAL;
4634 err = mddev_lock(mddev);
4635 if (err)
4636 return err;
4637 err = -EBUSY;
4638 if (mddev->pers)
4639 goto unlock;
4640 mddev->reshape_position = new;
4641 mddev->delta_disks = 0;
4642 mddev->reshape_backwards = 0;
4643 mddev->new_level = mddev->level;
4644 mddev->new_layout = mddev->layout;
4645 mddev->new_chunk_sectors = mddev->chunk_sectors;
4646 rdev_for_each(rdev, mddev)
4647 rdev->new_data_offset = rdev->data_offset;
4648 err = 0;
4649 unlock:
4650 mddev_unlock(mddev);
4651 return err ?: len;
4652 }
4653
4654 static struct md_sysfs_entry md_reshape_position =
4655 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4656 reshape_position_store);
4657
4658 static ssize_t
4659 reshape_direction_show(struct mddev *mddev, char *page)
4660 {
4661 return sprintf(page, "%s\n",
4662 mddev->reshape_backwards ? "backwards" : "forwards");
4663 }
4664
4665 static ssize_t
4666 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4667 {
4668 int backwards = 0;
4669 int err;
4670
4671 if (cmd_match(buf, "forwards"))
4672 backwards = 0;
4673 else if (cmd_match(buf, "backwards"))
4674 backwards = 1;
4675 else
4676 return -EINVAL;
4677 if (mddev->reshape_backwards == backwards)
4678 return len;
4679
4680 err = mddev_lock(mddev);
4681 if (err)
4682 return err;
4683 /* check if we are allowed to change */
4684 if (mddev->delta_disks)
4685 err = -EBUSY;
4686 else if (mddev->persistent &&
4687 mddev->major_version == 0)
4688 err = -EINVAL;
4689 else
4690 mddev->reshape_backwards = backwards;
4691 mddev_unlock(mddev);
4692 return err ?: len;
4693 }
4694
4695 static struct md_sysfs_entry md_reshape_direction =
4696 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4697 reshape_direction_store);
4698
4699 static ssize_t
4700 array_size_show(struct mddev *mddev, char *page)
4701 {
4702 if (mddev->external_size)
4703 return sprintf(page, "%llu\n",
4704 (unsigned long long)mddev->array_sectors/2);
4705 else
4706 return sprintf(page, "default\n");
4707 }
4708
4709 static ssize_t
4710 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4711 {
4712 sector_t sectors;
4713 int err;
4714
4715 err = mddev_lock(mddev);
4716 if (err)
4717 return err;
4718
4719 if (strncmp(buf, "default", 7) == 0) {
4720 if (mddev->pers)
4721 sectors = mddev->pers->size(mddev, 0, 0);
4722 else
4723 sectors = mddev->array_sectors;
4724
4725 mddev->external_size = 0;
4726 } else {
4727 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4728 err = -EINVAL;
4729 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4730 err = -E2BIG;
4731 else
4732 mddev->external_size = 1;
4733 }
4734
4735 if (!err) {
4736 mddev->array_sectors = sectors;
4737 if (mddev->pers) {
4738 set_capacity(mddev->gendisk, mddev->array_sectors);
4739 revalidate_disk(mddev->gendisk);
4740 }
4741 }
4742 mddev_unlock(mddev);
4743 return err ?: len;
4744 }
4745
4746 static struct md_sysfs_entry md_array_size =
4747 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4748 array_size_store);
4749
4750 static struct attribute *md_default_attrs[] = {
4751 &md_level.attr,
4752 &md_layout.attr,
4753 &md_raid_disks.attr,
4754 &md_chunk_size.attr,
4755 &md_size.attr,
4756 &md_resync_start.attr,
4757 &md_metadata.attr,
4758 &md_new_device.attr,
4759 &md_safe_delay.attr,
4760 &md_array_state.attr,
4761 &md_reshape_position.attr,
4762 &md_reshape_direction.attr,
4763 &md_array_size.attr,
4764 &max_corr_read_errors.attr,
4765 NULL,
4766 };
4767
4768 static struct attribute *md_redundancy_attrs[] = {
4769 &md_scan_mode.attr,
4770 &md_last_scan_mode.attr,
4771 &md_mismatches.attr,
4772 &md_sync_min.attr,
4773 &md_sync_max.attr,
4774 &md_sync_speed.attr,
4775 &md_sync_force_parallel.attr,
4776 &md_sync_completed.attr,
4777 &md_min_sync.attr,
4778 &md_max_sync.attr,
4779 &md_suspend_lo.attr,
4780 &md_suspend_hi.attr,
4781 &md_bitmap.attr,
4782 &md_degraded.attr,
4783 NULL,
4784 };
4785 static struct attribute_group md_redundancy_group = {
4786 .name = NULL,
4787 .attrs = md_redundancy_attrs,
4788 };
4789
4790 static ssize_t
4791 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4792 {
4793 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4794 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4795 ssize_t rv;
4796
4797 if (!entry->show)
4798 return -EIO;
4799 spin_lock(&all_mddevs_lock);
4800 if (list_empty(&mddev->all_mddevs)) {
4801 spin_unlock(&all_mddevs_lock);
4802 return -EBUSY;
4803 }
4804 mddev_get(mddev);
4805 spin_unlock(&all_mddevs_lock);
4806
4807 rv = entry->show(mddev, page);
4808 mddev_put(mddev);
4809 return rv;
4810 }
4811
4812 static ssize_t
4813 md_attr_store(struct kobject *kobj, struct attribute *attr,
4814 const char *page, size_t length)
4815 {
4816 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4817 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4818 ssize_t rv;
4819
4820 if (!entry->store)
4821 return -EIO;
4822 if (!capable(CAP_SYS_ADMIN))
4823 return -EACCES;
4824 spin_lock(&all_mddevs_lock);
4825 if (list_empty(&mddev->all_mddevs)) {
4826 spin_unlock(&all_mddevs_lock);
4827 return -EBUSY;
4828 }
4829 mddev_get(mddev);
4830 spin_unlock(&all_mddevs_lock);
4831 rv = entry->store(mddev, page, length);
4832 mddev_put(mddev);
4833 return rv;
4834 }
4835
4836 static void md_free(struct kobject *ko)
4837 {
4838 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4839
4840 if (mddev->sysfs_state)
4841 sysfs_put(mddev->sysfs_state);
4842
4843 if (mddev->queue)
4844 blk_cleanup_queue(mddev->queue);
4845 if (mddev->gendisk) {
4846 del_gendisk(mddev->gendisk);
4847 put_disk(mddev->gendisk);
4848 }
4849
4850 kfree(mddev);
4851 }
4852
4853 static const struct sysfs_ops md_sysfs_ops = {
4854 .show = md_attr_show,
4855 .store = md_attr_store,
4856 };
4857 static struct kobj_type md_ktype = {
4858 .release = md_free,
4859 .sysfs_ops = &md_sysfs_ops,
4860 .default_attrs = md_default_attrs,
4861 };
4862
4863 int mdp_major = 0;
4864
4865 static void mddev_delayed_delete(struct work_struct *ws)
4866 {
4867 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4868
4869 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4870 kobject_del(&mddev->kobj);
4871 kobject_put(&mddev->kobj);
4872 }
4873
4874 static int md_alloc(dev_t dev, char *name)
4875 {
4876 static DEFINE_MUTEX(disks_mutex);
4877 struct mddev *mddev = mddev_find(dev);
4878 struct gendisk *disk;
4879 int partitioned;
4880 int shift;
4881 int unit;
4882 int error;
4883
4884 if (!mddev)
4885 return -ENODEV;
4886
4887 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4888 shift = partitioned ? MdpMinorShift : 0;
4889 unit = MINOR(mddev->unit) >> shift;
4890
4891 /* wait for any previous instance of this device to be
4892 * completely removed (mddev_delayed_delete).
4893 */
4894 flush_workqueue(md_misc_wq);
4895
4896 mutex_lock(&disks_mutex);
4897 error = -EEXIST;
4898 if (mddev->gendisk)
4899 goto abort;
4900
4901 if (name) {
4902 /* Need to ensure that 'name' is not a duplicate.
4903 */
4904 struct mddev *mddev2;
4905 spin_lock(&all_mddevs_lock);
4906
4907 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4908 if (mddev2->gendisk &&
4909 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4910 spin_unlock(&all_mddevs_lock);
4911 goto abort;
4912 }
4913 spin_unlock(&all_mddevs_lock);
4914 }
4915
4916 error = -ENOMEM;
4917 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4918 if (!mddev->queue)
4919 goto abort;
4920 mddev->queue->queuedata = mddev;
4921
4922 blk_queue_make_request(mddev->queue, md_make_request);
4923 blk_set_stacking_limits(&mddev->queue->limits);
4924
4925 disk = alloc_disk(1 << shift);
4926 if (!disk) {
4927 blk_cleanup_queue(mddev->queue);
4928 mddev->queue = NULL;
4929 goto abort;
4930 }
4931 disk->major = MAJOR(mddev->unit);
4932 disk->first_minor = unit << shift;
4933 if (name)
4934 strcpy(disk->disk_name, name);
4935 else if (partitioned)
4936 sprintf(disk->disk_name, "md_d%d", unit);
4937 else
4938 sprintf(disk->disk_name, "md%d", unit);
4939 disk->fops = &md_fops;
4940 disk->private_data = mddev;
4941 disk->queue = mddev->queue;
4942 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4943 /* Allow extended partitions. This makes the
4944 * 'mdp' device redundant, but we can't really
4945 * remove it now.
4946 */
4947 disk->flags |= GENHD_FL_EXT_DEVT;
4948 mddev->gendisk = disk;
4949 /* As soon as we call add_disk(), another thread could get
4950 * through to md_open, so make sure it doesn't get too far
4951 */
4952 mutex_lock(&mddev->open_mutex);
4953 add_disk(disk);
4954
4955 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4956 &disk_to_dev(disk)->kobj, "%s", "md");
4957 if (error) {
4958 /* This isn't possible, but as kobject_init_and_add is marked
4959 * __must_check, we must do something with the result
4960 */
4961 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4962 disk->disk_name);
4963 error = 0;
4964 }
4965 if (mddev->kobj.sd &&
4966 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4967 printk(KERN_DEBUG "pointless warning\n");
4968 mutex_unlock(&mddev->open_mutex);
4969 abort:
4970 mutex_unlock(&disks_mutex);
4971 if (!error && mddev->kobj.sd) {
4972 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4973 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4974 }
4975 mddev_put(mddev);
4976 return error;
4977 }
4978
4979 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4980 {
4981 md_alloc(dev, NULL);
4982 return NULL;
4983 }
4984
4985 static int add_named_array(const char *val, struct kernel_param *kp)
4986 {
4987 /* val must be "md_*" where * is not all digits.
4988 * We allocate an array with a large free minor number, and
4989 * set the name to val. val must not already be an active name.
4990 */
4991 int len = strlen(val);
4992 char buf[DISK_NAME_LEN];
4993
4994 while (len && val[len-1] == '\n')
4995 len--;
4996 if (len >= DISK_NAME_LEN)
4997 return -E2BIG;
4998 strlcpy(buf, val, len+1);
4999 if (strncmp(buf, "md_", 3) != 0)
5000 return -EINVAL;
5001 return md_alloc(0, buf);
5002 }
5003
5004 static void md_safemode_timeout(unsigned long data)
5005 {
5006 struct mddev *mddev = (struct mddev *) data;
5007
5008 if (!atomic_read(&mddev->writes_pending)) {
5009 mddev->safemode = 1;
5010 if (mddev->external)
5011 sysfs_notify_dirent_safe(mddev->sysfs_state);
5012 }
5013 md_wakeup_thread(mddev->thread);
5014 }
5015
5016 static int start_dirty_degraded;
5017
5018 int md_run(struct mddev *mddev)
5019 {
5020 int err;
5021 struct md_rdev *rdev;
5022 struct md_personality *pers;
5023
5024 if (list_empty(&mddev->disks))
5025 /* cannot run an array with no devices.. */
5026 return -EINVAL;
5027
5028 if (mddev->pers)
5029 return -EBUSY;
5030 /* Cannot run until previous stop completes properly */
5031 if (mddev->sysfs_active)
5032 return -EBUSY;
5033
5034 /*
5035 * Analyze all RAID superblock(s)
5036 */
5037 if (!mddev->raid_disks) {
5038 if (!mddev->persistent)
5039 return -EINVAL;
5040 analyze_sbs(mddev);
5041 }
5042
5043 if (mddev->level != LEVEL_NONE)
5044 request_module("md-level-%d", mddev->level);
5045 else if (mddev->clevel[0])
5046 request_module("md-%s", mddev->clevel);
5047
5048 /*
5049 * Drop all container device buffers, from now on
5050 * the only valid external interface is through the md
5051 * device.
5052 */
5053 rdev_for_each(rdev, mddev) {
5054 if (test_bit(Faulty, &rdev->flags))
5055 continue;
5056 sync_blockdev(rdev->bdev);
5057 invalidate_bdev(rdev->bdev);
5058
5059 /* perform some consistency tests on the device.
5060 * We don't want the data to overlap the metadata,
5061 * Internal Bitmap issues have been handled elsewhere.
5062 */
5063 if (rdev->meta_bdev) {
5064 /* Nothing to check */;
5065 } else if (rdev->data_offset < rdev->sb_start) {
5066 if (mddev->dev_sectors &&
5067 rdev->data_offset + mddev->dev_sectors
5068 > rdev->sb_start) {
5069 printk("md: %s: data overlaps metadata\n",
5070 mdname(mddev));
5071 return -EINVAL;
5072 }
5073 } else {
5074 if (rdev->sb_start + rdev->sb_size/512
5075 > rdev->data_offset) {
5076 printk("md: %s: metadata overlaps data\n",
5077 mdname(mddev));
5078 return -EINVAL;
5079 }
5080 }
5081 sysfs_notify_dirent_safe(rdev->sysfs_state);
5082 }
5083
5084 if (mddev->bio_set == NULL)
5085 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5086
5087 spin_lock(&pers_lock);
5088 pers = find_pers(mddev->level, mddev->clevel);
5089 if (!pers || !try_module_get(pers->owner)) {
5090 spin_unlock(&pers_lock);
5091 if (mddev->level != LEVEL_NONE)
5092 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5093 mddev->level);
5094 else
5095 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5096 mddev->clevel);
5097 return -EINVAL;
5098 }
5099 spin_unlock(&pers_lock);
5100 if (mddev->level != pers->level) {
5101 mddev->level = pers->level;
5102 mddev->new_level = pers->level;
5103 }
5104 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5105
5106 if (mddev->reshape_position != MaxSector &&
5107 pers->start_reshape == NULL) {
5108 /* This personality cannot handle reshaping... */
5109 module_put(pers->owner);
5110 return -EINVAL;
5111 }
5112
5113 if (pers->sync_request) {
5114 /* Warn if this is a potentially silly
5115 * configuration.
