Merge branch 'upstream-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mfashe...
[deliverable/linux.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/module.h>
36 #include <linux/config.h>
37 #include <linux/kthread.h>
38 #include <linux/linkage.h>
39 #include <linux/raid/md.h>
40 #include <linux/raid/bitmap.h>
41 #include <linux/sysctl.h>
42 #include <linux/buffer_head.h> /* for invalidate_bdev */
43 #include <linux/suspend.h>
44 #include <linux/poll.h>
45 #include <linux/mutex.h>
46 #include <linux/ctype.h>
47
48 #include <linux/init.h>
49
50 #include <linux/file.h>
51
52 #ifdef CONFIG_KMOD
53 #include <linux/kmod.h>
54 #endif
55
56 #include <asm/unaligned.h>
57
58 #define MAJOR_NR MD_MAJOR
59 #define MD_DRIVER
60
61 /* 63 partitions with the alternate major number (mdp) */
62 #define MdpMinorShift 6
63
64 #define DEBUG 0
65 #define dprintk(x...) ((void)(DEBUG && printk(x)))
66
67
68 #ifndef MODULE
69 static void autostart_arrays (int part);
70 #endif
71
72 static LIST_HEAD(pers_list);
73 static DEFINE_SPINLOCK(pers_lock);
74
75 static void md_print_devices(void);
76
77 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
78
79 /*
80 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
81 * is 1000 KB/sec, so the extra system load does not show up that much.
82 * Increase it if you want to have more _guaranteed_ speed. Note that
83 * the RAID driver will use the maximum available bandwidth if the IO
84 * subsystem is idle. There is also an 'absolute maximum' reconstruction
85 * speed limit - in case reconstruction slows down your system despite
86 * idle IO detection.
87 *
88 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
89 * or /sys/block/mdX/md/sync_speed_{min,max}
90 */
91
92 static int sysctl_speed_limit_min = 1000;
93 static int sysctl_speed_limit_max = 200000;
94 static inline int speed_min(mddev_t *mddev)
95 {
96 return mddev->sync_speed_min ?
97 mddev->sync_speed_min : sysctl_speed_limit_min;
98 }
99
100 static inline int speed_max(mddev_t *mddev)
101 {
102 return mddev->sync_speed_max ?
103 mddev->sync_speed_max : sysctl_speed_limit_max;
104 }
105
106 static struct ctl_table_header *raid_table_header;
107
108 static ctl_table raid_table[] = {
109 {
110 .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
111 .procname = "speed_limit_min",
112 .data = &sysctl_speed_limit_min,
113 .maxlen = sizeof(int),
114 .mode = 0644,
115 .proc_handler = &proc_dointvec,
116 },
117 {
118 .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
119 .procname = "speed_limit_max",
120 .data = &sysctl_speed_limit_max,
121 .maxlen = sizeof(int),
122 .mode = 0644,
123 .proc_handler = &proc_dointvec,
124 },
125 { .ctl_name = 0 }
126 };
127
128 static ctl_table raid_dir_table[] = {
129 {
130 .ctl_name = DEV_RAID,
131 .procname = "raid",
132 .maxlen = 0,
133 .mode = 0555,
134 .child = raid_table,
135 },
136 { .ctl_name = 0 }
137 };
138
139 static ctl_table raid_root_table[] = {
140 {
141 .ctl_name = CTL_DEV,
142 .procname = "dev",
143 .maxlen = 0,
144 .mode = 0555,
145 .child = raid_dir_table,
146 },
147 { .ctl_name = 0 }
148 };
149
150 static struct block_device_operations md_fops;
151
152 static int start_readonly;
153
154 /*
155 * We have a system wide 'event count' that is incremented
156 * on any 'interesting' event, and readers of /proc/mdstat
157 * can use 'poll' or 'select' to find out when the event
158 * count increases.
159 *
160 * Events are:
161 * start array, stop array, error, add device, remove device,
162 * start build, activate spare
163 */
164 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
165 static atomic_t md_event_count;
166 void md_new_event(mddev_t *mddev)
167 {
168 atomic_inc(&md_event_count);
169 wake_up(&md_event_waiters);
170 sysfs_notify(&mddev->kobj, NULL, "sync_action");
171 }
172 EXPORT_SYMBOL_GPL(md_new_event);
173
174 /* Alternate version that can be called from interrupts
175 * when calling sysfs_notify isn't needed.
176 */
177 static void md_new_event_inintr(mddev_t *mddev)
178 {
179 atomic_inc(&md_event_count);
180 wake_up(&md_event_waiters);
181 }
182
183 /*
184 * Enables to iterate over all existing md arrays
185 * all_mddevs_lock protects this list.
186 */
187 static LIST_HEAD(all_mddevs);
188 static DEFINE_SPINLOCK(all_mddevs_lock);
189
190
191 /*
192 * iterates through all used mddevs in the system.
193 * We take care to grab the all_mddevs_lock whenever navigating
194 * the list, and to always hold a refcount when unlocked.
195 * Any code which breaks out of this loop while own
196 * a reference to the current mddev and must mddev_put it.
197 */
198 #define ITERATE_MDDEV(mddev,tmp) \
199 \
200 for (({ spin_lock(&all_mddevs_lock); \
201 tmp = all_mddevs.next; \
202 mddev = NULL;}); \
203 ({ if (tmp != &all_mddevs) \
204 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
205 spin_unlock(&all_mddevs_lock); \
206 if (mddev) mddev_put(mddev); \
207 mddev = list_entry(tmp, mddev_t, all_mddevs); \
208 tmp != &all_mddevs;}); \
209 ({ spin_lock(&all_mddevs_lock); \
210 tmp = tmp->next;}) \
211 )
212
213
214 static int md_fail_request (request_queue_t *q, struct bio *bio)
215 {
216 bio_io_error(bio, bio->bi_size);
217 return 0;
218 }
219
220 static inline mddev_t *mddev_get(mddev_t *mddev)
221 {
222 atomic_inc(&mddev->active);
223 return mddev;
224 }
225
226 static void mddev_put(mddev_t *mddev)
227 {
228 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
229 return;
230 if (!mddev->raid_disks && list_empty(&mddev->disks)) {
231 list_del(&mddev->all_mddevs);
232 spin_unlock(&all_mddevs_lock);
233 blk_cleanup_queue(mddev->queue);
234 kobject_unregister(&mddev->kobj);
235 } else
236 spin_unlock(&all_mddevs_lock);
237 }
238
239 static mddev_t * mddev_find(dev_t unit)
240 {
241 mddev_t *mddev, *new = NULL;
242
243 retry:
244 spin_lock(&all_mddevs_lock);
245 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
246 if (mddev->unit == unit) {
247 mddev_get(mddev);
248 spin_unlock(&all_mddevs_lock);
249 kfree(new);
250 return mddev;
251 }
252
253 if (new) {
254 list_add(&new->all_mddevs, &all_mddevs);
255 spin_unlock(&all_mddevs_lock);
256 return new;
257 }
258 spin_unlock(&all_mddevs_lock);
259
260 new = kzalloc(sizeof(*new), GFP_KERNEL);
261 if (!new)
262 return NULL;
263
264 new->unit = unit;
265 if (MAJOR(unit) == MD_MAJOR)
266 new->md_minor = MINOR(unit);
267 else
268 new->md_minor = MINOR(unit) >> MdpMinorShift;
269
270 mutex_init(&new->reconfig_mutex);
271 INIT_LIST_HEAD(&new->disks);
272 INIT_LIST_HEAD(&new->all_mddevs);
273 init_timer(&new->safemode_timer);
274 atomic_set(&new->active, 1);
275 spin_lock_init(&new->write_lock);
276 init_waitqueue_head(&new->sb_wait);
277
278 new->queue = blk_alloc_queue(GFP_KERNEL);
279 if (!new->queue) {
280 kfree(new);
281 return NULL;
282 }
283 set_bit(QUEUE_FLAG_CLUSTER, &new->queue->queue_flags);
284
285 blk_queue_make_request(new->queue, md_fail_request);
286
287 goto retry;
288 }
289
290 static inline int mddev_lock(mddev_t * mddev)
291 {
292 return mutex_lock_interruptible(&mddev->reconfig_mutex);
293 }
294
295 static inline int mddev_trylock(mddev_t * mddev)
296 {
297 return mutex_trylock(&mddev->reconfig_mutex);
298 }
299
300 static inline void mddev_unlock(mddev_t * mddev)
301 {
302 mutex_unlock(&mddev->reconfig_mutex);
303
304 md_wakeup_thread(mddev->thread);
305 }
306
307 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
308 {
309 mdk_rdev_t * rdev;
310 struct list_head *tmp;
311
312 ITERATE_RDEV(mddev,rdev,tmp) {
313 if (rdev->desc_nr == nr)
314 return rdev;
315 }
316 return NULL;
317 }
318
319 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
320 {
321 struct list_head *tmp;
322 mdk_rdev_t *rdev;
323
324 ITERATE_RDEV(mddev,rdev,tmp) {
325 if (rdev->bdev->bd_dev == dev)
326 return rdev;
327 }
328 return NULL;
329 }
330
331 static struct mdk_personality *find_pers(int level, char *clevel)
332 {
333 struct mdk_personality *pers;
334 list_for_each_entry(pers, &pers_list, list) {
335 if (level != LEVEL_NONE && pers->level == level)
336 return pers;
337 if (strcmp(pers->name, clevel)==0)
338 return pers;
339 }
340 return NULL;
341 }
342
343 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
344 {
345 sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
346 return MD_NEW_SIZE_BLOCKS(size);
347 }
348
349 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
350 {
351 sector_t size;
352
353 size = rdev->sb_offset;
354
355 if (chunk_size)
356 size &= ~((sector_t)chunk_size/1024 - 1);
357 return size;
358 }
359
360 static int alloc_disk_sb(mdk_rdev_t * rdev)
361 {
362 if (rdev->sb_page)
363 MD_BUG();
364
365 rdev->sb_page = alloc_page(GFP_KERNEL);
366 if (!rdev->sb_page) {
367 printk(KERN_ALERT "md: out of memory.\n");
368 return -EINVAL;
369 }
370
371 return 0;
372 }
373
374 static void free_disk_sb(mdk_rdev_t * rdev)
375 {
376 if (rdev->sb_page) {
377 put_page(rdev->sb_page);
378 rdev->sb_loaded = 0;
379 rdev->sb_page = NULL;
380 rdev->sb_offset = 0;
381 rdev->size = 0;
382 }
383 }
384
385
386 static int super_written(struct bio *bio, unsigned int bytes_done, int error)
387 {
388 mdk_rdev_t *rdev = bio->bi_private;
389 mddev_t *mddev = rdev->mddev;
390 if (bio->bi_size)
391 return 1;
392
393 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
394 md_error(mddev, rdev);
395
396 if (atomic_dec_and_test(&mddev->pending_writes))
397 wake_up(&mddev->sb_wait);
398 bio_put(bio);
399 return 0;
400 }
401
402 static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error)
403 {
404 struct bio *bio2 = bio->bi_private;
405 mdk_rdev_t *rdev = bio2->bi_private;
406 mddev_t *mddev = rdev->mddev;
407 if (bio->bi_size)
408 return 1;
409
410 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
411 error == -EOPNOTSUPP) {
412 unsigned long flags;
413 /* barriers don't appear to be supported :-( */
414 set_bit(BarriersNotsupp, &rdev->flags);
415 mddev->barriers_work = 0;
416 spin_lock_irqsave(&mddev->write_lock, flags);
417 bio2->bi_next = mddev->biolist;
418 mddev->biolist = bio2;
419 spin_unlock_irqrestore(&mddev->write_lock, flags);
420 wake_up(&mddev->sb_wait);
421 bio_put(bio);
422 return 0;
423 }
424 bio_put(bio2);
425 bio->bi_private = rdev;
426 return super_written(bio, bytes_done, error);
427 }
428
429 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
430 sector_t sector, int size, struct page *page)
431 {
432 /* write first size bytes of page to sector of rdev
433 * Increment mddev->pending_writes before returning
434 * and decrement it on completion, waking up sb_wait
435 * if zero is reached.
436 * If an error occurred, call md_error
437 *
438 * As we might need to resubmit the request if BIO_RW_BARRIER
439 * causes ENOTSUPP, we allocate a spare bio...
440 */
441 struct bio *bio = bio_alloc(GFP_NOIO, 1);
442 int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
443
444 bio->bi_bdev = rdev->bdev;
445 bio->bi_sector = sector;
446 bio_add_page(bio, page, size, 0);
447 bio->bi_private = rdev;
448 bio->bi_end_io = super_written;
449 bio->bi_rw = rw;
450
451 atomic_inc(&mddev->pending_writes);
452 if (!test_bit(BarriersNotsupp, &rdev->flags)) {
453 struct bio *rbio;
454 rw |= (1<<BIO_RW_BARRIER);
455 rbio = bio_clone(bio, GFP_NOIO);
456 rbio->bi_private = bio;
457 rbio->bi_end_io = super_written_barrier;
458 submit_bio(rw, rbio);
459 } else
460 submit_bio(rw, bio);
461 }
462
463 void md_super_wait(mddev_t *mddev)
464 {
465 /* wait for all superblock writes that were scheduled to complete.
466 * if any had to be retried (due to BARRIER problems), retry them
467 */
468 DEFINE_WAIT(wq);
469 for(;;) {
470 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
471 if (atomic_read(&mddev->pending_writes)==0)
472 break;
473 while (mddev->biolist) {
474 struct bio *bio;
475 spin_lock_irq(&mddev->write_lock);
476 bio = mddev->biolist;
477 mddev->biolist = bio->bi_next ;
478 bio->bi_next = NULL;
479 spin_unlock_irq(&mddev->write_lock);
480 submit_bio(bio->bi_rw, bio);
481 }
482 schedule();
483 }
484 finish_wait(&mddev->sb_wait, &wq);
485 }
486
487 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
488 {
489 if (bio->bi_size)
490 return 1;
491
492 complete((struct completion*)bio->bi_private);
493 return 0;
494 }
495
496 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
497 struct page *page, int rw)
498 {
499 struct bio *bio = bio_alloc(GFP_NOIO, 1);
500 struct completion event;
501 int ret;
502
503 rw |= (1 << BIO_RW_SYNC);
504
505 bio->bi_bdev = bdev;
506 bio->bi_sector = sector;
507 bio_add_page(bio, page, size, 0);
508 init_completion(&event);
509 bio->bi_private = &event;
510 bio->bi_end_io = bi_complete;
511 submit_bio(rw, bio);
512 wait_for_completion(&event);
513
514 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
515 bio_put(bio);
516 return ret;
517 }
518 EXPORT_SYMBOL_GPL(sync_page_io);
519
520 static int read_disk_sb(mdk_rdev_t * rdev, int size)
521 {
522 char b[BDEVNAME_SIZE];
523 if (!rdev->sb_page) {
524 MD_BUG();
525 return -EINVAL;
526 }
527 if (rdev->sb_loaded)
528 return 0;
529
530
531 if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
532 goto fail;
533 rdev->sb_loaded = 1;
534 return 0;
535
536 fail:
537 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
538 bdevname(rdev->bdev,b));
539 return -EINVAL;
540 }
541
542 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
543 {
544 if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
545 (sb1->set_uuid1 == sb2->set_uuid1) &&
546 (sb1->set_uuid2 == sb2->set_uuid2) &&
547 (sb1->set_uuid3 == sb2->set_uuid3))
548
549 return 1;
550
551 return 0;
552 }
553
554
555 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
556 {
557 int ret;
558 mdp_super_t *tmp1, *tmp2;
559
560 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
561 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
562
563 if (!tmp1 || !tmp2) {
564 ret = 0;
565 printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
566 goto abort;
567 }
568
569 *tmp1 = *sb1;
570 *tmp2 = *sb2;
571
572 /*
573 * nr_disks is not constant
574 */
575 tmp1->nr_disks = 0;
576 tmp2->nr_disks = 0;
577
578 if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
579 ret = 0;
580 else
581 ret = 1;
582
583 abort:
584 kfree(tmp1);
585 kfree(tmp2);
586 return ret;
587 }
588
589 static unsigned int calc_sb_csum(mdp_super_t * sb)
590 {
591 unsigned int disk_csum, csum;
592
593 disk_csum = sb->sb_csum;
594 sb->sb_csum = 0;
595 csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
596 sb->sb_csum = disk_csum;
597 return csum;
598 }
599
600
601 /*
602 * Handle superblock details.
603 * We want to be able to handle multiple superblock formats
604 * so we have a common interface to them all, and an array of
605 * different handlers.
606 * We rely on user-space to write the initial superblock, and support
607 * reading and updating of superblocks.
608 * Interface methods are:
609 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
610 * loads and validates a superblock on dev.
611 * if refdev != NULL, compare superblocks on both devices
612 * Return:
613 * 0 - dev has a superblock that is compatible with refdev
614 * 1 - dev has a superblock that is compatible and newer than refdev
615 * so dev should be used as the refdev in future
616 * -EINVAL superblock incompatible or invalid
617 * -othererror e.g. -EIO
618 *
619 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
620 * Verify that dev is acceptable into mddev.
621 * The first time, mddev->raid_disks will be 0, and data from
622 * dev should be merged in. Subsequent calls check that dev
623 * is new enough. Return 0 or -EINVAL
624 *
625 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
626 * Update the superblock for rdev with data in mddev
627 * This does not write to disc.
628 *
629 */
630
631 struct super_type {
632 char *name;
633 struct module *owner;
634 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
635 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
636 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
637 };
638
639 /*
640 * load_super for 0.90.0
641 */
642 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
643 {
644 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
645 mdp_super_t *sb;
646 int ret;
647 sector_t sb_offset;
648
649 /*
650 * Calculate the position of the superblock,
651 * it's at the end of the disk.
652 *
653 * It also happens to be a multiple of 4Kb.
654 */
655 sb_offset = calc_dev_sboffset(rdev->bdev);
656 rdev->sb_offset = sb_offset;
657
658 ret = read_disk_sb(rdev, MD_SB_BYTES);
659 if (ret) return ret;
660
661 ret = -EINVAL;
662
663 bdevname(rdev->bdev, b);
664 sb = (mdp_super_t*)page_address(rdev->sb_page);
665
666 if (sb->md_magic != MD_SB_MAGIC) {
667 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
668 b);
669 goto abort;
670 }
671
672 if (sb->major_version != 0 ||
673 sb->minor_version < 90 ||
674 sb->minor_version > 91) {
675 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
676 sb->major_version, sb->minor_version,
677 b);
678 goto abort;
679 }
680
681 if (sb->raid_disks <= 0)
682 goto abort;
683
684 if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
685 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
686 b);
687 goto abort;
688 }
689
690 rdev->preferred_minor = sb->md_minor;
691 rdev->data_offset = 0;
692 rdev->sb_size = MD_SB_BYTES;
693
694 if (sb->level == LEVEL_MULTIPATH)
695 rdev->desc_nr = -1;
696 else
697 rdev->desc_nr = sb->this_disk.number;
698
699 if (refdev == 0)
700 ret = 1;
701 else {
702 __u64 ev1, ev2;
703 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
704 if (!uuid_equal(refsb, sb)) {
705 printk(KERN_WARNING "md: %s has different UUID to %s\n",
706 b, bdevname(refdev->bdev,b2));
707 goto abort;
708 }
709 if (!sb_equal(refsb, sb)) {
710 printk(KERN_WARNING "md: %s has same UUID"
711 " but different superblock to %s\n",
712 b, bdevname(refdev->bdev, b2));
713 goto abort;
714 }
715 ev1 = md_event(sb);
716 ev2 = md_event(refsb);
717 if (ev1 > ev2)
718 ret = 1;
719 else
720 ret = 0;
721 }
722 rdev->size = calc_dev_size(rdev, sb->chunk_size);
723
724 if (rdev->size < sb->size && sb->level > 1)
725 /* "this cannot possibly happen" ... */
726 ret = -EINVAL;
727
728 abort:
729 return ret;
730 }
731
732 /*
733 * validate_super for 0.90.0
734 */
735 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
736 {
737 mdp_disk_t *desc;
738 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
739 __u64 ev1 = md_event(sb);
740
741 rdev->raid_disk = -1;
742 rdev->flags = 0;
743 if (mddev->raid_disks == 0) {
744 mddev->major_version = 0;
745 mddev->minor_version = sb->minor_version;
746 mddev->patch_version = sb->patch_version;
747 mddev->persistent = ! sb->not_persistent;
748 mddev->chunk_size = sb->chunk_size;
749 mddev->ctime = sb->ctime;
750 mddev->utime = sb->utime;
751 mddev->level = sb->level;
752 mddev->clevel[0] = 0;
753 mddev->layout = sb->layout;
754 mddev->raid_disks = sb->raid_disks;
755 mddev->size = sb->size;
756 mddev->events = ev1;
757 mddev->bitmap_offset = 0;
758 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
759
760 if (mddev->minor_version >= 91) {
761 mddev->reshape_position = sb->reshape_position;
762 mddev->delta_disks = sb->delta_disks;
763 mddev->new_level = sb->new_level;
764 mddev->new_layout = sb->new_layout;
765 mddev->new_chunk = sb->new_chunk;
766 } else {
767 mddev->reshape_position = MaxSector;
768 mddev->delta_disks = 0;
769 mddev->new_level = mddev->level;
770 mddev->new_layout = mddev->layout;
771 mddev->new_chunk = mddev->chunk_size;
772 }
773
774 if (sb->state & (1<<MD_SB_CLEAN))
775 mddev->recovery_cp = MaxSector;
776 else {
777 if (sb->events_hi == sb->cp_events_hi &&
778 sb->events_lo == sb->cp_events_lo) {
779 mddev->recovery_cp = sb->recovery_cp;
780 } else
781 mddev->recovery_cp = 0;
782 }
783
784 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
785 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
786 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
787 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
788
789 mddev->max_disks = MD_SB_DISKS;
790
791 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
792 mddev->bitmap_file == NULL) {
793 if (mddev->level != 1 && mddev->level != 4
794 && mddev->level != 5 && mddev->level != 6
795 && mddev->level != 10) {
796 /* FIXME use a better test */
797 printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
798 return -EINVAL;
799 }
800 mddev->bitmap_offset = mddev->default_bitmap_offset;
801 }
802
803 } else if (mddev->pers == NULL) {
804 /* Insist on good event counter while assembling */
805 ++ev1;
806 if (ev1 < mddev->events)
807 return -EINVAL;
808 } else if (mddev->bitmap) {
809 /* if adding to array with a bitmap, then we can accept an
810 * older device ... but not too old.
