Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ieee1394...
[deliverable/linux.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/module.h>
36 #include <linux/kthread.h>
37 #include <linux/linkage.h>
38 #include <linux/raid/md.h>
39 #include <linux/raid/bitmap.h>
40 #include <linux/sysctl.h>
41 #include <linux/buffer_head.h> /* for invalidate_bdev */
42 #include <linux/poll.h>
43 #include <linux/mutex.h>
44 #include <linux/ctype.h>
45 #include <linux/freezer.h>
46
47 #include <linux/init.h>
48
49 #include <linux/file.h>
50
51 #ifdef CONFIG_KMOD
52 #include <linux/kmod.h>
53 #endif
54
55 #include <asm/unaligned.h>
56
57 #define MAJOR_NR MD_MAJOR
58 #define MD_DRIVER
59
60 /* 63 partitions with the alternate major number (mdp) */
61 #define MdpMinorShift 6
62
63 #define DEBUG 0
64 #define dprintk(x...) ((void)(DEBUG && printk(x)))
65
66
67 #ifndef MODULE
68 static void autostart_arrays (int part);
69 #endif
70
71 static LIST_HEAD(pers_list);
72 static DEFINE_SPINLOCK(pers_lock);
73
74 static void md_print_devices(void);
75
76 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
77
78 /*
79 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
80 * is 1000 KB/sec, so the extra system load does not show up that much.
81 * Increase it if you want to have more _guaranteed_ speed. Note that
82 * the RAID driver will use the maximum available bandwidth if the IO
83 * subsystem is idle. There is also an 'absolute maximum' reconstruction
84 * speed limit - in case reconstruction slows down your system despite
85 * idle IO detection.
86 *
87 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
88 * or /sys/block/mdX/md/sync_speed_{min,max}
89 */
90
91 static int sysctl_speed_limit_min = 1000;
92 static int sysctl_speed_limit_max = 200000;
93 static inline int speed_min(mddev_t *mddev)
94 {
95 return mddev->sync_speed_min ?
96 mddev->sync_speed_min : sysctl_speed_limit_min;
97 }
98
99 static inline int speed_max(mddev_t *mddev)
100 {
101 return mddev->sync_speed_max ?
102 mddev->sync_speed_max : sysctl_speed_limit_max;
103 }
104
105 static struct ctl_table_header *raid_table_header;
106
107 static ctl_table raid_table[] = {
108 {
109 .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
110 .procname = "speed_limit_min",
111 .data = &sysctl_speed_limit_min,
112 .maxlen = sizeof(int),
113 .mode = S_IRUGO|S_IWUSR,
114 .proc_handler = &proc_dointvec,
115 },
116 {
117 .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
118 .procname = "speed_limit_max",
119 .data = &sysctl_speed_limit_max,
120 .maxlen = sizeof(int),
121 .mode = S_IRUGO|S_IWUSR,
122 .proc_handler = &proc_dointvec,
123 },
124 { .ctl_name = 0 }
125 };
126
127 static ctl_table raid_dir_table[] = {
128 {
129 .ctl_name = DEV_RAID,
130 .procname = "raid",
131 .maxlen = 0,
132 .mode = S_IRUGO|S_IXUGO,
133 .child = raid_table,
134 },
135 { .ctl_name = 0 }
136 };
137
138 static ctl_table raid_root_table[] = {
139 {
140 .ctl_name = CTL_DEV,
141 .procname = "dev",
142 .maxlen = 0,
143 .mode = 0555,
144 .child = raid_dir_table,
145 },
146 { .ctl_name = 0 }
147 };
148
149 static struct block_device_operations md_fops;
150
151 static int start_readonly;
152
153 /*
154 * We have a system wide 'event count' that is incremented
155 * on any 'interesting' event, and readers of /proc/mdstat
156 * can use 'poll' or 'select' to find out when the event
157 * count increases.
158 *
159 * Events are:
160 * start array, stop array, error, add device, remove device,
161 * start build, activate spare
162 */
163 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
164 static atomic_t md_event_count;
165 void md_new_event(mddev_t *mddev)
166 {
167 atomic_inc(&md_event_count);
168 wake_up(&md_event_waiters);
169 sysfs_notify(&mddev->kobj, NULL, "sync_action");
170 }
171 EXPORT_SYMBOL_GPL(md_new_event);
172
173 /* Alternate version that can be called from interrupts
174 * when calling sysfs_notify isn't needed.
175 */
176 static void md_new_event_inintr(mddev_t *mddev)
177 {
178 atomic_inc(&md_event_count);
179 wake_up(&md_event_waiters);
180 }
181
182 /*
183 * Enables to iterate over all existing md arrays
184 * all_mddevs_lock protects this list.
185 */
186 static LIST_HEAD(all_mddevs);
187 static DEFINE_SPINLOCK(all_mddevs_lock);
188
189
190 /*
191 * iterates through all used mddevs in the system.
192 * We take care to grab the all_mddevs_lock whenever navigating
193 * the list, and to always hold a refcount when unlocked.
194 * Any code which breaks out of this loop while own
195 * a reference to the current mddev and must mddev_put it.
196 */
197 #define ITERATE_MDDEV(mddev,tmp) \
198 \
199 for (({ spin_lock(&all_mddevs_lock); \
200 tmp = all_mddevs.next; \
201 mddev = NULL;}); \
202 ({ if (tmp != &all_mddevs) \
203 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
204 spin_unlock(&all_mddevs_lock); \
205 if (mddev) mddev_put(mddev); \
206 mddev = list_entry(tmp, mddev_t, all_mddevs); \
207 tmp != &all_mddevs;}); \
208 ({ spin_lock(&all_mddevs_lock); \
209 tmp = tmp->next;}) \
210 )
211
212
213 static int md_fail_request (request_queue_t *q, struct bio *bio)
214 {
215 bio_io_error(bio, bio->bi_size);
216 return 0;
217 }
218
219 static inline mddev_t *mddev_get(mddev_t *mddev)
220 {
221 atomic_inc(&mddev->active);
222 return mddev;
223 }
224
225 static void mddev_put(mddev_t *mddev)
226 {
227 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
228 return;
229 if (!mddev->raid_disks && list_empty(&mddev->disks)) {
230 list_del(&mddev->all_mddevs);
231 spin_unlock(&all_mddevs_lock);
232 blk_cleanup_queue(mddev->queue);
233 kobject_unregister(&mddev->kobj);
234 } else
235 spin_unlock(&all_mddevs_lock);
236 }
237
238 static mddev_t * mddev_find(dev_t unit)
239 {
240 mddev_t *mddev, *new = NULL;
241
242 retry:
243 spin_lock(&all_mddevs_lock);
244 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
245 if (mddev->unit == unit) {
246 mddev_get(mddev);
247 spin_unlock(&all_mddevs_lock);
248 kfree(new);
249 return mddev;
250 }
251
252 if (new) {
253 list_add(&new->all_mddevs, &all_mddevs);
254 spin_unlock(&all_mddevs_lock);
255 return new;
256 }
257 spin_unlock(&all_mddevs_lock);
258
259 new = kzalloc(sizeof(*new), GFP_KERNEL);
260 if (!new)
261 return NULL;
262
263 new->unit = unit;
264 if (MAJOR(unit) == MD_MAJOR)
265 new->md_minor = MINOR(unit);
266 else
267 new->md_minor = MINOR(unit) >> MdpMinorShift;
268
269 mutex_init(&new->reconfig_mutex);
270 INIT_LIST_HEAD(&new->disks);
271 INIT_LIST_HEAD(&new->all_mddevs);
272 init_timer(&new->safemode_timer);
273 atomic_set(&new->active, 1);
274 spin_lock_init(&new->write_lock);
275 init_waitqueue_head(&new->sb_wait);
276
277 new->queue = blk_alloc_queue(GFP_KERNEL);
278 if (!new->queue) {
279 kfree(new);
280 return NULL;
281 }
282 set_bit(QUEUE_FLAG_CLUSTER, &new->queue->queue_flags);
283
284 blk_queue_make_request(new->queue, md_fail_request);
285
286 goto retry;
287 }
288
289 static inline int mddev_lock(mddev_t * mddev)
290 {
291 return mutex_lock_interruptible(&mddev->reconfig_mutex);
292 }
293
294 static inline int mddev_trylock(mddev_t * mddev)
295 {
296 return mutex_trylock(&mddev->reconfig_mutex);
297 }
298
299 static inline void mddev_unlock(mddev_t * mddev)
300 {
301 mutex_unlock(&mddev->reconfig_mutex);
302
303 md_wakeup_thread(mddev->thread);
304 }
305
306 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
307 {
308 mdk_rdev_t * rdev;
309 struct list_head *tmp;
310
311 ITERATE_RDEV(mddev,rdev,tmp) {
312 if (rdev->desc_nr == nr)
313 return rdev;
314 }
315 return NULL;
316 }
317
318 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
319 {
320 struct list_head *tmp;
321 mdk_rdev_t *rdev;
322
323 ITERATE_RDEV(mddev,rdev,tmp) {
324 if (rdev->bdev->bd_dev == dev)
325 return rdev;
326 }
327 return NULL;
328 }
329
330 static struct mdk_personality *find_pers(int level, char *clevel)
331 {
332 struct mdk_personality *pers;
333 list_for_each_entry(pers, &pers_list, list) {
334 if (level != LEVEL_NONE && pers->level == level)
335 return pers;
336 if (strcmp(pers->name, clevel)==0)
337 return pers;
338 }
339 return NULL;
340 }
341
342 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
343 {
344 sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
345 return MD_NEW_SIZE_BLOCKS(size);
346 }
347
348 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
349 {
350 sector_t size;
351
352 size = rdev->sb_offset;
353
354 if (chunk_size)
355 size &= ~((sector_t)chunk_size/1024 - 1);
356 return size;
357 }
358
359 static int alloc_disk_sb(mdk_rdev_t * rdev)
360 {
361 if (rdev->sb_page)
362 MD_BUG();
363
364 rdev->sb_page = alloc_page(GFP_KERNEL);
365 if (!rdev->sb_page) {
366 printk(KERN_ALERT "md: out of memory.\n");
367 return -EINVAL;
368 }
369
370 return 0;
371 }
372
373 static void free_disk_sb(mdk_rdev_t * rdev)
374 {
375 if (rdev->sb_page) {
376 put_page(rdev->sb_page);
377 rdev->sb_loaded = 0;
378 rdev->sb_page = NULL;
379 rdev->sb_offset = 0;
380 rdev->size = 0;
381 }
382 }
383
384
385 static int super_written(struct bio *bio, unsigned int bytes_done, int error)
386 {
387 mdk_rdev_t *rdev = bio->bi_private;
388 mddev_t *mddev = rdev->mddev;
389 if (bio->bi_size)
390 return 1;
391
392 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
393 printk("md: super_written gets error=%d, uptodate=%d\n",
394 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
395 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
396 md_error(mddev, rdev);
397 }
398
399 if (atomic_dec_and_test(&mddev->pending_writes))
400 wake_up(&mddev->sb_wait);
401 bio_put(bio);
402 return 0;
403 }
404
405 static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error)
406 {
407 struct bio *bio2 = bio->bi_private;
408 mdk_rdev_t *rdev = bio2->bi_private;
409 mddev_t *mddev = rdev->mddev;
410 if (bio->bi_size)
411 return 1;
412
413 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
414 error == -EOPNOTSUPP) {
415 unsigned long flags;
416 /* barriers don't appear to be supported :-( */
417 set_bit(BarriersNotsupp, &rdev->flags);
418 mddev->barriers_work = 0;
419 spin_lock_irqsave(&mddev->write_lock, flags);
420 bio2->bi_next = mddev->biolist;
421 mddev->biolist = bio2;
422 spin_unlock_irqrestore(&mddev->write_lock, flags);
423 wake_up(&mddev->sb_wait);
424 bio_put(bio);
425 return 0;
426 }
427 bio_put(bio2);
428 bio->bi_private = rdev;
429 return super_written(bio, bytes_done, error);
430 }
431
432 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
433 sector_t sector, int size, struct page *page)
434 {
435 /* write first size bytes of page to sector of rdev
436 * Increment mddev->pending_writes before returning
437 * and decrement it on completion, waking up sb_wait
438 * if zero is reached.
439 * If an error occurred, call md_error
440 *
441 * As we might need to resubmit the request if BIO_RW_BARRIER
442 * causes ENOTSUPP, we allocate a spare bio...
443 */
444 struct bio *bio = bio_alloc(GFP_NOIO, 1);
445 int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
446
447 bio->bi_bdev = rdev->bdev;
448 bio->bi_sector = sector;
449 bio_add_page(bio, page, size, 0);
450 bio->bi_private = rdev;
451 bio->bi_end_io = super_written;
452 bio->bi_rw = rw;
453
454 atomic_inc(&mddev->pending_writes);
455 if (!test_bit(BarriersNotsupp, &rdev->flags)) {
456 struct bio *rbio;
457 rw |= (1<<BIO_RW_BARRIER);
458 rbio = bio_clone(bio, GFP_NOIO);
459 rbio->bi_private = bio;
460 rbio->bi_end_io = super_written_barrier;
461 submit_bio(rw, rbio);
462 } else
463 submit_bio(rw, bio);
464 }
465
466 void md_super_wait(mddev_t *mddev)
467 {
468 /* wait for all superblock writes that were scheduled to complete.
469 * if any had to be retried (due to BARRIER problems), retry them
470 */
471 DEFINE_WAIT(wq);
472 for(;;) {
473 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
474 if (atomic_read(&mddev->pending_writes)==0)
475 break;
476 while (mddev->biolist) {
477 struct bio *bio;
478 spin_lock_irq(&mddev->write_lock);
479 bio = mddev->biolist;
480 mddev->biolist = bio->bi_next ;
481 bio->bi_next = NULL;
482 spin_unlock_irq(&mddev->write_lock);
483 submit_bio(bio->bi_rw, bio);
484 }
485 schedule();
486 }
487 finish_wait(&mddev->sb_wait, &wq);
488 }
489
490 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
491 {
492 if (bio->bi_size)
493 return 1;
494
495 complete((struct completion*)bio->bi_private);
496 return 0;
497 }
498
499 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
500 struct page *page, int rw)
501 {
502 struct bio *bio = bio_alloc(GFP_NOIO, 1);
503 struct completion event;
504 int ret;
505
506 rw |= (1 << BIO_RW_SYNC);
507
508 bio->bi_bdev = bdev;
509 bio->bi_sector = sector;
510 bio_add_page(bio, page, size, 0);
511 init_completion(&event);
512 bio->bi_private = &event;
513 bio->bi_end_io = bi_complete;
514 submit_bio(rw, bio);
515 wait_for_completion(&event);
516
517 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
518 bio_put(bio);
519 return ret;
520 }
521 EXPORT_SYMBOL_GPL(sync_page_io);
522
523 static int read_disk_sb(mdk_rdev_t * rdev, int size)
524 {
525 char b[BDEVNAME_SIZE];
526 if (!rdev->sb_page) {
527 MD_BUG();
528 return -EINVAL;
529 }
530 if (rdev->sb_loaded)
531 return 0;
532
533
534 if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
535 goto fail;
536 rdev->sb_loaded = 1;
537 return 0;
538
539 fail:
540 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
541 bdevname(rdev->bdev,b));
542 return -EINVAL;
543 }
544
545 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
546 {
547 if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
548 (sb1->set_uuid1 == sb2->set_uuid1) &&
549 (sb1->set_uuid2 == sb2->set_uuid2) &&
550 (sb1->set_uuid3 == sb2->set_uuid3))
551
552 return 1;
553
554 return 0;
555 }
556
557
558 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
559 {
560 int ret;
561 mdp_super_t *tmp1, *tmp2;
562
563 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
564 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
565
566 if (!tmp1 || !tmp2) {
567 ret = 0;
568 printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
569 goto abort;
570 }
571
572 *tmp1 = *sb1;
573 *tmp2 = *sb2;
574
575 /*
576 * nr_disks is not constant
577 */
578 tmp1->nr_disks = 0;
579 tmp2->nr_disks = 0;
580
581 if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
582 ret = 0;
583 else
584 ret = 1;
585
586 abort:
587 kfree(tmp1);
588 kfree(tmp2);
589 return ret;
590 }
591
592 static unsigned int calc_sb_csum(mdp_super_t * sb)
593 {
594 unsigned int disk_csum, csum;
595
596 disk_csum = sb->sb_csum;
597 sb->sb_csum = 0;
598 csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
599 sb->sb_csum = disk_csum;
600 return csum;
601 }
602
603
604 /*
605 * Handle superblock details.
606 * We want to be able to handle multiple superblock formats
607 * so we have a common interface to them all, and an array of
608 * different handlers.
609 * We rely on user-space to write the initial superblock, and support
610 * reading and updating of superblocks.
611 * Interface methods are:
612 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
613 * loads and validates a superblock on dev.
614 * if refdev != NULL, compare superblocks on both devices
615 * Return:
616 * 0 - dev has a superblock that is compatible with refdev
617 * 1 - dev has a superblock that is compatible and newer than refdev
618 * so dev should be used as the refdev in future
619 * -EINVAL superblock incompatible or invalid
620 * -othererror e.g. -EIO
621 *
622 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
623 * Verify that dev is acceptable into mddev.
624 * The first time, mddev->raid_disks will be 0, and data from
625 * dev should be merged in. Subsequent calls check that dev
626 * is new enough. Return 0 or -EINVAL
627 *
628 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
629 * Update the superblock for rdev with data in mddev
630 * This does not write to disc.
631 *
632 */
633
634 struct super_type {
635 char *name;
636 struct module *owner;
637 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
638 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
639 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
640 };
641
642 /*
643 * load_super for 0.90.0
644 */
645 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
646 {
647 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
648 mdp_super_t *sb;
649 int ret;
650 sector_t sb_offset;
651
652 /*
653 * Calculate the position of the superblock,
654 * it's at the end of the disk.
655 *
656 * It also happens to be a multiple of 4Kb.
657 */
658 sb_offset = calc_dev_sboffset(rdev->bdev);
659 rdev->sb_offset = sb_offset;
660
661 ret = read_disk_sb(rdev, MD_SB_BYTES);
662 if (ret) return ret;
663
664 ret = -EINVAL;
665
666 bdevname(rdev->bdev, b);
667 sb = (mdp_super_t*)page_address(rdev->sb_page);
668
669 if (sb->md_magic != MD_SB_MAGIC) {
670 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
671 b);
672 goto abort;
673 }
674
675 if (sb->major_version != 0 ||
676 sb->minor_version < 90 ||
677 sb->minor_version > 91) {
678 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
679 sb->major_version, sb->minor_version,
680 b);
681 goto abort;
682 }
683
684 if (sb->raid_disks <= 0)
685 goto abort;
686
687 if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
688 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
689 b);
690 goto abort;
691 }
692
693 rdev->preferred_minor = sb->md_minor;
694 rdev->data_offset = 0;
695 rdev->sb_size = MD_SB_BYTES;
696
697 if (sb->level == LEVEL_MULTIPATH)
698 rdev->desc_nr = -1;
699 else
700 rdev->desc_nr = sb->this_disk.number;
701
702 if (refdev == 0)
703 ret = 1;
704 else {
705 __u64 ev1, ev2;
706 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
707 if (!uuid_equal(refsb, sb)) {
708 printk(KERN_WARNING "md: %s has different UUID to %s\n",
709 b, bdevname(refdev->bdev,b2));
710 goto abort;
711 }
712 if (!sb_equal(refsb, sb)) {
713 printk(KERN_WARNING "md: %s has same UUID"
714 " but different superblock to %s\n",
715 b, bdevname(refdev->bdev, b2));
716 goto abort;
717 }
718 ev1 = md_event(sb);
719 ev2 = md_event(refsb);
720 if (ev1 > ev2)
721 ret = 1;
722 else
723 ret = 0;
724 }
725 rdev->size = calc_dev_size(rdev, sb->chunk_size);
726
727 if (rdev->size < sb->size && sb->level > 1)
728 /* "this cannot possibly happen" ... */
729 ret = -EINVAL;
730
731 abort:
732 return ret;
733 }
734
735 /*
736 * validate_super for 0.90.0
737 */
738 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
739 {
740 mdp_disk_t *desc;
741 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
742 __u64 ev1 = md_event(sb);
743
744 rdev->raid_disk = -1;
745 rdev->flags = 0;
746 if (mddev->raid_disks == 0) {
747 mddev->major_version = 0;
748 mddev->minor_version = sb->minor_version;
749 mddev->patch_version = sb->patch_version;
750 mddev->persistent = ! sb->not_persistent;
751 mddev->chunk_size = sb->chunk_size;
752 mddev->ctime = sb->ctime;
753 mddev->utime = sb->utime;
754 mddev->level = sb->level;
755 mddev->clevel[0] = 0;
756 mddev->layout = sb->layout;
757 mddev->raid_disks = sb->raid_disks;
758 mddev->size = sb->size;
759 mddev->events = ev1;
760 mddev->bitmap_offset = 0;
761 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
762
763 if (mddev->minor_version >= 91) {
764 mddev->reshape_position = sb->reshape_position;
765 mddev->delta_disks = sb->delta_disks;
766 mddev->new_level = sb->new_level;
767 mddev->new_layout = sb->new_layout;
768 mddev->new_chunk = sb->new_chunk;
769 } else {
770 mddev->reshape_position = MaxSector;
771 mddev->delta_disks = 0;
772 mddev->new_level = mddev->level;
773 mddev->new_layout = mddev->layout;
774 mddev->new_chunk = mddev->chunk_size;
775 }
776
777 if (sb->state & (1<<MD_SB_CLEAN))
778 mddev->recovery_cp = MaxSector;
779 else {
780 if (sb->events_hi == sb->cp_events_hi &&
781 sb->events_lo == sb->cp_events_lo) {
782 mddev->recovery_cp = sb->recovery_cp;
783 } else
784 mddev->recovery_cp = 0;
785 }
786
787 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
788 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
789 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
790 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
791
792 mddev->max_disks = MD_SB_DISKS;
793
794 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
795 mddev->bitmap_file == NULL) {
796 if (mddev->level != 1 && mddev->level != 4
797 && mddev->level != 5 && mddev->level != 6
798 && mddev->level != 10) {
799 /* FIXME use a better test */
800 printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
801 return -EINVAL;
802 }
803 mddev->bitmap_offset = mddev->default_bitmap_offset;
804 }
805
806 } else if (mddev->pers == NULL) {
807 /* Insist on good event counter while assembling */
808 ++ev1;
809 if (ev1 < mddev->events)
810 return -EINVAL;
811 } else if (mddev->bitmap) {
812 /* if adding to array with a bitmap, then we can accept an
813 * older device ... but not too old.