5116 */
5117 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5118 struct md_rdev *rdev2;
5119 int warned = 0;
5120
5121 rdev_for_each(rdev, mddev)
5122 rdev_for_each(rdev2, mddev) {
5123 if (rdev < rdev2 &&
5124 rdev->bdev->bd_contains ==
5125 rdev2->bdev->bd_contains) {
5126 printk(KERN_WARNING
5127 "%s: WARNING: %s appears to be"
5128 " on the same physical disk as"
5129 " %s.\n",
5130 mdname(mddev),
5131 bdevname(rdev->bdev,b),
5132 bdevname(rdev2->bdev,b2));
5133 warned = 1;
5134 }
5135 }
5136
5137 if (warned)
5138 printk(KERN_WARNING
5139 "True protection against single-disk"
5140 " failure might be compromised.\n");
5141 }
5142
5143 mddev->recovery = 0;
5144 /* may be over-ridden by personality */
5145 mddev->resync_max_sectors = mddev->dev_sectors;
5146
5147 mddev->ok_start_degraded = start_dirty_degraded;
5148
5149 if (start_readonly && mddev->ro == 0)
5150 mddev->ro = 2; /* read-only, but switch on first write */
5151
5152 err = pers->run(mddev);
5153 if (err)
5154 printk(KERN_ERR "md: pers->run() failed ...\n");
5155 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5156 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5157 " but 'external_size' not in effect?\n", __func__);
5158 printk(KERN_ERR
5159 "md: invalid array_size %llu > default size %llu\n",
5160 (unsigned long long)mddev->array_sectors / 2,
5161 (unsigned long long)pers->size(mddev, 0, 0) / 2);
5162 err = -EINVAL;
5163 }
5164 if (err == 0 && pers->sync_request &&
5165 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5166 struct bitmap *bitmap;
5167
5168 bitmap = bitmap_create(mddev, -1);
5169 if (IS_ERR(bitmap)) {
5170 err = PTR_ERR(bitmap);
5171 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5172 mdname(mddev), err);
5173 } else
5174 mddev->bitmap = bitmap;
5175
5176 }
5177 if (err) {
5178 mddev_detach(mddev);
5179 if (mddev->private)
5180 pers->free(mddev, mddev->private);
5181 mddev->private = NULL;
5182 module_put(pers->owner);
5183 bitmap_destroy(mddev);
5184 return err;
5185 }
5186 if (mddev->queue) {
5187 mddev->queue->backing_dev_info.congested_data = mddev;
5188 mddev->queue->backing_dev_info.congested_fn = md_congested;
5189 blk_queue_merge_bvec(mddev->queue, md_mergeable_bvec);
5190 }
5191 if (pers->sync_request) {
5192 if (mddev->kobj.sd &&
5193 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5194 printk(KERN_WARNING
5195 "md: cannot register extra attributes for %s\n",
5196 mdname(mddev));
5197 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5198 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5199 mddev->ro = 0;
5200
5201 atomic_set(&mddev->writes_pending,0);
5202 atomic_set(&mddev->max_corr_read_errors,
5203 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5204 mddev->safemode = 0;
5205 mddev->safemode_timer.function = md_safemode_timeout;
5206 mddev->safemode_timer.data = (unsigned long) mddev;
5207 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5208 mddev->in_sync = 1;
5209 smp_wmb();
5210 spin_lock(&mddev->lock);
5211 mddev->pers = pers;
5212 mddev->ready = 1;
5213 spin_unlock(&mddev->lock);
5214 rdev_for_each(rdev, mddev)
5215 if (rdev->raid_disk >= 0)
5216 if (sysfs_link_rdev(mddev, rdev))
5217 /* failure here is OK */;
5218
5219 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5220
5221 if (mddev->flags & MD_UPDATE_SB_FLAGS)
5222 md_update_sb(mddev, 0);
5223
5224 md_new_event(mddev);
5225 sysfs_notify_dirent_safe(mddev->sysfs_state);
5226 sysfs_notify_dirent_safe(mddev->sysfs_action);
5227 sysfs_notify(&mddev->kobj, NULL, "degraded");
5228 return 0;
5229 }
5230 EXPORT_SYMBOL_GPL(md_run);
5231
5232 static int do_md_run(struct mddev *mddev)
5233 {
5234 int err;
5235
5236 err = md_run(mddev);
5237 if (err)
5238 goto out;
5239 err = bitmap_load(mddev);
5240 if (err) {
5241 bitmap_destroy(mddev);
5242 goto out;
5243 }
5244
5245 md_wakeup_thread(mddev->thread);
5246 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5247
5248 set_capacity(mddev->gendisk, mddev->array_sectors);
5249 revalidate_disk(mddev->gendisk);
5250 mddev->changed = 1;
5251 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5252 out:
5253 return err;
5254 }
5255
5256 static int restart_array(struct mddev *mddev)
5257 {
5258 struct gendisk *disk = mddev->gendisk;
5259
5260 /* Complain if it has no devices */
5261 if (list_empty(&mddev->disks))
5262 return -ENXIO;
5263 if (!mddev->pers)
5264 return -EINVAL;
5265 if (!mddev->ro)
5266 return -EBUSY;
5267 mddev->safemode = 0;
5268 mddev->ro = 0;
5269 set_disk_ro(disk, 0);
5270 printk(KERN_INFO "md: %s switched to read-write mode.\n",
5271 mdname(mddev));
5272 /* Kick recovery or resync if necessary */
5273 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5274 md_wakeup_thread(mddev->thread);
5275 md_wakeup_thread(mddev->sync_thread);
5276 sysfs_notify_dirent_safe(mddev->sysfs_state);
5277 return 0;
5278 }
5279
5280 static void md_clean(struct mddev *mddev)
5281 {
5282 mddev->array_sectors = 0;
5283 mddev->external_size = 0;
5284 mddev->dev_sectors = 0;
5285 mddev->raid_disks = 0;
5286 mddev->recovery_cp = 0;
5287 mddev->resync_min = 0;
5288 mddev->resync_max = MaxSector;
5289 mddev->reshape_position = MaxSector;
5290 mddev->external = 0;
5291 mddev->persistent = 0;
5292 mddev->level = LEVEL_NONE;
5293 mddev->clevel[0] = 0;
5294 mddev->flags = 0;
5295 mddev->ro = 0;
5296 mddev->metadata_type[0] = 0;
5297 mddev->chunk_sectors = 0;
5298 mddev->ctime = mddev->utime = 0;
5299 mddev->layout = 0;
5300 mddev->max_disks = 0;
5301 mddev->events = 0;
5302 mddev->can_decrease_events = 0;
5303 mddev->delta_disks = 0;
5304 mddev->reshape_backwards = 0;
5305 mddev->new_level = LEVEL_NONE;
5306 mddev->new_layout = 0;
5307 mddev->new_chunk_sectors = 0;
5308 mddev->curr_resync = 0;
5309 atomic64_set(&mddev->resync_mismatches, 0);
5310 mddev->suspend_lo = mddev->suspend_hi = 0;
5311 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5312 mddev->recovery = 0;
5313 mddev->in_sync = 0;
5314 mddev->changed = 0;
5315 mddev->degraded = 0;
5316 mddev->safemode = 0;
5317 mddev->private = NULL;
5318 mddev->merge_check_needed = 0;
5319 mddev->bitmap_info.offset = 0;
5320 mddev->bitmap_info.default_offset = 0;
5321 mddev->bitmap_info.default_space = 0;
5322 mddev->bitmap_info.chunksize = 0;
5323 mddev->bitmap_info.daemon_sleep = 0;
5324 mddev->bitmap_info.max_write_behind = 0;
5325 }
5326
5327 static void __md_stop_writes(struct mddev *mddev)
5328 {
5329 if (mddev_is_clustered(mddev))
5330 md_cluster_ops->metadata_update_start(mddev);
5331 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5332 flush_workqueue(md_misc_wq);
5333 if (mddev->sync_thread) {
5334 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5335 md_reap_sync_thread(mddev);
5336 }
5337
5338 del_timer_sync(&mddev->safemode_timer);
5339
5340 bitmap_flush(mddev);
5341 md_super_wait(mddev);
5342
5343 if (mddev->ro == 0 &&
5344 (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5345 /* mark array as shutdown cleanly */
5346 mddev->in_sync = 1;
5347 md_update_sb(mddev, 1);
5348 }
5349 if (mddev_is_clustered(mddev))
5350 md_cluster_ops->metadata_update_finish(mddev);
5351 }
5352
5353 void md_stop_writes(struct mddev *mddev)
5354 {
5355 mddev_lock_nointr(mddev);
5356 __md_stop_writes(mddev);
5357 mddev_unlock(mddev);
5358 }
5359 EXPORT_SYMBOL_GPL(md_stop_writes);
5360
5361 static void mddev_detach(struct mddev *mddev)
5362 {
5363 struct bitmap *bitmap = mddev->bitmap;
5364 /* wait for behind writes to complete */
5365 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5366 printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
5367 mdname(mddev));
5368 /* need to kick something here to make sure I/O goes? */
5369 wait_event(bitmap->behind_wait,
5370 atomic_read(&bitmap->behind_writes) == 0);
5371 }
5372 if (mddev->pers && mddev->pers->quiesce) {
5373 mddev->pers->quiesce(mddev, 1);
5374 mddev->pers->quiesce(mddev, 0);
5375 }
5376 md_unregister_thread(&mddev->thread);
5377 if (mddev->queue)
5378 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5379 }
5380
5381 static void __md_stop(struct mddev *mddev)
5382 {
5383 struct md_personality *pers = mddev->pers;
5384 mddev_detach(mddev);
5385 /* Ensure ->event_work is done */
5386 flush_workqueue(md_misc_wq);
5387 spin_lock(&mddev->lock);
5388 mddev->ready = 0;
5389 mddev->pers = NULL;
5390 spin_unlock(&mddev->lock);
5391 pers->free(mddev, mddev->private);
5392 mddev->private = NULL;
5393 if (pers->sync_request && mddev->to_remove == NULL)
5394 mddev->to_remove = &md_redundancy_group;
5395 module_put(pers->owner);
5396 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5397 }
5398
5399 void md_stop(struct mddev *mddev)
5400 {
5401 /* stop the array and free an attached data structures.
5402 * This is called from dm-raid
5403 */
5404 __md_stop(mddev);
5405 bitmap_destroy(mddev);
5406 if (mddev->bio_set)
5407 bioset_free(mddev->bio_set);
5408 }
5409
5410 EXPORT_SYMBOL_GPL(md_stop);
5411
5412 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5413 {
5414 int err = 0;
5415 int did_freeze = 0;
5416
5417 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5418 did_freeze = 1;
5419 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5420 md_wakeup_thread(mddev->thread);
5421 }
5422 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5423 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5424 if (mddev->sync_thread)
5425 /* Thread might be blocked waiting for metadata update
5426 * which will now never happen */
5427 wake_up_process(mddev->sync_thread->tsk);
5428
5429 mddev_unlock(mddev);
5430 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5431 &mddev->recovery));
5432 mddev_lock_nointr(mddev);
5433
5434 mutex_lock(&mddev->open_mutex);
5435 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5436 mddev->sync_thread ||
5437 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5438 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5439 printk("md: %s still in use.\n",mdname(mddev));
5440 if (did_freeze) {
5441 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5442 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5443 md_wakeup_thread(mddev->thread);
5444 }
5445 err = -EBUSY;
5446 goto out;
5447 }
5448 if (mddev->pers) {
5449 __md_stop_writes(mddev);
5450
5451 err = -ENXIO;
5452 if (mddev->ro==1)
5453 goto out;
5454 mddev->ro = 1;
5455 set_disk_ro(mddev->gendisk, 1);
5456 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5457 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5458 md_wakeup_thread(mddev->thread);
5459 sysfs_notify_dirent_safe(mddev->sysfs_state);
5460 err = 0;
5461 }
5462 out:
5463 mutex_unlock(&mddev->open_mutex);
5464 return err;
5465 }
5466
5467 /* mode:
5468 * 0 - completely stop and dis-assemble array
5469 * 2 - stop but do not disassemble array
5470 */
5471 static int do_md_stop(struct mddev *mddev, int mode,
5472 struct block_device *bdev)
5473 {
5474 struct gendisk *disk = mddev->gendisk;
5475 struct md_rdev *rdev;
5476 int did_freeze = 0;
5477
5478 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5479 did_freeze = 1;
5480 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5481 md_wakeup_thread(mddev->thread);
5482 }
5483 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5484 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5485 if (mddev->sync_thread)
5486 /* Thread might be blocked waiting for metadata update
5487 * which will now never happen */
5488 wake_up_process(mddev->sync_thread->tsk);
5489
5490 mddev_unlock(mddev);
5491 wait_event(resync_wait, (mddev->sync_thread == NULL &&
5492 !test_bit(MD_RECOVERY_RUNNING,
5493 &mddev->recovery)));
5494 mddev_lock_nointr(mddev);
5495
5496 mutex_lock(&mddev->open_mutex);
5497 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5498 mddev->sysfs_active ||
5499 mddev->sync_thread ||
5500 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5501 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5502 printk("md: %s still in use.\n",mdname(mddev));
5503 mutex_unlock(&mddev->open_mutex);
5504 if (did_freeze) {
5505 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5506 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5507 md_wakeup_thread(mddev->thread);
5508 }
5509 return -EBUSY;
5510 }
5511 if (mddev->pers) {
5512 if (mddev->ro)
5513 set_disk_ro(disk, 0);
5514
5515 __md_stop_writes(mddev);
5516 __md_stop(mddev);
5517 mddev->queue->merge_bvec_fn = NULL;
5518 mddev->queue->backing_dev_info.congested_fn = NULL;
5519
5520 /* tell userspace to handle 'inactive' */
5521 sysfs_notify_dirent_safe(mddev->sysfs_state);
5522
5523 rdev_for_each(rdev, mddev)
5524 if (rdev->raid_disk >= 0)
5525 sysfs_unlink_rdev(mddev, rdev);
5526
5527 set_capacity(disk, 0);
5528 mutex_unlock(&mddev->open_mutex);
5529 mddev->changed = 1;
5530 revalidate_disk(disk);
5531
5532 if (mddev->ro)
5533 mddev->ro = 0;
5534 } else
5535 mutex_unlock(&mddev->open_mutex);
5536 /*
5537 * Free resources if final stop
5538 */
5539 if (mode == 0) {
5540 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5541
5542 bitmap_destroy(mddev);
5543 if (mddev->bitmap_info.file) {
5544 struct file *f = mddev->bitmap_info.file;
5545 spin_lock(&mddev->lock);
5546 mddev->bitmap_info.file = NULL;
5547 spin_unlock(&mddev->lock);
5548 fput(f);
5549 }
5550 mddev->bitmap_info.offset = 0;
5551
5552 export_array(mddev);
5553
5554 md_clean(mddev);
5555 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5556 if (mddev->hold_active == UNTIL_STOP)
5557 mddev->hold_active = 0;
5558 }
5559 blk_integrity_unregister(disk);
5560 md_new_event(mddev);
5561 sysfs_notify_dirent_safe(mddev->sysfs_state);
5562 return 0;
5563 }
5564
5565 #ifndef MODULE
5566 static void autorun_array(struct mddev *mddev)
5567 {
5568 struct md_rdev *rdev;
5569 int err;
5570
5571 if (list_empty(&mddev->disks))
5572 return;
5573
5574 printk(KERN_INFO "md: running: ");
5575
5576 rdev_for_each(rdev, mddev) {
5577 char b[BDEVNAME_SIZE];
5578 printk("<%s>", bdevname(rdev->bdev,b));
5579 }
5580 printk("\n");
5581
5582 err = do_md_run(mddev);
5583 if (err) {
5584 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5585 do_md_stop(mddev, 0, NULL);
5586 }
5587 }
5588
5589 /*
5590 * lets try to run arrays based on all disks that have arrived
5591 * until now. (those are in pending_raid_disks)
5592 *
5593 * the method: pick the first pending disk, collect all disks with
5594 * the same UUID, remove all from the pending list and put them into
5595 * the 'same_array' list. Then order this list based on superblock
5596 * update time (freshest comes first), kick out 'old' disks and
5597 * compare superblocks. If everything's fine then run it.
5598 *
5599 * If "unit" is allocated, then bump its reference count
5600 */
5601 static void autorun_devices(int part)
5602 {
5603 struct md_rdev *rdev0, *rdev, *tmp;
5604 struct mddev *mddev;
5605 char b[BDEVNAME_SIZE];
5606
5607 printk(KERN_INFO "md: autorun ...\n");
5608 while (!list_empty(&pending_raid_disks)) {
5609 int unit;
5610 dev_t dev;
5611 LIST_HEAD(candidates);
5612 rdev0 = list_entry(pending_raid_disks.next,
5613 struct md_rdev, same_set);
5614
5615 printk(KERN_INFO "md: considering %s ...\n",
5616 bdevname(rdev0->bdev,b));
5617 INIT_LIST_HEAD(&candidates);
5618 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5619 if (super_90_load(rdev, rdev0, 0) >= 0) {
5620 printk(KERN_INFO "md: adding %s ...\n",
5621 bdevname(rdev->bdev,b));
5622 list_move(&rdev->same_set, &candidates);
5623 }
5624 /*
5625 * now we have a set of devices, with all of them having
5626 * mostly sane superblocks. It's time to allocate the
5627 * mddev.
5628 */
5629 if (part) {
5630 dev = MKDEV(mdp_major,
5631 rdev0->preferred_minor << MdpMinorShift);
5632 unit = MINOR(dev) >> MdpMinorShift;
5633 } else {
5634 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5635 unit = MINOR(dev);
5636 }
5637 if (rdev0->preferred_minor != unit) {
5638 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5639 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5640 break;
5641 }
5642
5643 md_probe(dev, NULL, NULL);
5644 mddev = mddev_find(dev);
5645 if (!mddev || !mddev->gendisk) {
5646 if (mddev)
5647 mddev_put(mddev);
5648 printk(KERN_ERR
5649 "md: cannot allocate memory for md drive.\n");
5650 break;
5651 }
5652 if (mddev_lock(mddev))
5653 printk(KERN_WARNING "md: %s locked, cannot run\n",
5654 mdname(mddev));
5655 else if (mddev->raid_disks || mddev->major_version
5656 || !list_empty(&mddev->disks)) {
5657 printk(KERN_WARNING
5658 "md: %s already running, cannot run %s\n",
5659 mdname(mddev), bdevname(rdev0->bdev,b));
5660 mddev_unlock(mddev);
5661 } else {
5662 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5663 mddev->persistent = 1;
5664 rdev_for_each_list(rdev, tmp, &candidates) {
5665 list_del_init(&rdev->same_set);
5666 if (bind_rdev_to_array(rdev, mddev))
5667 export_rdev(rdev);
5668 }
5669 autorun_array(mddev);
5670 mddev_unlock(mddev);
5671 }
5672 /* on success, candidates will be empty, on error
5673 * it won't...