811 */
812 if (ev1 < mddev->bitmap->events_cleared)
813 return 0;
814 } else {
815 if (ev1 < mddev->events)
816 /* just a hot-add of a new device, leave raid_disk at -1 */
817 return 0;
818 }
819
820 if (mddev->level != LEVEL_MULTIPATH) {
821 desc = sb->disks + rdev->desc_nr;
822
823 if (desc->state & (1<<MD_DISK_FAULTY))
824 set_bit(Faulty, &rdev->flags);
825 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
826 desc->raid_disk < mddev->raid_disks */) {
827 set_bit(In_sync, &rdev->flags);
828 rdev->raid_disk = desc->raid_disk;
829 }
830 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
831 set_bit(WriteMostly, &rdev->flags);
832 } else /* MULTIPATH are always insync */
833 set_bit(In_sync, &rdev->flags);
834 return 0;
835 }
836
837 /*
838 * sync_super for 0.90.0
839 */
840 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
841 {
842 mdp_super_t *sb;
843 struct list_head *tmp;
844 mdk_rdev_t *rdev2;
845 int next_spare = mddev->raid_disks;
846
847
848 /* make rdev->sb match mddev data..
849 *
850 * 1/ zero out disks
851 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
852 * 3/ any empty disks < next_spare become removed
853 *
854 * disks[0] gets initialised to REMOVED because
855 * we cannot be sure from other fields if it has
856 * been initialised or not.
857 */
858 int i;
859 int active=0, working=0,failed=0,spare=0,nr_disks=0;
860
861 rdev->sb_size = MD_SB_BYTES;
862
863 sb = (mdp_super_t*)page_address(rdev->sb_page);
864
865 memset(sb, 0, sizeof(*sb));
866
867 sb->md_magic = MD_SB_MAGIC;
868 sb->major_version = mddev->major_version;
869 sb->patch_version = mddev->patch_version;
870 sb->gvalid_words = 0; /* ignored */
871 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
872 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
873 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
874 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
875
876 sb->ctime = mddev->ctime;
877 sb->level = mddev->level;
878 sb->size = mddev->size;
879 sb->raid_disks = mddev->raid_disks;
880 sb->md_minor = mddev->md_minor;
881 sb->not_persistent = !mddev->persistent;
882 sb->utime = mddev->utime;
883 sb->state = 0;
884 sb->events_hi = (mddev->events>>32);
885 sb->events_lo = (u32)mddev->events;
886
887 if (mddev->reshape_position == MaxSector)
888 sb->minor_version = 90;
889 else {
890 sb->minor_version = 91;
891 sb->reshape_position = mddev->reshape_position;
892 sb->new_level = mddev->new_level;
893 sb->delta_disks = mddev->delta_disks;
894 sb->new_layout = mddev->new_layout;
895 sb->new_chunk = mddev->new_chunk;
896 }
897 mddev->minor_version = sb->minor_version;
898 if (mddev->in_sync)
899 {
900 sb->recovery_cp = mddev->recovery_cp;
901 sb->cp_events_hi = (mddev->events>>32);
902 sb->cp_events_lo = (u32)mddev->events;
903 if (mddev->recovery_cp == MaxSector)
904 sb->state = (1<< MD_SB_CLEAN);
905 } else
906 sb->recovery_cp = 0;
907
908 sb->layout = mddev->layout;
909 sb->chunk_size = mddev->chunk_size;
910
911 if (mddev->bitmap && mddev->bitmap_file == NULL)
912 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
913
914 sb->disks[0].state = (1<<MD_DISK_REMOVED);
915 ITERATE_RDEV(mddev,rdev2,tmp) {
916 mdp_disk_t *d;
917 int desc_nr;
918 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
919 && !test_bit(Faulty, &rdev2->flags))
920 desc_nr = rdev2->raid_disk;
921 else
922 desc_nr = next_spare++;
923 rdev2->desc_nr = desc_nr;
924 d = &sb->disks[rdev2->desc_nr];
925 nr_disks++;
926 d->number = rdev2->desc_nr;
927 d->major = MAJOR(rdev2->bdev->bd_dev);
928 d->minor = MINOR(rdev2->bdev->bd_dev);
929 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
930 && !test_bit(Faulty, &rdev2->flags))
931 d->raid_disk = rdev2->raid_disk;
932 else
933 d->raid_disk = rdev2->desc_nr; /* compatibility */
934 if (test_bit(Faulty, &rdev2->flags))
935 d->state = (1<<MD_DISK_FAULTY);
936 else if (test_bit(In_sync, &rdev2->flags)) {
937 d->state = (1<<MD_DISK_ACTIVE);
938 d->state |= (1<<MD_DISK_SYNC);
939 active++;
940 working++;
941 } else {
942 d->state = 0;
943 spare++;
944 working++;
945 }
946 if (test_bit(WriteMostly, &rdev2->flags))
947 d->state |= (1<<MD_DISK_WRITEMOSTLY);
948 }
949 /* now set the "removed" and "faulty" bits on any missing devices */
950 for (i=0 ; i < mddev->raid_disks ; i++) {
951 mdp_disk_t *d = &sb->disks[i];
952 if (d->state == 0 && d->number == 0) {
953 d->number = i;
954 d->raid_disk = i;
955 d->state = (1<<MD_DISK_REMOVED);
956 d->state |= (1<<MD_DISK_FAULTY);
957 failed++;
958 }
959 }
960 sb->nr_disks = nr_disks;
961 sb->active_disks = active;
962 sb->working_disks = working;
963 sb->failed_disks = failed;
964 sb->spare_disks = spare;
965
966 sb->this_disk = sb->disks[rdev->desc_nr];
967 sb->sb_csum = calc_sb_csum(sb);
968 }
969
970 /*
971 * version 1 superblock
972 */
973
974 static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
975 {
976 unsigned int disk_csum, csum;
977 unsigned long long newcsum;
978 int size = 256 + le32_to_cpu(sb->max_dev)*2;
979 unsigned int *isuper = (unsigned int*)sb;
980 int i;
981
982 disk_csum = sb->sb_csum;
983 sb->sb_csum = 0;
984 newcsum = 0;
985 for (i=0; size>=4; size -= 4 )
986 newcsum += le32_to_cpu(*isuper++);
987
988 if (size == 2)
989 newcsum += le16_to_cpu(*(unsigned short*) isuper);
990
991 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
992 sb->sb_csum = disk_csum;
993 return cpu_to_le32(csum);
994 }
995
996 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
997 {
998 struct mdp_superblock_1 *sb;
999 int ret;
1000 sector_t sb_offset;
1001 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1002 int bmask;
1003
1004 /*
1005 * Calculate the position of the superblock.
1006 * It is always aligned to a 4K boundary and
1007 * depeding on minor_version, it can be:
1008 * 0: At least 8K, but less than 12K, from end of device
1009 * 1: At start of device
1010 * 2: 4K from start of device.
1011 */
1012 switch(minor_version) {
1013 case 0:
1014 sb_offset = rdev->bdev->bd_inode->i_size >> 9;
1015 sb_offset -= 8*2;
1016 sb_offset &= ~(sector_t)(4*2-1);
1017 /* convert from sectors to K */
1018 sb_offset /= 2;
1019 break;
1020 case 1:
1021 sb_offset = 0;
1022 break;
1023 case 2:
1024 sb_offset = 4;
1025 break;
1026 default:
1027 return -EINVAL;
1028 }
1029 rdev->sb_offset = sb_offset;
1030
1031 /* superblock is rarely larger than 1K, but it can be larger,
1032 * and it is safe to read 4k, so we do that
1033 */
1034 ret = read_disk_sb(rdev, 4096);
1035 if (ret) return ret;
1036
1037
1038 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1039
1040 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1041 sb->major_version != cpu_to_le32(1) ||
1042 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1043 le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
1044 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1045 return -EINVAL;
1046
1047 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1048 printk("md: invalid superblock checksum on %s\n",
1049 bdevname(rdev->bdev,b));
1050 return -EINVAL;
1051 }
1052 if (le64_to_cpu(sb->data_size) < 10) {
1053 printk("md: data_size too small on %s\n",
1054 bdevname(rdev->bdev,b));
1055 return -EINVAL;
1056 }
1057 rdev->preferred_minor = 0xffff;
1058 rdev->data_offset = le64_to_cpu(sb->data_offset);
1059 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1060
1061 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1062 bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
1063 if (rdev->sb_size & bmask)
1064 rdev-> sb_size = (rdev->sb_size | bmask)+1;
1065
1066 if (refdev == 0)
1067 ret = 1;
1068 else {
1069 __u64 ev1, ev2;
1070 struct mdp_superblock_1 *refsb =
1071 (struct mdp_superblock_1*)page_address(refdev->sb_page);
1072
1073 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1074 sb->level != refsb->level ||
1075 sb->layout != refsb->layout ||
1076 sb->chunksize != refsb->chunksize) {
1077 printk(KERN_WARNING "md: %s has strangely different"
1078 " superblock to %s\n",
1079 bdevname(rdev->bdev,b),
1080 bdevname(refdev->bdev,b2));
1081 return -EINVAL;
1082 }
1083 ev1 = le64_to_cpu(sb->events);
1084 ev2 = le64_to_cpu(refsb->events);
1085
1086 if (ev1 > ev2)
1087 ret = 1;
1088 else
1089 ret = 0;
1090 }
1091 if (minor_version)
1092 rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
1093 else
1094 rdev->size = rdev->sb_offset;
1095 if (rdev->size < le64_to_cpu(sb->data_size)/2)
1096 return -EINVAL;
1097 rdev->size = le64_to_cpu(sb->data_size)/2;
1098 if (le32_to_cpu(sb->chunksize))
1099 rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
1100
1101 if (le32_to_cpu(sb->size) > rdev->size*2)
1102 return -EINVAL;
1103 return ret;
1104 }
1105
1106 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1107 {
1108 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1109 __u64 ev1 = le64_to_cpu(sb->events);
1110
1111 rdev->raid_disk = -1;
1112 rdev->flags = 0;
1113 if (mddev->raid_disks == 0) {
1114 mddev->major_version = 1;
1115 mddev->patch_version = 0;
1116 mddev->persistent = 1;
1117 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1118 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1119 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1120 mddev->level = le32_to_cpu(sb->level);
1121 mddev->clevel[0] = 0;
1122 mddev->layout = le32_to_cpu(sb->layout);
1123 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1124 mddev->size = le64_to_cpu(sb->size)/2;
1125 mddev->events = ev1;
1126 mddev->bitmap_offset = 0;
1127 mddev->default_bitmap_offset = 1024 >> 9;
1128
1129 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1130 memcpy(mddev->uuid, sb->set_uuid, 16);
1131
1132 mddev->max_disks = (4096-256)/2;
1133
1134 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1135 mddev->bitmap_file == NULL ) {
1136 if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6
1137 && mddev->level != 10) {
1138 printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
1139 return -EINVAL;
1140 }
1141 mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1142 }
1143 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1144 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1145 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1146 mddev->new_level = le32_to_cpu(sb->new_level);
1147 mddev->new_layout = le32_to_cpu(sb->new_layout);
1148 mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
1149 } else {
1150 mddev->reshape_position = MaxSector;
1151 mddev->delta_disks = 0;
1152 mddev->new_level = mddev->level;
1153 mddev->new_layout = mddev->layout;
1154 mddev->new_chunk = mddev->chunk_size;
1155 }
1156
1157 } else if (mddev->pers == NULL) {
1158 /* Insist of good event counter while assembling */
1159 ++ev1;
1160 if (ev1 < mddev->events)
1161 return -EINVAL;
1162 } else if (mddev->bitmap) {
1163 /* If adding to array with a bitmap, then we can accept an
1164 * older device, but not too old.
1165 */
1166 if (ev1 < mddev->bitmap->events_cleared)
1167 return 0;
1168 } else {
1169 if (ev1 < mddev->events)
1170 /* just a hot-add of a new device, leave raid_disk at -1 */
1171 return 0;
1172 }
1173 if (mddev->level != LEVEL_MULTIPATH) {
1174 int role;
1175 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1176 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1177 switch(role) {
1178 case 0xffff: /* spare */
1179 break;
1180 case 0xfffe: /* faulty */
1181 set_bit(Faulty, &rdev->flags);
1182 break;
1183 default:
1184 if ((le32_to_cpu(sb->feature_map) &
1185 MD_FEATURE_RECOVERY_OFFSET))
1186 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1187 else
1188 set_bit(In_sync, &rdev->flags);
1189 rdev->raid_disk = role;
1190 break;
1191 }
1192 if (sb->devflags & WriteMostly1)
1193 set_bit(WriteMostly, &rdev->flags);
1194 } else /* MULTIPATH are always insync */
1195 set_bit(In_sync, &rdev->flags);
1196
1197 return 0;
1198 }
1199
1200 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1201 {
1202 struct mdp_superblock_1 *sb;
1203 struct list_head *tmp;
1204 mdk_rdev_t *rdev2;
1205 int max_dev, i;
1206 /* make rdev->sb match mddev and rdev data. */
1207
1208 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1209
1210 sb->feature_map = 0;
1211 sb->pad0 = 0;
1212 sb->recovery_offset = cpu_to_le64(0);
1213 memset(sb->pad1, 0, sizeof(sb->pad1));
1214 memset(sb->pad2, 0, sizeof(sb->pad2));
1215 memset(sb->pad3, 0, sizeof(sb->pad3));
1216
1217 sb->utime = cpu_to_le64((__u64)mddev->utime);
1218 sb->events = cpu_to_le64(mddev->events);
1219 if (mddev->in_sync)
1220 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1221 else
1222 sb->resync_offset = cpu_to_le64(0);
1223
1224 sb->cnt_corrected_read = atomic_read(&rdev->corrected_errors);
1225
1226 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1227 sb->size = cpu_to_le64(mddev->size<<1);
1228
1229 if (mddev->bitmap && mddev->bitmap_file == NULL) {
1230 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1231 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1232 }
1233
1234 if (rdev->raid_disk >= 0 &&
1235 !test_bit(In_sync, &rdev->flags) &&
1236 rdev->recovery_offset > 0) {
1237 sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1238 sb->recovery_offset = cpu_to_le64(rdev->recovery_offset);
1239 }
1240
1241 if (mddev->reshape_position != MaxSector) {
1242 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1243 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1244 sb->new_layout = cpu_to_le32(mddev->new_layout);
1245 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1246 sb->new_level = cpu_to_le32(mddev->new_level);
1247 sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
1248 }
1249
1250 max_dev = 0;
1251 ITERATE_RDEV(mddev,rdev2,tmp)
1252 if (rdev2->desc_nr+1 > max_dev)
1253 max_dev = rdev2->desc_nr+1;
1254
1255 sb->max_dev = cpu_to_le32(max_dev);
1256 for (i=0; i<max_dev;i++)
1257 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1258
1259 ITERATE_RDEV(mddev,rdev2,tmp) {
1260 i = rdev2->desc_nr;
1261 if (test_bit(Faulty, &rdev2->flags))
1262 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1263 else if (test_bit(In_sync, &rdev2->flags))
1264 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1265 else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
1266 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1267 else
1268 sb->dev_roles[i] = cpu_to_le16(0xffff);
1269 }
1270
1271 sb->sb_csum = calc_sb_1_csum(sb);
1272 }
1273
1274
1275 static struct super_type super_types[] = {
1276 [0] = {
1277 .name = "0.90.0",
1278 .owner = THIS_MODULE,
1279 .load_super = super_90_load,
1280 .validate_super = super_90_validate,
1281 .sync_super = super_90_sync,
1282 },
1283 [1] = {
1284 .name = "md-1",
1285 .owner = THIS_MODULE,
1286 .load_super = super_1_load,
1287 .validate_super = super_1_validate,
1288 .sync_super = super_1_sync,
1289 },
1290 };
1291
1292 static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
1293 {
1294 struct list_head *tmp;
1295 mdk_rdev_t *rdev;
1296
1297 ITERATE_RDEV(mddev,rdev,tmp)
1298 if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
1299 return rdev;
1300
1301 return NULL;
1302 }
1303
1304 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1305 {
1306 struct list_head *tmp;
1307 mdk_rdev_t *rdev;
1308
1309 ITERATE_RDEV(mddev1,rdev,tmp)
1310 if (match_dev_unit(mddev2, rdev))
1311 return 1;
1312
1313 return 0;
1314 }
1315
1316 static LIST_HEAD(pending_raid_disks);
1317
1318 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1319 {
1320 mdk_rdev_t *same_pdev;
1321 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1322 struct kobject *ko;
1323 char *s;
1324
1325 if (rdev->mddev) {
1326 MD_BUG();
1327 return -EINVAL;
1328 }
1329 /* make sure rdev->size exceeds mddev->size */
1330 if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
1331 if (mddev->pers)
1332 /* Cannot change size, so fail */
1333 return -ENOSPC;
1334 else
1335 mddev->size = rdev->size;
1336 }
1337 same_pdev = match_dev_unit(mddev, rdev);
1338 if (same_pdev)
1339 printk(KERN_WARNING
1340 "%s: WARNING: %s appears to be on the same physical"
1341 " disk as %s. True\n protection against single-disk"
1342 " failure might be compromised.\n",
1343 mdname(mddev), bdevname(rdev->bdev,b),
1344 bdevname(same_pdev->bdev,b2));
1345
1346 /* Verify rdev->desc_nr is unique.
1347 * If it is -1, assign a free number, else
1348 * check number is not in use
1349 */
1350 if (rdev->desc_nr < 0) {
1351 int choice = 0;
1352 if (mddev->pers) choice = mddev->raid_disks;
1353 while (find_rdev_nr(mddev, choice))
1354 choice++;
1355 rdev->desc_nr = choice;
1356 } else {
1357 if (find_rdev_nr(mddev, rdev->desc_nr))
1358 return -EBUSY;
1359 }
1360 bdevname(rdev->bdev,b);
1361 if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
1362 return -ENOMEM;
1363 while ( (s=strchr(rdev->kobj.k_name, '/')) != NULL)
1364 *s = '!';
1365
1366 list_add(&rdev->same_set, &mddev->disks);
1367 rdev->mddev = mddev;
1368 printk(KERN_INFO "md: bind<%s>\n", b);
1369
1370 rdev->kobj.parent = &mddev->kobj;
1371 kobject_add(&rdev->kobj);
1372
1373 if (rdev->bdev->bd_part)
1374 ko = &rdev->bdev->bd_part->kobj;
1375 else
1376 ko = &rdev->bdev->bd_disk->kobj;
1377 sysfs_create_link(&rdev->kobj, ko, "block");
1378 bd_claim_by_disk(rdev->bdev, rdev, mddev->gendisk);
1379 return 0;
1380 }
1381
1382 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1383 {
1384 char b[BDEVNAME_SIZE];
1385 if (!rdev->mddev) {
1386 MD_BUG();
1387 return;
1388 }
1389 bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1390 list_del_init(&rdev->same_set);
1391 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1392 rdev->mddev = NULL;
1393 sysfs_remove_link(&rdev->kobj, "block");
1394 kobject_del(&rdev->kobj);
1395 }
1396
1397 /*
1398 * prevent the device from being mounted, repartitioned or
1399 * otherwise reused by a RAID array (or any other kernel
1400 * subsystem), by bd_claiming the device.