814 */
815 if (ev1 < mddev->bitmap->events_cleared)
816 return 0;
817 } else {
818 if (ev1 < mddev->events)
819 /* just a hot-add of a new device, leave raid_disk at -1 */
820 return 0;
821 }
822
823 if (mddev->level != LEVEL_MULTIPATH) {
824 desc = sb->disks + rdev->desc_nr;
825
826 if (desc->state & (1<<MD_DISK_FAULTY))
827 set_bit(Faulty, &rdev->flags);
828 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
829 desc->raid_disk < mddev->raid_disks */) {
830 set_bit(In_sync, &rdev->flags);
831 rdev->raid_disk = desc->raid_disk;
832 }
833 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
834 set_bit(WriteMostly, &rdev->flags);
835 } else /* MULTIPATH are always insync */
836 set_bit(In_sync, &rdev->flags);
837 return 0;
838 }
839
840 /*
841 * sync_super for 0.90.0
842 */
843 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
844 {
845 mdp_super_t *sb;
846 struct list_head *tmp;
847 mdk_rdev_t *rdev2;
848 int next_spare = mddev->raid_disks;
849
850
851 /* make rdev->sb match mddev data..
852 *
853 * 1/ zero out disks
854 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
855 * 3/ any empty disks < next_spare become removed
856 *
857 * disks[0] gets initialised to REMOVED because
858 * we cannot be sure from other fields if it has
859 * been initialised or not.
860 */
861 int i;
862 int active=0, working=0,failed=0,spare=0,nr_disks=0;
863
864 rdev->sb_size = MD_SB_BYTES;
865
866 sb = (mdp_super_t*)page_address(rdev->sb_page);
867
868 memset(sb, 0, sizeof(*sb));
869
870 sb->md_magic = MD_SB_MAGIC;
871 sb->major_version = mddev->major_version;
872 sb->patch_version = mddev->patch_version;
873 sb->gvalid_words = 0; /* ignored */
874 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
875 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
876 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
877 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
878
879 sb->ctime = mddev->ctime;
880 sb->level = mddev->level;
881 sb->size = mddev->size;
882 sb->raid_disks = mddev->raid_disks;
883 sb->md_minor = mddev->md_minor;
884 sb->not_persistent = !mddev->persistent;
885 sb->utime = mddev->utime;
886 sb->state = 0;
887 sb->events_hi = (mddev->events>>32);
888 sb->events_lo = (u32)mddev->events;
889
890 if (mddev->reshape_position == MaxSector)
891 sb->minor_version = 90;
892 else {
893 sb->minor_version = 91;
894 sb->reshape_position = mddev->reshape_position;
895 sb->new_level = mddev->new_level;
896 sb->delta_disks = mddev->delta_disks;
897 sb->new_layout = mddev->new_layout;
898 sb->new_chunk = mddev->new_chunk;
899 }
900 mddev->minor_version = sb->minor_version;
901 if (mddev->in_sync)
902 {
903 sb->recovery_cp = mddev->recovery_cp;
904 sb->cp_events_hi = (mddev->events>>32);
905 sb->cp_events_lo = (u32)mddev->events;
906 if (mddev->recovery_cp == MaxSector)
907 sb->state = (1<< MD_SB_CLEAN);
908 } else
909 sb->recovery_cp = 0;
910
911 sb->layout = mddev->layout;
912 sb->chunk_size = mddev->chunk_size;
913
914 if (mddev->bitmap && mddev->bitmap_file == NULL)
915 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
916
917 sb->disks[0].state = (1<<MD_DISK_REMOVED);
918 ITERATE_RDEV(mddev,rdev2,tmp) {
919 mdp_disk_t *d;
920 int desc_nr;
921 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
922 && !test_bit(Faulty, &rdev2->flags))
923 desc_nr = rdev2->raid_disk;
924 else
925 desc_nr = next_spare++;
926 rdev2->desc_nr = desc_nr;
927 d = &sb->disks[rdev2->desc_nr];
928 nr_disks++;
929 d->number = rdev2->desc_nr;
930 d->major = MAJOR(rdev2->bdev->bd_dev);
931 d->minor = MINOR(rdev2->bdev->bd_dev);
932 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
933 && !test_bit(Faulty, &rdev2->flags))
934 d->raid_disk = rdev2->raid_disk;
935 else
936 d->raid_disk = rdev2->desc_nr; /* compatibility */
937 if (test_bit(Faulty, &rdev2->flags))
938 d->state = (1<<MD_DISK_FAULTY);
939 else if (test_bit(In_sync, &rdev2->flags)) {
940 d->state = (1<<MD_DISK_ACTIVE);
941 d->state |= (1<<MD_DISK_SYNC);
942 active++;
943 working++;
944 } else {
945 d->state = 0;
946 spare++;
947 working++;
948 }
949 if (test_bit(WriteMostly, &rdev2->flags))
950 d->state |= (1<<MD_DISK_WRITEMOSTLY);
951 }
952 /* now set the "removed" and "faulty" bits on any missing devices */
953 for (i=0 ; i < mddev->raid_disks ; i++) {
954 mdp_disk_t *d = &sb->disks[i];
955 if (d->state == 0 && d->number == 0) {
956 d->number = i;
957 d->raid_disk = i;
958 d->state = (1<<MD_DISK_REMOVED);
959 d->state |= (1<<MD_DISK_FAULTY);
960 failed++;
961 }
962 }
963 sb->nr_disks = nr_disks;
964 sb->active_disks = active;
965 sb->working_disks = working;
966 sb->failed_disks = failed;
967 sb->spare_disks = spare;
968
969 sb->this_disk = sb->disks[rdev->desc_nr];
970 sb->sb_csum = calc_sb_csum(sb);
971 }
972
973 /*
974 * version 1 superblock
975 */
976
977 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
978 {
979 __le32 disk_csum;
980 u32 csum;
981 unsigned long long newcsum;
982 int size = 256 + le32_to_cpu(sb->max_dev)*2;
983 __le32 *isuper = (__le32*)sb;
984 int i;
985
986 disk_csum = sb->sb_csum;
987 sb->sb_csum = 0;
988 newcsum = 0;
989 for (i=0; size>=4; size -= 4 )
990 newcsum += le32_to_cpu(*isuper++);
991
992 if (size == 2)
993 newcsum += le16_to_cpu(*(__le16*) isuper);
994
995 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
996 sb->sb_csum = disk_csum;
997 return cpu_to_le32(csum);
998 }
999
1000 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1001 {
1002 struct mdp_superblock_1 *sb;
1003 int ret;
1004 sector_t sb_offset;
1005 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1006 int bmask;
1007
1008 /*
1009 * Calculate the position of the superblock.
1010 * It is always aligned to a 4K boundary and
1011 * depeding on minor_version, it can be:
1012 * 0: At least 8K, but less than 12K, from end of device
1013 * 1: At start of device
1014 * 2: 4K from start of device.
1015 */
1016 switch(minor_version) {
1017 case 0:
1018 sb_offset = rdev->bdev->bd_inode->i_size >> 9;
1019 sb_offset -= 8*2;
1020 sb_offset &= ~(sector_t)(4*2-1);
1021 /* convert from sectors to K */
1022 sb_offset /= 2;
1023 break;
1024 case 1:
1025 sb_offset = 0;
1026 break;
1027 case 2:
1028 sb_offset = 4;
1029 break;
1030 default:
1031 return -EINVAL;
1032 }
1033 rdev->sb_offset = sb_offset;
1034
1035 /* superblock is rarely larger than 1K, but it can be larger,
1036 * and it is safe to read 4k, so we do that
1037 */
1038 ret = read_disk_sb(rdev, 4096);
1039 if (ret) return ret;
1040
1041
1042 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1043
1044 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1045 sb->major_version != cpu_to_le32(1) ||
1046 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1047 le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
1048 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1049 return -EINVAL;
1050
1051 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1052 printk("md: invalid superblock checksum on %s\n",
1053 bdevname(rdev->bdev,b));
1054 return -EINVAL;
1055 }
1056 if (le64_to_cpu(sb->data_size) < 10) {
1057 printk("md: data_size too small on %s\n",
1058 bdevname(rdev->bdev,b));
1059 return -EINVAL;
1060 }
1061 rdev->preferred_minor = 0xffff;
1062 rdev->data_offset = le64_to_cpu(sb->data_offset);
1063 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1064
1065 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1066 bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
1067 if (rdev->sb_size & bmask)
1068 rdev-> sb_size = (rdev->sb_size | bmask)+1;
1069
1070 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1071 rdev->desc_nr = -1;
1072 else
1073 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1074
1075 if (refdev == 0)
1076 ret = 1;
1077 else {
1078 __u64 ev1, ev2;
1079 struct mdp_superblock_1 *refsb =
1080 (struct mdp_superblock_1*)page_address(refdev->sb_page);
1081
1082 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1083 sb->level != refsb->level ||
1084 sb->layout != refsb->layout ||
1085 sb->chunksize != refsb->chunksize) {
1086 printk(KERN_WARNING "md: %s has strangely different"
1087 " superblock to %s\n",
1088 bdevname(rdev->bdev,b),
1089 bdevname(refdev->bdev,b2));
1090 return -EINVAL;
1091 }
1092 ev1 = le64_to_cpu(sb->events);
1093 ev2 = le64_to_cpu(refsb->events);
1094
1095 if (ev1 > ev2)
1096 ret = 1;
1097 else
1098 ret = 0;
1099 }
1100 if (minor_version)
1101 rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
1102 else
1103 rdev->size = rdev->sb_offset;
1104 if (rdev->size < le64_to_cpu(sb->data_size)/2)
1105 return -EINVAL;
1106 rdev->size = le64_to_cpu(sb->data_size)/2;
1107 if (le32_to_cpu(sb->chunksize))
1108 rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
1109
1110 if (le64_to_cpu(sb->size) > rdev->size*2)
1111 return -EINVAL;
1112 return ret;
1113 }
1114
1115 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1116 {
1117 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1118 __u64 ev1 = le64_to_cpu(sb->events);
1119
1120 rdev->raid_disk = -1;
1121 rdev->flags = 0;
1122 if (mddev->raid_disks == 0) {
1123 mddev->major_version = 1;
1124 mddev->patch_version = 0;
1125 mddev->persistent = 1;
1126 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1127 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1128 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1129 mddev->level = le32_to_cpu(sb->level);
1130 mddev->clevel[0] = 0;
1131 mddev->layout = le32_to_cpu(sb->layout);
1132 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1133 mddev->size = le64_to_cpu(sb->size)/2;
1134 mddev->events = ev1;
1135 mddev->bitmap_offset = 0;
1136 mddev->default_bitmap_offset = 1024 >> 9;
1137
1138 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1139 memcpy(mddev->uuid, sb->set_uuid, 16);
1140
1141 mddev->max_disks = (4096-256)/2;
1142
1143 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1144 mddev->bitmap_file == NULL ) {
1145 if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6
1146 && mddev->level != 10) {
1147 printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
1148 return -EINVAL;
1149 }
1150 mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1151 }
1152 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1153 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1154 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1155 mddev->new_level = le32_to_cpu(sb->new_level);
1156 mddev->new_layout = le32_to_cpu(sb->new_layout);
1157 mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
1158 } else {
1159 mddev->reshape_position = MaxSector;
1160 mddev->delta_disks = 0;
1161 mddev->new_level = mddev->level;
1162 mddev->new_layout = mddev->layout;
1163 mddev->new_chunk = mddev->chunk_size;
1164 }
1165
1166 } else if (mddev->pers == NULL) {
1167 /* Insist of good event counter while assembling */
1168 ++ev1;
1169 if (ev1 < mddev->events)
1170 return -EINVAL;
1171 } else if (mddev->bitmap) {
1172 /* If adding to array with a bitmap, then we can accept an
1173 * older device, but not too old.
1174 */
1175 if (ev1 < mddev->bitmap->events_cleared)
1176 return 0;
1177 } else {
1178 if (ev1 < mddev->events)
1179 /* just a hot-add of a new device, leave raid_disk at -1 */
1180 return 0;
1181 }
1182 if (mddev->level != LEVEL_MULTIPATH) {
1183 int role;
1184 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1185 switch(role) {
1186 case 0xffff: /* spare */
1187 break;
1188 case 0xfffe: /* faulty */
1189 set_bit(Faulty, &rdev->flags);
1190 break;
1191 default:
1192 if ((le32_to_cpu(sb->feature_map) &
1193 MD_FEATURE_RECOVERY_OFFSET))
1194 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1195 else
1196 set_bit(In_sync, &rdev->flags);
1197 rdev->raid_disk = role;
1198 break;
1199 }
1200 if (sb->devflags & WriteMostly1)
1201 set_bit(WriteMostly, &rdev->flags);
1202 } else /* MULTIPATH are always insync */
1203 set_bit(In_sync, &rdev->flags);
1204
1205 return 0;
1206 }
1207
1208 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1209 {
1210 struct mdp_superblock_1 *sb;
1211 struct list_head *tmp;
1212 mdk_rdev_t *rdev2;
1213 int max_dev, i;
1214 /* make rdev->sb match mddev and rdev data. */
1215
1216 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1217
1218 sb->feature_map = 0;
1219 sb->pad0 = 0;
1220 sb->recovery_offset = cpu_to_le64(0);
1221 memset(sb->pad1, 0, sizeof(sb->pad1));
1222 memset(sb->pad2, 0, sizeof(sb->pad2));
1223 memset(sb->pad3, 0, sizeof(sb->pad3));
1224
1225 sb->utime = cpu_to_le64((__u64)mddev->utime);
1226 sb->events = cpu_to_le64(mddev->events);
1227 if (mddev->in_sync)
1228 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1229 else
1230 sb->resync_offset = cpu_to_le64(0);
1231
1232 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1233
1234 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1235 sb->size = cpu_to_le64(mddev->size<<1);
1236
1237 if (mddev->bitmap && mddev->bitmap_file == NULL) {
1238 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1239 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1240 }
1241
1242 if (rdev->raid_disk >= 0 &&
1243 !test_bit(In_sync, &rdev->flags) &&
1244 rdev->recovery_offset > 0) {
1245 sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1246 sb->recovery_offset = cpu_to_le64(rdev->recovery_offset);
1247 }
1248
1249 if (mddev->reshape_position != MaxSector) {
1250 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1251 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1252 sb->new_layout = cpu_to_le32(mddev->new_layout);
1253 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1254 sb->new_level = cpu_to_le32(mddev->new_level);
1255 sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
1256 }
1257
1258 max_dev = 0;
1259 ITERATE_RDEV(mddev,rdev2,tmp)
1260 if (rdev2->desc_nr+1 > max_dev)
1261 max_dev = rdev2->desc_nr+1;
1262
1263 sb->max_dev = cpu_to_le32(max_dev);
1264 for (i=0; i<max_dev;i++)
1265 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1266
1267 ITERATE_RDEV(mddev,rdev2,tmp) {
1268 i = rdev2->desc_nr;
1269 if (test_bit(Faulty, &rdev2->flags))
1270 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1271 else if (test_bit(In_sync, &rdev2->flags))
1272 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1273 else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
1274 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1275 else
1276 sb->dev_roles[i] = cpu_to_le16(0xffff);
1277 }
1278
1279 sb->sb_csum = calc_sb_1_csum(sb);
1280 }
1281
1282
1283 static struct super_type super_types[] = {
1284 [0] = {
1285 .name = "0.90.0",
1286 .owner = THIS_MODULE,
1287 .load_super = super_90_load,
1288 .validate_super = super_90_validate,
1289 .sync_super = super_90_sync,
1290 },
1291 [1] = {
1292 .name = "md-1",
1293 .owner = THIS_MODULE,
1294 .load_super = super_1_load,
1295 .validate_super = super_1_validate,
1296 .sync_super = super_1_sync,
1297 },
1298 };
1299
1300 static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
1301 {
1302 struct list_head *tmp;
1303 mdk_rdev_t *rdev;
1304
1305 ITERATE_RDEV(mddev,rdev,tmp)
1306 if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
1307 return rdev;
1308
1309 return NULL;
1310 }
1311
1312 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1313 {
1314 struct list_head *tmp;
1315 mdk_rdev_t *rdev;
1316
1317 ITERATE_RDEV(mddev1,rdev,tmp)
1318 if (match_dev_unit(mddev2, rdev))
1319 return 1;
1320
1321 return 0;
1322 }
1323
1324 static LIST_HEAD(pending_raid_disks);
1325
1326 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1327 {
1328 mdk_rdev_t *same_pdev;
1329 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1330 struct kobject *ko;
1331 char *s;
1332
1333 if (rdev->mddev) {
1334 MD_BUG();
1335 return -EINVAL;
1336 }
1337 /* make sure rdev->size exceeds mddev->size */
1338 if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
1339 if (mddev->pers)
1340 /* Cannot change size, so fail */
1341 return -ENOSPC;
1342 else
1343 mddev->size = rdev->size;
1344 }
1345 same_pdev = match_dev_unit(mddev, rdev);
1346 if (same_pdev)
1347 printk(KERN_WARNING
1348 "%s: WARNING: %s appears to be on the same physical"
1349 " disk as %s. True\n protection against single-disk"
1350 " failure might be compromised.\n",
1351 mdname(mddev), bdevname(rdev->bdev,b),
1352 bdevname(same_pdev->bdev,b2));
1353
1354 /* Verify rdev->desc_nr is unique.
1355 * If it is -1, assign a free number, else
1356 * check number is not in use
1357 */
1358 if (rdev->desc_nr < 0) {
1359 int choice = 0;
1360 if (mddev->pers) choice = mddev->raid_disks;
1361 while (find_rdev_nr(mddev, choice))
1362 choice++;
1363 rdev->desc_nr = choice;
1364 } else {
1365 if (find_rdev_nr(mddev, rdev->desc_nr))
1366 return -EBUSY;
1367 }
1368 bdevname(rdev->bdev,b);
1369 if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
1370 return -ENOMEM;
1371 while ( (s=strchr(rdev->kobj.k_name, '/')) != NULL)
1372 *s = '!';
1373
1374 list_add(&rdev->same_set, &mddev->disks);
1375 rdev->mddev = mddev;
1376 printk(KERN_INFO "md: bind<%s>\n", b);
1377
1378 rdev->kobj.parent = &mddev->kobj;
1379 kobject_add(&rdev->kobj);
1380
1381 if (rdev->bdev->bd_part)
1382 ko = &rdev->bdev->bd_part->kobj;
1383 else
1384 ko = &rdev->bdev->bd_disk->kobj;
1385 sysfs_create_link(&rdev->kobj, ko, "block");
1386 bd_claim_by_disk(rdev->bdev, rdev, mddev->gendisk);
1387 return 0;
1388 }
1389
1390 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1391 {
1392 char b[BDEVNAME_SIZE];
1393 if (!rdev->mddev) {
1394 MD_BUG();
1395 return;
1396 }
1397 bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1398 list_del_init(&rdev->same_set);
1399 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1400 rdev->mddev = NULL;
1401 sysfs_remove_link(&rdev->kobj, "block");
1402 kobject_del(&rdev->kobj);
1403 }
1404
1405 /*
1406 * prevent the device from being mounted, repartitioned or
1407 * otherwise reused by a RAID array (or any other kernel
1408 * subsystem), by bd_claiming the device.
