md/raid5: allow layout/chunksize to be changed on an active 2-drive raid5.
[deliverable/linux.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/buffer_head.h> /* for invalidate_bdev */
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/hdreg.h>
43 #include <linux/proc_fs.h>
44 #include <linux/random.h>
45 #include <linux/reboot.h>
46 #include <linux/file.h>
47 #include <linux/delay.h>
48 #include <linux/raid/md_p.h>
49 #include <linux/raid/md_u.h>
50 #include "md.h"
51 #include "bitmap.h"
52
53 #define DEBUG 0
54 #define dprintk(x...) ((void)(DEBUG && printk(x)))
55
56
57 #ifndef MODULE
58 static void autostart_arrays(int part);
59 #endif
60
61 static LIST_HEAD(pers_list);
62 static DEFINE_SPINLOCK(pers_lock);
63
64 static void md_print_devices(void);
65
66 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
67
68 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
69
70 /*
71 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
72 * is 1000 KB/sec, so the extra system load does not show up that much.
73 * Increase it if you want to have more _guaranteed_ speed. Note that
74 * the RAID driver will use the maximum available bandwidth if the IO
75 * subsystem is idle. There is also an 'absolute maximum' reconstruction
76 * speed limit - in case reconstruction slows down your system despite
77 * idle IO detection.
78 *
79 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
80 * or /sys/block/mdX/md/sync_speed_{min,max}
81 */
82
83 static int sysctl_speed_limit_min = 1000;
84 static int sysctl_speed_limit_max = 200000;
85 static inline int speed_min(mddev_t *mddev)
86 {
87 return mddev->sync_speed_min ?
88 mddev->sync_speed_min : sysctl_speed_limit_min;
89 }
90
91 static inline int speed_max(mddev_t *mddev)
92 {
93 return mddev->sync_speed_max ?
94 mddev->sync_speed_max : sysctl_speed_limit_max;
95 }
96
97 static struct ctl_table_header *raid_table_header;
98
99 static ctl_table raid_table[] = {
100 {
101 .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
102 .procname = "speed_limit_min",
103 .data = &sysctl_speed_limit_min,
104 .maxlen = sizeof(int),
105 .mode = S_IRUGO|S_IWUSR,
106 .proc_handler = &proc_dointvec,
107 },
108 {
109 .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
110 .procname = "speed_limit_max",
111 .data = &sysctl_speed_limit_max,
112 .maxlen = sizeof(int),
113 .mode = S_IRUGO|S_IWUSR,
114 .proc_handler = &proc_dointvec,
115 },
116 { .ctl_name = 0 }
117 };
118
119 static ctl_table raid_dir_table[] = {
120 {
121 .ctl_name = DEV_RAID,
122 .procname = "raid",
123 .maxlen = 0,
124 .mode = S_IRUGO|S_IXUGO,
125 .child = raid_table,
126 },
127 { .ctl_name = 0 }
128 };
129
130 static ctl_table raid_root_table[] = {
131 {
132 .ctl_name = CTL_DEV,
133 .procname = "dev",
134 .maxlen = 0,
135 .mode = 0555,
136 .child = raid_dir_table,
137 },
138 { .ctl_name = 0 }
139 };
140
141 static struct block_device_operations md_fops;
142
143 static int start_readonly;
144
145 /*
146 * We have a system wide 'event count' that is incremented
147 * on any 'interesting' event, and readers of /proc/mdstat
148 * can use 'poll' or 'select' to find out when the event
149 * count increases.
150 *
151 * Events are:
152 * start array, stop array, error, add device, remove device,
153 * start build, activate spare
154 */
155 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
156 static atomic_t md_event_count;
157 void md_new_event(mddev_t *mddev)
158 {
159 atomic_inc(&md_event_count);
160 wake_up(&md_event_waiters);
161 }
162 EXPORT_SYMBOL_GPL(md_new_event);
163
164 /* Alternate version that can be called from interrupts
165 * when calling sysfs_notify isn't needed.