1401 */
1402 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1403 {
1404 int err = 0;
1405 struct block_device *bdev;
1406 char b[BDEVNAME_SIZE];
1407
1408 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1409 if (IS_ERR(bdev)) {
1410 printk(KERN_ERR "md: could not open %s.\n",
1411 __bdevname(dev, b));
1412 return PTR_ERR(bdev);
1413 }
1414 err = bd_claim(bdev, rdev);
1415 if (err) {
1416 printk(KERN_ERR "md: could not bd_claim %s.\n",
1417 bdevname(bdev, b));
1418 blkdev_put(bdev);
1419 return err;
1420 }
1421 rdev->bdev = bdev;
1422 return err;
1423 }
1424
1425 static void unlock_rdev(mdk_rdev_t *rdev)
1426 {
1427 struct block_device *bdev = rdev->bdev;
1428 rdev->bdev = NULL;
1429 if (!bdev)
1430 MD_BUG();
1431 bd_release(bdev);
1432 blkdev_put(bdev);
1433 }
1434
1435 void md_autodetect_dev(dev_t dev);
1436
1437 static void export_rdev(mdk_rdev_t * rdev)
1438 {
1439 char b[BDEVNAME_SIZE];
1440 printk(KERN_INFO "md: export_rdev(%s)\n",
1441 bdevname(rdev->bdev,b));
1442 if (rdev->mddev)
1443 MD_BUG();
1444 free_disk_sb(rdev);
1445 list_del_init(&rdev->same_set);
1446 #ifndef MODULE
1447 md_autodetect_dev(rdev->bdev->bd_dev);
1448 #endif
1449 unlock_rdev(rdev);
1450 kobject_put(&rdev->kobj);
1451 }
1452
1453 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1454 {
1455 unbind_rdev_from_array(rdev);
1456 export_rdev(rdev);
1457 }
1458
1459 static void export_array(mddev_t *mddev)
1460 {
1461 struct list_head *tmp;
1462 mdk_rdev_t *rdev;
1463
1464 ITERATE_RDEV(mddev,rdev,tmp) {
1465 if (!rdev->mddev) {
1466 MD_BUG();
1467 continue;
1468 }
1469 kick_rdev_from_array(rdev);
1470 }
1471 if (!list_empty(&mddev->disks))
1472 MD_BUG();
1473 mddev->raid_disks = 0;
1474 mddev->major_version = 0;
1475 }
1476
1477 static void print_desc(mdp_disk_t *desc)
1478 {
1479 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1480 desc->major,desc->minor,desc->raid_disk,desc->state);
1481 }
1482
1483 static void print_sb(mdp_super_t *sb)
1484 {
1485 int i;
1486
1487 printk(KERN_INFO
1488 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1489 sb->major_version, sb->minor_version, sb->patch_version,
1490 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1491 sb->ctime);
1492 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1493 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1494 sb->md_minor, sb->layout, sb->chunk_size);
1495 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
1496 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
1497 sb->utime, sb->state, sb->active_disks, sb->working_disks,
1498 sb->failed_disks, sb->spare_disks,
1499 sb->sb_csum, (unsigned long)sb->events_lo);
1500
1501 printk(KERN_INFO);
1502 for (i = 0; i < MD_SB_DISKS; i++) {
1503 mdp_disk_t *desc;
1504
1505 desc = sb->disks + i;
1506 if (desc->number || desc->major || desc->minor ||
1507 desc->raid_disk || (desc->state && (desc->state != 4))) {
1508 printk(" D %2d: ", i);
1509 print_desc(desc);
1510 }
1511 }
1512 printk(KERN_INFO "md: THIS: ");
1513 print_desc(&sb->this_disk);
1514
1515 }
1516
1517 static void print_rdev(mdk_rdev_t *rdev)
1518 {
1519 char b[BDEVNAME_SIZE];
1520 printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1521 bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1522 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1523 rdev->desc_nr);
1524 if (rdev->sb_loaded) {
1525 printk(KERN_INFO "md: rdev superblock:\n");
1526 print_sb((mdp_super_t*)page_address(rdev->sb_page));
1527 } else
1528 printk(KERN_INFO "md: no rdev superblock!\n");
1529 }
1530
1531 static void md_print_devices(void)
1532 {
1533 struct list_head *tmp, *tmp2;
1534 mdk_rdev_t *rdev;
1535 mddev_t *mddev;
1536 char b[BDEVNAME_SIZE];
1537
1538 printk("\n");
1539 printk("md: **********************************\n");
1540 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
1541 printk("md: **********************************\n");
1542 ITERATE_MDDEV(mddev,tmp) {
1543
1544 if (mddev->bitmap)
1545 bitmap_print_sb(mddev->bitmap);
1546 else
1547 printk("%s: ", mdname(mddev));
1548 ITERATE_RDEV(mddev,rdev,tmp2)
1549 printk("<%s>", bdevname(rdev->bdev,b));
1550 printk("\n");
1551
1552 ITERATE_RDEV(mddev,rdev,tmp2)
1553 print_rdev(rdev);
1554 }
1555 printk("md: **********************************\n");
1556 printk("\n");
1557 }
1558
1559
1560 static void sync_sbs(mddev_t * mddev, int nospares)
1561 {
1562 /* Update each superblock (in-memory image), but
1563 * if we are allowed to, skip spares which already
1564 * have the right event counter, or have one earlier
1565 * (which would mean they aren't being marked as dirty
1566 * with the rest of the array)
1567 */
1568 mdk_rdev_t *rdev;
1569 struct list_head *tmp;
1570
1571 ITERATE_RDEV(mddev,rdev,tmp) {
1572 if (rdev->sb_events == mddev->events ||
1573 (nospares &&
1574 rdev->raid_disk < 0 &&
1575 (rdev->sb_events&1)==0 &&
1576 rdev->sb_events+1 == mddev->events)) {
1577 /* Don't update this superblock */
1578 rdev->sb_loaded = 2;
1579 } else {
1580 super_types[mddev->major_version].
1581 sync_super(mddev, rdev);
1582 rdev->sb_loaded = 1;
1583 }
1584 }
1585 }
1586
1587 void md_update_sb(mddev_t * mddev)
1588 {
1589 int err;
1590 struct list_head *tmp;
1591 mdk_rdev_t *rdev;
1592 int sync_req;
1593 int nospares = 0;
1594
1595 repeat:
1596 spin_lock_irq(&mddev->write_lock);
1597 sync_req = mddev->in_sync;
1598 mddev->utime = get_seconds();
1599 if (mddev->sb_dirty == 3)
1600 /* just a clean<-> dirty transition, possibly leave spares alone,
1601 * though if events isn't the right even/odd, we will have to do
1602 * spares after all
1603 */
1604 nospares = 1;
1605
1606 /* If this is just a dirty<->clean transition, and the array is clean
1607 * and 'events' is odd, we can roll back to the previous clean state */
1608 if (mddev->sb_dirty == 3
1609 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
1610 && (mddev->events & 1))
1611 mddev->events--;
1612 else {
1613 /* otherwise we have to go forward and ... */
1614 mddev->events ++;
1615 if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
1616 /* .. if the array isn't clean, insist on an odd 'events' */
1617 if ((mddev->events&1)==0) {
1618 mddev->events++;
1619 nospares = 0;
1620 }
1621 } else {
1622 /* otherwise insist on an even 'events' (for clean states) */
1623 if ((mddev->events&1)) {
1624 mddev->events++;
1625 nospares = 0;
1626 }
1627 }
1628 }
1629
1630 if (!mddev->events) {
1631 /*
1632 * oops, this 64-bit counter should never wrap.
1633 * Either we are in around ~1 trillion A.C., assuming
1634 * 1 reboot per second, or we have a bug:
1635 */
1636 MD_BUG();
1637 mddev->events --;
1638 }
1639 mddev->sb_dirty = 2;
1640 sync_sbs(mddev, nospares);
1641
1642 /*
1643 * do not write anything to disk if using
1644 * nonpersistent superblocks
1645 */
1646 if (!mddev->persistent) {
1647 mddev->sb_dirty = 0;
1648 spin_unlock_irq(&mddev->write_lock);
1649 wake_up(&mddev->sb_wait);
1650 return;
1651 }
1652 spin_unlock_irq(&mddev->write_lock);
1653
1654 dprintk(KERN_INFO
1655 "md: updating %s RAID superblock on device (in sync %d)\n",
1656 mdname(mddev),mddev->in_sync);
1657
1658 err = bitmap_update_sb(mddev->bitmap);
1659 ITERATE_RDEV(mddev,rdev,tmp) {
1660 char b[BDEVNAME_SIZE];
1661 dprintk(KERN_INFO "md: ");
1662 if (rdev->sb_loaded != 1)
1663 continue; /* no noise on spare devices */
1664 if (test_bit(Faulty, &rdev->flags))
1665 dprintk("(skipping faulty ");
1666
1667 dprintk("%s ", bdevname(rdev->bdev,b));
1668 if (!test_bit(Faulty, &rdev->flags)) {
1669 md_super_write(mddev,rdev,
1670 rdev->sb_offset<<1, rdev->sb_size,
1671 rdev->sb_page);
1672 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1673 bdevname(rdev->bdev,b),
1674 (unsigned long long)rdev->sb_offset);
1675 rdev->sb_events = mddev->events;
1676
1677 } else
1678 dprintk(")\n");
1679 if (mddev->level == LEVEL_MULTIPATH)
1680 /* only need to write one superblock... */
1681 break;
1682 }
1683 md_super_wait(mddev);
1684 /* if there was a failure, sb_dirty was set to 1, and we re-write super */
1685
1686 spin_lock_irq(&mddev->write_lock);
1687 if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
1688 /* have to write it out again */
1689 spin_unlock_irq(&mddev->write_lock);
1690 goto repeat;
1691 }
1692 mddev->sb_dirty = 0;
1693 spin_unlock_irq(&mddev->write_lock);
1694 wake_up(&mddev->sb_wait);
1695
1696 }
1697 EXPORT_SYMBOL_GPL(md_update_sb);
1698
1699 /* words written to sysfs files may, or my not, be \n terminated.
1700 * We want to accept with case. For this we use cmd_match.
1701 */
1702 static int cmd_match(const char *cmd, const char *str)
1703 {
1704 /* See if cmd, written into a sysfs file, matches
1705 * str. They must either be the same, or cmd can
1706 * have a trailing newline
1707 */
1708 while (*cmd && *str && *cmd == *str) {
1709 cmd++;
1710 str++;
1711 }
1712 if (*cmd == '\n')
1713 cmd++;
1714 if (*str || *cmd)
1715 return 0;
1716 return 1;
1717 }
1718
1719 struct rdev_sysfs_entry {
1720 struct attribute attr;
1721 ssize_t (*show)(mdk_rdev_t *, char *);
1722 ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1723 };
1724
1725 static ssize_t
1726 state_show(mdk_rdev_t *rdev, char *page)
1727 {
1728 char *sep = "";
1729 int len=0;
1730
1731 if (test_bit(Faulty, &rdev->flags)) {
1732 len+= sprintf(page+len, "%sfaulty",sep);
1733 sep = ",";
1734 }
1735 if (test_bit(In_sync, &rdev->flags)) {
1736 len += sprintf(page+len, "%sin_sync",sep);
1737 sep = ",";
1738 }
1739 if (test_bit(WriteMostly, &rdev->flags)) {
1740 len += sprintf(page+len, "%swrite_mostly",sep);
1741 sep = ",";
1742 }
1743 if (!test_bit(Faulty, &rdev->flags) &&
1744 !test_bit(In_sync, &rdev->flags)) {
1745 len += sprintf(page+len, "%sspare", sep);
1746 sep = ",";
1747 }
1748 return len+sprintf(page+len, "\n");
1749 }
1750
1751 static ssize_t
1752 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1753 {
1754 /* can write
1755 * faulty - simulates and error
1756 * remove - disconnects the device
1757 * writemostly - sets write_mostly
1758 * -writemostly - clears write_mostly
1759 */
1760 int err = -EINVAL;
1761 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
1762 md_error(rdev->mddev, rdev);
1763 err = 0;
1764 } else if (cmd_match(buf, "remove")) {
1765 if (rdev->raid_disk >= 0)
1766 err = -EBUSY;
1767 else {
1768 mddev_t *mddev = rdev->mddev;
1769 kick_rdev_from_array(rdev);
1770 md_update_sb(mddev);
1771 md_new_event(mddev);
1772 err = 0;
1773 }
1774 } else if (cmd_match(buf, "writemostly")) {
1775 set_bit(WriteMostly, &rdev->flags);
1776 err = 0;
1777 } else if (cmd_match(buf, "-writemostly")) {
1778 clear_bit(WriteMostly, &rdev->flags);
1779 err = 0;
1780 }
1781 return err ? err : len;
1782 }
1783 static struct rdev_sysfs_entry
1784 rdev_state = __ATTR(state, 0644, state_show, state_store);
1785
1786 static ssize_t
1787 super_show(mdk_rdev_t *rdev, char *page)
1788 {
1789 if (rdev->sb_loaded && rdev->sb_size) {
1790 memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
1791 return rdev->sb_size;
1792 } else
1793 return 0;
1794 }
1795 static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
1796
1797 static ssize_t
1798 errors_show(mdk_rdev_t *rdev, char *page)
1799 {
1800 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
1801 }
1802
1803 static ssize_t
1804 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1805 {
1806 char *e;
1807 unsigned long n = simple_strtoul(buf, &e, 10);
1808 if (*buf && (*e == 0 || *e == '\n')) {
1809 atomic_set(&rdev->corrected_errors, n);
1810 return len;
1811 }
1812 return -EINVAL;
1813 }
1814 static struct rdev_sysfs_entry rdev_errors =
1815 __ATTR(errors, 0644, errors_show, errors_store);
1816
1817 static ssize_t
1818 slot_show(mdk_rdev_t *rdev, char *page)
1819 {
1820 if (rdev->raid_disk < 0)
1821 return sprintf(page, "none\n");
1822 else
1823 return sprintf(page, "%d\n", rdev->raid_disk);
1824 }
1825
1826 static ssize_t
1827 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1828 {
1829 char *e;
1830 int slot = simple_strtoul(buf, &e, 10);
1831 if (strncmp(buf, "none", 4)==0)
1832 slot = -1;
1833 else if (e==buf || (*e && *e!= '\n'))
1834 return -EINVAL;
1835 if (rdev->mddev->pers)
1836 /* Cannot set slot in active array (yet) */
1837 return -EBUSY;
1838 if (slot >= rdev->mddev->raid_disks)
1839 return -ENOSPC;
1840 rdev->raid_disk = slot;
1841 /* assume it is working */
1842 rdev->flags = 0;
1843 set_bit(In_sync, &rdev->flags);
1844 return len;
1845 }
1846
1847
1848 static struct rdev_sysfs_entry rdev_slot =
1849 __ATTR(slot, 0644, slot_show, slot_store);
1850
1851 static ssize_t
1852 offset_show(mdk_rdev_t *rdev, char *page)
1853 {
1854 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
1855 }
1856
1857 static ssize_t
1858 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1859 {
1860 char *e;
1861 unsigned long long offset = simple_strtoull(buf, &e, 10);
1862 if (e==buf || (*e && *e != '\n'))
1863 return -EINVAL;
1864 if (rdev->mddev->pers)
1865 return -EBUSY;
1866 rdev->data_offset = offset;
1867 return len;
1868 }
1869
1870 static struct rdev_sysfs_entry rdev_offset =
1871 __ATTR(offset, 0644, offset_show, offset_store);
1872
1873 static ssize_t
1874 rdev_size_show(mdk_rdev_t *rdev, char *page)
1875 {
1876 return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
1877 }
1878
1879 static ssize_t
1880 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1881 {
1882 char *e;
1883 unsigned long long size = simple_strtoull(buf, &e, 10);
1884 if (e==buf || (*e && *e != '\n'))
1885 return -EINVAL;
1886 if (rdev->mddev->pers)
1887 return -EBUSY;
1888 rdev->size = size;
1889 if (size < rdev->mddev->size || rdev->mddev->size == 0)
1890 rdev->mddev->size = size;
1891 return len;
1892 }
1893
1894 static struct rdev_sysfs_entry rdev_size =
1895 __ATTR(size, 0644, rdev_size_show, rdev_size_store);
1896
1897 static struct attribute *rdev_default_attrs[] = {
1898 &rdev_state.attr,
1899 &rdev_super.attr,
1900 &rdev_errors.attr,
1901 &rdev_slot.attr,
1902 &rdev_offset.attr,
1903 &rdev_size.attr,
1904 NULL,
1905 };
1906 static ssize_t
1907 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1908 {
1909 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1910 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1911
1912 if (!entry->show)
1913 return -EIO;
1914 return entry->show(rdev, page);
1915 }
1916
1917 static ssize_t
1918 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
1919 const char *page, size_t length)
1920 {
1921 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1922 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1923
1924 if (!entry->store)
1925 return -EIO;
1926 return entry->store(rdev, page, length);
1927 }
1928
1929 static void rdev_free(struct kobject *ko)
1930 {
1931 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
1932 kfree(rdev);
1933 }
1934 static struct sysfs_ops rdev_sysfs_ops = {
1935 .show = rdev_attr_show,
1936 .store = rdev_attr_store,
1937 };
1938 static struct kobj_type rdev_ktype = {
1939 .release = rdev_free,
1940 .sysfs_ops = &rdev_sysfs_ops,
1941 .default_attrs = rdev_default_attrs,
1942 };
1943
1944 /*
1945 * Import a device. If 'super_format' >= 0, then sanity check the superblock
1946 *
1947 * mark the device faulty if:
1948 *
1949 * - the device is nonexistent (zero size)
1950 * - the device has no valid superblock
1951 *
1952 * a faulty rdev _never_ has rdev->sb set.
1953 */
1954 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1955 {
1956 char b[BDEVNAME_SIZE];
1957 int err;
1958 mdk_rdev_t *rdev;
1959 sector_t size;
1960
1961 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
1962 if (!rdev) {
1963 printk(KERN_ERR "md: could not alloc mem for new device!\n");
1964 return ERR_PTR(-ENOMEM);
1965 }
1966
1967 if ((err = alloc_disk_sb(rdev)))
1968 goto abort_free;
1969
1970 err = lock_rdev(rdev, newdev);
1971 if (err)
1972 goto abort_free;
1973
1974 rdev->kobj.parent = NULL;
1975 rdev->kobj.ktype = &rdev_ktype;
1976 kobject_init(&rdev->kobj);
1977
1978 rdev->desc_nr = -1;
1979 rdev->flags = 0;
1980 rdev->data_offset = 0;
1981 rdev->sb_events = 0;
1982 atomic_set(&rdev->nr_pending, 0);
1983 atomic_set(&rdev->read_errors, 0);
1984 atomic_set(&rdev->corrected_errors, 0);
1985
1986 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
1987 if (!size) {
1988 printk(KERN_WARNING
1989 "md: %s has zero or unknown size, marking faulty!\n",
1990 bdevname(rdev->bdev,b));
1991 err = -EINVAL;
1992 goto abort_free;
1993 }
1994
1995 if (super_format >= 0) {
1996 err = super_types[super_format].
1997 load_super(rdev, NULL, super_minor);
1998 if (err == -EINVAL) {
1999 printk(KERN_WARNING
2000 "md: %s has invalid sb, not importing!\n",
2001 bdevname(rdev->bdev,b));
2002 goto abort_free;
2003 }
2004 if (err < 0) {
2005 printk(KERN_WARNING
2006 "md: could not read %s's sb, not importing!\n",
2007 bdevname(rdev->bdev,b));
2008 goto abort_free;
2009 }
2010 }
2011 INIT_LIST_HEAD(&rdev->same_set);
2012
2013 return rdev;
2014
2015 abort_free:
2016 if (rdev->sb_page) {
2017 if (rdev->bdev)
2018 unlock_rdev(rdev);
2019 free_disk_sb(rdev);
2020 }
2021 kfree(rdev);
2022 return ERR_PTR(err);
2023 }
2024
2025 /*
2026 * Check a full RAID array for plausibility
2027 */
2028
2029
2030 static void analyze_sbs(mddev_t * mddev)
2031 {
2032 int i;
2033 struct list_head *tmp;
2034 mdk_rdev_t *rdev, *freshest;
2035 char b[BDEVNAME_SIZE];
2036
2037 freshest = NULL;
2038 ITERATE_RDEV(mddev,rdev,tmp)
2039 switch (super_types[mddev->major_version].
2040 load_super(rdev, freshest, mddev->minor_version)) {
2041 case 1:
2042 freshest = rdev;
2043 break;
2044 case 0:
2045 break;
2046 default:
2047 printk( KERN_ERR \
2048 "md: fatal superblock inconsistency in %s"
2049 " -- removing from array\n",
2050 bdevname(rdev->bdev,b));
2051 kick_rdev_from_array(rdev);
2052 }
2053
2054
2055 super_types[mddev->major_version].
2056 validate_super(mddev, freshest);
2057
2058 i = 0;
2059 ITERATE_RDEV(mddev,rdev,tmp) {
2060 if (rdev != freshest)
2061 if (super_types[mddev->major_version].
2062 validate_super(mddev, rdev)) {
2063 printk(KERN_WARNING "md: kicking non-fresh %s"
2064 " from array!\n",
2065 bdevname(rdev->bdev,b));
2066 kick_rdev_from_array(rdev);
2067 continue;
2068 }
2069 if (mddev->level == LEVEL_MULTIPATH) {
2070 rdev->desc_nr = i++;
2071 rdev->raid_disk = rdev->desc_nr;
2072 set_bit(In_sync, &rdev->flags);
2073 }
2074 }
2075
2076
2077
2078 if (mddev->recovery_cp != MaxSector &&
2079 mddev->level >= 1)
2080 printk(KERN_ERR "md: %s: raid array is not clean"
2081 " -- starting background reconstruction\n",
2082 mdname(mddev));
2083
2084 }
2085
2086 static ssize_t
2087 safe_delay_show(mddev_t *mddev, char *page)
2088 {
2089 int msec = (mddev->safemode_delay*1000)/HZ;
2090 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2091 }
2092 static ssize_t
2093 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2094 {
2095 int scale=1;
2096 int dot=0;
2097 int i;
2098 unsigned long msec;
2099 char buf[30];
2100 char *e;
2101 /* remove a period, and count digits after it */
2102 if (len >= sizeof(buf))
2103 return -EINVAL;
2104 strlcpy(buf, cbuf, len);
2105 buf[len] = 0;
2106 for (i=0; i<len; i++) {
2107 if (dot) {
2108 if (isdigit(buf[i])) {
2109 buf[i-1] = buf[i];
2110 scale *= 10;
2111 }
2112 buf[i] = 0;
2113 } else if (buf[i] == '.') {
2114 dot=1;
2115 buf[i] = 0;
2116 }
2117 }
2118 msec = simple_strtoul(buf, &e, 10);
2119 if (e == buf || (*e && *e != '\n'))
2120 return -EINVAL;
2121 msec = (msec * 1000) / scale;
2122 if (msec == 0)
2123 mddev->safemode_delay = 0;
2124 else {
2125 mddev->safemode_delay = (msec*HZ)/1000;
2126 if (mddev->safemode_delay == 0)
2127 mddev->safemode_delay = 1;
2128 }
2129 return len;
2130 }
2131 static struct md_sysfs_entry md_safe_delay =
2132 __ATTR(safe_mode_delay, 0644,safe_delay_show, safe_delay_store);
2133
2134 static ssize_t
2135 level_show(mddev_t *mddev, char *page)
2136 {
2137 struct mdk_personality *p = mddev->pers;
2138 if (p)
2139 return sprintf(page, "%s\n", p->name);
2140 else if (mddev->clevel[0])
2141 return sprintf(page, "%s\n", mddev->clevel);
2142 else if (mddev->level != LEVEL_NONE)
2143 return sprintf(page, "%d\n", mddev->level);
2144 else
2145 return 0;
2146 }
2147
2148 static ssize_t
2149 level_store(mddev_t *mddev, const char *buf, size_t len)
2150 {
2151 int rv = len;
2152 if (mddev->pers)
2153 return -EBUSY;
2154 if (len == 0)
2155 return 0;
2156 if (len >= sizeof(mddev->clevel))
2157 return -ENOSPC;
2158 strncpy(mddev->clevel, buf, len);
2159 if (mddev->clevel[len-1] == '\n')
2160 len--;
2161 mddev->clevel[len] = 0;
2162 mddev->level = LEVEL_NONE;
2163 return rv;
2164 }
2165
2166 static struct md_sysfs_entry md_level =
2167 __ATTR(level, 0644, level_show, level_store);
2168
2169
2170 static ssize_t
2171 layout_show(mddev_t *mddev, char *page)
2172 {
2173 /* just a number, not meaningful for all levels */
2174 return sprintf(page, "%d\n", mddev->layout);
2175 }
2176
2177 static ssize_t
2178 layout_store(mddev_t *mddev, const char *buf, size_t len)
2179 {
2180 char *e;
2181 unsigned long n = simple_strtoul(buf, &e, 10);
2182 if (mddev->pers)
2183 return -EBUSY;
2184
2185 if (!*buf || (*e && *e != '\n'))
2186 return -EINVAL;
2187
2188 mddev->layout = n;
2189 return len;
2190 }
2191 static struct md_sysfs_entry md_layout =
2192 __ATTR(layout, 0655, layout_show, layout_store);
2193
2194
2195 static ssize_t
2196 raid_disks_show(mddev_t *mddev, char *page)
2197 {
2198 if (mddev->raid_disks == 0)
2199 return 0;
2200 return sprintf(page, "%d\n", mddev->raid_disks);
2201 }
2202
2203 static int update_raid_disks(mddev_t *mddev, int raid_disks);
2204
2205 static ssize_t
2206 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
2207 {
2208 /* can only set raid_disks if array is not yet active */
2209 char *e;
2210 int rv = 0;
2211 unsigned long n = simple_strtoul(buf, &e, 10);
2212
2213 if (!*buf || (*e && *e != '\n'))
2214 return -EINVAL;
2215
2216 if (mddev->pers)
2217 rv = update_raid_disks(mddev, n);
2218 else
2219 mddev->raid_disks = n;
2220 return rv ? rv : len;
2221 }
2222 static struct md_sysfs_entry md_raid_disks =
2223 __ATTR(raid_disks, 0644, raid_disks_show, raid_disks_store);
2224
2225 static ssize_t
2226 chunk_size_show(mddev_t *mddev, char *page)
2227 {
2228 return sprintf(page, "%d\n", mddev->chunk_size);
2229 }
2230
2231 static ssize_t
2232 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
2233 {
2234 /* can only set chunk_size if array is not yet active */
2235 char *e;
2236 unsigned long n = simple_strtoul(buf, &e, 10);
2237
2238 if (mddev->pers)
2239 return -EBUSY;
2240 if (!*buf || (*e && *e != '\n'))
2241 return -EINVAL;
2242
2243 mddev->chunk_size = n;
2244 return len;
2245 }
2246 static struct md_sysfs_entry md_chunk_size =
2247 __ATTR(chunk_size, 0644, chunk_size_show, chunk_size_store);
2248
2249 static ssize_t
2250 resync_start_show(mddev_t *mddev, char *page)
2251 {
2252 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
2253 }
2254
2255 static ssize_t
2256 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
2257 {
2258 /* can only set chunk_size if array is not yet active */
2259 char *e;
2260 unsigned long long n = simple_strtoull(buf, &e, 10);
2261
2262 if (mddev->pers)
2263 return -EBUSY;
2264 if (!*buf || (*e && *e != '\n'))
2265 return -EINVAL;
2266
2267 mddev->recovery_cp = n;
2268 return len;
2269 }
2270 static struct md_sysfs_entry md_resync_start =
2271 __ATTR(resync_start, 0644, resync_start_show, resync_start_store);
2272
2273 /*
2274 * The array state can be:
2275 *
2276 * clear
2277 * No devices, no size, no level
2278 * Equivalent to STOP_ARRAY ioctl
2279 * inactive
2280 * May have some settings, but array is not active
2281 * all IO results in error
2282 * When written, doesn't tear down array, but just stops it
2283 * suspended (not supported yet)
2284 * All IO requests will block. The array can be reconfigured.