1409 */
1410 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1411 {
1412 int err = 0;
1413 struct block_device *bdev;
1414 char b[BDEVNAME_SIZE];
1415
1416 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1417 if (IS_ERR(bdev)) {
1418 printk(KERN_ERR "md: could not open %s.\n",
1419 __bdevname(dev, b));
1420 return PTR_ERR(bdev);
1421 }
1422 err = bd_claim(bdev, rdev);
1423 if (err) {
1424 printk(KERN_ERR "md: could not bd_claim %s.\n",
1425 bdevname(bdev, b));
1426 blkdev_put(bdev);
1427 return err;
1428 }
1429 rdev->bdev = bdev;
1430 return err;
1431 }
1432
1433 static void unlock_rdev(mdk_rdev_t *rdev)
1434 {
1435 struct block_device *bdev = rdev->bdev;
1436 rdev->bdev = NULL;
1437 if (!bdev)
1438 MD_BUG();
1439 bd_release(bdev);
1440 blkdev_put(bdev);
1441 }
1442
1443 void md_autodetect_dev(dev_t dev);
1444
1445 static void export_rdev(mdk_rdev_t * rdev)
1446 {
1447 char b[BDEVNAME_SIZE];
1448 printk(KERN_INFO "md: export_rdev(%s)\n",
1449 bdevname(rdev->bdev,b));
1450 if (rdev->mddev)
1451 MD_BUG();
1452 free_disk_sb(rdev);
1453 list_del_init(&rdev->same_set);
1454 #ifndef MODULE
1455 md_autodetect_dev(rdev->bdev->bd_dev);
1456 #endif
1457 unlock_rdev(rdev);
1458 kobject_put(&rdev->kobj);
1459 }
1460
1461 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1462 {
1463 unbind_rdev_from_array(rdev);
1464 export_rdev(rdev);
1465 }
1466
1467 static void export_array(mddev_t *mddev)
1468 {
1469 struct list_head *tmp;
1470 mdk_rdev_t *rdev;
1471
1472 ITERATE_RDEV(mddev,rdev,tmp) {
1473 if (!rdev->mddev) {
1474 MD_BUG();
1475 continue;
1476 }
1477 kick_rdev_from_array(rdev);
1478 }
1479 if (!list_empty(&mddev->disks))
1480 MD_BUG();
1481 mddev->raid_disks = 0;
1482 mddev->major_version = 0;
1483 }
1484
1485 static void print_desc(mdp_disk_t *desc)
1486 {
1487 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1488 desc->major,desc->minor,desc->raid_disk,desc->state);
1489 }
1490
1491 static void print_sb(mdp_super_t *sb)
1492 {
1493 int i;
1494
1495 printk(KERN_INFO
1496 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1497 sb->major_version, sb->minor_version, sb->patch_version,
1498 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1499 sb->ctime);
1500 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1501 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1502 sb->md_minor, sb->layout, sb->chunk_size);
1503 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
1504 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
1505 sb->utime, sb->state, sb->active_disks, sb->working_disks,
1506 sb->failed_disks, sb->spare_disks,
1507 sb->sb_csum, (unsigned long)sb->events_lo);
1508
1509 printk(KERN_INFO);
1510 for (i = 0; i < MD_SB_DISKS; i++) {
1511 mdp_disk_t *desc;
1512
1513 desc = sb->disks + i;
1514 if (desc->number || desc->major || desc->minor ||
1515 desc->raid_disk || (desc->state && (desc->state != 4))) {
1516 printk(" D %2d: ", i);
1517 print_desc(desc);
1518 }
1519 }
1520 printk(KERN_INFO "md: THIS: ");
1521 print_desc(&sb->this_disk);
1522
1523 }
1524
1525 static void print_rdev(mdk_rdev_t *rdev)
1526 {
1527 char b[BDEVNAME_SIZE];
1528 printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1529 bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1530 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1531 rdev->desc_nr);
1532 if (rdev->sb_loaded) {
1533 printk(KERN_INFO "md: rdev superblock:\n");
1534 print_sb((mdp_super_t*)page_address(rdev->sb_page));
1535 } else
1536 printk(KERN_INFO "md: no rdev superblock!\n");
1537 }
1538
1539 static void md_print_devices(void)
1540 {
1541 struct list_head *tmp, *tmp2;
1542 mdk_rdev_t *rdev;
1543 mddev_t *mddev;
1544 char b[BDEVNAME_SIZE];
1545
1546 printk("\n");
1547 printk("md: **********************************\n");
1548 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
1549 printk("md: **********************************\n");
1550 ITERATE_MDDEV(mddev,tmp) {
1551
1552 if (mddev->bitmap)
1553 bitmap_print_sb(mddev->bitmap);
1554 else
1555 printk("%s: ", mdname(mddev));
1556 ITERATE_RDEV(mddev,rdev,tmp2)
1557 printk("<%s>", bdevname(rdev->bdev,b));
1558 printk("\n");
1559
1560 ITERATE_RDEV(mddev,rdev,tmp2)
1561 print_rdev(rdev);
1562 }
1563 printk("md: **********************************\n");
1564 printk("\n");
1565 }
1566
1567
1568 static void sync_sbs(mddev_t * mddev, int nospares)
1569 {
1570 /* Update each superblock (in-memory image), but
1571 * if we are allowed to, skip spares which already
1572 * have the right event counter, or have one earlier
1573 * (which would mean they aren't being marked as dirty
1574 * with the rest of the array)
1575 */
1576 mdk_rdev_t *rdev;
1577 struct list_head *tmp;
1578
1579 ITERATE_RDEV(mddev,rdev,tmp) {
1580 if (rdev->sb_events == mddev->events ||
1581 (nospares &&
1582 rdev->raid_disk < 0 &&
1583 (rdev->sb_events&1)==0 &&
1584 rdev->sb_events+1 == mddev->events)) {
1585 /* Don't update this superblock */
1586 rdev->sb_loaded = 2;
1587 } else {
1588 super_types[mddev->major_version].
1589 sync_super(mddev, rdev);
1590 rdev->sb_loaded = 1;
1591 }
1592 }
1593 }
1594
1595 static void md_update_sb(mddev_t * mddev, int force_change)
1596 {
1597 int err;
1598 struct list_head *tmp;
1599 mdk_rdev_t *rdev;
1600 int sync_req;
1601 int nospares = 0;
1602
1603 repeat:
1604 spin_lock_irq(&mddev->write_lock);
1605
1606 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1607 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
1608 force_change = 1;
1609 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
1610 /* just a clean<-> dirty transition, possibly leave spares alone,
1611 * though if events isn't the right even/odd, we will have to do
1612 * spares after all
1613 */
1614 nospares = 1;
1615 if (force_change)
1616 nospares = 0;
1617 if (mddev->degraded)
1618 /* If the array is degraded, then skipping spares is both
1619 * dangerous and fairly pointless.
1620 * Dangerous because a device that was removed from the array
1621 * might have a event_count that still looks up-to-date,
1622 * so it can be re-added without a resync.
1623 * Pointless because if there are any spares to skip,
1624 * then a recovery will happen and soon that array won't
1625 * be degraded any more and the spare can go back to sleep then.
1626 */
1627 nospares = 0;
1628
1629 sync_req = mddev->in_sync;
1630 mddev->utime = get_seconds();
1631
1632 /* If this is just a dirty<->clean transition, and the array is clean
1633 * and 'events' is odd, we can roll back to the previous clean state */
1634 if (nospares
1635 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
1636 && (mddev->events & 1))
1637 mddev->events--;
1638 else {
1639 /* otherwise we have to go forward and ... */
1640 mddev->events ++;
1641 if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
1642 /* .. if the array isn't clean, insist on an odd 'events' */
1643 if ((mddev->events&1)==0) {
1644 mddev->events++;
1645 nospares = 0;
1646 }
1647 } else {
1648 /* otherwise insist on an even 'events' (for clean states) */
1649 if ((mddev->events&1)) {
1650 mddev->events++;
1651 nospares = 0;
1652 }
1653 }
1654 }
1655
1656 if (!mddev->events) {
1657 /*
1658 * oops, this 64-bit counter should never wrap.
1659 * Either we are in around ~1 trillion A.C., assuming
1660 * 1 reboot per second, or we have a bug:
1661 */
1662 MD_BUG();
1663 mddev->events --;
1664 }
1665 sync_sbs(mddev, nospares);
1666
1667 /*
1668 * do not write anything to disk if using
1669 * nonpersistent superblocks
1670 */
1671 if (!mddev->persistent) {
1672 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1673 spin_unlock_irq(&mddev->write_lock);
1674 wake_up(&mddev->sb_wait);
1675 return;
1676 }
1677 spin_unlock_irq(&mddev->write_lock);
1678
1679 dprintk(KERN_INFO
1680 "md: updating %s RAID superblock on device (in sync %d)\n",
1681 mdname(mddev),mddev->in_sync);
1682
1683 err = bitmap_update_sb(mddev->bitmap);
1684 ITERATE_RDEV(mddev,rdev,tmp) {
1685 char b[BDEVNAME_SIZE];
1686 dprintk(KERN_INFO "md: ");
1687 if (rdev->sb_loaded != 1)
1688 continue; /* no noise on spare devices */
1689 if (test_bit(Faulty, &rdev->flags))
1690 dprintk("(skipping faulty ");
1691
1692 dprintk("%s ", bdevname(rdev->bdev,b));
1693 if (!test_bit(Faulty, &rdev->flags)) {
1694 md_super_write(mddev,rdev,
1695 rdev->sb_offset<<1, rdev->sb_size,
1696 rdev->sb_page);
1697 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1698 bdevname(rdev->bdev,b),
1699 (unsigned long long)rdev->sb_offset);
1700 rdev->sb_events = mddev->events;
1701
1702 } else
1703 dprintk(")\n");
1704 if (mddev->level == LEVEL_MULTIPATH)
1705 /* only need to write one superblock... */
1706 break;
1707 }
1708 md_super_wait(mddev);
1709 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
1710
1711 spin_lock_irq(&mddev->write_lock);
1712 if (mddev->in_sync != sync_req ||
1713 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
1714 /* have to write it out again */
1715 spin_unlock_irq(&mddev->write_lock);
1716 goto repeat;
1717 }
1718 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1719 spin_unlock_irq(&mddev->write_lock);
1720 wake_up(&mddev->sb_wait);
1721
1722 }
1723
1724 /* words written to sysfs files may, or my not, be \n terminated.
1725 * We want to accept with case. For this we use cmd_match.
1726 */
1727 static int cmd_match(const char *cmd, const char *str)
1728 {
1729 /* See if cmd, written into a sysfs file, matches
1730 * str. They must either be the same, or cmd can
1731 * have a trailing newline
1732 */
1733 while (*cmd && *str && *cmd == *str) {
1734 cmd++;
1735 str++;
1736 }
1737 if (*cmd == '\n')
1738 cmd++;
1739 if (*str || *cmd)
1740 return 0;
1741 return 1;
1742 }
1743
1744 struct rdev_sysfs_entry {
1745 struct attribute attr;
1746 ssize_t (*show)(mdk_rdev_t *, char *);
1747 ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1748 };
1749
1750 static ssize_t
1751 state_show(mdk_rdev_t *rdev, char *page)
1752 {
1753 char *sep = "";
1754 int len=0;
1755
1756 if (test_bit(Faulty, &rdev->flags)) {
1757 len+= sprintf(page+len, "%sfaulty",sep);
1758 sep = ",";
1759 }
1760 if (test_bit(In_sync, &rdev->flags)) {
1761 len += sprintf(page+len, "%sin_sync",sep);
1762 sep = ",";
1763 }
1764 if (test_bit(WriteMostly, &rdev->flags)) {
1765 len += sprintf(page+len, "%swrite_mostly",sep);
1766 sep = ",";
1767 }
1768 if (!test_bit(Faulty, &rdev->flags) &&
1769 !test_bit(In_sync, &rdev->flags)) {
1770 len += sprintf(page+len, "%sspare", sep);
1771 sep = ",";
1772 }
1773 return len+sprintf(page+len, "\n");
1774 }
1775
1776 static ssize_t
1777 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1778 {
1779 /* can write
1780 * faulty - simulates and error
1781 * remove - disconnects the device
1782 * writemostly - sets write_mostly
1783 * -writemostly - clears write_mostly
1784 */
1785 int err = -EINVAL;
1786 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
1787 md_error(rdev->mddev, rdev);
1788 err = 0;
1789 } else if (cmd_match(buf, "remove")) {
1790 if (rdev->raid_disk >= 0)
1791 err = -EBUSY;
1792 else {
1793 mddev_t *mddev = rdev->mddev;
1794 kick_rdev_from_array(rdev);
1795 if (mddev->pers)
1796 md_update_sb(mddev, 1);
1797 md_new_event(mddev);
1798 err = 0;
1799 }
1800 } else if (cmd_match(buf, "writemostly")) {
1801 set_bit(WriteMostly, &rdev->flags);
1802 err = 0;
1803 } else if (cmd_match(buf, "-writemostly")) {
1804 clear_bit(WriteMostly, &rdev->flags);
1805 err = 0;
1806 }
1807 return err ? err : len;
1808 }
1809 static struct rdev_sysfs_entry rdev_state =
1810 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
1811
1812 static ssize_t
1813 super_show(mdk_rdev_t *rdev, char *page)
1814 {
1815 if (rdev->sb_loaded && rdev->sb_size) {
1816 memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
1817 return rdev->sb_size;
1818 } else
1819 return 0;
1820 }
1821 static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
1822
1823 static ssize_t
1824 errors_show(mdk_rdev_t *rdev, char *page)
1825 {
1826 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
1827 }
1828
1829 static ssize_t
1830 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1831 {
1832 char *e;
1833 unsigned long n = simple_strtoul(buf, &e, 10);
1834 if (*buf && (*e == 0 || *e == '\n')) {
1835 atomic_set(&rdev->corrected_errors, n);
1836 return len;
1837 }
1838 return -EINVAL;
1839 }
1840 static struct rdev_sysfs_entry rdev_errors =
1841 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
1842
1843 static ssize_t
1844 slot_show(mdk_rdev_t *rdev, char *page)
1845 {
1846 if (rdev->raid_disk < 0)
1847 return sprintf(page, "none\n");
1848 else
1849 return sprintf(page, "%d\n", rdev->raid_disk);
1850 }
1851
1852 static ssize_t
1853 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1854 {
1855 char *e;
1856 int slot = simple_strtoul(buf, &e, 10);
1857 if (strncmp(buf, "none", 4)==0)
1858 slot = -1;
1859 else if (e==buf || (*e && *e!= '\n'))
1860 return -EINVAL;
1861 if (rdev->mddev->pers)
1862 /* Cannot set slot in active array (yet) */
1863 return -EBUSY;
1864 if (slot >= rdev->mddev->raid_disks)
1865 return -ENOSPC;
1866 rdev->raid_disk = slot;
1867 /* assume it is working */
1868 rdev->flags = 0;
1869 set_bit(In_sync, &rdev->flags);
1870 return len;
1871 }
1872
1873
1874 static struct rdev_sysfs_entry rdev_slot =
1875 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
1876
1877 static ssize_t
1878 offset_show(mdk_rdev_t *rdev, char *page)
1879 {
1880 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
1881 }
1882
1883 static ssize_t
1884 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1885 {
1886 char *e;
1887 unsigned long long offset = simple_strtoull(buf, &e, 10);
1888 if (e==buf || (*e && *e != '\n'))
1889 return -EINVAL;
1890 if (rdev->mddev->pers)
1891 return -EBUSY;
1892 rdev->data_offset = offset;
1893 return len;
1894 }
1895
1896 static struct rdev_sysfs_entry rdev_offset =
1897 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
1898
1899 static ssize_t
1900 rdev_size_show(mdk_rdev_t *rdev, char *page)
1901 {
1902 return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
1903 }
1904
1905 static ssize_t
1906 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1907 {
1908 char *e;
1909 unsigned long long size = simple_strtoull(buf, &e, 10);
1910 if (e==buf || (*e && *e != '\n'))
1911 return -EINVAL;
1912 if (rdev->mddev->pers)
1913 return -EBUSY;
1914 rdev->size = size;
1915 if (size < rdev->mddev->size || rdev->mddev->size == 0)
1916 rdev->mddev->size = size;
1917 return len;
1918 }
1919
1920 static struct rdev_sysfs_entry rdev_size =
1921 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
1922
1923 static struct attribute *rdev_default_attrs[] = {
1924 &rdev_state.attr,
1925 &rdev_super.attr,
1926 &rdev_errors.attr,
1927 &rdev_slot.attr,
1928 &rdev_offset.attr,
1929 &rdev_size.attr,
1930 NULL,
1931 };
1932 static ssize_t
1933 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1934 {
1935 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1936 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1937
1938 if (!entry->show)
1939 return -EIO;
1940 return entry->show(rdev, page);
1941 }
1942
1943 static ssize_t
1944 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
1945 const char *page, size_t length)
1946 {
1947 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1948 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1949
1950 if (!entry->store)
1951 return -EIO;
1952 if (!capable(CAP_SYS_ADMIN))
1953 return -EACCES;
1954 return entry->store(rdev, page, length);
1955 }
1956
1957 static void rdev_free(struct kobject *ko)
1958 {
1959 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
1960 kfree(rdev);
1961 }
1962 static struct sysfs_ops rdev_sysfs_ops = {
1963 .show = rdev_attr_show,
1964 .store = rdev_attr_store,
1965 };
1966 static struct kobj_type rdev_ktype = {
1967 .release = rdev_free,
1968 .sysfs_ops = &rdev_sysfs_ops,
1969 .default_attrs = rdev_default_attrs,
1970 };
1971
1972 /*
1973 * Import a device. If 'super_format' >= 0, then sanity check the superblock
1974 *
1975 * mark the device faulty if:
1976 *
1977 * - the device is nonexistent (zero size)
1978 * - the device has no valid superblock
1979 *
1980 * a faulty rdev _never_ has rdev->sb set.
1981 */
1982 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1983 {
1984 char b[BDEVNAME_SIZE];
1985 int err;
1986 mdk_rdev_t *rdev;
1987 sector_t size;
1988
1989 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
1990 if (!rdev) {
1991 printk(KERN_ERR "md: could not alloc mem for new device!\n");
1992 return ERR_PTR(-ENOMEM);
1993 }
1994
1995 if ((err = alloc_disk_sb(rdev)))
1996 goto abort_free;
1997
1998 err = lock_rdev(rdev, newdev);
1999 if (err)
2000 goto abort_free;
2001
2002 rdev->kobj.parent = NULL;
2003 rdev->kobj.ktype = &rdev_ktype;
2004 kobject_init(&rdev->kobj);
2005
2006 rdev->desc_nr = -1;
2007 rdev->saved_raid_disk = -1;
2008 rdev->raid_disk = -1;
2009 rdev->flags = 0;
2010 rdev->data_offset = 0;
2011 rdev->sb_events = 0;
2012 atomic_set(&rdev->nr_pending, 0);
2013 atomic_set(&rdev->read_errors, 0);
2014 atomic_set(&rdev->corrected_errors, 0);
2015
2016 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2017 if (!size) {
2018 printk(KERN_WARNING
2019 "md: %s has zero or unknown size, marking faulty!\n",
2020 bdevname(rdev->bdev,b));
2021 err = -EINVAL;
2022 goto abort_free;
2023 }
2024
2025 if (super_format >= 0) {
2026 err = super_types[super_format].
2027 load_super(rdev, NULL, super_minor);
2028 if (err == -EINVAL) {
2029 printk(KERN_WARNING
2030 "md: %s has invalid sb, not importing!\n",
2031 bdevname(rdev->bdev,b));
2032 goto abort_free;
2033 }
2034 if (err < 0) {
2035 printk(KERN_WARNING
2036 "md: could not read %s's sb, not importing!\n",
2037 bdevname(rdev->bdev,b));
2038 goto abort_free;
2039 }
2040 }
2041 INIT_LIST_HEAD(&rdev->same_set);
2042
2043 return rdev;
2044
2045 abort_free:
2046 if (rdev->sb_page) {
2047 if (rdev->bdev)
2048 unlock_rdev(rdev);
2049 free_disk_sb(rdev);
2050 }
2051 kfree(rdev);
2052 return ERR_PTR(err);
2053 }
2054
2055 /*
2056 * Check a full RAID array for plausibility
2057 */
2058
2059
2060 static void analyze_sbs(mddev_t * mddev)
2061 {
2062 int i;
2063 struct list_head *tmp;
2064 mdk_rdev_t *rdev, *freshest;
2065 char b[BDEVNAME_SIZE];
2066
2067 freshest = NULL;
2068 ITERATE_RDEV(mddev,rdev,tmp)
2069 switch (super_types[mddev->major_version].
2070 load_super(rdev, freshest, mddev->minor_version)) {
2071 case 1:
2072 freshest = rdev;
2073 break;
2074 case 0:
2075 break;
2076 default:
2077 printk( KERN_ERR \
2078 "md: fatal superblock inconsistency in %s"
2079 " -- removing from array\n",
2080 bdevname(rdev->bdev,b));
2081 kick_rdev_from_array(rdev);
2082 }
2083
2084
2085 super_types[mddev->major_version].
2086 validate_super(mddev, freshest);
2087
2088 i = 0;
2089 ITERATE_RDEV(mddev,rdev,tmp) {
2090 if (rdev != freshest)
2091 if (super_types[mddev->major_version].
