Merge branches 'acpi-ec' and 'acpi-button'
[deliverable/linux.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/badblocks.h>
38 #include <linux/sysctl.h>
39 #include <linux/seq_file.h>
40 #include <linux/fs.h>
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/module.h>
48 #include <linux/reboot.h>
49 #include <linux/file.h>
50 #include <linux/compat.h>
51 #include <linux/delay.h>
52 #include <linux/raid/md_p.h>
53 #include <linux/raid/md_u.h>
54 #include <linux/slab.h>
55 #include "md.h"
56 #include "bitmap.h"
57 #include "md-cluster.h"
58
59 #ifndef MODULE
60 static void autostart_arrays(int part);
61 #endif
62
63 /* pers_list is a list of registered personalities protected
64 * by pers_lock.
65 * pers_lock does extra service to protect accesses to
66 * mddev->thread when the mutex cannot be held.
67 */
68 static LIST_HEAD(pers_list);
69 static DEFINE_SPINLOCK(pers_lock);
70
71 struct md_cluster_operations *md_cluster_ops;
72 EXPORT_SYMBOL(md_cluster_ops);
73 struct module *md_cluster_mod;
74 EXPORT_SYMBOL(md_cluster_mod);
75
76 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
77 static struct workqueue_struct *md_wq;
78 static struct workqueue_struct *md_misc_wq;
79
80 static int remove_and_add_spares(struct mddev *mddev,
81 struct md_rdev *this);
82 static void mddev_detach(struct mddev *mddev);
83
84 /*
85 * Default number of read corrections we'll attempt on an rdev
86 * before ejecting it from the array. We divide the read error
87 * count by 2 for every hour elapsed between read errors.
88 */
89 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
90 /*
91 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
92 * is 1000 KB/sec, so the extra system load does not show up that much.
93 * Increase it if you want to have more _guaranteed_ speed. Note that
94 * the RAID driver will use the maximum available bandwidth if the IO
95 * subsystem is idle. There is also an 'absolute maximum' reconstruction
96 * speed limit - in case reconstruction slows down your system despite
97 * idle IO detection.
98 *
99 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
100 * or /sys/block/mdX/md/sync_speed_{min,max}
101 */
102
103 static int sysctl_speed_limit_min = 1000;
104 static int sysctl_speed_limit_max = 200000;
105 static inline int speed_min(struct mddev *mddev)
106 {
107 return mddev->sync_speed_min ?
108 mddev->sync_speed_min : sysctl_speed_limit_min;
109 }
110
111 static inline int speed_max(struct mddev *mddev)
112 {
113 return mddev->sync_speed_max ?
114 mddev->sync_speed_max : sysctl_speed_limit_max;
115 }
116
117 static struct ctl_table_header *raid_table_header;
118
119 static struct ctl_table raid_table[] = {
120 {
121 .procname = "speed_limit_min",
122 .data = &sysctl_speed_limit_min,
123 .maxlen = sizeof(int),
124 .mode = S_IRUGO|S_IWUSR,
125 .proc_handler = proc_dointvec,
126 },
127 {
128 .procname = "speed_limit_max",
129 .data = &sysctl_speed_limit_max,
130 .maxlen = sizeof(int),
131 .mode = S_IRUGO|S_IWUSR,
132 .proc_handler = proc_dointvec,
133 },
134 { }
135 };
136
137 static struct ctl_table raid_dir_table[] = {
138 {
139 .procname = "raid",
140 .maxlen = 0,
141 .mode = S_IRUGO|S_IXUGO,
142 .child = raid_table,
143 },
144 { }
145 };
146
147 static struct ctl_table raid_root_table[] = {
148 {
149 .procname = "dev",
150 .maxlen = 0,
151 .mode = 0555,
152 .child = raid_dir_table,
153 },
154 { }
155 };
156
157 static const struct block_device_operations md_fops;
158
159 static int start_readonly;
160
161 /* bio_clone_mddev
162 * like bio_clone, but with a local bio set
163 */
164
165 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
166 struct mddev *mddev)
167 {
168 struct bio *b;
169
170 if (!mddev || !mddev->bio_set)
171 return bio_alloc(gfp_mask, nr_iovecs);
172
173 b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
174 if (!b)
175 return NULL;
176 return b;
177 }
178 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
179
180 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
181 struct mddev *mddev)
182 {
183 if (!mddev || !mddev->bio_set)
184 return bio_clone(bio, gfp_mask);
185
186 return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
187 }
188 EXPORT_SYMBOL_GPL(bio_clone_mddev);
189
190 /*
191 * We have a system wide 'event count' that is incremented
192 * on any 'interesting' event, and readers of /proc/mdstat
193 * can use 'poll' or 'select' to find out when the event
194 * count increases.
195 *
196 * Events are:
197 * start array, stop array, error, add device, remove device,
198 * start build, activate spare
199 */
200 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
201 static atomic_t md_event_count;
202 void md_new_event(struct mddev *mddev)
203 {
204 atomic_inc(&md_event_count);
205 wake_up(&md_event_waiters);
206 }
207 EXPORT_SYMBOL_GPL(md_new_event);
208
209 /*
210 * Enables to iterate over all existing md arrays
211 * all_mddevs_lock protects this list.
212 */
213 static LIST_HEAD(all_mddevs);
214 static DEFINE_SPINLOCK(all_mddevs_lock);
215
216 /*
217 * iterates through all used mddevs in the system.
218 * We take care to grab the all_mddevs_lock whenever navigating
219 * the list, and to always hold a refcount when unlocked.
220 * Any code which breaks out of this loop while own
221 * a reference to the current mddev and must mddev_put it.
222 */
223 #define for_each_mddev(_mddev,_tmp) \
224 \
225 for (({ spin_lock(&all_mddevs_lock); \
226 _tmp = all_mddevs.next; \
227 _mddev = NULL;}); \
228 ({ if (_tmp != &all_mddevs) \
229 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
230 spin_unlock(&all_mddevs_lock); \
231 if (_mddev) mddev_put(_mddev); \
232 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
233 _tmp != &all_mddevs;}); \
234 ({ spin_lock(&all_mddevs_lock); \
235 _tmp = _tmp->next;}) \
236 )
237
238 /* Rather than calling directly into the personality make_request function,
239 * IO requests come here first so that we can check if the device is
240 * being suspended pending a reconfiguration.
241 * We hold a refcount over the call to ->make_request. By the time that
242 * call has finished, the bio has been linked into some internal structure
243 * and so is visible to ->quiesce(), so we don't need the refcount any more.
244 */
245 static blk_qc_t md_make_request(struct request_queue *q, struct bio *bio)
246 {
247 const int rw = bio_data_dir(bio);
248 struct mddev *mddev = q->queuedata;
249 unsigned int sectors;
250 int cpu;
251
252 blk_queue_split(q, &bio, q->bio_split);
253
254 if (mddev == NULL || mddev->pers == NULL) {
255 bio_io_error(bio);
256 return BLK_QC_T_NONE;
257 }
258 if (mddev->ro == 1 && unlikely(rw == WRITE)) {
259 if (bio_sectors(bio) != 0)
260 bio->bi_error = -EROFS;
261 bio_endio(bio);
262 return BLK_QC_T_NONE;
263 }
264 smp_rmb(); /* Ensure implications of 'active' are visible */
265 rcu_read_lock();
266 if (mddev->suspended) {
267 DEFINE_WAIT(__wait);
268 for (;;) {
269 prepare_to_wait(&mddev->sb_wait, &__wait,
270 TASK_UNINTERRUPTIBLE);
271 if (!mddev->suspended)
272 break;
273 rcu_read_unlock();
274 schedule();
275 rcu_read_lock();
276 }
277 finish_wait(&mddev->sb_wait, &__wait);
278 }
279 atomic_inc(&mddev->active_io);
280 rcu_read_unlock();
281
282 /*
283 * save the sectors now since our bio can
284 * go away inside make_request
285 */
286 sectors = bio_sectors(bio);
287 /* bio could be mergeable after passing to underlayer */
288 bio->bi_rw &= ~REQ_NOMERGE;
289 mddev->pers->make_request(mddev, bio);
290
291 cpu = part_stat_lock();
292 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
293 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
294 part_stat_unlock();
295
296 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
297 wake_up(&mddev->sb_wait);
298
299 return BLK_QC_T_NONE;
300 }
301
302 /* mddev_suspend makes sure no new requests are submitted
303 * to the device, and that any requests that have been submitted
304 * are completely handled.
305 * Once mddev_detach() is called and completes, the module will be
306 * completely unused.
307 */
308 void mddev_suspend(struct mddev *mddev)
309 {
310 WARN_ON_ONCE(mddev->thread && current == mddev->thread->tsk);
311 if (mddev->suspended++)
312 return;
313 synchronize_rcu();
314 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
315 mddev->pers->quiesce(mddev, 1);
316
317 del_timer_sync(&mddev->safemode_timer);
318 }
319 EXPORT_SYMBOL_GPL(mddev_suspend);
320
321 void mddev_resume(struct mddev *mddev)
322 {
323 if (--mddev->suspended)
324 return;
325 wake_up(&mddev->sb_wait);
326 mddev->pers->quiesce(mddev, 0);
327
328 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
329 md_wakeup_thread(mddev->thread);
330 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
331 }
332 EXPORT_SYMBOL_GPL(mddev_resume);
333
334 int mddev_congested(struct mddev *mddev, int bits)
335 {
336 struct md_personality *pers = mddev->pers;
337 int ret = 0;
338
339 rcu_read_lock();
340 if (mddev->suspended)
341 ret = 1;
342 else if (pers && pers->congested)
343 ret = pers->congested(mddev, bits);
344 rcu_read_unlock();
345 return ret;
346 }
347 EXPORT_SYMBOL_GPL(mddev_congested);
348 static int md_congested(void *data, int bits)
349 {
350 struct mddev *mddev = data;
351 return mddev_congested(mddev, bits);
352 }
353
354 /*
355 * Generic flush handling for md
356 */
357
358 static void md_end_flush(struct bio *bio)
359 {
360 struct md_rdev *rdev = bio->bi_private;
361 struct mddev *mddev = rdev->mddev;
362
363 rdev_dec_pending(rdev, mddev);
364
365 if (atomic_dec_and_test(&mddev->flush_pending)) {
366 /* The pre-request flush has finished */
367 queue_work(md_wq, &mddev->flush_work);
368 }
369 bio_put(bio);
370 }
371
372 static void md_submit_flush_data(struct work_struct *ws);
373
374 static void submit_flushes(struct work_struct *ws)
375 {
376 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
377 struct md_rdev *rdev;
378
379 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
380 atomic_set(&mddev->flush_pending, 1);
381 rcu_read_lock();
382 rdev_for_each_rcu(rdev, mddev)
383 if (rdev->raid_disk >= 0 &&
384 !test_bit(Faulty, &rdev->flags)) {
385 /* Take two references, one is dropped
386 * when request finishes, one after
387 * we reclaim rcu_read_lock
388 */
389 struct bio *bi;
390 atomic_inc(&rdev->nr_pending);
391 atomic_inc(&rdev->nr_pending);
392 rcu_read_unlock();
393 bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
394 bi->bi_end_io = md_end_flush;
395 bi->bi_private = rdev;
396 bi->bi_bdev = rdev->bdev;
397 bio_set_op_attrs(bi, REQ_OP_WRITE, WRITE_FLUSH);
398 atomic_inc(&mddev->flush_pending);
399 submit_bio(bi);
400 rcu_read_lock();
401 rdev_dec_pending(rdev, mddev);
402 }
403 rcu_read_unlock();
404 if (atomic_dec_and_test(&mddev->flush_pending))
405 queue_work(md_wq, &mddev->flush_work);
406 }
407
408 static void md_submit_flush_data(struct work_struct *ws)
409 {
410 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
411 struct bio *bio = mddev->flush_bio;
412
413 if (bio->bi_iter.bi_size == 0)
414 /* an empty barrier - all done */
415 bio_endio(bio);
416 else {
417 bio->bi_rw &= ~REQ_PREFLUSH;
418 mddev->pers->make_request(mddev, bio);
419 }
420
421 mddev->flush_bio = NULL;
422 wake_up(&mddev->sb_wait);
423 }
424
425 void md_flush_request(struct mddev *mddev, struct bio *bio)
426 {
427 spin_lock_irq(&mddev->lock);
428 wait_event_lock_irq(mddev->sb_wait,
429 !mddev->flush_bio,
430 mddev->lock);
431 mddev->flush_bio = bio;
432 spin_unlock_irq(&mddev->lock);
433
434 INIT_WORK(&mddev->flush_work, submit_flushes);
435 queue_work(md_wq, &mddev->flush_work);
436 }
437 EXPORT_SYMBOL(md_flush_request);
438
439 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
440 {
441 struct mddev *mddev = cb->data;
442 md_wakeup_thread(mddev->thread);
443 kfree(cb);
444 }
445 EXPORT_SYMBOL(md_unplug);
446
447 static inline struct mddev *mddev_get(struct mddev *mddev)
448 {
449 atomic_inc(&mddev->active);
450 return mddev;
451 }
452
453 static void mddev_delayed_delete(struct work_struct *ws);
454
455 static void mddev_put(struct mddev *mddev)
456 {
457 struct bio_set *bs = NULL;
458
459 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
460 return;
461 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
462 mddev->ctime == 0 && !mddev->hold_active) {
463 /* Array is not configured at all, and not held active,
464 * so destroy it */
465 list_del_init(&mddev->all_mddevs);
466 bs = mddev->bio_set;
467 mddev->bio_set = NULL;
468 if (mddev->gendisk) {
469 /* We did a probe so need to clean up. Call
470 * queue_work inside the spinlock so that
471 * flush_workqueue() after mddev_find will
472 * succeed in waiting for the work to be done.
473 */
474 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
475 queue_work(md_misc_wq, &mddev->del_work);
476 } else
477 kfree(mddev);
478 }
479 spin_unlock(&all_mddevs_lock);
480 if (bs)
481 bioset_free(bs);
482 }
483
484 static void md_safemode_timeout(unsigned long data);
485
486 void mddev_init(struct mddev *mddev)
487 {
488 mutex_init(&mddev->open_mutex);
489 mutex_init(&mddev->reconfig_mutex);
490 mutex_init(&mddev->bitmap_info.mutex);
491 INIT_LIST_HEAD(&mddev->disks);
492 INIT_LIST_HEAD(&mddev->all_mddevs);
493 setup_timer(&mddev->safemode_timer, md_safemode_timeout,
494 (unsigned long) mddev);
495 atomic_set(&mddev->active, 1);
496 atomic_set(&mddev->openers, 0);
497 atomic_set(&mddev->active_io, 0);
498 spin_lock_init(&mddev->lock);
499 atomic_set(&mddev->flush_pending, 0);
500 init_waitqueue_head(&mddev->sb_wait);
501 init_waitqueue_head(&mddev->recovery_wait);
502 mddev->reshape_position = MaxSector;
503 mddev->reshape_backwards = 0;
504 mddev->last_sync_action = "none";
505 mddev->resync_min = 0;
506 mddev->resync_max = MaxSector;
507 mddev->level = LEVEL_NONE;
508 }
509 EXPORT_SYMBOL_GPL(mddev_init);
510
511 static struct mddev *mddev_find(dev_t unit)
512 {
513 struct mddev *mddev, *new = NULL;
514
515 if (unit && MAJOR(unit) != MD_MAJOR)
516 unit &= ~((1<<MdpMinorShift)-1);
517
518 retry:
519 spin_lock(&all_mddevs_lock);
520
521 if (unit) {
522 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
523 if (mddev->unit == unit) {
524 mddev_get(mddev);
525 spin_unlock(&all_mddevs_lock);
526 kfree(new);
527 return mddev;
528 }
529
530 if (new) {
531 list_add(&new->all_mddevs, &all_mddevs);
532 spin_unlock(&all_mddevs_lock);
533 new->hold_active = UNTIL_IOCTL;
534 return new;
535 }
536 } else if (new) {
537 /* find an unused unit number */
538 static int next_minor = 512;
539 int start = next_minor;
540 int is_free = 0;
541 int dev = 0;
542 while (!is_free) {
543 dev = MKDEV(MD_MAJOR, next_minor);
544 next_minor++;
545 if (next_minor > MINORMASK)
546 next_minor = 0;
547 if (next_minor == start) {
548 /* Oh dear, all in use. */
549 spin_unlock(&all_mddevs_lock);
550 kfree(new);
551 return NULL;
552 }
553
554 is_free = 1;
555 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
556 if (mddev->unit == dev) {
557 is_free = 0;
558 break;
559 }
560 }
561 new->unit = dev;
562 new->md_minor = MINOR(dev);
563 new->hold_active = UNTIL_STOP;
564 list_add(&new->all_mddevs, &all_mddevs);
565 spin_unlock(&all_mddevs_lock);
566 return new;
567 }
568 spin_unlock(&all_mddevs_lock);
569
570 new = kzalloc(sizeof(*new), GFP_KERNEL);
571 if (!new)
572 return NULL;
573
574 new->unit = unit;
575 if (MAJOR(unit) == MD_MAJOR)
576 new->md_minor = MINOR(unit);
577 else
578 new->md_minor = MINOR(unit) >> MdpMinorShift;
579
580 mddev_init(new);
581
582 goto retry;
583 }
584
585 static struct attribute_group md_redundancy_group;
586
587 void mddev_unlock(struct mddev *mddev)
588 {
589 if (mddev->to_remove) {
590 /* These cannot be removed under reconfig_mutex as
591 * an access to the files will try to take reconfig_mutex
592 * while holding the file unremovable, which leads to
593 * a deadlock.
594 * So hold set sysfs_active while the remove in happeing,
595 * and anything else which might set ->to_remove or my
596 * otherwise change the sysfs namespace will fail with
597 * -EBUSY if sysfs_active is still set.
598 * We set sysfs_active under reconfig_mutex and elsewhere
599 * test it under the same mutex to ensure its correct value
600 * is seen.
601 */
602 struct attribute_group *to_remove = mddev->to_remove;
603 mddev->to_remove = NULL;
604 mddev->sysfs_active = 1;
605 mutex_unlock(&mddev->reconfig_mutex);
606
607 if (mddev->kobj.sd) {
608 if (to_remove != &md_redundancy_group)
609 sysfs_remove_group(&mddev->kobj, to_remove);
610 if (mddev->pers == NULL ||
611 mddev->pers->sync_request == NULL) {
612 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
613 if (mddev->sysfs_action)
614 sysfs_put(mddev->sysfs_action);
615 mddev->sysfs_action = NULL;
616 }
617 }
618 mddev->sysfs_active = 0;
619 } else
620 mutex_unlock(&mddev->reconfig_mutex);
621
622 /* As we've dropped the mutex we need a spinlock to
623 * make sure the thread doesn't disappear
624 */
625 spin_lock(&pers_lock);
626 md_wakeup_thread(mddev->thread);
627 spin_unlock(&pers_lock);
628 }
629 EXPORT_SYMBOL_GPL(mddev_unlock);
630
631 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
632 {
633 struct md_rdev *rdev;
634
635 rdev_for_each_rcu(rdev, mddev)
636 if (rdev->desc_nr == nr)
637 return rdev;
638
639 return NULL;
640 }
641 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
642
643 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
644 {
645 struct md_rdev *rdev;
646
647 rdev_for_each(rdev, mddev)
648 if (rdev->bdev->bd_dev == dev)
649 return rdev;
650
651 return NULL;
652 }
653
654 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
655 {
656 struct md_rdev *rdev;
657
658 rdev_for_each_rcu(rdev, mddev)
659 if (rdev->bdev->bd_dev == dev)
660 return rdev;
661
662 return NULL;
663 }
664
665 static struct md_personality *find_pers(int level, char *clevel)
666 {
667 struct md_personality *pers;
668 list_for_each_entry(pers, &pers_list, list) {
669 if (level != LEVEL_NONE && pers->level == level)
670 return pers;
671 if (strcmp(pers->name, clevel)==0)
672 return pers;
673 }
674 return NULL;
675 }
676
677 /* return the offset of the super block in 512byte sectors */
678 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
679 {
680 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
681 return MD_NEW_SIZE_SECTORS(num_sectors);
682 }
683
684 static int alloc_disk_sb(struct md_rdev *rdev)
685 {
686 rdev->sb_page = alloc_page(GFP_KERNEL);
687 if (!rdev->sb_page) {
688 printk(KERN_ALERT "md: out of memory.\n");
689 return -ENOMEM;
690 }
691
692 return 0;
693 }
694
695 void md_rdev_clear(struct md_rdev *rdev)
696 {
697 if (rdev->sb_page) {
698 put_page(rdev->sb_page);
699 rdev->sb_loaded = 0;
700 rdev->sb_page = NULL;
701 rdev->sb_start = 0;
702 rdev->sectors = 0;
703 }
704 if (rdev->bb_page) {
705 put_page(rdev->bb_page);
706 rdev->bb_page = NULL;
707 }
708 badblocks_exit(&rdev->badblocks);
709 }
710 EXPORT_SYMBOL_GPL(md_rdev_clear);
711
712 static void super_written(struct bio *bio)
713 {
714 struct md_rdev *rdev = bio->bi_private;
715 struct mddev *mddev = rdev->mddev;
716
717 if (bio->bi_error) {
718 printk("md: super_written gets error=%d\n", bio->bi_error);
719 md_error(mddev, rdev);
720 }
721
722 if (atomic_dec_and_test(&mddev->pending_writes))
723 wake_up(&mddev->sb_wait);
724 rdev_dec_pending(rdev, mddev);
725 bio_put(bio);
726 }
727
728 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
729 sector_t sector, int size, struct page *page)
730 {
731 /* write first size bytes of page to sector of rdev
732 * Increment mddev->pending_writes before returning
733 * and decrement it on completion, waking up sb_wait
734 * if zero is reached.
735 * If an error occurred, call md_error
736 */
737 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
738
739 atomic_inc(&rdev->nr_pending);
740
741 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
742 bio->bi_iter.bi_sector = sector;
743 bio_add_page(bio, page, size, 0);
744 bio->bi_private = rdev;
745 bio->bi_end_io = super_written;
746 bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH_FUA);
747
748 atomic_inc(&mddev->pending_writes);
749 submit_bio(bio);
750 }
751
752 void md_super_wait(struct mddev *mddev)
753 {
754 /* wait for all superblock writes that were scheduled to complete */
755 wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
756 }
757
758 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
759 struct page *page, int op, int op_flags, bool metadata_op)
760 {
761 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
762 int ret;
763
764 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
765 rdev->meta_bdev : rdev->bdev;
766 bio_set_op_attrs(bio, op, op_flags);
767 if (metadata_op)
768 bio->bi_iter.bi_sector = sector + rdev->sb_start;
769 else if (rdev->mddev->reshape_position != MaxSector &&
770 (rdev->mddev->reshape_backwards ==
771 (sector >= rdev->mddev->reshape_position)))
772 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
773 else
774 bio->bi_iter.bi_sector = sector + rdev->data_offset;
775 bio_add_page(bio, page, size, 0);
776
777 submit_bio_wait(bio);
778
779 ret = !bio->bi_error;
780 bio_put(bio);
781 return ret;
782 }
783 EXPORT_SYMBOL_GPL(sync_page_io);
784
785 static int read_disk_sb(struct md_rdev *rdev, int size)
786 {
787 char b[BDEVNAME_SIZE];
788
789 if (rdev->sb_loaded)
790 return 0;
791
792 if (!sync_page_io(rdev, 0, size, rdev->sb_page, REQ_OP_READ, 0, true))
793 goto fail;
794 rdev->sb_loaded = 1;
795 return 0;
796
797 fail:
798 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
799 bdevname(rdev->bdev,b));
800 return -EINVAL;
801 }
802
803 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
804 {
805 return sb1->set_uuid0 == sb2->set_uuid0 &&
806 sb1->set_uuid1 == sb2->set_uuid1 &&
807 sb1->set_uuid2 == sb2->set_uuid2 &&
808 sb1->set_uuid3 == sb2->set_uuid3;
809 }
810
811 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
812 {
813 int ret;
814 mdp_super_t *tmp1, *tmp2;
815
816 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
817 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
818
819 if (!tmp1 || !tmp2) {
820 ret = 0;
821 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
822 goto abort;
823 }
824
825 *tmp1 = *sb1;
826 *tmp2 = *sb2;
827
828 /*
829 * nr_disks is not constant
830 */
831 tmp1->nr_disks = 0;
832 tmp2->nr_disks = 0;
833
834 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
835 abort:
836 kfree(tmp1);
837 kfree(tmp2);
838 return ret;
839 }
840
841 static u32 md_csum_fold(u32 csum)
842 {
843 csum = (csum & 0xffff) + (csum >> 16);
844 return (csum & 0xffff) + (csum >> 16);
845 }
846
847 static unsigned int calc_sb_csum(mdp_super_t *sb)
848 {
849 u64 newcsum = 0;
850 u32 *sb32 = (u32*)sb;
851 int i;
852 unsigned int disk_csum, csum;
853
854 disk_csum = sb->sb_csum;
855 sb->sb_csum = 0;
856
857 for (i = 0; i < MD_SB_BYTES/4 ; i++)
858 newcsum += sb32[i];
859 csum = (newcsum & 0xffffffff) + (newcsum>>32);
860
861 #ifdef CONFIG_ALPHA
862 /* This used to use csum_partial, which was wrong for several
863 * reasons including that different results are returned on
864 * different architectures. It isn't critical that we get exactly
865 * the same return value as before (we always csum_fold before
866 * testing, and that removes any differences). However as we
867 * know that csum_partial always returned a 16bit value on
868 * alphas, do a fold to maximise conformity to previous behaviour.
869 */
870 sb->sb_csum = md_csum_fold(disk_csum);
871 #else
872 sb->sb_csum = disk_csum;
873 #endif
874 return csum;
875 }
876
877 /*
878 * Handle superblock details.
879 * We want to be able to handle multiple superblock formats
880 * so we have a common interface to them all, and an array of
881 * different handlers.
882 * We rely on user-space to write the initial superblock, and support
883 * reading and updating of superblocks.
884 * Interface methods are:
885 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
886 * loads and validates a superblock on dev.
887 * if refdev != NULL, compare superblocks on both devices
888 * Return:
889 * 0 - dev has a superblock that is compatible with refdev
890 * 1 - dev has a superblock that is compatible and newer than refdev
891 * so dev should be used as the refdev in future
892 * -EINVAL superblock incompatible or invalid
893 * -othererror e.g. -EIO
894 *
895 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
896 * Verify that dev is acceptable into mddev.
897 * The first time, mddev->raid_disks will be 0, and data from
898 * dev should be merged in. Subsequent calls check that dev
899 * is new enough. Return 0 or -EINVAL
900 *
901 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
902 * Update the superblock for rdev with data in mddev
903 * This does not write to disc.
904 *
905 */
906
907 struct super_type {
908 char *name;
909 struct module *owner;
910 int (*load_super)(struct md_rdev *rdev,
911 struct md_rdev *refdev,
912 int minor_version);
913 int (*validate_super)(struct mddev *mddev,
914 struct md_rdev *rdev);
915 void (*sync_super)(struct mddev *mddev,
916 struct md_rdev *rdev);
917 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
918 sector_t num_sectors);
919 int (*allow_new_offset)(struct md_rdev *rdev,
920 unsigned long long new_offset);
921 };
922
923 /*
924 * Check that the given mddev has no bitmap.
925 *
926 * This function is called from the run method of all personalities that do not
927 * support bitmaps. It prints an error message and returns non-zero if mddev
928 * has a bitmap. Otherwise, it returns 0.
929 *
930 */
931 int md_check_no_bitmap(struct mddev *mddev)
932 {
933 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
934 return 0;
935 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
936 mdname(mddev), mddev->pers->name);
937 return 1;
938 }
939 EXPORT_SYMBOL(md_check_no_bitmap);
940
941 /*
942 * load_super for 0.90.0
943 */
944 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
945 {
946 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
947 mdp_super_t *sb;
948 int ret;
949
950 /*
951 * Calculate the position of the superblock (512byte sectors),
952 * it's at the end of the disk.
953 *
954 * It also happens to be a multiple of 4Kb.
955 */
956 rdev->sb_start = calc_dev_sboffset(rdev);
957
958 ret = read_disk_sb(rdev, MD_SB_BYTES);
959 if (ret) return ret;
960
961 ret = -EINVAL;
962
963 bdevname(rdev->bdev, b);
964 sb = page_address(rdev->sb_page);
965
966 if (sb->md_magic != MD_SB_MAGIC) {
967 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
968 b);
969 goto abort;
970 }
971
972 if (sb->major_version != 0 ||
973 sb->minor_version < 90 ||
974 sb->minor_version > 91) {
975 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
976 sb->major_version, sb->minor_version,
977 b);
978 goto abort;
979 }
980
981 if (sb->raid_disks <= 0)
982 goto abort;
983
984 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
985 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
986 b);
987 goto abort;
988 }
989
990 rdev->preferred_minor = sb->md_minor;
991 rdev->data_offset = 0;
992 rdev->new_data_offset = 0;
993 rdev->sb_size = MD_SB_BYTES;
994 rdev->badblocks.shift = -1;
995
996 if (sb->level == LEVEL_MULTIPATH)
997 rdev->desc_nr = -1;
998 else
999 rdev->desc_nr = sb->this_disk.number;
1000
1001 if (!refdev) {
1002 ret = 1;
1003 } else {
1004 __u64 ev1, ev2;
1005 mdp_super_t *refsb = page_address(refdev->sb_page);
1006 if (!uuid_equal(refsb, sb)) {
1007 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1008 b, bdevname(refdev->bdev,b2));
1009 goto abort;
1010 }
1011 if (!sb_equal(refsb, sb)) {
1012 printk(KERN_WARNING "md: %s has same UUID"
1013 " but different superblock to %s\n",
1014 b, bdevname(refdev->bdev, b2));
1015 goto abort;
1016 }
1017 ev1 = md_event(sb);
1018 ev2 = md_event(refsb);
1019 if (ev1 > ev2)
1020 ret = 1;
1021 else
1022 ret = 0;
1023 }
1024 rdev->sectors = rdev->sb_start;
1025 /* Limit to 4TB as metadata cannot record more than that.
1026 * (not needed for Linear and RAID0 as metadata doesn't
1027 * record this size)
1028 */
1029 if (IS_ENABLED(CONFIG_LBDAF) && (u64)rdev->sectors >= (2ULL << 32) &&
1030 sb->level >= 1)
1031 rdev->sectors = (sector_t)(2ULL << 32) - 2;
1032
1033 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1034 /* "this cannot possibly happen" ... */
1035 ret = -EINVAL;
1036
1037 abort:
1038 return ret;
1039 }
1040
1041 /*
1042 * validate_super for 0.90.0
1043 */
1044 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1045 {
1046 mdp_disk_t *desc;
1047 mdp_super_t *sb = page_address(rdev->sb_page);
1048 __u64 ev1 = md_event(sb);
1049
1050 rdev->raid_disk = -1;
1051 clear_bit(Faulty, &rdev->flags);
1052 clear_bit(In_sync, &rdev->flags);
1053 clear_bit(Bitmap_sync, &rdev->flags);
1054 clear_bit(WriteMostly, &rdev->flags);
1055
1056 if (mddev->raid_disks == 0) {
1057 mddev->major_version = 0;
1058 mddev->minor_version = sb->minor_version;
1059 mddev->patch_version = sb->patch_version;
1060 mddev->external = 0;
1061 mddev->chunk_sectors = sb->chunk_size >> 9;
1062 mddev->ctime = sb->ctime;
1063 mddev->utime = sb->utime;
1064 mddev->level = sb->level;
1065 mddev->clevel[0] = 0;
1066 mddev->layout = sb->layout;
1067 mddev->raid_disks = sb->raid_disks;
1068 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1069 mddev->events = ev1;
1070 mddev->bitmap_info.offset = 0;
1071 mddev->bitmap_info.space = 0;
1072 /* bitmap can use 60 K after the 4K superblocks */
1073 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1074 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1075 mddev->reshape_backwards = 0;
1076
1077 if (mddev->minor_version >= 91) {
1078 mddev->reshape_position = sb->reshape_position;
1079 mddev->delta_disks = sb->delta_disks;
1080 mddev->new_level = sb->new_level;
1081 mddev->new_layout = sb->new_layout;
1082 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1083 if (mddev->delta_disks < 0)
1084 mddev->reshape_backwards = 1;
1085 } else {
1086 mddev->reshape_position = MaxSector;
1087 mddev->delta_disks = 0;
1088 mddev->new_level = mddev->level;
1089 mddev->new_layout = mddev->layout;
1090 mddev->new_chunk_sectors = mddev->chunk_sectors;
1091 }
1092
1093 if (sb->state & (1<<MD_SB_CLEAN))
1094 mddev->recovery_cp = MaxSector;
1095 else {
1096 if (sb->events_hi == sb->cp_events_hi &&
1097 sb->events_lo == sb->cp_events_lo) {
1098 mddev->recovery_cp = sb->recovery_cp;
1099 } else
1100 mddev->recovery_cp = 0;
1101 }
1102
1103 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1104 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1105 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1106 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1107
1108 mddev->max_disks = MD_SB_DISKS;
1109
1110 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1111 mddev->bitmap_info.file == NULL) {
1112 mddev->bitmap_info.offset =
1113 mddev->bitmap_info.default_offset;
1114 mddev->bitmap_info.space =
1115 mddev->bitmap_info.default_space;
1116 }
1117
1118 } else if (mddev->pers == NULL) {
1119 /* Insist on good event counter while assembling, except
1120 * for spares (which don't need an event count) */
1121 ++ev1;
1122 if (sb->disks[rdev->desc_nr].state & (
1123 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1124 if (ev1 < mddev->events)
1125 return -EINVAL;
1126 } else if (mddev->bitmap) {
1127 /* if adding to array with a bitmap, then we can accept an
1128 * older device ... but not too old.
1129 */
1130 if (ev1 < mddev->bitmap->events_cleared)
1131 return 0;
1132 if (ev1 < mddev->events)
1133 set_bit(Bitmap_sync, &rdev->flags);
1134 } else {
1135 if (ev1 < mddev->events)
1136 /* just a hot-add of a new device, leave raid_disk at -1 */
1137 return 0;
1138 }
1139
1140 if (mddev->level != LEVEL_MULTIPATH) {
1141 desc = sb->disks + rdev->desc_nr;
1142
1143 if (desc->state & (1<<MD_DISK_FAULTY))
1144 set_bit(Faulty, &rdev->flags);
1145 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1146 desc->raid_disk < mddev->raid_disks */) {
1147 set_bit(In_sync, &rdev->flags);
1148 rdev->raid_disk = desc->raid_disk;
1149 rdev->saved_raid_disk = desc->raid_disk;
1150 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1151 /* active but not in sync implies recovery up to
1152 * reshape position. We don't know exactly where
1153 * that is, so set to zero for now */
1154 if (mddev->minor_version >= 91) {
1155 rdev->recovery_offset = 0;
1156 rdev->raid_disk = desc->raid_disk;
1157 }
1158 }
1159 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1160 set_bit(WriteMostly, &rdev->flags);
1161 } else /* MULTIPATH are always insync */
1162 set_bit(In_sync, &rdev->flags);
1163 return 0;
1164 }
1165
1166 /*
1167 * sync_super for 0.90.0
1168 */
1169 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1170 {
1171 mdp_super_t *sb;
1172 struct md_rdev *rdev2;
1173 int next_spare = mddev->raid_disks;
1174
1175 /* make rdev->sb match mddev data..