2285 * Writing this, if accepted, will block until array is quiessent
2286 * readonly
2287 * no resync can happen. no superblocks get written.
2288 * write requests fail
2289 * read-auto
2290 * like readonly, but behaves like 'clean' on a write request.
2291 *
2292 * clean - no pending writes, but otherwise active.
2293 * When written to inactive array, starts without resync
2294 * If a write request arrives then
2295 * if metadata is known, mark 'dirty' and switch to 'active'.
2296 * if not known, block and switch to write-pending
2297 * If written to an active array that has pending writes, then fails.
2298 * active
2299 * fully active: IO and resync can be happening.
2300 * When written to inactive array, starts with resync
2301 *
2302 * write-pending
2303 * clean, but writes are blocked waiting for 'active' to be written.
2304 *
2305 * active-idle
2306 * like active, but no writes have been seen for a while (100msec).
2307 *
2308 */
2309 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
2310 write_pending, active_idle, bad_word};
2311 static char *array_states[] = {
2312 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
2313 "write-pending", "active-idle", NULL };
2314
2315 static int match_word(const char *word, char **list)
2316 {
2317 int n;
2318 for (n=0; list[n]; n++)
2319 if (cmd_match(word, list[n]))
2320 break;
2321 return n;
2322 }
2323
2324 static ssize_t
2325 array_state_show(mddev_t *mddev, char *page)
2326 {
2327 enum array_state st = inactive;
2328
2329 if (mddev->pers)
2330 switch(mddev->ro) {
2331 case 1:
2332 st = readonly;
2333 break;
2334 case 2:
2335 st = read_auto;
2336 break;
2337 case 0:
2338 if (mddev->in_sync)
2339 st = clean;
2340 else if (mddev->safemode)
2341 st = active_idle;
2342 else
2343 st = active;
2344 }
2345 else {
2346 if (list_empty(&mddev->disks) &&
2347 mddev->raid_disks == 0 &&
2348 mddev->size == 0)
2349 st = clear;
2350 else
2351 st = inactive;
2352 }
2353 return sprintf(page, "%s\n", array_states[st]);
2354 }
2355
2356 static int do_md_stop(mddev_t * mddev, int ro);
2357 static int do_md_run(mddev_t * mddev);
2358 static int restart_array(mddev_t *mddev);
2359
2360 static ssize_t
2361 array_state_store(mddev_t *mddev, const char *buf, size_t len)
2362 {
2363 int err = -EINVAL;
2364 enum array_state st = match_word(buf, array_states);
2365 switch(st) {
2366 case bad_word:
2367 break;
2368 case clear:
2369 /* stopping an active array */
2370 if (mddev->pers) {
2371 if (atomic_read(&mddev->active) > 1)
2372 return -EBUSY;
2373 err = do_md_stop(mddev, 0);
2374 }
2375 break;
2376 case inactive:
2377 /* stopping an active array */
2378 if (mddev->pers) {
2379 if (atomic_read(&mddev->active) > 1)
2380 return -EBUSY;
2381 err = do_md_stop(mddev, 2);
2382 }
2383 break;
2384 case suspended:
2385 break; /* not supported yet */
2386 case readonly:
2387 if (mddev->pers)
2388 err = do_md_stop(mddev, 1);
2389 else {
2390 mddev->ro = 1;
2391 err = do_md_run(mddev);
2392 }
2393 break;
2394 case read_auto:
2395 /* stopping an active array */
2396 if (mddev->pers) {
2397 err = do_md_stop(mddev, 1);
2398 if (err == 0)
2399 mddev->ro = 2; /* FIXME mark devices writable */
2400 } else {
2401 mddev->ro = 2;
2402 err = do_md_run(mddev);
2403 }
2404 break;
2405 case clean:
2406 if (mddev->pers) {
2407 restart_array(mddev);
2408 spin_lock_irq(&mddev->write_lock);
2409 if (atomic_read(&mddev->writes_pending) == 0) {
2410 mddev->in_sync = 1;
2411 mddev->sb_dirty = 1;
2412 }
2413 spin_unlock_irq(&mddev->write_lock);
2414 } else {
2415 mddev->ro = 0;
2416 mddev->recovery_cp = MaxSector;
2417 err = do_md_run(mddev);
2418 }
2419 break;
2420 case active:
2421 if (mddev->pers) {
2422 restart_array(mddev);
2423 mddev->sb_dirty = 0;
2424 wake_up(&mddev->sb_wait);
2425 err = 0;
2426 } else {
2427 mddev->ro = 0;
2428 err = do_md_run(mddev);
2429 }
2430 break;
2431 case write_pending:
2432 case active_idle:
2433 /* these cannot be set */
2434 break;
2435 }
2436 if (err)
2437 return err;
2438 else
2439 return len;
2440 }
2441 static struct md_sysfs_entry md_array_state = __ATTR(array_state, 0644, array_state_show, array_state_store);
2442
2443 static ssize_t
2444 null_show(mddev_t *mddev, char *page)
2445 {
2446 return -EINVAL;
2447 }
2448
2449 static ssize_t
2450 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
2451 {
2452 /* buf must be %d:%d\n? giving major and minor numbers */
2453 /* The new device is added to the array.
2454 * If the array has a persistent superblock, we read the
2455 * superblock to initialise info and check validity.
2456 * Otherwise, only checking done is that in bind_rdev_to_array,
2457 * which mainly checks size.
2458 */
2459 char *e;
2460 int major = simple_strtoul(buf, &e, 10);
2461 int minor;
2462 dev_t dev;
2463 mdk_rdev_t *rdev;
2464 int err;
2465
2466 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
2467 return -EINVAL;
2468 minor = simple_strtoul(e+1, &e, 10);
2469 if (*e && *e != '\n')
2470 return -EINVAL;
2471 dev = MKDEV(major, minor);
2472 if (major != MAJOR(dev) ||
2473 minor != MINOR(dev))
2474 return -EOVERFLOW;
2475
2476
2477 if (mddev->persistent) {
2478 rdev = md_import_device(dev, mddev->major_version,
2479 mddev->minor_version);
2480 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
2481 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2482 mdk_rdev_t, same_set);
2483 err = super_types[mddev->major_version]
2484 .load_super(rdev, rdev0, mddev->minor_version);
2485 if (err < 0)
2486 goto out;
2487 }
2488 } else
2489 rdev = md_import_device(dev, -1, -1);
2490
2491 if (IS_ERR(rdev))
2492 return PTR_ERR(rdev);
2493 err = bind_rdev_to_array(rdev, mddev);
2494 out:
2495 if (err)
2496 export_rdev(rdev);
2497 return err ? err : len;
2498 }
2499
2500 static struct md_sysfs_entry md_new_device =
2501 __ATTR(new_dev, 0200, null_show, new_dev_store);
2502
2503 static ssize_t
2504 size_show(mddev_t *mddev, char *page)
2505 {
2506 return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
2507 }
2508
2509 static int update_size(mddev_t *mddev, unsigned long size);
2510
2511 static ssize_t
2512 size_store(mddev_t *mddev, const char *buf, size_t len)
2513 {
2514 /* If array is inactive, we can reduce the component size, but
2515 * not increase it (except from 0).
2516 * If array is active, we can try an on-line resize
2517 */
2518 char *e;
2519 int err = 0;
2520 unsigned long long size = simple_strtoull(buf, &e, 10);
2521 if (!*buf || *buf == '\n' ||
2522 (*e && *e != '\n'))
2523 return -EINVAL;
2524
2525 if (mddev->pers) {
2526 err = update_size(mddev, size);
2527 md_update_sb(mddev);
2528 } else {
2529 if (mddev->size == 0 ||
2530 mddev->size > size)
2531 mddev->size = size;
2532 else
2533 err = -ENOSPC;
2534 }
2535 return err ? err : len;
2536 }
2537
2538 static struct md_sysfs_entry md_size =
2539 __ATTR(component_size, 0644, size_show, size_store);
2540
2541
2542 /* Metdata version.
2543 * This is either 'none' for arrays with externally managed metadata,
2544 * or N.M for internally known formats
2545 */
2546 static ssize_t
2547 metadata_show(mddev_t *mddev, char *page)
2548 {
2549 if (mddev->persistent)
2550 return sprintf(page, "%d.%d\n",
2551 mddev->major_version, mddev->minor_version);
2552 else
2553 return sprintf(page, "none\n");
2554 }
2555
2556 static ssize_t
2557 metadata_store(mddev_t *mddev, const char *buf, size_t len)
2558 {
2559 int major, minor;
2560 char *e;
2561 if (!list_empty(&mddev->disks))
2562 return -EBUSY;
2563
2564 if (cmd_match(buf, "none")) {
2565 mddev->persistent = 0;
2566 mddev->major_version = 0;
2567 mddev->minor_version = 90;
2568 return len;
2569 }
2570 major = simple_strtoul(buf, &e, 10);
2571 if (e==buf || *e != '.')
2572 return -EINVAL;
2573 buf = e+1;
2574 minor = simple_strtoul(buf, &e, 10);
2575 if (e==buf || *e != '\n')
2576 return -EINVAL;
2577 if (major >= sizeof(super_types)/sizeof(super_types[0]) ||
2578 super_types[major].name == NULL)
2579 return -ENOENT;
2580 mddev->major_version = major;
2581 mddev->minor_version = minor;
2582 mddev->persistent = 1;
2583 return len;
2584 }
2585
2586 static struct md_sysfs_entry md_metadata =
2587 __ATTR(metadata_version, 0644, metadata_show, metadata_store);
2588
2589 static ssize_t
2590 action_show(mddev_t *mddev, char *page)
2591 {
2592 char *type = "idle";
2593 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2594 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
2595 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2596 type = "reshape";
2597 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2598 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2599 type = "resync";
2600 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2601 type = "check";
2602 else
2603 type = "repair";
2604 } else
2605 type = "recover";
2606 }
2607 return sprintf(page, "%s\n", type);
2608 }
2609
2610 static ssize_t
2611 action_store(mddev_t *mddev, const char *page, size_t len)
2612 {
2613 if (!mddev->pers || !mddev->pers->sync_request)
2614 return -EINVAL;
2615
2616 if (cmd_match(page, "idle")) {
2617 if (mddev->sync_thread) {
2618 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2619 md_unregister_thread(mddev->sync_thread);
2620 mddev->sync_thread = NULL;
2621 mddev->recovery = 0;
2622 }
2623 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2624 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
2625 return -EBUSY;
2626 else if (cmd_match(page, "resync") || cmd_match(page, "recover"))
2627 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2628 else if (cmd_match(page, "reshape")) {
2629 int err;
2630 if (mddev->pers->start_reshape == NULL)
2631 return -EINVAL;
2632 err = mddev->pers->start_reshape(mddev);
2633 if (err)
2634 return err;
2635 } else {
2636 if (cmd_match(page, "check"))
2637 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
2638 else if (!cmd_match(page, "repair"))
2639 return -EINVAL;
2640 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
2641 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
2642 }
2643 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2644 md_wakeup_thread(mddev->thread);
2645 return len;
2646 }
2647
2648 static ssize_t
2649 mismatch_cnt_show(mddev_t *mddev, char *page)
2650 {
2651 return sprintf(page, "%llu\n",
2652 (unsigned long long) mddev->resync_mismatches);
2653 }
2654
2655 static struct md_sysfs_entry
2656 md_scan_mode = __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
2657
2658
2659 static struct md_sysfs_entry
2660 md_mismatches = __ATTR_RO(mismatch_cnt);
2661
2662 static ssize_t
2663 sync_min_show(mddev_t *mddev, char *page)
2664 {
2665 return sprintf(page, "%d (%s)\n", speed_min(mddev),
2666 mddev->sync_speed_min ? "local": "system");
2667 }
2668
2669 static ssize_t
2670 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
2671 {
2672 int min;
2673 char *e;
2674 if (strncmp(buf, "system", 6)==0) {
2675 mddev->sync_speed_min = 0;
2676 return len;
2677 }
2678 min = simple_strtoul(buf, &e, 10);
2679 if (buf == e || (*e && *e != '\n') || min <= 0)
2680 return -EINVAL;
2681 mddev->sync_speed_min = min;
2682 return len;
2683 }
2684
2685 static struct md_sysfs_entry md_sync_min =
2686 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
2687
2688 static ssize_t
2689 sync_max_show(mddev_t *mddev, char *page)
2690 {
2691 return sprintf(page, "%d (%s)\n", speed_max(mddev),
2692 mddev->sync_speed_max ? "local": "system");
2693 }
2694
2695 static ssize_t
2696 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
2697 {
2698 int max;
2699 char *e;
2700 if (strncmp(buf, "system", 6)==0) {
2701 mddev->sync_speed_max = 0;
2702 return len;
2703 }
2704 max = simple_strtoul(buf, &e, 10);
2705 if (buf == e || (*e && *e != '\n') || max <= 0)
2706 return -EINVAL;
2707 mddev->sync_speed_max = max;
2708 return len;
2709 }
2710
2711 static struct md_sysfs_entry md_sync_max =
2712 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
2713
2714
2715 static ssize_t
2716 sync_speed_show(mddev_t *mddev, char *page)
2717 {
2718 unsigned long resync, dt, db;
2719 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
2720 dt = ((jiffies - mddev->resync_mark) / HZ);
2721 if (!dt) dt++;
2722 db = resync - (mddev->resync_mark_cnt);
2723 return sprintf(page, "%ld\n", db/dt/2); /* K/sec */
2724 }
2725
2726 static struct md_sysfs_entry
2727 md_sync_speed = __ATTR_RO(sync_speed);
2728
2729 static ssize_t
2730 sync_completed_show(mddev_t *mddev, char *page)
2731 {
2732 unsigned long max_blocks, resync;
2733
2734 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2735 max_blocks = mddev->resync_max_sectors;
2736 else
2737 max_blocks = mddev->size << 1;
2738
2739 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
2740 return sprintf(page, "%lu / %lu\n", resync, max_blocks);
2741 }
2742
2743 static struct md_sysfs_entry
2744 md_sync_completed = __ATTR_RO(sync_completed);
2745
2746 static ssize_t
2747 suspend_lo_show(mddev_t *mddev, char *page)
2748 {
2749 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
2750 }
2751
2752 static ssize_t
2753 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
2754 {
2755 char *e;
2756 unsigned long long new = simple_strtoull(buf, &e, 10);
2757
2758 if (mddev->pers->quiesce == NULL)
2759 return -EINVAL;
2760 if (buf == e || (*e && *e != '\n'))
2761 return -EINVAL;
2762 if (new >= mddev->suspend_hi ||
2763 (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
2764 mddev->suspend_lo = new;
2765 mddev->pers->quiesce(mddev, 2);
2766 return len;
2767 } else
2768 return -EINVAL;
2769 }
2770 static struct md_sysfs_entry md_suspend_lo =
2771 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
2772
2773
2774 static ssize_t
2775 suspend_hi_show(mddev_t *mddev, char *page)
2776 {
2777 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
2778 }
2779
2780 static ssize_t
2781 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
2782 {
2783 char *e;
2784 unsigned long long new = simple_strtoull(buf, &e, 10);
2785
2786 if (mddev->pers->quiesce == NULL)
2787 return -EINVAL;
2788 if (buf == e || (*e && *e != '\n'))
2789 return -EINVAL;
2790 if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
2791 (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
2792 mddev->suspend_hi = new;
2793 mddev->pers->quiesce(mddev, 1);
2794 mddev->pers->quiesce(mddev, 0);
2795 return len;
2796 } else
2797 return -EINVAL;
2798 }
2799 static struct md_sysfs_entry md_suspend_hi =
2800 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
2801
2802
2803 static struct attribute *md_default_attrs[] = {
2804 &md_level.attr,
2805 &md_layout.attr,
2806 &md_raid_disks.attr,
2807 &md_chunk_size.attr,
2808 &md_size.attr,
2809 &md_resync_start.attr,
2810 &md_metadata.attr,
2811 &md_new_device.attr,
2812 &md_safe_delay.attr,
2813 &md_array_state.attr,
2814 NULL,
2815 };
2816
2817 static struct attribute *md_redundancy_attrs[] = {
2818 &md_scan_mode.attr,
2819 &md_mismatches.attr,
2820 &md_sync_min.attr,
2821 &md_sync_max.attr,
2822 &md_sync_speed.attr,
2823 &md_sync_completed.attr,
2824 &md_suspend_lo.attr,
2825 &md_suspend_hi.attr,
2826 NULL,
2827 };
2828 static struct attribute_group md_redundancy_group = {
2829 .name = NULL,
2830 .attrs = md_redundancy_attrs,
2831 };
2832
2833
2834 static ssize_t
2835 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2836 {
2837 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
2838 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
2839 ssize_t rv;
2840
2841 if (!entry->show)
2842 return -EIO;
2843 rv = mddev_lock(mddev);
2844 if (!rv) {
2845 rv = entry->show(mddev, page);
2846 mddev_unlock(mddev);
2847 }
2848 return rv;
2849 }
2850
2851 static ssize_t
2852 md_attr_store(struct kobject *kobj, struct attribute *attr,
2853 const char *page, size_t length)
2854 {
2855 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
2856 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
2857 ssize_t rv;
2858
2859 if (!entry->store)
2860 return -EIO;
2861 rv = mddev_lock(mddev);
2862 if (!rv) {
2863 rv = entry->store(mddev, page, length);
2864 mddev_unlock(mddev);
2865 }
2866 return rv;
2867 }
2868
2869 static void md_free(struct kobject *ko)
2870 {
2871 mddev_t *mddev = container_of(ko, mddev_t, kobj);
2872 kfree(mddev);
2873 }
2874
2875 static struct sysfs_ops md_sysfs_ops = {
2876 .show = md_attr_show,
2877 .store = md_attr_store,
2878 };
2879 static struct kobj_type md_ktype = {
2880 .release = md_free,
2881 .sysfs_ops = &md_sysfs_ops,
2882 .default_attrs = md_default_attrs,
2883 };
2884
2885 int mdp_major = 0;
2886
2887 static struct kobject *md_probe(dev_t dev, int *part, void *data)
2888 {
2889 static DEFINE_MUTEX(disks_mutex);
2890 mddev_t *mddev = mddev_find(dev);
2891 struct gendisk *disk;
2892 int partitioned = (MAJOR(dev) != MD_MAJOR);
2893 int shift = partitioned ? MdpMinorShift : 0;
2894 int unit = MINOR(dev) >> shift;
2895
2896 if (!mddev)
2897 return NULL;
2898
2899 mutex_lock(&disks_mutex);
2900 if (mddev->gendisk) {
2901 mutex_unlock(&disks_mutex);
2902 mddev_put(mddev);
2903 return NULL;
2904 }
2905 disk = alloc_disk(1 << shift);
2906 if (!disk) {
2907 mutex_unlock(&disks_mutex);
2908 mddev_put(mddev);
2909 return NULL;
2910 }
2911 disk->major = MAJOR(dev);
2912 disk->first_minor = unit << shift;
2913 if (partitioned)
2914 sprintf(disk->disk_name, "md_d%d", unit);
2915 else
2916 sprintf(disk->disk_name, "md%d", unit);
2917 disk->fops = &md_fops;
2918 disk->private_data = mddev;
2919 disk->queue = mddev->queue;
2920 add_disk(disk);
2921 mddev->gendisk = disk;
2922 mutex_unlock(&disks_mutex);
2923 mddev->kobj.parent = &disk->kobj;
2924 mddev->kobj.k_name = NULL;
2925 snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
2926 mddev->kobj.ktype = &md_ktype;
2927 kobject_register(&mddev->kobj);
2928 return NULL;
2929 }
2930
2931 static void md_safemode_timeout(unsigned long data)
2932 {
2933 mddev_t *mddev = (mddev_t *) data;
2934
2935 mddev->safemode = 1;
2936 md_wakeup_thread(mddev->thread);
2937 }
2938
2939 static int start_dirty_degraded;
2940
2941 static int do_md_run(mddev_t * mddev)
2942 {
2943 int err;
2944 int chunk_size;
2945 struct list_head *tmp;
2946 mdk_rdev_t *rdev;
2947 struct gendisk *disk;
2948 struct mdk_personality *pers;
2949 char b[BDEVNAME_SIZE];
2950
2951 if (list_empty(&mddev->disks))
2952 /* cannot run an array with no devices.. */
2953 return -EINVAL;
2954
2955 if (mddev->pers)
2956 return -EBUSY;
2957
2958 /*
2959 * Analyze all RAID superblock(s)
2960 */
2961 if (!mddev->raid_disks)
2962 analyze_sbs(mddev);
2963
2964 chunk_size = mddev->chunk_size;
2965
2966 if (chunk_size) {
2967 if (chunk_size > MAX_CHUNK_SIZE) {
2968 printk(KERN_ERR "too big chunk_size: %d > %d\n",
2969 chunk_size, MAX_CHUNK_SIZE);
2970 return -EINVAL;
2971 }
2972 /*
2973 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
2974 */
2975 if ( (1 << ffz(~chunk_size)) != chunk_size) {
2976 printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
2977 return -EINVAL;
2978 }
2979 if (chunk_size < PAGE_SIZE) {
2980 printk(KERN_ERR "too small chunk_size: %d < %ld\n",
2981 chunk_size, PAGE_SIZE);
2982 return -EINVAL;
2983 }
2984
2985 /* devices must have minimum size of one chunk */
2986 ITERATE_RDEV(mddev,rdev,tmp) {
2987 if (test_bit(Faulty, &rdev->flags))
2988 continue;
2989 if (rdev->size < chunk_size / 1024) {
2990 printk(KERN_WARNING
2991 "md: Dev %s smaller than chunk_size:"
2992 " %lluk < %dk\n",
2993 bdevname(rdev->bdev,b),
2994 (unsigned long long)rdev->size,
2995 chunk_size / 1024);
2996 return -EINVAL;
2997 }
2998 }
2999 }
3000
3001 #ifdef CONFIG_KMOD
3002 if (mddev->level != LEVEL_NONE)
3003 request_module("md-level-%d", mddev->level);
3004 else if (mddev->clevel[0])
3005 request_module("md-%s", mddev->clevel);
3006 #endif
3007
3008 /*
3009 * Drop all container device buffers, from now on
3010 * the only valid external interface is through the md
3011 * device.