2092 validate_super(mddev, rdev)) {
2093 printk(KERN_WARNING "md: kicking non-fresh %s"
2094 " from array!\n",
2095 bdevname(rdev->bdev,b));
2096 kick_rdev_from_array(rdev);
2097 continue;
2098 }
2099 if (mddev->level == LEVEL_MULTIPATH) {
2100 rdev->desc_nr = i++;
2101 rdev->raid_disk = rdev->desc_nr;
2102 set_bit(In_sync, &rdev->flags);
2103 }
2104 }
2105
2106
2107
2108 if (mddev->recovery_cp != MaxSector &&
2109 mddev->level >= 1)
2110 printk(KERN_ERR "md: %s: raid array is not clean"
2111 " -- starting background reconstruction\n",
2112 mdname(mddev));
2113
2114 }
2115
2116 static ssize_t
2117 safe_delay_show(mddev_t *mddev, char *page)
2118 {
2119 int msec = (mddev->safemode_delay*1000)/HZ;
2120 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2121 }
2122 static ssize_t
2123 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2124 {
2125 int scale=1;
2126 int dot=0;
2127 int i;
2128 unsigned long msec;
2129 char buf[30];
2130 char *e;
2131 /* remove a period, and count digits after it */
2132 if (len >= sizeof(buf))
2133 return -EINVAL;
2134 strlcpy(buf, cbuf, len);
2135 buf[len] = 0;
2136 for (i=0; i<len; i++) {
2137 if (dot) {
2138 if (isdigit(buf[i])) {
2139 buf[i-1] = buf[i];
2140 scale *= 10;
2141 }
2142 buf[i] = 0;
2143 } else if (buf[i] == '.') {
2144 dot=1;
2145 buf[i] = 0;
2146 }
2147 }
2148 msec = simple_strtoul(buf, &e, 10);
2149 if (e == buf || (*e && *e != '\n'))
2150 return -EINVAL;
2151 msec = (msec * 1000) / scale;
2152 if (msec == 0)
2153 mddev->safemode_delay = 0;
2154 else {
2155 mddev->safemode_delay = (msec*HZ)/1000;
2156 if (mddev->safemode_delay == 0)
2157 mddev->safemode_delay = 1;
2158 }
2159 return len;
2160 }
2161 static struct md_sysfs_entry md_safe_delay =
2162 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2163
2164 static ssize_t
2165 level_show(mddev_t *mddev, char *page)
2166 {
2167 struct mdk_personality *p = mddev->pers;
2168 if (p)
2169 return sprintf(page, "%s\n", p->name);
2170 else if (mddev->clevel[0])
2171 return sprintf(page, "%s\n", mddev->clevel);
2172 else if (mddev->level != LEVEL_NONE)
2173 return sprintf(page, "%d\n", mddev->level);
2174 else
2175 return 0;
2176 }
2177
2178 static ssize_t
2179 level_store(mddev_t *mddev, const char *buf, size_t len)
2180 {
2181 int rv = len;
2182 if (mddev->pers)
2183 return -EBUSY;
2184 if (len == 0)
2185 return 0;
2186 if (len >= sizeof(mddev->clevel))
2187 return -ENOSPC;
2188 strncpy(mddev->clevel, buf, len);
2189 if (mddev->clevel[len-1] == '\n')
2190 len--;
2191 mddev->clevel[len] = 0;
2192 mddev->level = LEVEL_NONE;
2193 return rv;
2194 }
2195
2196 static struct md_sysfs_entry md_level =
2197 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
2198
2199
2200 static ssize_t
2201 layout_show(mddev_t *mddev, char *page)
2202 {
2203 /* just a number, not meaningful for all levels */
2204 return sprintf(page, "%d\n", mddev->layout);
2205 }
2206
2207 static ssize_t
2208 layout_store(mddev_t *mddev, const char *buf, size_t len)
2209 {
2210 char *e;
2211 unsigned long n = simple_strtoul(buf, &e, 10);
2212 if (mddev->pers)
2213 return -EBUSY;
2214
2215 if (!*buf || (*e && *e != '\n'))
2216 return -EINVAL;
2217
2218 mddev->layout = n;
2219 return len;
2220 }
2221 static struct md_sysfs_entry md_layout =
2222 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
2223
2224
2225 static ssize_t
2226 raid_disks_show(mddev_t *mddev, char *page)
2227 {
2228 if (mddev->raid_disks == 0)
2229 return 0;
2230 return sprintf(page, "%d\n", mddev->raid_disks);
2231 }
2232
2233 static int update_raid_disks(mddev_t *mddev, int raid_disks);
2234
2235 static ssize_t
2236 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
2237 {
2238 char *e;
2239 int rv = 0;
2240 unsigned long n = simple_strtoul(buf, &e, 10);
2241
2242 if (!*buf || (*e && *e != '\n'))
2243 return -EINVAL;
2244
2245 if (mddev->pers)
2246 rv = update_raid_disks(mddev, n);
2247 else
2248 mddev->raid_disks = n;
2249 return rv ? rv : len;
2250 }
2251 static struct md_sysfs_entry md_raid_disks =
2252 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
2253
2254 static ssize_t
2255 chunk_size_show(mddev_t *mddev, char *page)
2256 {
2257 return sprintf(page, "%d\n", mddev->chunk_size);
2258 }
2259
2260 static ssize_t
2261 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
2262 {
2263 /* can only set chunk_size if array is not yet active */
2264 char *e;
2265 unsigned long n = simple_strtoul(buf, &e, 10);
2266
2267 if (mddev->pers)
2268 return -EBUSY;
2269 if (!*buf || (*e && *e != '\n'))
2270 return -EINVAL;
2271
2272 mddev->chunk_size = n;
2273 return len;
2274 }
2275 static struct md_sysfs_entry md_chunk_size =
2276 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
2277
2278 static ssize_t
2279 resync_start_show(mddev_t *mddev, char *page)
2280 {
2281 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
2282 }
2283
2284 static ssize_t
2285 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
2286 {
2287 /* can only set chunk_size if array is not yet active */
2288 char *e;
2289 unsigned long long n = simple_strtoull(buf, &e, 10);
2290
2291 if (mddev->pers)
2292 return -EBUSY;
2293 if (!*buf || (*e && *e != '\n'))
2294 return -EINVAL;
2295
2296 mddev->recovery_cp = n;
2297 return len;
2298 }
2299 static struct md_sysfs_entry md_resync_start =
2300 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
2301
2302 /*
2303 * The array state can be:
2304 *
2305 * clear
2306 * No devices, no size, no level
2307 * Equivalent to STOP_ARRAY ioctl
2308 * inactive
2309 * May have some settings, but array is not active
2310 * all IO results in error
2311 * When written, doesn't tear down array, but just stops it
2312 * suspended (not supported yet)
2313 * All IO requests will block. The array can be reconfigured.
2314 * Writing this, if accepted, will block until array is quiessent
2315 * readonly
2316 * no resync can happen. no superblocks get written.
2317 * write requests fail
2318 * read-auto
2319 * like readonly, but behaves like 'clean' on a write request.
2320 *
2321 * clean - no pending writes, but otherwise active.
2322 * When written to inactive array, starts without resync
2323 * If a write request arrives then
2324 * if metadata is known, mark 'dirty' and switch to 'active'.
2325 * if not known, block and switch to write-pending
2326 * If written to an active array that has pending writes, then fails.
2327 * active
2328 * fully active: IO and resync can be happening.
2329 * When written to inactive array, starts with resync
2330 *
2331 * write-pending
2332 * clean, but writes are blocked waiting for 'active' to be written.
2333 *
2334 * active-idle
2335 * like active, but no writes have been seen for a while (100msec).
2336 *
2337 */
2338 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
2339 write_pending, active_idle, bad_word};
2340 static char *array_states[] = {
2341 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
2342 "write-pending", "active-idle", NULL };
2343
2344 static int match_word(const char *word, char **list)
2345 {
2346 int n;
2347 for (n=0; list[n]; n++)
2348 if (cmd_match(word, list[n]))
2349 break;
2350 return n;
2351 }
2352
2353 static ssize_t
2354 array_state_show(mddev_t *mddev, char *page)
2355 {
2356 enum array_state st = inactive;
2357
2358 if (mddev->pers)
2359 switch(mddev->ro) {
2360 case 1:
2361 st = readonly;
2362 break;
2363 case 2:
2364 st = read_auto;
2365 break;
2366 case 0:
2367 if (mddev->in_sync)
2368 st = clean;
2369 else if (mddev->safemode)
2370 st = active_idle;
2371 else
2372 st = active;
2373 }
2374 else {
2375 if (list_empty(&mddev->disks) &&
2376 mddev->raid_disks == 0 &&
2377 mddev->size == 0)
2378 st = clear;
2379 else
2380 st = inactive;
2381 }
2382 return sprintf(page, "%s\n", array_states[st]);
2383 }
2384
2385 static int do_md_stop(mddev_t * mddev, int ro);
2386 static int do_md_run(mddev_t * mddev);
2387 static int restart_array(mddev_t *mddev);
2388
2389 static ssize_t
2390 array_state_store(mddev_t *mddev, const char *buf, size_t len)
2391 {
2392 int err = -EINVAL;
2393 enum array_state st = match_word(buf, array_states);
2394 switch(st) {
2395 case bad_word:
2396 break;
2397 case clear:
2398 /* stopping an active array */
2399 if (mddev->pers) {
2400 if (atomic_read(&mddev->active) > 1)
2401 return -EBUSY;
2402 err = do_md_stop(mddev, 0);
2403 }
2404 break;
2405 case inactive:
2406 /* stopping an active array */
2407 if (mddev->pers) {
2408 if (atomic_read(&mddev->active) > 1)
2409 return -EBUSY;
2410 err = do_md_stop(mddev, 2);
2411 }
2412 break;
2413 case suspended:
2414 break; /* not supported yet */
2415 case readonly:
2416 if (mddev->pers)
2417 err = do_md_stop(mddev, 1);
2418 else {
2419 mddev->ro = 1;
2420 err = do_md_run(mddev);
2421 }
2422 break;
2423 case read_auto:
2424 /* stopping an active array */
2425 if (mddev->pers) {
2426 err = do_md_stop(mddev, 1);
2427 if (err == 0)
2428 mddev->ro = 2; /* FIXME mark devices writable */
2429 } else {
2430 mddev->ro = 2;
2431 err = do_md_run(mddev);
2432 }
2433 break;
2434 case clean:
2435 if (mddev->pers) {
2436 restart_array(mddev);
2437 spin_lock_irq(&mddev->write_lock);
2438 if (atomic_read(&mddev->writes_pending) == 0) {
2439 mddev->in_sync = 1;
2440 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
2441 }
2442 spin_unlock_irq(&mddev->write_lock);
2443 } else {
2444 mddev->ro = 0;
2445 mddev->recovery_cp = MaxSector;
2446 err = do_md_run(mddev);
2447 }
2448 break;
2449 case active:
2450 if (mddev->pers) {
2451 restart_array(mddev);
2452 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2453 wake_up(&mddev->sb_wait);
2454 err = 0;
2455 } else {
2456 mddev->ro = 0;
2457 err = do_md_run(mddev);
2458 }
2459 break;
2460 case write_pending:
2461 case active_idle:
2462 /* these cannot be set */
2463 break;
2464 }
2465 if (err)
2466 return err;
2467 else
2468 return len;
2469 }
2470 static struct md_sysfs_entry md_array_state =
2471 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
2472
2473 static ssize_t
2474 null_show(mddev_t *mddev, char *page)
2475 {
2476 return -EINVAL;
2477 }
2478
2479 static ssize_t
2480 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
2481 {
2482 /* buf must be %d:%d\n? giving major and minor numbers */
2483 /* The new device is added to the array.
2484 * If the array has a persistent superblock, we read the
2485 * superblock to initialise info and check validity.
2486 * Otherwise, only checking done is that in bind_rdev_to_array,
2487 * which mainly checks size.
2488 */
2489 char *e;
2490 int major = simple_strtoul(buf, &e, 10);
2491 int minor;
2492 dev_t dev;
2493 mdk_rdev_t *rdev;
2494 int err;
2495
2496 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
2497 return -EINVAL;
2498 minor = simple_strtoul(e+1, &e, 10);
2499 if (*e && *e != '\n')
2500 return -EINVAL;
2501 dev = MKDEV(major, minor);
2502 if (major != MAJOR(dev) ||
2503 minor != MINOR(dev))
2504 return -EOVERFLOW;
2505
2506
2507 if (mddev->persistent) {
2508 rdev = md_import_device(dev, mddev->major_version,
2509 mddev->minor_version);
2510 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
2511 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2512 mdk_rdev_t, same_set);
2513 err = super_types[mddev->major_version]
2514 .load_super(rdev, rdev0, mddev->minor_version);
2515 if (err < 0)
2516 goto out;
2517 }
2518 } else
2519 rdev = md_import_device(dev, -1, -1);
2520
2521 if (IS_ERR(rdev))
2522 return PTR_ERR(rdev);
2523 err = bind_rdev_to_array(rdev, mddev);
2524 out:
2525 if (err)
2526 export_rdev(rdev);
2527 return err ? err : len;
2528 }
2529
2530 static struct md_sysfs_entry md_new_device =
2531 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
2532
2533 static ssize_t
2534 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
2535 {
2536 char *end;
2537 unsigned long chunk, end_chunk;
2538
2539 if (!mddev->bitmap)
2540 goto out;
2541 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
2542 while (*buf) {
2543 chunk = end_chunk = simple_strtoul(buf, &end, 0);
2544 if (buf == end) break;
2545 if (*end == '-') { /* range */
2546 buf = end + 1;
2547 end_chunk = simple_strtoul(buf, &end, 0);
2548 if (buf == end) break;
2549 }
2550 if (*end && !isspace(*end)) break;
2551 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
2552 buf = end;
2553 while (isspace(*buf)) buf++;
2554 }
2555 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
2556 out:
2557 return len;
2558 }
2559
2560 static struct md_sysfs_entry md_bitmap =
2561 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
2562
2563 static ssize_t
2564 size_show(mddev_t *mddev, char *page)
2565 {
2566 return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
2567 }
2568
2569 static int update_size(mddev_t *mddev, unsigned long size);
2570
2571 static ssize_t
2572 size_store(mddev_t *mddev, const char *buf, size_t len)
2573 {
2574 /* If array is inactive, we can reduce the component size, but
2575 * not increase it (except from 0).
2576 * If array is active, we can try an on-line resize
2577 */
2578 char *e;
2579 int err = 0;
2580 unsigned long long size = simple_strtoull(buf, &e, 10);
2581 if (!*buf || *buf == '\n' ||
2582 (*e && *e != '\n'))
2583 return -EINVAL;
2584
2585 if (mddev->pers) {
2586 err = update_size(mddev, size);
2587 md_update_sb(mddev, 1);
2588 } else {
2589 if (mddev->size == 0 ||
2590 mddev->size > size)
2591 mddev->size = size;
2592 else
2593 err = -ENOSPC;
2594 }
2595 return err ? err : len;
2596 }
2597
2598 static struct md_sysfs_entry md_size =
2599 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
2600
2601
2602 /* Metdata version.
2603 * This is either 'none' for arrays with externally managed metadata,
2604 * or N.M for internally known formats
2605 */
2606 static ssize_t
2607 metadata_show(mddev_t *mddev, char *page)
2608 {
2609 if (mddev->persistent)
2610 return sprintf(page, "%d.%d\n",
2611 mddev->major_version, mddev->minor_version);
2612 else
2613 return sprintf(page, "none\n");
2614 }
2615
2616 static ssize_t
2617 metadata_store(mddev_t *mddev, const char *buf, size_t len)
2618 {
2619 int major, minor;
2620 char *e;
2621 if (!list_empty(&mddev->disks))
2622 return -EBUSY;
2623
2624 if (cmd_match(buf, "none")) {
2625 mddev->persistent = 0;
2626 mddev->major_version = 0;
2627 mddev->minor_version = 90;
2628 return len;
2629 }
2630 major = simple_strtoul(buf, &e, 10);
2631 if (e==buf || *e != '.')
2632 return -EINVAL;
2633 buf = e+1;
2634 minor = simple_strtoul(buf, &e, 10);
2635 if (e==buf || (*e && *e != '\n') )
2636 return -EINVAL;
2637 if (major >= sizeof(super_types)/sizeof(super_types[0]) ||
2638 super_types[major].name == NULL)
2639 return -ENOENT;
2640 mddev->major_version = major;
2641 mddev->minor_version = minor;
2642 mddev->persistent = 1;
2643 return len;
2644 }
2645
2646 static struct md_sysfs_entry md_metadata =
2647 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
2648
2649 static ssize_t
2650 action_show(mddev_t *mddev, char *page)
2651 {
2652 char *type = "idle";
2653 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2654 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
2655 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2656 type = "reshape";
2657 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2658 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2659 type = "resync";
2660 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2661 type = "check";
2662 else
2663 type = "repair";
2664 } else
2665 type = "recover";
2666 }
2667 return sprintf(page, "%s\n", type);
2668 }
2669
2670 static ssize_t
2671 action_store(mddev_t *mddev, const char *page, size_t len)
2672 {
2673 if (!mddev->pers || !mddev->pers->sync_request)
2674 return -EINVAL;
2675
2676 if (cmd_match(page, "idle")) {
2677 if (mddev->sync_thread) {
2678 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2679 md_unregister_thread(mddev->sync_thread);
2680 mddev->sync_thread = NULL;
2681 mddev->recovery = 0;
2682 }
2683 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2684 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
2685 return -EBUSY;
2686 else if (cmd_match(page, "resync") || cmd_match(page, "recover"))
2687 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2688 else if (cmd_match(page, "reshape")) {
2689 int err;
2690 if (mddev->pers->start_reshape == NULL)
2691 return -EINVAL;
2692 err = mddev->pers->start_reshape(mddev);
2693 if (err)
2694 return err;
2695 } else {
2696 if (cmd_match(page, "check"))
2697 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
2698 else if (!cmd_match(page, "repair"))
2699 return -EINVAL;
2700 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
2701 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
2702 }
2703 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2704 md_wakeup_thread(mddev->thread);
2705 return len;
2706 }
2707
2708 static ssize_t
2709 mismatch_cnt_show(mddev_t *mddev, char *page)
2710 {
2711 return sprintf(page, "%llu\n",
2712 (unsigned long long) mddev->resync_mismatches);
2713 }
2714
2715 static struct md_sysfs_entry md_scan_mode =
2716 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
2717
2718
2719 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
2720
2721 static ssize_t
2722 sync_min_show(mddev_t *mddev, char *page)
2723 {
2724 return sprintf(page, "%d (%s)\n", speed_min(mddev),
2725 mddev->sync_speed_min ? "local": "system");
2726 }
2727
2728 static ssize_t
2729 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
2730 {
2731 int min;
2732 char *e;
2733 if (strncmp(buf, "system", 6)==0) {
2734 mddev->sync_speed_min = 0;
2735 return len;
2736 }
2737 min = simple_strtoul(buf, &e, 10);
2738 if (buf == e || (*e && *e != '\n') || min <= 0)
2739 return -EINVAL;
2740 mddev->sync_speed_min = min;
2741 return len;
2742 }
2743
2744 static struct md_sysfs_entry md_sync_min =
2745 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
2746
2747 static ssize_t
2748 sync_max_show(mddev_t *mddev, char *page)
2749 {
2750 return sprintf(page, "%d (%s)\n", speed_max(mddev),
2751 mddev->sync_speed_max ? "local": "system");
2752 }
2753
2754 static ssize_t
2755 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
2756 {
2757 int max;
2758 char *e;
2759 if (strncmp(buf, "system", 6)==0) {
2760 mddev->sync_speed_max = 0;
2761 return len;
2762 }
2763 max = simple_strtoul(buf, &e, 10);
2764 if (buf == e || (*e && *e != '\n') || max <= 0)
2765 return -EINVAL;
2766 mddev->sync_speed_max = max;
2767 return len;
2768 }
2769
2770 static struct md_sysfs_entry md_sync_max =
2771 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
2772
2773
2774 static ssize_t
2775 sync_speed_show(mddev_t *mddev, char *page)
2776 {
2777 unsigned long resync, dt, db;
2778 resync = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active));
2779 dt = ((jiffies - mddev->resync_mark) / HZ);
2780 if (!dt) dt++;
2781 db = resync - (mddev->resync_mark_cnt);
2782 return sprintf(page, "%ld\n", db/dt/2); /* K/sec */
2783 }
2784
2785 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
2786
2787 static ssize_t
2788 sync_completed_show(mddev_t *mddev, char *page)
2789 {
2790 unsigned long max_blocks, resync;
2791
2792 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2793 max_blocks = mddev->resync_max_sectors;
2794 else
2795 max_blocks = mddev->size << 1;
2796
2797 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
2798 return sprintf(page, "%lu / %lu\n", resync, max_blocks);
2799 }
2800
2801 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
2802
2803 static ssize_t
2804 suspend_lo_show(mddev_t *mddev, char *page)
2805 {
2806 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
2807 }
2808
2809 static ssize_t
2810 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
2811 {
2812 char *e;
2813 unsigned long long new = simple_strtoull(buf, &e, 10);
2814
2815 if (mddev->pers->quiesce == NULL)
2816 return -EINVAL;
2817 if (buf == e || (*e && *e != '\n'))
2818 return -EINVAL;
2819 if (new >= mddev->suspend_hi ||
2820 (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
2821 mddev->suspend_lo = new;
2822 mddev->pers->quiesce(mddev, 2);
2823 return len;
2824 } else
2825 return -EINVAL;
2826 }
2827 static struct md_sysfs_entry md_suspend_lo =
2828 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
2829
2830
2831 static ssize_t
2832 suspend_hi_show(mddev_t *mddev, char *page)
2833 {
2834 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
2835 }
2836
2837 static ssize_t
2838 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
2839 {
2840 char *e;
2841 unsigned long long new = simple_strtoull(buf, &e, 10);
2842
2843 if (mddev->pers->quiesce == NULL)
2844 return -EINVAL;
2845 if (buf == e || (*e && *e != '\n'))
2846 return -EINVAL;
2847 if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
2848 (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
2849 mddev->suspend_hi = new;
2850 mddev->pers->quiesce(mddev, 1);
2851 mddev->pers->quiesce(mddev, 0);
2852 return len;
2853 } else
2854 return -EINVAL;
2855 }
2856 static struct md_sysfs_entry md_suspend_hi =
2857 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
2858
2859
2860 static struct attribute *md_default_attrs[] = {
2861 &md_level.attr,
2862 &md_layout.attr,
2863 &md_raid_disks.attr,
2864 &md_chunk_size.attr,
2865 &md_size.attr,
2866 &md_resync_start.attr,
2867 &md_metadata.attr,
2868 &md_new_device.attr,
2869 &md_safe_delay.attr,
2870 &md_array_state.attr,
2871 NULL,
2872 };
2873
2874 static struct attribute *md_redundancy_attrs[] = {
2875 &md_scan_mode.attr,
2876 &md_mismatches.attr,
2877 &md_sync_min.attr,
2878 &md_sync_max.attr,
2879 &md_sync_speed.attr,
2880 &md_sync_completed.attr,
2881 &md_suspend_lo.attr,
2882 &md_suspend_hi.attr,
2883 &md_bitmap.attr,
2884 NULL,
2885 };
2886 static struct attribute_group md_redundancy_group = {
2887 .name = NULL,
2888 .attrs = md_redundancy_attrs,
2889 };
2890
2891
2892 static ssize_t
2893 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2894 {
2895 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
2896 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
2897 ssize_t rv;
2898
2899 if (!entry->show)
2900 return -EIO;
2901 rv = mddev_lock(mddev);
2902 if (!rv) {
2903 rv = entry->show(mddev, page);
2904 mddev_unlock(mddev);
2905 }
2906 return rv;
2907 }
2908
2909 static ssize_t
2910 md_attr_store(struct kobject *kobj, struct attribute *attr,
2911 const char *page, size_t length)
2912 {
2913 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
2914 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
2915 ssize_t rv;
2916
2917 if (!entry->store)
2918 return -EIO;
2919 if (!capable(CAP_SYS_ADMIN))
2920 return -EACCES;
2921 rv = mddev_lock(mddev);
2922 if (!rv) {
2923 rv = entry->store(mddev, page, length);
2924 mddev_unlock(mddev);
2925 }
2926 return rv;
2927 }
2928
2929 static void md_free(struct kobject *ko)
2930 {
2931 mddev_t *mddev = container_of(ko, mddev_t, kobj);
2932 kfree(mddev);
2933 }
2934
2935 static struct sysfs_ops md_sysfs_ops = {
2936 .show = md_attr_show,
2937 .store = md_attr_store,
2938 };
2939 static struct kobj_type md_ktype = {
2940 .release = md_free,
2941 .sysfs_ops = &md_sysfs_ops,
2942 .default_attrs = md_default_attrs,
2943 };
2944
2945 int mdp_major = 0;
2946
2947 static struct kobject *md_probe(dev_t dev, int *part, void *data)
2948 {
2949 static DEFINE_MUTEX(disks_mutex);
2950 mddev_t *mddev = mddev_find(dev);
2951 struct gendisk *disk;
2952 int partitioned = (MAJOR(dev) != MD_MAJOR);
2953 int shift = partitioned ? MdpMinorShift : 0;
2954 int unit = MINOR(dev) >> shift;
2955
2956 if (!mddev)
2957 return NULL;
2958
2959 mutex_lock(&disks_mutex);
2960 if (mddev->gendisk) {
2961 mutex_unlock(&disks_mutex);
2962 mddev_put(mddev);
2963 return NULL;
2964 }
2965 disk = alloc_disk(1 << shift);
2966 if (!disk) {
2967 mutex_unlock(&disks_mutex);
2968 mddev_put(mddev);
2969 return NULL;
2970 }
2971 disk->major = MAJOR(dev);
2972 disk->first_minor = unit << shift;
2973 if (partitioned)
2974 sprintf(disk->disk_name, "md_d%d", unit);
2975 else
2976 sprintf(disk->disk_name, "md%d", unit);
2977 disk->fops = &md_fops;
2978 disk->private_data = mddev;
2979 disk->queue = mddev->queue;
2980 add_disk(disk);
2981 mddev->gendisk = disk;
2982 mutex_unlock(&disks_mutex);
2983 mddev->kobj.parent = &disk->kobj;
2984 mddev->kobj.k_name = NULL;
2985 snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
2986 mddev->kobj.ktype = &md_ktype;
2987 kobject_register(&mddev->kobj);
2988 return NULL;
2989 }
2990
2991 static void md_safemode_timeout(unsigned long data)
2992 {
2993 mddev_t *mddev = (mddev_t *) data;
2994
2995 mddev->safemode = 1;
2996 md_wakeup_thread(mddev->thread);
2997 }
2998
2999 static int start_dirty_degraded;
3000
3001 static int do_md_run(mddev_t * mddev)
3002 {
3003 int err;
3004 int chunk_size;
3005 struct list_head *tmp;
3006 mdk_rdev_t *rdev;
3007 struct gendisk *disk;
3008 struct mdk_personality *pers;
3009 char b[BDEVNAME_SIZE];
3010
3011 if (list_empty(&mddev->disks))
3012 /* cannot run an array with no devices.. */
3013 return -EINVAL;
3014
3015 if (mddev->pers)
3016 return -EBUSY;
3017
3018 /*
3019 * Analyze all RAID superblock(s)
3020 */
3021 if (!mddev->raid_disks)
3022 analyze_sbs(mddev);
3023
3024 chunk_size = mddev->chunk_size;
3025
3026 if (chunk_size) {
3027 if (chunk_size > MAX_CHUNK_SIZE) {
3028 printk(KERN_ERR "too big chunk_size: %d > %d\n",
3029 chunk_size, MAX_CHUNK_SIZE);
3030 return -EINVAL;
3031 }
3032 /*
3033 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
3034 */
3035 if ( (1 << ffz(~chunk_size)) != chunk_size) {
3036 printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
3037 return -EINVAL;
3038 }
3039 if (chunk_size < PAGE_SIZE) {
3040 printk(KERN_ERR "too small chunk_size: %d < %ld\n",
3041 chunk_size, PAGE_SIZE);
3042 return -EINVAL;
3043 }
3044
3045 /* devices must have minimum size of one chunk */
3046 ITERATE_RDEV(mddev,rdev,tmp) {
3047 if (test_bit(Faulty, &rdev->flags))
3048 continue;
3049 if (rdev->size < chunk_size / 1024) {
3050 printk(KERN_WARNING
3051 "md: Dev %s smaller than chunk_size:"
3052 " %lluk < %dk\n",
3053 bdevname(rdev->bdev,b),
3054 (unsigned long long)rdev->size,
3055 chunk_size / 1024);
3056 return -EINVAL;
3057 }
3058 }
3059 }
3060
3061 #ifdef CONFIG_KMOD
3062 if (mddev->level != LEVEL_NONE)
3063 request_module("md-level-%d", mddev->level);
3064 else if (mddev->clevel[0])
3065 request_module("md-%s", mddev->clevel);
3066 #endif
3067
3068 /*
3069 * Drop all container device buffers, from now on
3070 * the only valid external interface is through the md
3071 * device.