5674 */
5675 rdev_for_each_list(rdev, tmp, &candidates) {
5676 list_del_init(&rdev->same_set);
5677 export_rdev(rdev);
5678 }
5679 mddev_put(mddev);
5680 }
5681 printk(KERN_INFO "md: ... autorun DONE.\n");
5682 }
5683 #endif /* !MODULE */
5684
5685 static int get_version(void __user *arg)
5686 {
5687 mdu_version_t ver;
5688
5689 ver.major = MD_MAJOR_VERSION;
5690 ver.minor = MD_MINOR_VERSION;
5691 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5692
5693 if (copy_to_user(arg, &ver, sizeof(ver)))
5694 return -EFAULT;
5695
5696 return 0;
5697 }
5698
5699 static int get_array_info(struct mddev *mddev, void __user *arg)
5700 {
5701 mdu_array_info_t info;
5702 int nr,working,insync,failed,spare;
5703 struct md_rdev *rdev;
5704
5705 nr = working = insync = failed = spare = 0;
5706 rcu_read_lock();
5707 rdev_for_each_rcu(rdev, mddev) {
5708 nr++;
5709 if (test_bit(Faulty, &rdev->flags))
5710 failed++;
5711 else {
5712 working++;
5713 if (test_bit(In_sync, &rdev->flags))
5714 insync++;
5715 else
5716 spare++;
5717 }
5718 }
5719 rcu_read_unlock();
5720
5721 info.major_version = mddev->major_version;
5722 info.minor_version = mddev->minor_version;
5723 info.patch_version = MD_PATCHLEVEL_VERSION;
5724 info.ctime = mddev->ctime;
5725 info.level = mddev->level;
5726 info.size = mddev->dev_sectors / 2;
5727 if (info.size != mddev->dev_sectors / 2) /* overflow */
5728 info.size = -1;
5729 info.nr_disks = nr;
5730 info.raid_disks = mddev->raid_disks;
5731 info.md_minor = mddev->md_minor;
5732 info.not_persistent= !mddev->persistent;
5733
5734 info.utime = mddev->utime;
5735 info.state = 0;
5736 if (mddev->in_sync)
5737 info.state = (1<<MD_SB_CLEAN);
5738 if (mddev->bitmap && mddev->bitmap_info.offset)
5739 info.state |= (1<<MD_SB_BITMAP_PRESENT);
5740 if (mddev_is_clustered(mddev))
5741 info.state |= (1<<MD_SB_CLUSTERED);
5742 info.active_disks = insync;
5743 info.working_disks = working;
5744 info.failed_disks = failed;
5745 info.spare_disks = spare;
5746
5747 info.layout = mddev->layout;
5748 info.chunk_size = mddev->chunk_sectors << 9;
5749
5750 if (copy_to_user(arg, &info, sizeof(info)))
5751 return -EFAULT;
5752
5753 return 0;
5754 }
5755
5756 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5757 {
5758 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5759 char *ptr;
5760 int err;
5761
5762 file = kzalloc(sizeof(*file), GFP_NOIO);
5763 if (!file)
5764 return -ENOMEM;
5765
5766 err = 0;
5767 spin_lock(&mddev->lock);
5768 /* bitmap disabled, zero the first byte and copy out */
5769 if (!mddev->bitmap_info.file)
5770 file->pathname[0] = '\0';
5771 else if ((ptr = file_path(mddev->bitmap_info.file,
5772 file->pathname, sizeof(file->pathname))),
5773 IS_ERR(ptr))
5774 err = PTR_ERR(ptr);
5775 else
5776 memmove(file->pathname, ptr,
5777 sizeof(file->pathname)-(ptr-file->pathname));
5778 spin_unlock(&mddev->lock);
5779
5780 if (err == 0 &&
5781 copy_to_user(arg, file, sizeof(*file)))
5782 err = -EFAULT;
5783
5784 kfree(file);
5785 return err;
5786 }
5787
5788 static int get_disk_info(struct mddev *mddev, void __user * arg)
5789 {
5790 mdu_disk_info_t info;
5791 struct md_rdev *rdev;
5792
5793 if (copy_from_user(&info, arg, sizeof(info)))
5794 return -EFAULT;
5795
5796 rcu_read_lock();
5797 rdev = md_find_rdev_nr_rcu(mddev, info.number);
5798 if (rdev) {
5799 info.major = MAJOR(rdev->bdev->bd_dev);
5800 info.minor = MINOR(rdev->bdev->bd_dev);
5801 info.raid_disk = rdev->raid_disk;
5802 info.state = 0;
5803 if (test_bit(Faulty, &rdev->flags))
5804 info.state |= (1<<MD_DISK_FAULTY);
5805 else if (test_bit(In_sync, &rdev->flags)) {
5806 info.state |= (1<<MD_DISK_ACTIVE);
5807 info.state |= (1<<MD_DISK_SYNC);
5808 }
5809 if (test_bit(WriteMostly, &rdev->flags))
5810 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5811 } else {
5812 info.major = info.minor = 0;
5813 info.raid_disk = -1;
5814 info.state = (1<<MD_DISK_REMOVED);
5815 }
5816 rcu_read_unlock();
5817
5818 if (copy_to_user(arg, &info, sizeof(info)))
5819 return -EFAULT;
5820
5821 return 0;
5822 }
5823
5824 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5825 {
5826 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5827 struct md_rdev *rdev;
5828 dev_t dev = MKDEV(info->major,info->minor);
5829
5830 if (mddev_is_clustered(mddev) &&
5831 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
5832 pr_err("%s: Cannot add to clustered mddev.\n",
5833 mdname(mddev));
5834 return -EINVAL;
5835 }
5836
5837 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5838 return -EOVERFLOW;
5839
5840 if (!mddev->raid_disks) {
5841 int err;
5842 /* expecting a device which has a superblock */
5843 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5844 if (IS_ERR(rdev)) {
5845 printk(KERN_WARNING
5846 "md: md_import_device returned %ld\n",
5847 PTR_ERR(rdev));
5848 return PTR_ERR(rdev);
5849 }
5850 if (!list_empty(&mddev->disks)) {
5851 struct md_rdev *rdev0
5852 = list_entry(mddev->disks.next,
5853 struct md_rdev, same_set);
5854 err = super_types[mddev->major_version]
5855 .load_super(rdev, rdev0, mddev->minor_version);
5856 if (err < 0) {
5857 printk(KERN_WARNING
5858 "md: %s has different UUID to %s\n",
5859 bdevname(rdev->bdev,b),
5860 bdevname(rdev0->bdev,b2));
5861 export_rdev(rdev);
5862 return -EINVAL;
5863 }
5864 }
5865 err = bind_rdev_to_array(rdev, mddev);
5866 if (err)
5867 export_rdev(rdev);
5868 return err;
5869 }
5870
5871 /*
5872 * add_new_disk can be used once the array is assembled
5873 * to add "hot spares". They must already have a superblock
5874 * written
5875 */
5876 if (mddev->pers) {
5877 int err;
5878 if (!mddev->pers->hot_add_disk) {
5879 printk(KERN_WARNING
5880 "%s: personality does not support diskops!\n",
5881 mdname(mddev));
5882 return -EINVAL;
5883 }
5884 if (mddev->persistent)
5885 rdev = md_import_device(dev, mddev->major_version,
5886 mddev->minor_version);
5887 else
5888 rdev = md_import_device(dev, -1, -1);
5889 if (IS_ERR(rdev)) {
5890 printk(KERN_WARNING
5891 "md: md_import_device returned %ld\n",
5892 PTR_ERR(rdev));
5893 return PTR_ERR(rdev);
5894 }
5895 /* set saved_raid_disk if appropriate */
5896 if (!mddev->persistent) {
5897 if (info->state & (1<<MD_DISK_SYNC) &&
5898 info->raid_disk < mddev->raid_disks) {
5899 rdev->raid_disk = info->raid_disk;
5900 set_bit(In_sync, &rdev->flags);
5901 clear_bit(Bitmap_sync, &rdev->flags);
5902 } else
5903 rdev->raid_disk = -1;
5904 rdev->saved_raid_disk = rdev->raid_disk;
5905 } else
5906 super_types[mddev->major_version].
5907 validate_super(mddev, rdev);
5908 if ((info->state & (1<<MD_DISK_SYNC)) &&
5909 rdev->raid_disk != info->raid_disk) {
5910 /* This was a hot-add request, but events doesn't
5911 * match, so reject it.
5912 */
5913 export_rdev(rdev);
5914 return -EINVAL;
5915 }
5916
5917 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5918 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5919 set_bit(WriteMostly, &rdev->flags);
5920 else
5921 clear_bit(WriteMostly, &rdev->flags);
5922
5923 /*
5924 * check whether the device shows up in other nodes
5925 */
5926 if (mddev_is_clustered(mddev)) {
5927 if (info->state & (1 << MD_DISK_CANDIDATE)) {
5928 /* Through --cluster-confirm */
5929 set_bit(Candidate, &rdev->flags);
5930 err = md_cluster_ops->new_disk_ack(mddev, true);
5931 if (err) {
5932 export_rdev(rdev);
5933 return err;
5934 }
5935 } else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
5936 /* --add initiated by this node */
5937 err = md_cluster_ops->add_new_disk_start(mddev, rdev);
5938 if (err) {
5939 md_cluster_ops->add_new_disk_finish(mddev);
5940 export_rdev(rdev);
5941 return err;
5942 }
5943 }
5944 }
5945
5946 rdev->raid_disk = -1;
5947 err = bind_rdev_to_array(rdev, mddev);
5948 if (err)
5949 export_rdev(rdev);
5950 else
5951 err = add_bound_rdev(rdev);
5952 if (mddev_is_clustered(mddev) &&
5953 (info->state & (1 << MD_DISK_CLUSTER_ADD)))
5954 md_cluster_ops->add_new_disk_finish(mddev);
5955 return err;
5956 }
5957
5958 /* otherwise, add_new_disk is only allowed
5959 * for major_version==0 superblocks
5960 */
5961 if (mddev->major_version != 0) {
5962 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5963 mdname(mddev));
5964 return -EINVAL;
5965 }
5966
5967 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5968 int err;
5969 rdev = md_import_device(dev, -1, 0);
5970 if (IS_ERR(rdev)) {
5971 printk(KERN_WARNING
5972 "md: error, md_import_device() returned %ld\n",
5973 PTR_ERR(rdev));
5974 return PTR_ERR(rdev);
5975 }
5976 rdev->desc_nr = info->number;
5977 if (info->raid_disk < mddev->raid_disks)
5978 rdev->raid_disk = info->raid_disk;
5979 else
5980 rdev->raid_disk = -1;
5981
5982 if (rdev->raid_disk < mddev->raid_disks)
5983 if (info->state & (1<<MD_DISK_SYNC))
5984 set_bit(In_sync, &rdev->flags);
5985
5986 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5987 set_bit(WriteMostly, &rdev->flags);
5988
5989 if (!mddev->persistent) {
5990 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5991 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5992 } else
5993 rdev->sb_start = calc_dev_sboffset(rdev);
5994 rdev->sectors = rdev->sb_start;
5995
5996 err = bind_rdev_to_array(rdev, mddev);
5997 if (err) {
5998 export_rdev(rdev);
5999 return err;
6000 }
6001 }
6002
6003 return 0;
6004 }
6005
6006 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6007 {
6008 char b[BDEVNAME_SIZE];
6009 struct md_rdev *rdev;
6010
6011 rdev = find_rdev(mddev, dev);
6012 if (!rdev)
6013 return -ENXIO;
6014
6015 if (mddev_is_clustered(mddev))
6016 md_cluster_ops->metadata_update_start(mddev);
6017
6018 clear_bit(Blocked, &rdev->flags);
6019 remove_and_add_spares(mddev, rdev);
6020
6021 if (rdev->raid_disk >= 0)
6022 goto busy;
6023
6024 if (mddev_is_clustered(mddev))
6025 md_cluster_ops->remove_disk(mddev, rdev);
6026
6027 md_kick_rdev_from_array(rdev);
6028 md_update_sb(mddev, 1);
6029 md_new_event(mddev);
6030
6031 if (mddev_is_clustered(mddev))
6032 md_cluster_ops->metadata_update_finish(mddev);
6033
6034 return 0;
6035 busy:
6036 if (mddev_is_clustered(mddev))
6037 md_cluster_ops->metadata_update_cancel(mddev);
6038 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
6039 bdevname(rdev->bdev,b), mdname(mddev));
6040 return -EBUSY;
6041 }
6042
6043 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6044 {
6045 char b[BDEVNAME_SIZE];
6046 int err;
6047 struct md_rdev *rdev;
6048
6049 if (!mddev->pers)
6050 return -ENODEV;
6051
6052 if (mddev->major_version != 0) {
6053 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
6054 " version-0 superblocks.\n",
6055 mdname(mddev));
6056 return -EINVAL;
6057 }
6058 if (!mddev->pers->hot_add_disk) {
6059 printk(KERN_WARNING
6060 "%s: personality does not support diskops!\n",
6061 mdname(mddev));
6062 return -EINVAL;
6063 }
6064
6065 rdev = md_import_device(dev, -1, 0);
6066 if (IS_ERR(rdev)) {
6067 printk(KERN_WARNING
6068 "md: error, md_import_device() returned %ld\n",
6069 PTR_ERR(rdev));
6070 return -EINVAL;
6071 }
6072
6073 if (mddev->persistent)
6074 rdev->sb_start = calc_dev_sboffset(rdev);
6075 else
6076 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6077
6078 rdev->sectors = rdev->sb_start;
6079
6080 if (test_bit(Faulty, &rdev->flags)) {
6081 printk(KERN_WARNING
6082 "md: can not hot-add faulty %s disk to %s!\n",
6083 bdevname(rdev->bdev,b), mdname(mddev));
6084 err = -EINVAL;
6085 goto abort_export;
6086 }
6087
6088 if (mddev_is_clustered(mddev))
6089 md_cluster_ops->metadata_update_start(mddev);
6090 clear_bit(In_sync, &rdev->flags);
6091 rdev->desc_nr = -1;
6092 rdev->saved_raid_disk = -1;
6093 err = bind_rdev_to_array(rdev, mddev);
6094 if (err)
6095 goto abort_clustered;
6096
6097 /*
6098 * The rest should better be atomic, we can have disk failures
6099 * noticed in interrupt contexts ...
6100 */
6101
6102 rdev->raid_disk = -1;
6103
6104 md_update_sb(mddev, 1);
6105
6106 if (mddev_is_clustered(mddev))
6107 md_cluster_ops->metadata_update_finish(mddev);
6108 /*
6109 * Kick recovery, maybe this spare has to be added to the
6110 * array immediately.
6111 */
6112 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6113 md_wakeup_thread(mddev->thread);
6114 md_new_event(mddev);
6115 return 0;
6116
6117 abort_clustered:
6118 if (mddev_is_clustered(mddev))
6119 md_cluster_ops->metadata_update_cancel(mddev);
6120 abort_export:
6121 export_rdev(rdev);
6122 return err;
6123 }
6124
6125 static int set_bitmap_file(struct mddev *mddev, int fd)
6126 {
6127 int err = 0;
6128
6129 if (mddev->pers) {
6130 if (!mddev->pers->quiesce || !mddev->thread)
6131 return -EBUSY;
6132 if (mddev->recovery || mddev->sync_thread)
6133 return -EBUSY;
6134 /* we should be able to change the bitmap.. */
6135 }
6136
6137 if (fd >= 0) {
6138 struct inode *inode;
6139 struct file *f;
6140
6141 if (mddev->bitmap || mddev->bitmap_info.file)
6142 return -EEXIST; /* cannot add when bitmap is present */
6143 f = fget(fd);
6144
6145 if (f == NULL) {
6146 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6147 mdname(mddev));
6148 return -EBADF;
6149 }
6150
6151 inode = f->f_mapping->host;
6152 if (!S_ISREG(inode->i_mode)) {
6153 printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
6154 mdname(mddev));
6155 err = -EBADF;
6156 } else if (!(f->f_mode & FMODE_WRITE)) {
6157 printk(KERN_ERR "%s: error: bitmap file must open for write\n",
6158 mdname(mddev));
6159 err = -EBADF;
6160 } else if (atomic_read(&inode->i_writecount) != 1) {
6161 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6162 mdname(mddev));
6163 err = -EBUSY;
6164 }
6165 if (err) {
6166 fput(f);
6167 return err;
6168 }
6169 mddev->bitmap_info.file = f;
6170 mddev->bitmap_info.offset = 0; /* file overrides offset */
6171 } else if (mddev->bitmap == NULL)
6172 return -ENOENT; /* cannot remove what isn't there */
6173 err = 0;
6174 if (mddev->pers) {
6175 mddev->pers->quiesce(mddev, 1);
6176 if (fd >= 0) {
6177 struct bitmap *bitmap;
6178
6179 bitmap = bitmap_create(mddev, -1);
6180 if (!IS_ERR(bitmap)) {
6181 mddev->bitmap = bitmap;
6182 err = bitmap_load(mddev);
6183 } else
6184 err = PTR_ERR(bitmap);
6185 }
6186 if (fd < 0 || err) {
6187 bitmap_destroy(mddev);
6188 fd = -1; /* make sure to put the file */
6189 }
6190 mddev->pers->quiesce(mddev, 0);
6191 }
6192 if (fd < 0) {
6193 struct file *f = mddev->bitmap_info.file;
6194 if (f) {
6195 spin_lock(&mddev->lock);
6196 mddev->bitmap_info.file = NULL;
6197 spin_unlock(&mddev->lock);
6198 fput(f);
6199 }
6200 }
6201
6202 return err;
6203 }
6204
6205 /*
6206 * set_array_info is used two different ways
6207 * The original usage is when creating a new array.
6208 * In this usage, raid_disks is > 0 and it together with
6209 * level, size, not_persistent,layout,chunksize determine the
6210 * shape of the array.
6211 * This will always create an array with a type-0.90.0 superblock.
6212 * The newer usage is when assembling an array.
6213 * In this case raid_disks will be 0, and the major_version field is
6214 * use to determine which style super-blocks are to be found on the devices.
6215 * The minor and patch _version numbers are also kept incase the
6216 * super_block handler wishes to interpret them.
6217 */
6218 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6219 {
6220
6221 if (info->raid_disks == 0) {
6222 /* just setting version number for superblock loading */
6223 if (info->major_version < 0 ||
6224 info->major_version >= ARRAY_SIZE(super_types) ||
6225 super_types[info->major_version].name == NULL) {
6226 /* maybe try to auto-load a module? */
6227 printk(KERN_INFO
6228 "md: superblock version %d not known\n",
6229 info->major_version);
6230 return -EINVAL;
6231 }
6232 mddev->major_version = info->major_version;
6233 mddev->minor_version = info->minor_version;
6234 mddev->patch_version = info->patch_version;
6235 mddev->persistent = !info->not_persistent;
6236 /* ensure mddev_put doesn't delete this now that there
6237 * is some minimal configuration.
