Merge commit 'origin/master' into next
[deliverable/linux.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/raid/md.h>
37 #include <linux/raid/bitmap.h>
38 #include <linux/sysctl.h>
39 #include <linux/buffer_head.h> /* for invalidate_bdev */
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/hdreg.h>
43 #include <linux/proc_fs.h>
44 #include <linux/random.h>
45 #include <linux/reboot.h>
46 #include <linux/file.h>
47 #include <linux/delay.h>
48
49 #define MAJOR_NR MD_MAJOR
50
51 /* 63 partitions with the alternate major number (mdp) */
52 #define MdpMinorShift 6
53
54 #define DEBUG 0
55 #define dprintk(x...) ((void)(DEBUG && printk(x)))
56
57
58 #ifndef MODULE
59 static void autostart_arrays(int part);
60 #endif
61
62 static LIST_HEAD(pers_list);
63 static DEFINE_SPINLOCK(pers_lock);
64
65 static void md_print_devices(void);
66
67 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
68
69 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
70
71 /*
72 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
73 * is 1000 KB/sec, so the extra system load does not show up that much.
74 * Increase it if you want to have more _guaranteed_ speed. Note that
75 * the RAID driver will use the maximum available bandwidth if the IO
76 * subsystem is idle. There is also an 'absolute maximum' reconstruction
77 * speed limit - in case reconstruction slows down your system despite
78 * idle IO detection.
79 *
80 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
81 * or /sys/block/mdX/md/sync_speed_{min,max}
82 */
83
84 static int sysctl_speed_limit_min = 1000;
85 static int sysctl_speed_limit_max = 200000;
86 static inline int speed_min(mddev_t *mddev)
87 {
88 return mddev->sync_speed_min ?
89 mddev->sync_speed_min : sysctl_speed_limit_min;
90 }
91
92 static inline int speed_max(mddev_t *mddev)
93 {
94 return mddev->sync_speed_max ?
95 mddev->sync_speed_max : sysctl_speed_limit_max;
96 }
97
98 static struct ctl_table_header *raid_table_header;
99
100 static ctl_table raid_table[] = {
101 {
102 .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
103 .procname = "speed_limit_min",
104 .data = &sysctl_speed_limit_min,
105 .maxlen = sizeof(int),
106 .mode = S_IRUGO|S_IWUSR,
107 .proc_handler = &proc_dointvec,
108 },
109 {
110 .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
111 .procname = "speed_limit_max",
112 .data = &sysctl_speed_limit_max,
113 .maxlen = sizeof(int),
114 .mode = S_IRUGO|S_IWUSR,
115 .proc_handler = &proc_dointvec,
116 },
117 { .ctl_name = 0 }
118 };
119
120 static ctl_table raid_dir_table[] = {
121 {
122 .ctl_name = DEV_RAID,
123 .procname = "raid",
124 .maxlen = 0,
125 .mode = S_IRUGO|S_IXUGO,
126 .child = raid_table,
127 },
128 { .ctl_name = 0 }
129 };
130
131 static ctl_table raid_root_table[] = {
132 {
133 .ctl_name = CTL_DEV,
134 .procname = "dev",
135 .maxlen = 0,
136 .mode = 0555,
137 .child = raid_dir_table,
138 },
139 { .ctl_name = 0 }
140 };
141
142 static struct block_device_operations md_fops;
143
144 static int start_readonly;
145
146 /*
147 * We have a system wide 'event count' that is incremented
148 * on any 'interesting' event, and readers of /proc/mdstat
149 * can use 'poll' or 'select' to find out when the event
150 * count increases.
151 *
152 * Events are:
153 * start array, stop array, error, add device, remove device,
154 * start build, activate spare
155 */
156 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
157 static atomic_t md_event_count;
158 void md_new_event(mddev_t *mddev)
159 {
160 atomic_inc(&md_event_count);
161 wake_up(&md_event_waiters);
162 }
163 EXPORT_SYMBOL_GPL(md_new_event);
164
165 /* Alternate version that can be called from interrupts
166 * when calling sysfs_notify isn't needed.
167 */
168 static void md_new_event_inintr(mddev_t *mddev)
169 {
170 atomic_inc(&md_event_count);
171 wake_up(&md_event_waiters);
172 }
173
174 /*
175 * Enables to iterate over all existing md arrays
176 * all_mddevs_lock protects this list.
177 */
178 static LIST_HEAD(all_mddevs);
179 static DEFINE_SPINLOCK(all_mddevs_lock);
180
181
182 /*
183 * iterates through all used mddevs in the system.
184 * We take care to grab the all_mddevs_lock whenever navigating
185 * the list, and to always hold a refcount when unlocked.
186 * Any code which breaks out of this loop while own
187 * a reference to the current mddev and must mddev_put it.
188 */
189 #define for_each_mddev(mddev,tmp) \
190 \
191 for (({ spin_lock(&all_mddevs_lock); \
192 tmp = all_mddevs.next; \
193 mddev = NULL;}); \
194 ({ if (tmp != &all_mddevs) \
195 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
196 spin_unlock(&all_mddevs_lock); \
197 if (mddev) mddev_put(mddev); \
198 mddev = list_entry(tmp, mddev_t, all_mddevs); \
199 tmp != &all_mddevs;}); \
200 ({ spin_lock(&all_mddevs_lock); \
201 tmp = tmp->next;}) \
202 )
203
204
205 static int md_fail_request(struct request_queue *q, struct bio *bio)
206 {
207 bio_io_error(bio);
208 return 0;
209 }
210
211 static inline mddev_t *mddev_get(mddev_t *mddev)
212 {
213 atomic_inc(&mddev->active);
214 return mddev;
215 }
216
217 static void mddev_delayed_delete(struct work_struct *ws);
218
219 static void mddev_put(mddev_t *mddev)
220 {
221 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
222 return;
223 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
224 !mddev->hold_active) {
225 list_del(&mddev->all_mddevs);
226 if (mddev->gendisk) {
227 /* we did a probe so need to clean up.
228 * Call schedule_work inside the spinlock
229 * so that flush_scheduled_work() after
230 * mddev_find will succeed in waiting for the
231 * work to be done.
232 */
233 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
234 schedule_work(&mddev->del_work);
235 } else
236 kfree(mddev);
237 }
238 spin_unlock(&all_mddevs_lock);
239 }
240
241 static mddev_t * mddev_find(dev_t unit)
242 {
243 mddev_t *mddev, *new = NULL;
244
245 retry:
246 spin_lock(&all_mddevs_lock);
247
248 if (unit) {
249 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
250 if (mddev->unit == unit) {
251 mddev_get(mddev);
252 spin_unlock(&all_mddevs_lock);
253 kfree(new);
254 return mddev;
255 }
256
257 if (new) {
258 list_add(&new->all_mddevs, &all_mddevs);
259 spin_unlock(&all_mddevs_lock);
260 new->hold_active = UNTIL_IOCTL;
261 return new;
262 }
263 } else if (new) {
264 /* find an unused unit number */
265 static int next_minor = 512;
266 int start = next_minor;
267 int is_free = 0;
268 int dev = 0;
269 while (!is_free) {
270 dev = MKDEV(MD_MAJOR, next_minor);
271 next_minor++;
272 if (next_minor > MINORMASK)
273 next_minor = 0;
274 if (next_minor == start) {
275 /* Oh dear, all in use. */
276 spin_unlock(&all_mddevs_lock);
277 kfree(new);
278 return NULL;
279 }
280
281 is_free = 1;
282 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
283 if (mddev->unit == dev) {
284 is_free = 0;
285 break;
286 }
287 }
288 new->unit = dev;
289 new->md_minor = MINOR(dev);
290 new->hold_active = UNTIL_STOP;
291 list_add(&new->all_mddevs, &all_mddevs);
292 spin_unlock(&all_mddevs_lock);
293 return new;
294 }
295 spin_unlock(&all_mddevs_lock);
296
297 new = kzalloc(sizeof(*new), GFP_KERNEL);
298 if (!new)
299 return NULL;
300
301 new->unit = unit;
302 if (MAJOR(unit) == MD_MAJOR)
303 new->md_minor = MINOR(unit);
304 else
305 new->md_minor = MINOR(unit) >> MdpMinorShift;
306
307 mutex_init(&new->reconfig_mutex);
308 INIT_LIST_HEAD(&new->disks);
309 INIT_LIST_HEAD(&new->all_mddevs);
310 init_timer(&new->safemode_timer);
311 atomic_set(&new->active, 1);
312 atomic_set(&new->openers, 0);
313 spin_lock_init(&new->write_lock);
314 init_waitqueue_head(&new->sb_wait);
315 init_waitqueue_head(&new->recovery_wait);
316 new->reshape_position = MaxSector;
317 new->resync_min = 0;
318 new->resync_max = MaxSector;
319 new->level = LEVEL_NONE;
320
321 goto retry;
322 }
323
324 static inline int mddev_lock(mddev_t * mddev)
325 {
326 return mutex_lock_interruptible(&mddev->reconfig_mutex);
327 }
328
329 static inline int mddev_trylock(mddev_t * mddev)
330 {
331 return mutex_trylock(&mddev->reconfig_mutex);
332 }
333
334 static inline void mddev_unlock(mddev_t * mddev)
335 {
336 mutex_unlock(&mddev->reconfig_mutex);
337
338 md_wakeup_thread(mddev->thread);
339 }
340
341 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
342 {
343 mdk_rdev_t *rdev;
344
345 list_for_each_entry(rdev, &mddev->disks, same_set)
346 if (rdev->desc_nr == nr)
347 return rdev;
348
349 return NULL;
350 }
351
352 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
353 {
354 mdk_rdev_t *rdev;
355
356 list_for_each_entry(rdev, &mddev->disks, same_set)
357 if (rdev->bdev->bd_dev == dev)
358 return rdev;
359
360 return NULL;
361 }
362
363 static struct mdk_personality *find_pers(int level, char *clevel)
364 {
365 struct mdk_personality *pers;
366 list_for_each_entry(pers, &pers_list, list) {
367 if (level != LEVEL_NONE && pers->level == level)
368 return pers;
369 if (strcmp(pers->name, clevel)==0)
370 return pers;
371 }
372 return NULL;
373 }
374
375 /* return the offset of the super block in 512byte sectors */
376 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
377 {
378 sector_t num_sectors = bdev->bd_inode->i_size / 512;
379 return MD_NEW_SIZE_SECTORS(num_sectors);
380 }
381
382 static sector_t calc_num_sectors(mdk_rdev_t *rdev, unsigned chunk_size)
383 {
384 sector_t num_sectors = rdev->sb_start;
385
386 if (chunk_size)
387 num_sectors &= ~((sector_t)chunk_size/512 - 1);
388 return num_sectors;
389 }
390
391 static int alloc_disk_sb(mdk_rdev_t * rdev)
392 {
393 if (rdev->sb_page)
394 MD_BUG();
395
396 rdev->sb_page = alloc_page(GFP_KERNEL);
397 if (!rdev->sb_page) {
398 printk(KERN_ALERT "md: out of memory.\n");
399 return -ENOMEM;
400 }
401
402 return 0;
403 }
404
405 static void free_disk_sb(mdk_rdev_t * rdev)
406 {
407 if (rdev->sb_page) {
408 put_page(rdev->sb_page);
409 rdev->sb_loaded = 0;
410 rdev->sb_page = NULL;
411 rdev->sb_start = 0;
412 rdev->size = 0;
413 }
414 }
415
416
417 static void super_written(struct bio *bio, int error)
418 {
419 mdk_rdev_t *rdev = bio->bi_private;
420 mddev_t *mddev = rdev->mddev;
421
422 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
423 printk("md: super_written gets error=%d, uptodate=%d\n",
424 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
425 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
426 md_error(mddev, rdev);
427 }
428
429 if (atomic_dec_and_test(&mddev->pending_writes))
430 wake_up(&mddev->sb_wait);
431 bio_put(bio);
432 }
433
434 static void super_written_barrier(struct bio *bio, int error)
435 {
436 struct bio *bio2 = bio->bi_private;
437 mdk_rdev_t *rdev = bio2->bi_private;
438 mddev_t *mddev = rdev->mddev;
439
440 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
441 error == -EOPNOTSUPP) {
442 unsigned long flags;
443 /* barriers don't appear to be supported :-( */
444 set_bit(BarriersNotsupp, &rdev->flags);
445 mddev->barriers_work = 0;
446 spin_lock_irqsave(&mddev->write_lock, flags);
447 bio2->bi_next = mddev->biolist;
448 mddev->biolist = bio2;
449 spin_unlock_irqrestore(&mddev->write_lock, flags);
450 wake_up(&mddev->sb_wait);
451 bio_put(bio);
452 } else {
453 bio_put(bio2);
454 bio->bi_private = rdev;
455 super_written(bio, error);
456 }
457 }
458
459 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
460 sector_t sector, int size, struct page *page)
461 {
462 /* write first size bytes of page to sector of rdev
463 * Increment mddev->pending_writes before returning
464 * and decrement it on completion, waking up sb_wait
465 * if zero is reached.
466 * If an error occurred, call md_error
467 *
468 * As we might need to resubmit the request if BIO_RW_BARRIER
469 * causes ENOTSUPP, we allocate a spare bio...
470 */
471 struct bio *bio = bio_alloc(GFP_NOIO, 1);
472 int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNCIO) | (1<<BIO_RW_UNPLUG);
473
474 bio->bi_bdev = rdev->bdev;
475 bio->bi_sector = sector;
476 bio_add_page(bio, page, size, 0);
477 bio->bi_private = rdev;
478 bio->bi_end_io = super_written;
479 bio->bi_rw = rw;
480
481 atomic_inc(&mddev->pending_writes);
482 if (!test_bit(BarriersNotsupp, &rdev->flags)) {
483 struct bio *rbio;
484 rw |= (1<<BIO_RW_BARRIER);
485 rbio = bio_clone(bio, GFP_NOIO);
486 rbio->bi_private = bio;
487 rbio->bi_end_io = super_written_barrier;
488 submit_bio(rw, rbio);
489 } else
490 submit_bio(rw, bio);
491 }
492
493 void md_super_wait(mddev_t *mddev)
494 {
495 /* wait for all superblock writes that were scheduled to complete.
496 * if any had to be retried (due to BARRIER problems), retry them
497 */
498 DEFINE_WAIT(wq);
499 for(;;) {
500 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
501 if (atomic_read(&mddev->pending_writes)==0)
502 break;
503 while (mddev->biolist) {
504 struct bio *bio;
505 spin_lock_irq(&mddev->write_lock);
506 bio = mddev->biolist;
507 mddev->biolist = bio->bi_next ;
508 bio->bi_next = NULL;
509 spin_unlock_irq(&mddev->write_lock);
510 submit_bio(bio->bi_rw, bio);
511 }
512 schedule();
513 }
514 finish_wait(&mddev->sb_wait, &wq);
515 }
516
517 static void bi_complete(struct bio *bio, int error)
518 {
519 complete((struct completion*)bio->bi_private);
520 }
521
522 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
523 struct page *page, int rw)
524 {
525 struct bio *bio = bio_alloc(GFP_NOIO, 1);
526 struct completion event;
527 int ret;
528
529 rw |= (1 << BIO_RW_SYNCIO) | (1 << BIO_RW_UNPLUG);
530
531 bio->bi_bdev = bdev;
532 bio->bi_sector = sector;
533 bio_add_page(bio, page, size, 0);
534 init_completion(&event);
535 bio->bi_private = &event;
536 bio->bi_end_io = bi_complete;
537 submit_bio(rw, bio);
538 wait_for_completion(&event);
539
540 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
541 bio_put(bio);
542 return ret;
543 }
544 EXPORT_SYMBOL_GPL(sync_page_io);
545
546 static int read_disk_sb(mdk_rdev_t * rdev, int size)
547 {
548 char b[BDEVNAME_SIZE];
549 if (!rdev->sb_page) {
550 MD_BUG();
551 return -EINVAL;
552 }
553 if (rdev->sb_loaded)
554 return 0;
555
556
557 if (!sync_page_io(rdev->bdev, rdev->sb_start, size, rdev->sb_page, READ))
558 goto fail;
559 rdev->sb_loaded = 1;
560 return 0;
561
562 fail:
563 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
564 bdevname(rdev->bdev,b));
565 return -EINVAL;
566 }
567
568 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
569 {
570 return sb1->set_uuid0 == sb2->set_uuid0 &&
571 sb1->set_uuid1 == sb2->set_uuid1 &&
572 sb1->set_uuid2 == sb2->set_uuid2 &&
573 sb1->set_uuid3 == sb2->set_uuid3;
574 }
575
576 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
577 {
578 int ret;
579 mdp_super_t *tmp1, *tmp2;
580
581 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
582 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
583
584 if (!tmp1 || !tmp2) {
585 ret = 0;
586 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
587 goto abort;
588 }
589
590 *tmp1 = *sb1;
591 *tmp2 = *sb2;
592
593 /*
594 * nr_disks is not constant
595 */
596 tmp1->nr_disks = 0;
597 tmp2->nr_disks = 0;
598
599 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
600 abort:
601 kfree(tmp1);
602 kfree(tmp2);
603 return ret;
604 }
605
606
607 static u32 md_csum_fold(u32 csum)
608 {
609 csum = (csum & 0xffff) + (csum >> 16);
610 return (csum & 0xffff) + (csum >> 16);
611 }
612
613 static unsigned int calc_sb_csum(mdp_super_t * sb)
614 {
615 u64 newcsum = 0;
616 u32 *sb32 = (u32*)sb;
617 int i;
618 unsigned int disk_csum, csum;
619
620 disk_csum = sb->sb_csum;
621 sb->sb_csum = 0;
622
623 for (i = 0; i < MD_SB_BYTES/4 ; i++)
624 newcsum += sb32[i];
625 csum = (newcsum & 0xffffffff) + (newcsum>>32);
626
627
628 #ifdef CONFIG_ALPHA
629 /* This used to use csum_partial, which was wrong for several
630 * reasons including that different results are returned on
631 * different architectures. It isn't critical that we get exactly
632 * the same return value as before (we always csum_fold before
633 * testing, and that removes any differences). However as we
634 * know that csum_partial always returned a 16bit value on
635 * alphas, do a fold to maximise conformity to previous behaviour.
636 */
637 sb->sb_csum = md_csum_fold(disk_csum);
638 #else
639 sb->sb_csum = disk_csum;
640 #endif
641 return csum;
642 }
643
644
645 /*
646 * Handle superblock details.
647 * We want to be able to handle multiple superblock formats
648 * so we have a common interface to them all, and an array of
649 * different handlers.
650 * We rely on user-space to write the initial superblock, and support
651 * reading and updating of superblocks.
652 * Interface methods are:
653 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
654 * loads and validates a superblock on dev.
655 * if refdev != NULL, compare superblocks on both devices
656 * Return:
657 * 0 - dev has a superblock that is compatible with refdev
658 * 1 - dev has a superblock that is compatible and newer than refdev
659 * so dev should be used as the refdev in future
660 * -EINVAL superblock incompatible or invalid
661 * -othererror e.g. -EIO
662 *
663 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
664 * Verify that dev is acceptable into mddev.
665 * The first time, mddev->raid_disks will be 0, and data from
666 * dev should be merged in. Subsequent calls check that dev
667 * is new enough. Return 0 or -EINVAL
668 *
669 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
670 * Update the superblock for rdev with data in mddev
671 * This does not write to disc.
672 *
673 */
674
675 struct super_type {
676 char *name;
677 struct module *owner;
678 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
679 int minor_version);
680 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
681 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
682 unsigned long long (*rdev_size_change)(mdk_rdev_t *rdev,
683 sector_t num_sectors);
684 };
685
686 /*
687 * load_super for 0.90.0
688 */
689 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
690 {
691 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
692 mdp_super_t *sb;
693 int ret;
694
695 /*
696 * Calculate the position of the superblock (512byte sectors),
697 * it's at the end of the disk.
698 *
699 * It also happens to be a multiple of 4Kb.
700 */
701 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
702
703 ret = read_disk_sb(rdev, MD_SB_BYTES);
704 if (ret) return ret;
705
706 ret = -EINVAL;
707
708 bdevname(rdev->bdev, b);
709 sb = (mdp_super_t*)page_address(rdev->sb_page);
710
711 if (sb->md_magic != MD_SB_MAGIC) {
712 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
713 b);
714 goto abort;
715 }
716
717 if (sb->major_version != 0 ||
718 sb->minor_version < 90 ||
719 sb->minor_version > 91) {
720 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
721 sb->major_version, sb->minor_version,
722 b);
723 goto abort;
724 }
725
726 if (sb->raid_disks <= 0)
727 goto abort;
728
729 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
730 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
731 b);
732 goto abort;
733 }
734
735 rdev->preferred_minor = sb->md_minor;
736 rdev->data_offset = 0;
737 rdev->sb_size = MD_SB_BYTES;
738
739 if (sb->state & (1<<MD_SB_BITMAP_PRESENT)) {
740 if (sb->level != 1 && sb->level != 4
741 && sb->level != 5 && sb->level != 6
742 && sb->level != 10) {
743 /* FIXME use a better test */
744 printk(KERN_WARNING
745 "md: bitmaps not supported for this level.\n");
746 goto abort;
747 }
748 }
749
750 if (sb->level == LEVEL_MULTIPATH)
751 rdev->desc_nr = -1;
752 else
753 rdev->desc_nr = sb->this_disk.number;
754
755 if (!refdev) {
756 ret = 1;
757 } else {
758 __u64 ev1, ev2;
759 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
760 if (!uuid_equal(refsb, sb)) {
761 printk(KERN_WARNING "md: %s has different UUID to %s\n",
762 b, bdevname(refdev->bdev,b2));
763 goto abort;
764 }
765 if (!sb_equal(refsb, sb)) {
766 printk(KERN_WARNING "md: %s has same UUID"
767 " but different superblock to %s\n",
768 b, bdevname(refdev->bdev, b2));
769 goto abort;
770 }
771 ev1 = md_event(sb);
772 ev2 = md_event(refsb);
773 if (ev1 > ev2)
774 ret = 1;
775 else
776 ret = 0;
777 }
778 rdev->size = calc_num_sectors(rdev, sb->chunk_size) / 2;
779
780 if (rdev->size < sb->size && sb->level > 1)
781 /* "this cannot possibly happen" ... */
782 ret = -EINVAL;
783
784 abort:
785 return ret;
786 }
787
788 /*
789 * validate_super for 0.90.0
790 */
791 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
792 {
793 mdp_disk_t *desc;
794 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
795 __u64 ev1 = md_event(sb);
796
797 rdev->raid_disk = -1;
798 clear_bit(Faulty, &rdev->flags);
799 clear_bit(In_sync, &rdev->flags);
800 clear_bit(WriteMostly, &rdev->flags);
801 clear_bit(BarriersNotsupp, &rdev->flags);
802
803 if (mddev->raid_disks == 0) {
804 mddev->major_version = 0;
805 mddev->minor_version = sb->minor_version;
806 mddev->patch_version = sb->patch_version;
807 mddev->external = 0;
808 mddev->chunk_size = sb->chunk_size;
809 mddev->ctime = sb->ctime;
810 mddev->utime = sb->utime;
811 mddev->level = sb->level;
812 mddev->clevel[0] = 0;
813 mddev->layout = sb->layout;
814 mddev->raid_disks = sb->raid_disks;
815 mddev->size = sb->size;
816 mddev->events = ev1;
817 mddev->bitmap_offset = 0;
818 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
819
820 if (mddev->minor_version >= 91) {
821 mddev->reshape_position = sb->reshape_position;
822 mddev->delta_disks = sb->delta_disks;
823 mddev->new_level = sb->new_level;
824 mddev->new_layout = sb->new_layout;
825 mddev->new_chunk = sb->new_chunk;
826 } else {
827 mddev->reshape_position = MaxSector;
828 mddev->delta_disks = 0;
829 mddev->new_level = mddev->level;
830 mddev->new_layout = mddev->layout;
831 mddev->new_chunk = mddev->chunk_size;
832 }
833
834 if (sb->state & (1<<MD_SB_CLEAN))
835 mddev->recovery_cp = MaxSector;
836 else {
837 if (sb->events_hi == sb->cp_events_hi &&
838 sb->events_lo == sb->cp_events_lo) {
839 mddev->recovery_cp = sb->recovery_cp;
840 } else
841 mddev->recovery_cp = 0;
842 }
843
844 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
845 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
846 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
847 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
848
849 mddev->max_disks = MD_SB_DISKS;
850
851 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
852 mddev->bitmap_file == NULL)
853 mddev->bitmap_offset = mddev->default_bitmap_offset;
854
855 } else if (mddev->pers == NULL) {
856 /* Insist on good event counter while assembling */
857 ++ev1;
858 if (ev1 < mddev->events)
859 return -EINVAL;
860 } else if (mddev->bitmap) {
861 /* if adding to array with a bitmap, then we can accept an
862 * older device ... but not too old.
863 */
864 if (ev1 < mddev->bitmap->events_cleared)
865 return 0;
866 } else {
867 if (ev1 < mddev->events)
868 /* just a hot-add of a new device, leave raid_disk at -1 */
869 return 0;
870 }
871
872 if (mddev->level != LEVEL_MULTIPATH) {
873 desc = sb->disks + rdev->desc_nr;
874
875 if (desc->state & (1<<MD_DISK_FAULTY))
876 set_bit(Faulty, &rdev->flags);
877 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
878 desc->raid_disk < mddev->raid_disks */) {
879 set_bit(In_sync, &rdev->flags);
880 rdev->raid_disk = desc->raid_disk;
881 }
882 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
883 set_bit(WriteMostly, &rdev->flags);
884 } else /* MULTIPATH are always insync */
885 set_bit(In_sync, &rdev->flags);
886 return 0;
887 }
888
889 /*
890 * sync_super for 0.90.0
891 */
892 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
893 {
894 mdp_super_t *sb;
895 mdk_rdev_t *rdev2;
896 int next_spare = mddev->raid_disks;
897
898
899 /* make rdev->sb match mddev data..
900 *
901 * 1/ zero out disks
902 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
903 * 3/ any empty disks < next_spare become removed
904 *
905 * disks[0] gets initialised to REMOVED because
906 * we cannot be sure from other fields if it has
907 * been initialised or not.