3072 * Also find largest hardsector size
3073 */
3074 ITERATE_RDEV(mddev,rdev,tmp) {
3075 if (test_bit(Faulty, &rdev->flags))
3076 continue;
3077 sync_blockdev(rdev->bdev);
3078 invalidate_bdev(rdev->bdev, 0);
3079 }
3080
3081 md_probe(mddev->unit, NULL, NULL);
3082 disk = mddev->gendisk;
3083 if (!disk)
3084 return -ENOMEM;
3085
3086 spin_lock(&pers_lock);
3087 pers = find_pers(mddev->level, mddev->clevel);
3088 if (!pers || !try_module_get(pers->owner)) {
3089 spin_unlock(&pers_lock);
3090 if (mddev->level != LEVEL_NONE)
3091 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
3092 mddev->level);
3093 else
3094 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
3095 mddev->clevel);
3096 return -EINVAL;
3097 }
3098 mddev->pers = pers;
3099 spin_unlock(&pers_lock);
3100 mddev->level = pers->level;
3101 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3102
3103 if (mddev->reshape_position != MaxSector &&
3104 pers->start_reshape == NULL) {
3105 /* This personality cannot handle reshaping... */
3106 mddev->pers = NULL;
3107 module_put(pers->owner);
3108 return -EINVAL;
3109 }
3110
3111 mddev->recovery = 0;
3112 mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
3113 mddev->barriers_work = 1;
3114 mddev->ok_start_degraded = start_dirty_degraded;
3115
3116 if (start_readonly)
3117 mddev->ro = 2; /* read-only, but switch on first write */
3118
3119 err = mddev->pers->run(mddev);
3120 if (!err && mddev->pers->sync_request) {
3121 err = bitmap_create(mddev);
3122 if (err) {
3123 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
3124 mdname(mddev), err);
3125 mddev->pers->stop(mddev);
3126 }
3127 }
3128 if (err) {
3129 printk(KERN_ERR "md: pers->run() failed ...\n");
3130 module_put(mddev->pers->owner);
3131 mddev->pers = NULL;
3132 bitmap_destroy(mddev);
3133 return err;
3134 }
3135 if (mddev->pers->sync_request)
3136 sysfs_create_group(&mddev->kobj, &md_redundancy_group);
3137 else if (mddev->ro == 2) /* auto-readonly not meaningful */
3138 mddev->ro = 0;
3139
3140 atomic_set(&mddev->writes_pending,0);
3141 mddev->safemode = 0;
3142 mddev->safemode_timer.function = md_safemode_timeout;
3143 mddev->safemode_timer.data = (unsigned long) mddev;
3144 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
3145 mddev->in_sync = 1;
3146
3147 ITERATE_RDEV(mddev,rdev,tmp)
3148 if (rdev->raid_disk >= 0) {
3149 char nm[20];
3150 sprintf(nm, "rd%d", rdev->raid_disk);
3151 sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
3152 }
3153
3154 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3155
3156 if (mddev->flags)
3157 md_update_sb(mddev, 0);
3158
3159 set_capacity(disk, mddev->array_size<<1);
3160
3161 /* If we call blk_queue_make_request here, it will
3162 * re-initialise max_sectors etc which may have been
3163 * refined inside -> run. So just set the bits we need to set.
3164 * Most initialisation happended when we called
3165 * blk_queue_make_request(..., md_fail_request)
3166 * earlier.
3167 */
3168 mddev->queue->queuedata = mddev;
3169 mddev->queue->make_request_fn = mddev->pers->make_request;
3170
3171 /* If there is a partially-recovered drive we need to
3172 * start recovery here. If we leave it to md_check_recovery,
3173 * it will remove the drives and not do the right thing
3174 */
3175 if (mddev->degraded && !mddev->sync_thread) {
3176 struct list_head *rtmp;
3177 int spares = 0;
3178 ITERATE_RDEV(mddev,rdev,rtmp)
3179 if (rdev->raid_disk >= 0 &&
3180 !test_bit(In_sync, &rdev->flags) &&
3181 !test_bit(Faulty, &rdev->flags))
3182 /* complete an interrupted recovery */
3183 spares++;
3184 if (spares && mddev->pers->sync_request) {
3185 mddev->recovery = 0;
3186 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3187 mddev->sync_thread = md_register_thread(md_do_sync,
3188 mddev,
3189 "%s_resync");
3190 if (!mddev->sync_thread) {
3191 printk(KERN_ERR "%s: could not start resync"
3192 " thread...\n",
3193 mdname(mddev));
3194 /* leave the spares where they are, it shouldn't hurt */
3195 mddev->recovery = 0;
3196 }
3197 }
3198 }
3199 md_wakeup_thread(mddev->thread);
3200 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
3201
3202 mddev->changed = 1;
3203 md_new_event(mddev);
3204 kobject_uevent(&mddev->gendisk->kobj, KOBJ_CHANGE);
3205 return 0;
3206 }
3207
3208 static int restart_array(mddev_t *mddev)
3209 {
3210 struct gendisk *disk = mddev->gendisk;
3211 int err;
3212
3213 /*
3214 * Complain if it has no devices
3215 */
3216 err = -ENXIO;
3217 if (list_empty(&mddev->disks))
3218 goto out;
3219
3220 if (mddev->pers) {
3221 err = -EBUSY;
3222 if (!mddev->ro)
3223 goto out;
3224
3225 mddev->safemode = 0;
3226 mddev->ro = 0;
3227 set_disk_ro(disk, 0);
3228
3229 printk(KERN_INFO "md: %s switched to read-write mode.\n",
3230 mdname(mddev));
3231 /*
3232 * Kick recovery or resync if necessary
3233 */
3234 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3235 md_wakeup_thread(mddev->thread);
3236 md_wakeup_thread(mddev->sync_thread);
3237 err = 0;
3238 } else
3239 err = -EINVAL;
3240
3241 out:
3242 return err;
3243 }
3244
3245 /* similar to deny_write_access, but accounts for our holding a reference
3246 * to the file ourselves */
3247 static int deny_bitmap_write_access(struct file * file)
3248 {
3249 struct inode *inode = file->f_mapping->host;
3250
3251 spin_lock(&inode->i_lock);
3252 if (atomic_read(&inode->i_writecount) > 1) {
3253 spin_unlock(&inode->i_lock);
3254 return -ETXTBSY;
3255 }
3256 atomic_set(&inode->i_writecount, -1);
3257 spin_unlock(&inode->i_lock);
3258
3259 return 0;
3260 }
3261
3262 static void restore_bitmap_write_access(struct file *file)
3263 {
3264 struct inode *inode = file->f_mapping->host;
3265
3266 spin_lock(&inode->i_lock);
3267 atomic_set(&inode->i_writecount, 1);
3268 spin_unlock(&inode->i_lock);
3269 }
3270
3271 /* mode:
3272 * 0 - completely stop and dis-assemble array
3273 * 1 - switch to readonly
3274 * 2 - stop but do not disassemble array
3275 */
3276 static int do_md_stop(mddev_t * mddev, int mode)
3277 {
3278 int err = 0;
3279 struct gendisk *disk = mddev->gendisk;
3280
3281 if (mddev->pers) {
3282 if (atomic_read(&mddev->active)>2) {
3283 printk("md: %s still in use.\n",mdname(mddev));
3284 return -EBUSY;
3285 }
3286
3287 if (mddev->sync_thread) {
3288 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3289 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3290 md_unregister_thread(mddev->sync_thread);
3291 mddev->sync_thread = NULL;
3292 }
3293
3294 del_timer_sync(&mddev->safemode_timer);
3295
3296 invalidate_partition(disk, 0);
3297
3298 switch(mode) {
3299 case 1: /* readonly */
3300 err = -ENXIO;
3301 if (mddev->ro==1)
3302 goto out;
3303 mddev->ro = 1;
3304 break;
3305 case 0: /* disassemble */
3306 case 2: /* stop */
3307 bitmap_flush(mddev);
3308 md_super_wait(mddev);
3309 if (mddev->ro)
3310 set_disk_ro(disk, 0);
3311 blk_queue_make_request(mddev->queue, md_fail_request);
3312 mddev->pers->stop(mddev);
3313 if (mddev->pers->sync_request)
3314 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
3315
3316 module_put(mddev->pers->owner);
3317 mddev->pers = NULL;
3318
3319 set_capacity(disk, 0);
3320 mddev->changed = 1;
3321
3322 if (mddev->ro)
3323 mddev->ro = 0;
3324 }
3325 if (!mddev->in_sync || mddev->flags) {
3326 /* mark array as shutdown cleanly */
3327 mddev->in_sync = 1;
3328 md_update_sb(mddev, 1);
3329 }
3330 if (mode == 1)
3331 set_disk_ro(disk, 1);
3332 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3333 }
3334
3335 /*
3336 * Free resources if final stop
3337 */
3338 if (mode == 0) {
3339 mdk_rdev_t *rdev;
3340 struct list_head *tmp;
3341
3342 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
3343
3344 bitmap_destroy(mddev);
3345 if (mddev->bitmap_file) {
3346 restore_bitmap_write_access(mddev->bitmap_file);
3347 fput(mddev->bitmap_file);
3348 mddev->bitmap_file = NULL;
3349 }
3350 mddev->bitmap_offset = 0;
3351
3352 ITERATE_RDEV(mddev,rdev,tmp)
3353 if (rdev->raid_disk >= 0) {
3354 char nm[20];
3355 sprintf(nm, "rd%d", rdev->raid_disk);
3356 sysfs_remove_link(&mddev->kobj, nm);
3357 }
3358
3359 export_array(mddev);
3360
3361 mddev->array_size = 0;
3362 mddev->size = 0;
3363 mddev->raid_disks = 0;
3364 mddev->recovery_cp = 0;
3365
3366 } else if (mddev->pers)
3367 printk(KERN_INFO "md: %s switched to read-only mode.\n",
3368 mdname(mddev));
3369 err = 0;
3370 md_new_event(mddev);
3371 out:
3372 return err;
3373 }
3374
3375 #ifndef MODULE
3376 static void autorun_array(mddev_t *mddev)
3377 {
3378 mdk_rdev_t *rdev;
3379 struct list_head *tmp;
3380 int err;
3381
3382 if (list_empty(&mddev->disks))
3383 return;
3384
3385 printk(KERN_INFO "md: running: ");
3386
3387 ITERATE_RDEV(mddev,rdev,tmp) {
3388 char b[BDEVNAME_SIZE];
3389 printk("<%s>", bdevname(rdev->bdev,b));
3390 }
3391 printk("\n");
3392
3393 err = do_md_run (mddev);
3394 if (err) {
3395 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
3396 do_md_stop (mddev, 0);
3397 }
3398 }
3399
3400 /*
3401 * lets try to run arrays based on all disks that have arrived
3402 * until now. (those are in pending_raid_disks)
3403 *
3404 * the method: pick the first pending disk, collect all disks with
3405 * the same UUID, remove all from the pending list and put them into
3406 * the 'same_array' list. Then order this list based on superblock
3407 * update time (freshest comes first), kick out 'old' disks and
3408 * compare superblocks. If everything's fine then run it.
3409 *
3410 * If "unit" is allocated, then bump its reference count
3411 */
3412 static void autorun_devices(int part)
3413 {
3414 struct list_head *tmp;
3415 mdk_rdev_t *rdev0, *rdev;
3416 mddev_t *mddev;
3417 char b[BDEVNAME_SIZE];
3418
3419 printk(KERN_INFO "md: autorun ...\n");
3420 while (!list_empty(&pending_raid_disks)) {
3421 int unit;
3422 dev_t dev;
3423 LIST_HEAD(candidates);
3424 rdev0 = list_entry(pending_raid_disks.next,
3425 mdk_rdev_t, same_set);
3426
3427 printk(KERN_INFO "md: considering %s ...\n",
3428 bdevname(rdev0->bdev,b));
3429 INIT_LIST_HEAD(&candidates);
3430 ITERATE_RDEV_PENDING(rdev,tmp)
3431 if (super_90_load(rdev, rdev0, 0) >= 0) {
3432 printk(KERN_INFO "md: adding %s ...\n",
3433 bdevname(rdev->bdev,b));
3434 list_move(&rdev->same_set, &candidates);
3435 }
3436 /*
3437 * now we have a set of devices, with all of them having
3438 * mostly sane superblocks. It's time to allocate the
3439 * mddev.
3440 */
3441 if (part) {
3442 dev = MKDEV(mdp_major,
3443 rdev0->preferred_minor << MdpMinorShift);
3444 unit = MINOR(dev) >> MdpMinorShift;
3445 } else {
3446 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
3447 unit = MINOR(dev);
3448 }
3449 if (rdev0->preferred_minor != unit) {
3450 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
3451 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
3452 break;
3453 }
3454
3455 md_probe(dev, NULL, NULL);
3456 mddev = mddev_find(dev);
3457 if (!mddev) {
3458 printk(KERN_ERR
3459 "md: cannot allocate memory for md drive.\n");
3460 break;
3461 }
3462 if (mddev_lock(mddev))
3463 printk(KERN_WARNING "md: %s locked, cannot run\n",
3464 mdname(mddev));
3465 else if (mddev->raid_disks || mddev->major_version
3466 || !list_empty(&mddev->disks)) {
3467 printk(KERN_WARNING
3468 "md: %s already running, cannot run %s\n",
3469 mdname(mddev), bdevname(rdev0->bdev,b));
3470 mddev_unlock(mddev);
3471 } else {
3472 printk(KERN_INFO "md: created %s\n", mdname(mddev));
3473 ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
3474 list_del_init(&rdev->same_set);
3475 if (bind_rdev_to_array(rdev, mddev))
3476 export_rdev(rdev);
3477 }
3478 autorun_array(mddev);
3479 mddev_unlock(mddev);
3480 }
3481 /* on success, candidates will be empty, on error
3482 * it won't...