166 */
167 static void md_new_event_inintr(mddev_t *mddev)
168 {
169 atomic_inc(&md_event_count);
170 wake_up(&md_event_waiters);
171 }
172
173 /*
174 * Enables to iterate over all existing md arrays
175 * all_mddevs_lock protects this list.
176 */
177 static LIST_HEAD(all_mddevs);
178 static DEFINE_SPINLOCK(all_mddevs_lock);
179
180
181 /*
182 * iterates through all used mddevs in the system.
183 * We take care to grab the all_mddevs_lock whenever navigating
184 * the list, and to always hold a refcount when unlocked.
185 * Any code which breaks out of this loop while own
186 * a reference to the current mddev and must mddev_put it.
187 */
188 #define for_each_mddev(mddev,tmp) \
189 \
190 for (({ spin_lock(&all_mddevs_lock); \
191 tmp = all_mddevs.next; \
192 mddev = NULL;}); \
193 ({ if (tmp != &all_mddevs) \
194 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
195 spin_unlock(&all_mddevs_lock); \
196 if (mddev) mddev_put(mddev); \
197 mddev = list_entry(tmp, mddev_t, all_mddevs); \
198 tmp != &all_mddevs;}); \
199 ({ spin_lock(&all_mddevs_lock); \
200 tmp = tmp->next;}) \
201 )
202
203
204 /* Rather than calling directly into the personality make_request function,
205 * IO requests come here first so that we can check if the device is
206 * being suspended pending a reconfiguration.
207 * We hold a refcount over the call to ->make_request. By the time that
208 * call has finished, the bio has been linked into some internal structure
209 * and so is visible to ->quiesce(), so we don't need the refcount any more.
210 */
211 static int md_make_request(struct request_queue *q, struct bio *bio)
212 {
213 mddev_t *mddev = q->queuedata;
214 int rv;
215 if (mddev == NULL || mddev->pers == NULL) {
216 bio_io_error(bio);
217 return 0;
218 }
219 rcu_read_lock();
220 if (mddev->suspended) {
221 DEFINE_WAIT(__wait);
222 for (;;) {
223 prepare_to_wait(&mddev->sb_wait, &__wait,
224 TASK_UNINTERRUPTIBLE);
225 if (!mddev->suspended)
226 break;
227 rcu_read_unlock();
228 schedule();
229 rcu_read_lock();
230 }
231 finish_wait(&mddev->sb_wait, &__wait);
232 }
233 atomic_inc(&mddev->active_io);
234 rcu_read_unlock();
235 rv = mddev->pers->make_request(q, bio);
236 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
237 wake_up(&mddev->sb_wait);
238
239 return rv;
240 }
241
242 static void mddev_suspend(mddev_t *mddev)
243 {
244 BUG_ON(mddev->suspended);
245 mddev->suspended = 1;
246 synchronize_rcu();
247 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
248 mddev->pers->quiesce(mddev, 1);
249 md_unregister_thread(mddev->thread);
250 mddev->thread = NULL;
251 /* we now know that no code is executing in the personality module,
252 * except possibly the tail end of a ->bi_end_io function, but that
253 * is certain to complete before the module has a chance to get
254 * unloaded
255 */
256 }
257
258 static void mddev_resume(mddev_t *mddev)
259 {
260 mddev->suspended = 0;
261 wake_up(&mddev->sb_wait);
262 mddev->pers->quiesce(mddev, 0);
263 }
264
265
266 static inline mddev_t *mddev_get(mddev_t *mddev)
267 {
268 atomic_inc(&mddev->active);
269 return mddev;
270 }
271
272 static void mddev_delayed_delete(struct work_struct *ws)
273 {
274 mddev_t *mddev = container_of(ws, mddev_t, del_work);
275 kobject_del(&mddev->kobj);
276 kobject_put(&mddev->kobj);
277 }
278
279 static void mddev_put(mddev_t *mddev)
280 {
281 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
282 return;
283 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
284 !mddev->hold_active) {
285 list_del(&mddev->all_mddevs);
286 if (mddev->gendisk) {
287 /* we did a probe so need to clean up.