1176 *
1177 * 1/ zero out disks
1178 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1179 * 3/ any empty disks < next_spare become removed
1180 *
1181 * disks[0] gets initialised to REMOVED because
1182 * we cannot be sure from other fields if it has
1183 * been initialised or not.
1184 */
1185 int i;
1186 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1187
1188 rdev->sb_size = MD_SB_BYTES;
1189
1190 sb = page_address(rdev->sb_page);
1191
1192 memset(sb, 0, sizeof(*sb));
1193
1194 sb->md_magic = MD_SB_MAGIC;
1195 sb->major_version = mddev->major_version;
1196 sb->patch_version = mddev->patch_version;
1197 sb->gvalid_words = 0; /* ignored */
1198 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1199 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1200 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1201 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1202
1203 sb->ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
1204 sb->level = mddev->level;
1205 sb->size = mddev->dev_sectors / 2;
1206 sb->raid_disks = mddev->raid_disks;
1207 sb->md_minor = mddev->md_minor;
1208 sb->not_persistent = 0;
1209 sb->utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
1210 sb->state = 0;
1211 sb->events_hi = (mddev->events>>32);
1212 sb->events_lo = (u32)mddev->events;
1213
1214 if (mddev->reshape_position == MaxSector)
1215 sb->minor_version = 90;
1216 else {
1217 sb->minor_version = 91;
1218 sb->reshape_position = mddev->reshape_position;
1219 sb->new_level = mddev->new_level;
1220 sb->delta_disks = mddev->delta_disks;
1221 sb->new_layout = mddev->new_layout;
1222 sb->new_chunk = mddev->new_chunk_sectors << 9;
1223 }
1224 mddev->minor_version = sb->minor_version;
1225 if (mddev->in_sync)
1226 {
1227 sb->recovery_cp = mddev->recovery_cp;
1228 sb->cp_events_hi = (mddev->events>>32);
1229 sb->cp_events_lo = (u32)mddev->events;
1230 if (mddev->recovery_cp == MaxSector)
1231 sb->state = (1<< MD_SB_CLEAN);
1232 } else
1233 sb->recovery_cp = 0;
1234
1235 sb->layout = mddev->layout;
1236 sb->chunk_size = mddev->chunk_sectors << 9;
1237
1238 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1239 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1240
1241 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1242 rdev_for_each(rdev2, mddev) {
1243 mdp_disk_t *d;
1244 int desc_nr;
1245 int is_active = test_bit(In_sync, &rdev2->flags);
1246
1247 if (rdev2->raid_disk >= 0 &&
1248 sb->minor_version >= 91)
1249 /* we have nowhere to store the recovery_offset,
1250 * but if it is not below the reshape_position,
1251 * we can piggy-back on that.
1252 */
1253 is_active = 1;
1254 if (rdev2->raid_disk < 0 ||
1255 test_bit(Faulty, &rdev2->flags))
1256 is_active = 0;
1257 if (is_active)
1258 desc_nr = rdev2->raid_disk;
1259 else
1260 desc_nr = next_spare++;
1261 rdev2->desc_nr = desc_nr;
1262 d = &sb->disks[rdev2->desc_nr];
1263 nr_disks++;
1264 d->number = rdev2->desc_nr;
1265 d->major = MAJOR(rdev2->bdev->bd_dev);
1266 d->minor = MINOR(rdev2->bdev->bd_dev);
1267 if (is_active)
1268 d->raid_disk = rdev2->raid_disk;
1269 else
1270 d->raid_disk = rdev2->desc_nr; /* compatibility */
1271 if (test_bit(Faulty, &rdev2->flags))
1272 d->state = (1<<MD_DISK_FAULTY);
1273 else if (is_active) {
1274 d->state = (1<<MD_DISK_ACTIVE);
1275 if (test_bit(In_sync, &rdev2->flags))
1276 d->state |= (1<<MD_DISK_SYNC);
1277 active++;
1278 working++;
1279 } else {
1280 d->state = 0;
1281 spare++;
1282 working++;
1283 }
1284 if (test_bit(WriteMostly, &rdev2->flags))
1285 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1286 }
1287 /* now set the "removed" and "faulty" bits on any missing devices */
1288 for (i=0 ; i < mddev->raid_disks ; i++) {
1289 mdp_disk_t *d = &sb->disks[i];
1290 if (d->state == 0 && d->number == 0) {
1291 d->number = i;
1292 d->raid_disk = i;
1293 d->state = (1<<MD_DISK_REMOVED);
1294 d->state |= (1<<MD_DISK_FAULTY);
1295 failed++;
1296 }
1297 }
1298 sb->nr_disks = nr_disks;
1299 sb->active_disks = active;
1300 sb->working_disks = working;
1301 sb->failed_disks = failed;
1302 sb->spare_disks = spare;
1303
1304 sb->this_disk = sb->disks[rdev->desc_nr];
1305 sb->sb_csum = calc_sb_csum(sb);
1306 }
1307
1308 /*
1309 * rdev_size_change for 0.90.0
1310 */
1311 static unsigned long long
1312 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1313 {
1314 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1315 return 0; /* component must fit device */
1316 if (rdev->mddev->bitmap_info.offset)
1317 return 0; /* can't move bitmap */
1318 rdev->sb_start = calc_dev_sboffset(rdev);
1319 if (!num_sectors || num_sectors > rdev->sb_start)
1320 num_sectors = rdev->sb_start;
1321 /* Limit to 4TB as metadata cannot record more than that.
1322 * 4TB == 2^32 KB, or 2*2^32 sectors.
1323 */
1324 if (IS_ENABLED(CONFIG_LBDAF) && (u64)num_sectors >= (2ULL << 32) &&
1325 rdev->mddev->level >= 1)
1326 num_sectors = (sector_t)(2ULL << 32) - 2;
1327 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1328 rdev->sb_page);
1329 md_super_wait(rdev->mddev);
1330 return num_sectors;
1331 }
1332
1333 static int
1334 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1335 {
1336 /* non-zero offset changes not possible with v0.90 */
1337 return new_offset == 0;
1338 }
1339
1340 /*
1341 * version 1 superblock
1342 */
1343
1344 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1345 {
1346 __le32 disk_csum;
1347 u32 csum;
1348 unsigned long long newcsum;
1349 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1350 __le32 *isuper = (__le32*)sb;
1351
1352 disk_csum = sb->sb_csum;
1353 sb->sb_csum = 0;
1354 newcsum = 0;
1355 for (; size >= 4; size -= 4)
1356 newcsum += le32_to_cpu(*isuper++);
1357
1358 if (size == 2)
1359 newcsum += le16_to_cpu(*(__le16*) isuper);
1360
1361 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1362 sb->sb_csum = disk_csum;
1363 return cpu_to_le32(csum);
1364 }
1365
1366 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1367 {
1368 struct mdp_superblock_1 *sb;
1369 int ret;
1370 sector_t sb_start;
1371 sector_t sectors;
1372 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1373 int bmask;
1374
1375 /*
1376 * Calculate the position of the superblock in 512byte sectors.
1377 * It is always aligned to a 4K boundary and
1378 * depeding on minor_version, it can be:
1379 * 0: At least 8K, but less than 12K, from end of device
1380 * 1: At start of device
1381 * 2: 4K from start of device.
1382 */
1383 switch(minor_version) {
1384 case 0:
1385 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1386 sb_start -= 8*2;
1387 sb_start &= ~(sector_t)(4*2-1);
1388 break;
1389 case 1:
1390 sb_start = 0;
1391 break;
1392 case 2:
1393 sb_start = 8;
1394 break;
1395 default:
1396 return -EINVAL;
1397 }
1398 rdev->sb_start = sb_start;
1399
1400 /* superblock is rarely larger than 1K, but it can be larger,
1401 * and it is safe to read 4k, so we do that
1402 */
1403 ret = read_disk_sb(rdev, 4096);
1404 if (ret) return ret;
1405
1406 sb = page_address(rdev->sb_page);
1407
1408 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1409 sb->major_version != cpu_to_le32(1) ||
1410 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1411 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1412 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1413 return -EINVAL;
1414
1415 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1416 printk("md: invalid superblock checksum on %s\n",
1417 bdevname(rdev->bdev,b));
1418 return -EINVAL;
1419 }
1420 if (le64_to_cpu(sb->data_size) < 10) {
1421 printk("md: data_size too small on %s\n",
1422 bdevname(rdev->bdev,b));
1423 return -EINVAL;
1424 }
1425 if (sb->pad0 ||
1426 sb->pad3[0] ||
1427 memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1428 /* Some padding is non-zero, might be a new feature */
1429 return -EINVAL;
1430
1431 rdev->preferred_minor = 0xffff;
1432 rdev->data_offset = le64_to_cpu(sb->data_offset);
1433 rdev->new_data_offset = rdev->data_offset;
1434 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1435 (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1436 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1437 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1438
1439 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1440 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1441 if (rdev->sb_size & bmask)
1442 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1443
1444 if (minor_version
1445 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1446 return -EINVAL;
1447 if (minor_version
1448 && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1449 return -EINVAL;
1450
1451 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1452 rdev->desc_nr = -1;
1453 else
1454 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1455
1456 if (!rdev->bb_page) {
1457 rdev->bb_page = alloc_page(GFP_KERNEL);
1458 if (!rdev->bb_page)
1459 return -ENOMEM;
1460 }
1461 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1462 rdev->badblocks.count == 0) {
1463 /* need to load the bad block list.
1464 * Currently we limit it to one page.
1465 */
1466 s32 offset;
1467 sector_t bb_sector;
1468 u64 *bbp;
1469 int i;
1470 int sectors = le16_to_cpu(sb->bblog_size);
1471 if (sectors > (PAGE_SIZE / 512))
1472 return -EINVAL;
1473 offset = le32_to_cpu(sb->bblog_offset);
1474 if (offset == 0)
1475 return -EINVAL;
1476 bb_sector = (long long)offset;
1477 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1478 rdev->bb_page, REQ_OP_READ, 0, true))
1479 return -EIO;
1480 bbp = (u64 *)page_address(rdev->bb_page);
1481 rdev->badblocks.shift = sb->bblog_shift;
1482 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1483 u64 bb = le64_to_cpu(*bbp);
1484 int count = bb & (0x3ff);
1485 u64 sector = bb >> 10;
1486 sector <<= sb->bblog_shift;
1487 count <<= sb->bblog_shift;
1488 if (bb + 1 == 0)
1489 break;
1490 if (badblocks_set(&rdev->badblocks, sector, count, 1))
1491 return -EINVAL;
1492 }
1493 } else if (sb->bblog_offset != 0)
1494 rdev->badblocks.shift = 0;
1495
1496 if (!refdev) {
1497 ret = 1;
1498 } else {
1499 __u64 ev1, ev2;
1500 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1501
1502 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1503 sb->level != refsb->level ||
1504 sb->layout != refsb->layout ||
1505 sb->chunksize != refsb->chunksize) {
1506 printk(KERN_WARNING "md: %s has strangely different"
1507 " superblock to %s\n",
1508 bdevname(rdev->bdev,b),
1509 bdevname(refdev->bdev,b2));
1510 return -EINVAL;
1511 }
1512 ev1 = le64_to_cpu(sb->events);
1513 ev2 = le64_to_cpu(refsb->events);
1514
1515 if (ev1 > ev2)
1516 ret = 1;
1517 else
1518 ret = 0;
1519 }
1520 if (minor_version) {
1521 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1522 sectors -= rdev->data_offset;
1523 } else
1524 sectors = rdev->sb_start;
1525 if (sectors < le64_to_cpu(sb->data_size))
1526 return -EINVAL;
1527 rdev->sectors = le64_to_cpu(sb->data_size);
1528 return ret;
1529 }
1530
1531 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1532 {
1533 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1534 __u64 ev1 = le64_to_cpu(sb->events);
1535
1536 rdev->raid_disk = -1;
1537 clear_bit(Faulty, &rdev->flags);
1538 clear_bit(In_sync, &rdev->flags);
1539 clear_bit(Bitmap_sync, &rdev->flags);
1540 clear_bit(WriteMostly, &rdev->flags);
1541
1542 if (mddev->raid_disks == 0) {
1543 mddev->major_version = 1;
1544 mddev->patch_version = 0;
1545 mddev->external = 0;
1546 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1547 mddev->ctime = le64_to_cpu(sb->ctime);
1548 mddev->utime = le64_to_cpu(sb->utime);
1549 mddev->level = le32_to_cpu(sb->level);
1550 mddev->clevel[0] = 0;
1551 mddev->layout = le32_to_cpu(sb->layout);
1552 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1553 mddev->dev_sectors = le64_to_cpu(sb->size);
1554 mddev->events = ev1;
1555 mddev->bitmap_info.offset = 0;
1556 mddev->bitmap_info.space = 0;
1557 /* Default location for bitmap is 1K after superblock
1558 * using 3K - total of 4K
1559 */
1560 mddev->bitmap_info.default_offset = 1024 >> 9;
1561 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1562 mddev->reshape_backwards = 0;
1563
1564 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1565 memcpy(mddev->uuid, sb->set_uuid, 16);
1566
1567 mddev->max_disks = (4096-256)/2;
1568
1569 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1570 mddev->bitmap_info.file == NULL) {
1571 mddev->bitmap_info.offset =
1572 (__s32)le32_to_cpu(sb->bitmap_offset);
1573 /* Metadata doesn't record how much space is available.
1574 * For 1.0, we assume we can use up to the superblock
1575 * if before, else to 4K beyond superblock.
1576 * For others, assume no change is possible.
1577 */
1578 if (mddev->minor_version > 0)
1579 mddev->bitmap_info.space = 0;
1580 else if (mddev->bitmap_info.offset > 0)
1581 mddev->bitmap_info.space =
1582 8 - mddev->bitmap_info.offset;
1583 else
1584 mddev->bitmap_info.space =
1585 -mddev->bitmap_info.offset;
1586 }
1587
1588 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1589 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1590 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1591 mddev->new_level = le32_to_cpu(sb->new_level);
1592 mddev->new_layout = le32_to_cpu(sb->new_layout);
1593 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1594 if (mddev->delta_disks < 0 ||
1595 (mddev->delta_disks == 0 &&
1596 (le32_to_cpu(sb->feature_map)
1597 & MD_FEATURE_RESHAPE_BACKWARDS)))
1598 mddev->reshape_backwards = 1;
1599 } else {
1600 mddev->reshape_position = MaxSector;
1601 mddev->delta_disks = 0;
1602 mddev->new_level = mddev->level;
1603 mddev->new_layout = mddev->layout;
1604 mddev->new_chunk_sectors = mddev->chunk_sectors;
1605 }
1606
1607 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL) {
1608 set_bit(MD_HAS_JOURNAL, &mddev->flags);
1609 if (mddev->recovery_cp == MaxSector)
1610 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
1611 }
1612 } else if (mddev->pers == NULL) {
1613 /* Insist of good event counter while assembling, except for
1614 * spares (which don't need an event count) */
1615 ++ev1;
1616 if (rdev->desc_nr >= 0 &&
1617 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1618 (le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < MD_DISK_ROLE_MAX ||
1619 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) == MD_DISK_ROLE_JOURNAL))
1620 if (ev1 < mddev->events)
1621 return -EINVAL;
1622 } else if (mddev->bitmap) {
1623 /* If adding to array with a bitmap, then we can accept an
1624 * older device, but not too old.
1625 */
1626 if (ev1 < mddev->bitmap->events_cleared)
1627 return 0;
1628 if (ev1 < mddev->events)
1629 set_bit(Bitmap_sync, &rdev->flags);
1630 } else {
1631 if (ev1 < mddev->events)
1632 /* just a hot-add of a new device, leave raid_disk at -1 */
1633 return 0;
1634 }
1635 if (mddev->level != LEVEL_MULTIPATH) {
1636 int role;
1637 if (rdev->desc_nr < 0 ||
1638 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1639 role = MD_DISK_ROLE_SPARE;
1640 rdev->desc_nr = -1;
1641 } else
1642 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1643 switch(role) {
1644 case MD_DISK_ROLE_SPARE: /* spare */
1645 break;
1646 case MD_DISK_ROLE_FAULTY: /* faulty */
1647 set_bit(Faulty, &rdev->flags);
1648 break;
1649 case MD_DISK_ROLE_JOURNAL: /* journal device */
1650 if (!(le32_to_cpu(sb->feature_map) & MD_FEATURE_JOURNAL)) {
1651 /* journal device without journal feature */
1652 printk(KERN_WARNING
1653 "md: journal device provided without journal feature, ignoring the device\n");
1654 return -EINVAL;
1655 }
1656 set_bit(Journal, &rdev->flags);
1657 rdev->journal_tail = le64_to_cpu(sb->journal_tail);
1658 rdev->raid_disk = 0;
1659 break;
1660 default:
1661 rdev->saved_raid_disk = role;
1662 if ((le32_to_cpu(sb->feature_map) &
1663 MD_FEATURE_RECOVERY_OFFSET)) {
1664 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1665 if (!(le32_to_cpu(sb->feature_map) &
1666 MD_FEATURE_RECOVERY_BITMAP))
1667 rdev->saved_raid_disk = -1;
1668 } else
1669 set_bit(In_sync, &rdev->flags);
1670 rdev->raid_disk = role;
1671 break;
1672 }
1673 if (sb->devflags & WriteMostly1)
1674 set_bit(WriteMostly, &rdev->flags);
1675 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1676 set_bit(Replacement, &rdev->flags);
1677 } else /* MULTIPATH are always insync */
1678 set_bit(In_sync, &rdev->flags);
1679
1680 return 0;
1681 }
1682
1683 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1684 {
1685 struct mdp_superblock_1 *sb;
1686 struct md_rdev *rdev2;
1687 int max_dev, i;
1688 /* make rdev->sb match mddev and rdev data. */
1689
1690 sb = page_address(rdev->sb_page);
1691
1692 sb->feature_map = 0;
1693 sb->pad0 = 0;
1694 sb->recovery_offset = cpu_to_le64(0);
1695 memset(sb->pad3, 0, sizeof(sb->pad3));
1696
1697 sb->utime = cpu_to_le64((__u64)mddev->utime);
1698 sb->events = cpu_to_le64(mddev->events);
1699 if (mddev->in_sync)
1700 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1701 else if (test_bit(MD_JOURNAL_CLEAN, &mddev->flags))
1702 sb->resync_offset = cpu_to_le64(MaxSector);
1703 else
1704 sb->resync_offset = cpu_to_le64(0);
1705
1706 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1707
1708 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1709 sb->size = cpu_to_le64(mddev->dev_sectors);
1710 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1711 sb->level = cpu_to_le32(mddev->level);
1712 sb->layout = cpu_to_le32(mddev->layout);
1713
1714 if (test_bit(WriteMostly, &rdev->flags))
1715 sb->devflags |= WriteMostly1;
1716 else
1717 sb->devflags &= ~WriteMostly1;
1718 sb->data_offset = cpu_to_le64(rdev->data_offset);
1719 sb->data_size = cpu_to_le64(rdev->sectors);
1720
1721 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1722 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1723 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1724 }
1725
1726 if (rdev->raid_disk >= 0 && !test_bit(Journal, &rdev->flags) &&
1727 !test_bit(In_sync, &rdev->flags)) {
1728 sb->feature_map |=
1729 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1730 sb->recovery_offset =
1731 cpu_to_le64(rdev->recovery_offset);
1732 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1733 sb->feature_map |=
1734 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1735 }
1736 /* Note: recovery_offset and journal_tail share space */
1737 if (test_bit(Journal, &rdev->flags))
1738 sb->journal_tail = cpu_to_le64(rdev->journal_tail);
1739 if (test_bit(Replacement, &rdev->flags))
1740 sb->feature_map |=
1741 cpu_to_le32(MD_FEATURE_REPLACEMENT);
1742
1743 if (mddev->reshape_position != MaxSector) {
1744 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1745 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1746 sb->new_layout = cpu_to_le32(mddev->new_layout);
1747 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1748 sb->new_level = cpu_to_le32(mddev->new_level);
1749 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1750 if (mddev->delta_disks == 0 &&
1751 mddev->reshape_backwards)
1752 sb->feature_map
1753 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1754 if (rdev->new_data_offset != rdev->data_offset) {
1755 sb->feature_map
1756 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1757 sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1758 - rdev->data_offset));
1759 }
1760 }
1761
1762 if (mddev_is_clustered(mddev))
1763 sb->feature_map |= cpu_to_le32(MD_FEATURE_CLUSTERED);
1764
1765 if (rdev->badblocks.count == 0)
1766 /* Nothing to do for bad blocks*/ ;
1767 else if (sb->bblog_offset == 0)
1768 /* Cannot record bad blocks on this device */
1769 md_error(mddev, rdev);
1770 else {
1771 struct badblocks *bb = &rdev->badblocks;
1772 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1773 u64 *p = bb->page;
1774 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1775 if (bb->changed) {
1776 unsigned seq;
1777
1778 retry:
1779 seq = read_seqbegin(&bb->lock);
1780
1781 memset(bbp, 0xff, PAGE_SIZE);
1782
1783 for (i = 0 ; i < bb->count ; i++) {
1784 u64 internal_bb = p[i];
1785 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1786 | BB_LEN(internal_bb));
1787 bbp[i] = cpu_to_le64(store_bb);
1788 }
1789 bb->changed = 0;
1790 if (read_seqretry(&bb->lock, seq))
1791 goto retry;
1792
1793 bb->sector = (rdev->sb_start +
1794 (int)le32_to_cpu(sb->bblog_offset));
1795 bb->size = le16_to_cpu(sb->bblog_size);
1796 }
1797 }
1798
1799 max_dev = 0;
1800 rdev_for_each(rdev2, mddev)
1801 if (rdev2->desc_nr+1 > max_dev)
1802 max_dev = rdev2->desc_nr+1;
1803
1804 if (max_dev > le32_to_cpu(sb->max_dev)) {
1805 int bmask;
1806 sb->max_dev = cpu_to_le32(max_dev);
1807 rdev->sb_size = max_dev * 2 + 256;
1808 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1809 if (rdev->sb_size & bmask)
1810 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1811 } else
1812 max_dev = le32_to_cpu(sb->max_dev);
1813
1814 for (i=0; i<max_dev;i++)
1815 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1816
1817 if (test_bit(MD_HAS_JOURNAL, &mddev->flags))
1818 sb->feature_map |= cpu_to_le32(MD_FEATURE_JOURNAL);
1819
1820 rdev_for_each(rdev2, mddev) {
1821 i = rdev2->desc_nr;
1822 if (test_bit(Faulty, &rdev2->flags))
1823 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_FAULTY);
1824 else if (test_bit(In_sync, &rdev2->flags))
1825 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1826 else if (test_bit(Journal, &rdev2->flags))
1827 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_JOURNAL);
1828 else if (rdev2->raid_disk >= 0)
1829 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1830 else
1831 sb->dev_roles[i] = cpu_to_le16(MD_DISK_ROLE_SPARE);
1832 }
1833
1834 sb->sb_csum = calc_sb_1_csum(sb);
1835 }
1836
1837 static unsigned long long
1838 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1839 {
1840 struct mdp_superblock_1 *sb;
1841 sector_t max_sectors;
1842 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1843 return 0; /* component must fit device */
1844 if (rdev->data_offset != rdev->new_data_offset)
1845 return 0; /* too confusing */
1846 if (rdev->sb_start < rdev->data_offset) {
1847 /* minor versions 1 and 2; superblock before data */
1848 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1849 max_sectors -= rdev->data_offset;
1850 if (!num_sectors || num_sectors > max_sectors)
1851 num_sectors = max_sectors;
1852 } else if (rdev->mddev->bitmap_info.offset) {
1853 /* minor version 0 with bitmap we can't move */
1854 return 0;
1855 } else {
1856 /* minor version 0; superblock after data */
1857 sector_t sb_start;
1858 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1859 sb_start &= ~(sector_t)(4*2 - 1);
1860 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1861 if (!num_sectors || num_sectors > max_sectors)
1862 num_sectors = max_sectors;
1863 rdev->sb_start = sb_start;
1864 }
1865 sb = page_address(rdev->sb_page);
1866 sb->data_size = cpu_to_le64(num_sectors);
1867 sb->super_offset = rdev->sb_start;
1868 sb->sb_csum = calc_sb_1_csum(sb);
1869 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1870 rdev->sb_page);
1871 md_super_wait(rdev->mddev);
1872 return num_sectors;
1873
1874 }
1875
1876 static int
1877 super_1_allow_new_offset(struct md_rdev *rdev,
1878 unsigned long long new_offset)
1879 {
1880 /* All necessary checks on new >= old have been done */
1881 struct bitmap *bitmap;
1882 if (new_offset >= rdev->data_offset)
1883 return 1;
1884
1885 /* with 1.0 metadata, there is no metadata to tread on
1886 * so we can always move back */
1887 if (rdev->mddev->minor_version == 0)
1888 return 1;
1889
1890 /* otherwise we must be sure not to step on
1891 * any metadata, so stay:
1892 * 36K beyond start of superblock
1893 * beyond end of badblocks
1894 * beyond write-intent bitmap
1895 */
1896 if (rdev->sb_start + (32+4)*2 > new_offset)
1897 return 0;
1898 bitmap = rdev->mddev->bitmap;
1899 if (bitmap && !rdev->mddev->bitmap_info.file &&
1900 rdev->sb_start + rdev->mddev->bitmap_info.offset +
1901 bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1902 return 0;
1903 if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1904 return 0;
1905
1906 return 1;
1907 }
1908
1909 static struct super_type super_types[] = {
1910 [0] = {
1911 .name = "0.90.0",
1912 .owner = THIS_MODULE,
1913 .load_super = super_90_load,
1914 .validate_super = super_90_validate,
1915 .sync_super = super_90_sync,
1916 .rdev_size_change = super_90_rdev_size_change,
1917 .allow_new_offset = super_90_allow_new_offset,
1918 },
1919 [1] = {
1920 .name = "md-1",
1921 .owner = THIS_MODULE,
1922 .load_super = super_1_load,
1923 .validate_super = super_1_validate,
1924 .sync_super = super_1_sync,
1925 .rdev_size_change = super_1_rdev_size_change,
1926 .allow_new_offset = super_1_allow_new_offset,
1927 },
1928 };
1929
1930 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1931 {
1932 if (mddev->sync_super) {
1933 mddev->sync_super(mddev, rdev);
1934 return;
1935 }
1936
1937 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1938
1939 super_types[mddev->major_version].sync_super(mddev, rdev);
1940 }
1941
1942 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1943 {
1944 struct md_rdev *rdev, *rdev2;
1945
1946 rcu_read_lock();
1947 rdev_for_each_rcu(rdev, mddev1) {
1948 if (test_bit(Faulty, &rdev->flags) ||
1949 test_bit(Journal, &rdev->flags) ||
1950 rdev->raid_disk == -1)
1951 continue;
1952 rdev_for_each_rcu(rdev2, mddev2) {
1953 if (test_bit(Faulty, &rdev2->flags) ||
1954 test_bit(Journal, &rdev2->flags) ||
1955 rdev2->raid_disk == -1)
1956 continue;
1957 if (rdev->bdev->bd_contains ==
1958 rdev2->bdev->bd_contains) {
1959 rcu_read_unlock();
1960 return 1;
1961 }
1962 }
1963 }
1964 rcu_read_unlock();
1965 return 0;
1966 }
1967
1968 static LIST_HEAD(pending_raid_disks);
1969
1970 /*
1971 * Try to register data integrity profile for an mddev
1972 *
1973 * This is called when an array is started and after a disk has been kicked
1974 * from the array. It only succeeds if all working and active component devices
1975 * are integrity capable with matching profiles.
1976 */
1977 int md_integrity_register(struct mddev *mddev)
1978 {
1979 struct md_rdev *rdev, *reference = NULL;
1980
1981 if (list_empty(&mddev->disks))
1982 return 0; /* nothing to do */
1983 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1984 return 0; /* shouldn't register, or already is */
1985 rdev_for_each(rdev, mddev) {
1986 /* skip spares and non-functional disks */
1987 if (test_bit(Faulty, &rdev->flags))
1988 continue;
1989 if (rdev->raid_disk < 0)
1990 continue;
1991 if (!reference) {
1992 /* Use the first rdev as the reference */
1993 reference = rdev;
1994 continue;
1995 }
1996 /* does this rdev's profile match the reference profile? */
1997 if (blk_integrity_compare(reference->bdev->bd_disk,
1998 rdev->bdev->bd_disk) < 0)
1999 return -EINVAL;
2000 }
2001 if (!reference || !bdev_get_integrity(reference->bdev))
2002 return 0;
2003 /*
2004 * All component devices are integrity capable and have matching
2005 * profiles, register the common profile for the md device.
2006 */
2007 blk_integrity_register(mddev->gendisk,
2008 bdev_get_integrity(reference->bdev));
2009
2010 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
2011 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
2012 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
2013 mdname(mddev));
2014 return -EINVAL;
2015 }
2016 return 0;
2017 }
2018 EXPORT_SYMBOL(md_integrity_register);
2019
2020 /*
2021 * Attempt to add an rdev, but only if it is consistent with the current
2022 * integrity profile
2023 */
2024 int md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2025 {
2026 struct blk_integrity *bi_rdev;
2027 struct blk_integrity *bi_mddev;
2028 char name[BDEVNAME_SIZE];
2029
2030 if (!mddev->gendisk)
2031 return 0;
2032
2033 bi_rdev = bdev_get_integrity(rdev->bdev);
2034 bi_mddev = blk_get_integrity(mddev->gendisk);
2035
2036 if (!bi_mddev) /* nothing to do */
2037 return 0;
2038
2039 if (blk_integrity_compare(mddev->gendisk, rdev->bdev->bd_disk) != 0) {
2040 printk(KERN_NOTICE "%s: incompatible integrity profile for %s\n",
2041 mdname(mddev), bdevname(rdev->bdev, name));
2042 return -ENXIO;
2043 }
2044
2045 return 0;
2046 }
2047 EXPORT_SYMBOL(md_integrity_add_rdev);
2048
2049 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2050 {
2051 char b[BDEVNAME_SIZE];
2052 struct kobject *ko;
2053 int err;
2054
2055 /* prevent duplicates */
2056 if (find_rdev(mddev, rdev->bdev->bd_dev))
2057 return -EEXIST;
2058
2059 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2060 if (!test_bit(Journal, &rdev->flags) &&
2061 rdev->sectors &&
2062 (mddev->dev_sectors == 0 || rdev->sectors < mddev->dev_sectors)) {
2063 if (mddev->pers) {
2064 /* Cannot change size, so fail
2065 * If mddev->level <= 0, then we don't care
2066 * about aligning sizes (e.g. linear)
2067 */
2068 if (mddev->level > 0)
2069 return -ENOSPC;
2070 } else
2071 mddev->dev_sectors = rdev->sectors;
2072 }
2073
2074 /* Verify rdev->desc_nr is unique.
2075 * If it is -1, assign a free number, else
2076 * check number is not in use
2077 */
2078 rcu_read_lock();
2079 if (rdev->desc_nr < 0) {
2080 int choice = 0;
2081 if (mddev->pers)
2082 choice = mddev->raid_disks;
2083 while (md_find_rdev_nr_rcu(mddev, choice))
2084 choice++;
2085 rdev->desc_nr = choice;
2086 } else {
2087 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2088 rcu_read_unlock();
2089 return -EBUSY;
2090 }
2091 }
2092 rcu_read_unlock();
2093 if (!test_bit(Journal, &rdev->flags) &&
2094 mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2095 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2096 mdname(mddev), mddev->max_disks);
2097 return -EBUSY;
2098 }
2099 bdevname(rdev->bdev,b);
2100 strreplace(b, '/', '!');
2101
2102 rdev->mddev = mddev;
2103 printk(KERN_INFO "md: bind<%s>\n", b);
2104
2105 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2106 goto fail;
2107
2108 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2109 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2110 /* failure here is OK */;
2111 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2112
2113 list_add_rcu(&rdev->same_set, &mddev->disks);
2114 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2115
2116 /* May as well allow recovery to be retried once */
2117 mddev->recovery_disabled++;
2118
2119 return 0;
2120
2121 fail:
2122 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2123 b, mdname(mddev));
2124 return err;
2125 }
2126
2127 static void md_delayed_delete(struct work_struct *ws)
2128 {
2129 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2130 kobject_del(&rdev->kobj);
2131 kobject_put(&rdev->kobj);
2132 }
2133
2134 static void unbind_rdev_from_array(struct md_rdev *rdev)
2135 {
2136 char b[BDEVNAME_SIZE];
2137
2138 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2139 list_del_rcu(&rdev->same_set);
2140 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2141 rdev->mddev = NULL;
2142 sysfs_remove_link(&rdev->kobj, "block");
2143 sysfs_put(rdev->sysfs_state);
2144 rdev->sysfs_state = NULL;
2145 rdev->badblocks.count = 0;
2146 /* We need to delay this, otherwise we can deadlock when
2147 * writing to 'remove' to "dev/state". We also need
2148 * to delay it due to rcu usage.
2149 */
2150 synchronize_rcu();
2151 INIT_WORK(&rdev->del_work, md_delayed_delete);
2152 kobject_get(&rdev->kobj);
2153 queue_work(md_misc_wq, &rdev->del_work);
2154 }
2155
2156 /*
2157 * prevent the device from being mounted, repartitioned or
2158 * otherwise reused by a RAID array (or any other kernel
2159 * subsystem), by bd_claiming the device.