6238 */
6239 mddev->ctime = get_seconds();
6240 return 0;
6241 }
6242 mddev->major_version = MD_MAJOR_VERSION;
6243 mddev->minor_version = MD_MINOR_VERSION;
6244 mddev->patch_version = MD_PATCHLEVEL_VERSION;
6245 mddev->ctime = get_seconds();
6246
6247 mddev->level = info->level;
6248 mddev->clevel[0] = 0;
6249 mddev->dev_sectors = 2 * (sector_t)info->size;
6250 mddev->raid_disks = info->raid_disks;
6251 /* don't set md_minor, it is determined by which /dev/md* was
6252 * openned
6253 */
6254 if (info->state & (1<<MD_SB_CLEAN))
6255 mddev->recovery_cp = MaxSector;
6256 else
6257 mddev->recovery_cp = 0;
6258 mddev->persistent = ! info->not_persistent;
6259 mddev->external = 0;
6260
6261 mddev->layout = info->layout;
6262 mddev->chunk_sectors = info->chunk_size >> 9;
6263
6264 mddev->max_disks = MD_SB_DISKS;
6265
6266 if (mddev->persistent)
6267 mddev->flags = 0;
6268 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6269
6270 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6271 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6272 mddev->bitmap_info.offset = 0;
6273
6274 mddev->reshape_position = MaxSector;
6275
6276 /*
6277 * Generate a 128 bit UUID
6278 */
6279 get_random_bytes(mddev->uuid, 16);
6280
6281 mddev->new_level = mddev->level;
6282 mddev->new_chunk_sectors = mddev->chunk_sectors;
6283 mddev->new_layout = mddev->layout;
6284 mddev->delta_disks = 0;
6285 mddev->reshape_backwards = 0;
6286
6287 return 0;
6288 }
6289
6290 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6291 {
6292 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6293
6294 if (mddev->external_size)
6295 return;
6296
6297 mddev->array_sectors = array_sectors;
6298 }
6299 EXPORT_SYMBOL(md_set_array_sectors);
6300
6301 static int update_size(struct mddev *mddev, sector_t num_sectors)
6302 {
6303 struct md_rdev *rdev;
6304 int rv;
6305 int fit = (num_sectors == 0);
6306
6307 if (mddev->pers->resize == NULL)
6308 return -EINVAL;
6309 /* The "num_sectors" is the number of sectors of each device that
6310 * is used. This can only make sense for arrays with redundancy.
6311 * linear and raid0 always use whatever space is available. We can only
6312 * consider changing this number if no resync or reconstruction is
6313 * happening, and if the new size is acceptable. It must fit before the
6314 * sb_start or, if that is <data_offset, it must fit before the size
6315 * of each device. If num_sectors is zero, we find the largest size
6316 * that fits.
6317 */
6318 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6319 mddev->sync_thread)
6320 return -EBUSY;
6321 if (mddev->ro)
6322 return -EROFS;
6323
6324 rdev_for_each(rdev, mddev) {
6325 sector_t avail = rdev->sectors;
6326
6327 if (fit && (num_sectors == 0 || num_sectors > avail))
6328 num_sectors = avail;
6329 if (avail < num_sectors)
6330 return -ENOSPC;
6331 }
6332 rv = mddev->pers->resize(mddev, num_sectors);
6333 if (!rv)
6334 revalidate_disk(mddev->gendisk);
6335 return rv;
6336 }
6337
6338 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6339 {
6340 int rv;
6341 struct md_rdev *rdev;
6342 /* change the number of raid disks */
6343 if (mddev->pers->check_reshape == NULL)
6344 return -EINVAL;
6345 if (mddev->ro)
6346 return -EROFS;
6347 if (raid_disks <= 0 ||
6348 (mddev->max_disks && raid_disks >= mddev->max_disks))
6349 return -EINVAL;
6350 if (mddev->sync_thread ||
6351 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6352 mddev->reshape_position != MaxSector)
6353 return -EBUSY;
6354
6355 rdev_for_each(rdev, mddev) {
6356 if (mddev->raid_disks < raid_disks &&
6357 rdev->data_offset < rdev->new_data_offset)
6358 return -EINVAL;
6359 if (mddev->raid_disks > raid_disks &&
6360 rdev->data_offset > rdev->new_data_offset)
6361 return -EINVAL;
6362 }
6363
6364 mddev->delta_disks = raid_disks - mddev->raid_disks;
6365 if (mddev->delta_disks < 0)
6366 mddev->reshape_backwards = 1;
6367 else if (mddev->delta_disks > 0)
6368 mddev->reshape_backwards = 0;
6369
6370 rv = mddev->pers->check_reshape(mddev);
6371 if (rv < 0) {
6372 mddev->delta_disks = 0;
6373 mddev->reshape_backwards = 0;
6374 }
6375 return rv;
6376 }
6377
6378 /*
6379 * update_array_info is used to change the configuration of an
6380 * on-line array.
6381 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6382 * fields in the info are checked against the array.
6383 * Any differences that cannot be handled will cause an error.
6384 * Normally, only one change can be managed at a time.
6385 */
6386 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6387 {
6388 int rv = 0;
6389 int cnt = 0;
6390 int state = 0;
6391
6392 /* calculate expected state,ignoring low bits */
6393 if (mddev->bitmap && mddev->bitmap_info.offset)
6394 state |= (1 << MD_SB_BITMAP_PRESENT);
6395
6396 if (mddev->major_version != info->major_version ||
6397 mddev->minor_version != info->minor_version ||
6398 /* mddev->patch_version != info->patch_version || */
6399 mddev->ctime != info->ctime ||
6400 mddev->level != info->level ||
6401 /* mddev->layout != info->layout || */
6402 mddev->persistent != !info->not_persistent ||
6403 mddev->chunk_sectors != info->chunk_size >> 9 ||
6404 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6405 ((state^info->state) & 0xfffffe00)
6406 )
6407 return -EINVAL;
6408 /* Check there is only one change */
6409 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6410 cnt++;
6411 if (mddev->raid_disks != info->raid_disks)
6412 cnt++;
6413 if (mddev->layout != info->layout)
6414 cnt++;
6415 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6416 cnt++;
6417 if (cnt == 0)
6418 return 0;
6419 if (cnt > 1)
6420 return -EINVAL;
6421
6422 if (mddev->layout != info->layout) {
6423 /* Change layout
6424 * we don't need to do anything at the md level, the
6425 * personality will take care of it all.
6426 */
6427 if (mddev->pers->check_reshape == NULL)
6428 return -EINVAL;
6429 else {
6430 mddev->new_layout = info->layout;
6431 rv = mddev->pers->check_reshape(mddev);
6432 if (rv)
6433 mddev->new_layout = mddev->layout;
6434 return rv;
6435 }
6436 }
6437 if (mddev_is_clustered(mddev))
6438 md_cluster_ops->metadata_update_start(mddev);
6439 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6440 rv = update_size(mddev, (sector_t)info->size * 2);
6441
6442 if (mddev->raid_disks != info->raid_disks)
6443 rv = update_raid_disks(mddev, info->raid_disks);
6444
6445 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6446 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6447 rv = -EINVAL;
6448 goto err;
6449 }
6450 if (mddev->recovery || mddev->sync_thread) {
6451 rv = -EBUSY;
6452 goto err;
6453 }
6454 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6455 struct bitmap *bitmap;
6456 /* add the bitmap */
6457 if (mddev->bitmap) {
6458 rv = -EEXIST;
6459 goto err;
6460 }
6461 if (mddev->bitmap_info.default_offset == 0) {
6462 rv = -EINVAL;
6463 goto err;
6464 }
6465 mddev->bitmap_info.offset =
6466 mddev->bitmap_info.default_offset;
6467 mddev->bitmap_info.space =
6468 mddev->bitmap_info.default_space;
6469 mddev->pers->quiesce(mddev, 1);
6470 bitmap = bitmap_create(mddev, -1);
6471 if (!IS_ERR(bitmap)) {
6472 mddev->bitmap = bitmap;
6473 rv = bitmap_load(mddev);
6474 } else
6475 rv = PTR_ERR(bitmap);
6476 if (rv)
6477 bitmap_destroy(mddev);
6478 mddev->pers->quiesce(mddev, 0);
6479 } else {
6480 /* remove the bitmap */
6481 if (!mddev->bitmap) {
6482 rv = -ENOENT;
6483 goto err;
6484 }
6485 if (mddev->bitmap->storage.file) {
6486 rv = -EINVAL;
6487 goto err;
6488 }
6489 mddev->pers->quiesce(mddev, 1);
6490 bitmap_destroy(mddev);
6491 mddev->pers->quiesce(mddev, 0);
6492 mddev->bitmap_info.offset = 0;
6493 }
6494 }
6495 md_update_sb(mddev, 1);
6496 if (mddev_is_clustered(mddev))
6497 md_cluster_ops->metadata_update_finish(mddev);
6498 return rv;
6499 err:
6500 if (mddev_is_clustered(mddev))
6501 md_cluster_ops->metadata_update_cancel(mddev);
6502 return rv;
6503 }
6504
6505 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6506 {
6507 struct md_rdev *rdev;
6508 int err = 0;
6509
6510 if (mddev->pers == NULL)
6511 return -ENODEV;
6512
6513 rcu_read_lock();
6514 rdev = find_rdev_rcu(mddev, dev);
6515 if (!rdev)
6516 err = -ENODEV;
6517 else {
6518 md_error(mddev, rdev);
6519 if (!test_bit(Faulty, &rdev->flags))
6520 err = -EBUSY;
6521 }
6522 rcu_read_unlock();
6523 return err;
6524 }
6525
6526 /*
6527 * We have a problem here : there is no easy way to give a CHS
6528 * virtual geometry. We currently pretend that we have a 2 heads
6529 * 4 sectors (with a BIG number of cylinders...). This drives
6530 * dosfs just mad... ;-)
6531 */
6532 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6533 {
6534 struct mddev *mddev = bdev->bd_disk->private_data;
6535
6536 geo->heads = 2;
6537 geo->sectors = 4;
6538 geo->cylinders = mddev->array_sectors / 8;
6539 return 0;
6540 }
6541
6542 static inline bool md_ioctl_valid(unsigned int cmd)
6543 {
6544 switch (cmd) {
6545 case ADD_NEW_DISK:
6546 case BLKROSET:
6547 case GET_ARRAY_INFO:
6548 case GET_BITMAP_FILE:
6549 case GET_DISK_INFO:
6550 case HOT_ADD_DISK:
6551 case HOT_REMOVE_DISK:
6552 case RAID_AUTORUN:
6553 case RAID_VERSION:
6554 case RESTART_ARRAY_RW:
6555 case RUN_ARRAY:
6556 case SET_ARRAY_INFO:
6557 case SET_BITMAP_FILE:
6558 case SET_DISK_FAULTY:
6559 case STOP_ARRAY:
6560 case STOP_ARRAY_RO:
6561 case CLUSTERED_DISK_NACK:
6562 return true;
6563 default:
6564 return false;
6565 }
6566 }
6567
6568 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6569 unsigned int cmd, unsigned long arg)
6570 {
6571 int err = 0;
6572 void __user *argp = (void __user *)arg;
6573 struct mddev *mddev = NULL;
6574 int ro;
6575
6576 if (!md_ioctl_valid(cmd))
6577 return -ENOTTY;
6578
6579 switch (cmd) {
6580 case RAID_VERSION:
6581 case GET_ARRAY_INFO:
6582 case GET_DISK_INFO:
6583 break;
6584 default:
6585 if (!capable(CAP_SYS_ADMIN))
6586 return -EACCES;
6587 }
6588
6589 /*
6590 * Commands dealing with the RAID driver but not any
6591 * particular array:
6592 */
6593 switch (cmd) {
6594 case RAID_VERSION:
6595 err = get_version(argp);
6596 goto out;
6597
6598 #ifndef MODULE
6599 case RAID_AUTORUN:
6600 err = 0;
6601 autostart_arrays(arg);
6602 goto out;
6603 #endif
6604 default:;
6605 }
6606
6607 /*
6608 * Commands creating/starting a new array:
6609 */
6610
6611 mddev = bdev->bd_disk->private_data;
6612
6613 if (!mddev) {
6614 BUG();
6615 goto out;
6616 }
6617
6618 /* Some actions do not requires the mutex */
6619 switch (cmd) {
6620 case GET_ARRAY_INFO:
6621 if (!mddev->raid_disks && !mddev->external)
6622 err = -ENODEV;
6623 else
6624 err = get_array_info(mddev, argp);
6625 goto out;
6626
6627 case GET_DISK_INFO:
6628 if (!mddev->raid_disks && !mddev->external)
6629 err = -ENODEV;
6630 else
6631 err = get_disk_info(mddev, argp);
6632 goto out;
6633
6634 case SET_DISK_FAULTY:
6635 err = set_disk_faulty(mddev, new_decode_dev(arg));
6636 goto out;
6637
6638 case GET_BITMAP_FILE:
6639 err = get_bitmap_file(mddev, argp);
6640 goto out;
6641
6642 }
6643
6644 if (cmd == ADD_NEW_DISK)
6645 /* need to ensure md_delayed_delete() has completed */
6646 flush_workqueue(md_misc_wq);
6647
6648 if (cmd == HOT_REMOVE_DISK)
6649 /* need to ensure recovery thread has run */
6650 wait_event_interruptible_timeout(mddev->sb_wait,
6651 !test_bit(MD_RECOVERY_NEEDED,
6652 &mddev->flags),
6653 msecs_to_jiffies(5000));
6654 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6655 /* Need to flush page cache, and ensure no-one else opens
6656 * and writes
6657 */
6658 mutex_lock(&mddev->open_mutex);
6659 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6660 mutex_unlock(&mddev->open_mutex);
6661 err = -EBUSY;
6662 goto out;
6663 }
6664 set_bit(MD_STILL_CLOSED, &mddev->flags);
6665 mutex_unlock(&mddev->open_mutex);
6666 sync_blockdev(bdev);
6667 }
6668 err = mddev_lock(mddev);
6669 if (err) {
6670 printk(KERN_INFO
6671 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6672 err, cmd);
6673 goto out;
6674 }
6675
6676 if (cmd == SET_ARRAY_INFO) {
6677 mdu_array_info_t info;
6678 if (!arg)
6679 memset(&info, 0, sizeof(info));
6680 else if (copy_from_user(&info, argp, sizeof(info))) {
6681 err = -EFAULT;
6682 goto unlock;
6683 }
6684 if (mddev->pers) {
6685 err = update_array_info(mddev, &info);
6686 if (err) {
6687 printk(KERN_WARNING "md: couldn't update"
6688 " array info. %d\n", err);
6689 goto unlock;
6690 }
6691 goto unlock;
6692 }
6693 if (!list_empty(&mddev->disks)) {
6694 printk(KERN_WARNING
6695 "md: array %s already has disks!\n",
6696 mdname(mddev));
6697 err = -EBUSY;
6698 goto unlock;
6699 }
6700 if (mddev->raid_disks) {
6701 printk(KERN_WARNING
6702 "md: array %s already initialised!\n",
6703 mdname(mddev));
6704 err = -EBUSY;
6705 goto unlock;
6706 }
6707 err = set_array_info(mddev, &info);
6708 if (err) {
6709 printk(KERN_WARNING "md: couldn't set"
6710 " array info. %d\n", err);
6711 goto unlock;
6712 }
6713 goto unlock;
6714 }
6715
6716 /*
6717 * Commands querying/configuring an existing array:
6718 */
6719 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6720 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6721 if ((!mddev->raid_disks && !mddev->external)
6722 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6723 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6724 && cmd != GET_BITMAP_FILE) {
6725 err = -ENODEV;
6726 goto unlock;
6727 }
6728
6729 /*
6730 * Commands even a read-only array can execute:
6731 */
6732 switch (cmd) {
6733 case RESTART_ARRAY_RW:
6734 err = restart_array(mddev);
6735 goto unlock;
6736
6737 case STOP_ARRAY:
6738 err = do_md_stop(mddev, 0, bdev);
6739 goto unlock;
6740
6741 case STOP_ARRAY_RO:
6742 err = md_set_readonly(mddev, bdev);
6743 goto unlock;
6744
6745 case HOT_REMOVE_DISK:
6746 err = hot_remove_disk(mddev, new_decode_dev(arg));
6747 goto unlock;
6748
6749 case ADD_NEW_DISK:
6750 /* We can support ADD_NEW_DISK on read-only arrays
6751 * on if we are re-adding a preexisting device.
6752 * So require mddev->pers and MD_DISK_SYNC.
6753 */
6754 if (mddev->pers) {
6755 mdu_disk_info_t info;
6756 if (copy_from_user(&info, argp, sizeof(info)))
6757 err = -EFAULT;
6758 else if (!(info.state & (1<<MD_DISK_SYNC)))
6759 /* Need to clear read-only for this */
6760 break;
6761 else
6762 err = add_new_disk(mddev, &info);
6763 goto unlock;
6764 }
6765 break;
6766
6767 case BLKROSET:
6768 if (get_user(ro, (int __user *)(arg))) {
6769 err = -EFAULT;
6770 goto unlock;
6771 }
6772 err = -EINVAL;
6773
6774 /* if the bdev is going readonly the value of mddev->ro
6775 * does not matter, no writes are coming
6776 */
6777 if (ro)
6778 goto unlock;
6779
6780 /* are we are already prepared for writes? */
6781 if (mddev->ro != 1)
6782 goto unlock;
6783
6784 /* transitioning to readauto need only happen for
6785 * arrays that call md_write_start
6786 */
6787 if (mddev->pers) {
6788 err = restart_array(mddev);
6789 if (err == 0) {
6790 mddev->ro = 2;
6791 set_disk_ro(mddev->gendisk, 0);
6792 }
6793 }
6794 goto unlock;
6795 }
6796
6797 /*
6798 * The remaining ioctls are changing the state of the
6799 * superblock, so we do not allow them on read-only arrays.
6800 */
6801 if (mddev->ro && mddev->pers) {
6802 if (mddev->ro == 2) {
6803 mddev->ro = 0;
6804 sysfs_notify_dirent_safe(mddev->sysfs_state);
6805 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6806 /* mddev_unlock will wake thread */
6807 /* If a device failed while we were read-only, we
6808 * need to make sure the metadata is updated now.