3483 */
3484 ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
3485 export_rdev(rdev);
3486 mddev_put(mddev);
3487 }
3488 printk(KERN_INFO "md: ... autorun DONE.\n");
3489 }
3490 #endif /* !MODULE */
3491
3492 static int get_version(void __user * arg)
3493 {
3494 mdu_version_t ver;
3495
3496 ver.major = MD_MAJOR_VERSION;
3497 ver.minor = MD_MINOR_VERSION;
3498 ver.patchlevel = MD_PATCHLEVEL_VERSION;
3499
3500 if (copy_to_user(arg, &ver, sizeof(ver)))
3501 return -EFAULT;
3502
3503 return 0;
3504 }
3505
3506 static int get_array_info(mddev_t * mddev, void __user * arg)
3507 {
3508 mdu_array_info_t info;
3509 int nr,working,active,failed,spare;
3510 mdk_rdev_t *rdev;
3511 struct list_head *tmp;
3512
3513 nr=working=active=failed=spare=0;
3514 ITERATE_RDEV(mddev,rdev,tmp) {
3515 nr++;
3516 if (test_bit(Faulty, &rdev->flags))
3517 failed++;
3518 else {
3519 working++;
3520 if (test_bit(In_sync, &rdev->flags))
3521 active++;
3522 else
3523 spare++;
3524 }
3525 }
3526
3527 info.major_version = mddev->major_version;
3528 info.minor_version = mddev->minor_version;
3529 info.patch_version = MD_PATCHLEVEL_VERSION;
3530 info.ctime = mddev->ctime;
3531 info.level = mddev->level;
3532 info.size = mddev->size;
3533 if (info.size != mddev->size) /* overflow */
3534 info.size = -1;
3535 info.nr_disks = nr;
3536 info.raid_disks = mddev->raid_disks;
3537 info.md_minor = mddev->md_minor;
3538 info.not_persistent= !mddev->persistent;
3539
3540 info.utime = mddev->utime;
3541 info.state = 0;
3542 if (mddev->in_sync)
3543 info.state = (1<<MD_SB_CLEAN);
3544 if (mddev->bitmap && mddev->bitmap_offset)
3545 info.state = (1<<MD_SB_BITMAP_PRESENT);
3546 info.active_disks = active;
3547 info.working_disks = working;
3548 info.failed_disks = failed;
3549 info.spare_disks = spare;
3550
3551 info.layout = mddev->layout;
3552 info.chunk_size = mddev->chunk_size;
3553
3554 if (copy_to_user(arg, &info, sizeof(info)))
3555 return -EFAULT;
3556
3557 return 0;
3558 }
3559
3560 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
3561 {
3562 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
3563 char *ptr, *buf = NULL;
3564 int err = -ENOMEM;
3565
3566 file = kmalloc(sizeof(*file), GFP_KERNEL);
3567 if (!file)
3568 goto out;
3569
3570 /* bitmap disabled, zero the first byte and copy out */
3571 if (!mddev->bitmap || !mddev->bitmap->file) {
3572 file->pathname[0] = '\0';
3573 goto copy_out;
3574 }
3575
3576 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
3577 if (!buf)
3578 goto out;
3579
3580 ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
3581 if (!ptr)
3582 goto out;
3583
3584 strcpy(file->pathname, ptr);
3585
3586 copy_out:
3587 err = 0;
3588 if (copy_to_user(arg, file, sizeof(*file)))
3589 err = -EFAULT;
3590 out:
3591 kfree(buf);
3592 kfree(file);
3593 return err;
3594 }
3595
3596 static int get_disk_info(mddev_t * mddev, void __user * arg)
3597 {
3598 mdu_disk_info_t info;
3599 unsigned int nr;
3600 mdk_rdev_t *rdev;
3601
3602 if (copy_from_user(&info, arg, sizeof(info)))
3603 return -EFAULT;
3604
3605 nr = info.number;
3606
3607 rdev = find_rdev_nr(mddev, nr);
3608 if (rdev) {
3609 info.major = MAJOR(rdev->bdev->bd_dev);
3610 info.minor = MINOR(rdev->bdev->bd_dev);
3611 info.raid_disk = rdev->raid_disk;
3612 info.state = 0;
3613 if (test_bit(Faulty, &rdev->flags))
3614 info.state |= (1<<MD_DISK_FAULTY);
3615 else if (test_bit(In_sync, &rdev->flags)) {
3616 info.state |= (1<<MD_DISK_ACTIVE);
3617 info.state |= (1<<MD_DISK_SYNC);
3618 }
3619 if (test_bit(WriteMostly, &rdev->flags))
3620 info.state |= (1<<MD_DISK_WRITEMOSTLY);
3621 } else {
3622 info.major = info.minor = 0;
3623 info.raid_disk = -1;
3624 info.state = (1<<MD_DISK_REMOVED);
3625 }
3626
3627 if (copy_to_user(arg, &info, sizeof(info)))
3628 return -EFAULT;
3629
3630 return 0;
3631 }
3632
3633 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
3634 {
3635 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
3636 mdk_rdev_t *rdev;
3637 dev_t dev = MKDEV(info->major,info->minor);
3638
3639 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
3640 return -EOVERFLOW;
3641
3642 if (!mddev->raid_disks) {
3643 int err;
3644 /* expecting a device which has a superblock */
3645 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
3646 if (IS_ERR(rdev)) {
3647 printk(KERN_WARNING
3648 "md: md_import_device returned %ld\n",
3649 PTR_ERR(rdev));
3650 return PTR_ERR(rdev);
3651 }
3652 if (!list_empty(&mddev->disks)) {
3653 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3654 mdk_rdev_t, same_set);
3655 int err = super_types[mddev->major_version]
3656 .load_super(rdev, rdev0, mddev->minor_version);
3657 if (err < 0) {
3658 printk(KERN_WARNING
3659 "md: %s has different UUID to %s\n",
3660 bdevname(rdev->bdev,b),
3661 bdevname(rdev0->bdev,b2));
3662 export_rdev(rdev);
3663 return -EINVAL;
3664 }
3665 }
3666 err = bind_rdev_to_array(rdev, mddev);
3667 if (err)
3668 export_rdev(rdev);
3669 return err;
3670 }
3671
3672 /*
3673 * add_new_disk can be used once the array is assembled
3674 * to add "hot spares". They must already have a superblock
3675 * written
3676 */
3677 if (mddev->pers) {
3678 int err;
3679 if (!mddev->pers->hot_add_disk) {
3680 printk(KERN_WARNING
3681 "%s: personality does not support diskops!\n",
3682 mdname(mddev));
3683 return -EINVAL;
3684 }
3685 if (mddev->persistent)
3686 rdev = md_import_device(dev, mddev->major_version,
3687 mddev->minor_version);
3688 else
3689 rdev = md_import_device(dev, -1, -1);
3690 if (IS_ERR(rdev)) {
3691 printk(KERN_WARNING
3692 "md: md_import_device returned %ld\n",
3693 PTR_ERR(rdev));
3694 return PTR_ERR(rdev);
3695 }
3696 /* set save_raid_disk if appropriate */
3697 if (!mddev->persistent) {
3698 if (info->state & (1<<MD_DISK_SYNC) &&
3699 info->raid_disk < mddev->raid_disks)
3700 rdev->raid_disk = info->raid_disk;
3701 else
3702 rdev->raid_disk = -1;
3703 } else
3704 super_types[mddev->major_version].
3705 validate_super(mddev, rdev);
3706 rdev->saved_raid_disk = rdev->raid_disk;
3707
3708 clear_bit(In_sync, &rdev->flags); /* just to be sure */
3709 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3710 set_bit(WriteMostly, &rdev->flags);
3711
3712 rdev->raid_disk = -1;
3713 err = bind_rdev_to_array(rdev, mddev);
3714 if (!err && !mddev->pers->hot_remove_disk) {
3715 /* If there is hot_add_disk but no hot_remove_disk
3716 * then added disks for geometry changes,
3717 * and should be added immediately.
3718 */
3719 super_types[mddev->major_version].
3720 validate_super(mddev, rdev);
3721 err = mddev->pers->hot_add_disk(mddev, rdev);
3722 if (err)
3723 unbind_rdev_from_array(rdev);
3724 }
3725 if (err)
3726 export_rdev(rdev);
3727
3728 md_update_sb(mddev, 1);
3729 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3730 md_wakeup_thread(mddev->thread);
3731 return err;
3732 }
3733
3734 /* otherwise, add_new_disk is only allowed
3735 * for major_version==0 superblocks
3736 */
3737 if (mddev->major_version != 0) {
3738 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
3739 mdname(mddev));
3740 return -EINVAL;
3741 }
3742
3743 if (!(info->state & (1<<MD_DISK_FAULTY))) {
3744 int err;
3745 rdev = md_import_device (dev, -1, 0);
3746 if (IS_ERR(rdev)) {
3747 printk(KERN_WARNING
3748 "md: error, md_import_device() returned %ld\n",
3749 PTR_ERR(rdev));
3750 return PTR_ERR(rdev);
3751 }
3752 rdev->desc_nr = info->number;
3753 if (info->raid_disk < mddev->raid_disks)
3754 rdev->raid_disk = info->raid_disk;
3755 else
3756 rdev->raid_disk = -1;
3757
3758 rdev->flags = 0;
3759
3760 if (rdev->raid_disk < mddev->raid_disks)
3761 if (info->state & (1<<MD_DISK_SYNC))
3762 set_bit(In_sync, &rdev->flags);
3763
3764 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3765 set_bit(WriteMostly, &rdev->flags);
3766
3767 if (!mddev->persistent) {
3768 printk(KERN_INFO "md: nonpersistent superblock ...\n");
3769 rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
3770 } else
3771 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
3772 rdev->size = calc_dev_size(rdev, mddev->chunk_size);
3773
3774 err = bind_rdev_to_array(rdev, mddev);
3775 if (err) {
3776 export_rdev(rdev);
3777 return err;
3778 }
3779 }
3780
3781 return 0;
3782 }
3783
3784 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
3785 {
3786 char b[BDEVNAME_SIZE];
3787 mdk_rdev_t *rdev;
3788
3789 if (!mddev->pers)
3790 return -ENODEV;
3791
3792 rdev = find_rdev(mddev, dev);
3793 if (!rdev)
3794 return -ENXIO;
3795
3796 if (rdev->raid_disk >= 0)
3797 goto busy;
3798
3799 kick_rdev_from_array(rdev);
3800 md_update_sb(mddev, 1);
3801 md_new_event(mddev);
3802
3803 return 0;
3804 busy:
3805 printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
3806 bdevname(rdev->bdev,b), mdname(mddev));
3807 return -EBUSY;
3808 }
3809
3810 static int hot_add_disk(mddev_t * mddev, dev_t dev)
3811 {
3812 char b[BDEVNAME_SIZE];
3813 int err;
3814 unsigned int size;
3815 mdk_rdev_t *rdev;
3816
3817 if (!mddev->pers)
3818 return -ENODEV;
3819
3820 if (mddev->major_version != 0) {
3821 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
3822 " version-0 superblocks.\n",
3823 mdname(mddev));
3824 return -EINVAL;
3825 }
3826 if (!mddev->pers->hot_add_disk) {
3827 printk(KERN_WARNING
3828 "%s: personality does not support diskops!\n",
3829 mdname(mddev));
3830 return -EINVAL;
3831 }
3832
3833 rdev = md_import_device (dev, -1, 0);
3834 if (IS_ERR(rdev)) {
3835 printk(KERN_WARNING
3836 "md: error, md_import_device() returned %ld\n",
3837 PTR_ERR(rdev));
3838 return -EINVAL;
3839 }
3840
3841 if (mddev->persistent)
3842 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
3843 else
3844 rdev->sb_offset =
3845 rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
3846
3847 size = calc_dev_size(rdev, mddev->chunk_size);
3848 rdev->size = size;
3849
3850 if (test_bit(Faulty, &rdev->flags)) {
3851 printk(KERN_WARNING
3852 "md: can not hot-add faulty %s disk to %s!\n",
3853 bdevname(rdev->bdev,b), mdname(mddev));
3854 err = -EINVAL;
3855 goto abort_export;
3856 }
3857 clear_bit(In_sync, &rdev->flags);
3858 rdev->desc_nr = -1;
3859 rdev->saved_raid_disk = -1;
3860 err = bind_rdev_to_array(rdev, mddev);
3861 if (err)
3862 goto abort_export;
3863
3864 /*
3865 * The rest should better be atomic, we can have disk failures
3866 * noticed in interrupt contexts ...
3867 */
3868
3869 if (rdev->desc_nr == mddev->max_disks) {
3870 printk(KERN_WARNING "%s: can not hot-add to full array!\n",
3871 mdname(mddev));
3872 err = -EBUSY;
3873 goto abort_unbind_export;
3874 }
3875
3876 rdev->raid_disk = -1;
3877
3878 md_update_sb(mddev, 1);
3879
3880 /*
3881 * Kick recovery, maybe this spare has to be added to the
3882 * array immediately.
3883 */
3884 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3885 md_wakeup_thread(mddev->thread);
3886 md_new_event(mddev);
3887 return 0;
3888
3889 abort_unbind_export:
3890 unbind_rdev_from_array(rdev);
3891
3892 abort_export:
3893 export_rdev(rdev);
3894 return err;
3895 }
3896
3897 static int set_bitmap_file(mddev_t *mddev, int fd)
3898 {
3899 int err;
3900
3901 if (mddev->pers) {
3902 if (!mddev->pers->quiesce)
3903 return -EBUSY;
3904 if (mddev->recovery || mddev->sync_thread)
3905 return -EBUSY;
3906 /* we should be able to change the bitmap.. */
3907 }
3908
3909
3910 if (fd >= 0) {
3911 if (mddev->bitmap)
3912 return -EEXIST; /* cannot add when bitmap is present */
3913 mddev->bitmap_file = fget(fd);
3914
3915 if (mddev->bitmap_file == NULL) {
3916 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
3917 mdname(mddev));
3918 return -EBADF;
3919 }
3920
3921 err = deny_bitmap_write_access(mddev->bitmap_file);
3922 if (err) {
3923 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
3924 mdname(mddev));
3925 fput(mddev->bitmap_file);
3926 mddev->bitmap_file = NULL;
3927 return err;
3928 }
3929 mddev->bitmap_offset = 0; /* file overrides offset */
3930 } else if (mddev->bitmap == NULL)
3931 return -ENOENT; /* cannot remove what isn't there */
3932 err = 0;
3933 if (mddev->pers) {
3934 mddev->pers->quiesce(mddev, 1);
3935 if (fd >= 0)
3936 err = bitmap_create(mddev);
3937 if (fd < 0 || err) {
3938 bitmap_destroy(mddev);
3939 fd = -1; /* make sure to put the file */
3940 }
3941 mddev->pers->quiesce(mddev, 0);
3942 }
3943 if (fd < 0) {
3944 if (mddev->bitmap_file) {
3945 restore_bitmap_write_access(mddev->bitmap_file);
3946 fput(mddev->bitmap_file);
3947 }
3948 mddev->bitmap_file = NULL;
3949 }
3950
3951 return err;
3952 }
3953
3954 /*
3955 * set_array_info is used two different ways
3956 * The original usage is when creating a new array.
3957 * In this usage, raid_disks is > 0 and it together with
3958 * level, size, not_persistent,layout,chunksize determine the
3959 * shape of the array.
3960 * This will always create an array with a type-0.90.0 superblock.
3961 * The newer usage is when assembling an array.
3962 * In this case raid_disks will be 0, and the major_version field is
3963 * use to determine which style super-blocks are to be found on the devices.
3964 * The minor and patch _version numbers are also kept incase the
3965 * super_block handler wishes to interpret them.
3966 */
3967 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
3968 {
3969
3970 if (info->raid_disks == 0) {
3971 /* just setting version number for superblock loading */
3972 if (info->major_version < 0 ||
3973 info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
3974 super_types[info->major_version].name == NULL) {
3975 /* maybe try to auto-load a module? */
3976 printk(KERN_INFO
3977 "md: superblock version %d not known\n",
3978 info->major_version);
3979 return -EINVAL;
3980 }
3981 mddev->major_version = info->major_version;
3982 mddev->minor_version = info->minor_version;
3983 mddev->patch_version = info->patch_version;
3984 mddev->persistent = !info->not_persistent;
3985 return 0;
3986 }
3987 mddev->major_version = MD_MAJOR_VERSION;
3988 mddev->minor_version = MD_MINOR_VERSION;
3989 mddev->patch_version = MD_PATCHLEVEL_VERSION;
3990 mddev->ctime = get_seconds();
3991
3992 mddev->level = info->level;
3993 mddev->clevel[0] = 0;
3994 mddev->size = info->size;
3995 mddev->raid_disks = info->raid_disks;
3996 /* don't set md_minor, it is determined by which /dev/md* was
3997 * openned
3998 */
3999 if (info->state & (1<<MD_SB_CLEAN))
4000 mddev->recovery_cp = MaxSector;
4001 else
4002 mddev->recovery_cp = 0;
4003 mddev->persistent = ! info->not_persistent;
4004
4005 mddev->layout = info->layout;
4006 mddev->chunk_size = info->chunk_size;
4007
4008 mddev->max_disks = MD_SB_DISKS;
4009
4010 mddev->flags = 0;
4011 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4012
4013 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
4014 mddev->bitmap_offset = 0;
4015
4016 mddev->reshape_position = MaxSector;
4017
4018 /*
4019 * Generate a 128 bit UUID
4020 */
4021 get_random_bytes(mddev->uuid, 16);
4022
4023 mddev->new_level = mddev->level;
4024 mddev->new_chunk = mddev->chunk_size;
4025 mddev->new_layout = mddev->layout;
4026 mddev->delta_disks = 0;
4027
4028 return 0;
4029 }
4030
4031 static int update_size(mddev_t *mddev, unsigned long size)
4032 {
4033 mdk_rdev_t * rdev;
4034 int rv;
4035 struct list_head *tmp;
4036 int fit = (size == 0);
4037
4038 if (mddev->pers->resize == NULL)
4039 return -EINVAL;
4040 /* The "size" is the amount of each device that is used.
4041 * This can only make sense for arrays with redundancy.
4042 * linear and raid0 always use whatever space is available
4043 * We can only consider changing the size if no resync
4044 * or reconstruction is happening, and if the new size
4045 * is acceptable. It must fit before the sb_offset or,
4046 * if that is <data_offset, it must fit before the
4047 * size of each device.
4048 * If size is zero, we find the largest size that fits.
4049 */
4050 if (mddev->sync_thread)
4051 return -EBUSY;
4052 ITERATE_RDEV(mddev,rdev,tmp) {
4053 sector_t avail;
4054 avail = rdev->size * 2;
4055
4056 if (fit && (size == 0 || size > avail/2))
4057 size = avail/2;
4058 if (avail < ((sector_t)size << 1))
4059 return -ENOSPC;
4060 }
4061 rv = mddev->pers->resize(mddev, (sector_t)size *2);
4062 if (!rv) {
4063 struct block_device *bdev;
4064
4065 bdev = bdget_disk(mddev->gendisk, 0);
4066 if (bdev) {
4067 mutex_lock(&bdev->bd_inode->i_mutex);
4068 i_size_write(bdev->bd_inode, (loff_t)mddev->array_size << 10);
4069 mutex_unlock(&bdev->bd_inode->i_mutex);
4070 bdput(bdev);
4071 }
4072 }
4073 return rv;
4074 }
4075
4076 static int update_raid_disks(mddev_t *mddev, int raid_disks)
4077 {
4078 int rv;
4079 /* change the number of raid disks */
4080 if (mddev->pers->check_reshape == NULL)
4081 return -EINVAL;
4082 if (raid_disks <= 0 ||
4083 raid_disks >= mddev->max_disks)
4084 return -EINVAL;
4085 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
4086 return -EBUSY;
4087 mddev->delta_disks = raid_disks - mddev->raid_disks;
4088
4089 rv = mddev->pers->check_reshape(mddev);
4090 return rv;
4091 }
4092
4093
4094 /*
4095 * update_array_info is used to change the configuration of an
4096 * on-line array.
4097 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
4098 * fields in the info are checked against the array.
4099 * Any differences that cannot be handled will cause an error.
4100 * Normally, only one change can be managed at a time.
4101 */
4102 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
4103 {
4104 int rv = 0;
4105 int cnt = 0;
4106 int state = 0;
4107
4108 /* calculate expected state,ignoring low bits */
4109 if (mddev->bitmap && mddev->bitmap_offset)
4110 state |= (1 << MD_SB_BITMAP_PRESENT);
4111
4112 if (mddev->major_version != info->major_version ||
4113 mddev->minor_version != info->minor_version ||
4114 /* mddev->patch_version != info->patch_version || */
4115 mddev->ctime != info->ctime ||
4116 mddev->level != info->level ||
4117 /* mddev->layout != info->layout || */
4118 !mddev->persistent != info->not_persistent||
4119 mddev->chunk_size != info->chunk_size ||
4120 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
4121 ((state^info->state) & 0xfffffe00)
4122 )
4123 return -EINVAL;
4124 /* Check there is only one change */
4125 if (info->size >= 0 && mddev->size != info->size) cnt++;
4126 if (mddev->raid_disks != info->raid_disks) cnt++;
4127 if (mddev->layout != info->layout) cnt++;
4128 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
4129 if (cnt == 0) return 0;
4130 if (cnt > 1) return -EINVAL;
4131
4132 if (mddev->layout != info->layout) {
4133 /* Change layout
4134 * we don't need to do anything at the md level, the
4135 * personality will take care of it all.
4136 */
4137 if (mddev->pers->reconfig == NULL)
4138 return -EINVAL;
4139 else
4140 return mddev->pers->reconfig(mddev, info->layout, -1);
4141 }
4142 if (info->size >= 0 && mddev->size != info->size)
4143 rv = update_size(mddev, info->size);
4144
4145 if (mddev->raid_disks != info->raid_disks)
4146 rv = update_raid_disks(mddev, info->raid_disks);
4147
4148 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
4149 if (mddev->pers->quiesce == NULL)
4150 return -EINVAL;
4151 if (mddev->recovery || mddev->sync_thread)
4152 return -EBUSY;
4153 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
4154 /* add the bitmap */
4155 if (mddev->bitmap)
4156 return -EEXIST;
4157 if (mddev->default_bitmap_offset == 0)
4158 return -EINVAL;
4159 mddev->bitmap_offset = mddev->default_bitmap_offset;
4160 mddev->pers->quiesce(mddev, 1);
4161 rv = bitmap_create(mddev);
4162 if (rv)
4163 bitmap_destroy(mddev);
4164 mddev->pers->quiesce(mddev, 0);
4165 } else {
4166 /* remove the bitmap */
4167 if (!mddev->bitmap)
4168 return -ENOENT;
4169 if (mddev->bitmap->file)
4170 return -EINVAL;
4171 mddev->pers->quiesce(mddev, 1);
4172 bitmap_destroy(mddev);
4173 mddev->pers->quiesce(mddev, 0);
4174 mddev->bitmap_offset = 0;
4175 }
4176 }
4177 md_update_sb(mddev, 1);
4178 return rv;
4179 }
4180
4181 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
4182 {
4183 mdk_rdev_t *rdev;
4184
4185 if (mddev->pers == NULL)
4186 return -ENODEV;
4187
4188 rdev = find_rdev(mddev, dev);
4189 if (!rdev)
4190 return -ENODEV;
4191
4192 md_error(mddev, rdev);
4193 return 0;
4194 }
4195
4196 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
4197 {
4198 mddev_t *mddev = bdev->bd_disk->private_data;
4199
4200 geo->heads = 2;
4201 geo->sectors = 4;
4202 geo->cylinders = get_capacity(mddev->gendisk) / 8;
4203 return 0;
4204 }
4205
4206 static int md_ioctl(struct inode *inode, struct file *file,
4207 unsigned int cmd, unsigned long arg)
4208 {
4209 int err = 0;
4210 void __user *argp = (void __user *)arg;
4211 mddev_t *mddev = NULL;
4212
4213 if (!capable(CAP_SYS_ADMIN))
4214 return -EACCES;
4215
4216 /*
4217 * Commands dealing with the RAID driver but not any
4218 * particular array:
4219 */
4220 switch (cmd)
4221 {
4222 case RAID_VERSION:
4223 err = get_version(argp);
4224 goto done;
4225
4226 case PRINT_RAID_DEBUG:
4227 err = 0;
4228 md_print_devices();
4229 goto done;
4230
4231 #ifndef MODULE
4232 case RAID_AUTORUN:
4233 err = 0;
4234 autostart_arrays(arg);
4235 goto done;
4236 #endif
4237 default:;
4238 }
4239
4240 /*
4241 * Commands creating/starting a new array:
4242 */
4243
4244 mddev = inode->i_bdev->bd_disk->private_data;
4245
4246 if (!mddev) {
4247 BUG();
4248 goto abort;
4249 }
4250
4251 err = mddev_lock(mddev);
4252 if (err) {
4253 printk(KERN_INFO
4254 "md: ioctl lock interrupted, reason %d, cmd %d\n",
4255 err, cmd);
4256 goto abort;
4257 }
4258
4259 switch (cmd)
4260 {
4261 case SET_ARRAY_INFO:
4262 {
4263 mdu_array_info_t info;
4264 if (!arg)
4265 memset(&info, 0, sizeof(info));
4266 else if (copy_from_user(&info, argp, sizeof(info))) {
4267 err = -EFAULT;
4268 goto abort_unlock;
4269 }
4270 if (mddev->pers) {
4271 err = update_array_info(mddev, &info);
4272 if (err) {
4273 printk(KERN_WARNING "md: couldn't update"
4274 " array info. %d\n", err);
4275 goto abort_unlock;
4276 }
4277 goto done_unlock;
4278 }
4279 if (!list_empty(&mddev->disks)) {
4280 printk(KERN_WARNING
4281 "md: array %s already has disks!\n",
4282 mdname(mddev));
4283 err = -EBUSY;
4284 goto abort_unlock;
4285 }
4286 if (mddev->raid_disks) {
4287 printk(KERN_WARNING
4288 "md: array %s already initialised!\n",
4289 mdname(mddev));
4290 err = -EBUSY;
4291 goto abort_unlock;
4292 }
4293 err = set_array_info(mddev, &info);
4294 if (err) {
4295 printk(KERN_WARNING "md: couldn't set"
4296 " array info. %d\n", err);
4297 goto abort_unlock;
4298 }
4299 }
4300 goto done_unlock;
4301
4302 default:;
4303 }
4304
4305 /*
4306 * Commands querying/configuring an existing array:
4307 */
4308 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
4309 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
4310 if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
4311 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
4312 && cmd != GET_BITMAP_FILE) {
4313 err = -ENODEV;
4314 goto abort_unlock;
4315 }
4316
4317 /*
4318 * Commands even a read-only array can execute:
4319 */
4320 switch (cmd)
4321 {
4322 case GET_ARRAY_INFO:
4323 err = get_array_info(mddev, argp);
4324 goto done_unlock;
4325
4326 case GET_BITMAP_FILE:
4327 err = get_bitmap_file(mddev, argp);
4328 goto done_unlock;
4329
4330 case GET_DISK_INFO:
4331 err = get_disk_info(mddev, argp);
4332 goto done_unlock;
4333
4334 case RESTART_ARRAY_RW:
4335 err = restart_array(mddev);
4336 goto done_unlock;
4337
4338 case STOP_ARRAY:
4339 err = do_md_stop (mddev, 0);
4340 goto done_unlock;
4341
4342 case STOP_ARRAY_RO:
4343 err = do_md_stop (mddev, 1);
4344 goto done_unlock;
4345
4346 /*
4347 * We have a problem here : there is no easy way to give a CHS
4348 * virtual geometry. We currently pretend that we have a 2 heads
4349 * 4 sectors (with a BIG number of cylinders...). This drives
4350 * dosfs just mad... ;-)
4351 */
4352 }
4353
4354 /*
4355 * The remaining ioctls are changing the state of the
4356 * superblock, so we do not allow them on read-only arrays.