2160 */
2161 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2162 {
2163 int err = 0;
2164 struct block_device *bdev;
2165 char b[BDEVNAME_SIZE];
2166
2167 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2168 shared ? (struct md_rdev *)lock_rdev : rdev);
2169 if (IS_ERR(bdev)) {
2170 printk(KERN_ERR "md: could not open %s.\n",
2171 __bdevname(dev, b));
2172 return PTR_ERR(bdev);
2173 }
2174 rdev->bdev = bdev;
2175 return err;
2176 }
2177
2178 static void unlock_rdev(struct md_rdev *rdev)
2179 {
2180 struct block_device *bdev = rdev->bdev;
2181 rdev->bdev = NULL;
2182 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2183 }
2184
2185 void md_autodetect_dev(dev_t dev);
2186
2187 static void export_rdev(struct md_rdev *rdev)
2188 {
2189 char b[BDEVNAME_SIZE];
2190
2191 printk(KERN_INFO "md: export_rdev(%s)\n",
2192 bdevname(rdev->bdev,b));
2193 md_rdev_clear(rdev);
2194 #ifndef MODULE
2195 if (test_bit(AutoDetected, &rdev->flags))
2196 md_autodetect_dev(rdev->bdev->bd_dev);
2197 #endif
2198 unlock_rdev(rdev);
2199 kobject_put(&rdev->kobj);
2200 }
2201
2202 void md_kick_rdev_from_array(struct md_rdev *rdev)
2203 {
2204 unbind_rdev_from_array(rdev);
2205 export_rdev(rdev);
2206 }
2207 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2208
2209 static void export_array(struct mddev *mddev)
2210 {
2211 struct md_rdev *rdev;
2212
2213 while (!list_empty(&mddev->disks)) {
2214 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2215 same_set);
2216 md_kick_rdev_from_array(rdev);
2217 }
2218 mddev->raid_disks = 0;
2219 mddev->major_version = 0;
2220 }
2221
2222 static void sync_sbs(struct mddev *mddev, int nospares)
2223 {
2224 /* Update each superblock (in-memory image), but
2225 * if we are allowed to, skip spares which already
2226 * have the right event counter, or have one earlier
2227 * (which would mean they aren't being marked as dirty
2228 * with the rest of the array)
2229 */
2230 struct md_rdev *rdev;
2231 rdev_for_each(rdev, mddev) {
2232 if (rdev->sb_events == mddev->events ||
2233 (nospares &&
2234 rdev->raid_disk < 0 &&
2235 rdev->sb_events+1 == mddev->events)) {
2236 /* Don't update this superblock */
2237 rdev->sb_loaded = 2;
2238 } else {
2239 sync_super(mddev, rdev);
2240 rdev->sb_loaded = 1;
2241 }
2242 }
2243 }
2244
2245 static bool does_sb_need_changing(struct mddev *mddev)
2246 {
2247 struct md_rdev *rdev;
2248 struct mdp_superblock_1 *sb;
2249 int role;
2250
2251 /* Find a good rdev */
2252 rdev_for_each(rdev, mddev)
2253 if ((rdev->raid_disk >= 0) && !test_bit(Faulty, &rdev->flags))
2254 break;
2255
2256 /* No good device found. */
2257 if (!rdev)
2258 return false;
2259
2260 sb = page_address(rdev->sb_page);
2261 /* Check if a device has become faulty or a spare become active */
2262 rdev_for_each(rdev, mddev) {
2263 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
2264 /* Device activated? */
2265 if (role == 0xffff && rdev->raid_disk >=0 &&
2266 !test_bit(Faulty, &rdev->flags))
2267 return true;
2268 /* Device turned faulty? */
2269 if (test_bit(Faulty, &rdev->flags) && (role < 0xfffd))
2270 return true;
2271 }
2272
2273 /* Check if any mddev parameters have changed */
2274 if ((mddev->dev_sectors != le64_to_cpu(sb->size)) ||
2275 (mddev->reshape_position != le64_to_cpu(sb->reshape_position)) ||
2276 (mddev->layout != le64_to_cpu(sb->layout)) ||
2277 (mddev->raid_disks != le32_to_cpu(sb->raid_disks)) ||
2278 (mddev->chunk_sectors != le32_to_cpu(sb->chunksize)))
2279 return true;
2280
2281 return false;
2282 }
2283
2284 void md_update_sb(struct mddev *mddev, int force_change)
2285 {
2286 struct md_rdev *rdev;
2287 int sync_req;
2288 int nospares = 0;
2289 int any_badblocks_changed = 0;
2290 int ret = -1;
2291
2292 if (mddev->ro) {
2293 if (force_change)
2294 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2295 return;
2296 }
2297
2298 repeat:
2299 if (mddev_is_clustered(mddev)) {
2300 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2301 force_change = 1;
2302 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2303 nospares = 1;
2304 ret = md_cluster_ops->metadata_update_start(mddev);
2305 /* Has someone else has updated the sb */
2306 if (!does_sb_need_changing(mddev)) {
2307 if (ret == 0)
2308 md_cluster_ops->metadata_update_cancel(mddev);
2309 bit_clear_unless(&mddev->flags, BIT(MD_CHANGE_PENDING),
2310 BIT(MD_CHANGE_DEVS) |
2311 BIT(MD_CHANGE_CLEAN));
2312 return;
2313 }
2314 }
2315
2316 /* First make sure individual recovery_offsets are correct */
2317 rdev_for_each(rdev, mddev) {
2318 if (rdev->raid_disk >= 0 &&
2319 mddev->delta_disks >= 0 &&
2320 !test_bit(Journal, &rdev->flags) &&
2321 !test_bit(In_sync, &rdev->flags) &&
2322 mddev->curr_resync_completed > rdev->recovery_offset)
2323 rdev->recovery_offset = mddev->curr_resync_completed;
2324
2325 }
2326 if (!mddev->persistent) {
2327 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2328 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2329 if (!mddev->external) {
2330 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2331 rdev_for_each(rdev, mddev) {
2332 if (rdev->badblocks.changed) {
2333 rdev->badblocks.changed = 0;
2334 ack_all_badblocks(&rdev->badblocks);
2335 md_error(mddev, rdev);
2336 }
2337 clear_bit(Blocked, &rdev->flags);
2338 clear_bit(BlockedBadBlocks, &rdev->flags);
2339 wake_up(&rdev->blocked_wait);
2340 }
2341 }
2342 wake_up(&mddev->sb_wait);
2343 return;
2344 }
2345
2346 spin_lock(&mddev->lock);
2347
2348 mddev->utime = ktime_get_real_seconds();
2349
2350 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2351 force_change = 1;
2352 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2353 /* just a clean<-> dirty transition, possibly leave spares alone,
2354 * though if events isn't the right even/odd, we will have to do
2355 * spares after all
2356 */
2357 nospares = 1;
2358 if (force_change)
2359 nospares = 0;
2360 if (mddev->degraded)
2361 /* If the array is degraded, then skipping spares is both
2362 * dangerous and fairly pointless.
2363 * Dangerous because a device that was removed from the array
2364 * might have a event_count that still looks up-to-date,
2365 * so it can be re-added without a resync.
2366 * Pointless because if there are any spares to skip,
2367 * then a recovery will happen and soon that array won't
2368 * be degraded any more and the spare can go back to sleep then.
2369 */
2370 nospares = 0;
2371
2372 sync_req = mddev->in_sync;
2373
2374 /* If this is just a dirty<->clean transition, and the array is clean
2375 * and 'events' is odd, we can roll back to the previous clean state */
2376 if (nospares
2377 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2378 && mddev->can_decrease_events
2379 && mddev->events != 1) {
2380 mddev->events--;
2381 mddev->can_decrease_events = 0;
2382 } else {
2383 /* otherwise we have to go forward and ... */
2384 mddev->events ++;
2385 mddev->can_decrease_events = nospares;
2386 }
2387
2388 /*
2389 * This 64-bit counter should never wrap.
2390 * Either we are in around ~1 trillion A.C., assuming
2391 * 1 reboot per second, or we have a bug...
2392 */
2393 WARN_ON(mddev->events == 0);
2394
2395 rdev_for_each(rdev, mddev) {
2396 if (rdev->badblocks.changed)
2397 any_badblocks_changed++;
2398 if (test_bit(Faulty, &rdev->flags))
2399 set_bit(FaultRecorded, &rdev->flags);
2400 }
2401
2402 sync_sbs(mddev, nospares);
2403 spin_unlock(&mddev->lock);
2404
2405 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2406 mdname(mddev), mddev->in_sync);
2407
2408 bitmap_update_sb(mddev->bitmap);
2409 rdev_for_each(rdev, mddev) {
2410 char b[BDEVNAME_SIZE];
2411
2412 if (rdev->sb_loaded != 1)
2413 continue; /* no noise on spare devices */
2414
2415 if (!test_bit(Faulty, &rdev->flags)) {
2416 md_super_write(mddev,rdev,
2417 rdev->sb_start, rdev->sb_size,
2418 rdev->sb_page);
2419 pr_debug("md: (write) %s's sb offset: %llu\n",
2420 bdevname(rdev->bdev, b),
2421 (unsigned long long)rdev->sb_start);
2422 rdev->sb_events = mddev->events;
2423 if (rdev->badblocks.size) {
2424 md_super_write(mddev, rdev,
2425 rdev->badblocks.sector,
2426 rdev->badblocks.size << 9,
2427 rdev->bb_page);
2428 rdev->badblocks.size = 0;
2429 }
2430
2431 } else
2432 pr_debug("md: %s (skipping faulty)\n",
2433 bdevname(rdev->bdev, b));
2434
2435 if (mddev->level == LEVEL_MULTIPATH)
2436 /* only need to write one superblock... */
2437 break;
2438 }
2439 md_super_wait(mddev);
2440 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2441
2442 if (mddev_is_clustered(mddev) && ret == 0)
2443 md_cluster_ops->metadata_update_finish(mddev);
2444
2445 if (mddev->in_sync != sync_req ||
2446 !bit_clear_unless(&mddev->flags, BIT(MD_CHANGE_PENDING),
2447 BIT(MD_CHANGE_DEVS) | BIT(MD_CHANGE_CLEAN)))
2448 /* have to write it out again */
2449 goto repeat;
2450 wake_up(&mddev->sb_wait);
2451 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2452 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2453
2454 rdev_for_each(rdev, mddev) {
2455 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2456 clear_bit(Blocked, &rdev->flags);
2457
2458 if (any_badblocks_changed)
2459 ack_all_badblocks(&rdev->badblocks);
2460 clear_bit(BlockedBadBlocks, &rdev->flags);
2461 wake_up(&rdev->blocked_wait);
2462 }
2463 }
2464 EXPORT_SYMBOL(md_update_sb);
2465
2466 static int add_bound_rdev(struct md_rdev *rdev)
2467 {
2468 struct mddev *mddev = rdev->mddev;
2469 int err = 0;
2470 bool add_journal = test_bit(Journal, &rdev->flags);
2471
2472 if (!mddev->pers->hot_remove_disk || add_journal) {
2473 /* If there is hot_add_disk but no hot_remove_disk
2474 * then added disks for geometry changes,
2475 * and should be added immediately.
2476 */
2477 super_types[mddev->major_version].
2478 validate_super(mddev, rdev);
2479 if (add_journal)
2480 mddev_suspend(mddev);
2481 err = mddev->pers->hot_add_disk(mddev, rdev);
2482 if (add_journal)
2483 mddev_resume(mddev);
2484 if (err) {
2485 unbind_rdev_from_array(rdev);
2486 export_rdev(rdev);
2487 return err;
2488 }
2489 }
2490 sysfs_notify_dirent_safe(rdev->sysfs_state);
2491
2492 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2493 if (mddev->degraded)
2494 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2495 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2496 md_new_event(mddev);
2497 md_wakeup_thread(mddev->thread);
2498 return 0;
2499 }
2500
2501 /* words written to sysfs files may, or may not, be \n terminated.
2502 * We want to accept with case. For this we use cmd_match.
2503 */
2504 static int cmd_match(const char *cmd, const char *str)
2505 {
2506 /* See if cmd, written into a sysfs file, matches
2507 * str. They must either be the same, or cmd can
2508 * have a trailing newline
2509 */
2510 while (*cmd && *str && *cmd == *str) {
2511 cmd++;
2512 str++;
2513 }
2514 if (*cmd == '\n')
2515 cmd++;
2516 if (*str || *cmd)
2517 return 0;
2518 return 1;
2519 }
2520
2521 struct rdev_sysfs_entry {
2522 struct attribute attr;
2523 ssize_t (*show)(struct md_rdev *, char *);
2524 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2525 };
2526
2527 static ssize_t
2528 state_show(struct md_rdev *rdev, char *page)
2529 {
2530 char *sep = "";
2531 size_t len = 0;
2532 unsigned long flags = ACCESS_ONCE(rdev->flags);
2533
2534 if (test_bit(Faulty, &flags) ||
2535 rdev->badblocks.unacked_exist) {
2536 len+= sprintf(page+len, "%sfaulty",sep);
2537 sep = ",";
2538 }
2539 if (test_bit(In_sync, &flags)) {
2540 len += sprintf(page+len, "%sin_sync",sep);
2541 sep = ",";
2542 }
2543 if (test_bit(Journal, &flags)) {
2544 len += sprintf(page+len, "%sjournal",sep);
2545 sep = ",";
2546 }
2547 if (test_bit(WriteMostly, &flags)) {
2548 len += sprintf(page+len, "%swrite_mostly",sep);
2549 sep = ",";
2550 }
2551 if (test_bit(Blocked, &flags) ||
2552 (rdev->badblocks.unacked_exist
2553 && !test_bit(Faulty, &flags))) {
2554 len += sprintf(page+len, "%sblocked", sep);
2555 sep = ",";
2556 }
2557 if (!test_bit(Faulty, &flags) &&
2558 !test_bit(Journal, &flags) &&
2559 !test_bit(In_sync, &flags)) {
2560 len += sprintf(page+len, "%sspare", sep);
2561 sep = ",";
2562 }
2563 if (test_bit(WriteErrorSeen, &flags)) {
2564 len += sprintf(page+len, "%swrite_error", sep);
2565 sep = ",";
2566 }
2567 if (test_bit(WantReplacement, &flags)) {
2568 len += sprintf(page+len, "%swant_replacement", sep);
2569 sep = ",";
2570 }
2571 if (test_bit(Replacement, &flags)) {
2572 len += sprintf(page+len, "%sreplacement", sep);
2573 sep = ",";
2574 }
2575
2576 return len+sprintf(page+len, "\n");
2577 }
2578
2579 static ssize_t
2580 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2581 {
2582 /* can write
2583 * faulty - simulates an error
2584 * remove - disconnects the device
2585 * writemostly - sets write_mostly
2586 * -writemostly - clears write_mostly
2587 * blocked - sets the Blocked flags
2588 * -blocked - clears the Blocked and possibly simulates an error
2589 * insync - sets Insync providing device isn't active
2590 * -insync - clear Insync for a device with a slot assigned,
2591 * so that it gets rebuilt based on bitmap
2592 * write_error - sets WriteErrorSeen
2593 * -write_error - clears WriteErrorSeen
2594 */
2595 int err = -EINVAL;
2596 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2597 md_error(rdev->mddev, rdev);
2598 if (test_bit(Faulty, &rdev->flags))
2599 err = 0;
2600 else
2601 err = -EBUSY;
2602 } else if (cmd_match(buf, "remove")) {
2603 if (rdev->raid_disk >= 0)
2604 err = -EBUSY;
2605 else {
2606 struct mddev *mddev = rdev->mddev;
2607 err = 0;
2608 if (mddev_is_clustered(mddev))
2609 err = md_cluster_ops->remove_disk(mddev, rdev);
2610
2611 if (err == 0) {
2612 md_kick_rdev_from_array(rdev);
2613 if (mddev->pers)
2614 md_update_sb(mddev, 1);
2615 md_new_event(mddev);
2616 }
2617 }
2618 } else if (cmd_match(buf, "writemostly")) {
2619 set_bit(WriteMostly, &rdev->flags);
2620 err = 0;
2621 } else if (cmd_match(buf, "-writemostly")) {
2622 clear_bit(WriteMostly, &rdev->flags);
2623 err = 0;
2624 } else if (cmd_match(buf, "blocked")) {
2625 set_bit(Blocked, &rdev->flags);
2626 err = 0;
2627 } else if (cmd_match(buf, "-blocked")) {
2628 if (!test_bit(Faulty, &rdev->flags) &&
2629 rdev->badblocks.unacked_exist) {
2630 /* metadata handler doesn't understand badblocks,
2631 * so we need to fail the device
2632 */
2633 md_error(rdev->mddev, rdev);
2634 }
2635 clear_bit(Blocked, &rdev->flags);
2636 clear_bit(BlockedBadBlocks, &rdev->flags);
2637 wake_up(&rdev->blocked_wait);
2638 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2639 md_wakeup_thread(rdev->mddev->thread);
2640
2641 err = 0;
2642 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2643 set_bit(In_sync, &rdev->flags);
2644 err = 0;
2645 } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0 &&
2646 !test_bit(Journal, &rdev->flags)) {
2647 if (rdev->mddev->pers == NULL) {
2648 clear_bit(In_sync, &rdev->flags);
2649 rdev->saved_raid_disk = rdev->raid_disk;
2650 rdev->raid_disk = -1;
2651 err = 0;
2652 }
2653 } else if (cmd_match(buf, "write_error")) {
2654 set_bit(WriteErrorSeen, &rdev->flags);
2655 err = 0;
2656 } else if (cmd_match(buf, "-write_error")) {
2657 clear_bit(WriteErrorSeen, &rdev->flags);
2658 err = 0;
2659 } else if (cmd_match(buf, "want_replacement")) {
2660 /* Any non-spare device that is not a replacement can
2661 * become want_replacement at any time, but we then need to
2662 * check if recovery is needed.
2663 */
2664 if (rdev->raid_disk >= 0 &&
2665 !test_bit(Journal, &rdev->flags) &&
2666 !test_bit(Replacement, &rdev->flags))
2667 set_bit(WantReplacement, &rdev->flags);
2668 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2669 md_wakeup_thread(rdev->mddev->thread);
2670 err = 0;
2671 } else if (cmd_match(buf, "-want_replacement")) {
2672 /* Clearing 'want_replacement' is always allowed.
2673 * Once replacements starts it is too late though.
2674 */
2675 err = 0;
2676 clear_bit(WantReplacement, &rdev->flags);
2677 } else if (cmd_match(buf, "replacement")) {
2678 /* Can only set a device as a replacement when array has not
2679 * yet been started. Once running, replacement is automatic
2680 * from spares, or by assigning 'slot'.
2681 */
2682 if (rdev->mddev->pers)
2683 err = -EBUSY;
2684 else {
2685 set_bit(Replacement, &rdev->flags);
2686 err = 0;
2687 }
2688 } else if (cmd_match(buf, "-replacement")) {
2689 /* Similarly, can only clear Replacement before start */
2690 if (rdev->mddev->pers)
2691 err = -EBUSY;
2692 else {
2693 clear_bit(Replacement, &rdev->flags);
2694 err = 0;
2695 }
2696 } else if (cmd_match(buf, "re-add")) {
2697 if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) {
2698 /* clear_bit is performed _after_ all the devices
2699 * have their local Faulty bit cleared. If any writes
2700 * happen in the meantime in the local node, they
2701 * will land in the local bitmap, which will be synced
2702 * by this node eventually
2703 */
2704 if (!mddev_is_clustered(rdev->mddev) ||
2705 (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
2706 clear_bit(Faulty, &rdev->flags);
2707 err = add_bound_rdev(rdev);
2708 }
2709 } else
2710 err = -EBUSY;
2711 }
2712 if (!err)
2713 sysfs_notify_dirent_safe(rdev->sysfs_state);
2714 return err ? err : len;
2715 }
2716 static struct rdev_sysfs_entry rdev_state =
2717 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2718
2719 static ssize_t
2720 errors_show(struct md_rdev *rdev, char *page)
2721 {
2722 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2723 }
2724
2725 static ssize_t
2726 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2727 {
2728 unsigned int n;
2729 int rv;
2730
2731 rv = kstrtouint(buf, 10, &n);
2732 if (rv < 0)
2733 return rv;
2734 atomic_set(&rdev->corrected_errors, n);
2735 return len;
2736 }
2737 static struct rdev_sysfs_entry rdev_errors =
2738 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2739
2740 static ssize_t
2741 slot_show(struct md_rdev *rdev, char *page)
2742 {
2743 if (test_bit(Journal, &rdev->flags))
2744 return sprintf(page, "journal\n");
2745 else if (rdev->raid_disk < 0)
2746 return sprintf(page, "none\n");
2747 else
2748 return sprintf(page, "%d\n", rdev->raid_disk);
2749 }
2750
2751 static ssize_t
2752 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2753 {
2754 int slot;
2755 int err;
2756
2757 if (test_bit(Journal, &rdev->flags))
2758 return -EBUSY;
2759 if (strncmp(buf, "none", 4)==0)
2760 slot = -1;
2761 else {
2762 err = kstrtouint(buf, 10, (unsigned int *)&slot);
2763 if (err < 0)
2764 return err;
2765 }
2766 if (rdev->mddev->pers && slot == -1) {
2767 /* Setting 'slot' on an active array requires also
2768 * updating the 'rd%d' link, and communicating
2769 * with the personality with ->hot_*_disk.
2770 * For now we only support removing
2771 * failed/spare devices. This normally happens automatically,
2772 * but not when the metadata is externally managed.
2773 */
2774 if (rdev->raid_disk == -1)
2775 return -EEXIST;
2776 /* personality does all needed checks */
2777 if (rdev->mddev->pers->hot_remove_disk == NULL)
2778 return -EINVAL;
2779 clear_bit(Blocked, &rdev->flags);
2780 remove_and_add_spares(rdev->mddev, rdev);
2781 if (rdev->raid_disk >= 0)
2782 return -EBUSY;
2783 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2784 md_wakeup_thread(rdev->mddev->thread);
2785 } else if (rdev->mddev->pers) {
2786 /* Activating a spare .. or possibly reactivating
2787 * if we ever get bitmaps working here.
2788 */
2789 int err;
2790
2791 if (rdev->raid_disk != -1)
2792 return -EBUSY;
2793
2794 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2795 return -EBUSY;
2796
2797 if (rdev->mddev->pers->hot_add_disk == NULL)
2798 return -EINVAL;
2799
2800 if (slot >= rdev->mddev->raid_disks &&
2801 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2802 return -ENOSPC;
2803
2804 rdev->raid_disk = slot;
2805 if (test_bit(In_sync, &rdev->flags))
2806 rdev->saved_raid_disk = slot;
2807 else
2808 rdev->saved_raid_disk = -1;
2809 clear_bit(In_sync, &rdev->flags);
2810 clear_bit(Bitmap_sync, &rdev->flags);
2811 err = rdev->mddev->pers->
2812 hot_add_disk(rdev->mddev, rdev);
2813 if (err) {
2814 rdev->raid_disk = -1;
2815 return err;
2816 } else
2817 sysfs_notify_dirent_safe(rdev->sysfs_state);
2818 if (sysfs_link_rdev(rdev->mddev, rdev))
2819 /* failure here is OK */;
2820 /* don't wakeup anyone, leave that to userspace. */
2821 } else {
2822 if (slot >= rdev->mddev->raid_disks &&
2823 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2824 return -ENOSPC;
2825 rdev->raid_disk = slot;
2826 /* assume it is working */
2827 clear_bit(Faulty, &rdev->flags);
2828 clear_bit(WriteMostly, &rdev->flags);
2829 set_bit(In_sync, &rdev->flags);
2830 sysfs_notify_dirent_safe(rdev->sysfs_state);
2831 }
2832 return len;
2833 }
2834
2835 static struct rdev_sysfs_entry rdev_slot =
2836 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2837
2838 static ssize_t
2839 offset_show(struct md_rdev *rdev, char *page)
2840 {
2841 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2842 }
2843
2844 static ssize_t
2845 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2846 {
2847 unsigned long long offset;
2848 if (kstrtoull(buf, 10, &offset) < 0)
2849 return -EINVAL;
2850 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2851 return -EBUSY;
2852 if (rdev->sectors && rdev->mddev->external)
2853 /* Must set offset before size, so overlap checks
2854 * can be sane */
2855 return -EBUSY;
2856 rdev->data_offset = offset;
2857 rdev->new_data_offset = offset;
2858 return len;
2859 }
2860
2861 static struct rdev_sysfs_entry rdev_offset =
2862 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2863
2864 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2865 {
2866 return sprintf(page, "%llu\n",
2867 (unsigned long long)rdev->new_data_offset);
2868 }
2869
2870 static ssize_t new_offset_store(struct md_rdev *rdev,
2871 const char *buf, size_t len)
2872 {
2873 unsigned long long new_offset;
2874 struct mddev *mddev = rdev->mddev;
2875
2876 if (kstrtoull(buf, 10, &new_offset) < 0)
2877 return -EINVAL;
2878
2879 if (mddev->sync_thread ||
2880 test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2881 return -EBUSY;
2882 if (new_offset == rdev->data_offset)
2883 /* reset is always permitted */
2884 ;
2885 else if (new_offset > rdev->data_offset) {
2886 /* must not push array size beyond rdev_sectors */
2887 if (new_offset - rdev->data_offset
2888 + mddev->dev_sectors > rdev->sectors)
2889 return -E2BIG;
2890 }
2891 /* Metadata worries about other space details. */
2892
2893 /* decreasing the offset is inconsistent with a backwards
2894 * reshape.
2895 */
2896 if (new_offset < rdev->data_offset &&
2897 mddev->reshape_backwards)
2898 return -EINVAL;
2899 /* Increasing offset is inconsistent with forwards
2900 * reshape. reshape_direction should be set to
2901 * 'backwards' first.
2902 */
2903 if (new_offset > rdev->data_offset &&
2904 !mddev->reshape_backwards)
2905 return -EINVAL;
2906
2907 if (mddev->pers && mddev->persistent &&
2908 !super_types[mddev->major_version]
2909 .allow_new_offset(rdev, new_offset))
2910 return -E2BIG;
2911 rdev->new_data_offset = new_offset;
2912 if (new_offset > rdev->data_offset)
2913 mddev->reshape_backwards = 1;
2914 else if (new_offset < rdev->data_offset)
2915 mddev->reshape_backwards = 0;
2916
2917 return len;
2918 }
2919 static struct rdev_sysfs_entry rdev_new_offset =
2920 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2921
2922 static ssize_t
2923 rdev_size_show(struct md_rdev *rdev, char *page)
2924 {
2925 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2926 }
2927
2928 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2929 {
2930 /* check if two start/length pairs overlap */
2931 if (s1+l1 <= s2)
2932 return 0;
2933 if (s2+l2 <= s1)
2934 return 0;
2935 return 1;
2936 }
2937
2938 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2939 {
2940 unsigned long long blocks;
2941 sector_t new;
2942
2943 if (kstrtoull(buf, 10, &blocks) < 0)
2944 return -EINVAL;
2945
2946 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2947 return -EINVAL; /* sector conversion overflow */
2948
2949 new = blocks * 2;
2950 if (new != blocks * 2)
2951 return -EINVAL; /* unsigned long long to sector_t overflow */
2952
2953 *sectors = new;
2954 return 0;
2955 }
2956
2957 static ssize_t
2958 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2959 {
2960 struct mddev *my_mddev = rdev->mddev;
2961 sector_t oldsectors = rdev->sectors;
2962 sector_t sectors;
2963
2964 if (test_bit(Journal, &rdev->flags))
2965 return -EBUSY;
2966 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2967 return -EINVAL;
2968 if (rdev->data_offset != rdev->new_data_offset)
2969 return -EINVAL; /* too confusing */
2970 if (my_mddev->pers && rdev->raid_disk >= 0) {
2971 if (my_mddev->persistent) {
2972 sectors = super_types[my_mddev->major_version].
2973 rdev_size_change(rdev, sectors);
2974 if (!sectors)
2975 return -EBUSY;
2976 } else if (!sectors)
2977 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2978 rdev->data_offset;
2979 if (!my_mddev->pers->resize)
2980 /* Cannot change size for RAID0 or Linear etc */
2981 return -EINVAL;
2982 }
2983 if (sectors < my_mddev->dev_sectors)
2984 return -EINVAL; /* component must fit device */
2985
2986 rdev->sectors = sectors;
2987 if (sectors > oldsectors && my_mddev->external) {
2988 /* Need to check that all other rdevs with the same
2989 * ->bdev do not overlap. 'rcu' is sufficient to walk
2990 * the rdev lists safely.
2991 * This check does not provide a hard guarantee, it
2992 * just helps avoid dangerous mistakes.
2993 */
2994 struct mddev *mddev;
2995 int overlap = 0;
2996 struct list_head *tmp;
2997
2998 rcu_read_lock();
2999 for_each_mddev(mddev, tmp) {
3000 struct md_rdev *rdev2;
3001
3002 rdev_for_each(rdev2, mddev)
3003 if (rdev->bdev == rdev2->bdev &&
3004 rdev != rdev2 &&
3005 overlaps(rdev->data_offset, rdev->sectors,
3006 rdev2->data_offset,
3007 rdev2->sectors)) {
3008 overlap = 1;
3009 break;
3010 }
3011 if (overlap) {
3012 mddev_put(mddev);
3013 break;
3014 }
3015 }
3016 rcu_read_unlock();
3017 if (overlap) {
3018 /* Someone else could have slipped in a size
3019 * change here, but doing so is just silly.
3020 * We put oldsectors back because we *know* it is
3021 * safe, and trust userspace not to race with
3022 * itself
3023 */
3024 rdev->sectors = oldsectors;
3025 return -EBUSY;
3026 }
3027 }
3028 return len;
3029 }
3030
3031 static struct rdev_sysfs_entry rdev_size =
3032 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
3033
3034 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
3035 {
3036 unsigned long long recovery_start = rdev->recovery_offset;
3037
3038 if (test_bit(In_sync, &rdev->flags) ||
3039 recovery_start == MaxSector)
3040 return sprintf(page, "none\n");
3041
3042 return sprintf(page, "%llu\n", recovery_start);
3043 }
3044
3045 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
3046 {
3047 unsigned long long recovery_start;
3048
3049 if (cmd_match(buf, "none"))
3050 recovery_start = MaxSector;
3051 else if (kstrtoull(buf, 10, &recovery_start))
3052 return -EINVAL;
3053
3054 if (rdev->mddev->pers &&
3055 rdev->raid_disk >= 0)
3056 return -EBUSY;
3057
3058 rdev->recovery_offset = recovery_start;
3059 if (recovery_start == MaxSector)
3060 set_bit(In_sync, &rdev->flags);
3061 else
3062 clear_bit(In_sync, &rdev->flags);
3063 return len;
3064 }
3065
3066 static struct rdev_sysfs_entry rdev_recovery_start =
3067 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
3068
3069 /* sysfs access to bad-blocks list.
3070 * We present two files.
3071 * 'bad-blocks' lists sector numbers and lengths of ranges that
3072 * are recorded as bad. The list is truncated to fit within
3073 * the one-page limit of sysfs.
3074 * Writing "sector length" to this file adds an acknowledged
3075 * bad block list.
3076 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
3077 * been acknowledged. Writing to this file adds bad blocks
3078 * without acknowledging them. This is largely for testing.
3079 */
3080 static ssize_t bb_show(struct md_rdev *rdev, char *page)
3081 {
3082 return badblocks_show(&rdev->badblocks, page, 0);
3083 }
3084 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
3085 {
3086 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
3087 /* Maybe that ack was all we needed */
3088 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
3089 wake_up(&rdev->blocked_wait);
3090 return rv;
3091 }
3092 static struct rdev_sysfs_entry rdev_bad_blocks =
3093 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
3094
3095 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
3096 {
3097 return badblocks_show(&rdev->badblocks, page, 1);
3098 }
3099 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
3100 {
3101 return badblocks_store(&rdev->badblocks, page, len, 1);
3102 }
3103 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
3104 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
3105
3106 static struct attribute *rdev_default_attrs[] = {
3107 &rdev_state.attr,
3108 &rdev_errors.attr,
3109 &rdev_slot.attr,
3110 &rdev_offset.attr,
3111 &rdev_new_offset.attr,
3112 &rdev_size.attr,
3113 &rdev_recovery_start.attr,
3114 &rdev_bad_blocks.attr,
3115 &rdev_unack_bad_blocks.attr,
3116 NULL,
3117 };
3118 static ssize_t
3119 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3120 {
3121 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3122 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3123
3124 if (!entry->show)
3125 return -EIO;
3126 if (!rdev->mddev)
3127 return -EBUSY;
3128 return entry->show(rdev, page);
3129 }
3130
3131 static ssize_t
3132 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3133 const char *page, size_t length)
3134 {
3135 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3136 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3137 ssize_t rv;
3138 struct mddev *mddev = rdev->mddev;
3139
3140 if (!entry->store)
3141 return -EIO;
3142 if (!capable(CAP_SYS_ADMIN))
3143 return -EACCES;
3144 rv = mddev ? mddev_lock(mddev): -EBUSY;
3145 if (!rv) {
3146 if (rdev->mddev == NULL)
3147 rv = -EBUSY;
3148 else
3149 rv = entry->store(rdev, page, length);
3150 mddev_unlock(mddev);
3151 }
3152 return rv;
3153 }
3154
3155 static void rdev_free(struct kobject *ko)
3156 {
3157 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3158 kfree(rdev);
3159 }
3160 static const struct sysfs_ops rdev_sysfs_ops = {
3161 .show = rdev_attr_show,
3162 .store = rdev_attr_store,
3163 };
3164 static struct kobj_type rdev_ktype = {
3165 .release = rdev_free,
3166 .sysfs_ops = &rdev_sysfs_ops,
3167 .default_attrs = rdev_default_attrs,
3168 };
3169
3170 int md_rdev_init(struct md_rdev *rdev)
3171 {
3172 rdev->desc_nr = -1;
3173 rdev->saved_raid_disk = -1;
3174 rdev->raid_disk = -1;
3175 rdev->flags = 0;
3176 rdev->data_offset = 0;
3177 rdev->new_data_offset = 0;
3178 rdev->sb_events = 0;
3179 rdev->last_read_error.tv_sec = 0;
3180 rdev->last_read_error.tv_nsec = 0;
3181 rdev->sb_loaded = 0;
3182 rdev->bb_page = NULL;
3183 atomic_set(&rdev->nr_pending, 0);
3184 atomic_set(&rdev->read_errors, 0);
3185 atomic_set(&rdev->corrected_errors, 0);
3186
3187 INIT_LIST_HEAD(&rdev->same_set);
3188 init_waitqueue_head(&rdev->blocked_wait);
3189
3190 /* Add space to store bad block list.
3191 * This reserves the space even on arrays where it cannot
3192 * be used - I wonder if that matters
3193 */
3194 return badblocks_init(&rdev->badblocks, 0);
3195 }
3196 EXPORT_SYMBOL_GPL(md_rdev_init);
3197 /*
3198 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3199 *
3200 * mark the device faulty if:
3201 *
3202 * - the device is nonexistent (zero size)
3203 * - the device has no valid superblock
3204 *
3205 * a faulty rdev _never_ has rdev->sb set.
3206 */
3207 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3208 {
3209 char b[BDEVNAME_SIZE];
3210 int err;
3211 struct md_rdev *rdev;
3212 sector_t size;
3213
3214 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3215 if (!rdev) {
3216 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3217 return ERR_PTR(-ENOMEM);
3218 }
3219
3220 err = md_rdev_init(rdev);
3221 if (err)
3222 goto abort_free;
3223 err = alloc_disk_sb(rdev);
3224 if (err)
3225 goto abort_free;
3226
3227 err = lock_rdev(rdev, newdev, super_format == -2);
3228 if (err)
3229 goto abort_free;
3230
3231 kobject_init(&rdev->kobj, &rdev_ktype);
3232
3233 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3234 if (!size) {
3235 printk(KERN_WARNING
3236 "md: %s has zero or unknown size, marking faulty!\n",
3237 bdevname(rdev->bdev,b));
3238 err = -EINVAL;
3239 goto abort_free;
3240 }
3241
3242 if (super_format >= 0) {
3243 err = super_types[super_format].
3244 load_super(rdev, NULL, super_minor);
3245 if (err == -EINVAL) {
3246 printk(KERN_WARNING
3247 "md: %s does not have a valid v%d.%d "
3248 "superblock, not importing!\n",
3249 bdevname(rdev->bdev,b),
3250 super_format, super_minor);
3251 goto abort_free;
3252 }
3253 if (err < 0) {
3254 printk(KERN_WARNING
3255 "md: could not read %s's sb, not importing!\n",
3256 bdevname(rdev->bdev,b));
3257 goto abort_free;
3258 }
3259 }
3260
3261 return rdev;
3262
3263 abort_free:
3264 if (rdev->bdev)
3265 unlock_rdev(rdev);
3266 md_rdev_clear(rdev);
3267 kfree(rdev);
3268 return ERR_PTR(err);
3269 }
3270
3271 /*
3272 * Check a full RAID array for plausibility
3273 */
3274
3275 static void analyze_sbs(struct mddev *mddev)
3276 {
3277 int i;
3278 struct md_rdev *rdev, *freshest, *tmp;
3279 char b[BDEVNAME_SIZE];
3280
3281 freshest = NULL;
3282 rdev_for_each_safe(rdev, tmp, mddev)
3283 switch (super_types[mddev->major_version].
3284 load_super(rdev, freshest, mddev->minor_version)) {
3285 case 1:
3286 freshest = rdev;
3287 break;
3288 case 0:
3289 break;
3290 default:
3291 printk( KERN_ERR \
3292 "md: fatal superblock inconsistency in %s"
3293 " -- removing from array\n",
3294 bdevname(rdev->bdev,b));
3295 md_kick_rdev_from_array(rdev);
3296 }
3297
3298 super_types[mddev->major_version].