3012 * Also find largest hardsector size
3013 */
3014 ITERATE_RDEV(mddev,rdev,tmp) {
3015 if (test_bit(Faulty, &rdev->flags))
3016 continue;
3017 sync_blockdev(rdev->bdev);
3018 invalidate_bdev(rdev->bdev, 0);
3019 }
3020
3021 md_probe(mddev->unit, NULL, NULL);
3022 disk = mddev->gendisk;
3023 if (!disk)
3024 return -ENOMEM;
3025
3026 spin_lock(&pers_lock);
3027 pers = find_pers(mddev->level, mddev->clevel);
3028 if (!pers || !try_module_get(pers->owner)) {
3029 spin_unlock(&pers_lock);
3030 if (mddev->level != LEVEL_NONE)
3031 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
3032 mddev->level);
3033 else
3034 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
3035 mddev->clevel);
3036 return -EINVAL;
3037 }
3038 mddev->pers = pers;
3039 spin_unlock(&pers_lock);
3040 mddev->level = pers->level;
3041 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3042
3043 if (mddev->reshape_position != MaxSector &&
3044 pers->start_reshape == NULL) {
3045 /* This personality cannot handle reshaping... */
3046 mddev->pers = NULL;
3047 module_put(pers->owner);
3048 return -EINVAL;
3049 }
3050
3051 mddev->recovery = 0;
3052 mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
3053 mddev->barriers_work = 1;
3054 mddev->ok_start_degraded = start_dirty_degraded;
3055
3056 if (start_readonly)
3057 mddev->ro = 2; /* read-only, but switch on first write */
3058
3059 err = mddev->pers->run(mddev);
3060 if (!err && mddev->pers->sync_request) {
3061 err = bitmap_create(mddev);
3062 if (err) {
3063 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
3064 mdname(mddev), err);
3065 mddev->pers->stop(mddev);
3066 }
3067 }
3068 if (err) {
3069 printk(KERN_ERR "md: pers->run() failed ...\n");
3070 module_put(mddev->pers->owner);
3071 mddev->pers = NULL;
3072 bitmap_destroy(mddev);
3073 return err;
3074 }
3075 if (mddev->pers->sync_request)
3076 sysfs_create_group(&mddev->kobj, &md_redundancy_group);
3077 else if (mddev->ro == 2) /* auto-readonly not meaningful */
3078 mddev->ro = 0;
3079
3080 atomic_set(&mddev->writes_pending,0);
3081 mddev->safemode = 0;
3082 mddev->safemode_timer.function = md_safemode_timeout;
3083 mddev->safemode_timer.data = (unsigned long) mddev;
3084 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
3085 mddev->in_sync = 1;
3086
3087 ITERATE_RDEV(mddev,rdev,tmp)
3088 if (rdev->raid_disk >= 0) {
3089 char nm[20];
3090 sprintf(nm, "rd%d", rdev->raid_disk);
3091 sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
3092 }
3093
3094 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3095 md_wakeup_thread(mddev->thread);
3096
3097 if (mddev->sb_dirty)
3098 md_update_sb(mddev);
3099
3100 set_capacity(disk, mddev->array_size<<1);
3101
3102 /* If we call blk_queue_make_request here, it will
3103 * re-initialise max_sectors etc which may have been
3104 * refined inside -> run. So just set the bits we need to set.
3105 * Most initialisation happended when we called
3106 * blk_queue_make_request(..., md_fail_request)
3107 * earlier.
3108 */
3109 mddev->queue->queuedata = mddev;
3110 mddev->queue->make_request_fn = mddev->pers->make_request;
3111
3112 /* If there is a partially-recovered drive we need to
3113 * start recovery here. If we leave it to md_check_recovery,
3114 * it will remove the drives and not do the right thing
3115 */
3116 if (mddev->degraded) {
3117 struct list_head *rtmp;
3118 int spares = 0;
3119 ITERATE_RDEV(mddev,rdev,rtmp)
3120 if (rdev->raid_disk >= 0 &&
3121 !test_bit(In_sync, &rdev->flags) &&
3122 !test_bit(Faulty, &rdev->flags))
3123 /* complete an interrupted recovery */
3124 spares++;
3125 if (spares && mddev->pers->sync_request) {
3126 mddev->recovery = 0;
3127 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3128 mddev->sync_thread = md_register_thread(md_do_sync,
3129 mddev,
3130 "%s_resync");
3131 if (!mddev->sync_thread) {
3132 printk(KERN_ERR "%s: could not start resync"
3133 " thread...\n",
3134 mdname(mddev));
3135 /* leave the spares where they are, it shouldn't hurt */
3136 mddev->recovery = 0;
3137 } else
3138 md_wakeup_thread(mddev->sync_thread);
3139 }
3140 }
3141
3142 mddev->changed = 1;
3143 md_new_event(mddev);
3144 return 0;
3145 }
3146
3147 static int restart_array(mddev_t *mddev)
3148 {
3149 struct gendisk *disk = mddev->gendisk;
3150 int err;
3151
3152 /*
3153 * Complain if it has no devices
3154 */
3155 err = -ENXIO;
3156 if (list_empty(&mddev->disks))
3157 goto out;
3158
3159 if (mddev->pers) {
3160 err = -EBUSY;
3161 if (!mddev->ro)
3162 goto out;
3163
3164 mddev->safemode = 0;
3165 mddev->ro = 0;
3166 set_disk_ro(disk, 0);
3167
3168 printk(KERN_INFO "md: %s switched to read-write mode.\n",
3169 mdname(mddev));
3170 /*
3171 * Kick recovery or resync if necessary
3172 */
3173 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3174 md_wakeup_thread(mddev->thread);
3175 md_wakeup_thread(mddev->sync_thread);
3176 err = 0;
3177 } else
3178 err = -EINVAL;
3179
3180 out:
3181 return err;
3182 }
3183
3184 /* similar to deny_write_access, but accounts for our holding a reference
3185 * to the file ourselves */
3186 static int deny_bitmap_write_access(struct file * file)
3187 {
3188 struct inode *inode = file->f_mapping->host;
3189
3190 spin_lock(&inode->i_lock);
3191 if (atomic_read(&inode->i_writecount) > 1) {
3192 spin_unlock(&inode->i_lock);
3193 return -ETXTBSY;
3194 }
3195 atomic_set(&inode->i_writecount, -1);
3196 spin_unlock(&inode->i_lock);
3197
3198 return 0;
3199 }
3200
3201 static void restore_bitmap_write_access(struct file *file)
3202 {
3203 struct inode *inode = file->f_mapping->host;
3204
3205 spin_lock(&inode->i_lock);
3206 atomic_set(&inode->i_writecount, 1);
3207 spin_unlock(&inode->i_lock);
3208 }
3209
3210 /* mode:
3211 * 0 - completely stop and dis-assemble array
3212 * 1 - switch to readonly
3213 * 2 - stop but do not disassemble array
3214 */
3215 static int do_md_stop(mddev_t * mddev, int mode)
3216 {
3217 int err = 0;
3218 struct gendisk *disk = mddev->gendisk;
3219
3220 if (mddev->pers) {
3221 if (atomic_read(&mddev->active)>2) {
3222 printk("md: %s still in use.\n",mdname(mddev));
3223 return -EBUSY;
3224 }
3225
3226 if (mddev->sync_thread) {
3227 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3228 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3229 md_unregister_thread(mddev->sync_thread);
3230 mddev->sync_thread = NULL;
3231 }
3232
3233 del_timer_sync(&mddev->safemode_timer);
3234
3235 invalidate_partition(disk, 0);
3236
3237 switch(mode) {
3238 case 1: /* readonly */
3239 err = -ENXIO;
3240 if (mddev->ro==1)
3241 goto out;
3242 mddev->ro = 1;
3243 break;
3244 case 0: /* disassemble */
3245 case 2: /* stop */
3246 bitmap_flush(mddev);
3247 md_super_wait(mddev);
3248 if (mddev->ro)
3249 set_disk_ro(disk, 0);
3250 blk_queue_make_request(mddev->queue, md_fail_request);
3251 mddev->pers->stop(mddev);
3252 if (mddev->pers->sync_request)
3253 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
3254
3255 module_put(mddev->pers->owner);
3256 mddev->pers = NULL;
3257 if (mddev->ro)
3258 mddev->ro = 0;
3259 }
3260 if (!mddev->in_sync || mddev->sb_dirty) {
3261 /* mark array as shutdown cleanly */
3262 mddev->in_sync = 1;
3263 md_update_sb(mddev);
3264 }
3265 if (mode == 1)
3266 set_disk_ro(disk, 1);
3267 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3268 }
3269
3270 /*
3271 * Free resources if final stop
3272 */
3273 if (mode == 0) {
3274 mdk_rdev_t *rdev;
3275 struct list_head *tmp;
3276 struct gendisk *disk;
3277 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
3278
3279 bitmap_destroy(mddev);
3280 if (mddev->bitmap_file) {
3281 restore_bitmap_write_access(mddev->bitmap_file);
3282 fput(mddev->bitmap_file);
3283 mddev->bitmap_file = NULL;
3284 }
3285 mddev->bitmap_offset = 0;
3286
3287 ITERATE_RDEV(mddev,rdev,tmp)
3288 if (rdev->raid_disk >= 0) {
3289 char nm[20];
3290 sprintf(nm, "rd%d", rdev->raid_disk);
3291 sysfs_remove_link(&mddev->kobj, nm);
3292 }
3293
3294 export_array(mddev);
3295
3296 mddev->array_size = 0;
3297 mddev->size = 0;
3298 mddev->raid_disks = 0;
3299 mddev->recovery_cp = 0;
3300
3301 disk = mddev->gendisk;
3302 if (disk)
3303 set_capacity(disk, 0);
3304 mddev->changed = 1;
3305 } else if (mddev->pers)
3306 printk(KERN_INFO "md: %s switched to read-only mode.\n",
3307 mdname(mddev));
3308 err = 0;
3309 md_new_event(mddev);
3310 out:
3311 return err;
3312 }
3313
3314 static void autorun_array(mddev_t *mddev)
3315 {
3316 mdk_rdev_t *rdev;
3317 struct list_head *tmp;
3318 int err;
3319
3320 if (list_empty(&mddev->disks))
3321 return;
3322
3323 printk(KERN_INFO "md: running: ");
3324
3325 ITERATE_RDEV(mddev,rdev,tmp) {
3326 char b[BDEVNAME_SIZE];
3327 printk("<%s>", bdevname(rdev->bdev,b));
3328 }
3329 printk("\n");
3330
3331 err = do_md_run (mddev);
3332 if (err) {
3333 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
3334 do_md_stop (mddev, 0);
3335 }
3336 }
3337
3338 /*
3339 * lets try to run arrays based on all disks that have arrived
3340 * until now. (those are in pending_raid_disks)
3341 *
3342 * the method: pick the first pending disk, collect all disks with
3343 * the same UUID, remove all from the pending list and put them into
3344 * the 'same_array' list. Then order this list based on superblock
3345 * update time (freshest comes first), kick out 'old' disks and
3346 * compare superblocks. If everything's fine then run it.
3347 *
3348 * If "unit" is allocated, then bump its reference count
3349 */
3350 static void autorun_devices(int part)
3351 {
3352 struct list_head *tmp;
3353 mdk_rdev_t *rdev0, *rdev;
3354 mddev_t *mddev;
3355 char b[BDEVNAME_SIZE];
3356
3357 printk(KERN_INFO "md: autorun ...\n");
3358 while (!list_empty(&pending_raid_disks)) {
3359 dev_t dev;
3360 LIST_HEAD(candidates);
3361 rdev0 = list_entry(pending_raid_disks.next,
3362 mdk_rdev_t, same_set);
3363
3364 printk(KERN_INFO "md: considering %s ...\n",
3365 bdevname(rdev0->bdev,b));
3366 INIT_LIST_HEAD(&candidates);
3367 ITERATE_RDEV_PENDING(rdev,tmp)
3368 if (super_90_load(rdev, rdev0, 0) >= 0) {
3369 printk(KERN_INFO "md: adding %s ...\n",
3370 bdevname(rdev->bdev,b));
3371 list_move(&rdev->same_set, &candidates);
3372 }
3373 /*
3374 * now we have a set of devices, with all of them having
3375 * mostly sane superblocks. It's time to allocate the
3376 * mddev.
3377 */
3378 if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
3379 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
3380 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
3381 break;
3382 }
3383 if (part)
3384 dev = MKDEV(mdp_major,
3385 rdev0->preferred_minor << MdpMinorShift);
3386 else
3387 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
3388
3389 md_probe(dev, NULL, NULL);
3390 mddev = mddev_find(dev);
3391 if (!mddev) {
3392 printk(KERN_ERR
3393 "md: cannot allocate memory for md drive.\n");
3394 break;
3395 }
3396 if (mddev_lock(mddev))
3397 printk(KERN_WARNING "md: %s locked, cannot run\n",
3398 mdname(mddev));
3399 else if (mddev->raid_disks || mddev->major_version
3400 || !list_empty(&mddev->disks)) {
3401 printk(KERN_WARNING
3402 "md: %s already running, cannot run %s\n",
3403 mdname(mddev), bdevname(rdev0->bdev,b));
3404 mddev_unlock(mddev);
3405 } else {
3406 printk(KERN_INFO "md: created %s\n", mdname(mddev));
3407 ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
3408 list_del_init(&rdev->same_set);
3409 if (bind_rdev_to_array(rdev, mddev))
3410 export_rdev(rdev);
3411 }
3412 autorun_array(mddev);
3413 mddev_unlock(mddev);
3414 }
3415 /* on success, candidates will be empty, on error
3416 * it won't...
3417 */
3418 ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
3419 export_rdev(rdev);
3420 mddev_put(mddev);
3421 }
3422 printk(KERN_INFO "md: ... autorun DONE.\n");
3423 }
3424
3425 /*
3426 * import RAID devices based on one partition
3427 * if possible, the array gets run as well.
3428 */
3429
3430 static int autostart_array(dev_t startdev)
3431 {
3432 char b[BDEVNAME_SIZE];
3433 int err = -EINVAL, i;
3434 mdp_super_t *sb = NULL;
3435 mdk_rdev_t *start_rdev = NULL, *rdev;
3436
3437 start_rdev = md_import_device(startdev, 0, 0);
3438 if (IS_ERR(start_rdev))
3439 return err;
3440
3441
3442 /* NOTE: this can only work for 0.90.0 superblocks */
3443 sb = (mdp_super_t*)page_address(start_rdev->sb_page);
3444 if (sb->major_version != 0 ||
3445 sb->minor_version != 90 ) {
3446 printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
3447 export_rdev(start_rdev);
3448 return err;
3449 }
3450
3451 if (test_bit(Faulty, &start_rdev->flags)) {
3452 printk(KERN_WARNING
3453 "md: can not autostart based on faulty %s!\n",
3454 bdevname(start_rdev->bdev,b));
3455 export_rdev(start_rdev);
3456 return err;
3457 }
3458 list_add(&start_rdev->same_set, &pending_raid_disks);
3459
3460 for (i = 0; i < MD_SB_DISKS; i++) {
3461 mdp_disk_t *desc = sb->disks + i;
3462 dev_t dev = MKDEV(desc->major, desc->minor);
3463
3464 if (!dev)
3465 continue;
3466 if (dev == startdev)
3467 continue;
3468 if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
3469 continue;
3470 rdev = md_import_device(dev, 0, 0);
3471 if (IS_ERR(rdev))
3472 continue;
3473
3474 list_add(&rdev->same_set, &pending_raid_disks);
3475 }
3476
3477 /*
3478 * possibly return codes
3479 */
3480 autorun_devices(0);
3481 return 0;
3482
3483 }
3484
3485
3486 static int get_version(void __user * arg)
3487 {
3488 mdu_version_t ver;
3489
3490 ver.major = MD_MAJOR_VERSION;
3491 ver.minor = MD_MINOR_VERSION;
3492 ver.patchlevel = MD_PATCHLEVEL_VERSION;
3493
3494 if (copy_to_user(arg, &ver, sizeof(ver)))
3495 return -EFAULT;
3496
3497 return 0;
3498 }
3499
3500 static int get_array_info(mddev_t * mddev, void __user * arg)
3501 {
3502 mdu_array_info_t info;
3503 int nr,working,active,failed,spare;
3504 mdk_rdev_t *rdev;
3505 struct list_head *tmp;
3506
3507 nr=working=active=failed=spare=0;
3508 ITERATE_RDEV(mddev,rdev,tmp) {
3509 nr++;
3510 if (test_bit(Faulty, &rdev->flags))
3511 failed++;
3512 else {
3513 working++;
3514 if (test_bit(In_sync, &rdev->flags))
3515 active++;
3516 else
3517 spare++;
3518 }
3519 }
3520
3521 info.major_version = mddev->major_version;
3522 info.minor_version = mddev->minor_version;
3523 info.patch_version = MD_PATCHLEVEL_VERSION;
3524 info.ctime = mddev->ctime;
3525 info.level = mddev->level;
3526 info.size = mddev->size;
3527 if (info.size != mddev->size) /* overflow */
3528 info.size = -1;
3529 info.nr_disks = nr;
3530 info.raid_disks = mddev->raid_disks;
3531 info.md_minor = mddev->md_minor;
3532 info.not_persistent= !mddev->persistent;
3533
3534 info.utime = mddev->utime;
3535 info.state = 0;
3536 if (mddev->in_sync)
3537 info.state = (1<<MD_SB_CLEAN);
3538 if (mddev->bitmap && mddev->bitmap_offset)
3539 info.state = (1<<MD_SB_BITMAP_PRESENT);
3540 info.active_disks = active;
3541 info.working_disks = working;
3542 info.failed_disks = failed;
3543 info.spare_disks = spare;
3544
3545 info.layout = mddev->layout;
3546 info.chunk_size = mddev->chunk_size;
3547
3548 if (copy_to_user(arg, &info, sizeof(info)))
3549 return -EFAULT;
3550
3551 return 0;
3552 }
3553
3554 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
3555 {
3556 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
3557 char *ptr, *buf = NULL;
3558 int err = -ENOMEM;
3559
3560 file = kmalloc(sizeof(*file), GFP_KERNEL);
3561 if (!file)
3562 goto out;
3563
3564 /* bitmap disabled, zero the first byte and copy out */
3565 if (!mddev->bitmap || !mddev->bitmap->file) {
3566 file->pathname[0] = '\0';
3567 goto copy_out;
3568 }
3569
3570 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
3571 if (!buf)
3572 goto out;
3573
3574 ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
3575 if (!ptr)
3576 goto out;
3577
3578 strcpy(file->pathname, ptr);
3579
3580 copy_out:
3581 err = 0;
3582 if (copy_to_user(arg, file, sizeof(*file)))
3583 err = -EFAULT;
3584 out:
3585 kfree(buf);
3586 kfree(file);
3587 return err;
3588 }
3589
3590 static int get_disk_info(mddev_t * mddev, void __user * arg)
3591 {
3592 mdu_disk_info_t info;
3593 unsigned int nr;
3594 mdk_rdev_t *rdev;
3595
3596 if (copy_from_user(&info, arg, sizeof(info)))
3597 return -EFAULT;
3598
3599 nr = info.number;
3600
3601 rdev = find_rdev_nr(mddev, nr);
3602 if (rdev) {
3603 info.major = MAJOR(rdev->bdev->bd_dev);
3604 info.minor = MINOR(rdev->bdev->bd_dev);
3605 info.raid_disk = rdev->raid_disk;
3606 info.state = 0;
3607 if (test_bit(Faulty, &rdev->flags))
3608 info.state |= (1<<MD_DISK_FAULTY);
3609 else if (test_bit(In_sync, &rdev->flags)) {
3610 info.state |= (1<<MD_DISK_ACTIVE);
3611 info.state |= (1<<MD_DISK_SYNC);
3612 }
3613 if (test_bit(WriteMostly, &rdev->flags))
3614 info.state |= (1<<MD_DISK_WRITEMOSTLY);
3615 } else {
3616 info.major = info.minor = 0;
3617 info.raid_disk = -1;
3618 info.state = (1<<MD_DISK_REMOVED);
3619 }
3620
3621 if (copy_to_user(arg, &info, sizeof(info)))
3622 return -EFAULT;
3623
3624 return 0;
3625 }
3626
3627 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
3628 {
3629 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
3630 mdk_rdev_t *rdev;
3631 dev_t dev = MKDEV(info->major,info->minor);
3632
3633 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
3634 return -EOVERFLOW;
3635
3636 if (!mddev->raid_disks) {
3637 int err;
3638 /* expecting a device which has a superblock */
3639 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
3640 if (IS_ERR(rdev)) {
3641 printk(KERN_WARNING
3642 "md: md_import_device returned %ld\n",
3643 PTR_ERR(rdev));
3644 return PTR_ERR(rdev);
3645 }
3646 if (!list_empty(&mddev->disks)) {
3647 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3648 mdk_rdev_t, same_set);
3649 int err = super_types[mddev->major_version]
3650 .load_super(rdev, rdev0, mddev->minor_version);
3651 if (err < 0) {
3652 printk(KERN_WARNING
3653 "md: %s has different UUID to %s\n",
3654 bdevname(rdev->bdev,b),
3655 bdevname(rdev0->bdev,b2));
3656 export_rdev(rdev);
3657 return -EINVAL;
3658 }
3659 }
3660 err = bind_rdev_to_array(rdev, mddev);
3661 if (err)
3662 export_rdev(rdev);
3663 return err;
3664 }
3665
3666 /*
3667 * add_new_disk can be used once the array is assembled
3668 * to add "hot spares". They must already have a superblock
3669 * written
3670 */
3671 if (mddev->pers) {
3672 int err;
3673 if (!mddev->pers->hot_add_disk) {
3674 printk(KERN_WARNING
3675 "%s: personality does not support diskops!\n",
3676 mdname(mddev));
3677 return -EINVAL;
3678 }
3679 if (mddev->persistent)
3680 rdev = md_import_device(dev, mddev->major_version,
3681 mddev->minor_version);
3682 else
3683 rdev = md_import_device(dev, -1, -1);
3684 if (IS_ERR(rdev)) {
3685 printk(KERN_WARNING
3686 "md: md_import_device returned %ld\n",
3687 PTR_ERR(rdev));
3688 return PTR_ERR(rdev);
3689 }
3690 /* set save_raid_disk if appropriate */
3691 if (!mddev->persistent) {
3692 if (info->state & (1<<MD_DISK_SYNC) &&
3693 info->raid_disk < mddev->raid_disks)
3694 rdev->raid_disk = info->raid_disk;
3695 else
3696 rdev->raid_disk = -1;
3697 } else
3698 super_types[mddev->major_version].