4357 * However non-MD ioctls (e.g. get-size) will still come through
4358 * here and hit the 'default' below, so only disallow
4359 * 'md' ioctls, and switch to rw mode if started auto-readonly.
4360 */
4361 if (_IOC_TYPE(cmd) == MD_MAJOR &&
4362 mddev->ro && mddev->pers) {
4363 if (mddev->ro == 2) {
4364 mddev->ro = 0;
4365 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4366 md_wakeup_thread(mddev->thread);
4367
4368 } else {
4369 err = -EROFS;
4370 goto abort_unlock;
4371 }
4372 }
4373
4374 switch (cmd)
4375 {
4376 case ADD_NEW_DISK:
4377 {
4378 mdu_disk_info_t info;
4379 if (copy_from_user(&info, argp, sizeof(info)))
4380 err = -EFAULT;
4381 else
4382 err = add_new_disk(mddev, &info);
4383 goto done_unlock;
4384 }
4385
4386 case HOT_REMOVE_DISK:
4387 err = hot_remove_disk(mddev, new_decode_dev(arg));
4388 goto done_unlock;
4389
4390 case HOT_ADD_DISK:
4391 err = hot_add_disk(mddev, new_decode_dev(arg));
4392 goto done_unlock;
4393
4394 case SET_DISK_FAULTY:
4395 err = set_disk_faulty(mddev, new_decode_dev(arg));
4396 goto done_unlock;
4397
4398 case RUN_ARRAY:
4399 err = do_md_run (mddev);
4400 goto done_unlock;
4401
4402 case SET_BITMAP_FILE:
4403 err = set_bitmap_file(mddev, (int)arg);
4404 goto done_unlock;
4405
4406 default:
4407 err = -EINVAL;
4408 goto abort_unlock;
4409 }
4410
4411 done_unlock:
4412 abort_unlock:
4413 mddev_unlock(mddev);
4414
4415 return err;
4416 done:
4417 if (err)
4418 MD_BUG();
4419 abort:
4420 return err;
4421 }
4422
4423 static int md_open(struct inode *inode, struct file *file)
4424 {
4425 /*
4426 * Succeed if we can lock the mddev, which confirms that
4427 * it isn't being stopped right now.
4428 */
4429 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4430 int err;
4431
4432 if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1)))
4433 goto out;
4434
4435 err = 0;
4436 mddev_get(mddev);
4437 mddev_unlock(mddev);
4438
4439 check_disk_change(inode->i_bdev);
4440 out:
4441 return err;
4442 }
4443
4444 static int md_release(struct inode *inode, struct file * file)
4445 {
4446 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4447
4448 BUG_ON(!mddev);
4449 mddev_put(mddev);
4450
4451 return 0;
4452 }
4453
4454 static int md_media_changed(struct gendisk *disk)
4455 {
4456 mddev_t *mddev = disk->private_data;
4457
4458 return mddev->changed;
4459 }
4460
4461 static int md_revalidate(struct gendisk *disk)
4462 {
4463 mddev_t *mddev = disk->private_data;
4464
4465 mddev->changed = 0;
4466 return 0;
4467 }
4468 static struct block_device_operations md_fops =
4469 {
4470 .owner = THIS_MODULE,
4471 .open = md_open,
4472 .release = md_release,
4473 .ioctl = md_ioctl,
4474 .getgeo = md_getgeo,
4475 .media_changed = md_media_changed,
4476 .revalidate_disk= md_revalidate,
4477 };
4478
4479 static int md_thread(void * arg)
4480 {
4481 mdk_thread_t *thread = arg;
4482
4483 /*
4484 * md_thread is a 'system-thread', it's priority should be very
4485 * high. We avoid resource deadlocks individually in each
4486 * raid personality. (RAID5 does preallocation) We also use RR and
4487 * the very same RT priority as kswapd, thus we will never get
4488 * into a priority inversion deadlock.
4489 *
4490 * we definitely have to have equal or higher priority than
4491 * bdflush, otherwise bdflush will deadlock if there are too
4492 * many dirty RAID5 blocks.
4493 */
4494
4495 current->flags |= PF_NOFREEZE;
4496 allow_signal(SIGKILL);
4497 while (!kthread_should_stop()) {
4498
4499 /* We need to wait INTERRUPTIBLE so that
4500 * we don't add to the load-average.
4501 * That means we need to be sure no signals are
4502 * pending
4503 */
4504 if (signal_pending(current))
4505 flush_signals(current);
4506
4507 wait_event_interruptible_timeout
4508 (thread->wqueue,
4509 test_bit(THREAD_WAKEUP, &thread->flags)
4510 || kthread_should_stop(),
4511 thread->timeout);
4512
4513 clear_bit(THREAD_WAKEUP, &thread->flags);
4514
4515 thread->run(thread->mddev);
4516 }
4517
4518 return 0;
4519 }
4520
4521 void md_wakeup_thread(mdk_thread_t *thread)
4522 {
4523 if (thread) {
4524 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
4525 set_bit(THREAD_WAKEUP, &thread->flags);
4526 wake_up(&thread->wqueue);
4527 }
4528 }
4529
4530 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
4531 const char *name)
4532 {
4533 mdk_thread_t *thread;
4534
4535 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
4536 if (!thread)
4537 return NULL;
4538
4539 init_waitqueue_head(&thread->wqueue);
4540
4541 thread->run = run;
4542 thread->mddev = mddev;
4543 thread->timeout = MAX_SCHEDULE_TIMEOUT;
4544 thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
4545 if (IS_ERR(thread->tsk)) {
4546 kfree(thread);
4547 return NULL;
4548 }
4549 return thread;
4550 }
4551
4552 void md_unregister_thread(mdk_thread_t *thread)
4553 {
4554 dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
4555
4556 kthread_stop(thread->tsk);
4557 kfree(thread);
4558 }
4559
4560 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
4561 {
4562 if (!mddev) {
4563 MD_BUG();
4564 return;
4565 }
4566
4567 if (!rdev || test_bit(Faulty, &rdev->flags))
4568 return;
4569 /*
4570 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
4571 mdname(mddev),
4572 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
4573 __builtin_return_address(0),__builtin_return_address(1),
4574 __builtin_return_address(2),__builtin_return_address(3));
4575 */
4576 if (!mddev->pers)
4577 return;
4578 if (!mddev->pers->error_handler)
4579 return;
4580 mddev->pers->error_handler(mddev,rdev);
4581 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4582 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4583 md_wakeup_thread(mddev->thread);
4584 md_new_event_inintr(mddev);
4585 }
4586
4587 /* seq_file implementation /proc/mdstat */
4588
4589 static void status_unused(struct seq_file *seq)
4590 {
4591 int i = 0;
4592 mdk_rdev_t *rdev;
4593 struct list_head *tmp;
4594
4595 seq_printf(seq, "unused devices: ");
4596
4597 ITERATE_RDEV_PENDING(rdev,tmp) {
4598 char b[BDEVNAME_SIZE];
4599 i++;
4600 seq_printf(seq, "%s ",
4601 bdevname(rdev->bdev,b));
4602 }
4603 if (!i)
4604 seq_printf(seq, "<none>");
4605
4606 seq_printf(seq, "\n");
4607 }
4608
4609
4610 static void status_resync(struct seq_file *seq, mddev_t * mddev)
4611 {
4612 sector_t max_blocks, resync, res;
4613 unsigned long dt, db, rt;
4614 int scale;
4615 unsigned int per_milli;
4616
4617 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
4618
4619 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4620 max_blocks = mddev->resync_max_sectors >> 1;
4621 else
4622 max_blocks = mddev->size;
4623
4624 /*
4625 * Should not happen.
4626 */
4627 if (!max_blocks) {
4628 MD_BUG();
4629 return;
4630 }
4631 /* Pick 'scale' such that (resync>>scale)*1000 will fit
4632 * in a sector_t, and (max_blocks>>scale) will fit in a
4633 * u32, as those are the requirements for sector_div.
4634 * Thus 'scale' must be at least 10
4635 */
4636 scale = 10;
4637 if (sizeof(sector_t) > sizeof(unsigned long)) {
4638 while ( max_blocks/2 > (1ULL<<(scale+32)))
4639 scale++;
4640 }
4641 res = (resync>>scale)*1000;
4642 sector_div(res, (u32)((max_blocks>>scale)+1));
4643
4644 per_milli = res;
4645 {
4646 int i, x = per_milli/50, y = 20-x;
4647 seq_printf(seq, "[");
4648 for (i = 0; i < x; i++)
4649 seq_printf(seq, "=");
4650 seq_printf(seq, ">");
4651 for (i = 0; i < y; i++)
4652 seq_printf(seq, ".");
4653 seq_printf(seq, "] ");
4654 }
4655 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
4656 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
4657 "reshape" :
4658 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
4659 "check" :
4660 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
4661 "resync" : "recovery"))),
4662 per_milli/10, per_milli % 10,
4663 (unsigned long long) resync,
4664 (unsigned long long) max_blocks);
4665
4666 /*
4667 * We do not want to overflow, so the order of operands and
4668 * the * 100 / 100 trick are important. We do a +1 to be
4669 * safe against division by zero. We only estimate anyway.
4670 *
4671 * dt: time from mark until now
4672 * db: blocks written from mark until now
4673 * rt: remaining time
4674 */
4675 dt = ((jiffies - mddev->resync_mark) / HZ);
4676 if (!dt) dt++;
4677 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
4678 - mddev->resync_mark_cnt;
4679 rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100;
4680
4681 seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
4682
4683 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
4684 }
4685
4686 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
4687 {
4688 struct list_head *tmp;
4689 loff_t l = *pos;
4690 mddev_t *mddev;
4691
4692 if (l >= 0x10000)
4693 return NULL;
4694 if (!l--)
4695 /* header */
4696 return (void*)1;
4697
4698 spin_lock(&all_mddevs_lock);
4699 list_for_each(tmp,&all_mddevs)
4700 if (!l--) {
4701 mddev = list_entry(tmp, mddev_t, all_mddevs);
4702 mddev_get(mddev);
4703 spin_unlock(&all_mddevs_lock);
4704 return mddev;
4705 }
4706 spin_unlock(&all_mddevs_lock);
4707 if (!l--)
4708 return (void*)2;/* tail */
4709 return NULL;
4710 }
4711
4712 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4713 {
4714 struct list_head *tmp;
4715 mddev_t *next_mddev, *mddev = v;
4716
4717 ++*pos;
4718 if (v == (void*)2)
4719 return NULL;
4720
4721 spin_lock(&all_mddevs_lock);
4722 if (v == (void*)1)
4723 tmp = all_mddevs.next;
4724 else
4725 tmp = mddev->all_mddevs.next;
4726 if (tmp != &all_mddevs)
4727 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
4728 else {
4729 next_mddev = (void*)2;
4730 *pos = 0x10000;
4731 }
4732 spin_unlock(&all_mddevs_lock);
4733
4734 if (v != (void*)1)
4735 mddev_put(mddev);
4736 return next_mddev;
4737
4738 }
4739
4740 static void md_seq_stop(struct seq_file *seq, void *v)
4741 {
4742 mddev_t *mddev = v;
4743
4744 if (mddev && v != (void*)1 && v != (void*)2)
4745 mddev_put(mddev);
4746 }
4747
4748 struct mdstat_info {
4749 int event;
4750 };
4751
4752 static int md_seq_show(struct seq_file *seq, void *v)
4753 {
4754 mddev_t *mddev = v;
4755 sector_t size;
4756 struct list_head *tmp2;
4757 mdk_rdev_t *rdev;
4758 struct mdstat_info *mi = seq->private;
4759 struct bitmap *bitmap;
4760
4761 if (v == (void*)1) {
4762 struct mdk_personality *pers;
4763 seq_printf(seq, "Personalities : ");
4764 spin_lock(&pers_lock);
4765 list_for_each_entry(pers, &pers_list, list)
4766 seq_printf(seq, "[%s] ", pers->name);
4767
4768 spin_unlock(&pers_lock);
4769 seq_printf(seq, "\n");
4770 mi->event = atomic_read(&md_event_count);
4771 return 0;
4772 }
4773 if (v == (void*)2) {
4774 status_unused(seq);
4775 return 0;
4776 }
4777
4778 if (mddev_lock(mddev) < 0)
4779 return -EINTR;
4780
4781 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
4782 seq_printf(seq, "%s : %sactive", mdname(mddev),
4783 mddev->pers ? "" : "in");
4784 if (mddev->pers) {
4785 if (mddev->ro==1)
4786 seq_printf(seq, " (read-only)");
4787 if (mddev->ro==2)
4788 seq_printf(seq, "(auto-read-only)");
4789 seq_printf(seq, " %s", mddev->pers->name);
4790 }
4791
4792 size = 0;
4793 ITERATE_RDEV(mddev,rdev,tmp2) {
4794 char b[BDEVNAME_SIZE];
4795 seq_printf(seq, " %s[%d]",
4796 bdevname(rdev->bdev,b), rdev->desc_nr);
4797 if (test_bit(WriteMostly, &rdev->flags))
4798 seq_printf(seq, "(W)");
4799 if (test_bit(Faulty, &rdev->flags)) {
4800 seq_printf(seq, "(F)");
4801 continue;
4802 } else if (rdev->raid_disk < 0)
4803 seq_printf(seq, "(S)"); /* spare */
4804 size += rdev->size;
4805 }
4806
4807 if (!list_empty(&mddev->disks)) {
4808 if (mddev->pers)
4809 seq_printf(seq, "\n %llu blocks",
4810 (unsigned long long)mddev->array_size);
4811 else
4812 seq_printf(seq, "\n %llu blocks",
4813 (unsigned long long)size);
4814 }
4815 if (mddev->persistent) {
4816 if (mddev->major_version != 0 ||
4817 mddev->minor_version != 90) {
4818 seq_printf(seq," super %d.%d",
4819 mddev->major_version,
4820 mddev->minor_version);
4821 }
4822 } else
4823 seq_printf(seq, " super non-persistent");
4824
4825 if (mddev->pers) {
4826 mddev->pers->status (seq, mddev);
4827 seq_printf(seq, "\n ");
4828 if (mddev->pers->sync_request) {
4829 if (mddev->curr_resync > 2) {
4830 status_resync (seq, mddev);
4831 seq_printf(seq, "\n ");
4832 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
4833 seq_printf(seq, "\tresync=DELAYED\n ");
4834 else if (mddev->recovery_cp < MaxSector)
4835 seq_printf(seq, "\tresync=PENDING\n ");
4836 }
4837 } else
4838 seq_printf(seq, "\n ");
4839
4840 if ((bitmap = mddev->bitmap)) {
4841 unsigned long chunk_kb;
4842 unsigned long flags;
4843 spin_lock_irqsave(&bitmap->lock, flags);
4844 chunk_kb = bitmap->chunksize >> 10;
4845 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
4846 "%lu%s chunk",
4847 bitmap->pages - bitmap->missing_pages,
4848 bitmap->pages,
4849 (bitmap->pages - bitmap->missing_pages)
4850 << (PAGE_SHIFT - 10),
4851 chunk_kb ? chunk_kb : bitmap->chunksize,
4852 chunk_kb ? "KB" : "B");
4853 if (bitmap->file) {
4854 seq_printf(seq, ", file: ");
4855 seq_path(seq, bitmap->file->f_path.mnt,
4856 bitmap->file->f_path.dentry," \t\n");
4857 }
4858
4859 seq_printf(seq, "\n");
4860 spin_unlock_irqrestore(&bitmap->lock, flags);
4861 }
4862
4863 seq_printf(seq, "\n");
4864 }
4865 mddev_unlock(mddev);
4866
4867 return 0;
4868 }
4869
4870 static struct seq_operations md_seq_ops = {
4871 .start = md_seq_start,
4872 .next = md_seq_next,
4873 .stop = md_seq_stop,
4874 .show = md_seq_show,
4875 };
4876
4877 static int md_seq_open(struct inode *inode, struct file *file)
4878 {
4879 int error;
4880 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
4881 if (mi == NULL)
4882 return -ENOMEM;
4883
4884 error = seq_open(file, &md_seq_ops);
4885 if (error)
4886 kfree(mi);
4887 else {
4888 struct seq_file *p = file->private_data;
4889 p->private = mi;
4890 mi->event = atomic_read(&md_event_count);
4891 }
4892 return error;
4893 }
4894
4895 static int md_seq_release(struct inode *inode, struct file *file)
4896 {
4897 struct seq_file *m = file->private_data;
4898 struct mdstat_info *mi = m->private;
4899 m->private = NULL;
4900 kfree(mi);
4901 return seq_release(inode, file);
4902 }
4903
4904 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
4905 {
4906 struct seq_file *m = filp->private_data;
4907 struct mdstat_info *mi = m->private;
4908 int mask;
4909
4910 poll_wait(filp, &md_event_waiters, wait);
4911
4912 /* always allow read */
4913 mask = POLLIN | POLLRDNORM;
4914
4915 if (mi->event != atomic_read(&md_event_count))
4916 mask |= POLLERR | POLLPRI;
4917 return mask;
4918 }
4919
4920 static struct file_operations md_seq_fops = {
4921 .owner = THIS_MODULE,
4922 .open = md_seq_open,
4923 .read = seq_read,
4924 .llseek = seq_lseek,
4925 .release = md_seq_release,
4926 .poll = mdstat_poll,
4927 };
4928
4929 int register_md_personality(struct mdk_personality *p)
4930 {
4931 spin_lock(&pers_lock);
4932 list_add_tail(&p->list, &pers_list);
4933 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
4934 spin_unlock(&pers_lock);
4935 return 0;
4936 }
4937
4938 int unregister_md_personality(struct mdk_personality *p)
4939 {
4940 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
4941 spin_lock(&pers_lock);
4942 list_del_init(&p->list);
4943 spin_unlock(&pers_lock);
4944 return 0;
4945 }
4946
4947 static int is_mddev_idle(mddev_t *mddev)
4948 {
4949 mdk_rdev_t * rdev;
4950 struct list_head *tmp;
4951 int idle;
4952 unsigned long curr_events;
4953
4954 idle = 1;
4955 ITERATE_RDEV(mddev,rdev,tmp) {
4956 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
4957 curr_events = disk_stat_read(disk, sectors[0]) +
4958 disk_stat_read(disk, sectors[1]) -
4959 atomic_read(&disk->sync_io);
4960 /* The difference between curr_events and last_events
4961 * will be affected by any new non-sync IO (making
4962 * curr_events bigger) and any difference in the amount of
4963 * in-flight syncio (making current_events bigger or smaller)
4964 * The amount in-flight is currently limited to
4965 * 32*64K in raid1/10 and 256*PAGE_SIZE in raid5/6
4966 * which is at most 4096 sectors.
4967 * These numbers are fairly fragile and should be made
4968 * more robust, probably by enforcing the
4969 * 'window size' that md_do_sync sort-of uses.
4970 *
4971 * Note: the following is an unsigned comparison.