3299 validate_super(mddev, freshest);
3300
3301 i = 0;
3302 rdev_for_each_safe(rdev, tmp, mddev) {
3303 if (mddev->max_disks &&
3304 (rdev->desc_nr >= mddev->max_disks ||
3305 i > mddev->max_disks)) {
3306 printk(KERN_WARNING
3307 "md: %s: %s: only %d devices permitted\n",
3308 mdname(mddev), bdevname(rdev->bdev, b),
3309 mddev->max_disks);
3310 md_kick_rdev_from_array(rdev);
3311 continue;
3312 }
3313 if (rdev != freshest) {
3314 if (super_types[mddev->major_version].
3315 validate_super(mddev, rdev)) {
3316 printk(KERN_WARNING "md: kicking non-fresh %s"
3317 " from array!\n",
3318 bdevname(rdev->bdev,b));
3319 md_kick_rdev_from_array(rdev);
3320 continue;
3321 }
3322 }
3323 if (mddev->level == LEVEL_MULTIPATH) {
3324 rdev->desc_nr = i++;
3325 rdev->raid_disk = rdev->desc_nr;
3326 set_bit(In_sync, &rdev->flags);
3327 } else if (rdev->raid_disk >=
3328 (mddev->raid_disks - min(0, mddev->delta_disks)) &&
3329 !test_bit(Journal, &rdev->flags)) {
3330 rdev->raid_disk = -1;
3331 clear_bit(In_sync, &rdev->flags);
3332 }
3333 }
3334 }
3335
3336 /* Read a fixed-point number.
3337 * Numbers in sysfs attributes should be in "standard" units where
3338 * possible, so time should be in seconds.
3339 * However we internally use a a much smaller unit such as
3340 * milliseconds or jiffies.
3341 * This function takes a decimal number with a possible fractional
3342 * component, and produces an integer which is the result of
3343 * multiplying that number by 10^'scale'.
3344 * all without any floating-point arithmetic.
3345 */
3346 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3347 {
3348 unsigned long result = 0;
3349 long decimals = -1;
3350 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3351 if (*cp == '.')
3352 decimals = 0;
3353 else if (decimals < scale) {
3354 unsigned int value;
3355 value = *cp - '0';
3356 result = result * 10 + value;
3357 if (decimals >= 0)
3358 decimals++;
3359 }
3360 cp++;
3361 }
3362 if (*cp == '\n')
3363 cp++;
3364 if (*cp)
3365 return -EINVAL;
3366 if (decimals < 0)
3367 decimals = 0;
3368 while (decimals < scale) {
3369 result *= 10;
3370 decimals ++;
3371 }
3372 *res = result;
3373 return 0;
3374 }
3375
3376 static ssize_t
3377 safe_delay_show(struct mddev *mddev, char *page)
3378 {
3379 int msec = (mddev->safemode_delay*1000)/HZ;
3380 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3381 }
3382 static ssize_t
3383 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3384 {
3385 unsigned long msec;
3386
3387 if (mddev_is_clustered(mddev)) {
3388 pr_info("md: Safemode is disabled for clustered mode\n");
3389 return -EINVAL;
3390 }
3391
3392 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3393 return -EINVAL;
3394 if (msec == 0)
3395 mddev->safemode_delay = 0;
3396 else {
3397 unsigned long old_delay = mddev->safemode_delay;
3398 unsigned long new_delay = (msec*HZ)/1000;
3399
3400 if (new_delay == 0)
3401 new_delay = 1;
3402 mddev->safemode_delay = new_delay;
3403 if (new_delay < old_delay || old_delay == 0)
3404 mod_timer(&mddev->safemode_timer, jiffies+1);
3405 }
3406 return len;
3407 }
3408 static struct md_sysfs_entry md_safe_delay =
3409 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3410
3411 static ssize_t
3412 level_show(struct mddev *mddev, char *page)
3413 {
3414 struct md_personality *p;
3415 int ret;
3416 spin_lock(&mddev->lock);
3417 p = mddev->pers;
3418 if (p)
3419 ret = sprintf(page, "%s\n", p->name);
3420 else if (mddev->clevel[0])
3421 ret = sprintf(page, "%s\n", mddev->clevel);
3422 else if (mddev->level != LEVEL_NONE)
3423 ret = sprintf(page, "%d\n", mddev->level);
3424 else
3425 ret = 0;
3426 spin_unlock(&mddev->lock);
3427 return ret;
3428 }
3429
3430 static ssize_t
3431 level_store(struct mddev *mddev, const char *buf, size_t len)
3432 {
3433 char clevel[16];
3434 ssize_t rv;
3435 size_t slen = len;
3436 struct md_personality *pers, *oldpers;
3437 long level;
3438 void *priv, *oldpriv;
3439 struct md_rdev *rdev;
3440
3441 if (slen == 0 || slen >= sizeof(clevel))
3442 return -EINVAL;
3443
3444 rv = mddev_lock(mddev);
3445 if (rv)
3446 return rv;
3447
3448 if (mddev->pers == NULL) {
3449 strncpy(mddev->clevel, buf, slen);
3450 if (mddev->clevel[slen-1] == '\n')
3451 slen--;
3452 mddev->clevel[slen] = 0;
3453 mddev->level = LEVEL_NONE;
3454 rv = len;
3455 goto out_unlock;
3456 }
3457 rv = -EROFS;
3458 if (mddev->ro)
3459 goto out_unlock;
3460
3461 /* request to change the personality. Need to ensure:
3462 * - array is not engaged in resync/recovery/reshape
3463 * - old personality can be suspended
3464 * - new personality will access other array.
3465 */
3466
3467 rv = -EBUSY;
3468 if (mddev->sync_thread ||
3469 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3470 mddev->reshape_position != MaxSector ||
3471 mddev->sysfs_active)
3472 goto out_unlock;
3473
3474 rv = -EINVAL;
3475 if (!mddev->pers->quiesce) {
3476 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3477 mdname(mddev), mddev->pers->name);
3478 goto out_unlock;
3479 }
3480
3481 /* Now find the new personality */
3482 strncpy(clevel, buf, slen);
3483 if (clevel[slen-1] == '\n')
3484 slen--;
3485 clevel[slen] = 0;
3486 if (kstrtol(clevel, 10, &level))
3487 level = LEVEL_NONE;
3488
3489 if (request_module("md-%s", clevel) != 0)
3490 request_module("md-level-%s", clevel);
3491 spin_lock(&pers_lock);
3492 pers = find_pers(level, clevel);
3493 if (!pers || !try_module_get(pers->owner)) {
3494 spin_unlock(&pers_lock);
3495 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3496 rv = -EINVAL;
3497 goto out_unlock;
3498 }
3499 spin_unlock(&pers_lock);
3500
3501 if (pers == mddev->pers) {
3502 /* Nothing to do! */
3503 module_put(pers->owner);
3504 rv = len;
3505 goto out_unlock;
3506 }
3507 if (!pers->takeover) {
3508 module_put(pers->owner);
3509 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3510 mdname(mddev), clevel);
3511 rv = -EINVAL;
3512 goto out_unlock;
3513 }
3514
3515 rdev_for_each(rdev, mddev)
3516 rdev->new_raid_disk = rdev->raid_disk;
3517
3518 /* ->takeover must set new_* and/or delta_disks
3519 * if it succeeds, and may set them when it fails.
3520 */
3521 priv = pers->takeover(mddev);
3522 if (IS_ERR(priv)) {
3523 mddev->new_level = mddev->level;
3524 mddev->new_layout = mddev->layout;
3525 mddev->new_chunk_sectors = mddev->chunk_sectors;
3526 mddev->raid_disks -= mddev->delta_disks;
3527 mddev->delta_disks = 0;
3528 mddev->reshape_backwards = 0;
3529 module_put(pers->owner);
3530 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3531 mdname(mddev), clevel);
3532 rv = PTR_ERR(priv);
3533 goto out_unlock;
3534 }
3535
3536 /* Looks like we have a winner */
3537 mddev_suspend(mddev);
3538 mddev_detach(mddev);
3539
3540 spin_lock(&mddev->lock);
3541 oldpers = mddev->pers;
3542 oldpriv = mddev->private;
3543 mddev->pers = pers;
3544 mddev->private = priv;
3545 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3546 mddev->level = mddev->new_level;
3547 mddev->layout = mddev->new_layout;
3548 mddev->chunk_sectors = mddev->new_chunk_sectors;
3549 mddev->delta_disks = 0;
3550 mddev->reshape_backwards = 0;
3551 mddev->degraded = 0;
3552 spin_unlock(&mddev->lock);
3553
3554 if (oldpers->sync_request == NULL &&
3555 mddev->external) {
3556 /* We are converting from a no-redundancy array
3557 * to a redundancy array and metadata is managed
3558 * externally so we need to be sure that writes
3559 * won't block due to a need to transition
3560 * clean->dirty
3561 * until external management is started.
3562 */
3563 mddev->in_sync = 0;
3564 mddev->safemode_delay = 0;
3565 mddev->safemode = 0;
3566 }
3567
3568 oldpers->free(mddev, oldpriv);
3569
3570 if (oldpers->sync_request == NULL &&
3571 pers->sync_request != NULL) {
3572 /* need to add the md_redundancy_group */
3573 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3574 printk(KERN_WARNING
3575 "md: cannot register extra attributes for %s\n",
3576 mdname(mddev));
3577 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3578 }
3579 if (oldpers->sync_request != NULL &&
3580 pers->sync_request == NULL) {
3581 /* need to remove the md_redundancy_group */
3582 if (mddev->to_remove == NULL)
3583 mddev->to_remove = &md_redundancy_group;
3584 }
3585
3586 rdev_for_each(rdev, mddev) {
3587 if (rdev->raid_disk < 0)
3588 continue;
3589 if (rdev->new_raid_disk >= mddev->raid_disks)
3590 rdev->new_raid_disk = -1;
3591 if (rdev->new_raid_disk == rdev->raid_disk)
3592 continue;
3593 sysfs_unlink_rdev(mddev, rdev);
3594 }
3595 rdev_for_each(rdev, mddev) {
3596 if (rdev->raid_disk < 0)
3597 continue;
3598 if (rdev->new_raid_disk == rdev->raid_disk)
3599 continue;
3600 rdev->raid_disk = rdev->new_raid_disk;
3601 if (rdev->raid_disk < 0)
3602 clear_bit(In_sync, &rdev->flags);
3603 else {
3604 if (sysfs_link_rdev(mddev, rdev))
3605 printk(KERN_WARNING "md: cannot register rd%d"
3606 " for %s after level change\n",
3607 rdev->raid_disk, mdname(mddev));
3608 }
3609 }
3610
3611 if (pers->sync_request == NULL) {
3612 /* this is now an array without redundancy, so
3613 * it must always be in_sync
3614 */
3615 mddev->in_sync = 1;
3616 del_timer_sync(&mddev->safemode_timer);
3617 }
3618 blk_set_stacking_limits(&mddev->queue->limits);
3619 pers->run(mddev);
3620 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3621 mddev_resume(mddev);
3622 if (!mddev->thread)
3623 md_update_sb(mddev, 1);
3624 sysfs_notify(&mddev->kobj, NULL, "level");
3625 md_new_event(mddev);
3626 rv = len;
3627 out_unlock:
3628 mddev_unlock(mddev);
3629 return rv;
3630 }
3631
3632 static struct md_sysfs_entry md_level =
3633 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3634
3635 static ssize_t
3636 layout_show(struct mddev *mddev, char *page)
3637 {
3638 /* just a number, not meaningful for all levels */
3639 if (mddev->reshape_position != MaxSector &&
3640 mddev->layout != mddev->new_layout)
3641 return sprintf(page, "%d (%d)\n",
3642 mddev->new_layout, mddev->layout);
3643 return sprintf(page, "%d\n", mddev->layout);
3644 }
3645
3646 static ssize_t
3647 layout_store(struct mddev *mddev, const char *buf, size_t len)
3648 {
3649 unsigned int n;
3650 int err;
3651
3652 err = kstrtouint(buf, 10, &n);
3653 if (err < 0)
3654 return err;
3655 err = mddev_lock(mddev);
3656 if (err)
3657 return err;
3658
3659 if (mddev->pers) {
3660 if (mddev->pers->check_reshape == NULL)
3661 err = -EBUSY;
3662 else if (mddev->ro)
3663 err = -EROFS;
3664 else {
3665 mddev->new_layout = n;
3666 err = mddev->pers->check_reshape(mddev);
3667 if (err)
3668 mddev->new_layout = mddev->layout;
3669 }
3670 } else {
3671 mddev->new_layout = n;
3672 if (mddev->reshape_position == MaxSector)
3673 mddev->layout = n;
3674 }
3675 mddev_unlock(mddev);
3676 return err ?: len;
3677 }
3678 static struct md_sysfs_entry md_layout =
3679 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3680
3681 static ssize_t
3682 raid_disks_show(struct mddev *mddev, char *page)
3683 {
3684 if (mddev->raid_disks == 0)
3685 return 0;
3686 if (mddev->reshape_position != MaxSector &&
3687 mddev->delta_disks != 0)
3688 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3689 mddev->raid_disks - mddev->delta_disks);
3690 return sprintf(page, "%d\n", mddev->raid_disks);
3691 }
3692
3693 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3694
3695 static ssize_t
3696 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3697 {
3698 unsigned int n;
3699 int err;
3700
3701 err = kstrtouint(buf, 10, &n);
3702 if (err < 0)
3703 return err;
3704
3705 err = mddev_lock(mddev);
3706 if (err)
3707 return err;
3708 if (mddev->pers)
3709 err = update_raid_disks(mddev, n);
3710 else if (mddev->reshape_position != MaxSector) {
3711 struct md_rdev *rdev;
3712 int olddisks = mddev->raid_disks - mddev->delta_disks;
3713
3714 err = -EINVAL;
3715 rdev_for_each(rdev, mddev) {
3716 if (olddisks < n &&
3717 rdev->data_offset < rdev->new_data_offset)
3718 goto out_unlock;
3719 if (olddisks > n &&
3720 rdev->data_offset > rdev->new_data_offset)
3721 goto out_unlock;
3722 }
3723 err = 0;
3724 mddev->delta_disks = n - olddisks;
3725 mddev->raid_disks = n;
3726 mddev->reshape_backwards = (mddev->delta_disks < 0);
3727 } else
3728 mddev->raid_disks = n;
3729 out_unlock:
3730 mddev_unlock(mddev);
3731 return err ? err : len;
3732 }
3733 static struct md_sysfs_entry md_raid_disks =
3734 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3735
3736 static ssize_t
3737 chunk_size_show(struct mddev *mddev, char *page)
3738 {
3739 if (mddev->reshape_position != MaxSector &&
3740 mddev->chunk_sectors != mddev->new_chunk_sectors)
3741 return sprintf(page, "%d (%d)\n",
3742 mddev->new_chunk_sectors << 9,
3743 mddev->chunk_sectors << 9);
3744 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3745 }
3746
3747 static ssize_t
3748 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3749 {
3750 unsigned long n;
3751 int err;
3752
3753 err = kstrtoul(buf, 10, &n);
3754 if (err < 0)
3755 return err;
3756
3757 err = mddev_lock(mddev);
3758 if (err)
3759 return err;
3760 if (mddev->pers) {
3761 if (mddev->pers->check_reshape == NULL)
3762 err = -EBUSY;
3763 else if (mddev->ro)
3764 err = -EROFS;
3765 else {
3766 mddev->new_chunk_sectors = n >> 9;
3767 err = mddev->pers->check_reshape(mddev);
3768 if (err)
3769 mddev->new_chunk_sectors = mddev->chunk_sectors;
3770 }
3771 } else {
3772 mddev->new_chunk_sectors = n >> 9;
3773 if (mddev->reshape_position == MaxSector)
3774 mddev->chunk_sectors = n >> 9;
3775 }
3776 mddev_unlock(mddev);
3777 return err ?: len;
3778 }
3779 static struct md_sysfs_entry md_chunk_size =
3780 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3781
3782 static ssize_t
3783 resync_start_show(struct mddev *mddev, char *page)
3784 {
3785 if (mddev->recovery_cp == MaxSector)
3786 return sprintf(page, "none\n");
3787 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3788 }
3789
3790 static ssize_t
3791 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3792 {
3793 unsigned long long n;
3794 int err;
3795
3796 if (cmd_match(buf, "none"))
3797 n = MaxSector;
3798 else {
3799 err = kstrtoull(buf, 10, &n);
3800 if (err < 0)
3801 return err;
3802 if (n != (sector_t)n)
3803 return -EINVAL;
3804 }
3805
3806 err = mddev_lock(mddev);
3807 if (err)
3808 return err;
3809 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3810 err = -EBUSY;
3811
3812 if (!err) {
3813 mddev->recovery_cp = n;
3814 if (mddev->pers)
3815 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3816 }
3817 mddev_unlock(mddev);
3818 return err ?: len;
3819 }
3820 static struct md_sysfs_entry md_resync_start =
3821 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
3822 resync_start_show, resync_start_store);
3823
3824 /*
3825 * The array state can be:
3826 *
3827 * clear
3828 * No devices, no size, no level
3829 * Equivalent to STOP_ARRAY ioctl
3830 * inactive
3831 * May have some settings, but array is not active
3832 * all IO results in error
3833 * When written, doesn't tear down array, but just stops it
3834 * suspended (not supported yet)
3835 * All IO requests will block. The array can be reconfigured.
3836 * Writing this, if accepted, will block until array is quiescent
3837 * readonly
3838 * no resync can happen. no superblocks get written.
3839 * write requests fail
3840 * read-auto
3841 * like readonly, but behaves like 'clean' on a write request.
3842 *
3843 * clean - no pending writes, but otherwise active.
3844 * When written to inactive array, starts without resync
3845 * If a write request arrives then
3846 * if metadata is known, mark 'dirty' and switch to 'active'.
3847 * if not known, block and switch to write-pending
3848 * If written to an active array that has pending writes, then fails.
3849 * active
3850 * fully active: IO and resync can be happening.
3851 * When written to inactive array, starts with resync
3852 *
3853 * write-pending
3854 * clean, but writes are blocked waiting for 'active' to be written.
3855 *
3856 * active-idle
3857 * like active, but no writes have been seen for a while (100msec).
3858 *
3859 */
3860 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3861 write_pending, active_idle, bad_word};
3862 static char *array_states[] = {
3863 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3864 "write-pending", "active-idle", NULL };
3865
3866 static int match_word(const char *word, char **list)
3867 {
3868 int n;
3869 for (n=0; list[n]; n++)
3870 if (cmd_match(word, list[n]))
3871 break;
3872 return n;
3873 }
3874
3875 static ssize_t
3876 array_state_show(struct mddev *mddev, char *page)
3877 {
3878 enum array_state st = inactive;
3879
3880 if (mddev->pers)
3881 switch(mddev->ro) {
3882 case 1:
3883 st = readonly;
3884 break;
3885 case 2:
3886 st = read_auto;
3887 break;
3888 case 0:
3889 if (mddev->in_sync)
3890 st = clean;
3891 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3892 st = write_pending;
3893 else if (mddev->safemode)
3894 st = active_idle;
3895 else
3896 st = active;
3897 }
3898 else {
3899 if (list_empty(&mddev->disks) &&
3900 mddev->raid_disks == 0 &&
3901 mddev->dev_sectors == 0)
3902 st = clear;
3903 else
3904 st = inactive;
3905 }
3906 return sprintf(page, "%s\n", array_states[st]);
3907 }
3908
3909 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3910 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3911 static int do_md_run(struct mddev *mddev);
3912 static int restart_array(struct mddev *mddev);
3913
3914 static ssize_t
3915 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3916 {
3917 int err;
3918 enum array_state st = match_word(buf, array_states);
3919
3920 if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
3921 /* don't take reconfig_mutex when toggling between
3922 * clean and active
3923 */
3924 spin_lock(&mddev->lock);
3925 if (st == active) {
3926 restart_array(mddev);
3927 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3928 wake_up(&mddev->sb_wait);
3929 err = 0;
3930 } else /* st == clean */ {
3931 restart_array(mddev);
3932 if (atomic_read(&mddev->writes_pending) == 0) {
3933 if (mddev->in_sync == 0) {
3934 mddev->in_sync = 1;
3935 if (mddev->safemode == 1)
3936 mddev->safemode = 0;
3937 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3938 }
3939 err = 0;
3940 } else
3941 err = -EBUSY;
3942 }
3943 spin_unlock(&mddev->lock);
3944 return err ?: len;
3945 }
3946 err = mddev_lock(mddev);
3947 if (err)
3948 return err;
3949 err = -EINVAL;
3950 switch(st) {
3951 case bad_word:
3952 break;
3953 case clear:
3954 /* stopping an active array */
3955 err = do_md_stop(mddev, 0, NULL);
3956 break;
3957 case inactive:
3958 /* stopping an active array */
3959 if (mddev->pers)
3960 err = do_md_stop(mddev, 2, NULL);
3961 else
3962 err = 0; /* already inactive */
3963 break;
3964 case suspended:
3965 break; /* not supported yet */
3966 case readonly:
3967 if (mddev->pers)
3968 err = md_set_readonly(mddev, NULL);
3969 else {
3970 mddev->ro = 1;
3971 set_disk_ro(mddev->gendisk, 1);
3972 err = do_md_run(mddev);
3973 }
3974 break;
3975 case read_auto:
3976 if (mddev->pers) {
3977 if (mddev->ro == 0)
3978 err = md_set_readonly(mddev, NULL);
3979 else if (mddev->ro == 1)
3980 err = restart_array(mddev);
3981 if (err == 0) {
3982 mddev->ro = 2;
3983 set_disk_ro(mddev->gendisk, 0);
3984 }
3985 } else {
3986 mddev->ro = 2;
3987 err = do_md_run(mddev);
3988 }
3989 break;
3990 case clean:
3991 if (mddev->pers) {
3992 err = restart_array(mddev);
3993 if (err)
3994 break;
3995 spin_lock(&mddev->lock);
3996 if (atomic_read(&mddev->writes_pending) == 0) {
3997 if (mddev->in_sync == 0) {
3998 mddev->in_sync = 1;
3999 if (mddev->safemode == 1)
4000 mddev->safemode = 0;
4001 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
4002 }
4003 err = 0;
4004 } else
4005 err = -EBUSY;
4006 spin_unlock(&mddev->lock);
4007 } else
4008 err = -EINVAL;
4009 break;
4010 case active:
4011 if (mddev->pers) {
4012 err = restart_array(mddev);
4013 if (err)
4014 break;
4015 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
4016 wake_up(&mddev->sb_wait);
4017 err = 0;
4018 } else {
4019 mddev->ro = 0;
4020 set_disk_ro(mddev->gendisk, 0);
4021 err = do_md_run(mddev);
4022 }
4023 break;
4024 case write_pending:
4025 case active_idle:
4026 /* these cannot be set */
4027 break;
4028 }
4029
4030 if (!err) {
4031 if (mddev->hold_active == UNTIL_IOCTL)
4032 mddev->hold_active = 0;
4033 sysfs_notify_dirent_safe(mddev->sysfs_state);
4034 }
4035 mddev_unlock(mddev);
4036 return err ?: len;
4037 }
4038 static struct md_sysfs_entry md_array_state =
4039 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
4040
4041 static ssize_t
4042 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
4043 return sprintf(page, "%d\n",
4044 atomic_read(&mddev->max_corr_read_errors));
4045 }
4046
4047 static ssize_t
4048 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
4049 {
4050 unsigned int n;
4051 int rv;
4052
4053 rv = kstrtouint(buf, 10, &n);
4054 if (rv < 0)
4055 return rv;
4056 atomic_set(&mddev->max_corr_read_errors, n);
4057 return len;
4058 }
4059
4060 static struct md_sysfs_entry max_corr_read_errors =
4061 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
4062 max_corrected_read_errors_store);
4063
4064 static ssize_t
4065 null_show(struct mddev *mddev, char *page)
4066 {
4067 return -EINVAL;
4068 }
4069
4070 static ssize_t
4071 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
4072 {
4073 /* buf must be %d:%d\n? giving major and minor numbers */
4074 /* The new device is added to the array.
4075 * If the array has a persistent superblock, we read the
4076 * superblock to initialise info and check validity.
4077 * Otherwise, only checking done is that in bind_rdev_to_array,
4078 * which mainly checks size.
4079 */
4080 char *e;
4081 int major = simple_strtoul(buf, &e, 10);
4082 int minor;
4083 dev_t dev;
4084 struct md_rdev *rdev;
4085 int err;
4086
4087 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
4088 return -EINVAL;
4089 minor = simple_strtoul(e+1, &e, 10);
4090 if (*e && *e != '\n')
4091 return -EINVAL;
4092 dev = MKDEV(major, minor);
4093 if (major != MAJOR(dev) ||
4094 minor != MINOR(dev))
4095 return -EOVERFLOW;
4096
4097 flush_workqueue(md_misc_wq);
4098
4099 err = mddev_lock(mddev);
4100 if (err)
4101 return err;
4102 if (mddev->persistent) {
4103 rdev = md_import_device(dev, mddev->major_version,
4104 mddev->minor_version);
4105 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4106 struct md_rdev *rdev0
4107 = list_entry(mddev->disks.next,
4108 struct md_rdev, same_set);
4109 err = super_types[mddev->major_version]
4110 .load_super(rdev, rdev0, mddev->minor_version);
4111 if (err < 0)
4112 goto out;
4113 }
4114 } else if (mddev->external)
4115 rdev = md_import_device(dev, -2, -1);
4116 else
4117 rdev = md_import_device(dev, -1, -1);
4118
4119 if (IS_ERR(rdev)) {
4120 mddev_unlock(mddev);
4121 return PTR_ERR(rdev);
4122 }
4123 err = bind_rdev_to_array(rdev, mddev);
4124 out:
4125 if (err)
4126 export_rdev(rdev);
4127 mddev_unlock(mddev);
4128 return err ? err : len;
4129 }
4130
4131 static struct md_sysfs_entry md_new_device =
4132 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4133
4134 static ssize_t
4135 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4136 {
4137 char *end;
4138 unsigned long chunk, end_chunk;
4139 int err;
4140
4141 err = mddev_lock(mddev);
4142 if (err)
4143 return err;
4144 if (!mddev->bitmap)
4145 goto out;
4146 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4147 while (*buf) {
4148 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4149 if (buf == end) break;
4150 if (*end == '-') { /* range */
4151 buf = end + 1;
4152 end_chunk = simple_strtoul(buf, &end, 0);
4153 if (buf == end) break;
4154 }
4155 if (*end && !isspace(*end)) break;
4156 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4157 buf = skip_spaces(end);
4158 }
4159 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4160 out:
4161 mddev_unlock(mddev);
4162 return len;
4163 }
4164
4165 static struct md_sysfs_entry md_bitmap =
4166 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4167
4168 static ssize_t
4169 size_show(struct mddev *mddev, char *page)
4170 {
4171 return sprintf(page, "%llu\n",
4172 (unsigned long long)mddev->dev_sectors / 2);
4173 }
4174
4175 static int update_size(struct mddev *mddev, sector_t num_sectors);
4176
4177 static ssize_t
4178 size_store(struct mddev *mddev, const char *buf, size_t len)
4179 {
4180 /* If array is inactive, we can reduce the component size, but
4181 * not increase it (except from 0).
4182 * If array is active, we can try an on-line resize
4183 */
4184 sector_t sectors;
4185 int err = strict_blocks_to_sectors(buf, &sectors);
4186
4187 if (err < 0)
4188 return err;
4189 err = mddev_lock(mddev);
4190 if (err)
4191 return err;
4192 if (mddev->pers) {
4193 err = update_size(mddev, sectors);
4194 md_update_sb(mddev, 1);
4195 } else {
4196 if (mddev->dev_sectors == 0 ||
4197 mddev->dev_sectors > sectors)
4198 mddev->dev_sectors = sectors;
4199 else
4200 err = -ENOSPC;
4201 }
4202 mddev_unlock(mddev);
4203 return err ? err : len;
4204 }
4205
4206 static struct md_sysfs_entry md_size =
4207 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4208
4209 /* Metadata version.
4210 * This is one of
4211 * 'none' for arrays with no metadata (good luck...)
4212 * 'external' for arrays with externally managed metadata,
4213 * or N.M for internally known formats
4214 */
4215 static ssize_t
4216 metadata_show(struct mddev *mddev, char *page)
4217 {
4218 if (mddev->persistent)
4219 return sprintf(page, "%d.%d\n",
4220 mddev->major_version, mddev->minor_version);
4221 else if (mddev->external)
4222 return sprintf(page, "external:%s\n", mddev->metadata_type);
4223 else
4224 return sprintf(page, "none\n");
4225 }
4226
4227 static ssize_t
4228 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4229 {
4230 int major, minor;
4231 char *e;
4232 int err;
4233 /* Changing the details of 'external' metadata is
4234 * always permitted. Otherwise there must be
4235 * no devices attached to the array.
4236 */
4237
4238 err = mddev_lock(mddev);
4239 if (err)
4240 return err;
4241 err = -EBUSY;
4242 if (mddev->external && strncmp(buf, "external:", 9) == 0)
4243 ;
4244 else if (!list_empty(&mddev->disks))
4245 goto out_unlock;
4246
4247 err = 0;
4248 if (cmd_match(buf, "none")) {
4249 mddev->persistent = 0;
4250 mddev->external = 0;
4251 mddev->major_version = 0;
4252 mddev->minor_version = 90;
4253 goto out_unlock;
4254 }
4255 if (strncmp(buf, "external:", 9) == 0) {
4256 size_t namelen = len-9;
4257 if (namelen >= sizeof(mddev->metadata_type))
4258 namelen = sizeof(mddev->metadata_type)-1;
4259 strncpy(mddev->metadata_type, buf+9, namelen);
4260 mddev->metadata_type[namelen] = 0;
4261 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4262 mddev->metadata_type[--namelen] = 0;
4263 mddev->persistent = 0;
4264 mddev->external = 1;
4265 mddev->major_version = 0;
4266 mddev->minor_version = 90;
4267 goto out_unlock;
4268 }
4269 major = simple_strtoul(buf, &e, 10);
4270 err = -EINVAL;
4271 if (e==buf || *e != '.')