3699 validate_super(mddev, rdev);
3700 rdev->saved_raid_disk = rdev->raid_disk;
3701
3702 clear_bit(In_sync, &rdev->flags); /* just to be sure */
3703 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3704 set_bit(WriteMostly, &rdev->flags);
3705
3706 rdev->raid_disk = -1;
3707 err = bind_rdev_to_array(rdev, mddev);
3708 if (!err && !mddev->pers->hot_remove_disk) {
3709 /* If there is hot_add_disk but no hot_remove_disk
3710 * then added disks for geometry changes,
3711 * and should be added immediately.
3712 */
3713 super_types[mddev->major_version].
3714 validate_super(mddev, rdev);
3715 err = mddev->pers->hot_add_disk(mddev, rdev);
3716 if (err)
3717 unbind_rdev_from_array(rdev);
3718 }
3719 if (err)
3720 export_rdev(rdev);
3721
3722 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3723 md_wakeup_thread(mddev->thread);
3724 return err;
3725 }
3726
3727 /* otherwise, add_new_disk is only allowed
3728 * for major_version==0 superblocks
3729 */
3730 if (mddev->major_version != 0) {
3731 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
3732 mdname(mddev));
3733 return -EINVAL;
3734 }
3735
3736 if (!(info->state & (1<<MD_DISK_FAULTY))) {
3737 int err;
3738 rdev = md_import_device (dev, -1, 0);
3739 if (IS_ERR(rdev)) {
3740 printk(KERN_WARNING
3741 "md: error, md_import_device() returned %ld\n",
3742 PTR_ERR(rdev));
3743 return PTR_ERR(rdev);
3744 }
3745 rdev->desc_nr = info->number;
3746 if (info->raid_disk < mddev->raid_disks)
3747 rdev->raid_disk = info->raid_disk;
3748 else
3749 rdev->raid_disk = -1;
3750
3751 rdev->flags = 0;
3752
3753 if (rdev->raid_disk < mddev->raid_disks)
3754 if (info->state & (1<<MD_DISK_SYNC))
3755 set_bit(In_sync, &rdev->flags);
3756
3757 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3758 set_bit(WriteMostly, &rdev->flags);
3759
3760 if (!mddev->persistent) {
3761 printk(KERN_INFO "md: nonpersistent superblock ...\n");
3762 rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
3763 } else
3764 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
3765 rdev->size = calc_dev_size(rdev, mddev->chunk_size);
3766
3767 err = bind_rdev_to_array(rdev, mddev);
3768 if (err) {
3769 export_rdev(rdev);
3770 return err;
3771 }
3772 }
3773
3774 return 0;
3775 }
3776
3777 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
3778 {
3779 char b[BDEVNAME_SIZE];
3780 mdk_rdev_t *rdev;
3781
3782 if (!mddev->pers)
3783 return -ENODEV;
3784
3785 rdev = find_rdev(mddev, dev);
3786 if (!rdev)
3787 return -ENXIO;
3788
3789 if (rdev->raid_disk >= 0)
3790 goto busy;
3791
3792 kick_rdev_from_array(rdev);
3793 md_update_sb(mddev);
3794 md_new_event(mddev);
3795
3796 return 0;
3797 busy:
3798 printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
3799 bdevname(rdev->bdev,b), mdname(mddev));
3800 return -EBUSY;
3801 }
3802
3803 static int hot_add_disk(mddev_t * mddev, dev_t dev)
3804 {
3805 char b[BDEVNAME_SIZE];
3806 int err;
3807 unsigned int size;
3808 mdk_rdev_t *rdev;
3809
3810 if (!mddev->pers)
3811 return -ENODEV;
3812
3813 if (mddev->major_version != 0) {
3814 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
3815 " version-0 superblocks.\n",
3816 mdname(mddev));
3817 return -EINVAL;
3818 }
3819 if (!mddev->pers->hot_add_disk) {
3820 printk(KERN_WARNING
3821 "%s: personality does not support diskops!\n",
3822 mdname(mddev));
3823 return -EINVAL;
3824 }
3825
3826 rdev = md_import_device (dev, -1, 0);
3827 if (IS_ERR(rdev)) {
3828 printk(KERN_WARNING
3829 "md: error, md_import_device() returned %ld\n",
3830 PTR_ERR(rdev));
3831 return -EINVAL;
3832 }
3833
3834 if (mddev->persistent)
3835 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
3836 else
3837 rdev->sb_offset =
3838 rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
3839
3840 size = calc_dev_size(rdev, mddev->chunk_size);
3841 rdev->size = size;
3842
3843 if (test_bit(Faulty, &rdev->flags)) {
3844 printk(KERN_WARNING
3845 "md: can not hot-add faulty %s disk to %s!\n",
3846 bdevname(rdev->bdev,b), mdname(mddev));
3847 err = -EINVAL;
3848 goto abort_export;
3849 }
3850 clear_bit(In_sync, &rdev->flags);
3851 rdev->desc_nr = -1;
3852 err = bind_rdev_to_array(rdev, mddev);
3853 if (err)
3854 goto abort_export;
3855
3856 /*
3857 * The rest should better be atomic, we can have disk failures
3858 * noticed in interrupt contexts ...
3859 */
3860
3861 if (rdev->desc_nr == mddev->max_disks) {
3862 printk(KERN_WARNING "%s: can not hot-add to full array!\n",
3863 mdname(mddev));
3864 err = -EBUSY;
3865 goto abort_unbind_export;
3866 }
3867
3868 rdev->raid_disk = -1;
3869
3870 md_update_sb(mddev);
3871
3872 /*
3873 * Kick recovery, maybe this spare has to be added to the
3874 * array immediately.
3875 */
3876 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3877 md_wakeup_thread(mddev->thread);
3878 md_new_event(mddev);
3879 return 0;
3880
3881 abort_unbind_export:
3882 unbind_rdev_from_array(rdev);
3883
3884 abort_export:
3885 export_rdev(rdev);
3886 return err;
3887 }
3888
3889 static int set_bitmap_file(mddev_t *mddev, int fd)
3890 {
3891 int err;
3892
3893 if (mddev->pers) {
3894 if (!mddev->pers->quiesce)
3895 return -EBUSY;
3896 if (mddev->recovery || mddev->sync_thread)
3897 return -EBUSY;
3898 /* we should be able to change the bitmap.. */
3899 }
3900
3901
3902 if (fd >= 0) {
3903 if (mddev->bitmap)
3904 return -EEXIST; /* cannot add when bitmap is present */
3905 mddev->bitmap_file = fget(fd);
3906
3907 if (mddev->bitmap_file == NULL) {
3908 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
3909 mdname(mddev));
3910 return -EBADF;
3911 }
3912
3913 err = deny_bitmap_write_access(mddev->bitmap_file);
3914 if (err) {
3915 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
3916 mdname(mddev));
3917 fput(mddev->bitmap_file);
3918 mddev->bitmap_file = NULL;
3919 return err;
3920 }
3921 mddev->bitmap_offset = 0; /* file overrides offset */
3922 } else if (mddev->bitmap == NULL)
3923 return -ENOENT; /* cannot remove what isn't there */
3924 err = 0;
3925 if (mddev->pers) {
3926 mddev->pers->quiesce(mddev, 1);
3927 if (fd >= 0)
3928 err = bitmap_create(mddev);
3929 if (fd < 0 || err) {
3930 bitmap_destroy(mddev);
3931 fd = -1; /* make sure to put the file */
3932 }
3933 mddev->pers->quiesce(mddev, 0);
3934 }
3935 if (fd < 0) {
3936 if (mddev->bitmap_file) {
3937 restore_bitmap_write_access(mddev->bitmap_file);
3938 fput(mddev->bitmap_file);
3939 }
3940 mddev->bitmap_file = NULL;
3941 }
3942
3943 return err;
3944 }
3945
3946 /*
3947 * set_array_info is used two different ways
3948 * The original usage is when creating a new array.
3949 * In this usage, raid_disks is > 0 and it together with
3950 * level, size, not_persistent,layout,chunksize determine the
3951 * shape of the array.
3952 * This will always create an array with a type-0.90.0 superblock.
3953 * The newer usage is when assembling an array.
3954 * In this case raid_disks will be 0, and the major_version field is
3955 * use to determine which style super-blocks are to be found on the devices.
3956 * The minor and patch _version numbers are also kept incase the
3957 * super_block handler wishes to interpret them.
3958 */
3959 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
3960 {
3961
3962 if (info->raid_disks == 0) {
3963 /* just setting version number for superblock loading */
3964 if (info->major_version < 0 ||
3965 info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
3966 super_types[info->major_version].name == NULL) {
3967 /* maybe try to auto-load a module? */
3968 printk(KERN_INFO
3969 "md: superblock version %d not known\n",
3970 info->major_version);
3971 return -EINVAL;
3972 }
3973 mddev->major_version = info->major_version;
3974 mddev->minor_version = info->minor_version;
3975 mddev->patch_version = info->patch_version;
3976 return 0;
3977 }
3978 mddev->major_version = MD_MAJOR_VERSION;
3979 mddev->minor_version = MD_MINOR_VERSION;
3980 mddev->patch_version = MD_PATCHLEVEL_VERSION;
3981 mddev->ctime = get_seconds();
3982
3983 mddev->level = info->level;
3984 mddev->clevel[0] = 0;
3985 mddev->size = info->size;
3986 mddev->raid_disks = info->raid_disks;
3987 /* don't set md_minor, it is determined by which /dev/md* was
3988 * openned
3989 */
3990 if (info->state & (1<<MD_SB_CLEAN))
3991 mddev->recovery_cp = MaxSector;
3992 else
3993 mddev->recovery_cp = 0;
3994 mddev->persistent = ! info->not_persistent;
3995
3996 mddev->layout = info->layout;
3997 mddev->chunk_size = info->chunk_size;
3998
3999 mddev->max_disks = MD_SB_DISKS;
4000
4001 mddev->sb_dirty = 1;
4002
4003 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
4004 mddev->bitmap_offset = 0;
4005
4006 mddev->reshape_position = MaxSector;
4007
4008 /*
4009 * Generate a 128 bit UUID
4010 */
4011 get_random_bytes(mddev->uuid, 16);
4012
4013 mddev->new_level = mddev->level;
4014 mddev->new_chunk = mddev->chunk_size;
4015 mddev->new_layout = mddev->layout;
4016 mddev->delta_disks = 0;
4017
4018 return 0;
4019 }
4020
4021 static int update_size(mddev_t *mddev, unsigned long size)
4022 {
4023 mdk_rdev_t * rdev;
4024 int rv;
4025 struct list_head *tmp;
4026 int fit = (size == 0);
4027
4028 if (mddev->pers->resize == NULL)
4029 return -EINVAL;
4030 /* The "size" is the amount of each device that is used.
4031 * This can only make sense for arrays with redundancy.
4032 * linear and raid0 always use whatever space is available
4033 * We can only consider changing the size if no resync
4034 * or reconstruction is happening, and if the new size
4035 * is acceptable. It must fit before the sb_offset or,
4036 * if that is <data_offset, it must fit before the
4037 * size of each device.
4038 * If size is zero, we find the largest size that fits.
4039 */
4040 if (mddev->sync_thread)
4041 return -EBUSY;
4042 ITERATE_RDEV(mddev,rdev,tmp) {
4043 sector_t avail;
4044 if (rdev->sb_offset > rdev->data_offset)
4045 avail = (rdev->sb_offset*2) - rdev->data_offset;
4046 else
4047 avail = get_capacity(rdev->bdev->bd_disk)
4048 - rdev->data_offset;
4049 if (fit && (size == 0 || size > avail/2))
4050 size = avail/2;
4051 if (avail < ((sector_t)size << 1))
4052 return -ENOSPC;
4053 }
4054 rv = mddev->pers->resize(mddev, (sector_t)size *2);
4055 if (!rv) {
4056 struct block_device *bdev;
4057
4058 bdev = bdget_disk(mddev->gendisk, 0);
4059 if (bdev) {
4060 mutex_lock(&bdev->bd_inode->i_mutex);
4061 i_size_write(bdev->bd_inode, (loff_t)mddev->array_size << 10);
4062 mutex_unlock(&bdev->bd_inode->i_mutex);
4063 bdput(bdev);
4064 }
4065 }
4066 return rv;
4067 }
4068
4069 static int update_raid_disks(mddev_t *mddev, int raid_disks)
4070 {
4071 int rv;
4072 /* change the number of raid disks */
4073 if (mddev->pers->check_reshape == NULL)
4074 return -EINVAL;
4075 if (raid_disks <= 0 ||
4076 raid_disks >= mddev->max_disks)
4077 return -EINVAL;
4078 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
4079 return -EBUSY;
4080 mddev->delta_disks = raid_disks - mddev->raid_disks;
4081
4082 rv = mddev->pers->check_reshape(mddev);
4083 return rv;
4084 }
4085
4086
4087 /*
4088 * update_array_info is used to change the configuration of an
4089 * on-line array.
4090 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
4091 * fields in the info are checked against the array.
4092 * Any differences that cannot be handled will cause an error.
4093 * Normally, only one change can be managed at a time.
4094 */
4095 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
4096 {
4097 int rv = 0;
4098 int cnt = 0;
4099 int state = 0;
4100
4101 /* calculate expected state,ignoring low bits */
4102 if (mddev->bitmap && mddev->bitmap_offset)
4103 state |= (1 << MD_SB_BITMAP_PRESENT);
4104
4105 if (mddev->major_version != info->major_version ||
4106 mddev->minor_version != info->minor_version ||
4107 /* mddev->patch_version != info->patch_version || */
4108 mddev->ctime != info->ctime ||
4109 mddev->level != info->level ||
4110 /* mddev->layout != info->layout || */
4111 !mddev->persistent != info->not_persistent||
4112 mddev->chunk_size != info->chunk_size ||
4113 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
4114 ((state^info->state) & 0xfffffe00)
4115 )
4116 return -EINVAL;
4117 /* Check there is only one change */
4118 if (info->size >= 0 && mddev->size != info->size) cnt++;
4119 if (mddev->raid_disks != info->raid_disks) cnt++;
4120 if (mddev->layout != info->layout) cnt++;
4121 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
4122 if (cnt == 0) return 0;
4123 if (cnt > 1) return -EINVAL;
4124
4125 if (mddev->layout != info->layout) {
4126 /* Change layout
4127 * we don't need to do anything at the md level, the
4128 * personality will take care of it all.
4129 */
4130 if (mddev->pers->reconfig == NULL)
4131 return -EINVAL;
4132 else
4133 return mddev->pers->reconfig(mddev, info->layout, -1);
4134 }
4135 if (info->size >= 0 && mddev->size != info->size)
4136 rv = update_size(mddev, info->size);
4137
4138 if (mddev->raid_disks != info->raid_disks)
4139 rv = update_raid_disks(mddev, info->raid_disks);
4140
4141 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
4142 if (mddev->pers->quiesce == NULL)
4143 return -EINVAL;
4144 if (mddev->recovery || mddev->sync_thread)
4145 return -EBUSY;
4146 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
4147 /* add the bitmap */
4148 if (mddev->bitmap)
4149 return -EEXIST;
4150 if (mddev->default_bitmap_offset == 0)
4151 return -EINVAL;
4152 mddev->bitmap_offset = mddev->default_bitmap_offset;
4153 mddev->pers->quiesce(mddev, 1);
4154 rv = bitmap_create(mddev);
4155 if (rv)
4156 bitmap_destroy(mddev);
4157 mddev->pers->quiesce(mddev, 0);
4158 } else {
4159 /* remove the bitmap */
4160 if (!mddev->bitmap)
4161 return -ENOENT;
4162 if (mddev->bitmap->file)
4163 return -EINVAL;
4164 mddev->pers->quiesce(mddev, 1);
4165 bitmap_destroy(mddev);
4166 mddev->pers->quiesce(mddev, 0);
4167 mddev->bitmap_offset = 0;
4168 }
4169 }
4170 md_update_sb(mddev);
4171 return rv;
4172 }
4173
4174 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
4175 {
4176 mdk_rdev_t *rdev;
4177
4178 if (mddev->pers == NULL)
4179 return -ENODEV;
4180
4181 rdev = find_rdev(mddev, dev);
4182 if (!rdev)
4183 return -ENODEV;
4184
4185 md_error(mddev, rdev);
4186 return 0;
4187 }
4188
4189 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
4190 {
4191 mddev_t *mddev = bdev->bd_disk->private_data;
4192
4193 geo->heads = 2;
4194 geo->sectors = 4;
4195 geo->cylinders = get_capacity(mddev->gendisk) / 8;
4196 return 0;
4197 }
4198
4199 static int md_ioctl(struct inode *inode, struct file *file,
4200 unsigned int cmd, unsigned long arg)
4201 {
4202 int err = 0;
4203 void __user *argp = (void __user *)arg;
4204 mddev_t *mddev = NULL;
4205
4206 if (!capable(CAP_SYS_ADMIN))
4207 return -EACCES;
4208
4209 /*
4210 * Commands dealing with the RAID driver but not any
4211 * particular array:
4212 */
4213 switch (cmd)
4214 {
4215 case RAID_VERSION:
4216 err = get_version(argp);
4217 goto done;
4218
4219 case PRINT_RAID_DEBUG:
4220 err = 0;
4221 md_print_devices();
4222 goto done;
4223
4224 #ifndef MODULE
4225 case RAID_AUTORUN:
4226 err = 0;
4227 autostart_arrays(arg);
4228 goto done;
4229 #endif
4230 default:;
4231 }
4232
4233 /*
4234 * Commands creating/starting a new array:
4235 */
4236
4237 mddev = inode->i_bdev->bd_disk->private_data;
4238
4239 if (!mddev) {
4240 BUG();
4241 goto abort;
4242 }
4243
4244
4245 if (cmd == START_ARRAY) {
4246 /* START_ARRAY doesn't need to lock the array as autostart_array
4247 * does the locking, and it could even be a different array
4248 */
4249 static int cnt = 3;
4250 if (cnt > 0 ) {
4251 printk(KERN_WARNING
4252 "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
4253 "This will not be supported beyond July 2006\n",
4254 current->comm, current->pid);
4255 cnt--;
4256 }
4257 err = autostart_array(new_decode_dev(arg));
4258 if (err) {
4259 printk(KERN_WARNING "md: autostart failed!\n");
4260 goto abort;
4261 }
4262 goto done;
4263 }
4264
4265 err = mddev_lock(mddev);
4266 if (err) {
4267 printk(KERN_INFO
4268 "md: ioctl lock interrupted, reason %d, cmd %d\n",
4269 err, cmd);
4270 goto abort;
4271 }
4272
4273 switch (cmd)
4274 {
4275 case SET_ARRAY_INFO:
4276 {
4277 mdu_array_info_t info;
4278 if (!arg)
4279 memset(&info, 0, sizeof(info));
4280 else if (copy_from_user(&info, argp, sizeof(info))) {
4281 err = -EFAULT;
4282 goto abort_unlock;
4283 }
4284 if (mddev->pers) {
4285 err = update_array_info(mddev, &info);
4286 if (err) {
4287 printk(KERN_WARNING "md: couldn't update"
4288 " array info. %d\n", err);
4289 goto abort_unlock;
4290 }
4291 goto done_unlock;
4292 }
4293 if (!list_empty(&mddev->disks)) {
4294 printk(KERN_WARNING
4295 "md: array %s already has disks!\n",
4296 mdname(mddev));
4297 err = -EBUSY;
4298 goto abort_unlock;
4299 }
4300 if (mddev->raid_disks) {
4301 printk(KERN_WARNING
4302 "md: array %s already initialised!\n",
4303 mdname(mddev));
4304 err = -EBUSY;
4305 goto abort_unlock;
4306 }
4307 err = set_array_info(mddev, &info);
4308 if (err) {
4309 printk(KERN_WARNING "md: couldn't set"
4310 " array info. %d\n", err);
4311 goto abort_unlock;
4312 }
4313 }
4314 goto done_unlock;
4315
4316 default:;
4317 }
4318
4319 /*
4320 * Commands querying/configuring an existing array:
4321 */
4322 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
4323 * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
4324 if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
4325 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
4326 err = -ENODEV;
4327 goto abort_unlock;
4328 }
4329
4330 /*
4331 * Commands even a read-only array can execute:
4332 */
4333 switch (cmd)
4334 {
4335 case GET_ARRAY_INFO:
4336 err = get_array_info(mddev, argp);
4337 goto done_unlock;
4338
4339 case GET_BITMAP_FILE:
4340 err = get_bitmap_file(mddev, argp);
4341 goto done_unlock;
4342
4343 case GET_DISK_INFO:
4344 err = get_disk_info(mddev, argp);
4345 goto done_unlock;
4346
4347 case RESTART_ARRAY_RW:
4348 err = restart_array(mddev);
4349 goto done_unlock;
4350
4351 case STOP_ARRAY:
4352 err = do_md_stop (mddev, 0);
4353 goto done_unlock;
4354
4355 case STOP_ARRAY_RO:
4356 err = do_md_stop (mddev, 1);
4357 goto done_unlock;
4358
4359 /*
4360 * We have a problem here : there is no easy way to give a CHS
4361 * virtual geometry. We currently pretend that we have a 2 heads
4362 * 4 sectors (with a BIG number of cylinders...). This drives
4363 * dosfs just mad... ;-)
4364 */
4365 }
4366
4367 /*
4368 * The remaining ioctls are changing the state of the
4369 * superblock, so we do not allow them on read-only arrays.