908 */
909 int i;
910 int active=0, working=0,failed=0,spare=0,nr_disks=0;
911
912 rdev->sb_size = MD_SB_BYTES;
913
914 sb = (mdp_super_t*)page_address(rdev->sb_page);
915
916 memset(sb, 0, sizeof(*sb));
917
918 sb->md_magic = MD_SB_MAGIC;
919 sb->major_version = mddev->major_version;
920 sb->patch_version = mddev->patch_version;
921 sb->gvalid_words = 0; /* ignored */
922 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
923 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
924 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
925 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
926
927 sb->ctime = mddev->ctime;
928 sb->level = mddev->level;
929 sb->size = mddev->size;
930 sb->raid_disks = mddev->raid_disks;
931 sb->md_minor = mddev->md_minor;
932 sb->not_persistent = 0;
933 sb->utime = mddev->utime;
934 sb->state = 0;
935 sb->events_hi = (mddev->events>>32);
936 sb->events_lo = (u32)mddev->events;
937
938 if (mddev->reshape_position == MaxSector)
939 sb->minor_version = 90;
940 else {
941 sb->minor_version = 91;
942 sb->reshape_position = mddev->reshape_position;
943 sb->new_level = mddev->new_level;
944 sb->delta_disks = mddev->delta_disks;
945 sb->new_layout = mddev->new_layout;
946 sb->new_chunk = mddev->new_chunk;
947 }
948 mddev->minor_version = sb->minor_version;
949 if (mddev->in_sync)
950 {
951 sb->recovery_cp = mddev->recovery_cp;
952 sb->cp_events_hi = (mddev->events>>32);
953 sb->cp_events_lo = (u32)mddev->events;
954 if (mddev->recovery_cp == MaxSector)
955 sb->state = (1<< MD_SB_CLEAN);
956 } else
957 sb->recovery_cp = 0;
958
959 sb->layout = mddev->layout;
960 sb->chunk_size = mddev->chunk_size;
961
962 if (mddev->bitmap && mddev->bitmap_file == NULL)
963 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
964
965 sb->disks[0].state = (1<<MD_DISK_REMOVED);
966 list_for_each_entry(rdev2, &mddev->disks, same_set) {
967 mdp_disk_t *d;
968 int desc_nr;
969 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
970 && !test_bit(Faulty, &rdev2->flags))
971 desc_nr = rdev2->raid_disk;
972 else
973 desc_nr = next_spare++;
974 rdev2->desc_nr = desc_nr;
975 d = &sb->disks[rdev2->desc_nr];
976 nr_disks++;
977 d->number = rdev2->desc_nr;
978 d->major = MAJOR(rdev2->bdev->bd_dev);
979 d->minor = MINOR(rdev2->bdev->bd_dev);
980 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
981 && !test_bit(Faulty, &rdev2->flags))
982 d->raid_disk = rdev2->raid_disk;
983 else
984 d->raid_disk = rdev2->desc_nr; /* compatibility */
985 if (test_bit(Faulty, &rdev2->flags))
986 d->state = (1<<MD_DISK_FAULTY);
987 else if (test_bit(In_sync, &rdev2->flags)) {
988 d->state = (1<<MD_DISK_ACTIVE);
989 d->state |= (1<<MD_DISK_SYNC);
990 active++;
991 working++;
992 } else {
993 d->state = 0;
994 spare++;
995 working++;
996 }
997 if (test_bit(WriteMostly, &rdev2->flags))
998 d->state |= (1<<MD_DISK_WRITEMOSTLY);
999 }
1000 /* now set the "removed" and "faulty" bits on any missing devices */
1001 for (i=0 ; i < mddev->raid_disks ; i++) {
1002 mdp_disk_t *d = &sb->disks[i];
1003 if (d->state == 0 && d->number == 0) {
1004 d->number = i;
1005 d->raid_disk = i;
1006 d->state = (1<<MD_DISK_REMOVED);
1007 d->state |= (1<<MD_DISK_FAULTY);
1008 failed++;
1009 }
1010 }
1011 sb->nr_disks = nr_disks;
1012 sb->active_disks = active;
1013 sb->working_disks = working;
1014 sb->failed_disks = failed;
1015 sb->spare_disks = spare;
1016
1017 sb->this_disk = sb->disks[rdev->desc_nr];
1018 sb->sb_csum = calc_sb_csum(sb);
1019 }
1020
1021 /*
1022 * rdev_size_change for 0.90.0
1023 */
1024 static unsigned long long
1025 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1026 {
1027 if (num_sectors && num_sectors < rdev->mddev->size * 2)
1028 return 0; /* component must fit device */
1029 if (rdev->mddev->bitmap_offset)
1030 return 0; /* can't move bitmap */
1031 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
1032 if (!num_sectors || num_sectors > rdev->sb_start)
1033 num_sectors = rdev->sb_start;
1034 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1035 rdev->sb_page);
1036 md_super_wait(rdev->mddev);
1037 return num_sectors / 2; /* kB for sysfs */
1038 }
1039
1040
1041 /*
1042 * version 1 superblock
1043 */
1044
1045 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1046 {
1047 __le32 disk_csum;
1048 u32 csum;
1049 unsigned long long newcsum;
1050 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1051 __le32 *isuper = (__le32*)sb;
1052 int i;
1053
1054 disk_csum = sb->sb_csum;
1055 sb->sb_csum = 0;
1056 newcsum = 0;
1057 for (i=0; size>=4; size -= 4 )
1058 newcsum += le32_to_cpu(*isuper++);
1059
1060 if (size == 2)
1061 newcsum += le16_to_cpu(*(__le16*) isuper);
1062
1063 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1064 sb->sb_csum = disk_csum;
1065 return cpu_to_le32(csum);
1066 }
1067
1068 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1069 {
1070 struct mdp_superblock_1 *sb;
1071 int ret;
1072 sector_t sb_start;
1073 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1074 int bmask;
1075
1076 /*
1077 * Calculate the position of the superblock in 512byte sectors.
1078 * It is always aligned to a 4K boundary and
1079 * depeding on minor_version, it can be:
1080 * 0: At least 8K, but less than 12K, from end of device
1081 * 1: At start of device
1082 * 2: 4K from start of device.
1083 */
1084 switch(minor_version) {
1085 case 0:
1086 sb_start = rdev->bdev->bd_inode->i_size >> 9;
1087 sb_start -= 8*2;
1088 sb_start &= ~(sector_t)(4*2-1);
1089 break;
1090 case 1:
1091 sb_start = 0;
1092 break;
1093 case 2:
1094 sb_start = 8;
1095 break;
1096 default:
1097 return -EINVAL;
1098 }
1099 rdev->sb_start = sb_start;
1100
1101 /* superblock is rarely larger than 1K, but it can be larger,
1102 * and it is safe to read 4k, so we do that
1103 */
1104 ret = read_disk_sb(rdev, 4096);
1105 if (ret) return ret;
1106
1107
1108 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1109
1110 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1111 sb->major_version != cpu_to_le32(1) ||
1112 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1113 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1114 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1115 return -EINVAL;
1116
1117 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1118 printk("md: invalid superblock checksum on %s\n",
1119 bdevname(rdev->bdev,b));
1120 return -EINVAL;
1121 }
1122 if (le64_to_cpu(sb->data_size) < 10) {
1123 printk("md: data_size too small on %s\n",
1124 bdevname(rdev->bdev,b));
1125 return -EINVAL;
1126 }
1127 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET)) {
1128 if (sb->level != cpu_to_le32(1) &&
1129 sb->level != cpu_to_le32(4) &&
1130 sb->level != cpu_to_le32(5) &&
1131 sb->level != cpu_to_le32(6) &&
1132 sb->level != cpu_to_le32(10)) {
1133 printk(KERN_WARNING
1134 "md: bitmaps not supported for this level.\n");
1135 return -EINVAL;
1136 }
1137 }
1138
1139 rdev->preferred_minor = 0xffff;
1140 rdev->data_offset = le64_to_cpu(sb->data_offset);
1141 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1142
1143 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1144 bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
1145 if (rdev->sb_size & bmask)
1146 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1147
1148 if (minor_version
1149 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1150 return -EINVAL;
1151
1152 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1153 rdev->desc_nr = -1;
1154 else
1155 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1156
1157 if (!refdev) {
1158 ret = 1;
1159 } else {
1160 __u64 ev1, ev2;
1161 struct mdp_superblock_1 *refsb =
1162 (struct mdp_superblock_1*)page_address(refdev->sb_page);
1163
1164 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1165 sb->level != refsb->level ||
1166 sb->layout != refsb->layout ||
1167 sb->chunksize != refsb->chunksize) {
1168 printk(KERN_WARNING "md: %s has strangely different"
1169 " superblock to %s\n",
1170 bdevname(rdev->bdev,b),
1171 bdevname(refdev->bdev,b2));
1172 return -EINVAL;
1173 }
1174 ev1 = le64_to_cpu(sb->events);
1175 ev2 = le64_to_cpu(refsb->events);
1176
1177 if (ev1 > ev2)
1178 ret = 1;
1179 else
1180 ret = 0;
1181 }
1182 if (minor_version)
1183 rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
1184 else
1185 rdev->size = rdev->sb_start / 2;
1186 if (rdev->size < le64_to_cpu(sb->data_size)/2)
1187 return -EINVAL;
1188 rdev->size = le64_to_cpu(sb->data_size)/2;
1189 if (le32_to_cpu(sb->chunksize))
1190 rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
1191
1192 if (le64_to_cpu(sb->size) > rdev->size*2)
1193 return -EINVAL;
1194 return ret;
1195 }
1196
1197 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1198 {
1199 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1200 __u64 ev1 = le64_to_cpu(sb->events);
1201
1202 rdev->raid_disk = -1;
1203 clear_bit(Faulty, &rdev->flags);
1204 clear_bit(In_sync, &rdev->flags);
1205 clear_bit(WriteMostly, &rdev->flags);
1206 clear_bit(BarriersNotsupp, &rdev->flags);
1207
1208 if (mddev->raid_disks == 0) {
1209 mddev->major_version = 1;
1210 mddev->patch_version = 0;
1211 mddev->external = 0;
1212 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1213 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1214 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1215 mddev->level = le32_to_cpu(sb->level);
1216 mddev->clevel[0] = 0;
1217 mddev->layout = le32_to_cpu(sb->layout);
1218 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1219 mddev->size = le64_to_cpu(sb->size)/2;
1220 mddev->events = ev1;
1221 mddev->bitmap_offset = 0;
1222 mddev->default_bitmap_offset = 1024 >> 9;
1223
1224 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1225 memcpy(mddev->uuid, sb->set_uuid, 16);
1226
1227 mddev->max_disks = (4096-256)/2;
1228
1229 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1230 mddev->bitmap_file == NULL )
1231 mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1232
1233 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1234 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1235 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1236 mddev->new_level = le32_to_cpu(sb->new_level);
1237 mddev->new_layout = le32_to_cpu(sb->new_layout);
1238 mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
1239 } else {
1240 mddev->reshape_position = MaxSector;
1241 mddev->delta_disks = 0;
1242 mddev->new_level = mddev->level;
1243 mddev->new_layout = mddev->layout;
1244 mddev->new_chunk = mddev->chunk_size;
1245 }
1246
1247 } else if (mddev->pers == NULL) {
1248 /* Insist of good event counter while assembling */
1249 ++ev1;
1250 if (ev1 < mddev->events)
1251 return -EINVAL;
1252 } else if (mddev->bitmap) {
1253 /* If adding to array with a bitmap, then we can accept an
1254 * older device, but not too old.
1255 */
1256 if (ev1 < mddev->bitmap->events_cleared)
1257 return 0;
1258 } else {
1259 if (ev1 < mddev->events)
1260 /* just a hot-add of a new device, leave raid_disk at -1 */
1261 return 0;
1262 }
1263 if (mddev->level != LEVEL_MULTIPATH) {
1264 int role;
1265 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1266 switch(role) {
1267 case 0xffff: /* spare */
1268 break;
1269 case 0xfffe: /* faulty */
1270 set_bit(Faulty, &rdev->flags);
1271 break;
1272 default:
1273 if ((le32_to_cpu(sb->feature_map) &
1274 MD_FEATURE_RECOVERY_OFFSET))
1275 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1276 else
1277 set_bit(In_sync, &rdev->flags);
1278 rdev->raid_disk = role;
1279 break;
1280 }
1281 if (sb->devflags & WriteMostly1)
1282 set_bit(WriteMostly, &rdev->flags);
1283 } else /* MULTIPATH are always insync */
1284 set_bit(In_sync, &rdev->flags);
1285
1286 return 0;
1287 }
1288
1289 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1290 {
1291 struct mdp_superblock_1 *sb;
1292 mdk_rdev_t *rdev2;
1293 int max_dev, i;
1294 /* make rdev->sb match mddev and rdev data. */
1295
1296 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1297
1298 sb->feature_map = 0;
1299 sb->pad0 = 0;
1300 sb->recovery_offset = cpu_to_le64(0);
1301 memset(sb->pad1, 0, sizeof(sb->pad1));
1302 memset(sb->pad2, 0, sizeof(sb->pad2));
1303 memset(sb->pad3, 0, sizeof(sb->pad3));
1304
1305 sb->utime = cpu_to_le64((__u64)mddev->utime);
1306 sb->events = cpu_to_le64(mddev->events);
1307 if (mddev->in_sync)
1308 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1309 else
1310 sb->resync_offset = cpu_to_le64(0);
1311
1312 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1313
1314 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1315 sb->size = cpu_to_le64(mddev->size<<1);
1316
1317 if (mddev->bitmap && mddev->bitmap_file == NULL) {
1318 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1319 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1320 }
1321
1322 if (rdev->raid_disk >= 0 &&
1323 !test_bit(In_sync, &rdev->flags) &&
1324 rdev->recovery_offset > 0) {
1325 sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1326 sb->recovery_offset = cpu_to_le64(rdev->recovery_offset);
1327 }
1328
1329 if (mddev->reshape_position != MaxSector) {
1330 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1331 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1332 sb->new_layout = cpu_to_le32(mddev->new_layout);
1333 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1334 sb->new_level = cpu_to_le32(mddev->new_level);
1335 sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
1336 }
1337
1338 max_dev = 0;
1339 list_for_each_entry(rdev2, &mddev->disks, same_set)
1340 if (rdev2->desc_nr+1 > max_dev)
1341 max_dev = rdev2->desc_nr+1;
1342
1343 if (max_dev > le32_to_cpu(sb->max_dev))
1344 sb->max_dev = cpu_to_le32(max_dev);
1345 for (i=0; i<max_dev;i++)
1346 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1347
1348 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1349 i = rdev2->desc_nr;
1350 if (test_bit(Faulty, &rdev2->flags))
1351 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1352 else if (test_bit(In_sync, &rdev2->flags))
1353 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1354 else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
1355 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1356 else
1357 sb->dev_roles[i] = cpu_to_le16(0xffff);
1358 }
1359
1360 sb->sb_csum = calc_sb_1_csum(sb);
1361 }
1362
1363 static unsigned long long
1364 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1365 {
1366 struct mdp_superblock_1 *sb;
1367 sector_t max_sectors;
1368 if (num_sectors && num_sectors < rdev->mddev->size * 2)
1369 return 0; /* component must fit device */
1370 if (rdev->sb_start < rdev->data_offset) {
1371 /* minor versions 1 and 2; superblock before data */
1372 max_sectors = rdev->bdev->bd_inode->i_size >> 9;
1373 max_sectors -= rdev->data_offset;
1374 if (!num_sectors || num_sectors > max_sectors)
1375 num_sectors = max_sectors;
1376 } else if (rdev->mddev->bitmap_offset) {
1377 /* minor version 0 with bitmap we can't move */
1378 return 0;
1379 } else {
1380 /* minor version 0; superblock after data */
1381 sector_t sb_start;
1382 sb_start = (rdev->bdev->bd_inode->i_size >> 9) - 8*2;
1383 sb_start &= ~(sector_t)(4*2 - 1);
1384 max_sectors = rdev->size * 2 + sb_start - rdev->sb_start;
1385 if (!num_sectors || num_sectors > max_sectors)
1386 num_sectors = max_sectors;
1387 rdev->sb_start = sb_start;
1388 }
1389 sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page);
1390 sb->data_size = cpu_to_le64(num_sectors);
1391 sb->super_offset = rdev->sb_start;
1392 sb->sb_csum = calc_sb_1_csum(sb);
1393 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1394 rdev->sb_page);
1395 md_super_wait(rdev->mddev);
1396 return num_sectors / 2; /* kB for sysfs */
1397 }
1398
1399 static struct super_type super_types[] = {
1400 [0] = {
1401 .name = "0.90.0",
1402 .owner = THIS_MODULE,
1403 .load_super = super_90_load,
1404 .validate_super = super_90_validate,
1405 .sync_super = super_90_sync,
1406 .rdev_size_change = super_90_rdev_size_change,
1407 },
1408 [1] = {
1409 .name = "md-1",
1410 .owner = THIS_MODULE,
1411 .load_super = super_1_load,
1412 .validate_super = super_1_validate,
1413 .sync_super = super_1_sync,
1414 .rdev_size_change = super_1_rdev_size_change,
1415 },
1416 };
1417
1418 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1419 {
1420 mdk_rdev_t *rdev, *rdev2;
1421
1422 rcu_read_lock();
1423 rdev_for_each_rcu(rdev, mddev1)
1424 rdev_for_each_rcu(rdev2, mddev2)
1425 if (rdev->bdev->bd_contains ==
1426 rdev2->bdev->bd_contains) {
1427 rcu_read_unlock();
1428 return 1;
1429 }
1430 rcu_read_unlock();
1431 return 0;
1432 }
1433
1434 static LIST_HEAD(pending_raid_disks);
1435
1436 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1437 {
1438 char b[BDEVNAME_SIZE];
1439 struct kobject *ko;
1440 char *s;
1441 int err;
1442
1443 if (rdev->mddev) {
1444 MD_BUG();
1445 return -EINVAL;
1446 }
1447
1448 /* prevent duplicates */
1449 if (find_rdev(mddev, rdev->bdev->bd_dev))
1450 return -EEXIST;
1451
1452 /* make sure rdev->size exceeds mddev->size */
1453 if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
1454 if (mddev->pers) {
1455 /* Cannot change size, so fail
1456 * If mddev->level <= 0, then we don't care
1457 * about aligning sizes (e.g. linear)
1458 */
1459 if (mddev->level > 0)
1460 return -ENOSPC;
1461 } else
1462 mddev->size = rdev->size;
1463 }
1464
1465 /* Verify rdev->desc_nr is unique.
1466 * If it is -1, assign a free number, else
1467 * check number is not in use
1468 */
1469 if (rdev->desc_nr < 0) {
1470 int choice = 0;
1471 if (mddev->pers) choice = mddev->raid_disks;
1472 while (find_rdev_nr(mddev, choice))
1473 choice++;
1474 rdev->desc_nr = choice;
1475 } else {
1476 if (find_rdev_nr(mddev, rdev->desc_nr))
1477 return -EBUSY;
1478 }
1479 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
1480 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
1481 mdname(mddev), mddev->max_disks);
1482 return -EBUSY;
1483 }
1484 bdevname(rdev->bdev,b);
1485 while ( (s=strchr(b, '/')) != NULL)
1486 *s = '!';
1487
1488 rdev->mddev = mddev;
1489 printk(KERN_INFO "md: bind<%s>\n", b);
1490
1491 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
1492 goto fail;
1493
1494 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
1495 if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) {
1496 kobject_del(&rdev->kobj);
1497 goto fail;
1498 }
1499 rdev->sysfs_state = sysfs_get_dirent(rdev->kobj.sd, "state");
1500
1501 list_add_rcu(&rdev->same_set, &mddev->disks);
1502 bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk);
1503
1504 /* May as well allow recovery to be retried once */
1505 mddev->recovery_disabled = 0;
1506 return 0;
1507
1508 fail:
1509 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1510 b, mdname(mddev));
1511 return err;
1512 }
1513
1514 static void md_delayed_delete(struct work_struct *ws)
1515 {
1516 mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1517 kobject_del(&rdev->kobj);
1518 kobject_put(&rdev->kobj);
1519 }
1520
1521 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1522 {
1523 char b[BDEVNAME_SIZE];
1524 if (!rdev->mddev) {
1525 MD_BUG();
1526 return;
1527 }
1528 bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1529 list_del_rcu(&rdev->same_set);
1530 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1531 rdev->mddev = NULL;
1532 sysfs_remove_link(&rdev->kobj, "block");
1533 sysfs_put(rdev->sysfs_state);
1534 rdev->sysfs_state = NULL;
1535 /* We need to delay this, otherwise we can deadlock when
1536 * writing to 'remove' to "dev/state". We also need
1537 * to delay it due to rcu usage.
1538 */
1539 synchronize_rcu();
1540 INIT_WORK(&rdev->del_work, md_delayed_delete);
1541 kobject_get(&rdev->kobj);
1542 schedule_work(&rdev->del_work);
1543 }
1544
1545 /*
1546 * prevent the device from being mounted, repartitioned or
1547 * otherwise reused by a RAID array (or any other kernel
1548 * subsystem), by bd_claiming the device.
1549 */
1550 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
1551 {
1552 int err = 0;
1553 struct block_device *bdev;
1554 char b[BDEVNAME_SIZE];
1555
1556 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1557 if (IS_ERR(bdev)) {
1558 printk(KERN_ERR "md: could not open %s.\n",
1559 __bdevname(dev, b));
1560 return PTR_ERR(bdev);
1561 }
1562 err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev);
1563 if (err) {
1564 printk(KERN_ERR "md: could not bd_claim %s.\n",
1565 bdevname(bdev, b));
1566 blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1567 return err;
1568 }
1569 if (!shared)
1570 set_bit(AllReserved, &rdev->flags);
1571 rdev->bdev = bdev;
1572 return err;
1573 }
1574
1575 static void unlock_rdev(mdk_rdev_t *rdev)
1576 {
1577 struct block_device *bdev = rdev->bdev;
1578 rdev->bdev = NULL;
1579 if (!bdev)
1580 MD_BUG();
1581 bd_release(bdev);
1582 blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1583 }
1584
1585 void md_autodetect_dev(dev_t dev);
1586
1587 static void export_rdev(mdk_rdev_t * rdev)
1588 {
1589 char b[BDEVNAME_SIZE];
1590 printk(KERN_INFO "md: export_rdev(%s)\n",
1591 bdevname(rdev->bdev,b));
1592 if (rdev->mddev)
1593 MD_BUG();
1594 free_disk_sb(rdev);
1595 #ifndef MODULE
1596 if (test_bit(AutoDetected, &rdev->flags))
1597 md_autodetect_dev(rdev->bdev->bd_dev);
1598 #endif
1599 unlock_rdev(rdev);
1600 kobject_put(&rdev->kobj);
1601 }
1602
1603 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1604 {
1605 unbind_rdev_from_array(rdev);
1606 export_rdev(rdev);
1607 }
1608
1609 static void export_array(mddev_t *mddev)
1610 {
1611 mdk_rdev_t *rdev, *tmp;
1612
1613 rdev_for_each(rdev, tmp, mddev) {
1614 if (!rdev->mddev) {
1615 MD_BUG();
1616 continue;
1617 }
1618 kick_rdev_from_array(rdev);
1619 }
1620 if (!list_empty(&mddev->disks))
1621 MD_BUG();
1622 mddev->raid_disks = 0;
1623 mddev->major_version = 0;
1624 }
1625
1626 static void print_desc(mdp_disk_t *desc)
1627 {
1628 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1629 desc->major,desc->minor,desc->raid_disk,desc->state);
1630 }
1631
1632 static void print_sb_90(mdp_super_t *sb)
1633 {
1634 int i;
1635
1636 printk(KERN_INFO
1637 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1638 sb->major_version, sb->minor_version, sb->patch_version,
1639 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1640 sb->ctime);
1641 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1642 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1643 sb->md_minor, sb->layout, sb->chunk_size);
1644 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
1645 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
1646 sb->utime, sb->state, sb->active_disks, sb->working_disks,
1647 sb->failed_disks, sb->spare_disks,
1648 sb->sb_csum, (unsigned long)sb->events_lo);
1649
1650 printk(KERN_INFO);
1651 for (i = 0; i < MD_SB_DISKS; i++) {
1652 mdp_disk_t *desc;
1653
1654 desc = sb->disks + i;
1655 if (desc->number || desc->major || desc->minor ||
1656 desc->raid_disk || (desc->state && (desc->state != 4))) {
1657 printk(" D %2d: ", i);
1658 print_desc(desc);
1659 }
1660 }
1661 printk(KERN_INFO "md: THIS: ");
1662 print_desc(&sb->this_disk);
1663 }
1664
1665 static void print_sb_1(struct mdp_superblock_1 *sb)
1666 {
1667 __u8 *uuid;
1668
1669 uuid = sb->set_uuid;
1670 printk(KERN_INFO "md: SB: (V:%u) (F:0x%08x) Array-ID:<%02x%02x%02x%02x"
1671 ":%02x%02x:%02x%02x:%02x%02x:%02x%02x%02x%02x%02x%02x>\n"
1672 KERN_INFO "md: Name: \"%s\" CT:%llu\n",
1673 le32_to_cpu(sb->major_version),
1674 le32_to_cpu(sb->feature_map),
1675 uuid[0], uuid[1], uuid[2], uuid[3],
1676 uuid[4], uuid[5], uuid[6], uuid[7],
1677 uuid[8], uuid[9], uuid[10], uuid[11],
1678 uuid[12], uuid[13], uuid[14], uuid[15],
1679 sb->set_name,
1680 (unsigned long long)le64_to_cpu(sb->ctime)
1681 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
1682
1683 uuid = sb->device_uuid;
1684 printk(KERN_INFO "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
1685 " RO:%llu\n"
1686 KERN_INFO "md: Dev:%08x UUID: %02x%02x%02x%02x:%02x%02x:%02x%02x:%02x%02x"
1687 ":%02x%02x%02x%02x%02x%02x\n"
1688 KERN_INFO "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
1689 KERN_INFO "md: (MaxDev:%u) \n",
1690 le32_to_cpu(sb->level),
1691 (unsigned long long)le64_to_cpu(sb->size),
1692 le32_to_cpu(sb->raid_disks),
1693 le32_to_cpu(sb->layout),
1694 le32_to_cpu(sb->chunksize),
1695 (unsigned long long)le64_to_cpu(sb->data_offset),
1696 (unsigned long long)le64_to_cpu(sb->data_size),
1697 (unsigned long long)le64_to_cpu(sb->super_offset),
1698 (unsigned long long)le64_to_cpu(sb->recovery_offset),
1699 le32_to_cpu(sb->dev_number),
1700 uuid[0], uuid[1], uuid[2], uuid[3],
1701 uuid[4], uuid[5], uuid[6], uuid[7],
1702 uuid[8], uuid[9], uuid[10], uuid[11],
1703 uuid[12], uuid[13], uuid[14], uuid[15],
1704 sb->devflags,
1705 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
1706 (unsigned long long)le64_to_cpu(sb->events),
1707 (unsigned long long)le64_to_cpu(sb->resync_offset),
1708 le32_to_cpu(sb->sb_csum),
1709 le32_to_cpu(sb->max_dev)
1710 );
1711 }
1712
1713 static void print_rdev(mdk_rdev_t *rdev, int major_version)
1714 {
1715 char b[BDEVNAME_SIZE];
1716 printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1717 bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1718 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1719 rdev->desc_nr);
1720 if (rdev->sb_loaded) {
1721 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
1722 switch (major_version) {
1723 case 0:
1724 print_sb_90((mdp_super_t*)page_address(rdev->sb_page));
1725 break;
1726 case 1:
1727 print_sb_1((struct mdp_superblock_1 *)page_address(rdev->sb_page));
1728 break;
1729 }
1730 } else
1731 printk(KERN_INFO "md: no rdev superblock!\n");
1732 }
1733
1734 static void md_print_devices(void)
1735 {
1736 struct list_head *tmp;
1737 mdk_rdev_t *rdev;
1738 mddev_t *mddev;
1739 char b[BDEVNAME_SIZE];
1740
1741 printk("\n");
1742 printk("md: **********************************\n");
1743 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
1744 printk("md: **********************************\n");
1745 for_each_mddev(mddev, tmp) {
1746
1747 if (mddev->bitmap)
1748 bitmap_print_sb(mddev->bitmap);
1749 else
1750 printk("%s: ", mdname(mddev));
1751 list_for_each_entry(rdev, &mddev->disks, same_set)
1752 printk("<%s>", bdevname(rdev->bdev,b));
1753 printk("\n");
1754
1755 list_for_each_entry(rdev, &mddev->disks, same_set)
1756 print_rdev(rdev, mddev->major_version);
1757 }
1758 printk("md: **********************************\n");
1759 printk("\n");
1760 }
1761
1762
1763 static void sync_sbs(mddev_t * mddev, int nospares)
1764 {
1765 /* Update each superblock (in-memory image), but
1766 * if we are allowed to, skip spares which already
1767 * have the right event counter, or have one earlier
1768 * (which would mean they aren't being marked as dirty
1769 * with the rest of the array)
1770 */
1771 mdk_rdev_t *rdev;
1772
1773 list_for_each_entry(rdev, &mddev->disks, same_set) {
1774 if (rdev->sb_events == mddev->events ||
1775 (nospares &&
1776 rdev->raid_disk < 0 &&
1777 (rdev->sb_events&1)==0 &&
1778 rdev->sb_events+1 == mddev->events)) {
1779 /* Don't update this superblock */
1780 rdev->sb_loaded = 2;
1781 } else {
1782 super_types[mddev->major_version].