4272 goto out_unlock;
4273 buf = e+1;
4274 minor = simple_strtoul(buf, &e, 10);
4275 if (e==buf || (*e && *e != '\n') )
4276 goto out_unlock;
4277 err = -ENOENT;
4278 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4279 goto out_unlock;
4280 mddev->major_version = major;
4281 mddev->minor_version = minor;
4282 mddev->persistent = 1;
4283 mddev->external = 0;
4284 err = 0;
4285 out_unlock:
4286 mddev_unlock(mddev);
4287 return err ?: len;
4288 }
4289
4290 static struct md_sysfs_entry md_metadata =
4291 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4292
4293 static ssize_t
4294 action_show(struct mddev *mddev, char *page)
4295 {
4296 char *type = "idle";
4297 unsigned long recovery = mddev->recovery;
4298 if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4299 type = "frozen";
4300 else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4301 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4302 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4303 type = "reshape";
4304 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4305 if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4306 type = "resync";
4307 else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4308 type = "check";
4309 else
4310 type = "repair";
4311 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4312 type = "recover";
4313 else if (mddev->reshape_position != MaxSector)
4314 type = "reshape";
4315 }
4316 return sprintf(page, "%s\n", type);
4317 }
4318
4319 static ssize_t
4320 action_store(struct mddev *mddev, const char *page, size_t len)
4321 {
4322 if (!mddev->pers || !mddev->pers->sync_request)
4323 return -EINVAL;
4324
4325
4326 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4327 if (cmd_match(page, "frozen"))
4328 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4329 else
4330 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4331 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4332 mddev_lock(mddev) == 0) {
4333 flush_workqueue(md_misc_wq);
4334 if (mddev->sync_thread) {
4335 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4336 md_reap_sync_thread(mddev);
4337 }
4338 mddev_unlock(mddev);
4339 }
4340 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4341 return -EBUSY;
4342 else if (cmd_match(page, "resync"))
4343 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4344 else if (cmd_match(page, "recover")) {
4345 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4346 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4347 } else if (cmd_match(page, "reshape")) {
4348 int err;
4349 if (mddev->pers->start_reshape == NULL)
4350 return -EINVAL;
4351 err = mddev_lock(mddev);
4352 if (!err) {
4353 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4354 err = -EBUSY;
4355 else {
4356 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4357 err = mddev->pers->start_reshape(mddev);
4358 }
4359 mddev_unlock(mddev);
4360 }
4361 if (err)
4362 return err;
4363 sysfs_notify(&mddev->kobj, NULL, "degraded");
4364 } else {
4365 if (cmd_match(page, "check"))
4366 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4367 else if (!cmd_match(page, "repair"))
4368 return -EINVAL;
4369 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4370 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4371 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4372 }
4373 if (mddev->ro == 2) {
4374 /* A write to sync_action is enough to justify
4375 * canceling read-auto mode
4376 */
4377 mddev->ro = 0;
4378 md_wakeup_thread(mddev->sync_thread);
4379 }
4380 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4381 md_wakeup_thread(mddev->thread);
4382 sysfs_notify_dirent_safe(mddev->sysfs_action);
4383 return len;
4384 }
4385
4386 static struct md_sysfs_entry md_scan_mode =
4387 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4388
4389 static ssize_t
4390 last_sync_action_show(struct mddev *mddev, char *page)
4391 {
4392 return sprintf(page, "%s\n", mddev->last_sync_action);
4393 }
4394
4395 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4396
4397 static ssize_t
4398 mismatch_cnt_show(struct mddev *mddev, char *page)
4399 {
4400 return sprintf(page, "%llu\n",
4401 (unsigned long long)
4402 atomic64_read(&mddev->resync_mismatches));
4403 }
4404
4405 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4406
4407 static ssize_t
4408 sync_min_show(struct mddev *mddev, char *page)
4409 {
4410 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4411 mddev->sync_speed_min ? "local": "system");
4412 }
4413
4414 static ssize_t
4415 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4416 {
4417 unsigned int min;
4418 int rv;
4419
4420 if (strncmp(buf, "system", 6)==0) {
4421 min = 0;
4422 } else {
4423 rv = kstrtouint(buf, 10, &min);
4424 if (rv < 0)
4425 return rv;
4426 if (min == 0)
4427 return -EINVAL;
4428 }
4429 mddev->sync_speed_min = min;
4430 return len;
4431 }
4432
4433 static struct md_sysfs_entry md_sync_min =
4434 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4435
4436 static ssize_t
4437 sync_max_show(struct mddev *mddev, char *page)
4438 {
4439 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4440 mddev->sync_speed_max ? "local": "system");
4441 }
4442
4443 static ssize_t
4444 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4445 {
4446 unsigned int max;
4447 int rv;
4448
4449 if (strncmp(buf, "system", 6)==0) {
4450 max = 0;
4451 } else {
4452 rv = kstrtouint(buf, 10, &max);
4453 if (rv < 0)
4454 return rv;
4455 if (max == 0)
4456 return -EINVAL;
4457 }
4458 mddev->sync_speed_max = max;
4459 return len;
4460 }
4461
4462 static struct md_sysfs_entry md_sync_max =
4463 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4464
4465 static ssize_t
4466 degraded_show(struct mddev *mddev, char *page)
4467 {
4468 return sprintf(page, "%d\n", mddev->degraded);
4469 }
4470 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4471
4472 static ssize_t
4473 sync_force_parallel_show(struct mddev *mddev, char *page)
4474 {
4475 return sprintf(page, "%d\n", mddev->parallel_resync);
4476 }
4477
4478 static ssize_t
4479 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4480 {
4481 long n;
4482
4483 if (kstrtol(buf, 10, &n))
4484 return -EINVAL;
4485
4486 if (n != 0 && n != 1)
4487 return -EINVAL;
4488
4489 mddev->parallel_resync = n;
4490
4491 if (mddev->sync_thread)
4492 wake_up(&resync_wait);
4493
4494 return len;
4495 }
4496
4497 /* force parallel resync, even with shared block devices */
4498 static struct md_sysfs_entry md_sync_force_parallel =
4499 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4500 sync_force_parallel_show, sync_force_parallel_store);
4501
4502 static ssize_t
4503 sync_speed_show(struct mddev *mddev, char *page)
4504 {
4505 unsigned long resync, dt, db;
4506 if (mddev->curr_resync == 0)
4507 return sprintf(page, "none\n");
4508 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4509 dt = (jiffies - mddev->resync_mark) / HZ;
4510 if (!dt) dt++;
4511 db = resync - mddev->resync_mark_cnt;
4512 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4513 }
4514
4515 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4516
4517 static ssize_t
4518 sync_completed_show(struct mddev *mddev, char *page)
4519 {
4520 unsigned long long max_sectors, resync;
4521
4522 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4523 return sprintf(page, "none\n");
4524
4525 if (mddev->curr_resync == 1 ||
4526 mddev->curr_resync == 2)
4527 return sprintf(page, "delayed\n");
4528
4529 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4530 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4531 max_sectors = mddev->resync_max_sectors;
4532 else
4533 max_sectors = mddev->dev_sectors;
4534
4535 resync = mddev->curr_resync_completed;
4536 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4537 }
4538
4539 static struct md_sysfs_entry md_sync_completed =
4540 __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4541
4542 static ssize_t
4543 min_sync_show(struct mddev *mddev, char *page)
4544 {
4545 return sprintf(page, "%llu\n",
4546 (unsigned long long)mddev->resync_min);
4547 }
4548 static ssize_t
4549 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4550 {
4551 unsigned long long min;
4552 int err;
4553
4554 if (kstrtoull(buf, 10, &min))
4555 return -EINVAL;
4556
4557 spin_lock(&mddev->lock);
4558 err = -EINVAL;
4559 if (min > mddev->resync_max)
4560 goto out_unlock;
4561
4562 err = -EBUSY;
4563 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4564 goto out_unlock;
4565
4566 /* Round down to multiple of 4K for safety */
4567 mddev->resync_min = round_down(min, 8);
4568 err = 0;
4569
4570 out_unlock:
4571 spin_unlock(&mddev->lock);
4572 return err ?: len;
4573 }
4574
4575 static struct md_sysfs_entry md_min_sync =
4576 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4577
4578 static ssize_t
4579 max_sync_show(struct mddev *mddev, char *page)
4580 {
4581 if (mddev->resync_max == MaxSector)
4582 return sprintf(page, "max\n");
4583 else
4584 return sprintf(page, "%llu\n",
4585 (unsigned long long)mddev->resync_max);
4586 }
4587 static ssize_t
4588 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4589 {
4590 int err;
4591 spin_lock(&mddev->lock);
4592 if (strncmp(buf, "max", 3) == 0)
4593 mddev->resync_max = MaxSector;
4594 else {
4595 unsigned long long max;
4596 int chunk;
4597
4598 err = -EINVAL;
4599 if (kstrtoull(buf, 10, &max))
4600 goto out_unlock;
4601 if (max < mddev->resync_min)
4602 goto out_unlock;
4603
4604 err = -EBUSY;
4605 if (max < mddev->resync_max &&
4606 mddev->ro == 0 &&
4607 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4608 goto out_unlock;
4609
4610 /* Must be a multiple of chunk_size */
4611 chunk = mddev->chunk_sectors;
4612 if (chunk) {
4613 sector_t temp = max;
4614
4615 err = -EINVAL;
4616 if (sector_div(temp, chunk))
4617 goto out_unlock;
4618 }
4619 mddev->resync_max = max;
4620 }
4621 wake_up(&mddev->recovery_wait);
4622 err = 0;
4623 out_unlock:
4624 spin_unlock(&mddev->lock);
4625 return err ?: len;
4626 }
4627
4628 static struct md_sysfs_entry md_max_sync =
4629 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4630
4631 static ssize_t
4632 suspend_lo_show(struct mddev *mddev, char *page)
4633 {
4634 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4635 }
4636
4637 static ssize_t
4638 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4639 {
4640 unsigned long long old, new;
4641 int err;
4642
4643 err = kstrtoull(buf, 10, &new);
4644 if (err < 0)
4645 return err;
4646 if (new != (sector_t)new)
4647 return -EINVAL;
4648
4649 err = mddev_lock(mddev);
4650 if (err)
4651 return err;
4652 err = -EINVAL;
4653 if (mddev->pers == NULL ||
4654 mddev->pers->quiesce == NULL)
4655 goto unlock;
4656 old = mddev->suspend_lo;
4657 mddev->suspend_lo = new;
4658 if (new >= old)
4659 /* Shrinking suspended region */
4660 mddev->pers->quiesce(mddev, 2);
4661 else {
4662 /* Expanding suspended region - need to wait */
4663 mddev->pers->quiesce(mddev, 1);
4664 mddev->pers->quiesce(mddev, 0);
4665 }
4666 err = 0;
4667 unlock:
4668 mddev_unlock(mddev);
4669 return err ?: len;
4670 }
4671 static struct md_sysfs_entry md_suspend_lo =
4672 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4673
4674 static ssize_t
4675 suspend_hi_show(struct mddev *mddev, char *page)
4676 {
4677 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4678 }
4679
4680 static ssize_t
4681 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4682 {
4683 unsigned long long old, new;
4684 int err;
4685
4686 err = kstrtoull(buf, 10, &new);
4687 if (err < 0)
4688 return err;
4689 if (new != (sector_t)new)
4690 return -EINVAL;
4691
4692 err = mddev_lock(mddev);
4693 if (err)
4694 return err;
4695 err = -EINVAL;
4696 if (mddev->pers == NULL ||
4697 mddev->pers->quiesce == NULL)
4698 goto unlock;
4699 old = mddev->suspend_hi;
4700 mddev->suspend_hi = new;
4701 if (new <= old)
4702 /* Shrinking suspended region */
4703 mddev->pers->quiesce(mddev, 2);
4704 else {
4705 /* Expanding suspended region - need to wait */
4706 mddev->pers->quiesce(mddev, 1);
4707 mddev->pers->quiesce(mddev, 0);
4708 }
4709 err = 0;
4710 unlock:
4711 mddev_unlock(mddev);
4712 return err ?: len;
4713 }
4714 static struct md_sysfs_entry md_suspend_hi =
4715 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4716
4717 static ssize_t
4718 reshape_position_show(struct mddev *mddev, char *page)
4719 {
4720 if (mddev->reshape_position != MaxSector)
4721 return sprintf(page, "%llu\n",
4722 (unsigned long long)mddev->reshape_position);
4723 strcpy(page, "none\n");
4724 return 5;
4725 }
4726
4727 static ssize_t
4728 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4729 {
4730 struct md_rdev *rdev;
4731 unsigned long long new;
4732 int err;
4733
4734 err = kstrtoull(buf, 10, &new);
4735 if (err < 0)
4736 return err;
4737 if (new != (sector_t)new)
4738 return -EINVAL;
4739 err = mddev_lock(mddev);
4740 if (err)
4741 return err;
4742 err = -EBUSY;
4743 if (mddev->pers)
4744 goto unlock;
4745 mddev->reshape_position = new;
4746 mddev->delta_disks = 0;
4747 mddev->reshape_backwards = 0;
4748 mddev->new_level = mddev->level;
4749 mddev->new_layout = mddev->layout;
4750 mddev->new_chunk_sectors = mddev->chunk_sectors;
4751 rdev_for_each(rdev, mddev)
4752 rdev->new_data_offset = rdev->data_offset;
4753 err = 0;
4754 unlock:
4755 mddev_unlock(mddev);
4756 return err ?: len;
4757 }
4758
4759 static struct md_sysfs_entry md_reshape_position =
4760 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4761 reshape_position_store);
4762
4763 static ssize_t
4764 reshape_direction_show(struct mddev *mddev, char *page)
4765 {
4766 return sprintf(page, "%s\n",
4767 mddev->reshape_backwards ? "backwards" : "forwards");
4768 }
4769
4770 static ssize_t
4771 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4772 {
4773 int backwards = 0;
4774 int err;
4775
4776 if (cmd_match(buf, "forwards"))
4777 backwards = 0;
4778 else if (cmd_match(buf, "backwards"))
4779 backwards = 1;
4780 else
4781 return -EINVAL;
4782 if (mddev->reshape_backwards == backwards)
4783 return len;
4784
4785 err = mddev_lock(mddev);
4786 if (err)
4787 return err;
4788 /* check if we are allowed to change */
4789 if (mddev->delta_disks)
4790 err = -EBUSY;
4791 else if (mddev->persistent &&
4792 mddev->major_version == 0)
4793 err = -EINVAL;
4794 else
4795 mddev->reshape_backwards = backwards;
4796 mddev_unlock(mddev);
4797 return err ?: len;
4798 }
4799
4800 static struct md_sysfs_entry md_reshape_direction =
4801 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4802 reshape_direction_store);
4803
4804 static ssize_t
4805 array_size_show(struct mddev *mddev, char *page)
4806 {
4807 if (mddev->external_size)
4808 return sprintf(page, "%llu\n",
4809 (unsigned long long)mddev->array_sectors/2);
4810 else
4811 return sprintf(page, "default\n");
4812 }
4813
4814 static ssize_t
4815 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4816 {
4817 sector_t sectors;
4818 int err;
4819
4820 err = mddev_lock(mddev);
4821 if (err)
4822 return err;
4823
4824 /* cluster raid doesn't support change array_sectors */
4825 if (mddev_is_clustered(mddev))
4826 return -EINVAL;
4827
4828 if (strncmp(buf, "default", 7) == 0) {
4829 if (mddev->pers)
4830 sectors = mddev->pers->size(mddev, 0, 0);
4831 else
4832 sectors = mddev->array_sectors;
4833
4834 mddev->external_size = 0;
4835 } else {
4836 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4837 err = -EINVAL;
4838 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4839 err = -E2BIG;
4840 else
4841 mddev->external_size = 1;
4842 }
4843
4844 if (!err) {
4845 mddev->array_sectors = sectors;
4846 if (mddev->pers) {
4847 set_capacity(mddev->gendisk, mddev->array_sectors);
4848 revalidate_disk(mddev->gendisk);
4849 }
4850 }
4851 mddev_unlock(mddev);
4852 return err ?: len;
4853 }
4854
4855 static struct md_sysfs_entry md_array_size =
4856 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4857 array_size_store);
4858
4859 static struct attribute *md_default_attrs[] = {
4860 &md_level.attr,
4861 &md_layout.attr,
4862 &md_raid_disks.attr,
4863 &md_chunk_size.attr,
4864 &md_size.attr,
4865 &md_resync_start.attr,
4866 &md_metadata.attr,
4867 &md_new_device.attr,
4868 &md_safe_delay.attr,
4869 &md_array_state.attr,
4870 &md_reshape_position.attr,
4871 &md_reshape_direction.attr,
4872 &md_array_size.attr,
4873 &max_corr_read_errors.attr,
4874 NULL,
4875 };
4876
4877 static struct attribute *md_redundancy_attrs[] = {
4878 &md_scan_mode.attr,
4879 &md_last_scan_mode.attr,
4880 &md_mismatches.attr,
4881 &md_sync_min.attr,
4882 &md_sync_max.attr,
4883 &md_sync_speed.attr,
4884 &md_sync_force_parallel.attr,
4885 &md_sync_completed.attr,
4886 &md_min_sync.attr,
4887 &md_max_sync.attr,
4888 &md_suspend_lo.attr,
4889 &md_suspend_hi.attr,
4890 &md_bitmap.attr,
4891 &md_degraded.attr,
4892 NULL,
4893 };
4894 static struct attribute_group md_redundancy_group = {
4895 .name = NULL,
4896 .attrs = md_redundancy_attrs,
4897 };
4898
4899 static ssize_t
4900 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4901 {
4902 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4903 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4904 ssize_t rv;
4905
4906 if (!entry->show)
4907 return -EIO;
4908 spin_lock(&all_mddevs_lock);
4909 if (list_empty(&mddev->all_mddevs)) {
4910 spin_unlock(&all_mddevs_lock);
4911 return -EBUSY;
4912 }
4913 mddev_get(mddev);
4914 spin_unlock(&all_mddevs_lock);
4915
4916 rv = entry->show(mddev, page);
4917 mddev_put(mddev);
4918 return rv;
4919 }
4920
4921 static ssize_t
4922 md_attr_store(struct kobject *kobj, struct attribute *attr,
4923 const char *page, size_t length)
4924 {
4925 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4926 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4927 ssize_t rv;
4928
4929 if (!entry->store)
4930 return -EIO;
4931 if (!capable(CAP_SYS_ADMIN))
4932 return -EACCES;
4933 spin_lock(&all_mddevs_lock);
4934 if (list_empty(&mddev->all_mddevs)) {
4935 spin_unlock(&all_mddevs_lock);
4936 return -EBUSY;
4937 }
4938 mddev_get(mddev);
4939 spin_unlock(&all_mddevs_lock);
4940 rv = entry->store(mddev, page, length);
4941 mddev_put(mddev);
4942 return rv;
4943 }
4944
4945 static void md_free(struct kobject *ko)
4946 {
4947 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4948
4949 if (mddev->sysfs_state)
4950 sysfs_put(mddev->sysfs_state);
4951
4952 if (mddev->queue)
4953 blk_cleanup_queue(mddev->queue);
4954 if (mddev->gendisk) {
4955 del_gendisk(mddev->gendisk);
4956 put_disk(mddev->gendisk);
4957 }
4958
4959 kfree(mddev);
4960 }
4961
4962 static const struct sysfs_ops md_sysfs_ops = {
4963 .show = md_attr_show,
4964 .store = md_attr_store,
4965 };
4966 static struct kobj_type md_ktype = {
4967 .release = md_free,
4968 .sysfs_ops = &md_sysfs_ops,
4969 .default_attrs = md_default_attrs,
4970 };
4971
4972 int mdp_major = 0;
4973
4974 static void mddev_delayed_delete(struct work_struct *ws)
4975 {
4976 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4977
4978 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4979 kobject_del(&mddev->kobj);
4980 kobject_put(&mddev->kobj);
4981 }
4982
4983 static int md_alloc(dev_t dev, char *name)
4984 {
4985 static DEFINE_MUTEX(disks_mutex);
4986 struct mddev *mddev = mddev_find(dev);
4987 struct gendisk *disk;
4988 int partitioned;
4989 int shift;
4990 int unit;
4991 int error;
4992
4993 if (!mddev)
4994 return -ENODEV;
4995
4996 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4997 shift = partitioned ? MdpMinorShift : 0;
4998 unit = MINOR(mddev->unit) >> shift;
4999
5000 /* wait for any previous instance of this device to be
5001 * completely removed (mddev_delayed_delete).
5002 */
5003 flush_workqueue(md_misc_wq);
5004
5005 mutex_lock(&disks_mutex);
5006 error = -EEXIST;
5007 if (mddev->gendisk)
5008 goto abort;
5009
5010 if (name) {
5011 /* Need to ensure that 'name' is not a duplicate.
5012 */
5013 struct mddev *mddev2;
5014 spin_lock(&all_mddevs_lock);
5015
5016 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
5017 if (mddev2->gendisk &&
5018 strcmp(mddev2->gendisk->disk_name, name) == 0) {
5019 spin_unlock(&all_mddevs_lock);
5020 goto abort;
5021 }
5022 spin_unlock(&all_mddevs_lock);
5023 }
5024
5025 error = -ENOMEM;
5026 mddev->queue = blk_alloc_queue(GFP_KERNEL);
5027 if (!mddev->queue)
5028 goto abort;
5029 mddev->queue->queuedata = mddev;
5030
5031 blk_queue_make_request(mddev->queue, md_make_request);
5032 blk_set_stacking_limits(&mddev->queue->limits);
5033
5034 disk = alloc_disk(1 << shift);
5035 if (!disk) {
5036 blk_cleanup_queue(mddev->queue);
5037 mddev->queue = NULL;
5038 goto abort;
5039 }
5040 disk->major = MAJOR(mddev->unit);
5041 disk->first_minor = unit << shift;
5042 if (name)
5043 strcpy(disk->disk_name, name);
5044 else if (partitioned)
5045 sprintf(disk->disk_name, "md_d%d", unit);
5046 else
5047 sprintf(disk->disk_name, "md%d", unit);
5048 disk->fops = &md_fops;
5049 disk->private_data = mddev;
5050 disk->queue = mddev->queue;
5051 blk_queue_write_cache(mddev->queue, true, true);
5052 /* Allow extended partitions. This makes the
5053 * 'mdp' device redundant, but we can't really
5054 * remove it now.
5055 */
5056 disk->flags |= GENHD_FL_EXT_DEVT;
5057 mddev->gendisk = disk;
5058 /* As soon as we call add_disk(), another thread could get
5059 * through to md_open, so make sure it doesn't get too far
5060 */
5061 mutex_lock(&mddev->open_mutex);
5062 add_disk(disk);
5063
5064 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
5065 &disk_to_dev(disk)->kobj, "%s", "md");
5066 if (error) {
5067 /* This isn't possible, but as kobject_init_and_add is marked
5068 * __must_check, we must do something with the result
5069 */
5070 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
5071 disk->disk_name);
5072 error = 0;
5073 }
5074 if (mddev->kobj.sd &&
5075 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
5076 printk(KERN_DEBUG "pointless warning\n");
5077 mutex_unlock(&mddev->open_mutex);
5078 abort:
5079 mutex_unlock(&disks_mutex);
5080 if (!error && mddev->kobj.sd) {
5081 kobject_uevent(&mddev->kobj, KOBJ_ADD);
5082 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
5083 }
5084 mddev_put(mddev);
5085 return error;
5086 }
5087
5088 static struct kobject *md_probe(dev_t dev, int *part, void *data)
5089 {
5090 md_alloc(dev, NULL);
5091 return NULL;
5092 }
5093
5094 static int add_named_array(const char *val, struct kernel_param *kp)
5095 {
5096 /* val must be "md_*" where * is not all digits.
5097 * We allocate an array with a large free minor number, and
5098 * set the name to val. val must not already be an active name.
5099 */
5100 int len = strlen(val);
5101 char buf[DISK_NAME_LEN];
5102
5103 while (len && val[len-1] == '\n')
5104 len--;
5105 if (len >= DISK_NAME_LEN)
5106 return -E2BIG;
5107 strlcpy(buf, val, len+1);
5108 if (strncmp(buf, "md_", 3) != 0)
5109 return -EINVAL;
5110 return md_alloc(0, buf);
5111 }
5112
5113 static void md_safemode_timeout(unsigned long data)
5114 {
5115 struct mddev *mddev = (struct mddev *) data;
5116
5117 if (!atomic_read(&mddev->writes_pending)) {
5118 mddev->safemode = 1;
5119 if (mddev->external)
5120 sysfs_notify_dirent_safe(mddev->sysfs_state);
5121 }
5122 md_wakeup_thread(mddev->thread);
5123 }
5124
5125 static int start_dirty_degraded;
5126
5127 int md_run(struct mddev *mddev)
5128 {
5129 int err;
5130 struct md_rdev *rdev;
5131 struct md_personality *pers;
5132
5133 if (list_empty(&mddev->disks))
5134 /* cannot run an array with no devices.. */
5135 return -EINVAL;
5136
5137 if (mddev->pers)
5138 return -EBUSY;
5139 /* Cannot run until previous stop completes properly */
5140 if (mddev->sysfs_active)
5141 return -EBUSY;
5142
5143 /*
5144 * Analyze all RAID superblock(s)
5145 */
5146 if (!mddev->raid_disks) {
5147 if (!mddev->persistent)
5148 return -EINVAL;
5149 analyze_sbs(mddev);
5150 }
5151
5152 if (mddev->level != LEVEL_NONE)
5153 request_module("md-level-%d", mddev->level);
5154 else if (mddev->clevel[0])
5155 request_module("md-%s", mddev->clevel);
5156
5157 /*
5158 * Drop all container device buffers, from now on
5159 * the only valid external interface is through the md
5160 * device.
5161 */
5162 rdev_for_each(rdev, mddev) {
5163 if (test_bit(Faulty, &rdev->flags))
5164 continue;
5165 sync_blockdev(rdev->bdev);
5166 invalidate_bdev(rdev->bdev);
5167
5168 /* perform some consistency tests on the device.
5169 * We don't want the data to overlap the metadata,
5170 * Internal Bitmap issues have been handled elsewhere.
5171 */
5172 if (rdev->meta_bdev) {
5173 /* Nothing to check */;
5174 } else if (rdev->data_offset < rdev->sb_start) {
5175 if (mddev->dev_sectors &&
5176 rdev->data_offset + mddev->dev_sectors
5177 > rdev->sb_start) {
5178 printk("md: %s: data overlaps metadata\n",
5179 mdname(mddev));
5180 return -EINVAL;
5181 }
5182 } else {
5183 if (rdev->sb_start + rdev->sb_size/512
5184 > rdev->data_offset) {
5185 printk("md: %s: metadata overlaps data\n",
5186 mdname(mddev));
5187 return -EINVAL;
5188 }
5189 }
5190 sysfs_notify_dirent_safe(rdev->sysfs_state);
5191 }
5192
5193 if (mddev->bio_set == NULL)
5194 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5195
5196 spin_lock(&pers_lock);
5197 pers = find_pers(mddev->level, mddev->clevel);
5198 if (!pers || !try_module_get(pers->owner)) {
5199 spin_unlock(&pers_lock);
5200 if (mddev->level != LEVEL_NONE)
5201 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5202 mddev->level);
5203 else
5204 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5205 mddev->clevel);
5206 return -EINVAL;
5207 }
5208 spin_unlock(&pers_lock);
5209 if (mddev->level != pers->level) {
5210 mddev->level = pers->level;
5211 mddev->new_level = pers->level;
5212 }
5213 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5214
5215 if (mddev->reshape_position != MaxSector &&
5216 pers->start_reshape == NULL) {
5217 /* This personality cannot handle reshaping... */
5218 module_put(pers->owner);
5219 return -EINVAL;
5220 }
5221
5222 if (pers->sync_request) {
5223 /* Warn if this is a potentially silly
5224 * configuration.
5225 */
5226 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5227 struct md_rdev *rdev2;
5228 int warned = 0;
5229
5230 rdev_for_each(rdev, mddev)
5231 rdev_for_each(rdev2, mddev) {
5232 if (rdev < rdev2 &&
5233 rdev->bdev->bd_contains ==
5234 rdev2->bdev->bd_contains) {
5235 printk(KERN_WARNING
5236 "%s: WARNING: %s appears to be"
5237 " on the same physical disk as"
5238 " %s.\n",
5239 mdname(mddev),
5240 bdevname(rdev->bdev,b),
5241 bdevname(rdev2->bdev,b2));
5242 warned = 1;
5243 }
5244 }
5245
5246 if (warned)
5247 printk(KERN_WARNING
5248 "True protection against single-disk"
5249 " failure might be compromised.\n");
5250 }
5251
5252 mddev->recovery = 0;
5253 /* may be over-ridden by personality */
5254 mddev->resync_max_sectors = mddev->dev_sectors;
5255
5256 mddev->ok_start_degraded = start_dirty_degraded;
5257
5258 if (start_readonly && mddev->ro == 0)
5259 mddev->ro = 2; /* read-only, but switch on first write */
5260
5261 err = pers->run(mddev);
5262 if (err)
5263 printk(KERN_ERR "md: pers->run() failed ...\n");
5264 else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5265 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5266 " but 'external_size' not in effect?\n", __func__);
5267 printk(KERN_ERR
5268 "md: invalid array_size %llu > default size %llu\n",
5269 (unsigned long long)mddev->array_sectors / 2,
5270 (unsigned long long)pers->size(mddev, 0, 0) / 2);
5271 err = -EINVAL;
5272 }
5273 if (err == 0 && pers->sync_request &&
5274 (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5275 struct bitmap *bitmap;
5276
5277 bitmap = bitmap_create(mddev, -1);
5278 if (IS_ERR(bitmap)) {
5279 err = PTR_ERR(bitmap);
5280 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5281 mdname(mddev), err);
5282 } else
5283 mddev->bitmap = bitmap;
5284
5285 }
5286 if (err) {
5287 mddev_detach(mddev);
5288 if (mddev->private)
5289 pers->free(mddev, mddev->private);
5290 mddev->private = NULL;
5291 module_put(pers->owner);
5292 bitmap_destroy(mddev);
5293 return err;
5294 }
5295 if (mddev->queue) {
5296 mddev->queue->backing_dev_info.congested_data = mddev;
5297 mddev->queue->backing_dev_info.congested_fn = md_congested;
5298 }
5299 if (pers->sync_request) {
5300 if (mddev->kobj.sd &&
5301 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5302 printk(KERN_WARNING
5303 "md: cannot register extra attributes for %s\n",
5304 mdname(mddev));
5305 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5306 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5307 mddev->ro = 0;
5308
5309 atomic_set(&mddev->writes_pending,0);
5310 atomic_set(&mddev->max_corr_read_errors,
5311 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5312 mddev->safemode = 0;
5313 if (mddev_is_clustered(mddev))
5314 mddev->safemode_delay = 0;
5315 else
5316 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5317 mddev->in_sync = 1;
5318 smp_wmb();
5319 spin_lock(&mddev->lock);
5320 mddev->pers = pers;
5321 spin_unlock(&mddev->lock);
5322 rdev_for_each(rdev, mddev)
5323 if (rdev->raid_disk >= 0)
5324 if (sysfs_link_rdev(mddev, rdev))
5325 /* failure here is OK */;
5326
5327 if (mddev->degraded && !mddev->ro)
5328 /* This ensures that recovering status is reported immediately
5329 * via sysfs - until a lack of spares is confirmed.
5330 */
5331 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5332 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5333
5334 if (mddev->flags & MD_UPDATE_SB_FLAGS)
5335 md_update_sb(mddev, 0);
5336
5337 md_new_event(mddev);
5338 sysfs_notify_dirent_safe(mddev->sysfs_state);
5339 sysfs_notify_dirent_safe(mddev->sysfs_action);
5340 sysfs_notify(&mddev->kobj, NULL, "degraded");
5341 return 0;
5342 }
5343 EXPORT_SYMBOL_GPL(md_run);
5344
5345 static int do_md_run(struct mddev *mddev)
5346 {
5347 int err;
5348
5349 err = md_run(mddev);
5350 if (err)
5351 goto out;
5352 err = bitmap_load(mddev);
5353 if (err) {
5354 bitmap_destroy(mddev);
5355 goto out;
5356 }
5357
5358 if (mddev_is_clustered(mddev))
5359 md_allow_write(mddev);
5360
5361 md_wakeup_thread(mddev->thread);
5362 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5363
5364 set_capacity(mddev->gendisk, mddev->array_sectors);
5365 revalidate_disk(mddev->gendisk);
5366 mddev->changed = 1;
5367 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5368 out:
5369 return err;
5370 }
5371
5372 static int restart_array(struct mddev *mddev)
5373 {
5374 struct gendisk *disk = mddev->gendisk;
5375
5376 /* Complain if it has no devices */
5377 if (list_empty(&mddev->disks))
5378 return -ENXIO;
5379 if (!mddev->pers)
5380 return -EINVAL;
5381 if (!mddev->ro)
5382 return -EBUSY;
5383 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
5384 struct md_rdev *rdev;
5385 bool has_journal = false;
5386
5387 rcu_read_lock();
5388 rdev_for_each_rcu(rdev, mddev) {
5389 if (test_bit(Journal, &rdev->flags) &&
5390 !test_bit(Faulty, &rdev->flags)) {
5391 has_journal = true;
5392 break;
5393 }
5394 }
5395 rcu_read_unlock();
5396
5397 /* Don't restart rw with journal missing/faulty */
5398 if (!has_journal)
5399 return -EINVAL;
5400 }
5401
5402 mddev->safemode = 0;
5403 mddev->ro = 0;
5404 set_disk_ro(disk, 0);
5405 printk(KERN_INFO "md: %s switched to read-write mode.\n",
5406 mdname(mddev));
5407 /* Kick recovery or resync if necessary */
5408 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5409 md_wakeup_thread(mddev->thread);
5410 md_wakeup_thread(mddev->sync_thread);
5411 sysfs_notify_dirent_safe(mddev->sysfs_state);
5412 return 0;
5413 }
5414
5415 static void md_clean(struct mddev *mddev)
5416 {
5417 mddev->array_sectors = 0;
5418 mddev->external_size = 0;
5419 mddev->dev_sectors = 0;
5420 mddev->raid_disks = 0;
5421 mddev->recovery_cp = 0;
5422 mddev->resync_min = 0;
5423 mddev->resync_max = MaxSector;
5424 mddev->reshape_position = MaxSector;
5425 mddev->external = 0;
5426 mddev->persistent = 0;
5427 mddev->level = LEVEL_NONE;
5428 mddev->clevel[0] = 0;
5429 mddev->flags = 0;
5430 mddev->ro = 0;
5431 mddev->metadata_type[0] = 0;
5432 mddev->chunk_sectors = 0;
5433 mddev->ctime = mddev->utime = 0;
5434 mddev->layout = 0;
5435 mddev->max_disks = 0;
5436 mddev->events = 0;
5437 mddev->can_decrease_events = 0;
5438 mddev->delta_disks = 0;
5439 mddev->reshape_backwards = 0;
5440 mddev->new_level = LEVEL_NONE;
5441 mddev->new_layout = 0;
5442 mddev->new_chunk_sectors = 0;
5443 mddev->curr_resync = 0;
5444 atomic64_set(&mddev->resync_mismatches, 0);
5445 mddev->suspend_lo = mddev->suspend_hi = 0;
5446 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5447 mddev->recovery = 0;
5448 mddev->in_sync = 0;
5449 mddev->changed = 0;
5450 mddev->degraded = 0;
5451 mddev->safemode = 0;
5452 mddev->private = NULL;
5453 mddev->bitmap_info.offset = 0;
5454 mddev->bitmap_info.default_offset = 0;
5455 mddev->bitmap_info.default_space = 0;
5456 mddev->bitmap_info.chunksize = 0;
5457 mddev->bitmap_info.daemon_sleep = 0;
5458 mddev->bitmap_info.max_write_behind = 0;
5459 }
5460
5461 static void __md_stop_writes(struct mddev *mddev)
5462 {
5463 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5464 flush_workqueue(md_misc_wq);
5465 if (mddev->sync_thread) {
5466 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5467 md_reap_sync_thread(mddev);
5468 }
5469
5470 del_timer_sync(&mddev->safemode_timer);
5471
5472 bitmap_flush(mddev);
5473 md_super_wait(mddev);
5474
5475 if (mddev->ro == 0 &&
5476 ((!mddev->in_sync && !mddev_is_clustered(mddev)) ||
5477 (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5478 /* mark array as shutdown cleanly */
5479 if (!mddev_is_clustered(mddev))
5480 mddev->in_sync = 1;
5481 md_update_sb(mddev, 1);
5482 }
5483 }
5484
5485 void md_stop_writes(struct mddev *mddev)
5486 {
5487 mddev_lock_nointr(mddev);
5488 __md_stop_writes(mddev);
5489 mddev_unlock(mddev);
5490 }
5491 EXPORT_SYMBOL_GPL(md_stop_writes);
5492
5493 static void mddev_detach(struct mddev *mddev)
5494 {
5495 struct bitmap *bitmap = mddev->bitmap;
5496 /* wait for behind writes to complete */
5497 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5498 printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
5499 mdname(mddev));
5500 /* need to kick something here to make sure I/O goes? */
5501 wait_event(bitmap->behind_wait,
5502 atomic_read(&bitmap->behind_writes) == 0);
5503 }
5504 if (mddev->pers && mddev->pers->quiesce) {
5505 mddev->pers->quiesce(mddev, 1);
5506 mddev->pers->quiesce(mddev, 0);
5507 }
5508 md_unregister_thread(&mddev->thread);
5509 if (mddev->queue)
5510 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5511 }
5512
5513 static void __md_stop(struct mddev *mddev)
5514 {
5515 struct md_personality *pers = mddev->pers;
5516 mddev_detach(mddev);
5517 /* Ensure ->event_work is done */
5518 flush_workqueue(md_misc_wq);
5519 spin_lock(&mddev->lock);
5520 mddev->pers = NULL;
5521 spin_unlock(&mddev->lock);
5522 pers->free(mddev, mddev->private);
5523 mddev->private = NULL;
5524 if (pers->sync_request && mddev->to_remove == NULL)
5525 mddev->to_remove = &md_redundancy_group;
5526 module_put(pers->owner);
5527 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5528 }
5529
5530 void md_stop(struct mddev *mddev)
5531 {
5532 /* stop the array and free an attached data structures.