4370 * However non-MD ioctls (e.g. get-size) will still come through
4371 * here and hit the 'default' below, so only disallow
4372 * 'md' ioctls, and switch to rw mode if started auto-readonly.
4373 */
4374 if (_IOC_TYPE(cmd) == MD_MAJOR &&
4375 mddev->ro && mddev->pers) {
4376 if (mddev->ro == 2) {
4377 mddev->ro = 0;
4378 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4379 md_wakeup_thread(mddev->thread);
4380
4381 } else {
4382 err = -EROFS;
4383 goto abort_unlock;
4384 }
4385 }
4386
4387 switch (cmd)
4388 {
4389 case ADD_NEW_DISK:
4390 {
4391 mdu_disk_info_t info;
4392 if (copy_from_user(&info, argp, sizeof(info)))
4393 err = -EFAULT;
4394 else
4395 err = add_new_disk(mddev, &info);
4396 goto done_unlock;
4397 }
4398
4399 case HOT_REMOVE_DISK:
4400 err = hot_remove_disk(mddev, new_decode_dev(arg));
4401 goto done_unlock;
4402
4403 case HOT_ADD_DISK:
4404 err = hot_add_disk(mddev, new_decode_dev(arg));
4405 goto done_unlock;
4406
4407 case SET_DISK_FAULTY:
4408 err = set_disk_faulty(mddev, new_decode_dev(arg));
4409 goto done_unlock;
4410
4411 case RUN_ARRAY:
4412 err = do_md_run (mddev);
4413 goto done_unlock;
4414
4415 case SET_BITMAP_FILE:
4416 err = set_bitmap_file(mddev, (int)arg);
4417 goto done_unlock;
4418
4419 default:
4420 err = -EINVAL;
4421 goto abort_unlock;
4422 }
4423
4424 done_unlock:
4425 abort_unlock:
4426 mddev_unlock(mddev);
4427
4428 return err;
4429 done:
4430 if (err)
4431 MD_BUG();
4432 abort:
4433 return err;
4434 }
4435
4436 static int md_open(struct inode *inode, struct file *file)
4437 {
4438 /*
4439 * Succeed if we can lock the mddev, which confirms that
4440 * it isn't being stopped right now.
4441 */
4442 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4443 int err;
4444
4445 if ((err = mddev_lock(mddev)))
4446 goto out;
4447
4448 err = 0;
4449 mddev_get(mddev);
4450 mddev_unlock(mddev);
4451
4452 check_disk_change(inode->i_bdev);
4453 out:
4454 return err;
4455 }
4456
4457 static int md_release(struct inode *inode, struct file * file)
4458 {
4459 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4460
4461 if (!mddev)
4462 BUG();
4463 mddev_put(mddev);
4464
4465 return 0;
4466 }
4467
4468 static int md_media_changed(struct gendisk *disk)
4469 {
4470 mddev_t *mddev = disk->private_data;
4471
4472 return mddev->changed;
4473 }
4474
4475 static int md_revalidate(struct gendisk *disk)
4476 {
4477 mddev_t *mddev = disk->private_data;
4478
4479 mddev->changed = 0;
4480 return 0;
4481 }
4482 static struct block_device_operations md_fops =
4483 {
4484 .owner = THIS_MODULE,
4485 .open = md_open,
4486 .release = md_release,
4487 .ioctl = md_ioctl,
4488 .getgeo = md_getgeo,
4489 .media_changed = md_media_changed,
4490 .revalidate_disk= md_revalidate,
4491 };
4492
4493 static int md_thread(void * arg)
4494 {
4495 mdk_thread_t *thread = arg;
4496
4497 /*
4498 * md_thread is a 'system-thread', it's priority should be very
4499 * high. We avoid resource deadlocks individually in each
4500 * raid personality. (RAID5 does preallocation) We also use RR and
4501 * the very same RT priority as kswapd, thus we will never get
4502 * into a priority inversion deadlock.
4503 *
4504 * we definitely have to have equal or higher priority than
4505 * bdflush, otherwise bdflush will deadlock if there are too
4506 * many dirty RAID5 blocks.
4507 */
4508
4509 allow_signal(SIGKILL);
4510 while (!kthread_should_stop()) {
4511
4512 /* We need to wait INTERRUPTIBLE so that
4513 * we don't add to the load-average.
4514 * That means we need to be sure no signals are
4515 * pending
4516 */
4517 if (signal_pending(current))
4518 flush_signals(current);
4519
4520 wait_event_interruptible_timeout
4521 (thread->wqueue,
4522 test_bit(THREAD_WAKEUP, &thread->flags)
4523 || kthread_should_stop(),
4524 thread->timeout);
4525 try_to_freeze();
4526
4527 clear_bit(THREAD_WAKEUP, &thread->flags);
4528
4529 thread->run(thread->mddev);
4530 }
4531
4532 return 0;
4533 }
4534
4535 void md_wakeup_thread(mdk_thread_t *thread)
4536 {
4537 if (thread) {
4538 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
4539 set_bit(THREAD_WAKEUP, &thread->flags);
4540 wake_up(&thread->wqueue);
4541 }
4542 }
4543
4544 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
4545 const char *name)
4546 {
4547 mdk_thread_t *thread;
4548
4549 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
4550 if (!thread)
4551 return NULL;
4552
4553 init_waitqueue_head(&thread->wqueue);
4554
4555 thread->run = run;
4556 thread->mddev = mddev;
4557 thread->timeout = MAX_SCHEDULE_TIMEOUT;
4558 thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
4559 if (IS_ERR(thread->tsk)) {
4560 kfree(thread);
4561 return NULL;
4562 }
4563 return thread;
4564 }
4565
4566 void md_unregister_thread(mdk_thread_t *thread)
4567 {
4568 dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
4569
4570 kthread_stop(thread->tsk);
4571 kfree(thread);
4572 }
4573
4574 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
4575 {
4576 if (!mddev) {
4577 MD_BUG();
4578 return;
4579 }
4580
4581 if (!rdev || test_bit(Faulty, &rdev->flags))
4582 return;
4583 /*
4584 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
4585 mdname(mddev),
4586 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
4587 __builtin_return_address(0),__builtin_return_address(1),
4588 __builtin_return_address(2),__builtin_return_address(3));
4589 */
4590 if (!mddev->pers->error_handler)
4591 return;
4592 mddev->pers->error_handler(mddev,rdev);
4593 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4594 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4595 md_wakeup_thread(mddev->thread);
4596 md_new_event_inintr(mddev);
4597 }
4598
4599 /* seq_file implementation /proc/mdstat */
4600
4601 static void status_unused(struct seq_file *seq)
4602 {
4603 int i = 0;
4604 mdk_rdev_t *rdev;
4605 struct list_head *tmp;
4606
4607 seq_printf(seq, "unused devices: ");
4608
4609 ITERATE_RDEV_PENDING(rdev,tmp) {
4610 char b[BDEVNAME_SIZE];
4611 i++;
4612 seq_printf(seq, "%s ",
4613 bdevname(rdev->bdev,b));
4614 }
4615 if (!i)
4616 seq_printf(seq, "<none>");
4617
4618 seq_printf(seq, "\n");
4619 }
4620
4621
4622 static void status_resync(struct seq_file *seq, mddev_t * mddev)
4623 {
4624 sector_t max_blocks, resync, res;
4625 unsigned long dt, db, rt;
4626 int scale;
4627 unsigned int per_milli;
4628
4629 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
4630
4631 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4632 max_blocks = mddev->resync_max_sectors >> 1;
4633 else
4634 max_blocks = mddev->size;
4635
4636 /*
4637 * Should not happen.
4638 */
4639 if (!max_blocks) {
4640 MD_BUG();
4641 return;
4642 }
4643 /* Pick 'scale' such that (resync>>scale)*1000 will fit
4644 * in a sector_t, and (max_blocks>>scale) will fit in a
4645 * u32, as those are the requirements for sector_div.
4646 * Thus 'scale' must be at least 10
4647 */
4648 scale = 10;
4649 if (sizeof(sector_t) > sizeof(unsigned long)) {
4650 while ( max_blocks/2 > (1ULL<<(scale+32)))
4651 scale++;
4652 }
4653 res = (resync>>scale)*1000;
4654 sector_div(res, (u32)((max_blocks>>scale)+1));
4655
4656 per_milli = res;
4657 {
4658 int i, x = per_milli/50, y = 20-x;
4659 seq_printf(seq, "[");
4660 for (i = 0; i < x; i++)
4661 seq_printf(seq, "=");
4662 seq_printf(seq, ">");
4663 for (i = 0; i < y; i++)
4664 seq_printf(seq, ".");
4665 seq_printf(seq, "] ");
4666 }
4667 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
4668 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
4669 "reshape" :
4670 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
4671 "resync" : "recovery")),
4672 per_milli/10, per_milli % 10,
4673 (unsigned long long) resync,
4674 (unsigned long long) max_blocks);
4675
4676 /*
4677 * We do not want to overflow, so the order of operands and
4678 * the * 100 / 100 trick are important. We do a +1 to be
4679 * safe against division by zero. We only estimate anyway.
4680 *
4681 * dt: time from mark until now
4682 * db: blocks written from mark until now
4683 * rt: remaining time
4684 */
4685 dt = ((jiffies - mddev->resync_mark) / HZ);
4686 if (!dt) dt++;
4687 db = resync - (mddev->resync_mark_cnt/2);
4688 rt = (dt * ((unsigned long)(max_blocks-resync) / (db/100+1)))/100;
4689
4690 seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
4691
4692 seq_printf(seq, " speed=%ldK/sec", db/dt);
4693 }
4694
4695 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
4696 {
4697 struct list_head *tmp;
4698 loff_t l = *pos;
4699 mddev_t *mddev;
4700
4701 if (l >= 0x10000)
4702 return NULL;
4703 if (!l--)
4704 /* header */
4705 return (void*)1;
4706
4707 spin_lock(&all_mddevs_lock);
4708 list_for_each(tmp,&all_mddevs)
4709 if (!l--) {
4710 mddev = list_entry(tmp, mddev_t, all_mddevs);
4711 mddev_get(mddev);
4712 spin_unlock(&all_mddevs_lock);
4713 return mddev;
4714 }
4715 spin_unlock(&all_mddevs_lock);
4716 if (!l--)
4717 return (void*)2;/* tail */
4718 return NULL;
4719 }
4720
4721 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4722 {
4723 struct list_head *tmp;
4724 mddev_t *next_mddev, *mddev = v;
4725
4726 ++*pos;
4727 if (v == (void*)2)
4728 return NULL;
4729
4730 spin_lock(&all_mddevs_lock);
4731 if (v == (void*)1)
4732 tmp = all_mddevs.next;
4733 else
4734 tmp = mddev->all_mddevs.next;
4735 if (tmp != &all_mddevs)
4736 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
4737 else {
4738 next_mddev = (void*)2;
4739 *pos = 0x10000;
4740 }
4741 spin_unlock(&all_mddevs_lock);
4742
4743 if (v != (void*)1)
4744 mddev_put(mddev);
4745 return next_mddev;
4746
4747 }
4748
4749 static void md_seq_stop(struct seq_file *seq, void *v)
4750 {
4751 mddev_t *mddev = v;
4752
4753 if (mddev && v != (void*)1 && v != (void*)2)
4754 mddev_put(mddev);
4755 }
4756
4757 struct mdstat_info {
4758 int event;
4759 };
4760
4761 static int md_seq_show(struct seq_file *seq, void *v)
4762 {
4763 mddev_t *mddev = v;
4764 sector_t size;
4765 struct list_head *tmp2;
4766 mdk_rdev_t *rdev;
4767 struct mdstat_info *mi = seq->private;
4768 struct bitmap *bitmap;
4769
4770 if (v == (void*)1) {
4771 struct mdk_personality *pers;
4772 seq_printf(seq, "Personalities : ");
4773 spin_lock(&pers_lock);
4774 list_for_each_entry(pers, &pers_list, list)
4775 seq_printf(seq, "[%s] ", pers->name);
4776
4777 spin_unlock(&pers_lock);
4778 seq_printf(seq, "\n");
4779 mi->event = atomic_read(&md_event_count);
4780 return 0;
4781 }
4782 if (v == (void*)2) {
4783 status_unused(seq);
4784 return 0;
4785 }
4786
4787 if (mddev_lock(mddev) < 0)
4788 return -EINTR;
4789
4790 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
4791 seq_printf(seq, "%s : %sactive", mdname(mddev),
4792 mddev->pers ? "" : "in");
4793 if (mddev->pers) {
4794 if (mddev->ro==1)
4795 seq_printf(seq, " (read-only)");
4796 if (mddev->ro==2)
4797 seq_printf(seq, "(auto-read-only)");
4798 seq_printf(seq, " %s", mddev->pers->name);
4799 }
4800
4801 size = 0;
4802 ITERATE_RDEV(mddev,rdev,tmp2) {
4803 char b[BDEVNAME_SIZE];
4804 seq_printf(seq, " %s[%d]",
4805 bdevname(rdev->bdev,b), rdev->desc_nr);
4806 if (test_bit(WriteMostly, &rdev->flags))
4807 seq_printf(seq, "(W)");
4808 if (test_bit(Faulty, &rdev->flags)) {
4809 seq_printf(seq, "(F)");
4810 continue;
4811 } else if (rdev->raid_disk < 0)
4812 seq_printf(seq, "(S)"); /* spare */
4813 size += rdev->size;
4814 }
4815
4816 if (!list_empty(&mddev->disks)) {
4817 if (mddev->pers)
4818 seq_printf(seq, "\n %llu blocks",
4819 (unsigned long long)mddev->array_size);
4820 else
4821 seq_printf(seq, "\n %llu blocks",
4822 (unsigned long long)size);
4823 }
4824 if (mddev->persistent) {
4825 if (mddev->major_version != 0 ||
4826 mddev->minor_version != 90) {
4827 seq_printf(seq," super %d.%d",
4828 mddev->major_version,
4829 mddev->minor_version);
4830 }
4831 } else
4832 seq_printf(seq, " super non-persistent");
4833
4834 if (mddev->pers) {
4835 mddev->pers->status (seq, mddev);
4836 seq_printf(seq, "\n ");
4837 if (mddev->pers->sync_request) {
4838 if (mddev->curr_resync > 2) {
4839 status_resync (seq, mddev);
4840 seq_printf(seq, "\n ");
4841 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
4842 seq_printf(seq, "\tresync=DELAYED\n ");
4843 else if (mddev->recovery_cp < MaxSector)
4844 seq_printf(seq, "\tresync=PENDING\n ");
4845 }
4846 } else
4847 seq_printf(seq, "\n ");
4848
4849 if ((bitmap = mddev->bitmap)) {
4850 unsigned long chunk_kb;
4851 unsigned long flags;
4852 spin_lock_irqsave(&bitmap->lock, flags);
4853 chunk_kb = bitmap->chunksize >> 10;
4854 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
4855 "%lu%s chunk",
4856 bitmap->pages - bitmap->missing_pages,
4857 bitmap->pages,
4858 (bitmap->pages - bitmap->missing_pages)
4859 << (PAGE_SHIFT - 10),
4860 chunk_kb ? chunk_kb : bitmap->chunksize,
4861 chunk_kb ? "KB" : "B");
4862 if (bitmap->file) {
4863 seq_printf(seq, ", file: ");
4864 seq_path(seq, bitmap->file->f_vfsmnt,
4865 bitmap->file->f_dentry," \t\n");
4866 }
4867
4868 seq_printf(seq, "\n");
4869 spin_unlock_irqrestore(&bitmap->lock, flags);
4870 }
4871
4872 seq_printf(seq, "\n");
4873 }
4874 mddev_unlock(mddev);
4875
4876 return 0;
4877 }
4878
4879 static struct seq_operations md_seq_ops = {
4880 .start = md_seq_start,
4881 .next = md_seq_next,
4882 .stop = md_seq_stop,
4883 .show = md_seq_show,
4884 };
4885
4886 static int md_seq_open(struct inode *inode, struct file *file)
4887 {
4888 int error;
4889 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
4890 if (mi == NULL)
4891 return -ENOMEM;
4892
4893 error = seq_open(file, &md_seq_ops);
4894 if (error)
4895 kfree(mi);
4896 else {
4897 struct seq_file *p = file->private_data;
4898 p->private = mi;
4899 mi->event = atomic_read(&md_event_count);
4900 }
4901 return error;
4902 }
4903
4904 static int md_seq_release(struct inode *inode, struct file *file)
4905 {
4906 struct seq_file *m = file->private_data;
4907 struct mdstat_info *mi = m->private;
4908 m->private = NULL;
4909 kfree(mi);
4910 return seq_release(inode, file);
4911 }
4912
4913 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
4914 {
4915 struct seq_file *m = filp->private_data;
4916 struct mdstat_info *mi = m->private;
4917 int mask;
4918
4919 poll_wait(filp, &md_event_waiters, wait);
4920
4921 /* always allow read */
4922 mask = POLLIN | POLLRDNORM;
4923
4924 if (mi->event != atomic_read(&md_event_count))
4925 mask |= POLLERR | POLLPRI;
4926 return mask;
4927 }
4928
4929 static struct file_operations md_seq_fops = {
4930 .open = md_seq_open,
4931 .read = seq_read,
4932 .llseek = seq_lseek,
4933 .release = md_seq_release,
4934 .poll = mdstat_poll,
4935 };
4936
4937 int register_md_personality(struct mdk_personality *p)
4938 {
4939 spin_lock(&pers_lock);
4940 list_add_tail(&p->list, &pers_list);
4941 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
4942 spin_unlock(&pers_lock);
4943 return 0;
4944 }
4945
4946 int unregister_md_personality(struct mdk_personality *p)
4947 {
4948 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
4949 spin_lock(&pers_lock);
4950 list_del_init(&p->list);
4951 spin_unlock(&pers_lock);
4952 return 0;
4953 }
4954
4955 static int is_mddev_idle(mddev_t *mddev)
4956 {
4957 mdk_rdev_t * rdev;
4958 struct list_head *tmp;
4959 int idle;
4960 unsigned long curr_events;
4961
4962 idle = 1;
4963 ITERATE_RDEV(mddev,rdev,tmp) {
4964 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
4965 curr_events = disk_stat_read(disk, sectors[0]) +
4966 disk_stat_read(disk, sectors[1]) -
4967 atomic_read(&disk->sync_io);
4968 /* The difference between curr_events and last_events
4969 * will be affected by any new non-sync IO (making
4970 * curr_events bigger) and any difference in the amount of
4971 * in-flight syncio (making current_events bigger or smaller)
4972 * The amount in-flight is currently limited to
4973 * 32*64K in raid1/10 and 256*PAGE_SIZE in raid5/6
4974 * which is at most 4096 sectors.
4975 * These numbers are fairly fragile and should be made
4976 * more robust, probably by enforcing the
4977 * 'window size' that md_do_sync sort-of uses.