1783 sync_super(mddev, rdev);
1784 rdev->sb_loaded = 1;
1785 }
1786 }
1787 }
1788
1789 static void md_update_sb(mddev_t * mddev, int force_change)
1790 {
1791 mdk_rdev_t *rdev;
1792 int sync_req;
1793 int nospares = 0;
1794
1795 if (mddev->external)
1796 return;
1797 repeat:
1798 spin_lock_irq(&mddev->write_lock);
1799
1800 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1801 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
1802 force_change = 1;
1803 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
1804 /* just a clean<-> dirty transition, possibly leave spares alone,
1805 * though if events isn't the right even/odd, we will have to do
1806 * spares after all
1807 */
1808 nospares = 1;
1809 if (force_change)
1810 nospares = 0;
1811 if (mddev->degraded)
1812 /* If the array is degraded, then skipping spares is both
1813 * dangerous and fairly pointless.
1814 * Dangerous because a device that was removed from the array
1815 * might have a event_count that still looks up-to-date,
1816 * so it can be re-added without a resync.
1817 * Pointless because if there are any spares to skip,
1818 * then a recovery will happen and soon that array won't
1819 * be degraded any more and the spare can go back to sleep then.
1820 */
1821 nospares = 0;
1822
1823 sync_req = mddev->in_sync;
1824 mddev->utime = get_seconds();
1825
1826 /* If this is just a dirty<->clean transition, and the array is clean
1827 * and 'events' is odd, we can roll back to the previous clean state */
1828 if (nospares
1829 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
1830 && (mddev->events & 1)
1831 && mddev->events != 1)
1832 mddev->events--;
1833 else {
1834 /* otherwise we have to go forward and ... */
1835 mddev->events ++;
1836 if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
1837 /* .. if the array isn't clean, insist on an odd 'events' */
1838 if ((mddev->events&1)==0) {
1839 mddev->events++;
1840 nospares = 0;
1841 }
1842 } else {
1843 /* otherwise insist on an even 'events' (for clean states) */
1844 if ((mddev->events&1)) {
1845 mddev->events++;
1846 nospares = 0;
1847 }
1848 }
1849 }
1850
1851 if (!mddev->events) {
1852 /*
1853 * oops, this 64-bit counter should never wrap.
1854 * Either we are in around ~1 trillion A.C., assuming
1855 * 1 reboot per second, or we have a bug:
1856 */
1857 MD_BUG();
1858 mddev->events --;
1859 }
1860
1861 /*
1862 * do not write anything to disk if using
1863 * nonpersistent superblocks
1864 */
1865 if (!mddev->persistent) {
1866 if (!mddev->external)
1867 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1868
1869 spin_unlock_irq(&mddev->write_lock);
1870 wake_up(&mddev->sb_wait);
1871 return;
1872 }
1873 sync_sbs(mddev, nospares);
1874 spin_unlock_irq(&mddev->write_lock);
1875
1876 dprintk(KERN_INFO
1877 "md: updating %s RAID superblock on device (in sync %d)\n",
1878 mdname(mddev),mddev->in_sync);
1879
1880 bitmap_update_sb(mddev->bitmap);
1881 list_for_each_entry(rdev, &mddev->disks, same_set) {
1882 char b[BDEVNAME_SIZE];
1883 dprintk(KERN_INFO "md: ");
1884 if (rdev->sb_loaded != 1)
1885 continue; /* no noise on spare devices */
1886 if (test_bit(Faulty, &rdev->flags))
1887 dprintk("(skipping faulty ");
1888
1889 dprintk("%s ", bdevname(rdev->bdev,b));
1890 if (!test_bit(Faulty, &rdev->flags)) {
1891 md_super_write(mddev,rdev,
1892 rdev->sb_start, rdev->sb_size,
1893 rdev->sb_page);
1894 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1895 bdevname(rdev->bdev,b),
1896 (unsigned long long)rdev->sb_start);
1897 rdev->sb_events = mddev->events;
1898
1899 } else
1900 dprintk(")\n");
1901 if (mddev->level == LEVEL_MULTIPATH)
1902 /* only need to write one superblock... */
1903 break;
1904 }
1905 md_super_wait(mddev);
1906 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
1907
1908 spin_lock_irq(&mddev->write_lock);
1909 if (mddev->in_sync != sync_req ||
1910 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
1911 /* have to write it out again */
1912 spin_unlock_irq(&mddev->write_lock);
1913 goto repeat;
1914 }
1915 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1916 spin_unlock_irq(&mddev->write_lock);
1917 wake_up(&mddev->sb_wait);
1918
1919 }
1920
1921 /* words written to sysfs files may, or may not, be \n terminated.
1922 * We want to accept with case. For this we use cmd_match.
1923 */
1924 static int cmd_match(const char *cmd, const char *str)
1925 {
1926 /* See if cmd, written into a sysfs file, matches
1927 * str. They must either be the same, or cmd can
1928 * have a trailing newline
1929 */
1930 while (*cmd && *str && *cmd == *str) {
1931 cmd++;
1932 str++;
1933 }
1934 if (*cmd == '\n')
1935 cmd++;
1936 if (*str || *cmd)
1937 return 0;
1938 return 1;
1939 }
1940
1941 struct rdev_sysfs_entry {
1942 struct attribute attr;
1943 ssize_t (*show)(mdk_rdev_t *, char *);
1944 ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1945 };
1946
1947 static ssize_t
1948 state_show(mdk_rdev_t *rdev, char *page)
1949 {
1950 char *sep = "";
1951 size_t len = 0;
1952
1953 if (test_bit(Faulty, &rdev->flags)) {
1954 len+= sprintf(page+len, "%sfaulty",sep);
1955 sep = ",";
1956 }
1957 if (test_bit(In_sync, &rdev->flags)) {
1958 len += sprintf(page+len, "%sin_sync",sep);
1959 sep = ",";
1960 }
1961 if (test_bit(WriteMostly, &rdev->flags)) {
1962 len += sprintf(page+len, "%swrite_mostly",sep);
1963 sep = ",";
1964 }
1965 if (test_bit(Blocked, &rdev->flags)) {
1966 len += sprintf(page+len, "%sblocked", sep);
1967 sep = ",";
1968 }
1969 if (!test_bit(Faulty, &rdev->flags) &&
1970 !test_bit(In_sync, &rdev->flags)) {
1971 len += sprintf(page+len, "%sspare", sep);
1972 sep = ",";
1973 }
1974 return len+sprintf(page+len, "\n");
1975 }
1976
1977 static ssize_t
1978 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1979 {
1980 /* can write
1981 * faulty - simulates and error
1982 * remove - disconnects the device
1983 * writemostly - sets write_mostly
1984 * -writemostly - clears write_mostly
1985 * blocked - sets the Blocked flag
1986 * -blocked - clears the Blocked flag
1987 */
1988 int err = -EINVAL;
1989 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
1990 md_error(rdev->mddev, rdev);
1991 err = 0;
1992 } else if (cmd_match(buf, "remove")) {
1993 if (rdev->raid_disk >= 0)
1994 err = -EBUSY;
1995 else {
1996 mddev_t *mddev = rdev->mddev;
1997 kick_rdev_from_array(rdev);
1998 if (mddev->pers)
1999 md_update_sb(mddev, 1);
2000 md_new_event(mddev);
2001 err = 0;
2002 }
2003 } else if (cmd_match(buf, "writemostly")) {
2004 set_bit(WriteMostly, &rdev->flags);
2005 err = 0;
2006 } else if (cmd_match(buf, "-writemostly")) {
2007 clear_bit(WriteMostly, &rdev->flags);
2008 err = 0;
2009 } else if (cmd_match(buf, "blocked")) {
2010 set_bit(Blocked, &rdev->flags);
2011 err = 0;
2012 } else if (cmd_match(buf, "-blocked")) {
2013 clear_bit(Blocked, &rdev->flags);
2014 wake_up(&rdev->blocked_wait);
2015 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2016 md_wakeup_thread(rdev->mddev->thread);
2017
2018 err = 0;
2019 }
2020 if (!err && rdev->sysfs_state)
2021 sysfs_notify_dirent(rdev->sysfs_state);
2022 return err ? err : len;
2023 }
2024 static struct rdev_sysfs_entry rdev_state =
2025 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2026
2027 static ssize_t
2028 errors_show(mdk_rdev_t *rdev, char *page)
2029 {
2030 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2031 }
2032
2033 static ssize_t
2034 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2035 {
2036 char *e;
2037 unsigned long n = simple_strtoul(buf, &e, 10);
2038 if (*buf && (*e == 0 || *e == '\n')) {
2039 atomic_set(&rdev->corrected_errors, n);
2040 return len;
2041 }
2042 return -EINVAL;
2043 }
2044 static struct rdev_sysfs_entry rdev_errors =
2045 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2046
2047 static ssize_t
2048 slot_show(mdk_rdev_t *rdev, char *page)
2049 {
2050 if (rdev->raid_disk < 0)
2051 return sprintf(page, "none\n");
2052 else
2053 return sprintf(page, "%d\n", rdev->raid_disk);
2054 }
2055
2056 static ssize_t
2057 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2058 {
2059 char *e;
2060 int err;
2061 char nm[20];
2062 int slot = simple_strtoul(buf, &e, 10);
2063 if (strncmp(buf, "none", 4)==0)
2064 slot = -1;
2065 else if (e==buf || (*e && *e!= '\n'))
2066 return -EINVAL;
2067 if (rdev->mddev->pers && slot == -1) {
2068 /* Setting 'slot' on an active array requires also
2069 * updating the 'rd%d' link, and communicating
2070 * with the personality with ->hot_*_disk.
2071 * For now we only support removing
2072 * failed/spare devices. This normally happens automatically,
2073 * but not when the metadata is externally managed.
2074 */
2075 if (rdev->raid_disk == -1)
2076 return -EEXIST;
2077 /* personality does all needed checks */
2078 if (rdev->mddev->pers->hot_add_disk == NULL)
2079 return -EINVAL;
2080 err = rdev->mddev->pers->
2081 hot_remove_disk(rdev->mddev, rdev->raid_disk);
2082 if (err)
2083 return err;
2084 sprintf(nm, "rd%d", rdev->raid_disk);
2085 sysfs_remove_link(&rdev->mddev->kobj, nm);
2086 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2087 md_wakeup_thread(rdev->mddev->thread);
2088 } else if (rdev->mddev->pers) {
2089 mdk_rdev_t *rdev2;
2090 /* Activating a spare .. or possibly reactivating
2091 * if we every get bitmaps working here.
2092 */
2093
2094 if (rdev->raid_disk != -1)
2095 return -EBUSY;
2096
2097 if (rdev->mddev->pers->hot_add_disk == NULL)
2098 return -EINVAL;
2099
2100 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2101 if (rdev2->raid_disk == slot)
2102 return -EEXIST;
2103
2104 rdev->raid_disk = slot;
2105 if (test_bit(In_sync, &rdev->flags))
2106 rdev->saved_raid_disk = slot;
2107 else
2108 rdev->saved_raid_disk = -1;
2109 err = rdev->mddev->pers->
2110 hot_add_disk(rdev->mddev, rdev);
2111 if (err) {
2112 rdev->raid_disk = -1;
2113 return err;
2114 } else
2115 sysfs_notify_dirent(rdev->sysfs_state);
2116 sprintf(nm, "rd%d", rdev->raid_disk);
2117 if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm))
2118 printk(KERN_WARNING
2119 "md: cannot register "
2120 "%s for %s\n",
2121 nm, mdname(rdev->mddev));
2122
2123 /* don't wakeup anyone, leave that to userspace. */
2124 } else {
2125 if (slot >= rdev->mddev->raid_disks)
2126 return -ENOSPC;
2127 rdev->raid_disk = slot;
2128 /* assume it is working */
2129 clear_bit(Faulty, &rdev->flags);
2130 clear_bit(WriteMostly, &rdev->flags);
2131 set_bit(In_sync, &rdev->flags);
2132 sysfs_notify_dirent(rdev->sysfs_state);
2133 }
2134 return len;
2135 }
2136
2137
2138 static struct rdev_sysfs_entry rdev_slot =
2139 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2140
2141 static ssize_t
2142 offset_show(mdk_rdev_t *rdev, char *page)
2143 {
2144 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2145 }
2146
2147 static ssize_t
2148 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2149 {
2150 char *e;
2151 unsigned long long offset = simple_strtoull(buf, &e, 10);
2152 if (e==buf || (*e && *e != '\n'))
2153 return -EINVAL;
2154 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2155 return -EBUSY;
2156 if (rdev->size && rdev->mddev->external)
2157 /* Must set offset before size, so overlap checks
2158 * can be sane */
2159 return -EBUSY;
2160 rdev->data_offset = offset;
2161 return len;
2162 }
2163
2164 static struct rdev_sysfs_entry rdev_offset =
2165 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2166
2167 static ssize_t
2168 rdev_size_show(mdk_rdev_t *rdev, char *page)
2169 {
2170 return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
2171 }
2172
2173 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2174 {
2175 /* check if two start/length pairs overlap */
2176 if (s1+l1 <= s2)
2177 return 0;
2178 if (s2+l2 <= s1)
2179 return 0;
2180 return 1;
2181 }
2182
2183 static ssize_t
2184 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2185 {
2186 unsigned long long size;
2187 unsigned long long oldsize = rdev->size;
2188 mddev_t *my_mddev = rdev->mddev;
2189
2190 if (strict_strtoull(buf, 10, &size) < 0)
2191 return -EINVAL;
2192 if (my_mddev->pers && rdev->raid_disk >= 0) {
2193 if (my_mddev->persistent) {
2194 size = super_types[my_mddev->major_version].
2195 rdev_size_change(rdev, size * 2);
2196 if (!size)
2197 return -EBUSY;
2198 } else if (!size) {
2199 size = (rdev->bdev->bd_inode->i_size >> 10);
2200 size -= rdev->data_offset/2;
2201 }
2202 }
2203 if (size < my_mddev->size)
2204 return -EINVAL; /* component must fit device */
2205
2206 rdev->size = size;
2207 if (size > oldsize && my_mddev->external) {
2208 /* need to check that all other rdevs with the same ->bdev
2209 * do not overlap. We need to unlock the mddev to avoid
2210 * a deadlock. We have already changed rdev->size, and if
2211 * we have to change it back, we will have the lock again.
2212 */
2213 mddev_t *mddev;
2214 int overlap = 0;
2215 struct list_head *tmp;
2216
2217 mddev_unlock(my_mddev);
2218 for_each_mddev(mddev, tmp) {
2219 mdk_rdev_t *rdev2;
2220
2221 mddev_lock(mddev);
2222 list_for_each_entry(rdev2, &mddev->disks, same_set)
2223 if (test_bit(AllReserved, &rdev2->flags) ||
2224 (rdev->bdev == rdev2->bdev &&
2225 rdev != rdev2 &&
2226 overlaps(rdev->data_offset, rdev->size * 2,
2227 rdev2->data_offset,
2228 rdev2->size * 2))) {
2229 overlap = 1;
2230 break;
2231 }
2232 mddev_unlock(mddev);
2233 if (overlap) {
2234 mddev_put(mddev);
2235 break;
2236 }
2237 }
2238 mddev_lock(my_mddev);
2239 if (overlap) {
2240 /* Someone else could have slipped in a size
2241 * change here, but doing so is just silly.
2242 * We put oldsize back because we *know* it is
2243 * safe, and trust userspace not to race with
2244 * itself
2245 */
2246 rdev->size = oldsize;
2247 return -EBUSY;
2248 }
2249 }
2250 return len;
2251 }
2252
2253 static struct rdev_sysfs_entry rdev_size =
2254 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2255
2256 static struct attribute *rdev_default_attrs[] = {
2257 &rdev_state.attr,
2258 &rdev_errors.attr,
2259 &rdev_slot.attr,
2260 &rdev_offset.attr,
2261 &rdev_size.attr,
2262 NULL,
2263 };
2264 static ssize_t
2265 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2266 {
2267 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2268 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2269 mddev_t *mddev = rdev->mddev;
2270 ssize_t rv;
2271
2272 if (!entry->show)
2273 return -EIO;
2274
2275 rv = mddev ? mddev_lock(mddev) : -EBUSY;
2276 if (!rv) {
2277 if (rdev->mddev == NULL)
2278 rv = -EBUSY;
2279 else
2280 rv = entry->show(rdev, page);
2281 mddev_unlock(mddev);
2282 }
2283 return rv;
2284 }
2285
2286 static ssize_t
2287 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2288 const char *page, size_t length)
2289 {
2290 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2291 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2292 ssize_t rv;
2293 mddev_t *mddev = rdev->mddev;
2294
2295 if (!entry->store)
2296 return -EIO;
2297 if (!capable(CAP_SYS_ADMIN))
2298 return -EACCES;
2299 rv = mddev ? mddev_lock(mddev): -EBUSY;
2300 if (!rv) {
2301 if (rdev->mddev == NULL)
2302 rv = -EBUSY;
2303 else
2304 rv = entry->store(rdev, page, length);
2305 mddev_unlock(mddev);
2306 }
2307 return rv;
2308 }
2309
2310 static void rdev_free(struct kobject *ko)
2311 {
2312 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
2313 kfree(rdev);
2314 }
2315 static struct sysfs_ops rdev_sysfs_ops = {
2316 .show = rdev_attr_show,
2317 .store = rdev_attr_store,
2318 };
2319 static struct kobj_type rdev_ktype = {
2320 .release = rdev_free,
2321 .sysfs_ops = &rdev_sysfs_ops,
2322 .default_attrs = rdev_default_attrs,
2323 };
2324
2325 /*
2326 * Import a device. If 'super_format' >= 0, then sanity check the superblock
2327 *
2328 * mark the device faulty if:
2329 *
2330 * - the device is nonexistent (zero size)
2331 * - the device has no valid superblock
2332 *
2333 * a faulty rdev _never_ has rdev->sb set.
2334 */
2335 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
2336 {
2337 char b[BDEVNAME_SIZE];
2338 int err;
2339 mdk_rdev_t *rdev;
2340 sector_t size;
2341
2342 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
2343 if (!rdev) {
2344 printk(KERN_ERR "md: could not alloc mem for new device!\n");
2345 return ERR_PTR(-ENOMEM);
2346 }
2347
2348 if ((err = alloc_disk_sb(rdev)))
2349 goto abort_free;
2350
2351 err = lock_rdev(rdev, newdev, super_format == -2);
2352 if (err)
2353 goto abort_free;
2354
2355 kobject_init(&rdev->kobj, &rdev_ktype);
2356
2357 rdev->desc_nr = -1;
2358 rdev->saved_raid_disk = -1;
2359 rdev->raid_disk = -1;
2360 rdev->flags = 0;
2361 rdev->data_offset = 0;
2362 rdev->sb_events = 0;
2363 atomic_set(&rdev->nr_pending, 0);
2364 atomic_set(&rdev->read_errors, 0);
2365 atomic_set(&rdev->corrected_errors, 0);
2366
2367 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2368 if (!size) {
2369 printk(KERN_WARNING
2370 "md: %s has zero or unknown size, marking faulty!\n",
2371 bdevname(rdev->bdev,b));
2372 err = -EINVAL;
2373 goto abort_free;
2374 }
2375
2376 if (super_format >= 0) {
2377 err = super_types[super_format].
2378 load_super(rdev, NULL, super_minor);
2379 if (err == -EINVAL) {
2380 printk(KERN_WARNING
2381 "md: %s does not have a valid v%d.%d "
2382 "superblock, not importing!\n",
2383 bdevname(rdev->bdev,b),
2384 super_format, super_minor);
2385 goto abort_free;
2386 }
2387 if (err < 0) {
2388 printk(KERN_WARNING
2389 "md: could not read %s's sb, not importing!\n",
2390 bdevname(rdev->bdev,b));
2391 goto abort_free;
2392 }
2393 }
2394
2395 INIT_LIST_HEAD(&rdev->same_set);
2396 init_waitqueue_head(&rdev->blocked_wait);
2397
2398 return rdev;
2399
2400 abort_free:
2401 if (rdev->sb_page) {
2402 if (rdev->bdev)
2403 unlock_rdev(rdev);
2404 free_disk_sb(rdev);
2405 }
2406 kfree(rdev);
2407 return ERR_PTR(err);
2408 }
2409
2410 /*
2411 * Check a full RAID array for plausibility
2412 */
2413
2414
2415 static void analyze_sbs(mddev_t * mddev)
2416 {
2417 int i;
2418 mdk_rdev_t *rdev, *freshest, *tmp;
2419 char b[BDEVNAME_SIZE];
2420
2421 freshest = NULL;
2422 rdev_for_each(rdev, tmp, mddev)
2423 switch (super_types[mddev->major_version].
2424 load_super(rdev, freshest, mddev->minor_version)) {
2425 case 1:
2426 freshest = rdev;
2427 break;
2428 case 0:
2429 break;
2430 default:
2431 printk( KERN_ERR \
2432 "md: fatal superblock inconsistency in %s"
2433 " -- removing from array\n",
2434 bdevname(rdev->bdev,b));
2435 kick_rdev_from_array(rdev);
2436 }
2437
2438
2439 super_types[mddev->major_version].
2440 validate_super(mddev, freshest);
2441
2442 i = 0;
2443 rdev_for_each(rdev, tmp, mddev) {
2444 if (rdev->desc_nr >= mddev->max_disks ||
2445 i > mddev->max_disks) {
2446 printk(KERN_WARNING
2447 "md: %s: %s: only %d devices permitted\n",
2448 mdname(mddev), bdevname(rdev->bdev, b),
2449 mddev->max_disks);
2450 kick_rdev_from_array(rdev);
2451 continue;
2452 }
2453 if (rdev != freshest)
2454 if (super_types[mddev->major_version].