5533 * This is called from dm-raid
5534 */
5535 __md_stop(mddev);
5536 bitmap_destroy(mddev);
5537 if (mddev->bio_set)
5538 bioset_free(mddev->bio_set);
5539 }
5540
5541 EXPORT_SYMBOL_GPL(md_stop);
5542
5543 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5544 {
5545 int err = 0;
5546 int did_freeze = 0;
5547
5548 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5549 did_freeze = 1;
5550 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5551 md_wakeup_thread(mddev->thread);
5552 }
5553 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5554 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5555 if (mddev->sync_thread)
5556 /* Thread might be blocked waiting for metadata update
5557 * which will now never happen */
5558 wake_up_process(mddev->sync_thread->tsk);
5559
5560 if (mddev->external && test_bit(MD_CHANGE_PENDING, &mddev->flags))
5561 return -EBUSY;
5562 mddev_unlock(mddev);
5563 wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5564 &mddev->recovery));
5565 wait_event(mddev->sb_wait,
5566 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
5567 mddev_lock_nointr(mddev);
5568
5569 mutex_lock(&mddev->open_mutex);
5570 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5571 mddev->sync_thread ||
5572 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5573 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5574 printk("md: %s still in use.\n",mdname(mddev));
5575 if (did_freeze) {
5576 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5577 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5578 md_wakeup_thread(mddev->thread);
5579 }
5580 err = -EBUSY;
5581 goto out;
5582 }
5583 if (mddev->pers) {
5584 __md_stop_writes(mddev);
5585
5586 err = -ENXIO;
5587 if (mddev->ro==1)
5588 goto out;
5589 mddev->ro = 1;
5590 set_disk_ro(mddev->gendisk, 1);
5591 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5592 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5593 md_wakeup_thread(mddev->thread);
5594 sysfs_notify_dirent_safe(mddev->sysfs_state);
5595 err = 0;
5596 }
5597 out:
5598 mutex_unlock(&mddev->open_mutex);
5599 return err;
5600 }
5601
5602 /* mode:
5603 * 0 - completely stop and dis-assemble array
5604 * 2 - stop but do not disassemble array
5605 */
5606 static int do_md_stop(struct mddev *mddev, int mode,
5607 struct block_device *bdev)
5608 {
5609 struct gendisk *disk = mddev->gendisk;
5610 struct md_rdev *rdev;
5611 int did_freeze = 0;
5612
5613 if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5614 did_freeze = 1;
5615 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5616 md_wakeup_thread(mddev->thread);
5617 }
5618 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5619 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5620 if (mddev->sync_thread)
5621 /* Thread might be blocked waiting for metadata update
5622 * which will now never happen */
5623 wake_up_process(mddev->sync_thread->tsk);
5624
5625 mddev_unlock(mddev);
5626 wait_event(resync_wait, (mddev->sync_thread == NULL &&
5627 !test_bit(MD_RECOVERY_RUNNING,
5628 &mddev->recovery)));
5629 mddev_lock_nointr(mddev);
5630
5631 mutex_lock(&mddev->open_mutex);
5632 if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5633 mddev->sysfs_active ||
5634 mddev->sync_thread ||
5635 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5636 (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5637 printk("md: %s still in use.\n",mdname(mddev));
5638 mutex_unlock(&mddev->open_mutex);
5639 if (did_freeze) {
5640 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5641 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5642 md_wakeup_thread(mddev->thread);
5643 }
5644 return -EBUSY;
5645 }
5646 if (mddev->pers) {
5647 if (mddev->ro)
5648 set_disk_ro(disk, 0);
5649
5650 __md_stop_writes(mddev);
5651 __md_stop(mddev);
5652 mddev->queue->backing_dev_info.congested_fn = NULL;
5653
5654 /* tell userspace to handle 'inactive' */
5655 sysfs_notify_dirent_safe(mddev->sysfs_state);
5656
5657 rdev_for_each(rdev, mddev)
5658 if (rdev->raid_disk >= 0)
5659 sysfs_unlink_rdev(mddev, rdev);
5660
5661 set_capacity(disk, 0);
5662 mutex_unlock(&mddev->open_mutex);
5663 mddev->changed = 1;
5664 revalidate_disk(disk);
5665
5666 if (mddev->ro)
5667 mddev->ro = 0;
5668 } else
5669 mutex_unlock(&mddev->open_mutex);
5670 /*
5671 * Free resources if final stop
5672 */
5673 if (mode == 0) {
5674 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5675
5676 bitmap_destroy(mddev);
5677 if (mddev->bitmap_info.file) {
5678 struct file *f = mddev->bitmap_info.file;
5679 spin_lock(&mddev->lock);
5680 mddev->bitmap_info.file = NULL;
5681 spin_unlock(&mddev->lock);
5682 fput(f);
5683 }
5684 mddev->bitmap_info.offset = 0;
5685
5686 export_array(mddev);
5687
5688 md_clean(mddev);
5689 if (mddev->hold_active == UNTIL_STOP)
5690 mddev->hold_active = 0;
5691 }
5692 md_new_event(mddev);
5693 sysfs_notify_dirent_safe(mddev->sysfs_state);
5694 return 0;
5695 }
5696
5697 #ifndef MODULE
5698 static void autorun_array(struct mddev *mddev)
5699 {
5700 struct md_rdev *rdev;
5701 int err;
5702
5703 if (list_empty(&mddev->disks))
5704 return;
5705
5706 printk(KERN_INFO "md: running: ");
5707
5708 rdev_for_each(rdev, mddev) {
5709 char b[BDEVNAME_SIZE];
5710 printk("<%s>", bdevname(rdev->bdev,b));
5711 }
5712 printk("\n");
5713
5714 err = do_md_run(mddev);
5715 if (err) {
5716 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5717 do_md_stop(mddev, 0, NULL);
5718 }
5719 }
5720
5721 /*
5722 * lets try to run arrays based on all disks that have arrived
5723 * until now. (those are in pending_raid_disks)
5724 *
5725 * the method: pick the first pending disk, collect all disks with
5726 * the same UUID, remove all from the pending list and put them into
5727 * the 'same_array' list. Then order this list based on superblock
5728 * update time (freshest comes first), kick out 'old' disks and
5729 * compare superblocks. If everything's fine then run it.
5730 *
5731 * If "unit" is allocated, then bump its reference count
5732 */
5733 static void autorun_devices(int part)
5734 {
5735 struct md_rdev *rdev0, *rdev, *tmp;
5736 struct mddev *mddev;
5737 char b[BDEVNAME_SIZE];
5738
5739 printk(KERN_INFO "md: autorun ...\n");
5740 while (!list_empty(&pending_raid_disks)) {
5741 int unit;
5742 dev_t dev;
5743 LIST_HEAD(candidates);
5744 rdev0 = list_entry(pending_raid_disks.next,
5745 struct md_rdev, same_set);
5746
5747 printk(KERN_INFO "md: considering %s ...\n",
5748 bdevname(rdev0->bdev,b));
5749 INIT_LIST_HEAD(&candidates);
5750 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5751 if (super_90_load(rdev, rdev0, 0) >= 0) {
5752 printk(KERN_INFO "md: adding %s ...\n",
5753 bdevname(rdev->bdev,b));
5754 list_move(&rdev->same_set, &candidates);
5755 }
5756 /*
5757 * now we have a set of devices, with all of them having
5758 * mostly sane superblocks. It's time to allocate the
5759 * mddev.
5760 */
5761 if (part) {
5762 dev = MKDEV(mdp_major,
5763 rdev0->preferred_minor << MdpMinorShift);
5764 unit = MINOR(dev) >> MdpMinorShift;
5765 } else {
5766 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5767 unit = MINOR(dev);
5768 }
5769 if (rdev0->preferred_minor != unit) {
5770 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5771 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5772 break;
5773 }
5774
5775 md_probe(dev, NULL, NULL);
5776 mddev = mddev_find(dev);
5777 if (!mddev || !mddev->gendisk) {
5778 if (mddev)
5779 mddev_put(mddev);
5780 printk(KERN_ERR
5781 "md: cannot allocate memory for md drive.\n");
5782 break;
5783 }
5784 if (mddev_lock(mddev))
5785 printk(KERN_WARNING "md: %s locked, cannot run\n",
5786 mdname(mddev));
5787 else if (mddev->raid_disks || mddev->major_version
5788 || !list_empty(&mddev->disks)) {
5789 printk(KERN_WARNING
5790 "md: %s already running, cannot run %s\n",
5791 mdname(mddev), bdevname(rdev0->bdev,b));
5792 mddev_unlock(mddev);
5793 } else {
5794 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5795 mddev->persistent = 1;
5796 rdev_for_each_list(rdev, tmp, &candidates) {
5797 list_del_init(&rdev->same_set);
5798 if (bind_rdev_to_array(rdev, mddev))
5799 export_rdev(rdev);
5800 }
5801 autorun_array(mddev);
5802 mddev_unlock(mddev);
5803 }
5804 /* on success, candidates will be empty, on error
5805 * it won't...
5806 */
5807 rdev_for_each_list(rdev, tmp, &candidates) {
5808 list_del_init(&rdev->same_set);
5809 export_rdev(rdev);
5810 }
5811 mddev_put(mddev);
5812 }
5813 printk(KERN_INFO "md: ... autorun DONE.\n");
5814 }
5815 #endif /* !MODULE */
5816
5817 static int get_version(void __user *arg)
5818 {
5819 mdu_version_t ver;
5820
5821 ver.major = MD_MAJOR_VERSION;
5822 ver.minor = MD_MINOR_VERSION;
5823 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5824
5825 if (copy_to_user(arg, &ver, sizeof(ver)))
5826 return -EFAULT;
5827
5828 return 0;
5829 }
5830
5831 static int get_array_info(struct mddev *mddev, void __user *arg)
5832 {
5833 mdu_array_info_t info;
5834 int nr,working,insync,failed,spare;
5835 struct md_rdev *rdev;
5836
5837 nr = working = insync = failed = spare = 0;
5838 rcu_read_lock();
5839 rdev_for_each_rcu(rdev, mddev) {
5840 nr++;
5841 if (test_bit(Faulty, &rdev->flags))
5842 failed++;
5843 else {
5844 working++;
5845 if (test_bit(In_sync, &rdev->flags))
5846 insync++;
5847 else
5848 spare++;
5849 }
5850 }
5851 rcu_read_unlock();
5852
5853 info.major_version = mddev->major_version;
5854 info.minor_version = mddev->minor_version;
5855 info.patch_version = MD_PATCHLEVEL_VERSION;
5856 info.ctime = clamp_t(time64_t, mddev->ctime, 0, U32_MAX);
5857 info.level = mddev->level;
5858 info.size = mddev->dev_sectors / 2;
5859 if (info.size != mddev->dev_sectors / 2) /* overflow */
5860 info.size = -1;
5861 info.nr_disks = nr;
5862 info.raid_disks = mddev->raid_disks;
5863 info.md_minor = mddev->md_minor;
5864 info.not_persistent= !mddev->persistent;
5865
5866 info.utime = clamp_t(time64_t, mddev->utime, 0, U32_MAX);
5867 info.state = 0;
5868 if (mddev->in_sync)
5869 info.state = (1<<MD_SB_CLEAN);
5870 if (mddev->bitmap && mddev->bitmap_info.offset)
5871 info.state |= (1<<MD_SB_BITMAP_PRESENT);
5872 if (mddev_is_clustered(mddev))
5873 info.state |= (1<<MD_SB_CLUSTERED);
5874 info.active_disks = insync;
5875 info.working_disks = working;
5876 info.failed_disks = failed;
5877 info.spare_disks = spare;
5878
5879 info.layout = mddev->layout;
5880 info.chunk_size = mddev->chunk_sectors << 9;
5881
5882 if (copy_to_user(arg, &info, sizeof(info)))
5883 return -EFAULT;
5884
5885 return 0;
5886 }
5887
5888 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5889 {
5890 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5891 char *ptr;
5892 int err;
5893
5894 file = kzalloc(sizeof(*file), GFP_NOIO);
5895 if (!file)
5896 return -ENOMEM;
5897
5898 err = 0;
5899 spin_lock(&mddev->lock);
5900 /* bitmap enabled */
5901 if (mddev->bitmap_info.file) {
5902 ptr = file_path(mddev->bitmap_info.file, file->pathname,
5903 sizeof(file->pathname));
5904 if (IS_ERR(ptr))
5905 err = PTR_ERR(ptr);
5906 else
5907 memmove(file->pathname, ptr,
5908 sizeof(file->pathname)-(ptr-file->pathname));
5909 }
5910 spin_unlock(&mddev->lock);
5911
5912 if (err == 0 &&
5913 copy_to_user(arg, file, sizeof(*file)))
5914 err = -EFAULT;
5915
5916 kfree(file);
5917 return err;
5918 }
5919
5920 static int get_disk_info(struct mddev *mddev, void __user * arg)
5921 {
5922 mdu_disk_info_t info;
5923 struct md_rdev *rdev;
5924
5925 if (copy_from_user(&info, arg, sizeof(info)))
5926 return -EFAULT;
5927
5928 rcu_read_lock();
5929 rdev = md_find_rdev_nr_rcu(mddev, info.number);
5930 if (rdev) {
5931 info.major = MAJOR(rdev->bdev->bd_dev);
5932 info.minor = MINOR(rdev->bdev->bd_dev);
5933 info.raid_disk = rdev->raid_disk;
5934 info.state = 0;
5935 if (test_bit(Faulty, &rdev->flags))
5936 info.state |= (1<<MD_DISK_FAULTY);
5937 else if (test_bit(In_sync, &rdev->flags)) {
5938 info.state |= (1<<MD_DISK_ACTIVE);
5939 info.state |= (1<<MD_DISK_SYNC);
5940 }
5941 if (test_bit(Journal, &rdev->flags))
5942 info.state |= (1<<MD_DISK_JOURNAL);
5943 if (test_bit(WriteMostly, &rdev->flags))
5944 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5945 } else {
5946 info.major = info.minor = 0;
5947 info.raid_disk = -1;
5948 info.state = (1<<MD_DISK_REMOVED);
5949 }
5950 rcu_read_unlock();
5951
5952 if (copy_to_user(arg, &info, sizeof(info)))
5953 return -EFAULT;
5954
5955 return 0;
5956 }
5957
5958 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5959 {
5960 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5961 struct md_rdev *rdev;
5962 dev_t dev = MKDEV(info->major,info->minor);
5963
5964 if (mddev_is_clustered(mddev) &&
5965 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
5966 pr_err("%s: Cannot add to clustered mddev.\n",
5967 mdname(mddev));
5968 return -EINVAL;
5969 }
5970
5971 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5972 return -EOVERFLOW;
5973
5974 if (!mddev->raid_disks) {
5975 int err;
5976 /* expecting a device which has a superblock */
5977 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5978 if (IS_ERR(rdev)) {
5979 printk(KERN_WARNING
5980 "md: md_import_device returned %ld\n",
5981 PTR_ERR(rdev));
5982 return PTR_ERR(rdev);
5983 }
5984 if (!list_empty(&mddev->disks)) {
5985 struct md_rdev *rdev0
5986 = list_entry(mddev->disks.next,
5987 struct md_rdev, same_set);
5988 err = super_types[mddev->major_version]
5989 .load_super(rdev, rdev0, mddev->minor_version);
5990 if (err < 0) {
5991 printk(KERN_WARNING
5992 "md: %s has different UUID to %s\n",
5993 bdevname(rdev->bdev,b),
5994 bdevname(rdev0->bdev,b2));
5995 export_rdev(rdev);
5996 return -EINVAL;
5997 }
5998 }
5999 err = bind_rdev_to_array(rdev, mddev);
6000 if (err)
6001 export_rdev(rdev);
6002 return err;
6003 }
6004
6005 /*
6006 * add_new_disk can be used once the array is assembled
6007 * to add "hot spares". They must already have a superblock
6008 * written
6009 */
6010 if (mddev->pers) {
6011 int err;
6012 if (!mddev->pers->hot_add_disk) {
6013 printk(KERN_WARNING
6014 "%s: personality does not support diskops!\n",
6015 mdname(mddev));
6016 return -EINVAL;
6017 }
6018 if (mddev->persistent)
6019 rdev = md_import_device(dev, mddev->major_version,
6020 mddev->minor_version);
6021 else
6022 rdev = md_import_device(dev, -1, -1);
6023 if (IS_ERR(rdev)) {
6024 printk(KERN_WARNING
6025 "md: md_import_device returned %ld\n",
6026 PTR_ERR(rdev));
6027 return PTR_ERR(rdev);
6028 }
6029 /* set saved_raid_disk if appropriate */
6030 if (!mddev->persistent) {
6031 if (info->state & (1<<MD_DISK_SYNC) &&
6032 info->raid_disk < mddev->raid_disks) {
6033 rdev->raid_disk = info->raid_disk;
6034 set_bit(In_sync, &rdev->flags);
6035 clear_bit(Bitmap_sync, &rdev->flags);
6036 } else
6037 rdev->raid_disk = -1;
6038 rdev->saved_raid_disk = rdev->raid_disk;
6039 } else
6040 super_types[mddev->major_version].
6041 validate_super(mddev, rdev);
6042 if ((info->state & (1<<MD_DISK_SYNC)) &&
6043 rdev->raid_disk != info->raid_disk) {
6044 /* This was a hot-add request, but events doesn't
6045 * match, so reject it.
6046 */
6047 export_rdev(rdev);
6048 return -EINVAL;
6049 }
6050
6051 clear_bit(In_sync, &rdev->flags); /* just to be sure */
6052 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6053 set_bit(WriteMostly, &rdev->flags);
6054 else
6055 clear_bit(WriteMostly, &rdev->flags);
6056
6057 if (info->state & (1<<MD_DISK_JOURNAL)) {
6058 struct md_rdev *rdev2;
6059 bool has_journal = false;
6060
6061 /* make sure no existing journal disk */
6062 rdev_for_each(rdev2, mddev) {
6063 if (test_bit(Journal, &rdev2->flags)) {
6064 has_journal = true;
6065 break;
6066 }
6067 }
6068 if (has_journal) {
6069 export_rdev(rdev);
6070 return -EBUSY;
6071 }
6072 set_bit(Journal, &rdev->flags);
6073 }
6074 /*
6075 * check whether the device shows up in other nodes
6076 */
6077 if (mddev_is_clustered(mddev)) {
6078 if (info->state & (1 << MD_DISK_CANDIDATE))
6079 set_bit(Candidate, &rdev->flags);
6080 else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
6081 /* --add initiated by this node */
6082 err = md_cluster_ops->add_new_disk(mddev, rdev);
6083 if (err) {
6084 export_rdev(rdev);
6085 return err;
6086 }
6087 }
6088 }
6089
6090 rdev->raid_disk = -1;
6091 err = bind_rdev_to_array(rdev, mddev);
6092
6093 if (err)
6094 export_rdev(rdev);
6095
6096 if (mddev_is_clustered(mddev)) {
6097 if (info->state & (1 << MD_DISK_CANDIDATE))
6098 md_cluster_ops->new_disk_ack(mddev, (err == 0));
6099 else {
6100 if (err)
6101 md_cluster_ops->add_new_disk_cancel(mddev);
6102 else
6103 err = add_bound_rdev(rdev);
6104 }
6105
6106 } else if (!err)
6107 err = add_bound_rdev(rdev);
6108
6109 return err;
6110 }
6111
6112 /* otherwise, add_new_disk is only allowed
6113 * for major_version==0 superblocks
6114 */
6115 if (mddev->major_version != 0) {
6116 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
6117 mdname(mddev));
6118 return -EINVAL;
6119 }
6120
6121 if (!(info->state & (1<<MD_DISK_FAULTY))) {
6122 int err;
6123 rdev = md_import_device(dev, -1, 0);
6124 if (IS_ERR(rdev)) {
6125 printk(KERN_WARNING
6126 "md: error, md_import_device() returned %ld\n",
6127 PTR_ERR(rdev));
6128 return PTR_ERR(rdev);
6129 }
6130 rdev->desc_nr = info->number;
6131 if (info->raid_disk < mddev->raid_disks)
6132 rdev->raid_disk = info->raid_disk;
6133 else
6134 rdev->raid_disk = -1;
6135
6136 if (rdev->raid_disk < mddev->raid_disks)
6137 if (info->state & (1<<MD_DISK_SYNC))
6138 set_bit(In_sync, &rdev->flags);
6139
6140 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
6141 set_bit(WriteMostly, &rdev->flags);
6142
6143 if (!mddev->persistent) {
6144 printk(KERN_INFO "md: nonpersistent superblock ...\n");
6145 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6146 } else
6147 rdev->sb_start = calc_dev_sboffset(rdev);
6148 rdev->sectors = rdev->sb_start;
6149
6150 err = bind_rdev_to_array(rdev, mddev);
6151 if (err) {
6152 export_rdev(rdev);
6153 return err;
6154 }
6155 }
6156
6157 return 0;
6158 }
6159
6160 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6161 {
6162 char b[BDEVNAME_SIZE];
6163 struct md_rdev *rdev;
6164
6165 rdev = find_rdev(mddev, dev);
6166 if (!rdev)
6167 return -ENXIO;
6168
6169 if (rdev->raid_disk < 0)
6170 goto kick_rdev;
6171
6172 clear_bit(Blocked, &rdev->flags);
6173 remove_and_add_spares(mddev, rdev);
6174
6175 if (rdev->raid_disk >= 0)
6176 goto busy;
6177
6178 kick_rdev:
6179 if (mddev_is_clustered(mddev))
6180 md_cluster_ops->remove_disk(mddev, rdev);
6181
6182 md_kick_rdev_from_array(rdev);
6183 md_update_sb(mddev, 1);
6184 md_new_event(mddev);
6185
6186 return 0;
6187 busy:
6188 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
6189 bdevname(rdev->bdev,b), mdname(mddev));
6190 return -EBUSY;
6191 }
6192
6193 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6194 {
6195 char b[BDEVNAME_SIZE];
6196 int err;
6197 struct md_rdev *rdev;
6198
6199 if (!mddev->pers)
6200 return -ENODEV;
6201
6202 if (mddev->major_version != 0) {
6203 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
6204 " version-0 superblocks.\n",
6205 mdname(mddev));
6206 return -EINVAL;
6207 }
6208 if (!mddev->pers->hot_add_disk) {
6209 printk(KERN_WARNING
6210 "%s: personality does not support diskops!\n",
6211 mdname(mddev));
6212 return -EINVAL;
6213 }
6214
6215 rdev = md_import_device(dev, -1, 0);
6216 if (IS_ERR(rdev)) {
6217 printk(KERN_WARNING
6218 "md: error, md_import_device() returned %ld\n",
6219 PTR_ERR(rdev));
6220 return -EINVAL;
6221 }
6222
6223 if (mddev->persistent)
6224 rdev->sb_start = calc_dev_sboffset(rdev);
6225 else
6226 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6227
6228 rdev->sectors = rdev->sb_start;
6229
6230 if (test_bit(Faulty, &rdev->flags)) {
6231 printk(KERN_WARNING
6232 "md: can not hot-add faulty %s disk to %s!\n",
6233 bdevname(rdev->bdev,b), mdname(mddev));
6234 err = -EINVAL;
6235 goto abort_export;
6236 }
6237
6238 clear_bit(In_sync, &rdev->flags);
6239 rdev->desc_nr = -1;
6240 rdev->saved_raid_disk = -1;
6241 err = bind_rdev_to_array(rdev, mddev);
6242 if (err)
6243 goto abort_export;
6244
6245 /*
6246 * The rest should better be atomic, we can have disk failures
6247 * noticed in interrupt contexts ...
6248 */
6249
6250 rdev->raid_disk = -1;
6251
6252 md_update_sb(mddev, 1);
6253 /*
6254 * Kick recovery, maybe this spare has to be added to the
6255 * array immediately.
6256 */
6257 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6258 md_wakeup_thread(mddev->thread);
6259 md_new_event(mddev);
6260 return 0;
6261
6262 abort_export:
6263 export_rdev(rdev);
6264 return err;
6265 }
6266
6267 static int set_bitmap_file(struct mddev *mddev, int fd)
6268 {
6269 int err = 0;
6270
6271 if (mddev->pers) {
6272 if (!mddev->pers->quiesce || !mddev->thread)
6273 return -EBUSY;
6274 if (mddev->recovery || mddev->sync_thread)
6275 return -EBUSY;
6276 /* we should be able to change the bitmap.. */
6277 }
6278
6279 if (fd >= 0) {
6280 struct inode *inode;
6281 struct file *f;
6282
6283 if (mddev->bitmap || mddev->bitmap_info.file)
6284 return -EEXIST; /* cannot add when bitmap is present */
6285 f = fget(fd);
6286
6287 if (f == NULL) {
6288 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6289 mdname(mddev));
6290 return -EBADF;
6291 }
6292
6293 inode = f->f_mapping->host;
6294 if (!S_ISREG(inode->i_mode)) {
6295 printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
6296 mdname(mddev));
6297 err = -EBADF;
6298 } else if (!(f->f_mode & FMODE_WRITE)) {
6299 printk(KERN_ERR "%s: error: bitmap file must open for write\n",
6300 mdname(mddev));
6301 err = -EBADF;
6302 } else if (atomic_read(&inode->i_writecount) != 1) {
6303 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6304 mdname(mddev));
6305 err = -EBUSY;
6306 }
6307 if (err) {
6308 fput(f);
6309 return err;
6310 }
6311 mddev->bitmap_info.file = f;
6312 mddev->bitmap_info.offset = 0; /* file overrides offset */
6313 } else if (mddev->bitmap == NULL)
6314 return -ENOENT; /* cannot remove what isn't there */
6315 err = 0;
6316 if (mddev->pers) {
6317 mddev->pers->quiesce(mddev, 1);
6318 if (fd >= 0) {
6319 struct bitmap *bitmap;
6320
6321 bitmap = bitmap_create(mddev, -1);
6322 if (!IS_ERR(bitmap)) {
6323 mddev->bitmap = bitmap;
6324 err = bitmap_load(mddev);
6325 } else
6326 err = PTR_ERR(bitmap);
6327 }
6328 if (fd < 0 || err) {
6329 bitmap_destroy(mddev);
6330 fd = -1; /* make sure to put the file */
6331 }
6332 mddev->pers->quiesce(mddev, 0);
6333 }
6334 if (fd < 0) {
6335 struct file *f = mddev->bitmap_info.file;
6336 if (f) {
6337 spin_lock(&mddev->lock);
6338 mddev->bitmap_info.file = NULL;
6339 spin_unlock(&mddev->lock);
6340 fput(f);
6341 }
6342 }
6343
6344 return err;
6345 }
6346
6347 /*
6348 * set_array_info is used two different ways
6349 * The original usage is when creating a new array.
6350 * In this usage, raid_disks is > 0 and it together with
6351 * level, size, not_persistent,layout,chunksize determine the
6352 * shape of the array.
6353 * This will always create an array with a type-0.90.0 superblock.
6354 * The newer usage is when assembling an array.
6355 * In this case raid_disks will be 0, and the major_version field is
6356 * use to determine which style super-blocks are to be found on the devices.
6357 * The minor and patch _version numbers are also kept incase the
6358 * super_block handler wishes to interpret them.
6359 */
6360 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6361 {
6362
6363 if (info->raid_disks == 0) {
6364 /* just setting version number for superblock loading */
6365 if (info->major_version < 0 ||
6366 info->major_version >= ARRAY_SIZE(super_types) ||
6367 super_types[info->major_version].name == NULL) {
6368 /* maybe try to auto-load a module? */
6369 printk(KERN_INFO
6370 "md: superblock version %d not known\n",
6371 info->major_version);
6372 return -EINVAL;
6373 }
6374 mddev->major_version = info->major_version;
6375 mddev->minor_version = info->minor_version;
6376 mddev->patch_version = info->patch_version;
6377 mddev->persistent = !info->not_persistent;
6378 /* ensure mddev_put doesn't delete this now that there
6379 * is some minimal configuration.
6380 */
6381 mddev->ctime = ktime_get_real_seconds();
6382 return 0;
6383 }
6384 mddev->major_version = MD_MAJOR_VERSION;
6385 mddev->minor_version = MD_MINOR_VERSION;
6386 mddev->patch_version = MD_PATCHLEVEL_VERSION;
6387 mddev->ctime = ktime_get_real_seconds();
6388
6389 mddev->level = info->level;
6390 mddev->clevel[0] = 0;
6391 mddev->dev_sectors = 2 * (sector_t)info->size;
6392 mddev->raid_disks = info->raid_disks;
6393 /* don't set md_minor, it is determined by which /dev/md* was
6394 * openned
6395 */
6396 if (info->state & (1<<MD_SB_CLEAN))
6397 mddev->recovery_cp = MaxSector;
6398 else
6399 mddev->recovery_cp = 0;
6400 mddev->persistent = ! info->not_persistent;
6401 mddev->external = 0;
6402
6403 mddev->layout = info->layout;
6404 mddev->chunk_sectors = info->chunk_size >> 9;
6405
6406 mddev->max_disks = MD_SB_DISKS;
6407
6408 if (mddev->persistent)
6409 mddev->flags = 0;
6410 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6411
6412 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6413 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6414 mddev->bitmap_info.offset = 0;
6415
6416 mddev->reshape_position = MaxSector;
6417
6418 /*
6419 * Generate a 128 bit UUID
6420 */
6421 get_random_bytes(mddev->uuid, 16);
6422
6423 mddev->new_level = mddev->level;
6424 mddev->new_chunk_sectors = mddev->chunk_sectors;
6425 mddev->new_layout = mddev->layout;
6426 mddev->delta_disks = 0;
6427 mddev->reshape_backwards = 0;
6428
6429 return 0;
6430 }
6431
6432 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6433 {
6434 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6435
6436 if (mddev->external_size)
6437 return;
6438
6439 mddev->array_sectors = array_sectors;
6440 }
6441 EXPORT_SYMBOL(md_set_array_sectors);
6442
6443 static int update_size(struct mddev *mddev, sector_t num_sectors)
6444 {
6445 struct md_rdev *rdev;
6446 int rv;
6447 int fit = (num_sectors == 0);
6448
6449 /* cluster raid doesn't support update size */
6450 if (mddev_is_clustered(mddev))
6451 return -EINVAL;
6452
6453 if (mddev->pers->resize == NULL)
6454 return -EINVAL;
6455 /* The "num_sectors" is the number of sectors of each device that
6456 * is used. This can only make sense for arrays with redundancy.
6457 * linear and raid0 always use whatever space is available. We can only
6458 * consider changing this number if no resync or reconstruction is
6459 * happening, and if the new size is acceptable. It must fit before the
6460 * sb_start or, if that is <data_offset, it must fit before the size
6461 * of each device. If num_sectors is zero, we find the largest size
6462 * that fits.
6463 */
6464 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6465 mddev->sync_thread)
6466 return -EBUSY;
6467 if (mddev->ro)
6468 return -EROFS;
6469
6470 rdev_for_each(rdev, mddev) {
6471 sector_t avail = rdev->sectors;
6472
6473 if (fit && (num_sectors == 0 || num_sectors > avail))
6474 num_sectors = avail;
6475 if (avail < num_sectors)
6476 return -ENOSPC;
6477 }
6478 rv = mddev->pers->resize(mddev, num_sectors);
6479 if (!rv)
6480 revalidate_disk(mddev->gendisk);
6481 return rv;
6482 }
6483
6484 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6485 {
6486 int rv;
6487 struct md_rdev *rdev;
6488 /* change the number of raid disks */
6489 if (mddev->pers->check_reshape == NULL)
6490 return -EINVAL;
6491 if (mddev->ro)
6492 return -EROFS;
6493 if (raid_disks <= 0 ||
6494 (mddev->max_disks && raid_disks >= mddev->max_disks))
6495 return -EINVAL;
6496 if (mddev->sync_thread ||
6497 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6498 mddev->reshape_position != MaxSector)
6499 return -EBUSY;
6500
6501 rdev_for_each(rdev, mddev) {
6502 if (mddev->raid_disks < raid_disks &&
6503 rdev->data_offset < rdev->new_data_offset)
6504 return -EINVAL;
6505 if (mddev->raid_disks > raid_disks &&
6506 rdev->data_offset > rdev->new_data_offset)
6507 return -EINVAL;
6508 }
6509
6510 mddev->delta_disks = raid_disks - mddev->raid_disks;
6511 if (mddev->delta_disks < 0)
6512 mddev->reshape_backwards = 1;
6513 else if (mddev->delta_disks > 0)
6514 mddev->reshape_backwards = 0;
6515
6516 rv = mddev->pers->check_reshape(mddev);
6517 if (rv < 0) {
6518 mddev->delta_disks = 0;
6519 mddev->reshape_backwards = 0;
6520 }
6521 return rv;
6522 }
6523
6524 /*
6525 * update_array_info is used to change the configuration of an
6526 * on-line array.
6527 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6528 * fields in the info are checked against the array.
6529 * Any differences that cannot be handled will cause an error.
6530 * Normally, only one change can be managed at a time.
6531 */
6532 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6533 {
6534 int rv = 0;
6535 int cnt = 0;
6536 int state = 0;
6537
6538 /* calculate expected state,ignoring low bits */
6539 if (mddev->bitmap && mddev->bitmap_info.offset)
6540 state |= (1 << MD_SB_BITMAP_PRESENT);
6541
6542 if (mddev->major_version != info->major_version ||
6543 mddev->minor_version != info->minor_version ||
6544 /* mddev->patch_version != info->patch_version || */
6545 mddev->ctime != info->ctime ||
6546 mddev->level != info->level ||
6547 /* mddev->layout != info->layout || */
6548 mddev->persistent != !info->not_persistent ||
6549 mddev->chunk_sectors != info->chunk_size >> 9 ||
6550 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6551 ((state^info->state) & 0xfffffe00)
6552 )
6553 return -EINVAL;
6554 /* Check there is only one change */
6555 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6556 cnt++;
6557 if (mddev->raid_disks != info->raid_disks)
6558 cnt++;
6559 if (mddev->layout != info->layout)
6560 cnt++;
6561 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6562 cnt++;
6563 if (cnt == 0)
6564 return 0;
6565 if (cnt > 1)
6566 return -EINVAL;
6567
6568 if (mddev->layout != info->layout) {
6569 /* Change layout
6570 * we don't need to do anything at the md level, the
6571 * personality will take care of it all.