288 * Call schedule_work inside the spinlock
289 * so that flush_scheduled_work() after
290 * mddev_find will succeed in waiting for the
291 * work to be done.
292 */
293 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
294 schedule_work(&mddev->del_work);
295 } else
296 kfree(mddev);
297 }
298 spin_unlock(&all_mddevs_lock);
299 }
300
301 static mddev_t * mddev_find(dev_t unit)
302 {
303 mddev_t *mddev, *new = NULL;
304
305 retry:
306 spin_lock(&all_mddevs_lock);
307
308 if (unit) {
309 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
310 if (mddev->unit == unit) {
311 mddev_get(mddev);
312 spin_unlock(&all_mddevs_lock);
313 kfree(new);
314 return mddev;
315 }
316
317 if (new) {
318 list_add(&new->all_mddevs, &all_mddevs);
319 spin_unlock(&all_mddevs_lock);
320 new->hold_active = UNTIL_IOCTL;
321 return new;
322 }
323 } else if (new) {
324 /* find an unused unit number */
325 static int next_minor = 512;
326 int start = next_minor;
327 int is_free = 0;
328 int dev = 0;
329 while (!is_free) {
330 dev = MKDEV(MD_MAJOR, next_minor);
331 next_minor++;
332 if (next_minor > MINORMASK)
333 next_minor = 0;
334 if (next_minor == start) {
335 /* Oh dear, all in use. */
336 spin_unlock(&all_mddevs_lock);
337 kfree(new);
338 return NULL;
339 }
340
341 is_free = 1;
342 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
343 if (mddev->unit == dev) {
344 is_free = 0;
345 break;
346 }
347 }
348 new->unit = dev;
349 new->md_minor = MINOR(dev);
350 new->hold_active = UNTIL_STOP;
351 list_add(&new->all_mddevs, &all_mddevs);
352 spin_unlock(&all_mddevs_lock);
353 return new;
354 }
355 spin_unlock(&all_mddevs_lock);
356
357 new = kzalloc(sizeof(*new), GFP_KERNEL);
358 if (!new)
359 return NULL;
360
361 new->unit = unit;
362 if (MAJOR(unit) == MD_MAJOR)
363 new->md_minor = MINOR(unit);
364 else
365 new->md_minor = MINOR(unit) >> MdpMinorShift;
366
367 mutex_init(&new->reconfig_mutex);
368 INIT_LIST_HEAD(&new->disks);
369 INIT_LIST_HEAD(&new->all_mddevs);
370 init_timer(&new->safemode_timer);
371 atomic_set(&new->active, 1);
372 atomic_set(&new->openers, 0);
373 atomic_set(&new->active_io, 0);
374 spin_lock_init(&new->write_lock);
375 init_waitqueue_head(&new->sb_wait);
376 init_waitqueue_head(&new->recovery_wait);
377 new->reshape_position = MaxSector;
378 new->resync_min = 0;
379 new->resync_max = MaxSector;
380 new->level = LEVEL_NONE;
381
382 goto retry;
383 }
384
385 static inline int mddev_lock(mddev_t * mddev)
386 {
387 return mutex_lock_interruptible(&mddev->reconfig_mutex);
388 }
389
390 static inline int mddev_trylock(mddev_t * mddev)
391 {
392 return mutex_trylock(&mddev->reconfig_mutex);
393 }
394
395 static inline void mddev_unlock(mddev_t * mddev)
396 {
397 mutex_unlock(&mddev->reconfig_mutex);
398
399 md_wakeup_thread(mddev->thread);
400 }
401
402 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
403 {
404 mdk_rdev_t *rdev;
405
406 list_for_each_entry(rdev, &mddev->disks, same_set)
407 if (rdev->desc_nr == nr)
408 return rdev;
409
410 return NULL;
411 }
412
413 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
414 {
415 mdk_rdev_t *rdev;
416
417 list_for_each_entry(rdev, &mddev->disks, same_set)