2455 validate_super(mddev, rdev)) {
2456 printk(KERN_WARNING "md: kicking non-fresh %s"
2457 " from array!\n",
2458 bdevname(rdev->bdev,b));
2459 kick_rdev_from_array(rdev);
2460 continue;
2461 }
2462 if (mddev->level == LEVEL_MULTIPATH) {
2463 rdev->desc_nr = i++;
2464 rdev->raid_disk = rdev->desc_nr;
2465 set_bit(In_sync, &rdev->flags);
2466 } else if (rdev->raid_disk >= mddev->raid_disks) {
2467 rdev->raid_disk = -1;
2468 clear_bit(In_sync, &rdev->flags);
2469 }
2470 }
2471
2472
2473
2474 if (mddev->recovery_cp != MaxSector &&
2475 mddev->level >= 1)
2476 printk(KERN_ERR "md: %s: raid array is not clean"
2477 " -- starting background reconstruction\n",
2478 mdname(mddev));
2479
2480 }
2481
2482 static void md_safemode_timeout(unsigned long data);
2483
2484 static ssize_t
2485 safe_delay_show(mddev_t *mddev, char *page)
2486 {
2487 int msec = (mddev->safemode_delay*1000)/HZ;
2488 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2489 }
2490 static ssize_t
2491 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2492 {
2493 int scale=1;
2494 int dot=0;
2495 int i;
2496 unsigned long msec;
2497 char buf[30];
2498
2499 /* remove a period, and count digits after it */
2500 if (len >= sizeof(buf))
2501 return -EINVAL;
2502 strlcpy(buf, cbuf, sizeof(buf));
2503 for (i=0; i<len; i++) {
2504 if (dot) {
2505 if (isdigit(buf[i])) {
2506 buf[i-1] = buf[i];
2507 scale *= 10;
2508 }
2509 buf[i] = 0;
2510 } else if (buf[i] == '.') {
2511 dot=1;
2512 buf[i] = 0;
2513 }
2514 }
2515 if (strict_strtoul(buf, 10, &msec) < 0)
2516 return -EINVAL;
2517 msec = (msec * 1000) / scale;
2518 if (msec == 0)
2519 mddev->safemode_delay = 0;
2520 else {
2521 unsigned long old_delay = mddev->safemode_delay;
2522 mddev->safemode_delay = (msec*HZ)/1000;
2523 if (mddev->safemode_delay == 0)
2524 mddev->safemode_delay = 1;
2525 if (mddev->safemode_delay < old_delay)
2526 md_safemode_timeout((unsigned long)mddev);
2527 }
2528 return len;
2529 }
2530 static struct md_sysfs_entry md_safe_delay =
2531 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2532
2533 static ssize_t
2534 level_show(mddev_t *mddev, char *page)
2535 {
2536 struct mdk_personality *p = mddev->pers;
2537 if (p)
2538 return sprintf(page, "%s\n", p->name);
2539 else if (mddev->clevel[0])
2540 return sprintf(page, "%s\n", mddev->clevel);
2541 else if (mddev->level != LEVEL_NONE)
2542 return sprintf(page, "%d\n", mddev->level);
2543 else
2544 return 0;
2545 }
2546
2547 static ssize_t
2548 level_store(mddev_t *mddev, const char *buf, size_t len)
2549 {
2550 ssize_t rv = len;
2551 if (mddev->pers)
2552 return -EBUSY;
2553 if (len == 0)
2554 return 0;
2555 if (len >= sizeof(mddev->clevel))
2556 return -ENOSPC;
2557 strncpy(mddev->clevel, buf, len);
2558 if (mddev->clevel[len-1] == '\n')
2559 len--;
2560 mddev->clevel[len] = 0;
2561 mddev->level = LEVEL_NONE;
2562 return rv;
2563 }
2564
2565 static struct md_sysfs_entry md_level =
2566 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
2567
2568
2569 static ssize_t
2570 layout_show(mddev_t *mddev, char *page)
2571 {
2572 /* just a number, not meaningful for all levels */
2573 if (mddev->reshape_position != MaxSector &&
2574 mddev->layout != mddev->new_layout)
2575 return sprintf(page, "%d (%d)\n",
2576 mddev->new_layout, mddev->layout);
2577 return sprintf(page, "%d\n", mddev->layout);
2578 }
2579
2580 static ssize_t
2581 layout_store(mddev_t *mddev, const char *buf, size_t len)
2582 {
2583 char *e;
2584 unsigned long n = simple_strtoul(buf, &e, 10);
2585
2586 if (!*buf || (*e && *e != '\n'))
2587 return -EINVAL;
2588
2589 if (mddev->pers)
2590 return -EBUSY;
2591 if (mddev->reshape_position != MaxSector)
2592 mddev->new_layout = n;
2593 else
2594 mddev->layout = n;
2595 return len;
2596 }
2597 static struct md_sysfs_entry md_layout =
2598 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
2599
2600
2601 static ssize_t
2602 raid_disks_show(mddev_t *mddev, char *page)
2603 {
2604 if (mddev->raid_disks == 0)
2605 return 0;
2606 if (mddev->reshape_position != MaxSector &&
2607 mddev->delta_disks != 0)
2608 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
2609 mddev->raid_disks - mddev->delta_disks);
2610 return sprintf(page, "%d\n", mddev->raid_disks);
2611 }
2612
2613 static int update_raid_disks(mddev_t *mddev, int raid_disks);
2614
2615 static ssize_t
2616 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
2617 {
2618 char *e;
2619 int rv = 0;
2620 unsigned long n = simple_strtoul(buf, &e, 10);
2621
2622 if (!*buf || (*e && *e != '\n'))
2623 return -EINVAL;
2624
2625 if (mddev->pers)
2626 rv = update_raid_disks(mddev, n);
2627 else if (mddev->reshape_position != MaxSector) {
2628 int olddisks = mddev->raid_disks - mddev->delta_disks;
2629 mddev->delta_disks = n - olddisks;
2630 mddev->raid_disks = n;
2631 } else
2632 mddev->raid_disks = n;
2633 return rv ? rv : len;
2634 }
2635 static struct md_sysfs_entry md_raid_disks =
2636 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
2637
2638 static ssize_t
2639 chunk_size_show(mddev_t *mddev, char *page)
2640 {
2641 if (mddev->reshape_position != MaxSector &&
2642 mddev->chunk_size != mddev->new_chunk)
2643 return sprintf(page, "%d (%d)\n", mddev->new_chunk,
2644 mddev->chunk_size);
2645 return sprintf(page, "%d\n", mddev->chunk_size);
2646 }
2647
2648 static ssize_t
2649 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
2650 {
2651 /* can only set chunk_size if array is not yet active */
2652 char *e;
2653 unsigned long n = simple_strtoul(buf, &e, 10);
2654
2655 if (!*buf || (*e && *e != '\n'))
2656 return -EINVAL;
2657
2658 if (mddev->pers)
2659 return -EBUSY;
2660 else if (mddev->reshape_position != MaxSector)
2661 mddev->new_chunk = n;
2662 else
2663 mddev->chunk_size = n;
2664 return len;
2665 }
2666 static struct md_sysfs_entry md_chunk_size =
2667 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
2668
2669 static ssize_t
2670 resync_start_show(mddev_t *mddev, char *page)
2671 {
2672 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
2673 }
2674
2675 static ssize_t
2676 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
2677 {
2678 char *e;
2679 unsigned long long n = simple_strtoull(buf, &e, 10);
2680
2681 if (mddev->pers)
2682 return -EBUSY;
2683 if (!*buf || (*e && *e != '\n'))
2684 return -EINVAL;
2685
2686 mddev->recovery_cp = n;
2687 return len;
2688 }
2689 static struct md_sysfs_entry md_resync_start =
2690 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
2691
2692 /*
2693 * The array state can be:
2694 *
2695 * clear
2696 * No devices, no size, no level
2697 * Equivalent to STOP_ARRAY ioctl
2698 * inactive
2699 * May have some settings, but array is not active
2700 * all IO results in error
2701 * When written, doesn't tear down array, but just stops it
2702 * suspended (not supported yet)
2703 * All IO requests will block. The array can be reconfigured.
2704 * Writing this, if accepted, will block until array is quiescent
2705 * readonly
2706 * no resync can happen. no superblocks get written.
2707 * write requests fail
2708 * read-auto
2709 * like readonly, but behaves like 'clean' on a write request.
2710 *
2711 * clean - no pending writes, but otherwise active.
2712 * When written to inactive array, starts without resync
2713 * If a write request arrives then
2714 * if metadata is known, mark 'dirty' and switch to 'active'.
2715 * if not known, block and switch to write-pending
2716 * If written to an active array that has pending writes, then fails.
2717 * active
2718 * fully active: IO and resync can be happening.
2719 * When written to inactive array, starts with resync
2720 *
2721 * write-pending
2722 * clean, but writes are blocked waiting for 'active' to be written.
2723 *
2724 * active-idle
2725 * like active, but no writes have been seen for a while (100msec).
2726 *
2727 */
2728 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
2729 write_pending, active_idle, bad_word};
2730 static char *array_states[] = {
2731 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
2732 "write-pending", "active-idle", NULL };
2733
2734 static int match_word(const char *word, char **list)
2735 {
2736 int n;
2737 for (n=0; list[n]; n++)
2738 if (cmd_match(word, list[n]))
2739 break;
2740 return n;
2741 }
2742
2743 static ssize_t
2744 array_state_show(mddev_t *mddev, char *page)
2745 {
2746 enum array_state st = inactive;
2747
2748 if (mddev->pers)
2749 switch(mddev->ro) {
2750 case 1:
2751 st = readonly;
2752 break;
2753 case 2:
2754 st = read_auto;
2755 break;
2756 case 0:
2757 if (mddev->in_sync)
2758 st = clean;
2759 else if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
2760 st = write_pending;
2761 else if (mddev->safemode)
2762 st = active_idle;
2763 else
2764 st = active;
2765 }
2766 else {
2767 if (list_empty(&mddev->disks) &&
2768 mddev->raid_disks == 0 &&
2769 mddev->size == 0)
2770 st = clear;
2771 else
2772 st = inactive;
2773 }
2774 return sprintf(page, "%s\n", array_states[st]);
2775 }
2776
2777 static int do_md_stop(mddev_t * mddev, int ro, int is_open);
2778 static int do_md_run(mddev_t * mddev);
2779 static int restart_array(mddev_t *mddev);
2780
2781 static ssize_t
2782 array_state_store(mddev_t *mddev, const char *buf, size_t len)
2783 {
2784 int err = -EINVAL;
2785 enum array_state st = match_word(buf, array_states);
2786 switch(st) {
2787 case bad_word:
2788 break;
2789 case clear:
2790 /* stopping an active array */
2791 if (atomic_read(&mddev->openers) > 0)
2792 return -EBUSY;
2793 err = do_md_stop(mddev, 0, 0);
2794 break;
2795 case inactive:
2796 /* stopping an active array */
2797 if (mddev->pers) {
2798 if (atomic_read(&mddev->openers) > 0)
2799 return -EBUSY;
2800 err = do_md_stop(mddev, 2, 0);
2801 } else
2802 err = 0; /* already inactive */
2803 break;
2804 case suspended:
2805 break; /* not supported yet */
2806 case readonly:
2807 if (mddev->pers)
2808 err = do_md_stop(mddev, 1, 0);
2809 else {
2810 mddev->ro = 1;
2811 set_disk_ro(mddev->gendisk, 1);
2812 err = do_md_run(mddev);
2813 }
2814 break;
2815 case read_auto:
2816 if (mddev->pers) {
2817 if (mddev->ro == 0)
2818 err = do_md_stop(mddev, 1, 0);
2819 else if (mddev->ro == 1)
2820 err = restart_array(mddev);
2821 if (err == 0) {
2822 mddev->ro = 2;
2823 set_disk_ro(mddev->gendisk, 0);
2824 }
2825 } else {
2826 mddev->ro = 2;
2827 err = do_md_run(mddev);
2828 }
2829 break;
2830 case clean:
2831 if (mddev->pers) {
2832 restart_array(mddev);
2833 spin_lock_irq(&mddev->write_lock);
2834 if (atomic_read(&mddev->writes_pending) == 0) {
2835 if (mddev->in_sync == 0) {
2836 mddev->in_sync = 1;
2837 if (mddev->safemode == 1)
2838 mddev->safemode = 0;
2839 if (mddev->persistent)
2840 set_bit(MD_CHANGE_CLEAN,
2841 &mddev->flags);
2842 }
2843 err = 0;
2844 } else
2845 err = -EBUSY;
2846 spin_unlock_irq(&mddev->write_lock);
2847 } else {
2848 mddev->ro = 0;
2849 mddev->recovery_cp = MaxSector;
2850 err = do_md_run(mddev);
2851 }
2852 break;
2853 case active:
2854 if (mddev->pers) {
2855 restart_array(mddev);
2856 if (mddev->external)
2857 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2858 wake_up(&mddev->sb_wait);
2859 err = 0;
2860 } else {
2861 mddev->ro = 0;
2862 set_disk_ro(mddev->gendisk, 0);
2863 err = do_md_run(mddev);
2864 }
2865 break;
2866 case write_pending:
2867 case active_idle:
2868 /* these cannot be set */
2869 break;
2870 }
2871 if (err)
2872 return err;
2873 else {
2874 sysfs_notify_dirent(mddev->sysfs_state);
2875 return len;
2876 }
2877 }
2878 static struct md_sysfs_entry md_array_state =
2879 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
2880
2881 static ssize_t
2882 null_show(mddev_t *mddev, char *page)
2883 {
2884 return -EINVAL;
2885 }
2886
2887 static ssize_t
2888 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
2889 {
2890 /* buf must be %d:%d\n? giving major and minor numbers */
2891 /* The new device is added to the array.
2892 * If the array has a persistent superblock, we read the
2893 * superblock to initialise info and check validity.
2894 * Otherwise, only checking done is that in bind_rdev_to_array,
2895 * which mainly checks size.
2896 */
2897 char *e;
2898 int major = simple_strtoul(buf, &e, 10);
2899 int minor;
2900 dev_t dev;
2901 mdk_rdev_t *rdev;
2902 int err;
2903
2904 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
2905 return -EINVAL;
2906 minor = simple_strtoul(e+1, &e, 10);
2907 if (*e && *e != '\n')
2908 return -EINVAL;
2909 dev = MKDEV(major, minor);
2910 if (major != MAJOR(dev) ||
2911 minor != MINOR(dev))
2912 return -EOVERFLOW;
2913
2914
2915 if (mddev->persistent) {
2916 rdev = md_import_device(dev, mddev->major_version,
2917 mddev->minor_version);
2918 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
2919 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2920 mdk_rdev_t, same_set);
2921 err = super_types[mddev->major_version]
2922 .load_super(rdev, rdev0, mddev->minor_version);
2923 if (err < 0)
2924 goto out;
2925 }
2926 } else if (mddev->external)
2927 rdev = md_import_device(dev, -2, -1);
2928 else
2929 rdev = md_import_device(dev, -1, -1);
2930
2931 if (IS_ERR(rdev))
2932 return PTR_ERR(rdev);
2933 err = bind_rdev_to_array(rdev, mddev);
2934 out:
2935 if (err)
2936 export_rdev(rdev);
2937 return err ? err : len;
2938 }
2939
2940 static struct md_sysfs_entry md_new_device =
2941 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
2942
2943 static ssize_t
2944 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
2945 {
2946 char *end;
2947 unsigned long chunk, end_chunk;
2948
2949 if (!mddev->bitmap)
2950 goto out;
2951 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
2952 while (*buf) {
2953 chunk = end_chunk = simple_strtoul(buf, &end, 0);
2954 if (buf == end) break;
2955 if (*end == '-') { /* range */
2956 buf = end + 1;
2957 end_chunk = simple_strtoul(buf, &end, 0);
2958 if (buf == end) break;
2959 }
2960 if (*end && !isspace(*end)) break;
2961 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
2962 buf = end;
2963 while (isspace(*buf)) buf++;
2964 }
2965 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
2966 out:
2967 return len;
2968 }
2969
2970 static struct md_sysfs_entry md_bitmap =
2971 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
2972
2973 static ssize_t
2974 size_show(mddev_t *mddev, char *page)
2975 {
2976 return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
2977 }
2978
2979 static int update_size(mddev_t *mddev, sector_t num_sectors);
2980
2981 static ssize_t
2982 size_store(mddev_t *mddev, const char *buf, size_t len)
2983 {
2984 /* If array is inactive, we can reduce the component size, but
2985 * not increase it (except from 0).
2986 * If array is active, we can try an on-line resize
2987 */
2988 char *e;
2989 int err = 0;
2990 unsigned long long size = simple_strtoull(buf, &e, 10);
2991 if (!*buf || *buf == '\n' ||
2992 (*e && *e != '\n'))
2993 return -EINVAL;
2994
2995 if (mddev->pers) {
2996 err = update_size(mddev, size * 2);
2997 md_update_sb(mddev, 1);
2998 } else {
2999 if (mddev->size == 0 ||
3000 mddev->size > size)
3001 mddev->size = size;
3002 else
3003 err = -ENOSPC;
3004 }
3005 return err ? err : len;
3006 }
3007
3008 static struct md_sysfs_entry md_size =
3009 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3010
3011
3012 /* Metdata version.
3013 * This is one of
3014 * 'none' for arrays with no metadata (good luck...)
3015 * 'external' for arrays with externally managed metadata,
3016 * or N.M for internally known formats
3017 */
3018 static ssize_t
3019 metadata_show(mddev_t *mddev, char *page)
3020 {
3021 if (mddev->persistent)
3022 return sprintf(page, "%d.%d\n",
3023 mddev->major_version, mddev->minor_version);
3024 else if (mddev->external)
3025 return sprintf(page, "external:%s\n", mddev->metadata_type);
3026 else
3027 return sprintf(page, "none\n");
3028 }
3029
3030 static ssize_t
3031 metadata_store(mddev_t *mddev, const char *buf, size_t len)
3032 {
3033 int major, minor;
3034 char *e;
3035 /* Changing the details of 'external' metadata is
3036 * always permitted. Otherwise there must be
3037 * no devices attached to the array.
3038 */
3039 if (mddev->external && strncmp(buf, "external:", 9) == 0)
3040 ;
3041 else if (!list_empty(&mddev->disks))
3042 return -EBUSY;
3043
3044 if (cmd_match(buf, "none")) {
3045 mddev->persistent = 0;
3046 mddev->external = 0;
3047 mddev->major_version = 0;
3048 mddev->minor_version = 90;
3049 return len;
3050 }
3051 if (strncmp(buf, "external:", 9) == 0) {
3052 size_t namelen = len-9;
3053 if (namelen >= sizeof(mddev->metadata_type))
3054 namelen = sizeof(mddev->metadata_type)-1;
3055 strncpy(mddev->metadata_type, buf+9, namelen);
3056 mddev->metadata_type[namelen] = 0;
3057 if (namelen && mddev->metadata_type[namelen-1] == '\n')
3058 mddev->metadata_type[--namelen] = 0;
3059 mddev->persistent = 0;
3060 mddev->external = 1;
3061 mddev->major_version = 0;
3062 mddev->minor_version = 90;
3063 return len;
3064 }
3065 major = simple_strtoul(buf, &e, 10);
3066 if (e==buf || *e != '.')
3067 return -EINVAL;
3068 buf = e+1;
3069 minor = simple_strtoul(buf, &e, 10);
3070 if (e==buf || (*e && *e != '\n') )
3071 return -EINVAL;
3072 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
3073 return -ENOENT;
3074 mddev->major_version = major;
3075 mddev->minor_version = minor;
3076 mddev->persistent = 1;
3077 mddev->external = 0;
3078 return len;
3079 }
3080
3081 static struct md_sysfs_entry md_metadata =
3082 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
3083
3084 static ssize_t
3085 action_show(mddev_t *mddev, char *page)
3086 {
3087 char *type = "idle";
3088 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3089 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
3090 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3091 type = "reshape";
3092 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3093 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3094 type = "resync";
3095 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
3096 type = "check";
3097 else
3098 type = "repair";
3099 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
3100 type = "recover";
3101 }
3102 return sprintf(page, "%s\n", type);
3103 }
3104
3105 static ssize_t
3106 action_store(mddev_t *mddev, const char *page, size_t len)
3107 {
3108 if (!mddev->pers || !mddev->pers->sync_request)
3109 return -EINVAL;
3110
3111 if (cmd_match(page, "idle")) {
3112 if (mddev->sync_thread) {
3113 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3114 md_unregister_thread(mddev->sync_thread);
3115 mddev->sync_thread = NULL;
3116 mddev->recovery = 0;
3117 }
3118 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3119 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3120 return -EBUSY;
3121 else if (cmd_match(page, "resync"))
3122 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3123 else if (cmd_match(page, "recover")) {
3124 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3125 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3126 } else if (cmd_match(page, "reshape")) {
3127 int err;
3128 if (mddev->pers->start_reshape == NULL)
3129 return -EINVAL;
3130 err = mddev->pers->start_reshape(mddev);
3131 if (err)
3132 return err;
3133 sysfs_notify(&mddev->kobj, NULL, "degraded");
3134 } else {
3135 if (cmd_match(page, "check"))
3136 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3137 else if (!cmd_match(page, "repair"))
3138 return -EINVAL;
3139 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3140 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3141 }
3142 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3143 md_wakeup_thread(mddev->thread);
3144 sysfs_notify_dirent(mddev->sysfs_action);
3145 return len;
3146 }
3147
3148 static ssize_t
3149 mismatch_cnt_show(mddev_t *mddev, char *page)
3150 {
3151 return sprintf(page, "%llu\n",
3152 (unsigned long long) mddev->resync_mismatches);
3153 }
3154
3155 static struct md_sysfs_entry md_scan_mode =
3156 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
3157
3158
3159 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
3160
3161 static ssize_t
3162 sync_min_show(mddev_t *mddev, char *page)
3163 {
3164 return sprintf(page, "%d (%s)\n", speed_min(mddev),
3165 mddev->sync_speed_min ? "local": "system");
3166 }
3167
3168 static ssize_t
3169 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
3170 {
3171 int min;
3172 char *e;
3173 if (strncmp(buf, "system", 6)==0) {
3174 mddev->sync_speed_min = 0;
3175 return len;
3176 }
3177 min = simple_strtoul(buf, &e, 10);
3178 if (buf == e || (*e && *e != '\n') || min <= 0)
3179 return -EINVAL;
3180 mddev->sync_speed_min = min;
3181 return len;
3182 }
3183
3184 static struct md_sysfs_entry md_sync_min =
3185 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
3186
3187 static ssize_t
3188 sync_max_show(mddev_t *mddev, char *page)
3189 {
3190 return sprintf(page, "%d (%s)\n", speed_max(mddev),
3191 mddev->sync_speed_max ? "local": "system");
3192 }
3193
3194 static ssize_t
3195 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
3196 {
3197 int max;
3198 char *e;
3199 if (strncmp(buf, "system", 6)==0) {
3200 mddev->sync_speed_max = 0;
3201 return len;
3202 }
3203 max = simple_strtoul(buf, &e, 10);
3204 if (buf == e || (*e && *e != '\n') || max <= 0)
3205 return -EINVAL;
3206 mddev->sync_speed_max = max;
3207 return len;
3208 }
3209
3210 static struct md_sysfs_entry md_sync_max =
3211 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
3212
3213 static ssize_t
3214 degraded_show(mddev_t *mddev, char *page)
3215 {
3216 return sprintf(page, "%d\n", mddev->degraded);
3217 }
3218 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
3219
3220 static ssize_t
3221 sync_force_parallel_show(mddev_t *mddev, char *page)
3222 {
3223 return sprintf(page, "%d\n", mddev->parallel_resync);
3224 }
3225
3226 static ssize_t
3227 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
3228 {
3229 long n;
3230
3231 if (strict_strtol(buf, 10, &n))
3232 return -EINVAL;
3233
3234 if (n != 0 && n != 1)
3235 return -EINVAL;
3236
3237 mddev->parallel_resync = n;
3238
3239 if (mddev->sync_thread)
3240 wake_up(&resync_wait);
3241
3242 return len;
3243 }
3244
3245 /* force parallel resync, even with shared block devices */
3246 static struct md_sysfs_entry md_sync_force_parallel =
3247 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
3248 sync_force_parallel_show, sync_force_parallel_store);
3249
3250 static ssize_t
3251 sync_speed_show(mddev_t *mddev, char *page)
3252 {
3253 unsigned long resync, dt, db;
3254 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
3255 dt = (jiffies - mddev->resync_mark) / HZ;
3256 if (!dt) dt++;
3257 db = resync - mddev->resync_mark_cnt;
3258 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
3259 }
3260
3261 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
3262
3263 static ssize_t
3264 sync_completed_show(mddev_t *mddev, char *page)
3265 {
3266 unsigned long max_blocks, resync;
3267
3268 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3269 max_blocks = mddev->resync_max_sectors;
3270 else
3271 max_blocks = mddev->size << 1;
3272
3273 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
3274 return sprintf(page, "%lu / %lu\n", resync, max_blocks);
3275 }
3276
3277 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
3278
3279 static ssize_t
3280 min_sync_show(mddev_t *mddev, char *page)
3281 {
3282 return sprintf(page, "%llu\n",
3283 (unsigned long long)mddev->resync_min);
3284 }
3285 static ssize_t
3286 min_sync_store(mddev_t *mddev, const char *buf, size_t len)
3287 {
3288 unsigned long long min;
3289 if (strict_strtoull(buf, 10, &min))
3290 return -EINVAL;
3291 if (min > mddev->resync_max)
3292 return -EINVAL;
3293 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3294 return -EBUSY;
3295
3296 /* Must be a multiple of chunk_size */
3297 if (mddev->chunk_size) {
3298 if (min & (sector_t)((mddev->chunk_size>>9)-1))
3299 return -EINVAL;
3300 }
3301 mddev->resync_min = min;
3302
3303 return len;
3304 }
3305
3306 static struct md_sysfs_entry md_min_sync =
3307 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
3308
3309 static ssize_t
3310 max_sync_show(mddev_t *mddev, char *page)
3311 {
3312 if (mddev->resync_max == MaxSector)
3313 return sprintf(page, "max\n");
3314 else
3315 return sprintf(page, "%llu\n",
3316 (unsigned long long)mddev->resync_max);
3317 }
3318 static ssize_t
3319 max_sync_store(mddev_t *mddev, const char *buf, size_t len)
3320 {
3321 if (strncmp(buf, "max", 3) == 0)
3322 mddev->resync_max = MaxSector;
3323 else {
3324 unsigned long long max;
3325 if (strict_strtoull(buf, 10, &max))
3326 return -EINVAL;
3327 if (max < mddev->resync_min)
3328 return -EINVAL;
3329 if (max < mddev->resync_max &&
3330 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3331 return -EBUSY;
3332
3333 /* Must be a multiple of chunk_size */
3334 if (mddev->chunk_size) {
3335 if (max & (sector_t)((mddev->chunk_size>>9)-1))
3336 return -EINVAL;
3337 }
3338 mddev->resync_max = max;
3339 }
3340 wake_up(&mddev->recovery_wait);
3341 return len;
3342 }
3343
3344 static struct md_sysfs_entry md_max_sync =
3345 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
3346
3347 static ssize_t
3348 suspend_lo_show(mddev_t *mddev, char *page)
3349 {
3350 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
3351 }
3352
3353 static ssize_t
3354 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
3355 {
3356 char *e;
3357 unsigned long long new = simple_strtoull(buf, &e, 10);
3358
3359 if (mddev->pers->quiesce == NULL)
3360 return -EINVAL;
3361 if (buf == e || (*e && *e != '\n'))
3362 return -EINVAL;
3363 if (new >= mddev->suspend_hi ||
3364 (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
3365 mddev->suspend_lo = new;
3366 mddev->pers->quiesce(mddev, 2);
3367 return len;
3368 } else
3369 return -EINVAL;
3370 }
3371 static struct md_sysfs_entry md_suspend_lo =
3372 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
3373
3374
3375 static ssize_t
3376 suspend_hi_show(mddev_t *mddev, char *page)
3377 {
3378 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
3379 }
3380
3381 static ssize_t
3382 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
3383 {
3384 char *e;
3385 unsigned long long new = simple_strtoull(buf, &e, 10);
3386
3387 if (mddev->pers->quiesce == NULL)
3388 return -EINVAL;
3389 if (buf == e || (*e && *e != '\n'))
3390 return -EINVAL;
3391 if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
3392 (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
3393 mddev->suspend_hi = new;
3394 mddev->pers->quiesce(mddev, 1);
3395 mddev->pers->quiesce(mddev, 0);
3396 return len;
3397 } else
3398 return -EINVAL;
3399 }
3400 static struct md_sysfs_entry md_suspend_hi =
3401 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
3402
3403 static ssize_t
3404 reshape_position_show(mddev_t *mddev, char *page)
3405 {
3406 if (mddev->reshape_position != MaxSector)
3407 return sprintf(page, "%llu\n",
3408 (unsigned long long)mddev->reshape_position);
3409 strcpy(page, "none\n");
3410 return 5;
3411 }
3412
3413 static ssize_t
3414 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
3415 {
3416 char *e;
3417 unsigned long long new = simple_strtoull(buf, &e, 10);
3418 if (mddev->pers)
3419 return -EBUSY;
3420 if (buf == e || (*e && *e != '\n'))
3421 return -EINVAL;
3422 mddev->reshape_position = new;
3423 mddev->delta_disks = 0;
3424 mddev->new_level = mddev->level;
3425 mddev->new_layout = mddev->layout;
3426 mddev->new_chunk = mddev->chunk_size;
3427 return len;
3428 }
3429
3430 static struct md_sysfs_entry md_reshape_position =
3431 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
3432 reshape_position_store);
3433
3434
3435 static struct attribute *md_default_attrs[] = {
3436 &md_level.attr,
3437 &md_layout.attr,
3438 &md_raid_disks.attr,
3439 &md_chunk_size.attr,
3440 &md_size.attr,
3441 &md_resync_start.attr,
3442 &md_metadata.attr,
3443 &md_new_device.attr,
3444 &md_safe_delay.attr,
3445 &md_array_state.attr,
3446 &md_reshape_position.attr,
3447 NULL,
3448 };
3449
3450 static struct attribute *md_redundancy_attrs[] = {
3451 &md_scan_mode.attr,
3452 &md_mismatches.attr,
3453 &md_sync_min.attr,
3454 &md_sync_max.attr,
3455 &md_sync_speed.attr,
3456 &md_sync_force_parallel.attr,
3457 &md_sync_completed.attr,
3458 &md_min_sync.attr,
3459 &md_max_sync.attr,
3460 &md_suspend_lo.attr,
3461 &md_suspend_hi.attr,
3462 &md_bitmap.attr,
3463 &md_degraded.attr,
3464 NULL,
3465 };
3466 static struct attribute_group md_redundancy_group = {
3467 .name = NULL,
3468 .attrs = md_redundancy_attrs,
3469 };
3470
3471
3472 static ssize_t
3473 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3474 {
3475 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3476 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3477 ssize_t rv;
3478
3479 if (!entry->show)
3480 return -EIO;
3481 rv = mddev_lock(mddev);
3482 if (!rv) {
3483 rv = entry->show(mddev, page);
3484 mddev_unlock(mddev);
3485 }
3486 return rv;
3487 }
3488
3489 static ssize_t
3490 md_attr_store(struct kobject *kobj, struct attribute *attr,
3491 const char *page, size_t length)
3492 {
3493 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3494 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3495 ssize_t rv;
3496
3497 if (!entry->store)
3498 return -EIO;
3499 if (!capable(CAP_SYS_ADMIN))
3500 return -EACCES;
3501 rv = mddev_lock(mddev);
3502 if (mddev->hold_active == UNTIL_IOCTL)
3503 mddev->hold_active = 0;
3504 if (!rv) {
3505 rv = entry->store(mddev, page, length);
3506 mddev_unlock(mddev);
3507 }
3508 return rv;
3509 }
3510
3511 static void md_free(struct kobject *ko)
3512 {
3513 mddev_t *mddev = container_of(ko, mddev_t, kobj);
3514
3515 if (mddev->sysfs_state)
3516 sysfs_put(mddev->sysfs_state);
3517
3518 if (mddev->gendisk) {
3519 del_gendisk(mddev->gendisk);
3520 put_disk(mddev->gendisk);
3521 }
3522 if (mddev->queue)
3523 blk_cleanup_queue(mddev->queue);
3524
3525 kfree(mddev);
3526 }
3527
3528 static struct sysfs_ops md_sysfs_ops = {
3529 .show = md_attr_show,
3530 .store = md_attr_store,
3531 };
3532 static struct kobj_type md_ktype = {
3533 .release = md_free,
3534 .sysfs_ops = &md_sysfs_ops,
3535 .default_attrs = md_default_attrs,
3536 };
3537
3538 int mdp_major = 0;
3539
3540 static void mddev_delayed_delete(struct work_struct *ws)
3541 {
3542 mddev_t *mddev = container_of(ws, mddev_t, del_work);
3543
3544 if (mddev->private == &md_redundancy_group) {
3545 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
3546 if (mddev->sysfs_action)
3547 sysfs_put(mddev->sysfs_action);
3548 mddev->sysfs_action = NULL;
3549 mddev->private = NULL;
3550 }
3551 kobject_del(&mddev->kobj);
3552 kobject_put(&mddev->kobj);
3553 }
3554
3555 static int md_alloc(dev_t dev, char *name)
3556 {
3557 static DEFINE_MUTEX(disks_mutex);
3558 mddev_t *mddev = mddev_find(dev);
3559 struct gendisk *disk;
3560 int partitioned;
3561 int shift;
3562 int unit;
3563 int error;
3564
3565 if (!mddev)
3566 return -ENODEV;
3567
3568 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
3569 shift = partitioned ? MdpMinorShift : 0;
3570 unit = MINOR(mddev->unit) >> shift;
3571
3572 /* wait for any previous instance if this device
3573 * to be completed removed (mddev_delayed_delete).