6572 */
6573 if (mddev->pers->check_reshape == NULL)
6574 return -EINVAL;
6575 else {
6576 mddev->new_layout = info->layout;
6577 rv = mddev->pers->check_reshape(mddev);
6578 if (rv)
6579 mddev->new_layout = mddev->layout;
6580 return rv;
6581 }
6582 }
6583 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6584 rv = update_size(mddev, (sector_t)info->size * 2);
6585
6586 if (mddev->raid_disks != info->raid_disks)
6587 rv = update_raid_disks(mddev, info->raid_disks);
6588
6589 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6590 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6591 rv = -EINVAL;
6592 goto err;
6593 }
6594 if (mddev->recovery || mddev->sync_thread) {
6595 rv = -EBUSY;
6596 goto err;
6597 }
6598 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6599 struct bitmap *bitmap;
6600 /* add the bitmap */
6601 if (mddev->bitmap) {
6602 rv = -EEXIST;
6603 goto err;
6604 }
6605 if (mddev->bitmap_info.default_offset == 0) {
6606 rv = -EINVAL;
6607 goto err;
6608 }
6609 mddev->bitmap_info.offset =
6610 mddev->bitmap_info.default_offset;
6611 mddev->bitmap_info.space =
6612 mddev->bitmap_info.default_space;
6613 mddev->pers->quiesce(mddev, 1);
6614 bitmap = bitmap_create(mddev, -1);
6615 if (!IS_ERR(bitmap)) {
6616 mddev->bitmap = bitmap;
6617 rv = bitmap_load(mddev);
6618 } else
6619 rv = PTR_ERR(bitmap);
6620 if (rv)
6621 bitmap_destroy(mddev);
6622 mddev->pers->quiesce(mddev, 0);
6623 } else {
6624 /* remove the bitmap */
6625 if (!mddev->bitmap) {
6626 rv = -ENOENT;
6627 goto err;
6628 }
6629 if (mddev->bitmap->storage.file) {
6630 rv = -EINVAL;
6631 goto err;
6632 }
6633 if (mddev->bitmap_info.nodes) {
6634 /* hold PW on all the bitmap lock */
6635 if (md_cluster_ops->lock_all_bitmaps(mddev) <= 0) {
6636 printk("md: can't change bitmap to none since the"
6637 " array is in use by more than one node\n");
6638 rv = -EPERM;
6639 md_cluster_ops->unlock_all_bitmaps(mddev);
6640 goto err;
6641 }
6642
6643 mddev->bitmap_info.nodes = 0;
6644 md_cluster_ops->leave(mddev);
6645 }
6646 mddev->pers->quiesce(mddev, 1);
6647 bitmap_destroy(mddev);
6648 mddev->pers->quiesce(mddev, 0);
6649 mddev->bitmap_info.offset = 0;
6650 }
6651 }
6652 md_update_sb(mddev, 1);
6653 return rv;
6654 err:
6655 return rv;
6656 }
6657
6658 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6659 {
6660 struct md_rdev *rdev;
6661 int err = 0;
6662
6663 if (mddev->pers == NULL)
6664 return -ENODEV;
6665
6666 rcu_read_lock();
6667 rdev = find_rdev_rcu(mddev, dev);
6668 if (!rdev)
6669 err = -ENODEV;
6670 else {
6671 md_error(mddev, rdev);
6672 if (!test_bit(Faulty, &rdev->flags))
6673 err = -EBUSY;
6674 }
6675 rcu_read_unlock();
6676 return err;
6677 }
6678
6679 /*
6680 * We have a problem here : there is no easy way to give a CHS
6681 * virtual geometry. We currently pretend that we have a 2 heads
6682 * 4 sectors (with a BIG number of cylinders...). This drives
6683 * dosfs just mad... ;-)
6684 */
6685 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6686 {
6687 struct mddev *mddev = bdev->bd_disk->private_data;
6688
6689 geo->heads = 2;
6690 geo->sectors = 4;
6691 geo->cylinders = mddev->array_sectors / 8;
6692 return 0;
6693 }
6694
6695 static inline bool md_ioctl_valid(unsigned int cmd)
6696 {
6697 switch (cmd) {
6698 case ADD_NEW_DISK:
6699 case BLKROSET:
6700 case GET_ARRAY_INFO:
6701 case GET_BITMAP_FILE:
6702 case GET_DISK_INFO:
6703 case HOT_ADD_DISK:
6704 case HOT_REMOVE_DISK:
6705 case RAID_AUTORUN:
6706 case RAID_VERSION:
6707 case RESTART_ARRAY_RW:
6708 case RUN_ARRAY:
6709 case SET_ARRAY_INFO:
6710 case SET_BITMAP_FILE:
6711 case SET_DISK_FAULTY:
6712 case STOP_ARRAY:
6713 case STOP_ARRAY_RO:
6714 case CLUSTERED_DISK_NACK:
6715 return true;
6716 default:
6717 return false;
6718 }
6719 }
6720
6721 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6722 unsigned int cmd, unsigned long arg)
6723 {
6724 int err = 0;
6725 void __user *argp = (void __user *)arg;
6726 struct mddev *mddev = NULL;
6727 int ro;
6728
6729 if (!md_ioctl_valid(cmd))
6730 return -ENOTTY;
6731
6732 switch (cmd) {
6733 case RAID_VERSION:
6734 case GET_ARRAY_INFO:
6735 case GET_DISK_INFO:
6736 break;
6737 default:
6738 if (!capable(CAP_SYS_ADMIN))
6739 return -EACCES;
6740 }
6741
6742 /*
6743 * Commands dealing with the RAID driver but not any
6744 * particular array:
6745 */
6746 switch (cmd) {
6747 case RAID_VERSION:
6748 err = get_version(argp);
6749 goto out;
6750
6751 #ifndef MODULE
6752 case RAID_AUTORUN:
6753 err = 0;
6754 autostart_arrays(arg);
6755 goto out;
6756 #endif
6757 default:;
6758 }
6759
6760 /*
6761 * Commands creating/starting a new array:
6762 */
6763
6764 mddev = bdev->bd_disk->private_data;
6765
6766 if (!mddev) {
6767 BUG();
6768 goto out;
6769 }
6770
6771 /* Some actions do not requires the mutex */
6772 switch (cmd) {
6773 case GET_ARRAY_INFO:
6774 if (!mddev->raid_disks && !mddev->external)
6775 err = -ENODEV;
6776 else
6777 err = get_array_info(mddev, argp);
6778 goto out;
6779
6780 case GET_DISK_INFO:
6781 if (!mddev->raid_disks && !mddev->external)
6782 err = -ENODEV;
6783 else
6784 err = get_disk_info(mddev, argp);
6785 goto out;
6786
6787 case SET_DISK_FAULTY:
6788 err = set_disk_faulty(mddev, new_decode_dev(arg));
6789 goto out;
6790
6791 case GET_BITMAP_FILE:
6792 err = get_bitmap_file(mddev, argp);
6793 goto out;
6794
6795 }
6796
6797 if (cmd == ADD_NEW_DISK)
6798 /* need to ensure md_delayed_delete() has completed */
6799 flush_workqueue(md_misc_wq);
6800
6801 if (cmd == HOT_REMOVE_DISK)
6802 /* need to ensure recovery thread has run */
6803 wait_event_interruptible_timeout(mddev->sb_wait,
6804 !test_bit(MD_RECOVERY_NEEDED,
6805 &mddev->flags),
6806 msecs_to_jiffies(5000));
6807 if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6808 /* Need to flush page cache, and ensure no-one else opens
6809 * and writes
6810 */
6811 mutex_lock(&mddev->open_mutex);
6812 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6813 mutex_unlock(&mddev->open_mutex);
6814 err = -EBUSY;
6815 goto out;
6816 }
6817 set_bit(MD_STILL_CLOSED, &mddev->flags);
6818 mutex_unlock(&mddev->open_mutex);
6819 sync_blockdev(bdev);
6820 }
6821 err = mddev_lock(mddev);
6822 if (err) {
6823 printk(KERN_INFO
6824 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6825 err, cmd);
6826 goto out;
6827 }
6828
6829 if (cmd == SET_ARRAY_INFO) {
6830 mdu_array_info_t info;
6831 if (!arg)
6832 memset(&info, 0, sizeof(info));
6833 else if (copy_from_user(&info, argp, sizeof(info))) {
6834 err = -EFAULT;
6835 goto unlock;
6836 }
6837 if (mddev->pers) {
6838 err = update_array_info(mddev, &info);
6839 if (err) {
6840 printk(KERN_WARNING "md: couldn't update"
6841 " array info. %d\n", err);
6842 goto unlock;
6843 }
6844 goto unlock;
6845 }
6846 if (!list_empty(&mddev->disks)) {
6847 printk(KERN_WARNING
6848 "md: array %s already has disks!\n",
6849 mdname(mddev));
6850 err = -EBUSY;
6851 goto unlock;
6852 }
6853 if (mddev->raid_disks) {
6854 printk(KERN_WARNING
6855 "md: array %s already initialised!\n",
6856 mdname(mddev));
6857 err = -EBUSY;
6858 goto unlock;
6859 }
6860 err = set_array_info(mddev, &info);
6861 if (err) {
6862 printk(KERN_WARNING "md: couldn't set"
6863 " array info. %d\n", err);
6864 goto unlock;
6865 }
6866 goto unlock;
6867 }
6868
6869 /*
6870 * Commands querying/configuring an existing array:
6871 */
6872 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6873 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6874 if ((!mddev->raid_disks && !mddev->external)
6875 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6876 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6877 && cmd != GET_BITMAP_FILE) {
6878 err = -ENODEV;
6879 goto unlock;
6880 }
6881
6882 /*
6883 * Commands even a read-only array can execute:
6884 */
6885 switch (cmd) {
6886 case RESTART_ARRAY_RW:
6887 err = restart_array(mddev);
6888 goto unlock;
6889
6890 case STOP_ARRAY:
6891 err = do_md_stop(mddev, 0, bdev);
6892 goto unlock;
6893
6894 case STOP_ARRAY_RO:
6895 err = md_set_readonly(mddev, bdev);
6896 goto unlock;
6897
6898 case HOT_REMOVE_DISK:
6899 err = hot_remove_disk(mddev, new_decode_dev(arg));
6900 goto unlock;
6901
6902 case ADD_NEW_DISK:
6903 /* We can support ADD_NEW_DISK on read-only arrays
6904 * only if we are re-adding a preexisting device.
6905 * So require mddev->pers and MD_DISK_SYNC.
6906 */
6907 if (mddev->pers) {
6908 mdu_disk_info_t info;
6909 if (copy_from_user(&info, argp, sizeof(info)))
6910 err = -EFAULT;
6911 else if (!(info.state & (1<<MD_DISK_SYNC)))
6912 /* Need to clear read-only for this */
6913 break;
6914 else
6915 err = add_new_disk(mddev, &info);
6916 goto unlock;
6917 }
6918 break;
6919
6920 case BLKROSET:
6921 if (get_user(ro, (int __user *)(arg))) {
6922 err = -EFAULT;
6923 goto unlock;
6924 }
6925 err = -EINVAL;
6926
6927 /* if the bdev is going readonly the value of mddev->ro
6928 * does not matter, no writes are coming
6929 */
6930 if (ro)
6931 goto unlock;
6932
6933 /* are we are already prepared for writes? */
6934 if (mddev->ro != 1)
6935 goto unlock;
6936
6937 /* transitioning to readauto need only happen for
6938 * arrays that call md_write_start
6939 */
6940 if (mddev->pers) {
6941 err = restart_array(mddev);
6942 if (err == 0) {
6943 mddev->ro = 2;
6944 set_disk_ro(mddev->gendisk, 0);
6945 }
6946 }
6947 goto unlock;
6948 }
6949
6950 /*
6951 * The remaining ioctls are changing the state of the
6952 * superblock, so we do not allow them on read-only arrays.
6953 */
6954 if (mddev->ro && mddev->pers) {
6955 if (mddev->ro == 2) {
6956 mddev->ro = 0;
6957 sysfs_notify_dirent_safe(mddev->sysfs_state);
6958 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6959 /* mddev_unlock will wake thread */
6960 /* If a device failed while we were read-only, we
6961 * need to make sure the metadata is updated now.
6962 */
6963 if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6964 mddev_unlock(mddev);
6965 wait_event(mddev->sb_wait,
6966 !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6967 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6968 mddev_lock_nointr(mddev);
6969 }
6970 } else {
6971 err = -EROFS;
6972 goto unlock;
6973 }
6974 }
6975
6976 switch (cmd) {
6977 case ADD_NEW_DISK:
6978 {
6979 mdu_disk_info_t info;
6980 if (copy_from_user(&info, argp, sizeof(info)))
6981 err = -EFAULT;
6982 else
6983 err = add_new_disk(mddev, &info);
6984 goto unlock;
6985 }
6986
6987 case CLUSTERED_DISK_NACK:
6988 if (mddev_is_clustered(mddev))
6989 md_cluster_ops->new_disk_ack(mddev, false);
6990 else
6991 err = -EINVAL;
6992 goto unlock;
6993
6994 case HOT_ADD_DISK:
6995 err = hot_add_disk(mddev, new_decode_dev(arg));
6996 goto unlock;
6997
6998 case RUN_ARRAY:
6999 err = do_md_run(mddev);
7000 goto unlock;
7001
7002 case SET_BITMAP_FILE:
7003 err = set_bitmap_file(mddev, (int)arg);
7004 goto unlock;
7005
7006 default:
7007 err = -EINVAL;
7008 goto unlock;
7009 }
7010
7011 unlock:
7012 if (mddev->hold_active == UNTIL_IOCTL &&
7013 err != -EINVAL)
7014 mddev->hold_active = 0;
7015 mddev_unlock(mddev);
7016 out:
7017 return err;
7018 }
7019 #ifdef CONFIG_COMPAT
7020 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
7021 unsigned int cmd, unsigned long arg)
7022 {
7023 switch (cmd) {
7024 case HOT_REMOVE_DISK:
7025 case HOT_ADD_DISK:
7026 case SET_DISK_FAULTY:
7027 case SET_BITMAP_FILE:
7028 /* These take in integer arg, do not convert */
7029 break;
7030 default:
7031 arg = (unsigned long)compat_ptr(arg);
7032 break;
7033 }
7034
7035 return md_ioctl(bdev, mode, cmd, arg);
7036 }
7037 #endif /* CONFIG_COMPAT */
7038
7039 static int md_open(struct block_device *bdev, fmode_t mode)
7040 {
7041 /*
7042 * Succeed if we can lock the mddev, which confirms that
7043 * it isn't being stopped right now.
7044 */
7045 struct mddev *mddev = mddev_find(bdev->bd_dev);
7046 int err;
7047
7048 if (!mddev)
7049 return -ENODEV;
7050
7051 if (mddev->gendisk != bdev->bd_disk) {
7052 /* we are racing with mddev_put which is discarding this
7053 * bd_disk.
7054 */
7055 mddev_put(mddev);
7056 /* Wait until bdev->bd_disk is definitely gone */
7057 flush_workqueue(md_misc_wq);
7058 /* Then retry the open from the top */
7059 return -ERESTARTSYS;
7060 }
7061 BUG_ON(mddev != bdev->bd_disk->private_data);
7062
7063 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
7064 goto out;
7065
7066 err = 0;
7067 atomic_inc(&mddev->openers);
7068 clear_bit(MD_STILL_CLOSED, &mddev->flags);
7069 mutex_unlock(&mddev->open_mutex);
7070
7071 check_disk_change(bdev);
7072 out:
7073 return err;
7074 }
7075
7076 static void md_release(struct gendisk *disk, fmode_t mode)
7077 {
7078 struct mddev *mddev = disk->private_data;
7079
7080 BUG_ON(!mddev);
7081 atomic_dec(&mddev->openers);
7082 mddev_put(mddev);
7083 }
7084
7085 static int md_media_changed(struct gendisk *disk)
7086 {
7087 struct mddev *mddev = disk->private_data;
7088
7089 return mddev->changed;
7090 }
7091
7092 static int md_revalidate(struct gendisk *disk)
7093 {
7094 struct mddev *mddev = disk->private_data;
7095
7096 mddev->changed = 0;
7097 return 0;
7098 }
7099 static const struct block_device_operations md_fops =
7100 {
7101 .owner = THIS_MODULE,
7102 .open = md_open,
7103 .release = md_release,
7104 .ioctl = md_ioctl,
7105 #ifdef CONFIG_COMPAT
7106 .compat_ioctl = md_compat_ioctl,
7107 #endif
7108 .getgeo = md_getgeo,
7109 .media_changed = md_media_changed,
7110 .revalidate_disk= md_revalidate,
7111 };
7112
7113 static int md_thread(void *arg)
7114 {
7115 struct md_thread *thread = arg;
7116
7117 /*
7118 * md_thread is a 'system-thread', it's priority should be very
7119 * high. We avoid resource deadlocks individually in each
7120 * raid personality. (RAID5 does preallocation) We also use RR and
7121 * the very same RT priority as kswapd, thus we will never get
7122 * into a priority inversion deadlock.
7123 *
7124 * we definitely have to have equal or higher priority than
7125 * bdflush, otherwise bdflush will deadlock if there are too
7126 * many dirty RAID5 blocks.
7127 */
7128
7129 allow_signal(SIGKILL);
7130 while (!kthread_should_stop()) {
7131
7132 /* We need to wait INTERRUPTIBLE so that
7133 * we don't add to the load-average.
7134 * That means we need to be sure no signals are
7135 * pending
7136 */
7137 if (signal_pending(current))
7138 flush_signals(current);
7139
7140 wait_event_interruptible_timeout
7141 (thread->wqueue,
7142 test_bit(THREAD_WAKEUP, &thread->flags)
7143 || kthread_should_stop(),
7144 thread->timeout);
7145
7146 clear_bit(THREAD_WAKEUP, &thread->flags);
7147 if (!kthread_should_stop())
7148 thread->run(thread);
7149 }
7150
7151 return 0;
7152 }
7153
7154 void md_wakeup_thread(struct md_thread *thread)
7155 {
7156 if (thread) {
7157 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7158 set_bit(THREAD_WAKEUP, &thread->flags);
7159 wake_up(&thread->wqueue);
7160 }
7161 }
7162 EXPORT_SYMBOL(md_wakeup_thread);
7163
7164 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7165 struct mddev *mddev, const char *name)
7166 {
7167 struct md_thread *thread;
7168
7169 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7170 if (!thread)
7171 return NULL;
7172
7173 init_waitqueue_head(&thread->wqueue);
7174
7175 thread->run = run;
7176 thread->mddev = mddev;
7177 thread->timeout = MAX_SCHEDULE_TIMEOUT;
7178 thread->tsk = kthread_run(md_thread, thread,
7179 "%s_%s",
7180 mdname(thread->mddev),
7181 name);
7182 if (IS_ERR(thread->tsk)) {
7183 kfree(thread);
7184 return NULL;
7185 }
7186 return thread;
7187 }
7188 EXPORT_SYMBOL(md_register_thread);
7189
7190 void md_unregister_thread(struct md_thread **threadp)
7191 {
7192 struct md_thread *thread = *threadp;
7193 if (!thread)
7194 return;
7195 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7196 /* Locking ensures that mddev_unlock does not wake_up a
7197 * non-existent thread
7198 */
7199 spin_lock(&pers_lock);
7200 *threadp = NULL;
7201 spin_unlock(&pers_lock);
7202
7203 kthread_stop(thread->tsk);
7204 kfree(thread);
7205 }
7206 EXPORT_SYMBOL(md_unregister_thread);
7207
7208 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7209 {
7210 if (!rdev || test_bit(Faulty, &rdev->flags))
7211 return;
7212
7213 if (!mddev->pers || !mddev->pers->error_handler)
7214 return;
7215 mddev->pers->error_handler(mddev,rdev);
7216 if (mddev->degraded)
7217 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7218 sysfs_notify_dirent_safe(rdev->sysfs_state);
7219 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7220 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7221 md_wakeup_thread(mddev->thread);
7222 if (mddev->event_work.func)
7223 queue_work(md_misc_wq, &mddev->event_work);
7224 md_new_event(mddev);
7225 }
7226 EXPORT_SYMBOL(md_error);
7227
7228 /* seq_file implementation /proc/mdstat */
7229
7230 static void status_unused(struct seq_file *seq)
7231 {
7232 int i = 0;
7233 struct md_rdev *rdev;
7234
7235 seq_printf(seq, "unused devices: ");
7236
7237 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7238 char b[BDEVNAME_SIZE];
7239 i++;
7240 seq_printf(seq, "%s ",
7241 bdevname(rdev->bdev,b));
7242 }
7243 if (!i)
7244 seq_printf(seq, "<none>");
7245
7246 seq_printf(seq, "\n");
7247 }
7248
7249 static int status_resync(struct seq_file *seq, struct mddev *mddev)
7250 {
7251 sector_t max_sectors, resync, res;
7252 unsigned long dt, db;
7253 sector_t rt;
7254 int scale;
7255 unsigned int per_milli;
7256
7257 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7258 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7259 max_sectors = mddev->resync_max_sectors;
7260 else
7261 max_sectors = mddev->dev_sectors;
7262
7263 resync = mddev->curr_resync;
7264 if (resync <= 3) {
7265 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7266 /* Still cleaning up */
7267 resync = max_sectors;
7268 } else
7269 resync -= atomic_read(&mddev->recovery_active);
7270
7271 if (resync == 0) {
7272 if (mddev->recovery_cp < MaxSector) {
7273 seq_printf(seq, "\tresync=PENDING");
7274 return 1;
7275 }
7276 return 0;
7277 }
7278 if (resync < 3) {
7279 seq_printf(seq, "\tresync=DELAYED");
7280 return 1;
7281 }
7282
7283 WARN_ON(max_sectors == 0);
7284 /* Pick 'scale' such that (resync>>scale)*1000 will fit
7285 * in a sector_t, and (max_sectors>>scale) will fit in a
7286 * u32, as those are the requirements for sector_div.
7287 * Thus 'scale' must be at least 10
7288 */
7289 scale = 10;
7290 if (sizeof(sector_t) > sizeof(unsigned long)) {
7291 while ( max_sectors/2 > (1ULL<<(scale+32)))
7292 scale++;
7293 }
7294 res = (resync>>scale)*1000;
7295 sector_div(res, (u32)((max_sectors>>scale)+1));
7296
7297 per_milli = res;
7298 {
7299 int i, x = per_milli/50, y = 20-x;
7300 seq_printf(seq, "[");
7301 for (i = 0; i < x; i++)
7302 seq_printf(seq, "=");
7303 seq_printf(seq, ">");
7304 for (i = 0; i < y; i++)
7305 seq_printf(seq, ".");
7306 seq_printf(seq, "] ");
7307 }
7308 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7309 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7310 "reshape" :
7311 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7312 "check" :
7313 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7314 "resync" : "recovery"))),
7315 per_milli/10, per_milli % 10,
7316 (unsigned long long) resync/2,
7317 (unsigned long long) max_sectors/2);
7318
7319 /*
7320 * dt: time from mark until now
7321 * db: blocks written from mark until now
7322 * rt: remaining time
7323 *
7324 * rt is a sector_t, so could be 32bit or 64bit.
7325 * So we divide before multiply in case it is 32bit and close
7326 * to the limit.
7327 * We scale the divisor (db) by 32 to avoid losing precision
7328 * near the end of resync when the number of remaining sectors
7329 * is close to 'db'.
7330 * We then divide rt by 32 after multiplying by db to compensate.
7331 * The '+1' avoids division by zero if db is very small.
7332 */
7333 dt = ((jiffies - mddev->resync_mark) / HZ);
7334 if (!dt) dt++;
7335 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
7336 - mddev->resync_mark_cnt;
7337
7338 rt = max_sectors - resync; /* number of remaining sectors */
7339 sector_div(rt, db/32+1);
7340 rt *= dt;
7341 rt >>= 5;
7342
7343 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7344 ((unsigned long)rt % 60)/6);
7345
7346 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7347 return 1;
7348 }
7349
7350 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7351 {
7352 struct list_head *tmp;
7353 loff_t l = *pos;
7354 struct mddev *mddev;
7355
7356 if (l >= 0x10000)
7357 return NULL;
7358 if (!l--)
7359 /* header */
7360 return (void*)1;
7361
7362 spin_lock(&all_mddevs_lock);
7363 list_for_each(tmp,&all_mddevs)
7364 if (!l--) {
7365 mddev = list_entry(tmp, struct mddev, all_mddevs);
7366 mddev_get(mddev);
7367 spin_unlock(&all_mddevs_lock);
7368 return mddev;
7369 }
7370 spin_unlock(&all_mddevs_lock);
7371 if (!l--)
7372 return (void*)2;/* tail */
7373 return NULL;
7374 }
7375
7376 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7377 {
7378 struct list_head *tmp;
7379 struct mddev *next_mddev, *mddev = v;
7380
7381 ++*pos;
7382 if (v == (void*)2)
7383 return NULL;
7384
7385 spin_lock(&all_mddevs_lock);
7386 if (v == (void*)1)
7387 tmp = all_mddevs.next;
7388 else
7389 tmp = mddev->all_mddevs.next;
7390 if (tmp != &all_mddevs)
7391 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7392 else {
7393 next_mddev = (void*)2;
7394 *pos = 0x10000;
7395 }
7396 spin_unlock(&all_mddevs_lock);
7397
7398 if (v != (void*)1)
7399 mddev_put(mddev);
7400 return next_mddev;
7401
7402 }
7403
7404 static void md_seq_stop(struct seq_file *seq, void *v)
7405 {
7406 struct mddev *mddev = v;
7407
7408 if (mddev && v != (void*)1 && v != (void*)2)
7409 mddev_put(mddev);
7410 }
7411
7412 static int md_seq_show(struct seq_file *seq, void *v)
7413 {
7414 struct mddev *mddev = v;
7415 sector_t sectors;
7416 struct md_rdev *rdev;
7417
7418 if (v == (void*)1) {
7419 struct md_personality *pers;
7420 seq_printf(seq, "Personalities : ");
7421 spin_lock(&pers_lock);
7422 list_for_each_entry(pers, &pers_list, list)
7423 seq_printf(seq, "[%s] ", pers->name);
7424
7425 spin_unlock(&pers_lock);
7426 seq_printf(seq, "\n");
7427 seq->poll_event = atomic_read(&md_event_count);
7428 return 0;
7429 }
7430 if (v == (void*)2) {
7431 status_unused(seq);
7432 return 0;
7433 }
7434
7435 spin_lock(&mddev->lock);
7436 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7437 seq_printf(seq, "%s : %sactive", mdname(mddev),
7438 mddev->pers ? "" : "in");
7439 if (mddev->pers) {
7440 if (mddev->ro==1)
7441 seq_printf(seq, " (read-only)");
7442 if (mddev->ro==2)
7443 seq_printf(seq, " (auto-read-only)");
7444 seq_printf(seq, " %s", mddev->pers->name);
7445 }
7446
7447 sectors = 0;
7448 rcu_read_lock();
7449 rdev_for_each_rcu(rdev, mddev) {
7450 char b[BDEVNAME_SIZE];
7451 seq_printf(seq, " %s[%d]",
7452 bdevname(rdev->bdev,b), rdev->desc_nr);
7453 if (test_bit(WriteMostly, &rdev->flags))
7454 seq_printf(seq, "(W)");
7455 if (test_bit(Journal, &rdev->flags))
7456 seq_printf(seq, "(J)");
7457 if (test_bit(Faulty, &rdev->flags)) {
7458 seq_printf(seq, "(F)");
7459 continue;
7460 }
7461 if (rdev->raid_disk < 0)
7462 seq_printf(seq, "(S)"); /* spare */
7463 if (test_bit(Replacement, &rdev->flags))
7464 seq_printf(seq, "(R)");
7465 sectors += rdev->sectors;
7466 }
7467 rcu_read_unlock();
7468
7469 if (!list_empty(&mddev->disks)) {
7470 if (mddev->pers)
7471 seq_printf(seq, "\n %llu blocks",
7472 (unsigned long long)
7473 mddev->array_sectors / 2);
7474 else
7475 seq_printf(seq, "\n %llu blocks",
7476 (unsigned long long)sectors / 2);
7477 }
7478 if (mddev->persistent) {
7479 if (mddev->major_version != 0 ||
7480 mddev->minor_version != 90) {
7481 seq_printf(seq," super %d.%d",
7482 mddev->major_version,
7483 mddev->minor_version);
7484 }
7485 } else if (mddev->external)
7486 seq_printf(seq, " super external:%s",
7487 mddev->metadata_type);
7488 else
7489 seq_printf(seq, " super non-persistent");
7490
7491 if (mddev->pers) {
7492 mddev->pers->status(seq, mddev);
7493 seq_printf(seq, "\n ");
7494 if (mddev->pers->sync_request) {
7495 if (status_resync(seq, mddev))
7496 seq_printf(seq, "\n ");
7497 }
7498 } else
7499 seq_printf(seq, "\n ");
7500
7501 bitmap_status(seq, mddev->bitmap);
7502
7503 seq_printf(seq, "\n");
7504 }
7505 spin_unlock(&mddev->lock);
7506
7507 return 0;
7508 }
7509
7510 static const struct seq_operations md_seq_ops = {
7511 .start = md_seq_start,
7512 .next = md_seq_next,
7513 .stop = md_seq_stop,
7514 .show = md_seq_show,
7515 };
7516
7517 static int md_seq_open(struct inode *inode, struct file *file)
7518 {
7519 struct seq_file *seq;
7520 int error;
7521
7522 error = seq_open(file, &md_seq_ops);
7523 if (error)
7524 return error;
7525
7526 seq = file->private_data;
7527 seq->poll_event = atomic_read(&md_event_count);
7528 return error;
7529 }
7530
7531 static int md_unloading;
7532 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7533 {
7534 struct seq_file *seq = filp->private_data;
7535 int mask;
7536
7537 if (md_unloading)
7538 return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7539 poll_wait(filp, &md_event_waiters, wait);
7540
7541 /* always allow read */
7542 mask = POLLIN | POLLRDNORM;
7543
7544 if (seq->poll_event != atomic_read(&md_event_count))
7545 mask |= POLLERR | POLLPRI;
7546 return mask;
7547 }
7548
7549 static const struct file_operations md_seq_fops = {
7550 .owner = THIS_MODULE,
7551 .open = md_seq_open,
7552 .read = seq_read,
7553 .llseek = seq_lseek,
7554 .release = seq_release_private,
7555 .poll = mdstat_poll,
7556 };
7557
7558 int register_md_personality(struct md_personality *p)
7559 {
7560 printk(KERN_INFO "md: %s personality registered for level %d\n",
7561 p->name, p->level);
7562 spin_lock(&pers_lock);
7563 list_add_tail(&p->list, &pers_list);
7564 spin_unlock(&pers_lock);
7565 return 0;
7566 }
7567 EXPORT_SYMBOL(register_md_personality);
7568
7569 int unregister_md_personality(struct md_personality *p)
7570 {
7571 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7572 spin_lock(&pers_lock);
7573 list_del_init(&p->list);
7574 spin_unlock(&pers_lock);
7575 return 0;
7576 }
7577 EXPORT_SYMBOL(unregister_md_personality);
7578
7579 int register_md_cluster_operations(struct md_cluster_operations *ops,
7580 struct module *module)
7581 {
7582 int ret = 0;
7583 spin_lock(&pers_lock);
7584 if (md_cluster_ops != NULL)
7585 ret = -EALREADY;
7586 else {
7587 md_cluster_ops = ops;
7588 md_cluster_mod = module;
7589 }
7590 spin_unlock(&pers_lock);
7591 return ret;
7592 }
7593 EXPORT_SYMBOL(register_md_cluster_operations);
7594
7595 int unregister_md_cluster_operations(void)
7596 {
7597 spin_lock(&pers_lock);
7598 md_cluster_ops = NULL;
7599 spin_unlock(&pers_lock);
7600 return 0;
7601 }
7602 EXPORT_SYMBOL(unregister_md_cluster_operations);
7603
7604 int md_setup_cluster(struct mddev *mddev, int nodes)
7605 {
7606 int err;
7607
7608 err = request_module("md-cluster");
7609 if (err) {
7610 pr_err("md-cluster module not found.\n");
7611 return -ENOENT;
7612 }
7613
7614 spin_lock(&pers_lock);
7615 if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7616 spin_unlock(&pers_lock);
7617 return -ENOENT;
7618 }
7619 spin_unlock(&pers_lock);
7620
7621 return md_cluster_ops->join(mddev, nodes);
7622 }
7623
7624 void md_cluster_stop(struct mddev *mddev)
7625 {
7626 if (!md_cluster_ops)
7627 return;
7628 md_cluster_ops->leave(mddev);
7629 module_put(md_cluster_mod);
7630 }
7631
7632 static int is_mddev_idle(struct mddev *mddev, int init)
7633 {
7634 struct md_rdev *rdev;
7635 int idle;
7636 int curr_events;
7637
7638 idle = 1;
7639 rcu_read_lock();
7640 rdev_for_each_rcu(rdev, mddev) {
7641 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7642 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7643 (int)part_stat_read(&disk->part0, sectors[1]) -
7644 atomic_read(&disk->sync_io);
7645 /* sync IO will cause sync_io to increase before the disk_stats
7646 * as sync_io is counted when a request starts, and
7647 * disk_stats is counted when it completes.
7648 * So resync activity will cause curr_events to be smaller than
7649 * when there was no such activity.
7650 * non-sync IO will cause disk_stat to increase without
7651 * increasing sync_io so curr_events will (eventually)
7652 * be larger than it was before. Once it becomes
7653 * substantially larger, the test below will cause
7654 * the array to appear non-idle, and resync will slow
7655 * down.
7656 * If there is a lot of outstanding resync activity when
7657 * we set last_event to curr_events, then all that activity
7658 * completing might cause the array to appear non-idle
7659 * and resync will be slowed down even though there might
7660 * not have been non-resync activity. This will only
7661 * happen once though. 'last_events' will soon reflect
7662 * the state where there is little or no outstanding
7663 * resync requests, and further resync activity will
7664 * always make curr_events less than last_events.
7665 *
7666 */
7667 if (init || curr_events - rdev->last_events > 64) {
7668 rdev->last_events = curr_events;
7669 idle = 0;
7670 }
7671 }
7672 rcu_read_unlock();
7673 return idle;
7674 }
7675
7676 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7677 {
7678 /* another "blocks" (512byte) blocks have been synced */
7679 atomic_sub(blocks, &mddev->recovery_active);
7680 wake_up(&mddev->recovery_wait);
7681 if (!ok) {
7682 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7683 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7684 md_wakeup_thread(mddev->thread);
7685 // stop recovery, signal do_sync ....
7686 }
7687 }
7688 EXPORT_SYMBOL(md_done_sync);
7689
7690 /* md_write_start(mddev, bi)
7691 * If we need to update some array metadata (e.g. 'active' flag
7692 * in superblock) before writing, schedule a superblock update
7693 * and wait for it to complete.
7694 */
7695 void md_write_start(struct mddev *mddev, struct bio *bi)
7696 {
7697 int did_change = 0;
7698 if (bio_data_dir(bi) != WRITE)
7699 return;
7700
7701 BUG_ON(mddev->ro == 1);
7702 if (mddev->ro == 2) {
7703 /* need to switch to read/write */
7704 mddev->ro = 0;
7705 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7706 md_wakeup_thread(mddev->thread);
7707 md_wakeup_thread(mddev->sync_thread);
7708 did_change = 1;
7709 }
7710 atomic_inc(&mddev->writes_pending);
7711 if (mddev->safemode == 1)
7712 mddev->safemode = 0;
7713 if (mddev->in_sync) {
7714 spin_lock(&mddev->lock);
7715 if (mddev->in_sync) {
7716 mddev->in_sync = 0;
7717 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7718 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7719 md_wakeup_thread(mddev->thread);
7720 did_change = 1;
7721 }
7722 spin_unlock(&mddev->lock);
7723 }
7724 if (did_change)
7725 sysfs_notify_dirent_safe(mddev->sysfs_state);
7726 wait_event(mddev->sb_wait,
7727 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7728 }
7729 EXPORT_SYMBOL(md_write_start);
7730
7731 void md_write_end(struct mddev *mddev)
7732 {
7733 if (atomic_dec_and_test(&mddev->writes_pending)) {
7734 if (mddev->safemode == 2)
7735 md_wakeup_thread(mddev->thread);
7736 else if (mddev->safemode_delay)
7737 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7738 }
7739 }
7740 EXPORT_SYMBOL(md_write_end);
7741
7742 /* md_allow_write(mddev)
7743 * Calling this ensures that the array is marked 'active' so that writes
7744 * may proceed without blocking. It is important to call this before
7745 * attempting a GFP_KERNEL allocation while holding the mddev lock.
7746 * Must be called with mddev_lock held.
7747 *
7748 * In the ->external case MD_CHANGE_PENDING can not be cleared until mddev->lock
7749 * is dropped, so return -EAGAIN after notifying userspace.
7750 */
7751 int md_allow_write(struct mddev *mddev)
7752 {
7753 if (!mddev->pers)
7754 return 0;
7755 if (mddev->ro)
7756 return 0;
7757 if (!mddev->pers->sync_request)
7758 return 0;
7759
7760 spin_lock(&mddev->lock);
7761 if (mddev->in_sync) {
7762 mddev->in_sync = 0;
7763 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7764 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7765 if (mddev->safemode_delay &&
7766 mddev->safemode == 0)
7767 mddev->safemode = 1;
7768 spin_unlock(&mddev->lock);
7769 md_update_sb(mddev, 0);
7770 sysfs_notify_dirent_safe(mddev->sysfs_state);
7771 } else
7772 spin_unlock(&mddev->lock);
7773
7774 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7775 return -EAGAIN;
7776 else
7777 return 0;
7778 }
7779 EXPORT_SYMBOL_GPL(md_allow_write);
7780
7781 #define SYNC_MARKS 10
7782 #define SYNC_MARK_STEP (3*HZ)
7783 #define UPDATE_FREQUENCY (5*60*HZ)
7784 void md_do_sync(struct md_thread *thread)
7785 {
7786 struct mddev *mddev = thread->mddev;
7787 struct mddev *mddev2;
7788 unsigned int currspeed = 0,
7789 window;
7790 sector_t max_sectors,j, io_sectors, recovery_done;
7791 unsigned long mark[SYNC_MARKS];
7792 unsigned long update_time;
7793 sector_t mark_cnt[SYNC_MARKS];
7794 int last_mark,m;
7795 struct list_head *tmp;
7796 sector_t last_check;
7797 int skipped = 0;
7798 struct md_rdev *rdev;
7799 char *desc, *action = NULL;
7800 struct blk_plug plug;
7801 int ret;
7802
7803 /* just incase thread restarts... */
7804 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7805 return;
7806 if (mddev->ro) {/* never try to sync a read-only array */
7807 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7808 return;
7809 }
7810
7811 if (mddev_is_clustered(mddev)) {
7812 ret = md_cluster_ops->resync_start(mddev);
7813 if (ret)
7814 goto skip;
7815
7816 if (!(test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7817 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) ||
7818 test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
7819 && ((unsigned long long)mddev->curr_resync_completed
7820 < (unsigned long long)mddev->resync_max_sectors))
7821 goto skip;
7822 }
7823
7824 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7825 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7826 desc = "data-check";
7827 action = "check";
7828 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7829 desc = "requested-resync";
7830 action = "repair";
7831 } else
7832 desc = "resync";
7833 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7834 desc = "reshape";
7835 else
7836 desc = "recovery";
7837
7838 mddev->last_sync_action = action ?: desc;
7839
7840 /* we overload curr_resync somewhat here.