418 if (rdev->bdev->bd_dev == dev)
419 return rdev;
420
421 return NULL;
422 }
423
424 static struct mdk_personality *find_pers(int level, char *clevel)
425 {
426 struct mdk_personality *pers;
427 list_for_each_entry(pers, &pers_list, list) {
428 if (level != LEVEL_NONE && pers->level == level)
429 return pers;
430 if (strcmp(pers->name, clevel)==0)
431 return pers;
432 }
433 return NULL;
434 }
435
436 /* return the offset of the super block in 512byte sectors */
437 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
438 {
439 sector_t num_sectors = bdev->bd_inode->i_size / 512;
440 return MD_NEW_SIZE_SECTORS(num_sectors);
441 }
442
443 static sector_t calc_num_sectors(mdk_rdev_t *rdev, unsigned chunk_size)
444 {
445 sector_t num_sectors = rdev->sb_start;
446
447 if (chunk_size)
448 num_sectors &= ~((sector_t)chunk_size/512 - 1);
449 return num_sectors;
450 }
451
452 static int alloc_disk_sb(mdk_rdev_t * rdev)
453 {
454 if (rdev->sb_page)
455 MD_BUG();
456
457 rdev->sb_page = alloc_page(GFP_KERNEL);
458 if (!rdev->sb_page) {
459 printk(KERN_ALERT "md: out of memory.\n");
460 return -ENOMEM;
461 }
462
463 return 0;
464 }
465
466 static void free_disk_sb(mdk_rdev_t * rdev)
467 {
468 if (rdev->sb_page) {
469 put_page(rdev->sb_page);
470 rdev->sb_loaded = 0;
471 rdev->sb_page = NULL;
472 rdev->sb_start = 0;
473 rdev->sectors = 0;
474 }
475 }
476
477
478 static void super_written(struct bio *bio, int error)
479 {
480 mdk_rdev_t *rdev = bio->bi_private;
481 mddev_t *mddev = rdev->mddev;
482
483 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
484 printk("md: super_written gets error=%d, uptodate=%d\n",
485 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
486 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
487 md_error(mddev, rdev);
488 }
489
490 if (atomic_dec_and_test(&mddev->pending_writes))
491 wake_up(&mddev->sb_wait);
492 bio_put(bio);
493 }
494
495 static void super_written_barrier(struct bio *bio, int error)
496 {
497 struct bio *bio2 = bio->bi_private;
498 mdk_rdev_t *rdev = bio2->bi_private;
499 mddev_t *mddev = rdev->mddev;
500
501 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
502 error == -EOPNOTSUPP) {
503 unsigned long flags;
504 /* barriers don't appear to be supported :-( */
505 set_bit(BarriersNotsupp, &rdev->flags);
506 mddev->barriers_work = 0;
507 spin_lock_irqsave(&mddev->write_lock, flags);
508 bio2->bi_next = mddev->biolist;
509 mddev->biolist = bio2;
510 spin_unlock_irqrestore(&mddev->write_lock, flags);
511 wake_up(&mddev->sb_wait);
512 bio_put(bio);
513 } else {
514 bio_put(bio2);
515 bio->bi_private = rdev;
516 super_written(bio, error);
517 }
518 }
519
520 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
521 sector_t sector, int size, struct page *page)
522 {
523 /* write first size bytes of page to sector of rdev
524 * Increment mddev->pending_writes before returning
525 * and decrement it on completion, waking up sb_wait
526 * if zero is reached.
527 * If an error occurred, call md_error
528 *
529 * As we might need to resubmit the request if BIO_RW_BARRIER
530 * causes ENOTSUPP, we allocate a spare bio...