3574 */
3575 flush_scheduled_work();
3576
3577 mutex_lock(&disks_mutex);
3578 if (mddev->gendisk) {
3579 mutex_unlock(&disks_mutex);
3580 mddev_put(mddev);
3581 return -EEXIST;
3582 }
3583
3584 if (name) {
3585 /* Need to ensure that 'name' is not a duplicate.
3586 */
3587 mddev_t *mddev2;
3588 spin_lock(&all_mddevs_lock);
3589
3590 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
3591 if (mddev2->gendisk &&
3592 strcmp(mddev2->gendisk->disk_name, name) == 0) {
3593 spin_unlock(&all_mddevs_lock);
3594 return -EEXIST;
3595 }
3596 spin_unlock(&all_mddevs_lock);
3597 }
3598
3599 mddev->queue = blk_alloc_queue(GFP_KERNEL);
3600 if (!mddev->queue) {
3601 mutex_unlock(&disks_mutex);
3602 mddev_put(mddev);
3603 return -ENOMEM;
3604 }
3605 /* Can be unlocked because the queue is new: no concurrency */
3606 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, mddev->queue);
3607
3608 blk_queue_make_request(mddev->queue, md_fail_request);
3609
3610 disk = alloc_disk(1 << shift);
3611 if (!disk) {
3612 mutex_unlock(&disks_mutex);
3613 blk_cleanup_queue(mddev->queue);
3614 mddev->queue = NULL;
3615 mddev_put(mddev);
3616 return -ENOMEM;
3617 }
3618 disk->major = MAJOR(mddev->unit);
3619 disk->first_minor = unit << shift;
3620 if (name)
3621 strcpy(disk->disk_name, name);
3622 else if (partitioned)
3623 sprintf(disk->disk_name, "md_d%d", unit);
3624 else
3625 sprintf(disk->disk_name, "md%d", unit);
3626 disk->fops = &md_fops;
3627 disk->private_data = mddev;
3628 disk->queue = mddev->queue;
3629 /* Allow extended partitions. This makes the
3630 * 'mdp' device redundant, but we can't really
3631 * remove it now.
3632 */
3633 disk->flags |= GENHD_FL_EXT_DEVT;
3634 add_disk(disk);
3635 mddev->gendisk = disk;
3636 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
3637 &disk_to_dev(disk)->kobj, "%s", "md");
3638 mutex_unlock(&disks_mutex);
3639 if (error)
3640 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
3641 disk->disk_name);
3642 else {
3643 kobject_uevent(&mddev->kobj, KOBJ_ADD);
3644 mddev->sysfs_state = sysfs_get_dirent(mddev->kobj.sd, "array_state");
3645 }
3646 mddev_put(mddev);
3647 return 0;
3648 }
3649
3650 static struct kobject *md_probe(dev_t dev, int *part, void *data)
3651 {
3652 md_alloc(dev, NULL);
3653 return NULL;
3654 }
3655
3656 static int add_named_array(const char *val, struct kernel_param *kp)
3657 {
3658 /* val must be "md_*" where * is not all digits.
3659 * We allocate an array with a large free minor number, and
3660 * set the name to val. val must not already be an active name.
3661 */
3662 int len = strlen(val);
3663 char buf[DISK_NAME_LEN];
3664
3665 while (len && val[len-1] == '\n')
3666 len--;
3667 if (len >= DISK_NAME_LEN)
3668 return -E2BIG;
3669 strlcpy(buf, val, len+1);
3670 if (strncmp(buf, "md_", 3) != 0)
3671 return -EINVAL;
3672 return md_alloc(0, buf);
3673 }
3674
3675 static void md_safemode_timeout(unsigned long data)
3676 {
3677 mddev_t *mddev = (mddev_t *) data;
3678
3679 if (!atomic_read(&mddev->writes_pending)) {
3680 mddev->safemode = 1;
3681 if (mddev->external)
3682 sysfs_notify_dirent(mddev->sysfs_state);
3683 }
3684 md_wakeup_thread(mddev->thread);
3685 }
3686
3687 static int start_dirty_degraded;
3688
3689 static int do_md_run(mddev_t * mddev)
3690 {
3691 int err;
3692 int chunk_size;
3693 mdk_rdev_t *rdev;
3694 struct gendisk *disk;
3695 struct mdk_personality *pers;
3696 char b[BDEVNAME_SIZE];
3697
3698 if (list_empty(&mddev->disks))
3699 /* cannot run an array with no devices.. */
3700 return -EINVAL;
3701
3702 if (mddev->pers)
3703 return -EBUSY;
3704
3705 /*
3706 * Analyze all RAID superblock(s)
3707 */
3708 if (!mddev->raid_disks) {
3709 if (!mddev->persistent)
3710 return -EINVAL;
3711 analyze_sbs(mddev);
3712 }
3713
3714 chunk_size = mddev->chunk_size;
3715
3716 if (chunk_size) {
3717 if (chunk_size > MAX_CHUNK_SIZE) {
3718 printk(KERN_ERR "too big chunk_size: %d > %d\n",
3719 chunk_size, MAX_CHUNK_SIZE);
3720 return -EINVAL;
3721 }
3722 /*
3723 * chunk-size has to be a power of 2
3724 */
3725 if ( (1 << ffz(~chunk_size)) != chunk_size) {
3726 printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
3727 return -EINVAL;
3728 }
3729
3730 /* devices must have minimum size of one chunk */
3731 list_for_each_entry(rdev, &mddev->disks, same_set) {
3732 if (test_bit(Faulty, &rdev->flags))
3733 continue;
3734 if (rdev->size < chunk_size / 1024) {
3735 printk(KERN_WARNING
3736 "md: Dev %s smaller than chunk_size:"
3737 " %lluk < %dk\n",
3738 bdevname(rdev->bdev,b),
3739 (unsigned long long)rdev->size,
3740 chunk_size / 1024);
3741 return -EINVAL;
3742 }
3743 }
3744 }
3745
3746 if (mddev->level != LEVEL_NONE)
3747 request_module("md-level-%d", mddev->level);
3748 else if (mddev->clevel[0])
3749 request_module("md-%s", mddev->clevel);
3750
3751 /*
3752 * Drop all container device buffers, from now on
3753 * the only valid external interface is through the md
3754 * device.
3755 */
3756 list_for_each_entry(rdev, &mddev->disks, same_set) {
3757 if (test_bit(Faulty, &rdev->flags))
3758 continue;
3759 sync_blockdev(rdev->bdev);
3760 invalidate_bdev(rdev->bdev);
3761
3762 /* perform some consistency tests on the device.
3763 * We don't want the data to overlap the metadata,
3764 * Internal Bitmap issues has handled elsewhere.
3765 */
3766 if (rdev->data_offset < rdev->sb_start) {
3767 if (mddev->size &&
3768 rdev->data_offset + mddev->size*2
3769 > rdev->sb_start) {
3770 printk("md: %s: data overlaps metadata\n",
3771 mdname(mddev));
3772 return -EINVAL;
3773 }
3774 } else {
3775 if (rdev->sb_start + rdev->sb_size/512
3776 > rdev->data_offset) {
3777 printk("md: %s: metadata overlaps data\n",
3778 mdname(mddev));
3779 return -EINVAL;
3780 }
3781 }
3782 sysfs_notify_dirent(rdev->sysfs_state);
3783 }
3784
3785 md_probe(mddev->unit, NULL, NULL);
3786 disk = mddev->gendisk;
3787 if (!disk)
3788 return -ENOMEM;
3789
3790 spin_lock(&pers_lock);
3791 pers = find_pers(mddev->level, mddev->clevel);
3792 if (!pers || !try_module_get(pers->owner)) {
3793 spin_unlock(&pers_lock);
3794 if (mddev->level != LEVEL_NONE)
3795 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
3796 mddev->level);
3797 else
3798 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
3799 mddev->clevel);
3800 return -EINVAL;
3801 }
3802 mddev->pers = pers;
3803 spin_unlock(&pers_lock);
3804 mddev->level = pers->level;
3805 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3806
3807 if (mddev->reshape_position != MaxSector &&
3808 pers->start_reshape == NULL) {
3809 /* This personality cannot handle reshaping... */
3810 mddev->pers = NULL;
3811 module_put(pers->owner);
3812 return -EINVAL;
3813 }
3814
3815 if (pers->sync_request) {
3816 /* Warn if this is a potentially silly
3817 * configuration.
3818 */
3819 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
3820 mdk_rdev_t *rdev2;
3821 int warned = 0;
3822
3823 list_for_each_entry(rdev, &mddev->disks, same_set)
3824 list_for_each_entry(rdev2, &mddev->disks, same_set) {
3825 if (rdev < rdev2 &&
3826 rdev->bdev->bd_contains ==
3827 rdev2->bdev->bd_contains) {
3828 printk(KERN_WARNING
3829 "%s: WARNING: %s appears to be"
3830 " on the same physical disk as"
3831 " %s.\n",
3832 mdname(mddev),
3833 bdevname(rdev->bdev,b),
3834 bdevname(rdev2->bdev,b2));
3835 warned = 1;
3836 }
3837 }
3838
3839 if (warned)
3840 printk(KERN_WARNING
3841 "True protection against single-disk"
3842 " failure might be compromised.\n");
3843 }
3844
3845 mddev->recovery = 0;
3846 mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
3847 mddev->barriers_work = 1;
3848 mddev->ok_start_degraded = start_dirty_degraded;
3849
3850 if (start_readonly)
3851 mddev->ro = 2; /* read-only, but switch on first write */
3852
3853 err = mddev->pers->run(mddev);
3854 if (err)
3855 printk(KERN_ERR "md: pers->run() failed ...\n");
3856 else if (mddev->pers->sync_request) {
3857 err = bitmap_create(mddev);
3858 if (err) {
3859 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
3860 mdname(mddev), err);
3861 mddev->pers->stop(mddev);
3862 }
3863 }
3864 if (err) {
3865 module_put(mddev->pers->owner);
3866 mddev->pers = NULL;
3867 bitmap_destroy(mddev);
3868 return err;
3869 }
3870 if (mddev->pers->sync_request) {
3871 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3872 printk(KERN_WARNING
3873 "md: cannot register extra attributes for %s\n",
3874 mdname(mddev));
3875 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3876 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
3877 mddev->ro = 0;
3878
3879 atomic_set(&mddev->writes_pending,0);
3880 mddev->safemode = 0;
3881 mddev->safemode_timer.function = md_safemode_timeout;
3882 mddev->safemode_timer.data = (unsigned long) mddev;
3883 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
3884 mddev->in_sync = 1;
3885
3886 list_for_each_entry(rdev, &mddev->disks, same_set)
3887 if (rdev->raid_disk >= 0) {
3888 char nm[20];
3889 sprintf(nm, "rd%d", rdev->raid_disk);
3890 if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
3891 printk("md: cannot register %s for %s\n",
3892 nm, mdname(mddev));
3893 }
3894
3895 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3896
3897 if (mddev->flags)
3898 md_update_sb(mddev, 0);
3899
3900 set_capacity(disk, mddev->array_sectors);
3901
3902 /* If we call blk_queue_make_request here, it will
3903 * re-initialise max_sectors etc which may have been
3904 * refined inside -> run. So just set the bits we need to set.
3905 * Most initialisation happended when we called
3906 * blk_queue_make_request(..., md_fail_request)
3907 * earlier.
3908 */
3909 mddev->queue->queuedata = mddev;
3910 mddev->queue->make_request_fn = mddev->pers->make_request;
3911
3912 /* If there is a partially-recovered drive we need to
3913 * start recovery here. If we leave it to md_check_recovery,
3914 * it will remove the drives and not do the right thing
3915 */
3916 if (mddev->degraded && !mddev->sync_thread) {
3917 int spares = 0;
3918 list_for_each_entry(rdev, &mddev->disks, same_set)
3919 if (rdev->raid_disk >= 0 &&
3920 !test_bit(In_sync, &rdev->flags) &&
3921 !test_bit(Faulty, &rdev->flags))
3922 /* complete an interrupted recovery */
3923 spares++;
3924 if (spares && mddev->pers->sync_request) {
3925 mddev->recovery = 0;
3926 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3927 mddev->sync_thread = md_register_thread(md_do_sync,
3928 mddev,
3929 "%s_resync");
3930 if (!mddev->sync_thread) {
3931 printk(KERN_ERR "%s: could not start resync"
3932 " thread...\n",
3933 mdname(mddev));
3934 /* leave the spares where they are, it shouldn't hurt */
3935 mddev->recovery = 0;
3936 }
3937 }
3938 }
3939 md_wakeup_thread(mddev->thread);
3940 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
3941
3942 mddev->changed = 1;
3943 md_new_event(mddev);
3944 sysfs_notify_dirent(mddev->sysfs_state);
3945 if (mddev->sysfs_action)
3946 sysfs_notify_dirent(mddev->sysfs_action);
3947 sysfs_notify(&mddev->kobj, NULL, "degraded");
3948 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
3949 return 0;
3950 }
3951
3952 static int restart_array(mddev_t *mddev)
3953 {
3954 struct gendisk *disk = mddev->gendisk;
3955
3956 /* Complain if it has no devices */
3957 if (list_empty(&mddev->disks))
3958 return -ENXIO;
3959 if (!mddev->pers)
3960 return -EINVAL;
3961 if (!mddev->ro)
3962 return -EBUSY;
3963 mddev->safemode = 0;
3964 mddev->ro = 0;
3965 set_disk_ro(disk, 0);
3966 printk(KERN_INFO "md: %s switched to read-write mode.\n",
3967 mdname(mddev));
3968 /* Kick recovery or resync if necessary */
3969 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3970 md_wakeup_thread(mddev->thread);
3971 md_wakeup_thread(mddev->sync_thread);
3972 sysfs_notify_dirent(mddev->sysfs_state);
3973 return 0;
3974 }
3975
3976 /* similar to deny_write_access, but accounts for our holding a reference
3977 * to the file ourselves */
3978 static int deny_bitmap_write_access(struct file * file)
3979 {
3980 struct inode *inode = file->f_mapping->host;
3981
3982 spin_lock(&inode->i_lock);
3983 if (atomic_read(&inode->i_writecount) > 1) {
3984 spin_unlock(&inode->i_lock);
3985 return -ETXTBSY;
3986 }
3987 atomic_set(&inode->i_writecount, -1);
3988 spin_unlock(&inode->i_lock);
3989
3990 return 0;
3991 }
3992
3993 static void restore_bitmap_write_access(struct file *file)
3994 {
3995 struct inode *inode = file->f_mapping->host;
3996
3997 spin_lock(&inode->i_lock);
3998 atomic_set(&inode->i_writecount, 1);
3999 spin_unlock(&inode->i_lock);
4000 }
4001
4002 /* mode:
4003 * 0 - completely stop and dis-assemble array
4004 * 1 - switch to readonly
4005 * 2 - stop but do not disassemble array
4006 */
4007 static int do_md_stop(mddev_t * mddev, int mode, int is_open)
4008 {
4009 int err = 0;
4010 struct gendisk *disk = mddev->gendisk;
4011
4012 if (atomic_read(&mddev->openers) > is_open) {
4013 printk("md: %s still in use.\n",mdname(mddev));
4014 return -EBUSY;
4015 }
4016
4017 if (mddev->pers) {
4018
4019 if (mddev->sync_thread) {
4020 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4021 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4022 md_unregister_thread(mddev->sync_thread);
4023 mddev->sync_thread = NULL;
4024 }
4025
4026 del_timer_sync(&mddev->safemode_timer);
4027
4028 switch(mode) {
4029 case 1: /* readonly */
4030 err = -ENXIO;
4031 if (mddev->ro==1)
4032 goto out;
4033 mddev->ro = 1;
4034 break;
4035 case 0: /* disassemble */
4036 case 2: /* stop */
4037 bitmap_flush(mddev);
4038 md_super_wait(mddev);
4039 if (mddev->ro)
4040 set_disk_ro(disk, 0);
4041 blk_queue_make_request(mddev->queue, md_fail_request);
4042 mddev->pers->stop(mddev);
4043 mddev->queue->merge_bvec_fn = NULL;
4044 mddev->queue->unplug_fn = NULL;
4045 mddev->queue->backing_dev_info.congested_fn = NULL;
4046 module_put(mddev->pers->owner);
4047 if (mddev->pers->sync_request)
4048 mddev->private = &md_redundancy_group;
4049 mddev->pers = NULL;
4050 /* tell userspace to handle 'inactive' */
4051 sysfs_notify_dirent(mddev->sysfs_state);
4052
4053 set_capacity(disk, 0);
4054 mddev->changed = 1;
4055
4056 if (mddev->ro)
4057 mddev->ro = 0;
4058 }
4059 if (!mddev->in_sync || mddev->flags) {
4060 /* mark array as shutdown cleanly */
4061 mddev->in_sync = 1;
4062 md_update_sb(mddev, 1);
4063 }
4064 if (mode == 1)
4065 set_disk_ro(disk, 1);
4066 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4067 }
4068
4069 /*
4070 * Free resources if final stop
4071 */
4072 if (mode == 0) {
4073 mdk_rdev_t *rdev;
4074
4075 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
4076
4077 bitmap_destroy(mddev);
4078 if (mddev->bitmap_file) {
4079 restore_bitmap_write_access(mddev->bitmap_file);
4080 fput(mddev->bitmap_file);
4081 mddev->bitmap_file = NULL;
4082 }
4083 mddev->bitmap_offset = 0;
4084
4085 list_for_each_entry(rdev, &mddev->disks, same_set)
4086 if (rdev->raid_disk >= 0) {
4087 char nm[20];
4088 sprintf(nm, "rd%d", rdev->raid_disk);
4089 sysfs_remove_link(&mddev->kobj, nm);
4090 }
4091
4092 /* make sure all md_delayed_delete calls have finished */
4093 flush_scheduled_work();
4094
4095 export_array(mddev);
4096
4097 mddev->array_sectors = 0;
4098 mddev->size = 0;
4099 mddev->raid_disks = 0;
4100 mddev->recovery_cp = 0;
4101 mddev->resync_min = 0;
4102 mddev->resync_max = MaxSector;
4103 mddev->reshape_position = MaxSector;
4104 mddev->external = 0;
4105 mddev->persistent = 0;
4106 mddev->level = LEVEL_NONE;
4107 mddev->clevel[0] = 0;
4108 mddev->flags = 0;
4109 mddev->ro = 0;
4110 mddev->metadata_type[0] = 0;
4111 mddev->chunk_size = 0;
4112 mddev->ctime = mddev->utime = 0;
4113 mddev->layout = 0;
4114 mddev->max_disks = 0;
4115 mddev->events = 0;
4116 mddev->delta_disks = 0;
4117 mddev->new_level = LEVEL_NONE;
4118 mddev->new_layout = 0;
4119 mddev->new_chunk = 0;
4120 mddev->curr_resync = 0;
4121 mddev->resync_mismatches = 0;
4122 mddev->suspend_lo = mddev->suspend_hi = 0;
4123 mddev->sync_speed_min = mddev->sync_speed_max = 0;
4124 mddev->recovery = 0;
4125 mddev->in_sync = 0;
4126 mddev->changed = 0;
4127 mddev->degraded = 0;
4128 mddev->barriers_work = 0;
4129 mddev->safemode = 0;
4130 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4131 if (mddev->hold_active == UNTIL_STOP)
4132 mddev->hold_active = 0;
4133
4134 } else if (mddev->pers)
4135 printk(KERN_INFO "md: %s switched to read-only mode.\n",
4136 mdname(mddev));
4137 err = 0;
4138 md_new_event(mddev);
4139 sysfs_notify_dirent(mddev->sysfs_state);
4140 out:
4141 return err;
4142 }
4143
4144 #ifndef MODULE
4145 static void autorun_array(mddev_t *mddev)
4146 {
4147 mdk_rdev_t *rdev;
4148 int err;
4149
4150 if (list_empty(&mddev->disks))
4151 return;
4152
4153 printk(KERN_INFO "md: running: ");
4154
4155 list_for_each_entry(rdev, &mddev->disks, same_set) {
4156 char b[BDEVNAME_SIZE];
4157 printk("<%s>", bdevname(rdev->bdev,b));
4158 }
4159 printk("\n");
4160
4161 err = do_md_run(mddev);
4162 if (err) {
4163 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
4164 do_md_stop(mddev, 0, 0);
4165 }
4166 }
4167
4168 /*
4169 * lets try to run arrays based on all disks that have arrived
4170 * until now. (those are in pending_raid_disks)
4171 *
4172 * the method: pick the first pending disk, collect all disks with
4173 * the same UUID, remove all from the pending list and put them into
4174 * the 'same_array' list. Then order this list based on superblock
4175 * update time (freshest comes first), kick out 'old' disks and
4176 * compare superblocks. If everything's fine then run it.