4978 *
4979 * Note: the following is an unsigned comparison.
4980 */
4981 if ((curr_events - rdev->last_events + 4096) > 8192) {
4982 rdev->last_events = curr_events;
4983 idle = 0;
4984 }
4985 }
4986 return idle;
4987 }
4988
4989 void md_done_sync(mddev_t *mddev, int blocks, int ok)
4990 {
4991 /* another "blocks" (512byte) blocks have been synced */
4992 atomic_sub(blocks, &mddev->recovery_active);
4993 wake_up(&mddev->recovery_wait);
4994 if (!ok) {
4995 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
4996 md_wakeup_thread(mddev->thread);
4997 // stop recovery, signal do_sync ....
4998 }
4999 }
5000
5001
5002 /* md_write_start(mddev, bi)
5003 * If we need to update some array metadata (e.g. 'active' flag
5004 * in superblock) before writing, schedule a superblock update
5005 * and wait for it to complete.
5006 */
5007 void md_write_start(mddev_t *mddev, struct bio *bi)
5008 {
5009 if (bio_data_dir(bi) != WRITE)
5010 return;
5011
5012 BUG_ON(mddev->ro == 1);
5013 if (mddev->ro == 2) {
5014 /* need to switch to read/write */
5015 mddev->ro = 0;
5016 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5017 md_wakeup_thread(mddev->thread);
5018 }
5019 atomic_inc(&mddev->writes_pending);
5020 if (mddev->in_sync) {
5021 spin_lock_irq(&mddev->write_lock);
5022 if (mddev->in_sync) {
5023 mddev->in_sync = 0;
5024 mddev->sb_dirty = 3;
5025 md_wakeup_thread(mddev->thread);
5026 }
5027 spin_unlock_irq(&mddev->write_lock);
5028 }
5029 wait_event(mddev->sb_wait, mddev->sb_dirty==0);
5030 }
5031
5032 void md_write_end(mddev_t *mddev)
5033 {
5034 if (atomic_dec_and_test(&mddev->writes_pending)) {
5035 if (mddev->safemode == 2)
5036 md_wakeup_thread(mddev->thread);
5037 else if (mddev->safemode_delay)
5038 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
5039 }
5040 }
5041
5042 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
5043
5044 #define SYNC_MARKS 10
5045 #define SYNC_MARK_STEP (3*HZ)
5046 void md_do_sync(mddev_t *mddev)
5047 {
5048 mddev_t *mddev2;
5049 unsigned int currspeed = 0,
5050 window;
5051 sector_t max_sectors,j, io_sectors;
5052 unsigned long mark[SYNC_MARKS];
5053 sector_t mark_cnt[SYNC_MARKS];
5054 int last_mark,m;
5055 struct list_head *tmp;
5056 sector_t last_check;
5057 int skipped = 0;
5058 struct list_head *rtmp;
5059 mdk_rdev_t *rdev;
5060
5061 /* just incase thread restarts... */
5062 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
5063 return;
5064 if (mddev->ro) /* never try to sync a read-only array */
5065 return;
5066
5067 /* we overload curr_resync somewhat here.
5068 * 0 == not engaged in resync at all
5069 * 2 == checking that there is no conflict with another sync
5070 * 1 == like 2, but have yielded to allow conflicting resync to
5071 * commense
5072 * other == active in resync - this many blocks
5073 *
5074 * Before starting a resync we must have set curr_resync to
5075 * 2, and then checked that every "conflicting" array has curr_resync
5076 * less than ours. When we find one that is the same or higher
5077 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
5078 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
5079 * This will mean we have to start checking from the beginning again.
5080 *
5081 */
5082
5083 do {
5084 mddev->curr_resync = 2;
5085
5086 try_again:
5087 if (kthread_should_stop()) {
5088 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5089 goto skip;
5090 }
5091 ITERATE_MDDEV(mddev2,tmp) {
5092 if (mddev2 == mddev)
5093 continue;
5094 if (mddev2->curr_resync &&
5095 match_mddev_units(mddev,mddev2)) {
5096 DEFINE_WAIT(wq);
5097 if (mddev < mddev2 && mddev->curr_resync == 2) {
5098 /* arbitrarily yield */
5099 mddev->curr_resync = 1;
5100 wake_up(&resync_wait);
5101 }
5102 if (mddev > mddev2 && mddev->curr_resync == 1)
5103 /* no need to wait here, we can wait the next
5104 * time 'round when curr_resync == 2
5105 */
5106 continue;
5107 prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
5108 if (!kthread_should_stop() &&
5109 mddev2->curr_resync >= mddev->curr_resync) {
5110 printk(KERN_INFO "md: delaying resync of %s"
5111 " until %s has finished resync (they"
5112 " share one or more physical units)\n",
5113 mdname(mddev), mdname(mddev2));
5114 mddev_put(mddev2);
5115 schedule();
5116 finish_wait(&resync_wait, &wq);
5117 goto try_again;
5118 }
5119 finish_wait(&resync_wait, &wq);
5120 }
5121 }
5122 } while (mddev->curr_resync < 2);
5123
5124 j = 0;
5125 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5126 /* resync follows the size requested by the personality,
5127 * which defaults to physical size, but can be virtual size
5128 */
5129 max_sectors = mddev->resync_max_sectors;
5130 mddev->resync_mismatches = 0;
5131 /* we don't use the checkpoint if there's a bitmap */
5132 if (!mddev->bitmap &&
5133 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5134 j = mddev->recovery_cp;
5135 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5136 max_sectors = mddev->size << 1;
5137 else {
5138 /* recovery follows the physical size of devices */
5139 max_sectors = mddev->size << 1;
5140 j = MaxSector;
5141 ITERATE_RDEV(mddev,rdev,rtmp)
5142 if (rdev->raid_disk >= 0 &&
5143 !test_bit(Faulty, &rdev->flags) &&
5144 !test_bit(In_sync, &rdev->flags) &&
5145 rdev->recovery_offset < j)
5146 j = rdev->recovery_offset;
5147 }
5148
5149 printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
5150 printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
5151 " %d KB/sec/disc.\n", speed_min(mddev));
5152 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
5153 "(but not more than %d KB/sec) for reconstruction.\n",
5154 speed_max(mddev));
5155
5156 is_mddev_idle(mddev); /* this also initializes IO event counters */
5157
5158 io_sectors = 0;
5159 for (m = 0; m < SYNC_MARKS; m++) {
5160 mark[m] = jiffies;
5161 mark_cnt[m] = io_sectors;
5162 }
5163 last_mark = 0;
5164 mddev->resync_mark = mark[last_mark];
5165 mddev->resync_mark_cnt = mark_cnt[last_mark];
5166
5167 /*
5168 * Tune reconstruction:
5169 */
5170 window = 32*(PAGE_SIZE/512);
5171 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
5172 window/2,(unsigned long long) max_sectors/2);
5173
5174 atomic_set(&mddev->recovery_active, 0);
5175 init_waitqueue_head(&mddev->recovery_wait);
5176 last_check = 0;
5177
5178 if (j>2) {
5179 printk(KERN_INFO
5180 "md: resuming recovery of %s from checkpoint.\n",
5181 mdname(mddev));
5182 mddev->curr_resync = j;
5183 }
5184
5185 while (j < max_sectors) {
5186 sector_t sectors;
5187
5188 skipped = 0;
5189 sectors = mddev->pers->sync_request(mddev, j, &skipped,
5190 currspeed < speed_min(mddev));
5191 if (sectors == 0) {
5192 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
5193 goto out;
5194 }
5195
5196 if (!skipped) { /* actual IO requested */
5197 io_sectors += sectors;
5198 atomic_add(sectors, &mddev->recovery_active);
5199 }
5200
5201 j += sectors;
5202 if (j>1) mddev->curr_resync = j;
5203 if (last_check == 0)
5204 /* this is the earliers that rebuilt will be
5205 * visible in /proc/mdstat
5206 */
5207 md_new_event(mddev);
5208
5209 if (last_check + window > io_sectors || j == max_sectors)
5210 continue;
5211
5212 last_check = io_sectors;
5213
5214 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
5215 test_bit(MD_RECOVERY_ERR, &mddev->recovery))
5216 break;
5217
5218 repeat:
5219 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
5220 /* step marks */
5221 int next = (last_mark+1) % SYNC_MARKS;
5222
5223 mddev->resync_mark = mark[next];
5224 mddev->resync_mark_cnt = mark_cnt[next];
5225 mark[next] = jiffies;
5226 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
5227 last_mark = next;
5228 }
5229
5230
5231 if (kthread_should_stop()) {
5232 /*
5233 * got a signal, exit.
5234 */
5235 printk(KERN_INFO
5236 "md: md_do_sync() got signal ... exiting\n");
5237 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5238 goto out;
5239 }
5240
5241 /*
5242 * this loop exits only if either when we are slower than
5243 * the 'hard' speed limit, or the system was IO-idle for
5244 * a jiffy.
5245 * the system might be non-idle CPU-wise, but we only care
5246 * about not overloading the IO subsystem. (things like an
5247 * e2fsck being done on the RAID array should execute fast)
5248 */
5249 mddev->queue->unplug_fn(mddev->queue);
5250 cond_resched();
5251
5252 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
5253 /((jiffies-mddev->resync_mark)/HZ +1) +1;
5254
5255 if (currspeed > speed_min(mddev)) {
5256 if ((currspeed > speed_max(mddev)) ||
5257 !is_mddev_idle(mddev)) {
5258 msleep(500);
5259 goto repeat;
5260 }
5261 }
5262 }
5263 printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
5264 /*
5265 * this also signals 'finished resyncing' to md_stop
5266 */
5267 out:
5268 mddev->queue->unplug_fn(mddev->queue);
5269
5270 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
5271
5272 /* tell personality that we are finished */
5273 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
5274
5275 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
5276 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
5277 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
5278 mddev->curr_resync > 2) {
5279 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5280 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5281 if (mddev->curr_resync >= mddev->recovery_cp) {
5282 printk(KERN_INFO
5283 "md: checkpointing recovery of %s.\n",
5284 mdname(mddev));
5285 mddev->recovery_cp = mddev->curr_resync;
5286 }
5287 } else
5288 mddev->recovery_cp = MaxSector;
5289 } else {
5290 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5291 mddev->curr_resync = MaxSector;
5292 ITERATE_RDEV(mddev,rdev,rtmp)
5293 if (rdev->raid_disk >= 0 &&
5294 !test_bit(Faulty, &rdev->flags) &&
5295 !test_bit(In_sync, &rdev->flags) &&
5296 rdev->recovery_offset < mddev->curr_resync)
5297 rdev->recovery_offset = mddev->curr_resync;
5298 mddev->sb_dirty = 1;
5299 }
5300 }
5301
5302 skip:
5303 mddev->curr_resync = 0;
5304 wake_up(&resync_wait);
5305 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
5306 md_wakeup_thread(mddev->thread);
5307 }
5308 EXPORT_SYMBOL_GPL(md_do_sync);
5309
5310
5311 /*
5312 * This routine is regularly called by all per-raid-array threads to
5313 * deal with generic issues like resync and super-block update.
5314 * Raid personalities that don't have a thread (linear/raid0) do not
5315 * need this as they never do any recovery or update the superblock.
5316 *
5317 * It does not do any resync itself, but rather "forks" off other threads
5318 * to do that as needed.
5319 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
5320 * "->recovery" and create a thread at ->sync_thread.
5321 * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
5322 * and wakeups up this thread which will reap the thread and finish up.
5323 * This thread also removes any faulty devices (with nr_pending == 0).
5324 *
5325 * The overall approach is:
5326 * 1/ if the superblock needs updating, update it.
5327 * 2/ If a recovery thread is running, don't do anything else.
5328 * 3/ If recovery has finished, clean up, possibly marking spares active.
5329 * 4/ If there are any faulty devices, remove them.
5330 * 5/ If array is degraded, try to add spares devices
5331 * 6/ If array has spares or is not in-sync, start a resync thread.
5332 */
5333 void md_check_recovery(mddev_t *mddev)
5334 {
5335 mdk_rdev_t *rdev;
5336 struct list_head *rtmp;
5337
5338
5339 if (mddev->bitmap)
5340 bitmap_daemon_work(mddev->bitmap);
5341
5342 if (mddev->ro)
5343 return;
5344
5345 if (signal_pending(current)) {
5346 if (mddev->pers->sync_request) {
5347 printk(KERN_INFO "md: %s in immediate safe mode\n",
5348 mdname(mddev));
5349 mddev->safemode = 2;
5350 }
5351 flush_signals(current);
5352 }
5353
5354 if ( ! (
5355 mddev->sb_dirty ||
5356 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
5357 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
5358 (mddev->safemode == 1) ||
5359 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
5360 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
5361 ))
5362 return;
5363
5364 if (mddev_trylock(mddev)) {
5365 int spares =0;
5366
5367 spin_lock_irq(&mddev->write_lock);
5368 if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
5369 !mddev->in_sync && mddev->recovery_cp == MaxSector) {
5370 mddev->in_sync = 1;
5371 mddev->sb_dirty = 3;
5372 }
5373 if (mddev->safemode == 1)
5374 mddev->safemode = 0;
5375 spin_unlock_irq(&mddev->write_lock);
5376
5377 if (mddev->sb_dirty)
5378 md_update_sb(mddev);
5379
5380
5381 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
5382 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
5383 /* resync/recovery still happening */
5384 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5385 goto unlock;
5386 }
5387 if (mddev->sync_thread) {
5388 /* resync has finished, collect result */
5389 md_unregister_thread(mddev->sync_thread);
5390 mddev->sync_thread = NULL;
5391 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
5392 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5393 /* success...*/
5394 /* activate any spares */
5395 mddev->pers->spare_active(mddev);
5396 }
5397 md_update_sb(mddev);
5398
5399 /* if array is no-longer degraded, then any saved_raid_disk
5400 * information must be scrapped
5401 */
5402 if (!mddev->degraded)
5403 ITERATE_RDEV(mddev,rdev,rtmp)
5404 rdev->saved_raid_disk = -1;
5405
5406 mddev->recovery = 0;
5407 /* flag recovery needed just to double check */
5408 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5409 md_new_event(mddev);
5410 goto unlock;
5411 }
5412 /* Clear some bits that don't mean anything, but
5413 * might be left set
5414 */
5415 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5416 clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
5417 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
5418 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
5419
5420 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
5421 goto unlock;
5422 /* no recovery is running.
5423 * remove any failed drives, then
5424 * add spares if possible.
5425 * Spare are also removed and re-added, to allow
5426 * the personality to fail the re-add.
5427 */
5428 ITERATE_RDEV(mddev,rdev,rtmp)
5429 if (rdev->raid_disk >= 0 &&
5430 (test_bit(Faulty, &rdev->flags) || ! test_bit(In_sync, &rdev->flags)) &&
5431 atomic_read(&rdev->nr_pending)==0) {
5432 if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0) {
5433 char nm[20];
5434 sprintf(nm,"rd%d", rdev->raid_disk);
5435 sysfs_remove_link(&mddev->kobj, nm);
5436 rdev->raid_disk = -1;
5437 }
5438 }
5439
5440 if (mddev->degraded) {
5441 ITERATE_RDEV(mddev,rdev,rtmp)
5442 if (rdev->raid_disk < 0
5443 && !test_bit(Faulty, &rdev->flags)) {
5444 rdev->recovery_offset = 0;
5445 if (mddev->pers->hot_add_disk(mddev,rdev)) {
5446 char nm[20];
5447 sprintf(nm, "rd%d", rdev->raid_disk);
5448 sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
5449 spares++;
5450 md_new_event(mddev);
5451 } else
5452 break;
5453 }
5454 }
5455
5456 if (spares) {
5457 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5458 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5459 } else if (mddev->recovery_cp < MaxSector) {
5460 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5461 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
5462 /* nothing to be done ... */
5463 goto unlock;
5464
5465 if (mddev->pers->sync_request) {
5466 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5467 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
5468 /* We are adding a device or devices to an array
5469 * which has the bitmap stored on all devices.
5470 * So make sure all bitmap pages get written
5471 */
5472 bitmap_write_all(mddev->bitmap);
5473 }
5474 mddev->sync_thread = md_register_thread(md_do_sync,
5475 mddev,
5476 "%s_resync");
5477 if (!mddev->sync_thread) {
5478 printk(KERN_ERR "%s: could not start resync"
5479 " thread...\n",
5480 mdname(mddev));
5481 /* leave the spares where they are, it shouldn't hurt */
5482 mddev->recovery = 0;
5483 } else
5484 md_wakeup_thread(mddev->sync_thread);
5485 md_new_event(mddev);
5486 }
5487 unlock:
5488 mddev_unlock(mddev);
5489 }
5490 }
5491
5492 static int md_notify_reboot(struct notifier_block *this,
5493 unsigned long code, void *x)
5494 {
5495 struct list_head *tmp;
5496 mddev_t *mddev;
5497
5498 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
5499
5500 printk(KERN_INFO "md: stopping all md devices.\n");
5501
5502 ITERATE_MDDEV(mddev,tmp)
5503 if (mddev_trylock(mddev)) {
5504 do_md_stop (mddev, 1);
5505 mddev_unlock(mddev);
5506 }
5507 /*
5508 * certain more exotic SCSI devices are known to be
5509 * volatile wrt too early system reboots. While the
5510 * right place to handle this issue is the given
5511 * driver, we do want to have a safe RAID driver ...
5512 */
5513 mdelay(1000*1);
5514 }
5515 return NOTIFY_DONE;
5516 }
5517
5518 static struct notifier_block md_notifier = {
5519 .notifier_call = md_notify_reboot,
5520 .next = NULL,
5521 .priority = INT_MAX, /* before any real devices */
5522 };
5523
5524 static void md_geninit(void)
5525 {
5526 struct proc_dir_entry *p;
5527
5528 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
5529
5530 p = create_proc_entry("mdstat", S_IRUGO, NULL);
5531 if (p)
5532 p->proc_fops = &md_seq_fops;
5533 }
5534
5535 static int __init md_init(void)
5536 {
5537 printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
5538 " MD_SB_DISKS=%d\n",
5539 MD_MAJOR_VERSION, MD_MINOR_VERSION,
5540 MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
5541 printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR_HI,
5542 BITMAP_MINOR);
5543
5544 if (register_blkdev(MAJOR_NR, "md"))
5545 return -1;
5546 if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
5547 unregister_blkdev(MAJOR_NR, "md");
5548 return -1;
5549 }
5550 blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
5551 md_probe, NULL, NULL);
5552 blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
5553 md_probe, NULL, NULL);
5554
5555 register_reboot_notifier(&md_notifier);
5556 raid_table_header = register_sysctl_table(raid_root_table, 1);
5557
5558 md_geninit();
5559 return (0);
5560 }
5561
5562
5563 #ifndef MODULE
5564
5565 /*
5566 * Searches all registered partitions for autorun RAID arrays
5567 * at boot time.
5568 */
5569 static dev_t detected_devices[128];
5570 static int dev_cnt;
5571
5572 void md_autodetect_dev(dev_t dev)
5573 {
5574 if (dev_cnt >= 0 && dev_cnt < 127)
5575 detected_devices[dev_cnt++] = dev;
5576 }
5577
5578
5579 static void autostart_arrays(int part)
5580 {
5581 mdk_rdev_t *rdev;
5582 int i;
5583
5584 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
5585
5586 for (i = 0; i < dev_cnt; i++) {
5587 dev_t dev = detected_devices[i];
5588
5589 rdev = md_import_device(dev,0, 0);
5590 if (IS_ERR(rdev))
5591 continue;
5592
5593 if (test_bit(Faulty, &rdev->flags)) {
5594 MD_BUG();
5595 continue;
5596 }
5597 list_add(&rdev->same_set, &pending_raid_disks);
5598 }
5599 dev_cnt = 0;
5600
5601 autorun_devices(part);
5602 }
5603
5604 #endif
5605
5606 static __exit void md_exit(void)
5607 {
5608 mddev_t *mddev;
5609 struct list_head *tmp;
5610
5611 blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
5612 blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
5613
5614 unregister_blkdev(MAJOR_NR,"md");
5615 unregister_blkdev(mdp_major, "mdp");
5616 unregister_reboot_notifier(&md_notifier);
5617 unregister_sysctl_table(raid_table_header);
5618 remove_proc_entry("mdstat", NULL);
5619 ITERATE_MDDEV(mddev,tmp) {
5620 struct gendisk *disk = mddev->gendisk;
5621 if (!disk)
5622 continue;
5623 export_array(mddev);
5624 del_gendisk(disk);
5625 put_disk(disk);
5626 mddev->gendisk = NULL;
5627 mddev_put(mddev);
5628 }
5629 }
5630
5631 module_init(md_init)
5632 module_exit(md_exit)
5633
5634 static int get_ro(char *buffer, struct kernel_param *kp)
5635 {
5636 return sprintf(buffer, "%d", start_readonly);
5637 }
5638 static int set_ro(const char *val, struct kernel_param *kp)
5639 {
5640 char *e;
5641 int num = simple_strtoul(val, &e, 10);
5642 if (*val && (*e == '\0' || *e == '\n')) {
5643 start_readonly = num;
5644 return 0;
5645 }
5646 return -EINVAL;
5647 }
5648
5649 module_param_call(start_ro, set_ro, get_ro, NULL, 0600);
5650 module_param(start_dirty_degraded, int, 0644);
5651
5652
5653 EXPORT_SYMBOL(register_md_personality);
5654 EXPORT_SYMBOL(unregister_md_personality);
5655 EXPORT_SYMBOL(md_error);
5656 EXPORT_SYMBOL(md_done_sync);
5657 EXPORT_SYMBOL(md_write_start);
5658 EXPORT_SYMBOL(md_write_end);
5659 EXPORT_SYMBOL(md_register_thread);
5660 EXPORT_SYMBOL(md_unregister_thread);
5661 EXPORT_SYMBOL(md_wakeup_thread);
5662 EXPORT_SYMBOL(md_check_recovery);
5663 MODULE_LICENSE("GPL");
5664 MODULE_ALIAS("md");
5665 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
This page took 0.2326 seconds and 6 git commands to generate.