531 */
532 struct bio *bio = bio_alloc(GFP_NOIO, 1);
533 int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNCIO) | (1<<BIO_RW_UNPLUG);
534
535 bio->bi_bdev = rdev->bdev;
536 bio->bi_sector = sector;
537 bio_add_page(bio, page, size, 0);
538 bio->bi_private = rdev;
539 bio->bi_end_io = super_written;
540 bio->bi_rw = rw;
541
542 atomic_inc(&mddev->pending_writes);
543 if (!test_bit(BarriersNotsupp, &rdev->flags)) {
544 struct bio *rbio;
545 rw |= (1<<BIO_RW_BARRIER);
546 rbio = bio_clone(bio, GFP_NOIO);
547 rbio->bi_private = bio;
548 rbio->bi_end_io = super_written_barrier;
549 submit_bio(rw, rbio);
550 } else
551 submit_bio(rw, bio);
552 }
553
554 void md_super_wait(mddev_t *mddev)
555 {
556 /* wait for all superblock writes that were scheduled to complete.
557 * if any had to be retried (due to BARRIER problems), retry them
558 */
559 DEFINE_WAIT(wq);
560 for(;;) {
561 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
562 if (atomic_read(&mddev->pending_writes)==0)
563 break;
564 while (mddev->biolist) {
565 struct bio *bio;
566 spin_lock_irq(&mddev->write_lock);
567 bio = mddev->biolist;
568 mddev->biolist = bio->bi_next ;
569 bio->bi_next = NULL;
570 spin_unlock_irq(&mddev->write_lock);
571 submit_bio(bio->bi_rw, bio);
572 }
573 schedule();
574 }
575 finish_wait(&mddev->sb_wait, &wq);
576 }
577
578 static void bi_complete(struct bio *bio, int error)
579 {
580 complete((struct completion*)bio->bi_private);
581 }
582
583 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
584 struct page *page, int rw)
585 {
586 struct bio *bio = bio_alloc(GFP_NOIO, 1);
587 struct completion event;
588 int ret;
589
590 rw |= (1 << BIO_RW_SYNCIO) | (1 << BIO_RW_UNPLUG);
591
592 bio->bi_bdev = bdev;
593 bio->bi_sector = sector;
594 bio_add_page(bio, page, size, 0);
595 init_completion(&event);
596 bio->bi_private = &event;
597 bio->bi_end_io = bi_complete;
598 submit_bio(rw, bio);
599 wait_for_completion(&event);
600
601 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
602 bio_put(bio);
603 return ret;
604 }
605 EXPORT_SYMBOL_GPL(sync_page_io);
606
607 static int read_disk_sb(mdk_rdev_t * rdev, int size)
608 {
609 char b[BDEVNAME_SIZE];
610 if (!rdev->sb_page) {
611 MD_BUG();
612 return -EINVAL;
613 }
614 if (rdev->sb_loaded)
615 return 0;
616
617
618 if (!sync_page_io(rdev->bdev, rdev->sb_start, size, rdev->sb_page, READ))
619 goto fail;
620 rdev->sb_loaded = 1;
621 return 0;
622
623 fail:
624 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
625 bdevname(rdev->bdev,b));
626 return -EINVAL;
627 }
628
629 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
630 {
631 return sb1->set_uuid0 == sb2->set_uuid0 &&
632 sb1->set_uuid1 == sb2->set_uuid1 &&
633 sb1->set_uuid2 == sb2->set_uuid2 &&
634 sb1->set_uuid3 == sb2->set_uuid3;
635 }
636
637 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
638 {
639 int ret;
640 mdp_super_t *tmp1, *tmp2;
641
642 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
643 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
644
645 if (!tmp1 || !tmp2) {
646 ret = 0;
647 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
648 goto abort;
649 }
650
651 *tmp1 = *sb1;
652 *tmp2 = *sb2;
653
654 /*
655 * nr_disks is not constant
656 */
657 tmp1->nr_disks = 0;
658 tmp2->nr_disks = 0;
659
660 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
661 abort:
662 kfree(tmp1);
663 kfree(tmp2);
664 return ret;
665 }
666
667
668 static u32 md_csum_fold(u32 csum)
669 {
670 csum = (csum & 0xffff) + (csum >> 16);
671 return (csum & 0xffff) + (csum >> 16);
672 }
673
674 static unsigned int calc_sb_csum(mdp_super_t * sb)
675 {
676 u64 newcsum = 0;
677 u32 *sb32 = (u32*)sb;
678 int i;
679 unsigned int disk_csum, csum;
680
681 disk_csum = sb->sb_csum;
682 sb->sb_csum = 0;
683
684 for (i = 0; i < MD_SB_BYTES/4 ; i++)
685 newcsum += sb32[i];
686 csum = (newcsum & 0xffffffff) + (newcsum>>32);
687
688
689 #ifdef CONFIG_ALPHA
690 /* This used to use csum_partial, which was wrong for several
691 * reasons including that different results are returned on
692 * different architectures. It isn't critical that we get exactly
693 * the same return value as before (we always csum_fold before
694 * testing, and that removes any differences). However as we
695 * know that csum_partial always returned a 16bit value on
696 * alphas, do a fold to maximise conformity to previous behaviour.