6809 */
6810 if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6811 mddev_unlock(mddev);
6812 wait_event(mddev->sb_wait,
6813 !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6814 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6815 mddev_lock_nointr(mddev);
6816 }
6817 } else {
6818 err = -EROFS;
6819 goto unlock;
6820 }
6821 }
6822
6823 switch (cmd) {
6824 case ADD_NEW_DISK:
6825 {
6826 mdu_disk_info_t info;
6827 if (copy_from_user(&info, argp, sizeof(info)))
6828 err = -EFAULT;
6829 else
6830 err = add_new_disk(mddev, &info);
6831 goto unlock;
6832 }
6833
6834 case CLUSTERED_DISK_NACK:
6835 if (mddev_is_clustered(mddev))
6836 md_cluster_ops->new_disk_ack(mddev, false);
6837 else
6838 err = -EINVAL;
6839 goto unlock;
6840
6841 case HOT_ADD_DISK:
6842 err = hot_add_disk(mddev, new_decode_dev(arg));
6843 goto unlock;
6844
6845 case RUN_ARRAY:
6846 err = do_md_run(mddev);
6847 goto unlock;
6848
6849 case SET_BITMAP_FILE:
6850 err = set_bitmap_file(mddev, (int)arg);
6851 goto unlock;
6852
6853 default:
6854 err = -EINVAL;
6855 goto unlock;
6856 }
6857
6858 unlock:
6859 if (mddev->hold_active == UNTIL_IOCTL &&
6860 err != -EINVAL)
6861 mddev->hold_active = 0;
6862 mddev_unlock(mddev);
6863 out:
6864 return err;
6865 }
6866 #ifdef CONFIG_COMPAT
6867 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6868 unsigned int cmd, unsigned long arg)
6869 {
6870 switch (cmd) {
6871 case HOT_REMOVE_DISK:
6872 case HOT_ADD_DISK:
6873 case SET_DISK_FAULTY:
6874 case SET_BITMAP_FILE:
6875 /* These take in integer arg, do not convert */
6876 break;
6877 default:
6878 arg = (unsigned long)compat_ptr(arg);
6879 break;
6880 }
6881
6882 return md_ioctl(bdev, mode, cmd, arg);
6883 }
6884 #endif /* CONFIG_COMPAT */
6885
6886 static int md_open(struct block_device *bdev, fmode_t mode)
6887 {
6888 /*
6889 * Succeed if we can lock the mddev, which confirms that
6890 * it isn't being stopped right now.
6891 */
6892 struct mddev *mddev = mddev_find(bdev->bd_dev);
6893 int err;
6894
6895 if (!mddev)
6896 return -ENODEV;
6897
6898 if (mddev->gendisk != bdev->bd_disk) {
6899 /* we are racing with mddev_put which is discarding this
6900 * bd_disk.
6901 */
6902 mddev_put(mddev);
6903 /* Wait until bdev->bd_disk is definitely gone */
6904 flush_workqueue(md_misc_wq);
6905 /* Then retry the open from the top */
6906 return -ERESTARTSYS;
6907 }
6908 BUG_ON(mddev != bdev->bd_disk->private_data);
6909
6910 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6911 goto out;
6912
6913 err = 0;
6914 atomic_inc(&mddev->openers);
6915 clear_bit(MD_STILL_CLOSED, &mddev->flags);
6916 mutex_unlock(&mddev->open_mutex);
6917
6918 check_disk_change(bdev);
6919 out:
6920 return err;
6921 }
6922
6923 static void md_release(struct gendisk *disk, fmode_t mode)
6924 {
6925 struct mddev *mddev = disk->private_data;
6926
6927 BUG_ON(!mddev);
6928 atomic_dec(&mddev->openers);
6929 mddev_put(mddev);
6930 }
6931
6932 static int md_media_changed(struct gendisk *disk)
6933 {
6934 struct mddev *mddev = disk->private_data;
6935
6936 return mddev->changed;
6937 }
6938
6939 static int md_revalidate(struct gendisk *disk)
6940 {
6941 struct mddev *mddev = disk->private_data;
6942
6943 mddev->changed = 0;
6944 return 0;
6945 }
6946 static const struct block_device_operations md_fops =
6947 {
6948 .owner = THIS_MODULE,
6949 .open = md_open,
6950 .release = md_release,
6951 .ioctl = md_ioctl,
6952 #ifdef CONFIG_COMPAT
6953 .compat_ioctl = md_compat_ioctl,
6954 #endif
6955 .getgeo = md_getgeo,
6956 .media_changed = md_media_changed,
6957 .revalidate_disk= md_revalidate,
6958 };
6959
6960 static int md_thread(void *arg)
6961 {
6962 struct md_thread *thread = arg;
6963
6964 /*
6965 * md_thread is a 'system-thread', it's priority should be very
6966 * high. We avoid resource deadlocks individually in each
6967 * raid personality. (RAID5 does preallocation) We also use RR and
6968 * the very same RT priority as kswapd, thus we will never get
6969 * into a priority inversion deadlock.
6970 *
6971 * we definitely have to have equal or higher priority than
6972 * bdflush, otherwise bdflush will deadlock if there are too
6973 * many dirty RAID5 blocks.
6974 */
6975
6976 allow_signal(SIGKILL);
6977 while (!kthread_should_stop()) {
6978
6979 /* We need to wait INTERRUPTIBLE so that
6980 * we don't add to the load-average.
6981 * That means we need to be sure no signals are
6982 * pending
6983 */
6984 if (signal_pending(current))
6985 flush_signals(current);
6986
6987 wait_event_interruptible_timeout
6988 (thread->wqueue,
6989 test_bit(THREAD_WAKEUP, &thread->flags)
6990 || kthread_should_stop(),
6991 thread->timeout);
6992
6993 clear_bit(THREAD_WAKEUP, &thread->flags);
6994 if (!kthread_should_stop())
6995 thread->run(thread);
6996 }
6997
6998 return 0;
6999 }
7000
7001 void md_wakeup_thread(struct md_thread *thread)
7002 {
7003 if (thread) {
7004 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7005 set_bit(THREAD_WAKEUP, &thread->flags);
7006 wake_up(&thread->wqueue);
7007 }
7008 }
7009 EXPORT_SYMBOL(md_wakeup_thread);
7010
7011 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7012 struct mddev *mddev, const char *name)
7013 {
7014 struct md_thread *thread;
7015
7016 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7017 if (!thread)
7018 return NULL;
7019
7020 init_waitqueue_head(&thread->wqueue);
7021
7022 thread->run = run;
7023 thread->mddev = mddev;
7024 thread->timeout = MAX_SCHEDULE_TIMEOUT;
7025 thread->tsk = kthread_run(md_thread, thread,
7026 "%s_%s",
7027 mdname(thread->mddev),
7028 name);
7029 if (IS_ERR(thread->tsk)) {
7030 kfree(thread);
7031 return NULL;
7032 }
7033 return thread;
7034 }
7035 EXPORT_SYMBOL(md_register_thread);
7036
7037 void md_unregister_thread(struct md_thread **threadp)
7038 {
7039 struct md_thread *thread = *threadp;
7040 if (!thread)
7041 return;
7042 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7043 /* Locking ensures that mddev_unlock does not wake_up a
7044 * non-existent thread
7045 */
7046 spin_lock(&pers_lock);
7047 *threadp = NULL;
7048 spin_unlock(&pers_lock);
7049
7050 kthread_stop(thread->tsk);
7051 kfree(thread);
7052 }
7053 EXPORT_SYMBOL(md_unregister_thread);
7054
7055 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7056 {
7057 if (!rdev || test_bit(Faulty, &rdev->flags))
7058 return;
7059
7060 if (!mddev->pers || !mddev->pers->error_handler)
7061 return;
7062 mddev->pers->error_handler(mddev,rdev);
7063 if (mddev->degraded)
7064 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7065 sysfs_notify_dirent_safe(rdev->sysfs_state);
7066 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7067 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7068 md_wakeup_thread(mddev->thread);
7069 if (mddev->event_work.func)
7070 queue_work(md_misc_wq, &mddev->event_work);
7071 md_new_event_inintr(mddev);
7072 }
7073 EXPORT_SYMBOL(md_error);
7074
7075 /* seq_file implementation /proc/mdstat */
7076
7077 static void status_unused(struct seq_file *seq)
7078 {
7079 int i = 0;
7080 struct md_rdev *rdev;
7081
7082 seq_printf(seq, "unused devices: ");
7083
7084 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7085 char b[BDEVNAME_SIZE];
7086 i++;
7087 seq_printf(seq, "%s ",
7088 bdevname(rdev->bdev,b));
7089 }
7090 if (!i)
7091 seq_printf(seq, "<none>");
7092
7093 seq_printf(seq, "\n");
7094 }
7095
7096 static void status_resync(struct seq_file *seq, struct mddev *mddev)
7097 {
7098 sector_t max_sectors, resync, res;
7099 unsigned long dt, db;
7100 sector_t rt;
7101 int scale;
7102 unsigned int per_milli;
7103
7104 if (mddev->curr_resync <= 3)
7105 resync = 0;
7106 else
7107 resync = mddev->curr_resync
7108 - atomic_read(&mddev->recovery_active);
7109
7110 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7111 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7112 max_sectors = mddev->resync_max_sectors;
7113 else
7114 max_sectors = mddev->dev_sectors;
7115
7116 WARN_ON(max_sectors == 0);
7117 /* Pick 'scale' such that (resync>>scale)*1000 will fit
7118 * in a sector_t, and (max_sectors>>scale) will fit in a
7119 * u32, as those are the requirements for sector_div.
7120 * Thus 'scale' must be at least 10
7121 */
7122 scale = 10;
7123 if (sizeof(sector_t) > sizeof(unsigned long)) {
7124 while ( max_sectors/2 > (1ULL<<(scale+32)))
7125 scale++;
7126 }
7127 res = (resync>>scale)*1000;
7128 sector_div(res, (u32)((max_sectors>>scale)+1));
7129
7130 per_milli = res;
7131 {
7132 int i, x = per_milli/50, y = 20-x;
7133 seq_printf(seq, "[");
7134 for (i = 0; i < x; i++)
7135 seq_printf(seq, "=");
7136 seq_printf(seq, ">");
7137 for (i = 0; i < y; i++)
7138 seq_printf(seq, ".");
7139 seq_printf(seq, "] ");
7140 }
7141 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7142 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7143 "reshape" :
7144 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7145 "check" :
7146 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7147 "resync" : "recovery"))),
7148 per_milli/10, per_milli % 10,
7149 (unsigned long long) resync/2,
7150 (unsigned long long) max_sectors/2);
7151
7152 /*
7153 * dt: time from mark until now
7154 * db: blocks written from mark until now
7155 * rt: remaining time
7156 *
7157 * rt is a sector_t, so could be 32bit or 64bit.
7158 * So we divide before multiply in case it is 32bit and close
7159 * to the limit.
7160 * We scale the divisor (db) by 32 to avoid losing precision
7161 * near the end of resync when the number of remaining sectors
7162 * is close to 'db'.
7163 * We then divide rt by 32 after multiplying by db to compensate.
7164 * The '+1' avoids division by zero if db is very small.
7165 */
7166 dt = ((jiffies - mddev->resync_mark) / HZ);
7167 if (!dt) dt++;
7168 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
7169 - mddev->resync_mark_cnt;
7170
7171 rt = max_sectors - resync; /* number of remaining sectors */
7172 sector_div(rt, db/32+1);
7173 rt *= dt;
7174 rt >>= 5;
7175
7176 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7177 ((unsigned long)rt % 60)/6);
7178
7179 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7180 }
7181
7182 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7183 {
7184 struct list_head *tmp;
7185 loff_t l = *pos;
7186 struct mddev *mddev;
7187
7188 if (l >= 0x10000)
7189 return NULL;
7190 if (!l--)
7191 /* header */
7192 return (void*)1;
7193
7194 spin_lock(&all_mddevs_lock);
7195 list_for_each(tmp,&all_mddevs)
7196 if (!l--) {
7197 mddev = list_entry(tmp, struct mddev, all_mddevs);
7198 mddev_get(mddev);
7199 spin_unlock(&all_mddevs_lock);
7200 return mddev;
7201 }
7202 spin_unlock(&all_mddevs_lock);
7203 if (!l--)
7204 return (void*)2;/* tail */
7205 return NULL;
7206 }
7207
7208 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7209 {
7210 struct list_head *tmp;
7211 struct mddev *next_mddev, *mddev = v;
7212
7213 ++*pos;
7214 if (v == (void*)2)
7215 return NULL;
7216
7217 spin_lock(&all_mddevs_lock);
7218 if (v == (void*)1)
7219 tmp = all_mddevs.next;
7220 else
7221 tmp = mddev->all_mddevs.next;
7222 if (tmp != &all_mddevs)
7223 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7224 else {
7225 next_mddev = (void*)2;
7226 *pos = 0x10000;
7227 }
7228 spin_unlock(&all_mddevs_lock);
7229
7230 if (v != (void*)1)
7231 mddev_put(mddev);
7232 return next_mddev;
7233
7234 }
7235
7236 static void md_seq_stop(struct seq_file *seq, void *v)
7237 {
7238 struct mddev *mddev = v;
7239
7240 if (mddev && v != (void*)1 && v != (void*)2)
7241 mddev_put(mddev);
7242 }
7243
7244 static int md_seq_show(struct seq_file *seq, void *v)
7245 {
7246 struct mddev *mddev = v;
7247 sector_t sectors;
7248 struct md_rdev *rdev;
7249
7250 if (v == (void*)1) {
7251 struct md_personality *pers;
7252 seq_printf(seq, "Personalities : ");
7253 spin_lock(&pers_lock);
7254 list_for_each_entry(pers, &pers_list, list)
7255 seq_printf(seq, "[%s] ", pers->name);
7256
7257 spin_unlock(&pers_lock);
7258 seq_printf(seq, "\n");
7259 seq->poll_event = atomic_read(&md_event_count);
7260 return 0;
7261 }
7262 if (v == (void*)2) {
7263 status_unused(seq);
7264 return 0;
7265 }
7266
7267 spin_lock(&mddev->lock);
7268 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7269 seq_printf(seq, "%s : %sactive", mdname(mddev),
7270 mddev->pers ? "" : "in");
7271 if (mddev->pers) {
7272 if (mddev->ro==1)
7273 seq_printf(seq, " (read-only)");
7274 if (mddev->ro==2)
7275 seq_printf(seq, " (auto-read-only)");
7276 seq_printf(seq, " %s", mddev->pers->name);
7277 }
7278
7279 sectors = 0;
7280 rcu_read_lock();
7281 rdev_for_each_rcu(rdev, mddev) {
7282 char b[BDEVNAME_SIZE];
7283 seq_printf(seq, " %s[%d]",
7284 bdevname(rdev->bdev,b), rdev->desc_nr);
7285 if (test_bit(WriteMostly, &rdev->flags))
7286 seq_printf(seq, "(W)");
7287 if (test_bit(Faulty, &rdev->flags)) {
7288 seq_printf(seq, "(F)");
7289 continue;
7290 }
7291 if (rdev->raid_disk < 0)
7292 seq_printf(seq, "(S)"); /* spare */
7293 if (test_bit(Replacement, &rdev->flags))
7294 seq_printf(seq, "(R)");
7295 sectors += rdev->sectors;
7296 }
7297 rcu_read_unlock();
7298
7299 if (!list_empty(&mddev->disks)) {
7300 if (mddev->pers)
7301 seq_printf(seq, "\n %llu blocks",
7302 (unsigned long long)
7303 mddev->array_sectors / 2);
7304 else
7305 seq_printf(seq, "\n %llu blocks",
7306 (unsigned long long)sectors / 2);
7307 }
7308 if (mddev->persistent) {
7309 if (mddev->major_version != 0 ||
7310 mddev->minor_version != 90) {
7311 seq_printf(seq," super %d.%d",
7312 mddev->major_version,
7313 mddev->minor_version);
7314 }
7315 } else if (mddev->external)
7316 seq_printf(seq, " super external:%s",
7317 mddev->metadata_type);
7318 else
7319 seq_printf(seq, " super non-persistent");
7320
7321 if (mddev->pers) {
7322 mddev->pers->status(seq, mddev);
7323 seq_printf(seq, "\n ");
7324 if (mddev->pers->sync_request) {
7325 if (mddev->curr_resync > 2) {
7326 status_resync(seq, mddev);
7327 seq_printf(seq, "\n ");
7328 } else if (mddev->curr_resync >= 1)
7329 seq_printf(seq, "\tresync=DELAYED\n ");
7330 else if (mddev->recovery_cp < MaxSector)
7331 seq_printf(seq, "\tresync=PENDING\n ");
7332 }
7333 } else
7334 seq_printf(seq, "\n ");
7335
7336 bitmap_status(seq, mddev->bitmap);
7337
7338 seq_printf(seq, "\n");
7339 }
7340 spin_unlock(&mddev->lock);
7341
7342 return 0;
7343 }
7344
7345 static const struct seq_operations md_seq_ops = {
7346 .start = md_seq_start,
7347 .next = md_seq_next,
7348 .stop = md_seq_stop,
7349 .show = md_seq_show,
7350 };
7351
7352 static int md_seq_open(struct inode *inode, struct file *file)
7353 {
7354 struct seq_file *seq;
7355 int error;
7356
7357 error = seq_open(file, &md_seq_ops);
7358 if (error)
7359 return error;
7360
7361 seq = file->private_data;
7362 seq->poll_event = atomic_read(&md_event_count);
7363 return error;
7364 }
7365
7366 static int md_unloading;
7367 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7368 {
7369 struct seq_file *seq = filp->private_data;
7370 int mask;
7371
7372 if (md_unloading)
7373 return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7374 poll_wait(filp, &md_event_waiters, wait);
7375
7376 /* always allow read */
7377 mask = POLLIN | POLLRDNORM;
7378
7379 if (seq->poll_event != atomic_read(&md_event_count))
7380 mask |= POLLERR | POLLPRI;
7381 return mask;
7382 }
7383
7384 static const struct file_operations md_seq_fops = {
7385 .owner = THIS_MODULE,
7386 .open = md_seq_open,
7387 .read = seq_read,
7388 .llseek = seq_lseek,
7389 .release = seq_release_private,
7390 .poll = mdstat_poll,
7391 };
7392
7393 int register_md_personality(struct md_personality *p)
7394 {
7395 printk(KERN_INFO "md: %s personality registered for level %d\n",
7396 p->name, p->level);
7397 spin_lock(&pers_lock);
7398 list_add_tail(&p->list, &pers_list);
7399 spin_unlock(&pers_lock);
7400 return 0;
7401 }
7402 EXPORT_SYMBOL(register_md_personality);
7403
7404 int unregister_md_personality(struct md_personality *p)
7405 {
7406 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7407 spin_lock(&pers_lock);
7408 list_del_init(&p->list);
7409 spin_unlock(&pers_lock);
7410 return 0;
7411 }
7412 EXPORT_SYMBOL(unregister_md_personality);
7413
7414 int register_md_cluster_operations(struct md_cluster_operations *ops, struct module *module)
7415 {
7416 if (md_cluster_ops != NULL)
7417 return -EALREADY;
7418 spin_lock(&pers_lock);
7419 md_cluster_ops = ops;
7420 md_cluster_mod = module;
7421 spin_unlock(&pers_lock);
7422 return 0;
7423 }
7424 EXPORT_SYMBOL(register_md_cluster_operations);
7425
7426 int unregister_md_cluster_operations(void)
7427 {
7428 spin_lock(&pers_lock);
7429 md_cluster_ops = NULL;
7430 spin_unlock(&pers_lock);
7431 return 0;
7432 }
7433 EXPORT_SYMBOL(unregister_md_cluster_operations);
7434
7435 int md_setup_cluster(struct mddev *mddev, int nodes)
7436 {
7437 int err;
7438
7439 err = request_module("md-cluster");
7440 if (err) {
7441 pr_err("md-cluster module not found.\n");
7442 return -ENOENT;
7443 }
7444
7445 spin_lock(&pers_lock);
7446 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7447 spin_unlock(&pers_lock);
7448 return -ENOENT;
7449 }
7450 spin_unlock(&pers_lock);
7451
7452 return md_cluster_ops->join(mddev, nodes);
7453 }
7454
7455 void md_cluster_stop(struct mddev *mddev)
7456 {
7457 if (!md_cluster_ops)
7458 return;
7459 md_cluster_ops->leave(mddev);
7460 module_put(md_cluster_mod);
7461 }
7462
7463 static int is_mddev_idle(struct mddev *mddev, int init)
7464 {
7465 struct md_rdev *rdev;
7466 int idle;
7467 int curr_events;
7468
7469 idle = 1;
7470 rcu_read_lock();
7471 rdev_for_each_rcu(rdev, mddev) {
7472 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7473 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7474 (int)part_stat_read(&disk->part0, sectors[1]) -
7475 atomic_read(&disk->sync_io);
7476 /* sync IO will cause sync_io to increase before the disk_stats
7477 * as sync_io is counted when a request starts, and
7478 * disk_stats is counted when it completes.