4177 *
4178 * If "unit" is allocated, then bump its reference count
4179 */
4180 static void autorun_devices(int part)
4181 {
4182 mdk_rdev_t *rdev0, *rdev, *tmp;
4183 mddev_t *mddev;
4184 char b[BDEVNAME_SIZE];
4185
4186 printk(KERN_INFO "md: autorun ...\n");
4187 while (!list_empty(&pending_raid_disks)) {
4188 int unit;
4189 dev_t dev;
4190 LIST_HEAD(candidates);
4191 rdev0 = list_entry(pending_raid_disks.next,
4192 mdk_rdev_t, same_set);
4193
4194 printk(KERN_INFO "md: considering %s ...\n",
4195 bdevname(rdev0->bdev,b));
4196 INIT_LIST_HEAD(&candidates);
4197 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
4198 if (super_90_load(rdev, rdev0, 0) >= 0) {
4199 printk(KERN_INFO "md: adding %s ...\n",
4200 bdevname(rdev->bdev,b));
4201 list_move(&rdev->same_set, &candidates);
4202 }
4203 /*
4204 * now we have a set of devices, with all of them having
4205 * mostly sane superblocks. It's time to allocate the
4206 * mddev.
4207 */
4208 if (part) {
4209 dev = MKDEV(mdp_major,
4210 rdev0->preferred_minor << MdpMinorShift);
4211 unit = MINOR(dev) >> MdpMinorShift;
4212 } else {
4213 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
4214 unit = MINOR(dev);
4215 }
4216 if (rdev0->preferred_minor != unit) {
4217 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
4218 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
4219 break;
4220 }
4221
4222 md_probe(dev, NULL, NULL);
4223 mddev = mddev_find(dev);
4224 if (!mddev || !mddev->gendisk) {
4225 if (mddev)
4226 mddev_put(mddev);
4227 printk(KERN_ERR
4228 "md: cannot allocate memory for md drive.\n");
4229 break;
4230 }
4231 if (mddev_lock(mddev))
4232 printk(KERN_WARNING "md: %s locked, cannot run\n",
4233 mdname(mddev));
4234 else if (mddev->raid_disks || mddev->major_version
4235 || !list_empty(&mddev->disks)) {
4236 printk(KERN_WARNING
4237 "md: %s already running, cannot run %s\n",
4238 mdname(mddev), bdevname(rdev0->bdev,b));
4239 mddev_unlock(mddev);
4240 } else {
4241 printk(KERN_INFO "md: created %s\n", mdname(mddev));
4242 mddev->persistent = 1;
4243 rdev_for_each_list(rdev, tmp, &candidates) {
4244 list_del_init(&rdev->same_set);
4245 if (bind_rdev_to_array(rdev, mddev))
4246 export_rdev(rdev);
4247 }
4248 autorun_array(mddev);
4249 mddev_unlock(mddev);
4250 }
4251 /* on success, candidates will be empty, on error
4252 * it won't...
4253 */
4254 rdev_for_each_list(rdev, tmp, &candidates) {
4255 list_del_init(&rdev->same_set);
4256 export_rdev(rdev);
4257 }
4258 mddev_put(mddev);
4259 }
4260 printk(KERN_INFO "md: ... autorun DONE.\n");
4261 }
4262 #endif /* !MODULE */
4263
4264 static int get_version(void __user * arg)
4265 {
4266 mdu_version_t ver;
4267
4268 ver.major = MD_MAJOR_VERSION;
4269 ver.minor = MD_MINOR_VERSION;
4270 ver.patchlevel = MD_PATCHLEVEL_VERSION;
4271
4272 if (copy_to_user(arg, &ver, sizeof(ver)))
4273 return -EFAULT;
4274
4275 return 0;
4276 }
4277
4278 static int get_array_info(mddev_t * mddev, void __user * arg)
4279 {
4280 mdu_array_info_t info;
4281 int nr,working,active,failed,spare;
4282 mdk_rdev_t *rdev;
4283
4284 nr=working=active=failed=spare=0;
4285 list_for_each_entry(rdev, &mddev->disks, same_set) {
4286 nr++;
4287 if (test_bit(Faulty, &rdev->flags))
4288 failed++;
4289 else {
4290 working++;
4291 if (test_bit(In_sync, &rdev->flags))
4292 active++;
4293 else
4294 spare++;
4295 }
4296 }
4297
4298 info.major_version = mddev->major_version;
4299 info.minor_version = mddev->minor_version;
4300 info.patch_version = MD_PATCHLEVEL_VERSION;
4301 info.ctime = mddev->ctime;
4302 info.level = mddev->level;
4303 info.size = mddev->size;
4304 if (info.size != mddev->size) /* overflow */
4305 info.size = -1;
4306 info.nr_disks = nr;
4307 info.raid_disks = mddev->raid_disks;
4308 info.md_minor = mddev->md_minor;
4309 info.not_persistent= !mddev->persistent;
4310
4311 info.utime = mddev->utime;
4312 info.state = 0;
4313 if (mddev->in_sync)
4314 info.state = (1<<MD_SB_CLEAN);
4315 if (mddev->bitmap && mddev->bitmap_offset)
4316 info.state = (1<<MD_SB_BITMAP_PRESENT);
4317 info.active_disks = active;
4318 info.working_disks = working;
4319 info.failed_disks = failed;
4320 info.spare_disks = spare;
4321
4322 info.layout = mddev->layout;
4323 info.chunk_size = mddev->chunk_size;
4324
4325 if (copy_to_user(arg, &info, sizeof(info)))
4326 return -EFAULT;
4327
4328 return 0;
4329 }
4330
4331 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
4332 {
4333 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
4334 char *ptr, *buf = NULL;
4335 int err = -ENOMEM;
4336
4337 if (md_allow_write(mddev))
4338 file = kmalloc(sizeof(*file), GFP_NOIO);
4339 else
4340 file = kmalloc(sizeof(*file), GFP_KERNEL);
4341
4342 if (!file)
4343 goto out;
4344
4345 /* bitmap disabled, zero the first byte and copy out */
4346 if (!mddev->bitmap || !mddev->bitmap->file) {
4347 file->pathname[0] = '\0';
4348 goto copy_out;
4349 }
4350
4351 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
4352 if (!buf)
4353 goto out;
4354
4355 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
4356 if (IS_ERR(ptr))
4357 goto out;
4358
4359 strcpy(file->pathname, ptr);
4360
4361 copy_out:
4362 err = 0;
4363 if (copy_to_user(arg, file, sizeof(*file)))
4364 err = -EFAULT;
4365 out:
4366 kfree(buf);
4367 kfree(file);
4368 return err;
4369 }
4370
4371 static int get_disk_info(mddev_t * mddev, void __user * arg)
4372 {
4373 mdu_disk_info_t info;
4374 mdk_rdev_t *rdev;
4375
4376 if (copy_from_user(&info, arg, sizeof(info)))
4377 return -EFAULT;
4378
4379 rdev = find_rdev_nr(mddev, info.number);
4380 if (rdev) {
4381 info.major = MAJOR(rdev->bdev->bd_dev);
4382 info.minor = MINOR(rdev->bdev->bd_dev);
4383 info.raid_disk = rdev->raid_disk;
4384 info.state = 0;
4385 if (test_bit(Faulty, &rdev->flags))
4386 info.state |= (1<<MD_DISK_FAULTY);
4387 else if (test_bit(In_sync, &rdev->flags)) {
4388 info.state |= (1<<MD_DISK_ACTIVE);
4389 info.state |= (1<<MD_DISK_SYNC);
4390 }
4391 if (test_bit(WriteMostly, &rdev->flags))
4392 info.state |= (1<<MD_DISK_WRITEMOSTLY);
4393 } else {
4394 info.major = info.minor = 0;
4395 info.raid_disk = -1;
4396 info.state = (1<<MD_DISK_REMOVED);
4397 }
4398
4399 if (copy_to_user(arg, &info, sizeof(info)))
4400 return -EFAULT;
4401
4402 return 0;
4403 }
4404
4405 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
4406 {
4407 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4408 mdk_rdev_t *rdev;
4409 dev_t dev = MKDEV(info->major,info->minor);
4410
4411 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
4412 return -EOVERFLOW;
4413
4414 if (!mddev->raid_disks) {
4415 int err;
4416 /* expecting a device which has a superblock */
4417 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
4418 if (IS_ERR(rdev)) {
4419 printk(KERN_WARNING
4420 "md: md_import_device returned %ld\n",
4421 PTR_ERR(rdev));
4422 return PTR_ERR(rdev);
4423 }
4424 if (!list_empty(&mddev->disks)) {
4425 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
4426 mdk_rdev_t, same_set);
4427 int err = super_types[mddev->major_version]
4428 .load_super(rdev, rdev0, mddev->minor_version);
4429 if (err < 0) {
4430 printk(KERN_WARNING
4431 "md: %s has different UUID to %s\n",
4432 bdevname(rdev->bdev,b),
4433 bdevname(rdev0->bdev,b2));
4434 export_rdev(rdev);
4435 return -EINVAL;
4436 }
4437 }
4438 err = bind_rdev_to_array(rdev, mddev);
4439 if (err)
4440 export_rdev(rdev);
4441 return err;
4442 }
4443
4444 /*
4445 * add_new_disk can be used once the array is assembled
4446 * to add "hot spares". They must already have a superblock
4447 * written
4448 */
4449 if (mddev->pers) {
4450 int err;
4451 if (!mddev->pers->hot_add_disk) {
4452 printk(KERN_WARNING
4453 "%s: personality does not support diskops!\n",
4454 mdname(mddev));
4455 return -EINVAL;
4456 }
4457 if (mddev->persistent)
4458 rdev = md_import_device(dev, mddev->major_version,
4459 mddev->minor_version);
4460 else
4461 rdev = md_import_device(dev, -1, -1);
4462 if (IS_ERR(rdev)) {
4463 printk(KERN_WARNING
4464 "md: md_import_device returned %ld\n",
4465 PTR_ERR(rdev));
4466 return PTR_ERR(rdev);
4467 }
4468 /* set save_raid_disk if appropriate */
4469 if (!mddev->persistent) {
4470 if (info->state & (1<<MD_DISK_SYNC) &&
4471 info->raid_disk < mddev->raid_disks)
4472 rdev->raid_disk = info->raid_disk;
4473 else
4474 rdev->raid_disk = -1;
4475 } else
4476 super_types[mddev->major_version].
4477 validate_super(mddev, rdev);
4478 rdev->saved_raid_disk = rdev->raid_disk;
4479
4480 clear_bit(In_sync, &rdev->flags); /* just to be sure */
4481 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
4482 set_bit(WriteMostly, &rdev->flags);
4483
4484 rdev->raid_disk = -1;
4485 err = bind_rdev_to_array(rdev, mddev);
4486 if (!err && !mddev->pers->hot_remove_disk) {
4487 /* If there is hot_add_disk but no hot_remove_disk
4488 * then added disks for geometry changes,
4489 * and should be added immediately.
4490 */
4491 super_types[mddev->major_version].
4492 validate_super(mddev, rdev);
4493 err = mddev->pers->hot_add_disk(mddev, rdev);
4494 if (err)
4495 unbind_rdev_from_array(rdev);
4496 }
4497 if (err)
4498 export_rdev(rdev);
4499 else
4500 sysfs_notify_dirent(rdev->sysfs_state);
4501
4502 md_update_sb(mddev, 1);
4503 if (mddev->degraded)
4504 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4505 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4506 md_wakeup_thread(mddev->thread);
4507 return err;
4508 }
4509
4510 /* otherwise, add_new_disk is only allowed
4511 * for major_version==0 superblocks
4512 */
4513 if (mddev->major_version != 0) {
4514 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
4515 mdname(mddev));
4516 return -EINVAL;
4517 }
4518
4519 if (!(info->state & (1<<MD_DISK_FAULTY))) {
4520 int err;
4521 rdev = md_import_device(dev, -1, 0);
4522 if (IS_ERR(rdev)) {
4523 printk(KERN_WARNING
4524 "md: error, md_import_device() returned %ld\n",
4525 PTR_ERR(rdev));
4526 return PTR_ERR(rdev);
4527 }
4528 rdev->desc_nr = info->number;
4529 if (info->raid_disk < mddev->raid_disks)
4530 rdev->raid_disk = info->raid_disk;
4531 else
4532 rdev->raid_disk = -1;
4533
4534 if (rdev->raid_disk < mddev->raid_disks)
4535 if (info->state & (1<<MD_DISK_SYNC))
4536 set_bit(In_sync, &rdev->flags);
4537
4538 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
4539 set_bit(WriteMostly, &rdev->flags);
4540
4541 if (!mddev->persistent) {
4542 printk(KERN_INFO "md: nonpersistent superblock ...\n");
4543 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
4544 } else
4545 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
4546 rdev->size = calc_num_sectors(rdev, mddev->chunk_size) / 2;
4547
4548 err = bind_rdev_to_array(rdev, mddev);
4549 if (err) {
4550 export_rdev(rdev);
4551 return err;
4552 }
4553 }
4554
4555 return 0;
4556 }
4557
4558 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
4559 {
4560 char b[BDEVNAME_SIZE];
4561 mdk_rdev_t *rdev;
4562
4563 rdev = find_rdev(mddev, dev);
4564 if (!rdev)
4565 return -ENXIO;
4566
4567 if (rdev->raid_disk >= 0)
4568 goto busy;
4569
4570 kick_rdev_from_array(rdev);
4571 md_update_sb(mddev, 1);
4572 md_new_event(mddev);
4573
4574 return 0;
4575 busy:
4576 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
4577 bdevname(rdev->bdev,b), mdname(mddev));
4578 return -EBUSY;
4579 }
4580
4581 static int hot_add_disk(mddev_t * mddev, dev_t dev)
4582 {
4583 char b[BDEVNAME_SIZE];
4584 int err;
4585 mdk_rdev_t *rdev;
4586
4587 if (!mddev->pers)
4588 return -ENODEV;
4589
4590 if (mddev->major_version != 0) {
4591 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
4592 " version-0 superblocks.\n",
4593 mdname(mddev));
4594 return -EINVAL;
4595 }
4596 if (!mddev->pers->hot_add_disk) {
4597 printk(KERN_WARNING
4598 "%s: personality does not support diskops!\n",
4599 mdname(mddev));
4600 return -EINVAL;
4601 }
4602
4603 rdev = md_import_device(dev, -1, 0);
4604 if (IS_ERR(rdev)) {
4605 printk(KERN_WARNING
4606 "md: error, md_import_device() returned %ld\n",
4607 PTR_ERR(rdev));
4608 return -EINVAL;
4609 }
4610
4611 if (mddev->persistent)
4612 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
4613 else
4614 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
4615
4616 rdev->size = calc_num_sectors(rdev, mddev->chunk_size) / 2;
4617
4618 if (test_bit(Faulty, &rdev->flags)) {
4619 printk(KERN_WARNING
4620 "md: can not hot-add faulty %s disk to %s!\n",
4621 bdevname(rdev->bdev,b), mdname(mddev));
4622 err = -EINVAL;
4623 goto abort_export;
4624 }
4625 clear_bit(In_sync, &rdev->flags);
4626 rdev->desc_nr = -1;
4627 rdev->saved_raid_disk = -1;
4628 err = bind_rdev_to_array(rdev, mddev);
4629 if (err)
4630 goto abort_export;
4631
4632 /*
4633 * The rest should better be atomic, we can have disk failures
4634 * noticed in interrupt contexts ...
4635 */
4636
4637 rdev->raid_disk = -1;
4638
4639 md_update_sb(mddev, 1);
4640
4641 /*
4642 * Kick recovery, maybe this spare has to be added to the
4643 * array immediately.
4644 */
4645 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4646 md_wakeup_thread(mddev->thread);
4647 md_new_event(mddev);
4648 return 0;
4649
4650 abort_export:
4651 export_rdev(rdev);
4652 return err;
4653 }
4654
4655 static int set_bitmap_file(mddev_t *mddev, int fd)
4656 {
4657 int err;
4658
4659 if (mddev->pers) {
4660 if (!mddev->pers->quiesce)
4661 return -EBUSY;
4662 if (mddev->recovery || mddev->sync_thread)
4663 return -EBUSY;
4664 /* we should be able to change the bitmap.. */
4665 }
4666
4667
4668 if (fd >= 0) {
4669 if (mddev->bitmap)
4670 return -EEXIST; /* cannot add when bitmap is present */
4671 mddev->bitmap_file = fget(fd);
4672
4673 if (mddev->bitmap_file == NULL) {
4674 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
4675 mdname(mddev));
4676 return -EBADF;
4677 }
4678
4679 err = deny_bitmap_write_access(mddev->bitmap_file);
4680 if (err) {
4681 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
4682 mdname(mddev));
4683 fput(mddev->bitmap_file);
4684 mddev->bitmap_file = NULL;
4685 return err;
4686 }
4687 mddev->bitmap_offset = 0; /* file overrides offset */
4688 } else if (mddev->bitmap == NULL)
4689 return -ENOENT; /* cannot remove what isn't there */
4690 err = 0;
4691 if (mddev->pers) {
4692 mddev->pers->quiesce(mddev, 1);
4693 if (fd >= 0)
4694 err = bitmap_create(mddev);
4695 if (fd < 0 || err) {
4696 bitmap_destroy(mddev);
4697 fd = -1; /* make sure to put the file */
4698 }
4699 mddev->pers->quiesce(mddev, 0);
4700 }
4701 if (fd < 0) {
4702 if (mddev->bitmap_file) {
4703 restore_bitmap_write_access(mddev->bitmap_file);
4704 fput(mddev->bitmap_file);
4705 }
4706 mddev->bitmap_file = NULL;
4707 }
4708
4709 return err;
4710 }
4711
4712 /*
4713 * set_array_info is used two different ways
4714 * The original usage is when creating a new array.
4715 * In this usage, raid_disks is > 0 and it together with
4716 * level, size, not_persistent,layout,chunksize determine the
4717 * shape of the array.
4718 * This will always create an array with a type-0.90.0 superblock.
4719 * The newer usage is when assembling an array.
4720 * In this case raid_disks will be 0, and the major_version field is
4721 * use to determine which style super-blocks are to be found on the devices.
4722 * The minor and patch _version numbers are also kept incase the
4723 * super_block handler wishes to interpret them.
4724 */
4725 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
4726 {
4727
4728 if (info->raid_disks == 0) {
4729 /* just setting version number for superblock loading */
4730 if (info->major_version < 0 ||
4731 info->major_version >= ARRAY_SIZE(super_types) ||
4732 super_types[info->major_version].name == NULL) {
4733 /* maybe try to auto-load a module? */
4734 printk(KERN_INFO
4735 "md: superblock version %d not known\n",
4736 info->major_version);
4737 return -EINVAL;
4738 }
4739 mddev->major_version = info->major_version;
4740 mddev->minor_version = info->minor_version;
4741 mddev->patch_version = info->patch_version;
4742 mddev->persistent = !info->not_persistent;
4743 return 0;
4744 }
4745 mddev->major_version = MD_MAJOR_VERSION;
4746 mddev->minor_version = MD_MINOR_VERSION;
4747 mddev->patch_version = MD_PATCHLEVEL_VERSION;
4748 mddev->ctime = get_seconds();
4749
4750 mddev->level = info->level;
4751 mddev->clevel[0] = 0;
4752 mddev->size = info->size;
4753 mddev->raid_disks = info->raid_disks;
4754 /* don't set md_minor, it is determined by which /dev/md* was
4755 * openned
4756 */
4757 if (info->state & (1<<MD_SB_CLEAN))
4758 mddev->recovery_cp = MaxSector;
4759 else
4760 mddev->recovery_cp = 0;
4761 mddev->persistent = ! info->not_persistent;
4762 mddev->external = 0;
4763
4764 mddev->layout = info->layout;
4765 mddev->chunk_size = info->chunk_size;
4766
4767 mddev->max_disks = MD_SB_DISKS;
4768
4769 if (mddev->persistent)
4770 mddev->flags = 0;
4771 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4772
4773 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
4774 mddev->bitmap_offset = 0;
4775
4776 mddev->reshape_position = MaxSector;
4777
4778 /*
4779 * Generate a 128 bit UUID
4780 */
4781 get_random_bytes(mddev->uuid, 16);
4782
4783 mddev->new_level = mddev->level;
4784 mddev->new_chunk = mddev->chunk_size;
4785 mddev->new_layout = mddev->layout;
4786 mddev->delta_disks = 0;
4787
4788 return 0;
4789 }
4790
4791 static int update_size(mddev_t *mddev, sector_t num_sectors)
4792 {
4793 mdk_rdev_t *rdev;
4794 int rv;
4795 int fit = (num_sectors == 0);
4796
4797 if (mddev->pers->resize == NULL)
4798 return -EINVAL;
4799 /* The "num_sectors" is the number of sectors of each device that
4800 * is used. This can only make sense for arrays with redundancy.
4801 * linear and raid0 always use whatever space is available. We can only
4802 * consider changing this number if no resync or reconstruction is
4803 * happening, and if the new size is acceptable. It must fit before the
4804 * sb_start or, if that is <data_offset, it must fit before the size
4805 * of each device. If num_sectors is zero, we find the largest size
4806 * that fits.
4807
4808 */
4809 if (mddev->sync_thread)
4810 return -EBUSY;
4811 if (mddev->bitmap)
4812 /* Sorry, cannot grow a bitmap yet, just remove it,
4813 * grow, and re-add.
4814 */
4815 return -EBUSY;
4816 list_for_each_entry(rdev, &mddev->disks, same_set) {
4817 sector_t avail;
4818 avail = rdev->size * 2;
4819
4820 if (fit && (num_sectors == 0 || num_sectors > avail))
4821 num_sectors = avail;
4822 if (avail < num_sectors)
4823 return -ENOSPC;
4824 }
4825 rv = mddev->pers->resize(mddev, num_sectors);
4826 if (!rv) {
4827 struct block_device *bdev;
4828
4829 bdev = bdget_disk(mddev->gendisk, 0);
4830 if (bdev) {
4831 mutex_lock(&bdev->bd_inode->i_mutex);
4832 i_size_write(bdev->bd_inode,
4833 (loff_t)mddev->array_sectors << 9);
4834 mutex_unlock(&bdev->bd_inode->i_mutex);
4835 bdput(bdev);
4836 }
4837 }
4838 return rv;
4839 }
4840
4841 static int update_raid_disks(mddev_t *mddev, int raid_disks)
4842 {
4843 int rv;
4844 /* change the number of raid disks */
4845 if (mddev->pers->check_reshape == NULL)
4846 return -EINVAL;
4847 if (raid_disks <= 0 ||
4848 raid_disks >= mddev->max_disks)
4849 return -EINVAL;
4850 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
4851 return -EBUSY;
4852 mddev->delta_disks = raid_disks - mddev->raid_disks;
4853
4854 rv = mddev->pers->check_reshape(mddev);
4855 return rv;
4856 }
4857
4858
4859 /*
4860 * update_array_info is used to change the configuration of an
4861 * on-line array.
4862 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
4863 * fields in the info are checked against the array.
4864 * Any differences that cannot be handled will cause an error.
4865 * Normally, only one change can be managed at a time.
4866 */
4867 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
4868 {
4869 int rv = 0;
4870 int cnt = 0;
4871 int state = 0;
4872
4873 /* calculate expected state,ignoring low bits */
4874 if (mddev->bitmap && mddev->bitmap_offset)
4875 state |= (1 << MD_SB_BITMAP_PRESENT);
4876
4877 if (mddev->major_version != info->major_version ||
4878 mddev->minor_version != info->minor_version ||
4879 /* mddev->patch_version != info->patch_version || */
4880 mddev->ctime != info->ctime ||
4881 mddev->level != info->level ||
4882 /* mddev->layout != info->layout || */
4883 !mddev->persistent != info->not_persistent||
4884 mddev->chunk_size != info->chunk_size ||
4885 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
4886 ((state^info->state) & 0xfffffe00)
4887 )
4888 return -EINVAL;
4889 /* Check there is only one change */
4890 if (info->size >= 0 && mddev->size != info->size) cnt++;
4891 if (mddev->raid_disks != info->raid_disks) cnt++;
4892 if (mddev->layout != info->layout) cnt++;
4893 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
4894 if (cnt == 0) return 0;
4895 if (cnt > 1) return -EINVAL;
4896
4897 if (mddev->layout != info->layout) {
4898 /* Change layout
4899 * we don't need to do anything at the md level, the
4900 * personality will take care of it all.