7841 * 0 == not engaged in resync at all
7842 * 2 == checking that there is no conflict with another sync
7843 * 1 == like 2, but have yielded to allow conflicting resync to
7844 * commense
7845 * other == active in resync - this many blocks
7846 *
7847 * Before starting a resync we must have set curr_resync to
7848 * 2, and then checked that every "conflicting" array has curr_resync
7849 * less than ours. When we find one that is the same or higher
7850 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7851 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7852 * This will mean we have to start checking from the beginning again.
7853 *
7854 */
7855
7856 do {
7857 mddev->curr_resync = 2;
7858
7859 try_again:
7860 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7861 goto skip;
7862 for_each_mddev(mddev2, tmp) {
7863 if (mddev2 == mddev)
7864 continue;
7865 if (!mddev->parallel_resync
7866 && mddev2->curr_resync
7867 && match_mddev_units(mddev, mddev2)) {
7868 DEFINE_WAIT(wq);
7869 if (mddev < mddev2 && mddev->curr_resync == 2) {
7870 /* arbitrarily yield */
7871 mddev->curr_resync = 1;
7872 wake_up(&resync_wait);
7873 }
7874 if (mddev > mddev2 && mddev->curr_resync == 1)
7875 /* no need to wait here, we can wait the next
7876 * time 'round when curr_resync == 2
7877 */
7878 continue;
7879 /* We need to wait 'interruptible' so as not to
7880 * contribute to the load average, and not to
7881 * be caught by 'softlockup'
7882 */
7883 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7884 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7885 mddev2->curr_resync >= mddev->curr_resync) {
7886 printk(KERN_INFO "md: delaying %s of %s"
7887 " until %s has finished (they"
7888 " share one or more physical units)\n",
7889 desc, mdname(mddev), mdname(mddev2));
7890 mddev_put(mddev2);
7891 if (signal_pending(current))
7892 flush_signals(current);
7893 schedule();
7894 finish_wait(&resync_wait, &wq);
7895 goto try_again;
7896 }
7897 finish_wait(&resync_wait, &wq);
7898 }
7899 }
7900 } while (mddev->curr_resync < 2);
7901
7902 j = 0;
7903 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7904 /* resync follows the size requested by the personality,
7905 * which defaults to physical size, but can be virtual size
7906 */
7907 max_sectors = mddev->resync_max_sectors;
7908 atomic64_set(&mddev->resync_mismatches, 0);
7909 /* we don't use the checkpoint if there's a bitmap */
7910 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7911 j = mddev->resync_min;
7912 else if (!mddev->bitmap)
7913 j = mddev->recovery_cp;
7914
7915 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7916 max_sectors = mddev->resync_max_sectors;
7917 else {
7918 /* recovery follows the physical size of devices */
7919 max_sectors = mddev->dev_sectors;
7920 j = MaxSector;
7921 rcu_read_lock();
7922 rdev_for_each_rcu(rdev, mddev)
7923 if (rdev->raid_disk >= 0 &&
7924 !test_bit(Journal, &rdev->flags) &&
7925 !test_bit(Faulty, &rdev->flags) &&
7926 !test_bit(In_sync, &rdev->flags) &&
7927 rdev->recovery_offset < j)
7928 j = rdev->recovery_offset;
7929 rcu_read_unlock();
7930
7931 /* If there is a bitmap, we need to make sure all
7932 * writes that started before we added a spare
7933 * complete before we start doing a recovery.
7934 * Otherwise the write might complete and (via
7935 * bitmap_endwrite) set a bit in the bitmap after the
7936 * recovery has checked that bit and skipped that
7937 * region.
7938 */
7939 if (mddev->bitmap) {
7940 mddev->pers->quiesce(mddev, 1);
7941 mddev->pers->quiesce(mddev, 0);
7942 }
7943 }
7944
7945 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7946 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7947 " %d KB/sec/disk.\n", speed_min(mddev));
7948 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7949 "(but not more than %d KB/sec) for %s.\n",
7950 speed_max(mddev), desc);
7951
7952 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7953
7954 io_sectors = 0;
7955 for (m = 0; m < SYNC_MARKS; m++) {
7956 mark[m] = jiffies;
7957 mark_cnt[m] = io_sectors;
7958 }
7959 last_mark = 0;
7960 mddev->resync_mark = mark[last_mark];
7961 mddev->resync_mark_cnt = mark_cnt[last_mark];
7962
7963 /*
7964 * Tune reconstruction:
7965 */
7966 window = 32*(PAGE_SIZE/512);
7967 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7968 window/2, (unsigned long long)max_sectors/2);
7969
7970 atomic_set(&mddev->recovery_active, 0);
7971 last_check = 0;
7972
7973 if (j>2) {
7974 printk(KERN_INFO
7975 "md: resuming %s of %s from checkpoint.\n",
7976 desc, mdname(mddev));
7977 mddev->curr_resync = j;
7978 } else
7979 mddev->curr_resync = 3; /* no longer delayed */
7980 mddev->curr_resync_completed = j;
7981 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7982 md_new_event(mddev);
7983 update_time = jiffies;
7984
7985 blk_start_plug(&plug);
7986 while (j < max_sectors) {
7987 sector_t sectors;
7988
7989 skipped = 0;
7990
7991 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7992 ((mddev->curr_resync > mddev->curr_resync_completed &&
7993 (mddev->curr_resync - mddev->curr_resync_completed)
7994 > (max_sectors >> 4)) ||
7995 time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7996 (j - mddev->curr_resync_completed)*2
7997 >= mddev->resync_max - mddev->curr_resync_completed ||
7998 mddev->curr_resync_completed > mddev->resync_max
7999 )) {
8000 /* time to update curr_resync_completed */
8001 wait_event(mddev->recovery_wait,
8002 atomic_read(&mddev->recovery_active) == 0);
8003 mddev->curr_resync_completed = j;
8004 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
8005 j > mddev->recovery_cp)
8006 mddev->recovery_cp = j;
8007 update_time = jiffies;
8008 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
8009 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8010 }
8011
8012 while (j >= mddev->resync_max &&
8013 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8014 /* As this condition is controlled by user-space,
8015 * we can block indefinitely, so use '_interruptible'
8016 * to avoid triggering warnings.
8017 */
8018 flush_signals(current); /* just in case */
8019 wait_event_interruptible(mddev->recovery_wait,
8020 mddev->resync_max > j
8021 || test_bit(MD_RECOVERY_INTR,
8022 &mddev->recovery));
8023 }
8024
8025 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8026 break;
8027
8028 sectors = mddev->pers->sync_request(mddev, j, &skipped);
8029 if (sectors == 0) {
8030 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8031 break;
8032 }
8033
8034 if (!skipped) { /* actual IO requested */
8035 io_sectors += sectors;
8036 atomic_add(sectors, &mddev->recovery_active);
8037 }
8038
8039 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8040 break;
8041
8042 j += sectors;
8043 if (j > max_sectors)
8044 /* when skipping, extra large numbers can be returned. */
8045 j = max_sectors;
8046 if (j > 2)
8047 mddev->curr_resync = j;
8048 mddev->curr_mark_cnt = io_sectors;
8049 if (last_check == 0)
8050 /* this is the earliest that rebuild will be
8051 * visible in /proc/mdstat
8052 */
8053 md_new_event(mddev);
8054
8055 if (last_check + window > io_sectors || j == max_sectors)
8056 continue;
8057
8058 last_check = io_sectors;
8059 repeat:
8060 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
8061 /* step marks */
8062 int next = (last_mark+1) % SYNC_MARKS;
8063
8064 mddev->resync_mark = mark[next];
8065 mddev->resync_mark_cnt = mark_cnt[next];
8066 mark[next] = jiffies;
8067 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
8068 last_mark = next;
8069 }
8070
8071 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8072 break;
8073
8074 /*
8075 * this loop exits only if either when we are slower than
8076 * the 'hard' speed limit, or the system was IO-idle for
8077 * a jiffy.
8078 * the system might be non-idle CPU-wise, but we only care
8079 * about not overloading the IO subsystem. (things like an
8080 * e2fsck being done on the RAID array should execute fast)
8081 */
8082 cond_resched();
8083
8084 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
8085 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
8086 /((jiffies-mddev->resync_mark)/HZ +1) +1;
8087
8088 if (currspeed > speed_min(mddev)) {
8089 if (currspeed > speed_max(mddev)) {
8090 msleep(500);
8091 goto repeat;
8092 }
8093 if (!is_mddev_idle(mddev, 0)) {
8094 /*
8095 * Give other IO more of a chance.
8096 * The faster the devices, the less we wait.
8097 */
8098 wait_event(mddev->recovery_wait,
8099 !atomic_read(&mddev->recovery_active));
8100 }
8101 }
8102 }
8103 printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
8104 test_bit(MD_RECOVERY_INTR, &mddev->recovery)
8105 ? "interrupted" : "done");
8106 /*
8107 * this also signals 'finished resyncing' to md_stop
8108 */
8109 blk_finish_plug(&plug);
8110 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
8111
8112 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8113 !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8114 mddev->curr_resync > 2) {
8115 mddev->curr_resync_completed = mddev->curr_resync;
8116 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
8117 }
8118 mddev->pers->sync_request(mddev, max_sectors, &skipped);
8119
8120 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
8121 mddev->curr_resync > 2) {
8122 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
8123 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8124 if (mddev->curr_resync >= mddev->recovery_cp) {
8125 printk(KERN_INFO
8126 "md: checkpointing %s of %s.\n",
8127 desc, mdname(mddev));
8128 if (test_bit(MD_RECOVERY_ERROR,
8129 &mddev->recovery))
8130 mddev->recovery_cp =
8131 mddev->curr_resync_completed;
8132 else
8133 mddev->recovery_cp =
8134 mddev->curr_resync;
8135 }
8136 } else
8137 mddev->recovery_cp = MaxSector;
8138 } else {
8139 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
8140 mddev->curr_resync = MaxSector;
8141 rcu_read_lock();
8142 rdev_for_each_rcu(rdev, mddev)
8143 if (rdev->raid_disk >= 0 &&
8144 mddev->delta_disks >= 0 &&
8145 !test_bit(Journal, &rdev->flags) &&
8146 !test_bit(Faulty, &rdev->flags) &&
8147 !test_bit(In_sync, &rdev->flags) &&
8148 rdev->recovery_offset < mddev->curr_resync)
8149 rdev->recovery_offset = mddev->curr_resync;
8150 rcu_read_unlock();
8151 }
8152 }
8153 skip:
8154 if (mddev_is_clustered(mddev) &&
8155 ret == 0) {
8156 /* set CHANGE_PENDING here since maybe another
8157 * update is needed, so other nodes are informed */
8158 set_mask_bits(&mddev->flags, 0,
8159 BIT(MD_CHANGE_PENDING) | BIT(MD_CHANGE_DEVS));
8160 md_wakeup_thread(mddev->thread);
8161 wait_event(mddev->sb_wait,
8162 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
8163 md_cluster_ops->resync_finish(mddev);
8164 } else
8165 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8166
8167 spin_lock(&mddev->lock);
8168 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8169 /* We completed so min/max setting can be forgotten if used. */
8170 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8171 mddev->resync_min = 0;
8172 mddev->resync_max = MaxSector;
8173 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8174 mddev->resync_min = mddev->curr_resync_completed;
8175 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
8176 mddev->curr_resync = 0;
8177 spin_unlock(&mddev->lock);
8178
8179 wake_up(&resync_wait);
8180 md_wakeup_thread(mddev->thread);
8181 return;
8182 }
8183 EXPORT_SYMBOL_GPL(md_do_sync);
8184
8185 static int remove_and_add_spares(struct mddev *mddev,
8186 struct md_rdev *this)
8187 {
8188 struct md_rdev *rdev;
8189 int spares = 0;
8190 int removed = 0;
8191
8192 rdev_for_each(rdev, mddev)
8193 if ((this == NULL || rdev == this) &&
8194 rdev->raid_disk >= 0 &&
8195 !test_bit(Blocked, &rdev->flags) &&
8196 (test_bit(Faulty, &rdev->flags) ||
8197 (!test_bit(In_sync, &rdev->flags) &&
8198 !test_bit(Journal, &rdev->flags))) &&
8199 atomic_read(&rdev->nr_pending)==0) {
8200 if (mddev->pers->hot_remove_disk(
8201 mddev, rdev) == 0) {
8202 sysfs_unlink_rdev(mddev, rdev);
8203 rdev->raid_disk = -1;
8204 removed++;
8205 }
8206 }
8207 if (removed && mddev->kobj.sd)
8208 sysfs_notify(&mddev->kobj, NULL, "degraded");
8209
8210 if (this && removed)
8211 goto no_add;
8212
8213 rdev_for_each(rdev, mddev) {
8214 if (this && this != rdev)
8215 continue;
8216 if (test_bit(Candidate, &rdev->flags))
8217 continue;
8218 if (rdev->raid_disk >= 0 &&
8219 !test_bit(In_sync, &rdev->flags) &&
8220 !test_bit(Journal, &rdev->flags) &&
8221 !test_bit(Faulty, &rdev->flags))
8222 spares++;
8223 if (rdev->raid_disk >= 0)
8224 continue;
8225 if (test_bit(Faulty, &rdev->flags))
8226 continue;
8227 if (!test_bit(Journal, &rdev->flags)) {
8228 if (mddev->ro &&
8229 ! (rdev->saved_raid_disk >= 0 &&
8230 !test_bit(Bitmap_sync, &rdev->flags)))
8231 continue;
8232
8233 rdev->recovery_offset = 0;
8234 }
8235 if (mddev->pers->
8236 hot_add_disk(mddev, rdev) == 0) {
8237 if (sysfs_link_rdev(mddev, rdev))
8238 /* failure here is OK */;
8239 if (!test_bit(Journal, &rdev->flags))
8240 spares++;
8241 md_new_event(mddev);
8242 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8243 }
8244 }
8245 no_add:
8246 if (removed)
8247 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8248 return spares;
8249 }
8250
8251 static void md_start_sync(struct work_struct *ws)
8252 {
8253 struct mddev *mddev = container_of(ws, struct mddev, del_work);
8254 int ret = 0;
8255
8256 mddev->sync_thread = md_register_thread(md_do_sync,
8257 mddev,
8258 "resync");
8259 if (!mddev->sync_thread) {
8260 if (!(mddev_is_clustered(mddev) && ret == -EAGAIN))
8261 printk(KERN_ERR "%s: could not start resync"
8262 " thread...\n",
8263 mdname(mddev));
8264 /* leave the spares where they are, it shouldn't hurt */
8265 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8266 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8267 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8268 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8269 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8270 wake_up(&resync_wait);
8271 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8272 &mddev->recovery))
8273 if (mddev->sysfs_action)
8274 sysfs_notify_dirent_safe(mddev->sysfs_action);
8275 } else
8276 md_wakeup_thread(mddev->sync_thread);
8277 sysfs_notify_dirent_safe(mddev->sysfs_action);
8278 md_new_event(mddev);
8279 }
8280
8281 /*
8282 * This routine is regularly called by all per-raid-array threads to
8283 * deal with generic issues like resync and super-block update.
8284 * Raid personalities that don't have a thread (linear/raid0) do not
8285 * need this as they never do any recovery or update the superblock.
8286 *
8287 * It does not do any resync itself, but rather "forks" off other threads
8288 * to do that as needed.
8289 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8290 * "->recovery" and create a thread at ->sync_thread.
8291 * When the thread finishes it sets MD_RECOVERY_DONE
8292 * and wakeups up this thread which will reap the thread and finish up.
8293 * This thread also removes any faulty devices (with nr_pending == 0).
8294 *
8295 * The overall approach is:
8296 * 1/ if the superblock needs updating, update it.
8297 * 2/ If a recovery thread is running, don't do anything else.
8298 * 3/ If recovery has finished, clean up, possibly marking spares active.
8299 * 4/ If there are any faulty devices, remove them.
8300 * 5/ If array is degraded, try to add spares devices
8301 * 6/ If array has spares or is not in-sync, start a resync thread.
8302 */
8303 void md_check_recovery(struct mddev *mddev)
8304 {
8305 if (mddev->suspended)
8306 return;
8307
8308 if (mddev->bitmap)
8309 bitmap_daemon_work(mddev);
8310
8311 if (signal_pending(current)) {
8312 if (mddev->pers->sync_request && !mddev->external) {
8313 printk(KERN_INFO "md: %s in immediate safe mode\n",
8314 mdname(mddev));
8315 mddev->safemode = 2;
8316 }
8317 flush_signals(current);
8318 }
8319
8320 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8321 return;
8322 if ( ! (
8323 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
8324 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8325 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8326 test_bit(MD_RELOAD_SB, &mddev->flags) ||
8327 (mddev->external == 0 && mddev->safemode == 1) ||
8328 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
8329 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8330 ))
8331 return;
8332
8333 if (mddev_trylock(mddev)) {
8334 int spares = 0;
8335
8336 if (mddev->ro) {
8337 struct md_rdev *rdev;
8338 if (!mddev->external && mddev->in_sync)
8339 /* 'Blocked' flag not needed as failed devices
8340 * will be recorded if array switched to read/write.
8341 * Leaving it set will prevent the device
8342 * from being removed.
8343 */
8344 rdev_for_each(rdev, mddev)
8345 clear_bit(Blocked, &rdev->flags);
8346 /* On a read-only array we can:
8347 * - remove failed devices
8348 * - add already-in_sync devices if the array itself
8349 * is in-sync.
8350 * As we only add devices that are already in-sync,
8351 * we can activate the spares immediately.
8352 */
8353 remove_and_add_spares(mddev, NULL);
8354 /* There is no thread, but we need to call
8355 * ->spare_active and clear saved_raid_disk
8356 */
8357 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8358 md_reap_sync_thread(mddev);
8359 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8360 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8361 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
8362 goto unlock;
8363 }
8364
8365 if (mddev_is_clustered(mddev)) {
8366 struct md_rdev *rdev;
8367 /* kick the device if another node issued a
8368 * remove disk.
8369 */
8370 rdev_for_each(rdev, mddev) {
8371 if (test_and_clear_bit(ClusterRemove, &rdev->flags) &&
8372 rdev->raid_disk < 0)
8373 md_kick_rdev_from_array(rdev);
8374 }
8375
8376 if (test_and_clear_bit(MD_RELOAD_SB, &mddev->flags))
8377 md_reload_sb(mddev, mddev->good_device_nr);
8378 }
8379
8380 if (!mddev->external) {
8381 int did_change = 0;
8382 spin_lock(&mddev->lock);
8383 if (mddev->safemode &&
8384 !atomic_read(&mddev->writes_pending) &&
8385 !mddev->in_sync &&
8386 mddev->recovery_cp == MaxSector) {
8387 mddev->in_sync = 1;
8388 did_change = 1;
8389 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
8390 }
8391 if (mddev->safemode == 1)
8392 mddev->safemode = 0;
8393 spin_unlock(&mddev->lock);
8394 if (did_change)
8395 sysfs_notify_dirent_safe(mddev->sysfs_state);
8396 }
8397
8398 if (mddev->flags & MD_UPDATE_SB_FLAGS)
8399 md_update_sb(mddev, 0);
8400
8401 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8402 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8403 /* resync/recovery still happening */
8404 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8405 goto unlock;
8406 }
8407 if (mddev->sync_thread) {
8408 md_reap_sync_thread(mddev);
8409 goto unlock;
8410 }
8411 /* Set RUNNING before clearing NEEDED to avoid
8412 * any transients in the value of "sync_action".
8413 */
8414 mddev->curr_resync_completed = 0;
8415 spin_lock(&mddev->lock);
8416 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8417 spin_unlock(&mddev->lock);
8418 /* Clear some bits that don't mean anything, but
8419 * might be left set
8420 */
8421 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8422 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8423
8424 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8425 test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8426 goto not_running;
8427 /* no recovery is running.
8428 * remove any failed drives, then
8429 * add spares if possible.
8430 * Spares are also removed and re-added, to allow
8431 * the personality to fail the re-add.
8432 */
8433
8434 if (mddev->reshape_position != MaxSector) {
8435 if (mddev->pers->check_reshape == NULL ||
8436 mddev->pers->check_reshape(mddev) != 0)
8437 /* Cannot proceed */
8438 goto not_running;
8439 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8440 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8441 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
8442 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8443 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8444 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8445 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8446 } else if (mddev->recovery_cp < MaxSector) {
8447 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8448 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8449 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8450 /* nothing to be done ... */
8451 goto not_running;
8452
8453 if (mddev->pers->sync_request) {
8454 if (spares) {
8455 /* We are adding a device or devices to an array
8456 * which has the bitmap stored on all devices.
8457 * So make sure all bitmap pages get written
8458 */
8459 bitmap_write_all(mddev->bitmap);
8460 }
8461 INIT_WORK(&mddev->del_work, md_start_sync);
8462 queue_work(md_misc_wq, &mddev->del_work);
8463 goto unlock;
8464 }
8465 not_running:
8466 if (!mddev->sync_thread) {
8467 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8468 wake_up(&resync_wait);
8469 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8470 &mddev->recovery))
8471 if (mddev->sysfs_action)
8472 sysfs_notify_dirent_safe(mddev->sysfs_action);
8473 }
8474 unlock:
8475 wake_up(&mddev->sb_wait);
8476 mddev_unlock(mddev);
8477 }
8478 }
8479 EXPORT_SYMBOL(md_check_recovery);
8480
8481 void md_reap_sync_thread(struct mddev *mddev)
8482 {
8483 struct md_rdev *rdev;
8484
8485 /* resync has finished, collect result */
8486 md_unregister_thread(&mddev->sync_thread);
8487 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8488 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8489 /* success...*/
8490 /* activate any spares */
8491 if (mddev->pers->spare_active(mddev)) {
8492 sysfs_notify(&mddev->kobj, NULL,
8493 "degraded");
8494 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8495 }
8496 }
8497 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8498 mddev->pers->finish_reshape)
8499 mddev->pers->finish_reshape(mddev);
8500
8501 /* If array is no-longer degraded, then any saved_raid_disk
8502 * information must be scrapped.
8503 */
8504 if (!mddev->degraded)
8505 rdev_for_each(rdev, mddev)
8506 rdev->saved_raid_disk = -1;
8507
8508 md_update_sb(mddev, 1);
8509 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8510 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8511 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8512 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8513 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8514 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8515 wake_up(&resync_wait);
8516 /* flag recovery needed just to double check */
8517 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8518 sysfs_notify_dirent_safe(mddev->sysfs_action);
8519 md_new_event(mddev);
8520 if (mddev->event_work.func)
8521 queue_work(md_misc_wq, &mddev->event_work);
8522 }
8523 EXPORT_SYMBOL(md_reap_sync_thread);
8524
8525 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8526 {
8527 sysfs_notify_dirent_safe(rdev->sysfs_state);
8528 wait_event_timeout(rdev->blocked_wait,
8529 !test_bit(Blocked, &rdev->flags) &&
8530 !test_bit(BlockedBadBlocks, &rdev->flags),
8531 msecs_to_jiffies(5000));
8532 rdev_dec_pending(rdev, mddev);
8533 }
8534 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8535
8536 void md_finish_reshape(struct mddev *mddev)
8537 {
8538 /* called be personality module when reshape completes. */
8539 struct md_rdev *rdev;
8540
8541 rdev_for_each(rdev, mddev) {
8542 if (rdev->data_offset > rdev->new_data_offset)
8543 rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8544 else
8545 rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8546 rdev->data_offset = rdev->new_data_offset;
8547 }
8548 }
8549 EXPORT_SYMBOL(md_finish_reshape);
8550
8551 /* Bad block management */
8552
8553 /* Returns 1 on success, 0 on failure */
8554 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8555 int is_new)
8556 {
8557 struct mddev *mddev = rdev->mddev;
8558 int rv;
8559 if (is_new)
8560 s += rdev->new_data_offset;
8561 else
8562 s += rdev->data_offset;
8563 rv = badblocks_set(&rdev->badblocks, s, sectors, 0);
8564 if (rv == 0) {
8565 /* Make sure they get written out promptly */
8566 sysfs_notify_dirent_safe(rdev->sysfs_state);
8567 set_mask_bits(&mddev->flags, 0,
8568 BIT(MD_CHANGE_CLEAN) | BIT(MD_CHANGE_PENDING));
8569 md_wakeup_thread(rdev->mddev->thread);
8570 return 1;
8571 } else
8572 return 0;
8573 }
8574 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8575
8576 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8577 int is_new)
8578 {
8579 if (is_new)
8580 s += rdev->new_data_offset;
8581 else
8582 s += rdev->data_offset;
8583 return badblocks_clear(&rdev->badblocks,
8584 s, sectors);
8585 }
8586 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8587
8588 static int md_notify_reboot(struct notifier_block *this,
8589 unsigned long code, void *x)
8590 {
8591 struct list_head *tmp;
8592 struct mddev *mddev;
8593 int need_delay = 0;
8594
8595 for_each_mddev(mddev, tmp) {
8596 if (mddev_trylock(mddev)) {
8597 if (mddev->pers)
8598 __md_stop_writes(mddev);
8599 if (mddev->persistent)
8600 mddev->safemode = 2;
8601 mddev_unlock(mddev);
8602 }
8603 need_delay = 1;
8604 }
8605 /*
8606 * certain more exotic SCSI devices are known to be
8607 * volatile wrt too early system reboots. While the
8608 * right place to handle this issue is the given
8609 * driver, we do want to have a safe RAID driver ...
8610 */
8611 if (need_delay)
8612 mdelay(1000*1);
8613
8614 return NOTIFY_DONE;
8615 }
8616
8617 static struct notifier_block md_notifier = {
8618 .notifier_call = md_notify_reboot,
8619 .next = NULL,
8620 .priority = INT_MAX, /* before any real devices */
8621 };
8622
8623 static void md_geninit(void)
8624 {
8625 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8626
8627 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8628 }
8629
8630 static int __init md_init(void)
8631 {
8632 int ret = -ENOMEM;
8633
8634 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8635 if (!md_wq)
8636 goto err_wq;
8637
8638 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8639 if (!md_misc_wq)
8640 goto err_misc_wq;
8641
8642 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8643 goto err_md;
8644
8645 if ((ret = register_blkdev(0, "mdp")) < 0)
8646 goto err_mdp;
8647 mdp_major = ret;
8648
8649 blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8650 md_probe, NULL, NULL);
8651 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8652 md_probe, NULL, NULL);
8653
8654 register_reboot_notifier(&md_notifier);
8655 raid_table_header = register_sysctl_table(raid_root_table);
8656
8657 md_geninit();
8658 return 0;
8659
8660 err_mdp:
8661 unregister_blkdev(MD_MAJOR, "md");
8662 err_md:
8663 destroy_workqueue(md_misc_wq);
8664 err_misc_wq:
8665 destroy_workqueue(md_wq);
8666 err_wq:
8667 return ret;
8668 }
8669
8670 static void check_sb_changes(struct mddev *mddev, struct md_rdev *rdev)
8671 {
8672 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
8673 struct md_rdev *rdev2;
8674 int role, ret;
8675 char b[BDEVNAME_SIZE];
8676
8677 /* Check for change of roles in the active devices */
8678 rdev_for_each(rdev2, mddev) {
8679 if (test_bit(Faulty, &rdev2->flags))
8680 continue;
8681
8682 /* Check if the roles changed */
8683 role = le16_to_cpu(sb->dev_roles[rdev2->desc_nr]);
8684
8685 if (test_bit(Candidate, &rdev2->flags)) {
8686 if (role == 0xfffe) {
8687 pr_info("md: Removing Candidate device %s because add failed\n", bdevname(rdev2->bdev,b));
8688 md_kick_rdev_from_array(rdev2);
8689 continue;
8690 }
8691 else
8692 clear_bit(Candidate, &rdev2->flags);
8693 }
8694
8695 if (role != rdev2->raid_disk) {
8696 /* got activated */
8697 if (rdev2->raid_disk == -1 && role != 0xffff) {
8698 rdev2->saved_raid_disk = role;
8699 ret = remove_and_add_spares(mddev, rdev2);
8700 pr_info("Activated spare: %s\n",
8701 bdevname(rdev2->bdev,b));
8702 /* wakeup mddev->thread here, so array could
8703 * perform resync with the new activated disk */
8704 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8705 md_wakeup_thread(mddev->thread);
8706
8707 }
8708 /* device faulty
8709 * We just want to do the minimum to mark the disk
8710 * as faulty. The recovery is performed by the
8711 * one who initiated the error.
8712 */
8713 if ((role == 0xfffe) || (role == 0xfffd)) {
8714 md_error(mddev, rdev2);
8715 clear_bit(Blocked, &rdev2->flags);
8716 }
8717 }
8718 }
8719
8720 if (mddev->raid_disks != le32_to_cpu(sb->raid_disks))
8721 update_raid_disks(mddev, le32_to_cpu(sb->raid_disks));
8722
8723 /* Finally set the event to be up to date */
8724 mddev->events = le64_to_cpu(sb->events);
8725 }
8726
8727 static int read_rdev(struct mddev *mddev, struct md_rdev *rdev)
8728 {
8729 int err;
8730 struct page *swapout = rdev->sb_page;
8731 struct mdp_superblock_1 *sb;
8732
8733 /* Store the sb page of the rdev in the swapout temporary
8734 * variable in case we err in the future
8735 */
8736 rdev->sb_page = NULL;
8737 alloc_disk_sb(rdev);
8738 ClearPageUptodate(rdev->sb_page);
8739 rdev->sb_loaded = 0;
8740 err = super_types[mddev->major_version].load_super(rdev, NULL, mddev->minor_version);
8741
8742 if (err < 0) {
8743 pr_warn("%s: %d Could not reload rdev(%d) err: %d. Restoring old values\n",
8744 __func__, __LINE__, rdev->desc_nr, err);
8745 put_page(rdev->sb_page);
8746 rdev->sb_page = swapout;
8747 rdev->sb_loaded = 1;
8748 return err;
8749 }
8750
8751 sb = page_address(rdev->sb_page);
8752 /* Read the offset unconditionally, even if MD_FEATURE_RECOVERY_OFFSET
8753 * is not set
8754 */
8755
8756 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RECOVERY_OFFSET))
8757 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
8758
8759 /* The other node finished recovery, call spare_active to set
8760 * device In_sync and mddev->degraded
8761 */
8762 if (rdev->recovery_offset == MaxSector &&
8763 !test_bit(In_sync, &rdev->flags) &&
8764 mddev->pers->spare_active(mddev))
8765 sysfs_notify(&mddev->kobj, NULL, "degraded");
8766
8767 put_page(swapout);
8768 return 0;
8769 }
8770
8771 void md_reload_sb(struct mddev *mddev, int nr)
8772 {
8773 struct md_rdev *rdev;
8774 int err;
8775
8776 /* Find the rdev */
8777 rdev_for_each_rcu(rdev, mddev) {
8778 if (rdev->desc_nr == nr)
8779 break;
8780 }
8781
8782 if (!rdev || rdev->desc_nr != nr) {
8783 pr_warn("%s: %d Could not find rdev with nr %d\n", __func__, __LINE__, nr);
8784 return;
8785 }
8786
8787 err = read_rdev(mddev, rdev);
8788 if (err < 0)
8789 return;
8790
8791 check_sb_changes(mddev, rdev);
8792
8793 /* Read all rdev's to update recovery_offset */
8794 rdev_for_each_rcu(rdev, mddev)
8795 read_rdev(mddev, rdev);
8796 }
8797 EXPORT_SYMBOL(md_reload_sb);
8798
8799 #ifndef MODULE
8800
8801 /*
8802 * Searches all registered partitions for autorun RAID arrays
8803 * at boot time.
8804 */
8805
8806 static LIST_HEAD(all_detected_devices);
8807 struct detected_devices_node {
8808 struct list_head list;
8809 dev_t dev;
8810 };
8811
8812 void md_autodetect_dev(dev_t dev)
8813 {
8814 struct detected_devices_node *node_detected_dev;
8815
8816 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8817 if (node_detected_dev) {
8818 node_detected_dev->dev = dev;
8819 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8820 } else {
8821 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8822 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8823 }
8824 }
8825
8826 static void autostart_arrays(int part)
8827 {
8828 struct md_rdev *rdev;
8829 struct detected_devices_node *node_detected_dev;
8830 dev_t dev;
8831 int i_scanned, i_passed;
8832
8833 i_scanned = 0;
8834 i_passed = 0;
8835
8836 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8837
8838 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8839 i_scanned++;
8840 node_detected_dev = list_entry(all_detected_devices.next,
8841 struct detected_devices_node, list);
8842 list_del(&node_detected_dev->list);
8843 dev = node_detected_dev->dev;
8844 kfree(node_detected_dev);
8845 rdev = md_import_device(dev,0, 90);
8846 if (IS_ERR(rdev))
8847 continue;
8848
8849 if (test_bit(Faulty, &rdev->flags))
8850 continue;
8851
8852 set_bit(AutoDetected, &rdev->flags);
8853 list_add(&rdev->same_set, &pending_raid_disks);
8854 i_passed++;
8855 }
8856
8857 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8858 i_scanned, i_passed);
8859
8860 autorun_devices(part);
8861 }
8862
8863 #endif /* !MODULE */
8864
8865 static __exit void md_exit(void)
8866 {
8867 struct mddev *mddev;
8868 struct list_head *tmp;
8869 int delay = 1;
8870
8871 blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
8872 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8873
8874 unregister_blkdev(MD_MAJOR,"md");
8875 unregister_blkdev(mdp_major, "mdp");
8876 unregister_reboot_notifier(&md_notifier);
8877 unregister_sysctl_table(raid_table_header);
8878
8879 /* We cannot unload the modules while some process is
8880 * waiting for us in select() or poll() - wake them up
8881 */
8882 md_unloading = 1;
8883 while (waitqueue_active(&md_event_waiters)) {
8884 /* not safe to leave yet */
8885 wake_up(&md_event_waiters);
8886 msleep(delay);
8887 delay += delay;
8888 }
8889 remove_proc_entry("mdstat", NULL);
8890
8891 for_each_mddev(mddev, tmp) {
8892 export_array(mddev);
8893 mddev->hold_active = 0;
8894 }
8895 destroy_workqueue(md_misc_wq);
8896 destroy_workqueue(md_wq);
8897 }
8898
8899 subsys_initcall(md_init);
8900 module_exit(md_exit)
8901
8902 static int get_ro(char *buffer, struct kernel_param *kp)
8903 {
8904 return sprintf(buffer, "%d", start_readonly);
8905 }
8906 static int set_ro(const char *val, struct kernel_param *kp)
8907 {
8908 return kstrtouint(val, 10, (unsigned int *)&start_readonly);
8909 }
8910
8911 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8912 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8913 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8914
8915 MODULE_LICENSE("GPL");
8916 MODULE_DESCRIPTION("MD RAID framework");
8917 MODULE_ALIAS("md");
8918 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
This page took 0.198795 seconds and 6 git commands to generate.