7479 * So resync activity will cause curr_events to be smaller than
7480 * when there was no such activity.
7481 * non-sync IO will cause disk_stat to increase without
7482 * increasing sync_io so curr_events will (eventually)
7483 * be larger than it was before. Once it becomes
7484 * substantially larger, the test below will cause
7485 * the array to appear non-idle, and resync will slow
7486 * down.
7487 * If there is a lot of outstanding resync activity when
7488 * we set last_event to curr_events, then all that activity
7489 * completing might cause the array to appear non-idle
7490 * and resync will be slowed down even though there might
7491 * not have been non-resync activity. This will only
7492 * happen once though. 'last_events' will soon reflect
7493 * the state where there is little or no outstanding
7494 * resync requests, and further resync activity will
7495 * always make curr_events less than last_events.
7496 *
7497 */
7498 if (init || curr_events - rdev->last_events > 64) {
7499 rdev->last_events = curr_events;
7500 idle = 0;
7501 }
7502 }
7503 rcu_read_unlock();
7504 return idle;
7505 }
7506
7507 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7508 {
7509 /* another "blocks" (512byte) blocks have been synced */
7510 atomic_sub(blocks, &mddev->recovery_active);
7511 wake_up(&mddev->recovery_wait);
7512 if (!ok) {
7513 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7514 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7515 md_wakeup_thread(mddev->thread);
7516 // stop recovery, signal do_sync ....
7517 }
7518 }
7519 EXPORT_SYMBOL(md_done_sync);
7520
7521 /* md_write_start(mddev, bi)
7522 * If we need to update some array metadata (e.g. 'active' flag
7523 * in superblock) before writing, schedule a superblock update
7524 * and wait for it to complete.
7525 */
7526 void md_write_start(struct mddev *mddev, struct bio *bi)
7527 {
7528 int did_change = 0;
7529 if (bio_data_dir(bi) != WRITE)
7530 return;
7531
7532 BUG_ON(mddev->ro == 1);
7533 if (mddev->ro == 2) {
7534 /* need to switch to read/write */
7535 mddev->ro = 0;
7536 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7537 md_wakeup_thread(mddev->thread);
7538 md_wakeup_thread(mddev->sync_thread);
7539 did_change = 1;
7540 }
7541 atomic_inc(&mddev->writes_pending);
7542 if (mddev->safemode == 1)
7543 mddev->safemode = 0;
7544 if (mddev->in_sync) {
7545 spin_lock(&mddev->lock);
7546 if (mddev->in_sync) {
7547 mddev->in_sync = 0;
7548 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7549 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7550 md_wakeup_thread(mddev->thread);
7551 did_change = 1;
7552 }
7553 spin_unlock(&mddev->lock);
7554 }
7555 if (did_change)
7556 sysfs_notify_dirent_safe(mddev->sysfs_state);
7557 wait_event(mddev->sb_wait,
7558 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7559 }
7560 EXPORT_SYMBOL(md_write_start);
7561
7562 void md_write_end(struct mddev *mddev)
7563 {
7564 if (atomic_dec_and_test(&mddev->writes_pending)) {
7565 if (mddev->safemode == 2)
7566 md_wakeup_thread(mddev->thread);
7567 else if (mddev->safemode_delay)
7568 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7569 }
7570 }
7571 EXPORT_SYMBOL(md_write_end);
7572
7573 /* md_allow_write(mddev)
7574 * Calling this ensures that the array is marked 'active' so that writes
7575 * may proceed without blocking. It is important to call this before
7576 * attempting a GFP_KERNEL allocation while holding the mddev lock.
7577 * Must be called with mddev_lock held.
7578 *
7579 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7580 * is dropped, so return -EAGAIN after notifying userspace.
7581 */
7582 int md_allow_write(struct mddev *mddev)
7583 {
7584 if (!mddev->pers)
7585 return 0;
7586 if (mddev->ro)
7587 return 0;
7588 if (!mddev->pers->sync_request)
7589 return 0;
7590
7591 spin_lock(&mddev->lock);
7592 if (mddev->in_sync) {
7593 mddev->in_sync = 0;
7594 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7595 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7596 if (mddev->safemode_delay &&
7597 mddev->safemode == 0)
7598 mddev->safemode = 1;
7599 spin_unlock(&mddev->lock);
7600 if (mddev_is_clustered(mddev))
7601 md_cluster_ops->metadata_update_start(mddev);
7602 md_update_sb(mddev, 0);
7603 if (mddev_is_clustered(mddev))
7604 md_cluster_ops->metadata_update_finish(mddev);
7605 sysfs_notify_dirent_safe(mddev->sysfs_state);
7606 } else
7607 spin_unlock(&mddev->lock);
7608
7609 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7610 return -EAGAIN;
7611 else
7612 return 0;
7613 }
7614 EXPORT_SYMBOL_GPL(md_allow_write);
7615
7616 #define SYNC_MARKS 10
7617 #define SYNC_MARK_STEP (3*HZ)
7618 #define UPDATE_FREQUENCY (5*60*HZ)
7619 void md_do_sync(struct md_thread *thread)
7620 {
7621 struct mddev *mddev = thread->mddev;
7622 struct mddev *mddev2;
7623 unsigned int currspeed = 0,
7624 window;
7625 sector_t max_sectors,j, io_sectors, recovery_done;
7626 unsigned long mark[SYNC_MARKS];
7627 unsigned long update_time;
7628 sector_t mark_cnt[SYNC_MARKS];
7629 int last_mark,m;
7630 struct list_head *tmp;
7631 sector_t last_check;
7632 int skipped = 0;
7633 struct md_rdev *rdev;
7634 char *desc, *action = NULL;
7635 struct blk_plug plug;
7636
7637 /* just incase thread restarts... */
7638 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7639 return;
7640 if (mddev->ro) {/* never try to sync a read-only array */
7641 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7642 return;
7643 }
7644
7645 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7646 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7647 desc = "data-check";
7648 action = "check";
7649 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7650 desc = "requested-resync";
7651 action = "repair";
7652 } else
7653 desc = "resync";
7654 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7655 desc = "reshape";
7656 else
7657 desc = "recovery";
7658
7659 mddev->last_sync_action = action ?: desc;
7660
7661 /* we overload curr_resync somewhat here.
7662 * 0 == not engaged in resync at all
7663 * 2 == checking that there is no conflict with another sync
7664 * 1 == like 2, but have yielded to allow conflicting resync to
7665 * commense
7666 * other == active in resync - this many blocks
7667 *
7668 * Before starting a resync we must have set curr_resync to
7669 * 2, and then checked that every "conflicting" array has curr_resync
7670 * less than ours. When we find one that is the same or higher
7671 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7672 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7673 * This will mean we have to start checking from the beginning again.
7674 *
7675 */
7676
7677 do {
7678 mddev->curr_resync = 2;
7679
7680 try_again:
7681 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7682 goto skip;
7683 for_each_mddev(mddev2, tmp) {
7684 if (mddev2 == mddev)
7685 continue;
7686 if (!mddev->parallel_resync
7687 && mddev2->curr_resync
7688 && match_mddev_units(mddev, mddev2)) {
7689 DEFINE_WAIT(wq);
7690 if (mddev < mddev2 && mddev->curr_resync == 2) {
7691 /* arbitrarily yield */
7692 mddev->curr_resync = 1;
7693 wake_up(&resync_wait);
7694 }
7695 if (mddev > mddev2 && mddev->curr_resync == 1)
7696 /* no need to wait here, we can wait the next
7697 * time 'round when curr_resync == 2
7698 */
7699 continue;
7700 /* We need to wait 'interruptible' so as not to
7701 * contribute to the load average, and not to
7702 * be caught by 'softlockup'
7703 */
7704 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7705 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7706 mddev2->curr_resync >= mddev->curr_resync) {
7707 printk(KERN_INFO "md: delaying %s of %s"
7708 " until %s has finished (they"
7709 " share one or more physical units)\n",
7710 desc, mdname(mddev), mdname(mddev2));
7711 mddev_put(mddev2);
7712 if (signal_pending(current))
7713 flush_signals(current);
7714 schedule();
7715 finish_wait(&resync_wait, &wq);
7716 goto try_again;
7717 }
7718 finish_wait(&resync_wait, &wq);
7719 }
7720 }
7721 } while (mddev->curr_resync < 2);
7722
7723 j = 0;
7724 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7725 /* resync follows the size requested by the personality,
7726 * which defaults to physical size, but can be virtual size
7727 */
7728 max_sectors = mddev->resync_max_sectors;
7729 atomic64_set(&mddev->resync_mismatches, 0);
7730 /* we don't use the checkpoint if there's a bitmap */
7731 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7732 j = mddev->resync_min;
7733 else if (!mddev->bitmap)
7734 j = mddev->recovery_cp;
7735
7736 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7737 max_sectors = mddev->resync_max_sectors;
7738 else {
7739 /* recovery follows the physical size of devices */
7740 max_sectors = mddev->dev_sectors;
7741 j = MaxSector;
7742 rcu_read_lock();
7743 rdev_for_each_rcu(rdev, mddev)
7744 if (rdev->raid_disk >= 0 &&
7745 !test_bit(Faulty, &rdev->flags) &&
7746 !test_bit(In_sync, &rdev->flags) &&
7747 rdev->recovery_offset < j)
7748 j = rdev->recovery_offset;
7749 rcu_read_unlock();
7750
7751 /* If there is a bitmap, we need to make sure all
7752 * writes that started before we added a spare
7753 * complete before we start doing a recovery.
7754 * Otherwise the write might complete and (via
7755 * bitmap_endwrite) set a bit in the bitmap after the
7756 * recovery has checked that bit and skipped that
7757 * region.
7758 */
7759 if (mddev->bitmap) {
7760 mddev->pers->quiesce(mddev, 1);
7761 mddev->pers->quiesce(mddev, 0);
7762 }
7763 }
7764
7765 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7766 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7767 " %d KB/sec/disk.\n", speed_min(mddev));
7768 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7769 "(but not more than %d KB/sec) for %s.\n",
7770 speed_max(mddev), desc);
7771
7772 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7773
7774 io_sectors = 0;
7775 for (m = 0; m < SYNC_MARKS; m++) {
7776 mark[m] = jiffies;
7777 mark_cnt[m] = io_sectors;
7778 }
7779 last_mark = 0;
7780 mddev->resync_mark = mark[last_mark];
7781 mddev->resync_mark_cnt = mark_cnt[last_mark];
7782
7783 /*
7784 * Tune reconstruction:
7785 */
7786 window = 32*(PAGE_SIZE/512);
7787 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7788 window/2, (unsigned long long)max_sectors/2);
7789
7790 atomic_set(&mddev->recovery_active, 0);
7791 last_check = 0;
7792
7793 if (j>2) {
7794 printk(KERN_INFO
7795 "md: resuming %s of %s from checkpoint.\n",
7796 desc, mdname(mddev));
7797 mddev->curr_resync = j;
7798 } else
7799 mddev->curr_resync = 3; /* no longer delayed */
7800 mddev->curr_resync_completed = j;
7801 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7802 md_new_event(mddev);
7803 update_time = jiffies;
7804
7805 if (mddev_is_clustered(mddev))
7806 md_cluster_ops->resync_start(mddev, j, max_sectors);
7807
7808 blk_start_plug(&plug);
7809 while (j < max_sectors) {
7810 sector_t sectors;
7811
7812 skipped = 0;
7813
7814 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7815 ((mddev->curr_resync > mddev->curr_resync_completed &&
7816 (mddev->curr_resync - mddev->curr_resync_completed)
7817 > (max_sectors >> 4)) ||
7818 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7819 (j - mddev->curr_resync_completed)*2
7820 >= mddev->resync_max - mddev->curr_resync_completed
7821 )) {
7822 /* time to update curr_resync_completed */
7823 wait_event(mddev->recovery_wait,
7824 atomic_read(&mddev->recovery_active) == 0);
7825 mddev->curr_resync_completed = j;
7826 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7827 j > mddev->recovery_cp)
7828 mddev->recovery_cp = j;
7829 update_time = jiffies;
7830 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7831 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7832 }
7833
7834 while (j >= mddev->resync_max &&
7835 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7836 /* As this condition is controlled by user-space,
7837 * we can block indefinitely, so use '_interruptible'
7838 * to avoid triggering warnings.
7839 */
7840 flush_signals(current); /* just in case */
7841 wait_event_interruptible(mddev->recovery_wait,
7842 mddev->resync_max > j
7843 || test_bit(MD_RECOVERY_INTR,
7844 &mddev->recovery));
7845 }
7846
7847 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7848 break;
7849
7850 sectors = mddev->pers->sync_request(mddev, j, &skipped);
7851 if (sectors == 0) {
7852 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7853 break;
7854 }
7855
7856 if (!skipped) { /* actual IO requested */
7857 io_sectors += sectors;
7858 atomic_add(sectors, &mddev->recovery_active);
7859 }
7860
7861 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7862 break;
7863
7864 j += sectors;
7865 if (j > 2)
7866 mddev->curr_resync = j;
7867 if (mddev_is_clustered(mddev))
7868 md_cluster_ops->resync_info_update(mddev, j, max_sectors);
7869 mddev->curr_mark_cnt = io_sectors;
7870 if (last_check == 0)
7871 /* this is the earliest that rebuild will be
7872 * visible in /proc/mdstat
7873 */
7874 md_new_event(mddev);
7875
7876 if (last_check + window > io_sectors || j == max_sectors)
7877 continue;
7878
7879 last_check = io_sectors;
7880 repeat:
7881 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7882 /* step marks */
7883 int next = (last_mark+1) % SYNC_MARKS;
7884
7885 mddev->resync_mark = mark[next];
7886 mddev->resync_mark_cnt = mark_cnt[next];
7887 mark[next] = jiffies;
7888 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7889 last_mark = next;
7890 }
7891
7892 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7893 break;
7894
7895 /*
7896 * this loop exits only if either when we are slower than
7897 * the 'hard' speed limit, or the system was IO-idle for
7898 * a jiffy.
7899 * the system might be non-idle CPU-wise, but we only care
7900 * about not overloading the IO subsystem. (things like an
7901 * e2fsck being done on the RAID array should execute fast)
7902 */
7903 cond_resched();
7904
7905 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
7906 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
7907 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7908
7909 if (currspeed > speed_min(mddev)) {
7910 if (currspeed > speed_max(mddev)) {
7911 msleep(500);
7912 goto repeat;
7913 }
7914 if (!is_mddev_idle(mddev, 0)) {
7915 /*
7916 * Give other IO more of a chance.
7917 * The faster the devices, the less we wait.