4901 */
4902 if (mddev->pers->reconfig == NULL)
4903 return -EINVAL;
4904 else
4905 return mddev->pers->reconfig(mddev, info->layout, -1);
4906 }
4907 if (info->size >= 0 && mddev->size != info->size)
4908 rv = update_size(mddev, (sector_t)info->size * 2);
4909
4910 if (mddev->raid_disks != info->raid_disks)
4911 rv = update_raid_disks(mddev, info->raid_disks);
4912
4913 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
4914 if (mddev->pers->quiesce == NULL)
4915 return -EINVAL;
4916 if (mddev->recovery || mddev->sync_thread)
4917 return -EBUSY;
4918 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
4919 /* add the bitmap */
4920 if (mddev->bitmap)
4921 return -EEXIST;
4922 if (mddev->default_bitmap_offset == 0)
4923 return -EINVAL;
4924 mddev->bitmap_offset = mddev->default_bitmap_offset;
4925 mddev->pers->quiesce(mddev, 1);
4926 rv = bitmap_create(mddev);
4927 if (rv)
4928 bitmap_destroy(mddev);
4929 mddev->pers->quiesce(mddev, 0);
4930 } else {
4931 /* remove the bitmap */
4932 if (!mddev->bitmap)
4933 return -ENOENT;
4934 if (mddev->bitmap->file)
4935 return -EINVAL;
4936 mddev->pers->quiesce(mddev, 1);
4937 bitmap_destroy(mddev);
4938 mddev->pers->quiesce(mddev, 0);
4939 mddev->bitmap_offset = 0;
4940 }
4941 }
4942 md_update_sb(mddev, 1);
4943 return rv;
4944 }
4945
4946 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
4947 {
4948 mdk_rdev_t *rdev;
4949
4950 if (mddev->pers == NULL)
4951 return -ENODEV;
4952
4953 rdev = find_rdev(mddev, dev);
4954 if (!rdev)
4955 return -ENODEV;
4956
4957 md_error(mddev, rdev);
4958 return 0;
4959 }
4960
4961 /*
4962 * We have a problem here : there is no easy way to give a CHS
4963 * virtual geometry. We currently pretend that we have a 2 heads
4964 * 4 sectors (with a BIG number of cylinders...). This drives
4965 * dosfs just mad... ;-)
4966 */
4967 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
4968 {
4969 mddev_t *mddev = bdev->bd_disk->private_data;
4970
4971 geo->heads = 2;
4972 geo->sectors = 4;
4973 geo->cylinders = get_capacity(mddev->gendisk) / 8;
4974 return 0;
4975 }
4976
4977 static int md_ioctl(struct block_device *bdev, fmode_t mode,
4978 unsigned int cmd, unsigned long arg)
4979 {
4980 int err = 0;
4981 void __user *argp = (void __user *)arg;
4982 mddev_t *mddev = NULL;
4983
4984 if (!capable(CAP_SYS_ADMIN))
4985 return -EACCES;
4986
4987 /*
4988 * Commands dealing with the RAID driver but not any
4989 * particular array:
4990 */
4991 switch (cmd)
4992 {
4993 case RAID_VERSION:
4994 err = get_version(argp);
4995 goto done;
4996
4997 case PRINT_RAID_DEBUG:
4998 err = 0;
4999 md_print_devices();
5000 goto done;
5001
5002 #ifndef MODULE
5003 case RAID_AUTORUN:
5004 err = 0;
5005 autostart_arrays(arg);
5006 goto done;
5007 #endif
5008 default:;
5009 }
5010
5011 /*
5012 * Commands creating/starting a new array:
5013 */
5014
5015 mddev = bdev->bd_disk->private_data;
5016
5017 if (!mddev) {
5018 BUG();
5019 goto abort;
5020 }
5021
5022 err = mddev_lock(mddev);
5023 if (err) {
5024 printk(KERN_INFO
5025 "md: ioctl lock interrupted, reason %d, cmd %d\n",
5026 err, cmd);
5027 goto abort;
5028 }
5029
5030 switch (cmd)
5031 {
5032 case SET_ARRAY_INFO:
5033 {
5034 mdu_array_info_t info;
5035 if (!arg)
5036 memset(&info, 0, sizeof(info));
5037 else if (copy_from_user(&info, argp, sizeof(info))) {
5038 err = -EFAULT;
5039 goto abort_unlock;
5040 }
5041 if (mddev->pers) {
5042 err = update_array_info(mddev, &info);
5043 if (err) {
5044 printk(KERN_WARNING "md: couldn't update"
5045 " array info. %d\n", err);
5046 goto abort_unlock;
5047 }
5048 goto done_unlock;
5049 }
5050 if (!list_empty(&mddev->disks)) {
5051 printk(KERN_WARNING
5052 "md: array %s already has disks!\n",
5053 mdname(mddev));
5054 err = -EBUSY;
5055 goto abort_unlock;
5056 }
5057 if (mddev->raid_disks) {
5058 printk(KERN_WARNING
5059 "md: array %s already initialised!\n",
5060 mdname(mddev));
5061 err = -EBUSY;
5062 goto abort_unlock;
5063 }
5064 err = set_array_info(mddev, &info);
5065 if (err) {
5066 printk(KERN_WARNING "md: couldn't set"
5067 " array info. %d\n", err);
5068 goto abort_unlock;
5069 }
5070 }
5071 goto done_unlock;
5072
5073 default:;
5074 }
5075
5076 /*
5077 * Commands querying/configuring an existing array:
5078 */
5079 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
5080 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
5081 if ((!mddev->raid_disks && !mddev->external)
5082 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
5083 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
5084 && cmd != GET_BITMAP_FILE) {
5085 err = -ENODEV;
5086 goto abort_unlock;
5087 }
5088
5089 /*
5090 * Commands even a read-only array can execute:
5091 */
5092 switch (cmd)
5093 {
5094 case GET_ARRAY_INFO:
5095 err = get_array_info(mddev, argp);
5096 goto done_unlock;
5097
5098 case GET_BITMAP_FILE:
5099 err = get_bitmap_file(mddev, argp);
5100 goto done_unlock;
5101
5102 case GET_DISK_INFO:
5103 err = get_disk_info(mddev, argp);
5104 goto done_unlock;
5105
5106 case RESTART_ARRAY_RW:
5107 err = restart_array(mddev);
5108 goto done_unlock;
5109
5110 case STOP_ARRAY:
5111 err = do_md_stop(mddev, 0, 1);
5112 goto done_unlock;
5113
5114 case STOP_ARRAY_RO:
5115 err = do_md_stop(mddev, 1, 1);
5116 goto done_unlock;
5117
5118 }
5119
5120 /*
5121 * The remaining ioctls are changing the state of the
5122 * superblock, so we do not allow them on read-only arrays.
5123 * However non-MD ioctls (e.g. get-size) will still come through
5124 * here and hit the 'default' below, so only disallow
5125 * 'md' ioctls, and switch to rw mode if started auto-readonly.
5126 */
5127 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
5128 if (mddev->ro == 2) {
5129 mddev->ro = 0;
5130 sysfs_notify_dirent(mddev->sysfs_state);
5131 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5132 md_wakeup_thread(mddev->thread);
5133 } else {
5134 err = -EROFS;
5135 goto abort_unlock;
5136 }
5137 }
5138
5139 switch (cmd)
5140 {
5141 case ADD_NEW_DISK:
5142 {
5143 mdu_disk_info_t info;
5144 if (copy_from_user(&info, argp, sizeof(info)))
5145 err = -EFAULT;
5146 else
5147 err = add_new_disk(mddev, &info);
5148 goto done_unlock;
5149 }
5150
5151 case HOT_REMOVE_DISK:
5152 err = hot_remove_disk(mddev, new_decode_dev(arg));
5153 goto done_unlock;
5154
5155 case HOT_ADD_DISK:
5156 err = hot_add_disk(mddev, new_decode_dev(arg));
5157 goto done_unlock;
5158
5159 case SET_DISK_FAULTY:
5160 err = set_disk_faulty(mddev, new_decode_dev(arg));
5161 goto done_unlock;
5162
5163 case RUN_ARRAY:
5164 err = do_md_run(mddev);
5165 goto done_unlock;
5166
5167 case SET_BITMAP_FILE:
5168 err = set_bitmap_file(mddev, (int)arg);
5169 goto done_unlock;
5170
5171 default:
5172 err = -EINVAL;
5173 goto abort_unlock;
5174 }
5175
5176 done_unlock:
5177 abort_unlock:
5178 if (mddev->hold_active == UNTIL_IOCTL &&
5179 err != -EINVAL)
5180 mddev->hold_active = 0;
5181 mddev_unlock(mddev);
5182
5183 return err;
5184 done:
5185 if (err)
5186 MD_BUG();
5187 abort:
5188 return err;
5189 }
5190
5191 static int md_open(struct block_device *bdev, fmode_t mode)
5192 {
5193 /*
5194 * Succeed if we can lock the mddev, which confirms that
5195 * it isn't being stopped right now.
5196 */
5197 mddev_t *mddev = mddev_find(bdev->bd_dev);
5198 int err;
5199
5200 if (mddev->gendisk != bdev->bd_disk) {
5201 /* we are racing with mddev_put which is discarding this
5202 * bd_disk.
5203 */
5204 mddev_put(mddev);
5205 /* Wait until bdev->bd_disk is definitely gone */
5206 flush_scheduled_work();
5207 /* Then retry the open from the top */
5208 return -ERESTARTSYS;
5209 }
5210 BUG_ON(mddev != bdev->bd_disk->private_data);
5211
5212 if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1)))
5213 goto out;
5214
5215 err = 0;
5216 atomic_inc(&mddev->openers);
5217 mddev_unlock(mddev);
5218
5219 check_disk_change(bdev);
5220 out:
5221 return err;
5222 }
5223
5224 static int md_release(struct gendisk *disk, fmode_t mode)
5225 {
5226 mddev_t *mddev = disk->private_data;
5227
5228 BUG_ON(!mddev);
5229 atomic_dec(&mddev->openers);
5230 mddev_put(mddev);
5231
5232 return 0;
5233 }
5234
5235 static int md_media_changed(struct gendisk *disk)
5236 {
5237 mddev_t *mddev = disk->private_data;
5238
5239 return mddev->changed;
5240 }
5241
5242 static int md_revalidate(struct gendisk *disk)
5243 {
5244 mddev_t *mddev = disk->private_data;
5245
5246 mddev->changed = 0;
5247 return 0;
5248 }
5249 static struct block_device_operations md_fops =
5250 {
5251 .owner = THIS_MODULE,
5252 .open = md_open,
5253 .release = md_release,
5254 .locked_ioctl = md_ioctl,
5255 .getgeo = md_getgeo,
5256 .media_changed = md_media_changed,
5257 .revalidate_disk= md_revalidate,
5258 };
5259
5260 static int md_thread(void * arg)
5261 {
5262 mdk_thread_t *thread = arg;
5263
5264 /*
5265 * md_thread is a 'system-thread', it's priority should be very
5266 * high. We avoid resource deadlocks individually in each
5267 * raid personality. (RAID5 does preallocation) We also use RR and
5268 * the very same RT priority as kswapd, thus we will never get
5269 * into a priority inversion deadlock.
5270 *
5271 * we definitely have to have equal or higher priority than
5272 * bdflush, otherwise bdflush will deadlock if there are too
5273 * many dirty RAID5 blocks.
5274 */
5275
5276 allow_signal(SIGKILL);
5277 while (!kthread_should_stop()) {
5278
5279 /* We need to wait INTERRUPTIBLE so that
5280 * we don't add to the load-average.
5281 * That means we need to be sure no signals are
5282 * pending
5283 */
5284 if (signal_pending(current))
5285 flush_signals(current);
5286
5287 wait_event_interruptible_timeout
5288 (thread->wqueue,
5289 test_bit(THREAD_WAKEUP, &thread->flags)
5290 || kthread_should_stop(),
5291 thread->timeout);
5292
5293 clear_bit(THREAD_WAKEUP, &thread->flags);
5294
5295 thread->run(thread->mddev);
5296 }
5297
5298 return 0;
5299 }
5300
5301 void md_wakeup_thread(mdk_thread_t *thread)
5302 {
5303 if (thread) {
5304 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
5305 set_bit(THREAD_WAKEUP, &thread->flags);
5306 wake_up(&thread->wqueue);
5307 }
5308 }
5309
5310 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
5311 const char *name)
5312 {
5313 mdk_thread_t *thread;
5314
5315 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
5316 if (!thread)
5317 return NULL;
5318
5319 init_waitqueue_head(&thread->wqueue);
5320
5321 thread->run = run;
5322 thread->mddev = mddev;
5323 thread->timeout = MAX_SCHEDULE_TIMEOUT;
5324 thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
5325 if (IS_ERR(thread->tsk)) {
5326 kfree(thread);
5327 return NULL;
5328 }
5329 return thread;
5330 }
5331
5332 void md_unregister_thread(mdk_thread_t *thread)
5333 {
5334 dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
5335
5336 kthread_stop(thread->tsk);
5337 kfree(thread);
5338 }
5339
5340 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
5341 {
5342 if (!mddev) {
5343 MD_BUG();
5344 return;
5345 }
5346
5347 if (!rdev || test_bit(Faulty, &rdev->flags))
5348 return;
5349
5350 if (mddev->external)
5351 set_bit(Blocked, &rdev->flags);
5352 /*
5353 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
5354 mdname(mddev),
5355 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
5356 __builtin_return_address(0),__builtin_return_address(1),
5357 __builtin_return_address(2),__builtin_return_address(3));
5358 */
5359 if (!mddev->pers)
5360 return;
5361 if (!mddev->pers->error_handler)
5362 return;
5363 mddev->pers->error_handler(mddev,rdev);
5364 if (mddev->degraded)
5365 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5366 set_bit(StateChanged, &rdev->flags);
5367 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5368 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5369 md_wakeup_thread(mddev->thread);
5370 md_new_event_inintr(mddev);
5371 }
5372
5373 /* seq_file implementation /proc/mdstat */
5374
5375 static void status_unused(struct seq_file *seq)
5376 {
5377 int i = 0;
5378 mdk_rdev_t *rdev;
5379
5380 seq_printf(seq, "unused devices: ");
5381
5382 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
5383 char b[BDEVNAME_SIZE];
5384 i++;
5385 seq_printf(seq, "%s ",
5386 bdevname(rdev->bdev,b));
5387 }
5388 if (!i)
5389 seq_printf(seq, "<none>");
5390
5391 seq_printf(seq, "\n");
5392 }
5393
5394
5395 static void status_resync(struct seq_file *seq, mddev_t * mddev)
5396 {
5397 sector_t max_blocks, resync, res;
5398 unsigned long dt, db, rt;
5399 int scale;
5400 unsigned int per_milli;
5401
5402 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
5403
5404 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
5405 max_blocks = mddev->resync_max_sectors >> 1;
5406 else
5407 max_blocks = mddev->size;
5408
5409 /*
5410 * Should not happen.
5411 */
5412 if (!max_blocks) {
5413 MD_BUG();
5414 return;
5415 }
5416 /* Pick 'scale' such that (resync>>scale)*1000 will fit
5417 * in a sector_t, and (max_blocks>>scale) will fit in a
5418 * u32, as those are the requirements for sector_div.
5419 * Thus 'scale' must be at least 10
5420 */
5421 scale = 10;
5422 if (sizeof(sector_t) > sizeof(unsigned long)) {
5423 while ( max_blocks/2 > (1ULL<<(scale+32)))
5424 scale++;
5425 }
5426 res = (resync>>scale)*1000;
5427 sector_div(res, (u32)((max_blocks>>scale)+1));
5428
5429 per_milli = res;
5430 {
5431 int i, x = per_milli/50, y = 20-x;
5432 seq_printf(seq, "[");
5433 for (i = 0; i < x; i++)
5434 seq_printf(seq, "=");
5435 seq_printf(seq, ">");
5436 for (i = 0; i < y; i++)
5437 seq_printf(seq, ".");
5438 seq_printf(seq, "] ");
5439 }
5440 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
5441 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
5442 "reshape" :
5443 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
5444 "check" :
5445 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
5446 "resync" : "recovery"))),
5447 per_milli/10, per_milli % 10,
5448 (unsigned long long) resync,
5449 (unsigned long long) max_blocks);
5450
5451 /*
5452 * We do not want to overflow, so the order of operands and
5453 * the * 100 / 100 trick are important. We do a +1 to be
5454 * safe against division by zero. We only estimate anyway.
5455 *
5456 * dt: time from mark until now
5457 * db: blocks written from mark until now
5458 * rt: remaining time
5459 */
5460 dt = ((jiffies - mddev->resync_mark) / HZ);
5461 if (!dt) dt++;
5462 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
5463 - mddev->resync_mark_cnt;
5464 rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100;
5465
5466 seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
5467
5468 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
5469 }
5470
5471 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
5472 {
5473 struct list_head *tmp;
5474 loff_t l = *pos;
5475 mddev_t *mddev;
5476
5477 if (l >= 0x10000)
5478 return NULL;
5479 if (!l--)
5480 /* header */
5481 return (void*)1;
5482
5483 spin_lock(&all_mddevs_lock);
5484 list_for_each(tmp,&all_mddevs)
5485 if (!l--) {
5486 mddev = list_entry(tmp, mddev_t, all_mddevs);
5487 mddev_get(mddev);
5488 spin_unlock(&all_mddevs_lock);
5489 return mddev;
5490 }
5491 spin_unlock(&all_mddevs_lock);
5492 if (!l--)
5493 return (void*)2;/* tail */
5494 return NULL;
5495 }
5496
5497 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
5498 {
5499 struct list_head *tmp;
5500 mddev_t *next_mddev, *mddev = v;
5501
5502 ++*pos;
5503 if (v == (void*)2)
5504 return NULL;
5505
5506 spin_lock(&all_mddevs_lock);
5507 if (v == (void*)1)
5508 tmp = all_mddevs.next;
5509 else
5510 tmp = mddev->all_mddevs.next;
5511 if (tmp != &all_mddevs)
5512 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
5513 else {
5514 next_mddev = (void*)2;
5515 *pos = 0x10000;
5516 }
5517 spin_unlock(&all_mddevs_lock);
5518
5519 if (v != (void*)1)
5520 mddev_put(mddev);
5521 return next_mddev;
5522
5523 }
5524
5525 static void md_seq_stop(struct seq_file *seq, void *v)
5526 {
5527 mddev_t *mddev = v;
5528
5529 if (mddev && v != (void*)1 && v != (void*)2)
5530 mddev_put(mddev);
5531 }
5532
5533 struct mdstat_info {
5534 int event;
5535 };
5536
5537 static int md_seq_show(struct seq_file *seq, void *v)
5538 {
5539 mddev_t *mddev = v;
5540 sector_t size;
5541 mdk_rdev_t *rdev;
5542 struct mdstat_info *mi = seq->private;
5543 struct bitmap *bitmap;
5544
5545 if (v == (void*)1) {
5546 struct mdk_personality *pers;
5547 seq_printf(seq, "Personalities : ");
5548 spin_lock(&pers_lock);
5549 list_for_each_entry(pers, &pers_list, list)
5550 seq_printf(seq, "[%s] ", pers->name);
5551
5552 spin_unlock(&pers_lock);
5553 seq_printf(seq, "\n");
5554 mi->event = atomic_read(&md_event_count);
5555 return 0;
5556 }
5557 if (v == (void*)2) {
5558 status_unused(seq);
5559 return 0;
5560 }
5561
5562 if (mddev_lock(mddev) < 0)
5563 return -EINTR;
5564
5565 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
5566 seq_printf(seq, "%s : %sactive", mdname(mddev),
5567 mddev->pers ? "" : "in");
5568 if (mddev->pers) {
5569 if (mddev->ro==1)
5570 seq_printf(seq, " (read-only)");
5571 if (mddev->ro==2)
5572 seq_printf(seq, " (auto-read-only)");
5573 seq_printf(seq, " %s", mddev->pers->name);
5574 }
5575
5576 size = 0;
5577 list_for_each_entry(rdev, &mddev->disks, same_set) {
5578 char b[BDEVNAME_SIZE];
5579 seq_printf(seq, " %s[%d]",
5580 bdevname(rdev->bdev,b), rdev->desc_nr);
5581 if (test_bit(WriteMostly, &rdev->flags))
5582 seq_printf(seq, "(W)");
5583 if (test_bit(Faulty, &rdev->flags)) {
5584 seq_printf(seq, "(F)");
5585 continue;
5586 } else if (rdev->raid_disk < 0)
5587 seq_printf(seq, "(S)"); /* spare */
5588 size += rdev->size;
5589 }
5590
5591 if (!list_empty(&mddev->disks)) {
5592 if (mddev->pers)
5593 seq_printf(seq, "\n %llu blocks",
5594 (unsigned long long)
5595 mddev->array_sectors / 2);
5596 else
5597 seq_printf(seq, "\n %llu blocks",
5598 (unsigned long long)size);
5599 }
5600 if (mddev->persistent) {
5601 if (mddev->major_version != 0 ||
5602 mddev->minor_version != 90) {
5603 seq_printf(seq," super %d.%d",
5604 mddev->major_version,
5605 mddev->minor_version);
5606 }
5607 } else if (mddev->external)
5608 seq_printf(seq, " super external:%s",
5609 mddev->metadata_type);
5610 else
5611 seq_printf(seq, " super non-persistent");
5612
5613 if (mddev->pers) {
5614 mddev->pers->status(seq, mddev);
5615 seq_printf(seq, "\n ");
5616 if (mddev->pers->sync_request) {
5617 if (mddev->curr_resync > 2) {
5618 status_resync(seq, mddev);
5619 seq_printf(seq, "\n ");
5620 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
5621 seq_printf(seq, "\tresync=DELAYED\n ");
5622 else if (mddev->recovery_cp < MaxSector)
5623 seq_printf(seq, "\tresync=PENDING\n ");
5624 }
5625 } else
5626 seq_printf(seq, "\n ");
5627
5628 if ((bitmap = mddev->bitmap)) {
5629 unsigned long chunk_kb;
5630 unsigned long flags;
5631 spin_lock_irqsave(&bitmap->lock, flags);
5632 chunk_kb = bitmap->chunksize >> 10;
5633 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
5634 "%lu%s chunk",
5635 bitmap->pages - bitmap->missing_pages,
5636 bitmap->pages,
5637 (bitmap->pages - bitmap->missing_pages)
5638 << (PAGE_SHIFT - 10),
5639 chunk_kb ? chunk_kb : bitmap->chunksize,
5640 chunk_kb ? "KB" : "B");
5641 if (bitmap->file) {
5642 seq_printf(seq, ", file: ");
5643 seq_path(seq, &bitmap->file->f_path, " \t\n");
5644 }
5645
5646 seq_printf(seq, "\n");
5647 spin_unlock_irqrestore(&bitmap->lock, flags);
5648 }
5649
5650 seq_printf(seq, "\n");
5651 }
5652 mddev_unlock(mddev);
5653
5654 return 0;
5655 }
5656
5657 static struct seq_operations md_seq_ops = {
5658 .start = md_seq_start,
5659 .next = md_seq_next,
5660 .stop = md_seq_stop,
5661 .show = md_seq_show,
5662 };
5663
5664 static int md_seq_open(struct inode *inode, struct file *file)
5665 {
5666 int error;
5667 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
5668 if (mi == NULL)
5669 return -ENOMEM;
5670
5671 error = seq_open(file, &md_seq_ops);
5672 if (error)
5673 kfree(mi);
5674 else {
5675 struct seq_file *p = file->private_data;
5676 p->private = mi;
5677 mi->event = atomic_read(&md_event_count);
5678 }
5679 return error;
5680 }
5681
5682 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
5683 {
5684 struct seq_file *m = filp->private_data;
5685 struct mdstat_info *mi = m->private;
5686 int mask;
5687
5688 poll_wait(filp, &md_event_waiters, wait);
5689
5690 /* always allow read */
5691 mask = POLLIN | POLLRDNORM;
5692
5693 if (mi->event != atomic_read(&md_event_count))
5694 mask |= POLLERR | POLLPRI;
5695 return mask;
5696 }
5697
5698 static const struct file_operations md_seq_fops = {
5699 .owner = THIS_MODULE,
5700 .open = md_seq_open,
5701 .read = seq_read,
5702 .llseek = seq_lseek,
5703 .release = seq_release_private,
5704 .poll = mdstat_poll,
5705 };
5706
5707 int register_md_personality(struct mdk_personality *p)
5708 {
5709 spin_lock(&pers_lock);
5710 list_add_tail(&p->list, &pers_list);
5711 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
5712 spin_unlock(&pers_lock);
5713 return 0;
5714 }
5715
5716 int unregister_md_personality(struct mdk_personality *p)
5717 {
5718 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
5719 spin_lock(&pers_lock);
5720 list_del_init(&p->list);
5721 spin_unlock(&pers_lock);
5722 return 0;
5723 }
5724
5725 static int is_mddev_idle(mddev_t *mddev)
5726 {
5727 mdk_rdev_t * rdev;
5728 int idle;
5729 long curr_events;
5730
5731 idle = 1;
5732 rcu_read_lock();
5733 rdev_for_each_rcu(rdev, mddev) {
5734 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
5735 curr_events = part_stat_read(&disk->part0, sectors[0]) +
5736 part_stat_read(&disk->part0, sectors[1]) -
5737 atomic_read(&disk->sync_io);
5738 /* sync IO will cause sync_io to increase before the disk_stats
5739 * as sync_io is counted when a request starts, and
5740 * disk_stats is counted when it completes.
5741 * So resync activity will cause curr_events to be smaller than
5742 * when there was no such activity.
5743 * non-sync IO will cause disk_stat to increase without
5744 * increasing sync_io so curr_events will (eventually)
5745 * be larger than it was before. Once it becomes
5746 * substantially larger, the test below will cause
5747 * the array to appear non-idle, and resync will slow
5748 * down.
5749 * If there is a lot of outstanding resync activity when
5750 * we set last_event to curr_events, then all that activity
5751 * completing might cause the array to appear non-idle
5752 * and resync will be slowed down even though there might
5753 * not have been non-resync activity. This will only
5754 * happen once though. 'last_events' will soon reflect
5755 * the state where there is little or no outstanding
5756 * resync requests, and further resync activity will
5757 * always make curr_events less than last_events.
5758 *
5759 */
5760 if (curr_events - rdev->last_events > 4096) {
5761 rdev->last_events = curr_events;
5762 idle = 0;
5763 }
5764 }
5765 rcu_read_unlock();
5766 return idle;
5767 }
5768
5769 void md_done_sync(mddev_t *mddev, int blocks, int ok)
5770 {
5771 /* another "blocks" (512byte) blocks have been synced */
5772 atomic_sub(blocks, &mddev->recovery_active);
5773 wake_up(&mddev->recovery_wait);
5774 if (!ok) {
5775 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5776 md_wakeup_thread(mddev->thread);
5777 // stop recovery, signal do_sync ....
5778 }
5779 }
5780
5781
5782 /* md_write_start(mddev, bi)
5783 * If we need to update some array metadata (e.g. 'active' flag
5784 * in superblock) before writing, schedule a superblock update
5785 * and wait for it to complete.