4972 */
4973 if ((curr_events - rdev->last_events + 4096) > 8192) {
4974 rdev->last_events = curr_events;
4975 idle = 0;
4976 }
4977 }
4978 return idle;
4979 }
4980
4981 void md_done_sync(mddev_t *mddev, int blocks, int ok)
4982 {
4983 /* another "blocks" (512byte) blocks have been synced */
4984 atomic_sub(blocks, &mddev->recovery_active);
4985 wake_up(&mddev->recovery_wait);
4986 if (!ok) {
4987 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
4988 md_wakeup_thread(mddev->thread);
4989 // stop recovery, signal do_sync ....
4990 }
4991 }
4992
4993
4994 /* md_write_start(mddev, bi)
4995 * If we need to update some array metadata (e.g. 'active' flag
4996 * in superblock) before writing, schedule a superblock update
4997 * and wait for it to complete.
4998 */
4999 void md_write_start(mddev_t *mddev, struct bio *bi)
5000 {
5001 if (bio_data_dir(bi) != WRITE)
5002 return;
5003
5004 BUG_ON(mddev->ro == 1);
5005 if (mddev->ro == 2) {
5006 /* need to switch to read/write */
5007 mddev->ro = 0;
5008 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5009 md_wakeup_thread(mddev->thread);
5010 }
5011 atomic_inc(&mddev->writes_pending);
5012 if (mddev->in_sync) {
5013 spin_lock_irq(&mddev->write_lock);
5014 if (mddev->in_sync) {
5015 mddev->in_sync = 0;
5016 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5017 md_wakeup_thread(mddev->thread);
5018 }
5019 spin_unlock_irq(&mddev->write_lock);
5020 }
5021 wait_event(mddev->sb_wait, mddev->flags==0);
5022 }
5023
5024 void md_write_end(mddev_t *mddev)
5025 {
5026 if (atomic_dec_and_test(&mddev->writes_pending)) {
5027 if (mddev->safemode == 2)
5028 md_wakeup_thread(mddev->thread);
5029 else if (mddev->safemode_delay)
5030 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
5031 }
5032 }
5033
5034 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
5035
5036 #define SYNC_MARKS 10
5037 #define SYNC_MARK_STEP (3*HZ)
5038 void md_do_sync(mddev_t *mddev)
5039 {
5040 mddev_t *mddev2;
5041 unsigned int currspeed = 0,
5042 window;
5043 sector_t max_sectors,j, io_sectors;
5044 unsigned long mark[SYNC_MARKS];
5045 sector_t mark_cnt[SYNC_MARKS];
5046 int last_mark,m;
5047 struct list_head *tmp;
5048 sector_t last_check;
5049 int skipped = 0;
5050 struct list_head *rtmp;
5051 mdk_rdev_t *rdev;
5052 char *desc;
5053
5054 /* just incase thread restarts... */
5055 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
5056 return;
5057 if (mddev->ro) /* never try to sync a read-only array */
5058 return;
5059
5060 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5061 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
5062 desc = "data-check";
5063 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5064 desc = "requested-resync";
5065 else
5066 desc = "resync";
5067 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5068 desc = "reshape";
5069 else
5070 desc = "recovery";
5071
5072 /* we overload curr_resync somewhat here.
5073 * 0 == not engaged in resync at all
5074 * 2 == checking that there is no conflict with another sync
5075 * 1 == like 2, but have yielded to allow conflicting resync to
5076 * commense
5077 * other == active in resync - this many blocks
5078 *
5079 * Before starting a resync we must have set curr_resync to
5080 * 2, and then checked that every "conflicting" array has curr_resync
5081 * less than ours. When we find one that is the same or higher
5082 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
5083 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
5084 * This will mean we have to start checking from the beginning again.
5085 *
5086 */
5087
5088 do {
5089 mddev->curr_resync = 2;
5090
5091 try_again:
5092 if (kthread_should_stop()) {
5093 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5094 goto skip;
5095 }
5096 ITERATE_MDDEV(mddev2,tmp) {
5097 if (mddev2 == mddev)
5098 continue;
5099 if (mddev2->curr_resync &&
5100 match_mddev_units(mddev,mddev2)) {
5101 DEFINE_WAIT(wq);
5102 if (mddev < mddev2 && mddev->curr_resync == 2) {
5103 /* arbitrarily yield */
5104 mddev->curr_resync = 1;
5105 wake_up(&resync_wait);
5106 }
5107 if (mddev > mddev2 && mddev->curr_resync == 1)
5108 /* no need to wait here, we can wait the next
5109 * time 'round when curr_resync == 2
5110 */
5111 continue;
5112 prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
5113 if (!kthread_should_stop() &&
5114 mddev2->curr_resync >= mddev->curr_resync) {
5115 printk(KERN_INFO "md: delaying %s of %s"
5116 " until %s has finished (they"
5117 " share one or more physical units)\n",
5118 desc, mdname(mddev), mdname(mddev2));
5119 mddev_put(mddev2);
5120 schedule();
5121 finish_wait(&resync_wait, &wq);
5122 goto try_again;
5123 }
5124 finish_wait(&resync_wait, &wq);
5125 }
5126 }
5127 } while (mddev->curr_resync < 2);
5128
5129 j = 0;
5130 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5131 /* resync follows the size requested by the personality,
5132 * which defaults to physical size, but can be virtual size
5133 */
5134 max_sectors = mddev->resync_max_sectors;
5135 mddev->resync_mismatches = 0;
5136 /* we don't use the checkpoint if there's a bitmap */
5137 if (!mddev->bitmap &&
5138 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5139 j = mddev->recovery_cp;
5140 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5141 max_sectors = mddev->size << 1;
5142 else {
5143 /* recovery follows the physical size of devices */
5144 max_sectors = mddev->size << 1;
5145 j = MaxSector;
5146 ITERATE_RDEV(mddev,rdev,rtmp)
5147 if (rdev->raid_disk >= 0 &&
5148 !test_bit(Faulty, &rdev->flags) &&
5149 !test_bit(In_sync, &rdev->flags) &&
5150 rdev->recovery_offset < j)
5151 j = rdev->recovery_offset;
5152 }
5153
5154 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
5155 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
5156 " %d KB/sec/disk.\n", speed_min(mddev));
5157 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
5158 "(but not more than %d KB/sec) for %s.\n",
5159 speed_max(mddev), desc);
5160
5161 is_mddev_idle(mddev); /* this also initializes IO event counters */
5162
5163 io_sectors = 0;
5164 for (m = 0; m < SYNC_MARKS; m++) {
5165 mark[m] = jiffies;
5166 mark_cnt[m] = io_sectors;
5167 }
5168 last_mark = 0;
5169 mddev->resync_mark = mark[last_mark];
5170 mddev->resync_mark_cnt = mark_cnt[last_mark];
5171
5172 /*
5173 * Tune reconstruction:
5174 */
5175 window = 32*(PAGE_SIZE/512);
5176 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
5177 window/2,(unsigned long long) max_sectors/2);
5178
5179 atomic_set(&mddev->recovery_active, 0);
5180 init_waitqueue_head(&mddev->recovery_wait);
5181 last_check = 0;
5182
5183 if (j>2) {
5184 printk(KERN_INFO
5185 "md: resuming %s of %s from checkpoint.\n",
5186 desc, mdname(mddev));
5187 mddev->curr_resync = j;
5188 }
5189
5190 while (j < max_sectors) {
5191 sector_t sectors;
5192
5193 skipped = 0;
5194 sectors = mddev->pers->sync_request(mddev, j, &skipped,
5195 currspeed < speed_min(mddev));
5196 if (sectors == 0) {
5197 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
5198 goto out;
5199 }
5200
5201 if (!skipped) { /* actual IO requested */
5202 io_sectors += sectors;
5203 atomic_add(sectors, &mddev->recovery_active);
5204 }
5205
5206 j += sectors;
5207 if (j>1) mddev->curr_resync = j;
5208 mddev->curr_mark_cnt = io_sectors;
5209 if (last_check == 0)
5210 /* this is the earliers that rebuilt will be
5211 * visible in /proc/mdstat
5212 */
5213 md_new_event(mddev);
5214
5215 if (last_check + window > io_sectors || j == max_sectors)
5216 continue;
5217
5218 last_check = io_sectors;
5219
5220 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
5221 test_bit(MD_RECOVERY_ERR, &mddev->recovery))
5222 break;
5223
5224 repeat:
5225 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
5226 /* step marks */
5227 int next = (last_mark+1) % SYNC_MARKS;
5228
5229 mddev->resync_mark = mark[next];
5230 mddev->resync_mark_cnt = mark_cnt[next];
5231 mark[next] = jiffies;
5232 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
5233 last_mark = next;
5234 }
5235
5236
5237 if (kthread_should_stop()) {
5238 /*
5239 * got a signal, exit.
5240 */
5241 printk(KERN_INFO
5242 "md: md_do_sync() got signal ... exiting\n");
5243 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5244 goto out;
5245 }
5246
5247 /*
5248 * this loop exits only if either when we are slower than
5249 * the 'hard' speed limit, or the system was IO-idle for
5250 * a jiffy.
5251 * the system might be non-idle CPU-wise, but we only care
5252 * about not overloading the IO subsystem. (things like an
5253 * e2fsck being done on the RAID array should execute fast)
5254 */
5255 mddev->queue->unplug_fn(mddev->queue);
5256 cond_resched();
5257
5258 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
5259 /((jiffies-mddev->resync_mark)/HZ +1) +1;
5260
5261 if (currspeed > speed_min(mddev)) {
5262 if ((currspeed > speed_max(mddev)) ||
5263 !is_mddev_idle(mddev)) {
5264 msleep(500);
5265 goto repeat;
5266 }
5267 }
5268 }
5269 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
5270 /*
5271 * this also signals 'finished resyncing' to md_stop
5272 */
5273 out:
5274 mddev->queue->unplug_fn(mddev->queue);
5275
5276 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
5277
5278 /* tell personality that we are finished */
5279 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
5280
5281 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
5282 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
5283 mddev->curr_resync > 2) {
5284 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5285 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5286 if (mddev->curr_resync >= mddev->recovery_cp) {
5287 printk(KERN_INFO
5288 "md: checkpointing %s of %s.\n",
5289 desc, mdname(mddev));
5290 mddev->recovery_cp = mddev->curr_resync;
5291 }
5292 } else
5293 mddev->recovery_cp = MaxSector;
5294 } else {
5295 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5296 mddev->curr_resync = MaxSector;
5297 ITERATE_RDEV(mddev,rdev,rtmp)
5298 if (rdev->raid_disk >= 0 &&
5299 !test_bit(Faulty, &rdev->flags) &&
5300 !test_bit(In_sync, &rdev->flags) &&
5301 rdev->recovery_offset < mddev->curr_resync)
5302 rdev->recovery_offset = mddev->curr_resync;
5303 }
5304 }
5305 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5306
5307 skip:
5308 mddev->curr_resync = 0;
5309 wake_up(&resync_wait);
5310 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
5311 md_wakeup_thread(mddev->thread);
5312 }
5313 EXPORT_SYMBOL_GPL(md_do_sync);
5314
5315
5316 /*
5317 * This routine is regularly called by all per-raid-array threads to
5318 * deal with generic issues like resync and super-block update.
5319 * Raid personalities that don't have a thread (linear/raid0) do not
5320 * need this as they never do any recovery or update the superblock.
5321 *
5322 * It does not do any resync itself, but rather "forks" off other threads
5323 * to do that as needed.
5324 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
5325 * "->recovery" and create a thread at ->sync_thread.
5326 * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
5327 * and wakeups up this thread which will reap the thread and finish up.
5328 * This thread also removes any faulty devices (with nr_pending == 0).
5329 *
5330 * The overall approach is:
5331 * 1/ if the superblock needs updating, update it.
5332 * 2/ If a recovery thread is running, don't do anything else.
5333 * 3/ If recovery has finished, clean up, possibly marking spares active.
5334 * 4/ If there are any faulty devices, remove them.
5335 * 5/ If array is degraded, try to add spares devices
5336 * 6/ If array has spares or is not in-sync, start a resync thread.
5337 */
5338 void md_check_recovery(mddev_t *mddev)
5339 {
5340 mdk_rdev_t *rdev;
5341 struct list_head *rtmp;
5342
5343
5344 if (mddev->bitmap)
5345 bitmap_daemon_work(mddev->bitmap);
5346
5347 if (mddev->ro)
5348 return;
5349
5350 if (signal_pending(current)) {
5351 if (mddev->pers->sync_request) {
5352 printk(KERN_INFO "md: %s in immediate safe mode\n",
5353 mdname(mddev));
5354 mddev->safemode = 2;
5355 }
5356 flush_signals(current);
5357 }
5358
5359 if ( ! (
5360 mddev->flags ||
5361 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
5362 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
5363 (mddev->safemode == 1) ||
5364 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
5365 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
5366 ))
5367 return;
5368
5369 if (mddev_trylock(mddev)) {
5370 int spares =0;
5371
5372 spin_lock_irq(&mddev->write_lock);
5373 if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
5374 !mddev->in_sync && mddev->recovery_cp == MaxSector) {
5375 mddev->in_sync = 1;
5376 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5377 }
5378 if (mddev->safemode == 1)
5379 mddev->safemode = 0;
5380 spin_unlock_irq(&mddev->write_lock);
5381
5382 if (mddev->flags)
5383 md_update_sb(mddev, 0);
5384
5385
5386 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
5387 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
5388 /* resync/recovery still happening */
5389 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5390 goto unlock;
5391 }
5392 if (mddev->sync_thread) {
5393 /* resync has finished, collect result */
5394 md_unregister_thread(mddev->sync_thread);
5395 mddev->sync_thread = NULL;
5396 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
5397 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5398 /* success...*/
5399 /* activate any spares */
5400 mddev->pers->spare_active(mddev);
5401 }
5402 md_update_sb(mddev, 1);
5403
5404 /* if array is no-longer degraded, then any saved_raid_disk
5405 * information must be scrapped
5406 */
5407 if (!mddev->degraded)
5408 ITERATE_RDEV(mddev,rdev,rtmp)
5409 rdev->saved_raid_disk = -1;
5410
5411 mddev->recovery = 0;
5412 /* flag recovery needed just to double check */
5413 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5414 md_new_event(mddev);
5415 goto unlock;
5416 }
5417 /* Clear some bits that don't mean anything, but
5418 * might be left set
5419 */
5420 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5421 clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
5422 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
5423 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
5424
5425 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
5426 goto unlock;
5427 /* no recovery is running.
5428 * remove any failed drives, then
5429 * add spares if possible.
5430 * Spare are also removed and re-added, to allow
5431 * the personality to fail the re-add.
5432 */
5433 ITERATE_RDEV(mddev,rdev,rtmp)
5434 if (rdev->raid_disk >= 0 &&
5435 (test_bit(Faulty, &rdev->flags) || ! test_bit(In_sync, &rdev->flags)) &&
5436 atomic_read(&rdev->nr_pending)==0) {
5437 if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0) {
5438 char nm[20];
5439 sprintf(nm,"rd%d", rdev->raid_disk);
5440 sysfs_remove_link(&mddev->kobj, nm);
5441 rdev->raid_disk = -1;
5442 }
5443 }
5444
5445 if (mddev->degraded) {
5446 ITERATE_RDEV(mddev,rdev,rtmp)
5447 if (rdev->raid_disk < 0
5448 && !test_bit(Faulty, &rdev->flags)) {
5449 rdev->recovery_offset = 0;
5450 if (mddev->pers->hot_add_disk(mddev,rdev)) {
5451 char nm[20];
5452 sprintf(nm, "rd%d", rdev->raid_disk);
5453 sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
5454 spares++;
5455 md_new_event(mddev);
5456 } else
5457 break;
5458 }
5459 }
5460
5461 if (spares) {
5462 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5463 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5464 } else if (mddev->recovery_cp < MaxSector) {
5465 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5466 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
5467 /* nothing to be done ... */
5468 goto unlock;
5469
5470 if (mddev->pers->sync_request) {
5471 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5472 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
5473 /* We are adding a device or devices to an array
5474 * which has the bitmap stored on all devices.
5475 * So make sure all bitmap pages get written
5476 */
5477 bitmap_write_all(mddev->bitmap);
5478 }
5479 mddev->sync_thread = md_register_thread(md_do_sync,
5480 mddev,
5481 "%s_resync");
5482 if (!mddev->sync_thread) {
5483 printk(KERN_ERR "%s: could not start resync"
5484 " thread...\n",
5485 mdname(mddev));
5486 /* leave the spares where they are, it shouldn't hurt */
5487 mddev->recovery = 0;
5488 } else
5489 md_wakeup_thread(mddev->sync_thread);
5490 md_new_event(mddev);
5491 }
5492 unlock:
5493 mddev_unlock(mddev);
5494 }
5495 }
5496
5497 static int md_notify_reboot(struct notifier_block *this,
5498 unsigned long code, void *x)
5499 {
5500 struct list_head *tmp;
5501 mddev_t *mddev;
5502
5503 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
5504
5505 printk(KERN_INFO "md: stopping all md devices.\n");
5506
5507 ITERATE_MDDEV(mddev,tmp)
5508 if (mddev_trylock(mddev)) {
5509 do_md_stop (mddev, 1);
5510 mddev_unlock(mddev);
5511 }
5512 /*
5513 * certain more exotic SCSI devices are known to be
5514 * volatile wrt too early system reboots. While the
5515 * right place to handle this issue is the given
5516 * driver, we do want to have a safe RAID driver ...
5517 */
5518 mdelay(1000*1);
5519 }
5520 return NOTIFY_DONE;
5521 }
5522
5523 static struct notifier_block md_notifier = {
5524 .notifier_call = md_notify_reboot,
5525 .next = NULL,
5526 .priority = INT_MAX, /* before any real devices */
5527 };
5528
5529 static void md_geninit(void)
5530 {
5531 struct proc_dir_entry *p;
5532
5533 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
5534
5535 p = create_proc_entry("mdstat", S_IRUGO, NULL);
5536 if (p)
5537 p->proc_fops = &md_seq_fops;
5538 }
5539
5540 static int __init md_init(void)
5541 {
5542 if (register_blkdev(MAJOR_NR, "md"))
5543 return -1;
5544 if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
5545 unregister_blkdev(MAJOR_NR, "md");
5546 return -1;
5547 }
5548 blk_register_region(MKDEV(MAJOR_NR, 0), 1UL<<MINORBITS, THIS_MODULE,
5549 md_probe, NULL, NULL);
5550 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
5551 md_probe, NULL, NULL);
5552
5553 register_reboot_notifier(&md_notifier);
5554 raid_table_header = register_sysctl_table(raid_root_table, 1);
5555
5556 md_geninit();
5557 return (0);
5558 }
5559
5560
5561 #ifndef MODULE
5562
5563 /*
5564 * Searches all registered partitions for autorun RAID arrays
5565 * at boot time.
5566 */
5567 static dev_t detected_devices[128];
5568 static int dev_cnt;
5569
5570 void md_autodetect_dev(dev_t dev)
5571 {
5572 if (dev_cnt >= 0 && dev_cnt < 127)
5573 detected_devices[dev_cnt++] = dev;
5574 }
5575
5576
5577 static void autostart_arrays(int part)
5578 {
5579 mdk_rdev_t *rdev;
5580 int i;
5581
5582 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
5583
5584 for (i = 0; i < dev_cnt; i++) {
5585 dev_t dev = detected_devices[i];
5586
5587 rdev = md_import_device(dev,0, 0);
5588 if (IS_ERR(rdev))
5589 continue;
5590
5591 if (test_bit(Faulty, &rdev->flags)) {
5592 MD_BUG();
5593 continue;
5594 }
5595 list_add(&rdev->same_set, &pending_raid_disks);
5596 }
5597 dev_cnt = 0;
5598
5599 autorun_devices(part);
5600 }
5601
5602 #endif /* !MODULE */
5603
5604 static __exit void md_exit(void)
5605 {
5606 mddev_t *mddev;
5607 struct list_head *tmp;
5608
5609 blk_unregister_region(MKDEV(MAJOR_NR,0), 1U << MINORBITS);
5610 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
5611
5612 unregister_blkdev(MAJOR_NR,"md");
5613 unregister_blkdev(mdp_major, "mdp");
5614 unregister_reboot_notifier(&md_notifier);
5615 unregister_sysctl_table(raid_table_header);
5616 remove_proc_entry("mdstat", NULL);
5617 ITERATE_MDDEV(mddev,tmp) {
5618 struct gendisk *disk = mddev->gendisk;
5619 if (!disk)
5620 continue;
5621 export_array(mddev);
5622 del_gendisk(disk);
5623 put_disk(disk);
5624 mddev->gendisk = NULL;
5625 mddev_put(mddev);
5626 }
5627 }
5628
5629 module_init(md_init)
5630 module_exit(md_exit)
5631
5632 static int get_ro(char *buffer, struct kernel_param *kp)
5633 {
5634 return sprintf(buffer, "%d", start_readonly);
5635 }
5636 static int set_ro(const char *val, struct kernel_param *kp)
5637 {
5638 char *e;
5639 int num = simple_strtoul(val, &e, 10);
5640 if (*val && (*e == '\0' || *e == '\n')) {
5641 start_readonly = num;
5642 return 0;
5643 }
5644 return -EINVAL;
5645 }
5646
5647 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
5648 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
5649
5650
5651 EXPORT_SYMBOL(register_md_personality);
5652 EXPORT_SYMBOL(unregister_md_personality);
5653 EXPORT_SYMBOL(md_error);
5654 EXPORT_SYMBOL(md_done_sync);
5655 EXPORT_SYMBOL(md_write_start);
5656 EXPORT_SYMBOL(md_write_end);
5657 EXPORT_SYMBOL(md_register_thread);
5658 EXPORT_SYMBOL(md_unregister_thread);
5659 EXPORT_SYMBOL(md_wakeup_thread);
5660 EXPORT_SYMBOL(md_check_recovery);
5661 MODULE_LICENSE("GPL");
5662 MODULE_ALIAS("md");
5663 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
This page took 0.145866 seconds and 6 git commands to generate.