7918 */
7919 wait_event(mddev->recovery_wait,
7920 !atomic_read(&mddev->recovery_active));
7921 }
7922 }
7923 }
7924 printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
7925 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
7926 ? "interrupted" : "done");
7927 /*
7928 * this also signals 'finished resyncing' to md_stop
7929 */
7930 blk_finish_plug(&plug);
7931 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7932
7933 /* tell personality that we are finished */
7934 mddev->pers->sync_request(mddev, max_sectors, &skipped);
7935
7936 if (mddev_is_clustered(mddev))
7937 md_cluster_ops->resync_finish(mddev);
7938
7939 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7940 mddev->curr_resync > 2) {
7941 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7942 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7943 if (mddev->curr_resync >= mddev->recovery_cp) {
7944 printk(KERN_INFO
7945 "md: checkpointing %s of %s.\n",
7946 desc, mdname(mddev));
7947 if (test_bit(MD_RECOVERY_ERROR,
7948 &mddev->recovery))
7949 mddev->recovery_cp =
7950 mddev->curr_resync_completed;
7951 else
7952 mddev->recovery_cp =
7953 mddev->curr_resync;
7954 }
7955 } else
7956 mddev->recovery_cp = MaxSector;
7957 } else {
7958 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7959 mddev->curr_resync = MaxSector;
7960 rcu_read_lock();
7961 rdev_for_each_rcu(rdev, mddev)
7962 if (rdev->raid_disk >= 0 &&
7963 mddev->delta_disks >= 0 &&
7964 !test_bit(Faulty, &rdev->flags) &&
7965 !test_bit(In_sync, &rdev->flags) &&
7966 rdev->recovery_offset < mddev->curr_resync)
7967 rdev->recovery_offset = mddev->curr_resync;
7968 rcu_read_unlock();
7969 }
7970 }
7971 skip:
7972 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7973
7974 spin_lock(&mddev->lock);
7975 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7976 /* We completed so min/max setting can be forgotten if used. */
7977 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7978 mddev->resync_min = 0;
7979 mddev->resync_max = MaxSector;
7980 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7981 mddev->resync_min = mddev->curr_resync_completed;
7982 mddev->curr_resync = 0;
7983 spin_unlock(&mddev->lock);
7984
7985 wake_up(&resync_wait);
7986 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7987 md_wakeup_thread(mddev->thread);
7988 return;
7989 }
7990 EXPORT_SYMBOL_GPL(md_do_sync);
7991
7992 static int remove_and_add_spares(struct mddev *mddev,
7993 struct md_rdev *this)
7994 {
7995 struct md_rdev *rdev;
7996 int spares = 0;
7997 int removed = 0;
7998
7999 rdev_for_each(rdev, mddev)
8000 if ((this == NULL || rdev == this) &&
8001 rdev->raid_disk >= 0 &&
8002 !test_bit(Blocked, &rdev->flags) &&
8003 (test_bit(Faulty, &rdev->flags) ||
8004 ! test_bit(In_sync, &rdev->flags)) &&
8005 atomic_read(&rdev->nr_pending)==0) {
8006 if (mddev->pers->hot_remove_disk(
8007 mddev, rdev) == 0) {
8008 sysfs_unlink_rdev(mddev, rdev);
8009 rdev->raid_disk = -1;
8010 removed++;
8011 }
8012 }
8013 if (removed && mddev->kobj.sd)
8014 sysfs_notify(&mddev->kobj, NULL, "degraded");
8015
8016 if (this)
8017 goto no_add;
8018
8019 rdev_for_each(rdev, mddev) {
8020 if (rdev->raid_disk >= 0 &&
8021 !test_bit(In_sync, &rdev->flags) &&
8022 !test_bit(Faulty, &rdev->flags))
8023 spares++;
8024 if (rdev->raid_disk >= 0)
8025 continue;
8026 if (test_bit(Faulty, &rdev->flags))
8027 continue;
8028 if (mddev->ro &&
8029 ! (rdev->saved_raid_disk >= 0 &&
8030 !test_bit(Bitmap_sync, &rdev->flags)))
8031 continue;
8032
8033 if (rdev->saved_raid_disk < 0)
8034 rdev->recovery_offset = 0;
8035 if (mddev->pers->
8036 hot_add_disk(mddev, rdev) == 0) {
8037 if (sysfs_link_rdev(mddev, rdev))
8038 /* failure here is OK */;
8039 spares++;
8040 md_new_event(mddev);
8041 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8042 }
8043 }
8044 no_add:
8045 if (removed)
8046 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8047 return spares;
8048 }
8049
8050 static void md_start_sync(struct work_struct *ws)
8051 {
8052 struct mddev *mddev = container_of(ws, struct mddev, del_work);
8053
8054 mddev->sync_thread = md_register_thread(md_do_sync,
8055 mddev,
8056 "resync");
8057 if (!mddev->sync_thread) {
8058 printk(KERN_ERR "%s: could not start resync"
8059 " thread...\n",
8060 mdname(mddev));
8061 /* leave the spares where they are, it shouldn't hurt */
8062 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8063 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8064 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8065 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8066 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8067 wake_up(&resync_wait);
8068 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8069 &mddev->recovery))
8070 if (mddev->sysfs_action)
8071 sysfs_notify_dirent_safe(mddev->sysfs_action);
8072 } else
8073 md_wakeup_thread(mddev->sync_thread);
8074 sysfs_notify_dirent_safe(mddev->sysfs_action);
8075 md_new_event(mddev);
8076 }
8077
8078 /*
8079 * This routine is regularly called by all per-raid-array threads to
8080 * deal with generic issues like resync and super-block update.
8081 * Raid personalities that don't have a thread (linear/raid0) do not
8082 * need this as they never do any recovery or update the superblock.
8083 *
8084 * It does not do any resync itself, but rather "forks" off other threads
8085 * to do that as needed.
8086 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8087 * "->recovery" and create a thread at ->sync_thread.
8088 * When the thread finishes it sets MD_RECOVERY_DONE
8089 * and wakeups up this thread which will reap the thread and finish up.
8090 * This thread also removes any faulty devices (with nr_pending == 0).
8091 *
8092 * The overall approach is:
8093 * 1/ if the superblock needs updating, update it.
8094 * 2/ If a recovery thread is running, don't do anything else.
8095 * 3/ If recovery has finished, clean up, possibly marking spares active.
8096 * 4/ If there are any faulty devices, remove them.
8097 * 5/ If array is degraded, try to add spares devices
8098 * 6/ If array has spares or is not in-sync, start a resync thread.
8099 */
8100 void md_check_recovery(struct mddev *mddev)
8101 {
8102 if (mddev->suspended)
8103 return;
8104
8105 if (mddev->bitmap)
8106 bitmap_daemon_work(mddev);
8107
8108 if (signal_pending(current)) {
8109 if (mddev->pers->sync_request && !mddev->external) {
8110 printk(KERN_INFO "md: %s in immediate safe mode\n",
8111 mdname(mddev));
8112 mddev->safemode = 2;
8113 }
8114 flush_signals(current);
8115 }
8116
8117 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8118 return;
8119 if ( ! (
8120 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
8121 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8122 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8123 (mddev->external == 0 && mddev->safemode == 1) ||
8124 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
8125 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8126 ))
8127 return;
8128
8129 if (mddev_trylock(mddev)) {
8130 int spares = 0;
8131
8132 if (mddev->ro) {
8133 struct md_rdev *rdev;
8134 if (!mddev->external && mddev->in_sync)
8135 /* 'Blocked' flag not needed as failed devices
8136 * will be recorded if array switched to read/write.
8137 * Leaving it set will prevent the device
8138 * from being removed.
8139 */
8140 rdev_for_each(rdev, mddev)
8141 clear_bit(Blocked, &rdev->flags);
8142 /* On a read-only array we can:
8143 * - remove failed devices
8144 * - add already-in_sync devices if the array itself
8145 * is in-sync.
8146 * As we only add devices that are already in-sync,
8147 * we can activate the spares immediately.
8148 */
8149 remove_and_add_spares(mddev, NULL);
8150 /* There is no thread, but we need to call
8151 * ->spare_active and clear saved_raid_disk
8152 */
8153 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8154 md_reap_sync_thread(mddev);
8155 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8156 goto unlock;
8157 }
8158
8159 if (!mddev->external) {
8160 int did_change = 0;
8161 spin_lock(&mddev->lock);
8162 if (mddev->safemode &&
8163 !atomic_read(&mddev->writes_pending) &&
8164 !mddev->in_sync &&
8165 mddev->recovery_cp == MaxSector) {
8166 mddev->in_sync = 1;
8167 did_change = 1;
8168 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
8169 }
8170 if (mddev->safemode == 1)
8171 mddev->safemode = 0;
8172 spin_unlock(&mddev->lock);
8173 if (did_change)
8174 sysfs_notify_dirent_safe(mddev->sysfs_state);
8175 }
8176
8177 if (mddev->flags & MD_UPDATE_SB_FLAGS) {
8178 if (mddev_is_clustered(mddev))
8179 md_cluster_ops->metadata_update_start(mddev);
8180 md_update_sb(mddev, 0);
8181 if (mddev_is_clustered(mddev))
8182 md_cluster_ops->metadata_update_finish(mddev);
8183 }
8184
8185 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8186 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8187 /* resync/recovery still happening */
8188 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8189 goto unlock;
8190 }
8191 if (mddev->sync_thread) {
8192 md_reap_sync_thread(mddev);
8193 goto unlock;
8194 }
8195 /* Set RUNNING before clearing NEEDED to avoid
8196 * any transients in the value of "sync_action".
8197 */
8198 mddev->curr_resync_completed = 0;
8199 spin_lock(&mddev->lock);
8200 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8201 spin_unlock(&mddev->lock);
8202 /* Clear some bits that don't mean anything, but
8203 * might be left set
8204 */
8205 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8206 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8207
8208 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8209 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8210 goto not_running;
8211 /* no recovery is running.
8212 * remove any failed drives, then
8213 * add spares if possible.
8214 * Spares are also removed and re-added, to allow
8215 * the personality to fail the re-add.
8216 */
8217
8218 if (mddev->reshape_position != MaxSector) {
8219 if (mddev->pers->check_reshape == NULL ||
8220 mddev->pers->check_reshape(mddev) != 0)
8221 /* Cannot proceed */
8222 goto not_running;
8223 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8224 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8225 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
8226 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8227 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8228 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8229 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8230 } else if (mddev->recovery_cp < MaxSector) {
8231 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8232 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8233 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8234 /* nothing to be done ... */
8235 goto not_running;
8236
8237 if (mddev->pers->sync_request) {
8238 if (spares) {
8239 /* We are adding a device or devices to an array
8240 * which has the bitmap stored on all devices.
8241 * So make sure all bitmap pages get written
8242 */
8243 bitmap_write_all(mddev->bitmap);
8244 }
8245 INIT_WORK(&mddev->del_work, md_start_sync);
8246 queue_work(md_misc_wq, &mddev->del_work);
8247 goto unlock;
8248 }
8249 not_running:
8250 if (!mddev->sync_thread) {
8251 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8252 wake_up(&resync_wait);
8253 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8254 &mddev->recovery))
8255 if (mddev->sysfs_action)
8256 sysfs_notify_dirent_safe(mddev->sysfs_action);
8257 }
8258 unlock:
8259 wake_up(&mddev->sb_wait);
8260 mddev_unlock(mddev);
8261 }
8262 }
8263 EXPORT_SYMBOL(md_check_recovery);
8264
8265 void md_reap_sync_thread(struct mddev *mddev)
8266 {
8267 struct md_rdev *rdev;
8268
8269 /* resync has finished, collect result */
8270 md_unregister_thread(&mddev->sync_thread);
8271 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8272 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8273 /* success...*/
8274 /* activate any spares */
8275 if (mddev->pers->spare_active(mddev)) {
8276 sysfs_notify(&mddev->kobj, NULL,
8277 "degraded");
8278 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8279 }
8280 }
8281 if (mddev_is_clustered(mddev))
8282 md_cluster_ops->metadata_update_start(mddev);
8283 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8284 mddev->pers->finish_reshape)
8285 mddev->pers->finish_reshape(mddev);
8286
8287 /* If array is no-longer degraded, then any saved_raid_disk
8288 * information must be scrapped.
8289 */
8290 if (!mddev->degraded)
8291 rdev_for_each(rdev, mddev)
8292 rdev->saved_raid_disk = -1;
8293
8294 md_update_sb(mddev, 1);
8295 if (mddev_is_clustered(mddev))
8296 md_cluster_ops->metadata_update_finish(mddev);
8297 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8298 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8299 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8300 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8301 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8302 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8303 wake_up(&resync_wait);
8304 /* flag recovery needed just to double check */
8305 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8306 sysfs_notify_dirent_safe(mddev->sysfs_action);
8307 md_new_event(mddev);
8308 if (mddev->event_work.func)
8309 queue_work(md_misc_wq, &mddev->event_work);
8310 }
8311 EXPORT_SYMBOL(md_reap_sync_thread);
8312
8313 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8314 {
8315 sysfs_notify_dirent_safe(rdev->sysfs_state);
8316 wait_event_timeout(rdev->blocked_wait,
8317 !test_bit(Blocked, &rdev->flags) &&
8318 !test_bit(BlockedBadBlocks, &rdev->flags),
8319 msecs_to_jiffies(5000));
8320 rdev_dec_pending(rdev, mddev);
8321 }
8322 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8323
8324 void md_finish_reshape(struct mddev *mddev)
8325 {
8326 /* called be personality module when reshape completes. */
8327 struct md_rdev *rdev;
8328
8329 rdev_for_each(rdev, mddev) {
8330 if (rdev->data_offset > rdev->new_data_offset)
8331 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8332 else
8333 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8334 rdev->data_offset = rdev->new_data_offset;
8335 }
8336 }
8337 EXPORT_SYMBOL(md_finish_reshape);
8338
8339 /* Bad block management.
8340 * We can record which blocks on each device are 'bad' and so just
8341 * fail those blocks, or that stripe, rather than the whole device.
8342 * Entries in the bad-block table are 64bits wide. This comprises:
8343 * Length of bad-range, in sectors: 0-511 for lengths 1-512
8344 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8345 * A 'shift' can be set so that larger blocks are tracked and
8346 * consequently larger devices can be covered.
8347 * 'Acknowledged' flag - 1 bit. - the most significant bit.
8348 *
8349 * Locking of the bad-block table uses a seqlock so md_is_badblock
8350 * might need to retry if it is very unlucky.
8351 * We will sometimes want to check for bad blocks in a bi_end_io function,
8352 * so we use the write_seqlock_irq variant.
8353 *
8354 * When looking for a bad block we specify a range and want to
8355 * know if any block in the range is bad. So we binary-search
8356 * to the last range that starts at-or-before the given endpoint,
8357 * (or "before the sector after the target range")
8358 * then see if it ends after the given start.
8359 * We return
8360 * 0 if there are no known bad blocks in the range
8361 * 1 if there are known bad block which are all acknowledged
8362 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8363 * plus the start/length of the first bad section we overlap.
8364 */
8365 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8366 sector_t *first_bad, int *bad_sectors)
8367 {
8368 int hi;
8369 int lo;
8370 u64 *p = bb->page;
8371 int rv;
8372 sector_t target = s + sectors;
8373 unsigned seq;
8374
8375 if (bb->shift > 0) {
8376 /* round the start down, and the end up */
8377 s >>= bb->shift;
8378 target += (1<<bb->shift) - 1;
8379 target >>= bb->shift;
8380 sectors = target - s;
8381 }
8382 /* 'target' is now the first block after the bad range */
8383
8384 retry:
8385 seq = read_seqbegin(&bb->lock);
8386 lo = 0;
8387 rv = 0;
8388 hi = bb->count;
8389
8390 /* Binary search between lo and hi for 'target'
8391 * i.e. for the last range that starts before 'target'
8392 */
8393 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8394 * are known not to be the last range before target.
8395 * VARIANT: hi-lo is the number of possible
8396 * ranges, and decreases until it reaches 1
8397 */
8398 while (hi - lo > 1) {
8399 int mid = (lo + hi) / 2;
8400 sector_t a = BB_OFFSET(p[mid]);
8401 if (a < target)
8402 /* This could still be the one, earlier ranges
8403 * could not. */
8404 lo = mid;
8405 else
8406 /* This and later ranges are definitely out. */
8407 hi = mid;
8408 }
8409 /* 'lo' might be the last that started before target, but 'hi' isn't */
8410 if (hi > lo) {
8411 /* need to check all range that end after 's' to see if
8412 * any are unacknowledged.
8413 */
8414 while (lo >= 0 &&
8415 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8416 if (BB_OFFSET(p[lo]) < target) {
8417 /* starts before the end, and finishes after
8418 * the start, so they must overlap
8419 */
8420 if (rv != -1 && BB_ACK(p[lo]))
8421 rv = 1;
8422 else
8423 rv = -1;
8424 *first_bad = BB_OFFSET(p[lo]);
8425 *bad_sectors = BB_LEN(p[lo]);
8426 }
8427 lo--;
8428 }
8429 }
8430
8431 if (read_seqretry(&bb->lock, seq))
8432 goto retry;
8433
8434 return rv;
8435 }
8436 EXPORT_SYMBOL_GPL(md_is_badblock);
8437
8438 /*
8439 * Add a range of bad blocks to the table.
8440 * This might extend the table, or might contract it
8441 * if two adjacent ranges can be merged.
8442 * We binary-search to find the 'insertion' point, then
8443 * decide how best to handle it.