5786 */
5787 void md_write_start(mddev_t *mddev, struct bio *bi)
5788 {
5789 int did_change = 0;
5790 if (bio_data_dir(bi) != WRITE)
5791 return;
5792
5793 BUG_ON(mddev->ro == 1);
5794 if (mddev->ro == 2) {
5795 /* need to switch to read/write */
5796 mddev->ro = 0;
5797 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5798 md_wakeup_thread(mddev->thread);
5799 md_wakeup_thread(mddev->sync_thread);
5800 did_change = 1;
5801 }
5802 atomic_inc(&mddev->writes_pending);
5803 if (mddev->safemode == 1)
5804 mddev->safemode = 0;
5805 if (mddev->in_sync) {
5806 spin_lock_irq(&mddev->write_lock);
5807 if (mddev->in_sync) {
5808 mddev->in_sync = 0;
5809 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5810 md_wakeup_thread(mddev->thread);
5811 did_change = 1;
5812 }
5813 spin_unlock_irq(&mddev->write_lock);
5814 }
5815 if (did_change)
5816 sysfs_notify_dirent(mddev->sysfs_state);
5817 wait_event(mddev->sb_wait,
5818 !test_bit(MD_CHANGE_CLEAN, &mddev->flags) &&
5819 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
5820 }
5821
5822 void md_write_end(mddev_t *mddev)
5823 {
5824 if (atomic_dec_and_test(&mddev->writes_pending)) {
5825 if (mddev->safemode == 2)
5826 md_wakeup_thread(mddev->thread);
5827 else if (mddev->safemode_delay)
5828 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
5829 }
5830 }
5831
5832 /* md_allow_write(mddev)
5833 * Calling this ensures that the array is marked 'active' so that writes
5834 * may proceed without blocking. It is important to call this before
5835 * attempting a GFP_KERNEL allocation while holding the mddev lock.
5836 * Must be called with mddev_lock held.
5837 *
5838 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
5839 * is dropped, so return -EAGAIN after notifying userspace.
5840 */
5841 int md_allow_write(mddev_t *mddev)
5842 {
5843 if (!mddev->pers)
5844 return 0;
5845 if (mddev->ro)
5846 return 0;
5847 if (!mddev->pers->sync_request)
5848 return 0;
5849
5850 spin_lock_irq(&mddev->write_lock);
5851 if (mddev->in_sync) {
5852 mddev->in_sync = 0;
5853 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5854 if (mddev->safemode_delay &&
5855 mddev->safemode == 0)
5856 mddev->safemode = 1;
5857 spin_unlock_irq(&mddev->write_lock);
5858 md_update_sb(mddev, 0);
5859 sysfs_notify_dirent(mddev->sysfs_state);
5860 } else
5861 spin_unlock_irq(&mddev->write_lock);
5862
5863 if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
5864 return -EAGAIN;
5865 else
5866 return 0;
5867 }
5868 EXPORT_SYMBOL_GPL(md_allow_write);
5869
5870 #define SYNC_MARKS 10
5871 #define SYNC_MARK_STEP (3*HZ)
5872 void md_do_sync(mddev_t *mddev)
5873 {
5874 mddev_t *mddev2;
5875 unsigned int currspeed = 0,
5876 window;
5877 sector_t max_sectors,j, io_sectors;
5878 unsigned long mark[SYNC_MARKS];
5879 sector_t mark_cnt[SYNC_MARKS];
5880 int last_mark,m;
5881 struct list_head *tmp;
5882 sector_t last_check;
5883 int skipped = 0;
5884 mdk_rdev_t *rdev;
5885 char *desc;
5886
5887 /* just incase thread restarts... */
5888 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
5889 return;
5890 if (mddev->ro) /* never try to sync a read-only array */
5891 return;
5892
5893 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5894 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
5895 desc = "data-check";
5896 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5897 desc = "requested-resync";
5898 else
5899 desc = "resync";
5900 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5901 desc = "reshape";
5902 else
5903 desc = "recovery";
5904
5905 /* we overload curr_resync somewhat here.
5906 * 0 == not engaged in resync at all
5907 * 2 == checking that there is no conflict with another sync
5908 * 1 == like 2, but have yielded to allow conflicting resync to
5909 * commense
5910 * other == active in resync - this many blocks
5911 *
5912 * Before starting a resync we must have set curr_resync to
5913 * 2, and then checked that every "conflicting" array has curr_resync
5914 * less than ours. When we find one that is the same or higher
5915 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
5916 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
5917 * This will mean we have to start checking from the beginning again.
5918 *
5919 */
5920
5921 do {
5922 mddev->curr_resync = 2;
5923
5924 try_again:
5925 if (kthread_should_stop()) {
5926 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5927 goto skip;
5928 }
5929 for_each_mddev(mddev2, tmp) {
5930 if (mddev2 == mddev)
5931 continue;
5932 if (!mddev->parallel_resync
5933 && mddev2->curr_resync
5934 && match_mddev_units(mddev, mddev2)) {
5935 DEFINE_WAIT(wq);
5936 if (mddev < mddev2 && mddev->curr_resync == 2) {
5937 /* arbitrarily yield */
5938 mddev->curr_resync = 1;
5939 wake_up(&resync_wait);
5940 }
5941 if (mddev > mddev2 && mddev->curr_resync == 1)
5942 /* no need to wait here, we can wait the next
5943 * time 'round when curr_resync == 2
5944 */
5945 continue;
5946 /* We need to wait 'interruptible' so as not to
5947 * contribute to the load average, and not to
5948 * be caught by 'softlockup'
5949 */
5950 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
5951 if (!kthread_should_stop() &&
5952 mddev2->curr_resync >= mddev->curr_resync) {
5953 printk(KERN_INFO "md: delaying %s of %s"
5954 " until %s has finished (they"
5955 " share one or more physical units)\n",
5956 desc, mdname(mddev), mdname(mddev2));
5957 mddev_put(mddev2);
5958 if (signal_pending(current))
5959 flush_signals(current);
5960 schedule();
5961 finish_wait(&resync_wait, &wq);
5962 goto try_again;
5963 }
5964 finish_wait(&resync_wait, &wq);
5965 }
5966 }
5967 } while (mddev->curr_resync < 2);
5968
5969 j = 0;
5970 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5971 /* resync follows the size requested by the personality,
5972 * which defaults to physical size, but can be virtual size
5973 */
5974 max_sectors = mddev->resync_max_sectors;
5975 mddev->resync_mismatches = 0;
5976 /* we don't use the checkpoint if there's a bitmap */
5977 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5978 j = mddev->resync_min;
5979 else if (!mddev->bitmap)
5980 j = mddev->recovery_cp;
5981
5982 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5983 max_sectors = mddev->size << 1;
5984 else {
5985 /* recovery follows the physical size of devices */
5986 max_sectors = mddev->size << 1;
5987 j = MaxSector;
5988 list_for_each_entry(rdev, &mddev->disks, same_set)
5989 if (rdev->raid_disk >= 0 &&
5990 !test_bit(Faulty, &rdev->flags) &&
5991 !test_bit(In_sync, &rdev->flags) &&
5992 rdev->recovery_offset < j)
5993 j = rdev->recovery_offset;
5994 }
5995
5996 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
5997 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
5998 " %d KB/sec/disk.\n", speed_min(mddev));
5999 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
6000 "(but not more than %d KB/sec) for %s.\n",
6001 speed_max(mddev), desc);
6002
6003 is_mddev_idle(mddev); /* this also initializes IO event counters */
6004
6005 io_sectors = 0;
6006 for (m = 0; m < SYNC_MARKS; m++) {
6007 mark[m] = jiffies;
6008 mark_cnt[m] = io_sectors;
6009 }
6010 last_mark = 0;
6011 mddev->resync_mark = mark[last_mark];
6012 mddev->resync_mark_cnt = mark_cnt[last_mark];
6013
6014 /*
6015 * Tune reconstruction:
6016 */
6017 window = 32*(PAGE_SIZE/512);
6018 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
6019 window/2,(unsigned long long) max_sectors/2);
6020
6021 atomic_set(&mddev->recovery_active, 0);
6022 last_check = 0;
6023
6024 if (j>2) {
6025 printk(KERN_INFO
6026 "md: resuming %s of %s from checkpoint.\n",
6027 desc, mdname(mddev));
6028 mddev->curr_resync = j;
6029 }
6030
6031 while (j < max_sectors) {
6032 sector_t sectors;
6033
6034 skipped = 0;
6035 if (j >= mddev->resync_max) {
6036 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6037 wait_event(mddev->recovery_wait,
6038 mddev->resync_max > j
6039 || kthread_should_stop());
6040 }
6041 if (kthread_should_stop())
6042 goto interrupted;
6043 sectors = mddev->pers->sync_request(mddev, j, &skipped,
6044 currspeed < speed_min(mddev));
6045 if (sectors == 0) {
6046 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6047 goto out;
6048 }
6049
6050 if (!skipped) { /* actual IO requested */
6051 io_sectors += sectors;
6052 atomic_add(sectors, &mddev->recovery_active);
6053 }
6054
6055 j += sectors;
6056 if (j>1) mddev->curr_resync = j;
6057 mddev->curr_mark_cnt = io_sectors;
6058 if (last_check == 0)
6059 /* this is the earliers that rebuilt will be
6060 * visible in /proc/mdstat
6061 */
6062 md_new_event(mddev);
6063
6064 if (last_check + window > io_sectors || j == max_sectors)
6065 continue;
6066
6067 last_check = io_sectors;
6068
6069 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6070 break;
6071
6072 repeat:
6073 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
6074 /* step marks */
6075 int next = (last_mark+1) % SYNC_MARKS;
6076
6077 mddev->resync_mark = mark[next];
6078 mddev->resync_mark_cnt = mark_cnt[next];
6079 mark[next] = jiffies;
6080 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
6081 last_mark = next;
6082 }
6083
6084
6085 if (kthread_should_stop())
6086 goto interrupted;
6087
6088
6089 /*
6090 * this loop exits only if either when we are slower than
6091 * the 'hard' speed limit, or the system was IO-idle for
6092 * a jiffy.
6093 * the system might be non-idle CPU-wise, but we only care
6094 * about not overloading the IO subsystem. (things like an
6095 * e2fsck being done on the RAID array should execute fast)
6096 */
6097 blk_unplug(mddev->queue);
6098 cond_resched();
6099
6100 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
6101 /((jiffies-mddev->resync_mark)/HZ +1) +1;
6102
6103 if (currspeed > speed_min(mddev)) {
6104 if ((currspeed > speed_max(mddev)) ||
6105 !is_mddev_idle(mddev)) {
6106 msleep(500);
6107 goto repeat;
6108 }
6109 }
6110 }
6111 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
6112 /*
6113 * this also signals 'finished resyncing' to md_stop
6114 */
6115 out:
6116 blk_unplug(mddev->queue);
6117
6118 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
6119
6120 /* tell personality that we are finished */
6121 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
6122
6123 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
6124 mddev->curr_resync > 2) {
6125 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6126 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6127 if (mddev->curr_resync >= mddev->recovery_cp) {
6128 printk(KERN_INFO
6129 "md: checkpointing %s of %s.\n",
6130 desc, mdname(mddev));
6131 mddev->recovery_cp = mddev->curr_resync;
6132 }
6133 } else
6134 mddev->recovery_cp = MaxSector;
6135 } else {
6136 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6137 mddev->curr_resync = MaxSector;
6138 list_for_each_entry(rdev, &mddev->disks, same_set)
6139 if (rdev->raid_disk >= 0 &&
6140 !test_bit(Faulty, &rdev->flags) &&
6141 !test_bit(In_sync, &rdev->flags) &&
6142 rdev->recovery_offset < mddev->curr_resync)
6143 rdev->recovery_offset = mddev->curr_resync;
6144 }
6145 }
6146 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6147
6148 skip:
6149 mddev->curr_resync = 0;
6150 mddev->resync_min = 0;
6151 mddev->resync_max = MaxSector;
6152 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6153 wake_up(&resync_wait);
6154 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
6155 md_wakeup_thread(mddev->thread);
6156 return;
6157
6158 interrupted:
6159 /*
6160 * got a signal, exit.
6161 */
6162 printk(KERN_INFO
6163 "md: md_do_sync() got signal ... exiting\n");
6164 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6165 goto out;
6166
6167 }
6168 EXPORT_SYMBOL_GPL(md_do_sync);
6169
6170
6171 static int remove_and_add_spares(mddev_t *mddev)
6172 {
6173 mdk_rdev_t *rdev;
6174 int spares = 0;
6175
6176 list_for_each_entry(rdev, &mddev->disks, same_set)
6177 if (rdev->raid_disk >= 0 &&
6178 !test_bit(Blocked, &rdev->flags) &&
6179 (test_bit(Faulty, &rdev->flags) ||
6180 ! test_bit(In_sync, &rdev->flags)) &&
6181 atomic_read(&rdev->nr_pending)==0) {
6182 if (mddev->pers->hot_remove_disk(
6183 mddev, rdev->raid_disk)==0) {
6184 char nm[20];
6185 sprintf(nm,"rd%d", rdev->raid_disk);
6186 sysfs_remove_link(&mddev->kobj, nm);
6187 rdev->raid_disk = -1;
6188 }
6189 }
6190
6191 if (mddev->degraded && ! mddev->ro && !mddev->recovery_disabled) {
6192 list_for_each_entry(rdev, &mddev->disks, same_set) {
6193 if (rdev->raid_disk >= 0 &&
6194 !test_bit(In_sync, &rdev->flags) &&
6195 !test_bit(Blocked, &rdev->flags))
6196 spares++;
6197 if (rdev->raid_disk < 0
6198 && !test_bit(Faulty, &rdev->flags)) {
6199 rdev->recovery_offset = 0;
6200 if (mddev->pers->
6201 hot_add_disk(mddev, rdev) == 0) {
6202 char nm[20];
6203 sprintf(nm, "rd%d", rdev->raid_disk);
6204 if (sysfs_create_link(&mddev->kobj,
6205 &rdev->kobj, nm))
6206 printk(KERN_WARNING
6207 "md: cannot register "
6208 "%s for %s\n",
6209 nm, mdname(mddev));
6210 spares++;
6211 md_new_event(mddev);
6212 } else
6213 break;
6214 }
6215 }
6216 }
6217 return spares;
6218 }
6219 /*
6220 * This routine is regularly called by all per-raid-array threads to
6221 * deal with generic issues like resync and super-block update.
6222 * Raid personalities that don't have a thread (linear/raid0) do not
6223 * need this as they never do any recovery or update the superblock.
6224 *
6225 * It does not do any resync itself, but rather "forks" off other threads
6226 * to do that as needed.
6227 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
6228 * "->recovery" and create a thread at ->sync_thread.
6229 * When the thread finishes it sets MD_RECOVERY_DONE
6230 * and wakeups up this thread which will reap the thread and finish up.
6231 * This thread also removes any faulty devices (with nr_pending == 0).
6232 *
6233 * The overall approach is:
6234 * 1/ if the superblock needs updating, update it.
6235 * 2/ If a recovery thread is running, don't do anything else.
6236 * 3/ If recovery has finished, clean up, possibly marking spares active.
6237 * 4/ If there are any faulty devices, remove them.
6238 * 5/ If array is degraded, try to add spares devices
6239 * 6/ If array has spares or is not in-sync, start a resync thread.
6240 */
6241 void md_check_recovery(mddev_t *mddev)
6242 {
6243 mdk_rdev_t *rdev;
6244
6245
6246 if (mddev->bitmap)
6247 bitmap_daemon_work(mddev->bitmap);
6248
6249 if (mddev->ro)
6250 return;
6251
6252 if (signal_pending(current)) {
6253 if (mddev->pers->sync_request && !mddev->external) {
6254 printk(KERN_INFO "md: %s in immediate safe mode\n",
6255 mdname(mddev));
6256 mddev->safemode = 2;
6257 }
6258 flush_signals(current);
6259 }
6260
6261 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
6262 return;
6263 if ( ! (
6264 (mddev->flags && !mddev->external) ||
6265 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
6266 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
6267 (mddev->external == 0 && mddev->safemode == 1) ||
6268 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
6269 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
6270 ))
6271 return;
6272
6273 if (mddev_trylock(mddev)) {
6274 int spares = 0;
6275
6276 if (mddev->ro) {
6277 /* Only thing we do on a ro array is remove
6278 * failed devices.
6279 */
6280 remove_and_add_spares(mddev);
6281 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6282 goto unlock;
6283 }
6284
6285 if (!mddev->external) {
6286 int did_change = 0;
6287 spin_lock_irq(&mddev->write_lock);
6288 if (mddev->safemode &&
6289 !atomic_read(&mddev->writes_pending) &&
6290 !mddev->in_sync &&
6291 mddev->recovery_cp == MaxSector) {
6292 mddev->in_sync = 1;
6293 did_change = 1;
6294 if (mddev->persistent)
6295 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6296 }
6297 if (mddev->safemode == 1)
6298 mddev->safemode = 0;
6299 spin_unlock_irq(&mddev->write_lock);
6300 if (did_change)
6301 sysfs_notify_dirent(mddev->sysfs_state);
6302 }
6303
6304 if (mddev->flags)
6305 md_update_sb(mddev, 0);
6306
6307 list_for_each_entry(rdev, &mddev->disks, same_set)
6308 if (test_and_clear_bit(StateChanged, &rdev->flags))
6309 sysfs_notify_dirent(rdev->sysfs_state);
6310
6311
6312 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
6313 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
6314 /* resync/recovery still happening */
6315 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6316 goto unlock;
6317 }
6318 if (mddev->sync_thread) {
6319 /* resync has finished, collect result */
6320 md_unregister_thread(mddev->sync_thread);
6321 mddev->sync_thread = NULL;
6322 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
6323 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
6324 /* success...*/
6325 /* activate any spares */
6326 if (mddev->pers->spare_active(mddev))
6327 sysfs_notify(&mddev->kobj, NULL,
6328 "degraded");
6329 }
6330 md_update_sb(mddev, 1);
6331
6332 /* if array is no-longer degraded, then any saved_raid_disk
6333 * information must be scrapped
6334 */
6335 if (!mddev->degraded)
6336 list_for_each_entry(rdev, &mddev->disks, same_set)
6337 rdev->saved_raid_disk = -1;
6338
6339 mddev->recovery = 0;
6340 /* flag recovery needed just to double check */
6341 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6342 sysfs_notify_dirent(mddev->sysfs_action);
6343 md_new_event(mddev);
6344 goto unlock;
6345 }
6346 /* Set RUNNING before clearing NEEDED to avoid
6347 * any transients in the value of "sync_action".
6348 */
6349 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6350 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6351 /* Clear some bits that don't mean anything, but
6352 * might be left set
6353 */
6354 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
6355 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
6356
6357 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
6358 goto unlock;
6359 /* no recovery is running.
6360 * remove any failed drives, then
6361 * add spares if possible.
6362 * Spare are also removed and re-added, to allow
6363 * the personality to fail the re-add.
6364 */
6365
6366 if (mddev->reshape_position != MaxSector) {
6367 if (mddev->pers->check_reshape(mddev) != 0)
6368 /* Cannot proceed */
6369 goto unlock;
6370 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6371 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6372 } else if ((spares = remove_and_add_spares(mddev))) {
6373 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6374 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6375 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
6376 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6377 } else if (mddev->recovery_cp < MaxSector) {
6378 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6379 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6380 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6381 /* nothing to be done ... */
6382 goto unlock;
6383
6384 if (mddev->pers->sync_request) {
6385 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
6386 /* We are adding a device or devices to an array
6387 * which has the bitmap stored on all devices.
6388 * So make sure all bitmap pages get written
6389 */
6390 bitmap_write_all(mddev->bitmap);
6391 }
6392 mddev->sync_thread = md_register_thread(md_do_sync,
6393 mddev,
6394 "%s_resync");
6395 if (!mddev->sync_thread) {
6396 printk(KERN_ERR "%s: could not start resync"
6397 " thread...\n",
6398 mdname(mddev));
6399 /* leave the spares where they are, it shouldn't hurt */
6400 mddev->recovery = 0;
6401 } else
6402 md_wakeup_thread(mddev->sync_thread);
6403 sysfs_notify_dirent(mddev->sysfs_action);
6404 md_new_event(mddev);
6405 }
6406 unlock:
6407 if (!mddev->sync_thread) {
6408 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6409 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
6410 &mddev->recovery))
6411 if (mddev->sysfs_action)
6412 sysfs_notify_dirent(mddev->sysfs_action);
6413 }
6414 mddev_unlock(mddev);
6415 }
6416 }
6417
6418 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
6419 {
6420 sysfs_notify_dirent(rdev->sysfs_state);
6421 wait_event_timeout(rdev->blocked_wait,
6422 !test_bit(Blocked, &rdev->flags),
6423 msecs_to_jiffies(5000));
6424 rdev_dec_pending(rdev, mddev);
6425 }
6426 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
6427
6428 static int md_notify_reboot(struct notifier_block *this,
6429 unsigned long code, void *x)
6430 {
6431 struct list_head *tmp;
6432 mddev_t *mddev;
6433
6434 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
6435
6436 printk(KERN_INFO "md: stopping all md devices.\n");
6437
6438 for_each_mddev(mddev, tmp)
6439 if (mddev_trylock(mddev)) {
6440 /* Force a switch to readonly even array
6441 * appears to still be in use. Hence
6442 * the '100'.
6443 */
6444 do_md_stop(mddev, 1, 100);
6445 mddev_unlock(mddev);
6446 }
6447 /*
6448 * certain more exotic SCSI devices are known to be
6449 * volatile wrt too early system reboots. While the
6450 * right place to handle this issue is the given
6451 * driver, we do want to have a safe RAID driver ...
6452 */
6453 mdelay(1000*1);
6454 }
6455 return NOTIFY_DONE;
6456 }
6457
6458 static struct notifier_block md_notifier = {
6459 .notifier_call = md_notify_reboot,
6460 .next = NULL,
6461 .priority = INT_MAX, /* before any real devices */
6462 };
6463
6464 static void md_geninit(void)
6465 {
6466 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
6467
6468 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
6469 }
6470
6471 static int __init md_init(void)
6472 {
6473 if (register_blkdev(MAJOR_NR, "md"))
6474 return -1;
6475 if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
6476 unregister_blkdev(MAJOR_NR, "md");
6477 return -1;
6478 }
6479 blk_register_region(MKDEV(MAJOR_NR, 0), 1UL<<MINORBITS, THIS_MODULE,
6480 md_probe, NULL, NULL);
6481 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
6482 md_probe, NULL, NULL);
6483
6484 register_reboot_notifier(&md_notifier);
6485 raid_table_header = register_sysctl_table(raid_root_table);
6486
6487 md_geninit();
6488 return 0;
6489 }
6490
6491
6492 #ifndef MODULE
6493
6494 /*
6495 * Searches all registered partitions for autorun RAID arrays
6496 * at boot time.
6497 */
6498
6499 static LIST_HEAD(all_detected_devices);
6500 struct detected_devices_node {
6501 struct list_head list;
6502 dev_t dev;
6503 };
6504
6505 void md_autodetect_dev(dev_t dev)
6506 {
6507 struct detected_devices_node *node_detected_dev;
6508
6509 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
6510 if (node_detected_dev) {
6511 node_detected_dev->dev = dev;
6512 list_add_tail(&node_detected_dev->list, &all_detected_devices);
6513 } else {
6514 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
6515 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
6516 }
6517 }
6518
6519
6520 static void autostart_arrays(int part)
6521 {
6522 mdk_rdev_t *rdev;
6523 struct detected_devices_node *node_detected_dev;
6524 dev_t dev;
6525 int i_scanned, i_passed;
6526
6527 i_scanned = 0;
6528 i_passed = 0;
6529
6530 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
6531
6532 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
6533 i_scanned++;
6534 node_detected_dev = list_entry(all_detected_devices.next,
6535 struct detected_devices_node, list);
6536 list_del(&node_detected_dev->list);
6537 dev = node_detected_dev->dev;
6538 kfree(node_detected_dev);
6539 rdev = md_import_device(dev,0, 90);
6540 if (IS_ERR(rdev))
6541 continue;
6542
6543 if (test_bit(Faulty, &rdev->flags)) {
6544 MD_BUG();
6545 continue;
6546 }
6547 set_bit(AutoDetected, &rdev->flags);
6548 list_add(&rdev->same_set, &pending_raid_disks);
6549 i_passed++;
6550 }
6551
6552 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
6553 i_scanned, i_passed);
6554
6555 autorun_devices(part);
6556 }
6557
6558 #endif /* !MODULE */
6559
6560 static __exit void md_exit(void)
6561 {
6562 mddev_t *mddev;
6563 struct list_head *tmp;
6564
6565 blk_unregister_region(MKDEV(MAJOR_NR,0), 1U << MINORBITS);
6566 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
6567
6568 unregister_blkdev(MAJOR_NR,"md");
6569 unregister_blkdev(mdp_major, "mdp");
6570 unregister_reboot_notifier(&md_notifier);
6571 unregister_sysctl_table(raid_table_header);
6572 remove_proc_entry("mdstat", NULL);
6573 for_each_mddev(mddev, tmp) {
6574 export_array(mddev);
6575 mddev->hold_active = 0;
6576 }
6577 }
6578
6579 subsys_initcall(md_init);
6580 module_exit(md_exit)
6581
6582 static int get_ro(char *buffer, struct kernel_param *kp)
6583 {
6584 return sprintf(buffer, "%d", start_readonly);
6585 }
6586 static int set_ro(const char *val, struct kernel_param *kp)
6587 {
6588 char *e;
6589 int num = simple_strtoul(val, &e, 10);
6590 if (*val && (*e == '\0' || *e == '\n')) {
6591 start_readonly = num;
6592 return 0;
6593 }
6594 return -EINVAL;
6595 }
6596
6597 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
6598 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
6599
6600 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
6601
6602 EXPORT_SYMBOL(register_md_personality);
6603 EXPORT_SYMBOL(unregister_md_personality);
6604 EXPORT_SYMBOL(md_error);
6605 EXPORT_SYMBOL(md_done_sync);
6606 EXPORT_SYMBOL(md_write_start);
6607 EXPORT_SYMBOL(md_write_end);
6608 EXPORT_SYMBOL(md_register_thread);
6609 EXPORT_SYMBOL(md_unregister_thread);
6610 EXPORT_SYMBOL(md_wakeup_thread);
6611 EXPORT_SYMBOL(md_check_recovery);
6612 MODULE_LICENSE("GPL");
6613 MODULE_ALIAS("md");
6614 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
This page took 0.220104 seconds and 6 git commands to generate.