8444 */
8445 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8446 int acknowledged)
8447 {
8448 u64 *p;
8449 int lo, hi;
8450 int rv = 1;
8451 unsigned long flags;
8452
8453 if (bb->shift < 0)
8454 /* badblocks are disabled */
8455 return 0;
8456
8457 if (bb->shift) {
8458 /* round the start down, and the end up */
8459 sector_t next = s + sectors;
8460 s >>= bb->shift;
8461 next += (1<<bb->shift) - 1;
8462 next >>= bb->shift;
8463 sectors = next - s;
8464 }
8465
8466 write_seqlock_irqsave(&bb->lock, flags);
8467
8468 p = bb->page;
8469 lo = 0;
8470 hi = bb->count;
8471 /* Find the last range that starts at-or-before 's' */
8472 while (hi - lo > 1) {
8473 int mid = (lo + hi) / 2;
8474 sector_t a = BB_OFFSET(p[mid]);
8475 if (a <= s)
8476 lo = mid;
8477 else
8478 hi = mid;
8479 }
8480 if (hi > lo && BB_OFFSET(p[lo]) > s)
8481 hi = lo;
8482
8483 if (hi > lo) {
8484 /* we found a range that might merge with the start
8485 * of our new range
8486 */
8487 sector_t a = BB_OFFSET(p[lo]);
8488 sector_t e = a + BB_LEN(p[lo]);
8489 int ack = BB_ACK(p[lo]);
8490 if (e >= s) {
8491 /* Yes, we can merge with a previous range */
8492 if (s == a && s + sectors >= e)
8493 /* new range covers old */
8494 ack = acknowledged;
8495 else
8496 ack = ack && acknowledged;
8497
8498 if (e < s + sectors)
8499 e = s + sectors;
8500 if (e - a <= BB_MAX_LEN) {
8501 p[lo] = BB_MAKE(a, e-a, ack);
8502 s = e;
8503 } else {
8504 /* does not all fit in one range,
8505 * make p[lo] maximal
8506 */
8507 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8508 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8509 s = a + BB_MAX_LEN;
8510 }
8511 sectors = e - s;
8512 }
8513 }
8514 if (sectors && hi < bb->count) {
8515 /* 'hi' points to the first range that starts after 's'.
8516 * Maybe we can merge with the start of that range */
8517 sector_t a = BB_OFFSET(p[hi]);
8518 sector_t e = a + BB_LEN(p[hi]);
8519 int ack = BB_ACK(p[hi]);
8520 if (a <= s + sectors) {
8521 /* merging is possible */
8522 if (e <= s + sectors) {
8523 /* full overlap */
8524 e = s + sectors;
8525 ack = acknowledged;
8526 } else
8527 ack = ack && acknowledged;
8528
8529 a = s;
8530 if (e - a <= BB_MAX_LEN) {
8531 p[hi] = BB_MAKE(a, e-a, ack);
8532 s = e;
8533 } else {
8534 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8535 s = a + BB_MAX_LEN;
8536 }
8537 sectors = e - s;
8538 lo = hi;
8539 hi++;
8540 }
8541 }
8542 if (sectors == 0 && hi < bb->count) {
8543 /* we might be able to combine lo and hi */
8544 /* Note: 's' is at the end of 'lo' */
8545 sector_t a = BB_OFFSET(p[hi]);
8546 int lolen = BB_LEN(p[lo]);
8547 int hilen = BB_LEN(p[hi]);
8548 int newlen = lolen + hilen - (s - a);
8549 if (s >= a && newlen < BB_MAX_LEN) {
8550 /* yes, we can combine them */
8551 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8552 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8553 memmove(p + hi, p + hi + 1,
8554 (bb->count - hi - 1) * 8);
8555 bb->count--;
8556 }
8557 }
8558 while (sectors) {
8559 /* didn't merge (it all).
8560 * Need to add a range just before 'hi' */
8561 if (bb->count >= MD_MAX_BADBLOCKS) {
8562 /* No room for more */
8563 rv = 0;
8564 break;
8565 } else {
8566 int this_sectors = sectors;
8567 memmove(p + hi + 1, p + hi,
8568 (bb->count - hi) * 8);
8569 bb->count++;
8570
8571 if (this_sectors > BB_MAX_LEN)
8572 this_sectors = BB_MAX_LEN;
8573 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8574 sectors -= this_sectors;
8575 s += this_sectors;
8576 }
8577 }
8578
8579 bb->changed = 1;
8580 if (!acknowledged)
8581 bb->unacked_exist = 1;
8582 write_sequnlock_irqrestore(&bb->lock, flags);
8583
8584 return rv;
8585 }
8586
8587 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8588 int is_new)
8589 {
8590 int rv;
8591 if (is_new)
8592 s += rdev->new_data_offset;
8593 else
8594 s += rdev->data_offset;
8595 rv = md_set_badblocks(&rdev->badblocks,
8596 s, sectors, 0);
8597 if (rv) {
8598 /* Make sure they get written out promptly */
8599 sysfs_notify_dirent_safe(rdev->sysfs_state);
8600 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8601 md_wakeup_thread(rdev->mddev->thread);
8602 }
8603 return rv;
8604 }
8605 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8606
8607 /*
8608 * Remove a range of bad blocks from the table.
8609 * This may involve extending the table if we spilt a region,
8610 * but it must not fail. So if the table becomes full, we just
8611 * drop the remove request.
8612 */
8613 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8614 {
8615 u64 *p;
8616 int lo, hi;
8617 sector_t target = s + sectors;
8618 int rv = 0;
8619
8620 if (bb->shift > 0) {
8621 /* When clearing we round the start up and the end down.
8622 * This should not matter as the shift should align with
8623 * the block size and no rounding should ever be needed.
8624 * However it is better the think a block is bad when it
8625 * isn't than to think a block is not bad when it is.
8626 */
8627 s += (1<<bb->shift) - 1;
8628 s >>= bb->shift;
8629 target >>= bb->shift;
8630 sectors = target - s;
8631 }
8632
8633 write_seqlock_irq(&bb->lock);
8634
8635 p = bb->page;
8636 lo = 0;
8637 hi = bb->count;
8638 /* Find the last range that starts before 'target' */
8639 while (hi - lo > 1) {
8640 int mid = (lo + hi) / 2;
8641 sector_t a = BB_OFFSET(p[mid]);
8642 if (a < target)
8643 lo = mid;
8644 else
8645 hi = mid;
8646 }
8647 if (hi > lo) {
8648 /* p[lo] is the last range that could overlap the
8649 * current range. Earlier ranges could also overlap,
8650 * but only this one can overlap the end of the range.
8651 */
8652 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8653 /* Partial overlap, leave the tail of this range */
8654 int ack = BB_ACK(p[lo]);
8655 sector_t a = BB_OFFSET(p[lo]);
8656 sector_t end = a + BB_LEN(p[lo]);
8657
8658 if (a < s) {
8659 /* we need to split this range */
8660 if (bb->count >= MD_MAX_BADBLOCKS) {
8661 rv = -ENOSPC;
8662 goto out;
8663 }
8664 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8665 bb->count++;
8666 p[lo] = BB_MAKE(a, s-a, ack);
8667 lo++;
8668 }
8669 p[lo] = BB_MAKE(target, end - target, ack);
8670 /* there is no longer an overlap */
8671 hi = lo;
8672 lo--;
8673 }
8674 while (lo >= 0 &&
8675 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8676 /* This range does overlap */
8677 if (BB_OFFSET(p[lo]) < s) {
8678 /* Keep the early parts of this range. */
8679 int ack = BB_ACK(p[lo]);
8680 sector_t start = BB_OFFSET(p[lo]);
8681 p[lo] = BB_MAKE(start, s - start, ack);
8682 /* now low doesn't overlap, so.. */
8683 break;
8684 }
8685 lo--;
8686 }
8687 /* 'lo' is strictly before, 'hi' is strictly after,
8688 * anything between needs to be discarded
8689 */
8690 if (hi - lo > 1) {
8691 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8692 bb->count -= (hi - lo - 1);
8693 }
8694 }
8695
8696 bb->changed = 1;
8697 out:
8698 write_sequnlock_irq(&bb->lock);
8699 return rv;
8700 }
8701
8702 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8703 int is_new)
8704 {
8705 if (is_new)
8706 s += rdev->new_data_offset;
8707 else
8708 s += rdev->data_offset;
8709 return md_clear_badblocks(&rdev->badblocks,
8710 s, sectors);
8711 }
8712 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8713
8714 /*
8715 * Acknowledge all bad blocks in a list.
8716 * This only succeeds if ->changed is clear. It is used by
8717 * in-kernel metadata updates
8718 */
8719 void md_ack_all_badblocks(struct badblocks *bb)
8720 {
8721 if (bb->page == NULL || bb->changed)
8722 /* no point even trying */
8723 return;
8724 write_seqlock_irq(&bb->lock);
8725
8726 if (bb->changed == 0 && bb->unacked_exist) {
8727 u64 *p = bb->page;
8728 int i;
8729 for (i = 0; i < bb->count ; i++) {
8730 if (!BB_ACK(p[i])) {
8731 sector_t start = BB_OFFSET(p[i]);
8732 int len = BB_LEN(p[i]);
8733 p[i] = BB_MAKE(start, len, 1);
8734 }
8735 }
8736 bb->unacked_exist = 0;
8737 }
8738 write_sequnlock_irq(&bb->lock);
8739 }
8740 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8741
8742 /* sysfs access to bad-blocks list.
8743 * We present two files.
8744 * 'bad-blocks' lists sector numbers and lengths of ranges that
8745 * are recorded as bad. The list is truncated to fit within
8746 * the one-page limit of sysfs.
8747 * Writing "sector length" to this file adds an acknowledged
8748 * bad block list.
8749 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8750 * been acknowledged. Writing to this file adds bad blocks
8751 * without acknowledging them. This is largely for testing.
8752 */
8753
8754 static ssize_t
8755 badblocks_show(struct badblocks *bb, char *page, int unack)
8756 {
8757 size_t len;
8758 int i;
8759 u64 *p = bb->page;
8760 unsigned seq;
8761
8762 if (bb->shift < 0)
8763 return 0;
8764
8765 retry:
8766 seq = read_seqbegin(&bb->lock);
8767
8768 len = 0;
8769 i = 0;
8770
8771 while (len < PAGE_SIZE && i < bb->count) {
8772 sector_t s = BB_OFFSET(p[i]);
8773 unsigned int length = BB_LEN(p[i]);
8774 int ack = BB_ACK(p[i]);
8775 i++;
8776
8777 if (unack && ack)
8778 continue;
8779
8780 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8781 (unsigned long long)s << bb->shift,
8782 length << bb->shift);
8783 }
8784 if (unack && len == 0)
8785 bb->unacked_exist = 0;
8786
8787 if (read_seqretry(&bb->lock, seq))
8788 goto retry;
8789
8790 return len;
8791 }
8792
8793 #define DO_DEBUG 1
8794
8795 static ssize_t
8796 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8797 {
8798 unsigned long long sector;
8799 int length;
8800 char newline;
8801 #ifdef DO_DEBUG
8802 /* Allow clearing via sysfs *only* for testing/debugging.
8803 * Normally only a successful write may clear a badblock
8804 */
8805 int clear = 0;
8806 if (page[0] == '-') {
8807 clear = 1;
8808 page++;
8809 }
8810 #endif /* DO_DEBUG */
8811
8812 switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8813 case 3:
8814 if (newline != '\n')
8815 return -EINVAL;
8816 case 2:
8817 if (length <= 0)
8818 return -EINVAL;
8819 break;
8820 default:
8821 return -EINVAL;
8822 }
8823
8824 #ifdef DO_DEBUG
8825 if (clear) {
8826 md_clear_badblocks(bb, sector, length);
8827 return len;
8828 }
8829 #endif /* DO_DEBUG */
8830 if (md_set_badblocks(bb, sector, length, !unack))
8831 return len;
8832 else
8833 return -ENOSPC;
8834 }
8835
8836 static int md_notify_reboot(struct notifier_block *this,
8837 unsigned long code, void *x)
8838 {
8839 struct list_head *tmp;
8840 struct mddev *mddev;
8841 int need_delay = 0;
8842
8843 for_each_mddev(mddev, tmp) {
8844 if (mddev_trylock(mddev)) {
8845 if (mddev->pers)
8846 __md_stop_writes(mddev);
8847 if (mddev->persistent)
8848 mddev->safemode = 2;
8849 mddev_unlock(mddev);
8850 }
8851 need_delay = 1;
8852 }
8853 /*
8854 * certain more exotic SCSI devices are known to be
8855 * volatile wrt too early system reboots. While the
8856 * right place to handle this issue is the given
8857 * driver, we do want to have a safe RAID driver ...
8858 */
8859 if (need_delay)
8860 mdelay(1000*1);
8861
8862 return NOTIFY_DONE;
8863 }
8864
8865 static struct notifier_block md_notifier = {
8866 .notifier_call = md_notify_reboot,
8867 .next = NULL,
8868 .priority = INT_MAX, /* before any real devices */
8869 };
8870
8871 static void md_geninit(void)
8872 {
8873 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8874
8875 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8876 }
8877
8878 static int __init md_init(void)
8879 {
8880 int ret = -ENOMEM;
8881
8882 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8883 if (!md_wq)
8884 goto err_wq;
8885
8886 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8887 if (!md_misc_wq)
8888 goto err_misc_wq;
8889
8890 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8891 goto err_md;
8892
8893 if ((ret = register_blkdev(0, "mdp")) < 0)
8894 goto err_mdp;
8895 mdp_major = ret;
8896
8897 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8898 md_probe, NULL, NULL);
8899 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8900 md_probe, NULL, NULL);
8901
8902 register_reboot_notifier(&md_notifier);
8903 raid_table_header = register_sysctl_table(raid_root_table);
8904
8905 md_geninit();
8906 return 0;
8907
8908 err_mdp:
8909 unregister_blkdev(MD_MAJOR, "md");
8910 err_md:
8911 destroy_workqueue(md_misc_wq);
8912 err_misc_wq:
8913 destroy_workqueue(md_wq);
8914 err_wq:
8915 return ret;
8916 }
8917
8918 void md_reload_sb(struct mddev *mddev)
8919 {
8920 struct md_rdev *rdev, *tmp;
8921
8922 rdev_for_each_safe(rdev, tmp, mddev) {
8923 rdev->sb_loaded = 0;
8924 ClearPageUptodate(rdev->sb_page);
8925 }
8926 mddev->raid_disks = 0;
8927 analyze_sbs(mddev);
8928 rdev_for_each_safe(rdev, tmp, mddev) {
8929 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
8930 /* since we don't write to faulty devices, we figure out if the
8931 * disk is faulty by comparing events
8932 */
8933 if (mddev->events > sb->events)
8934 set_bit(Faulty, &rdev->flags);
8935 }
8936
8937 }
8938 EXPORT_SYMBOL(md_reload_sb);
8939
8940 #ifndef MODULE
8941
8942 /*
8943 * Searches all registered partitions for autorun RAID arrays
8944 * at boot time.
8945 */
8946
8947 static LIST_HEAD(all_detected_devices);
8948 struct detected_devices_node {
8949 struct list_head list;
8950 dev_t dev;
8951 };
8952
8953 void md_autodetect_dev(dev_t dev)
8954 {
8955 struct detected_devices_node *node_detected_dev;
8956
8957 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8958 if (node_detected_dev) {
8959 node_detected_dev->dev = dev;
8960 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8961 } else {
8962 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8963 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8964 }
8965 }
8966
8967 static void autostart_arrays(int part)
8968 {
8969 struct md_rdev *rdev;
8970 struct detected_devices_node *node_detected_dev;
8971 dev_t dev;
8972 int i_scanned, i_passed;
8973
8974 i_scanned = 0;
8975 i_passed = 0;
8976
8977 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8978
8979 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8980 i_scanned++;
8981 node_detected_dev = list_entry(all_detected_devices.next,
8982 struct detected_devices_node, list);
8983 list_del(&node_detected_dev->list);
8984 dev = node_detected_dev->dev;
8985 kfree(node_detected_dev);
8986 rdev = md_import_device(dev,0, 90);
8987 if (IS_ERR(rdev))
8988 continue;
8989
8990 if (test_bit(Faulty, &rdev->flags))
8991 continue;
8992
8993 set_bit(AutoDetected, &rdev->flags);
8994 list_add(&rdev->same_set, &pending_raid_disks);
8995 i_passed++;
8996 }
8997
8998 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8999 i_scanned, i_passed);
9000
9001 autorun_devices(part);
9002 }
9003
9004 #endif /* !MODULE */
9005
9006 static __exit void md_exit(void)
9007 {
9008 struct mddev *mddev;
9009 struct list_head *tmp;
9010 int delay = 1;
9011
9012 blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
9013 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
9014
9015 unregister_blkdev(MD_MAJOR,"md");
9016 unregister_blkdev(mdp_major, "mdp");
9017 unregister_reboot_notifier(&md_notifier);
9018 unregister_sysctl_table(raid_table_header);
9019
9020 /* We cannot unload the modules while some process is
9021 * waiting for us in select() or poll() - wake them up
9022 */
9023 md_unloading = 1;
9024 while (waitqueue_active(&md_event_waiters)) {
9025 /* not safe to leave yet */
9026 wake_up(&md_event_waiters);
9027 msleep(delay);
9028 delay += delay;
9029 }
9030 remove_proc_entry("mdstat", NULL);
9031
9032 for_each_mddev(mddev, tmp) {
9033 export_array(mddev);
9034 mddev->hold_active = 0;
9035 }
9036 destroy_workqueue(md_misc_wq);
9037 destroy_workqueue(md_wq);
9038 }
9039
9040 subsys_initcall(md_init);
9041 module_exit(md_exit)
9042
9043 static int get_ro(char *buffer, struct kernel_param *kp)
9044 {
9045 return sprintf(buffer, "%d", start_readonly);
9046 }
9047 static int set_ro(const char *val, struct kernel_param *kp)
9048 {
9049 return kstrtouint(val, 10, (unsigned int *)&start_readonly);
9050 }
9051
9052 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9053 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9054 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9055
9056 MODULE_LICENSE("GPL");
9057 MODULE_DESCRIPTION("MD RAID framework");
9058 MODULE_ALIAS("md");
9059 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
This page took 0.232728 seconds and 6 git commands to generate.