697 */
698 sb->sb_csum = md_csum_fold(disk_csum);
699 #else
700 sb->sb_csum = disk_csum;
701 #endif
702 return csum;
703 }
704
705
706 /*
707 * Handle superblock details.
708 * We want to be able to handle multiple superblock formats
709 * so we have a common interface to them all, and an array of
710 * different handlers.
711 * We rely on user-space to write the initial superblock, and support
712 * reading and updating of superblocks.
713 * Interface methods are:
714 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
715 * loads and validates a superblock on dev.
716 * if refdev != NULL, compare superblocks on both devices
717 * Return:
718 * 0 - dev has a superblock that is compatible with refdev
719 * 1 - dev has a superblock that is compatible and newer than refdev
720 * so dev should be used as the refdev in future
721 * -EINVAL superblock incompatible or invalid
722 * -othererror e.g. -EIO
723 *
724 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
725 * Verify that dev is acceptable into mddev.
726 * The first time, mddev->raid_disks will be 0, and data from
727 * dev should be merged in. Subsequent calls check that dev
728 * is new enough. Return 0 or -EINVAL
729 *
730 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
731 * Update the superblock for rdev with data in mddev
732 * This does not write to disc.
733 *
734 */
735
736 struct super_type {
737 char *name;
738 struct module *owner;
739 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
740 int minor_version);
741 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
742 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
743 unsigned long long (*rdev_size_change)(mdk_rdev_t *rdev,
744 sector_t num_sectors);
745 };
746
747 /*
748 * load_super for 0.90.0
749 */
750 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
751 {
752 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
753 mdp_super_t *sb;
754 int ret;
755
756 /*
757 * Calculate the position of the superblock (512byte sectors),
758 * it's at the end of the disk.
759 *
760 * It also happens to be a multiple of 4Kb.
761 */
762 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
763
764 ret = read_disk_sb(rdev, MD_SB_BYTES);
765 if (ret) return ret;
766
767 ret = -EINVAL;
768
769 bdevname(rdev->bdev, b);
770 sb = (mdp_super_t*)page_address(rdev->sb_page);
771
772 if (sb->md_magic != MD_SB_MAGIC) {
773 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
774 b);
775 goto abort;
776 }
777
778 if (sb->major_version != 0 ||
779 sb->minor_version < 90 ||
780 sb->minor_version > 91) {
781 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
782 sb->major_version, sb->minor_version,
783 b);
784 goto abort;
785 }
786
787 if (sb->raid_disks <= 0)
788 goto abort;
789
790 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
791 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
792 b);
793 goto abort;
794 }
795
796 rdev->preferred_minor = sb->md_minor;
797 rdev->data_offset = 0;
798 rdev->sb_size = MD_SB_BYTES;
799
800 if (sb->state & (1<<MD_SB_BITMAP_PRESENT)) {
801 if (sb->level != 1 && sb->level != 4
802 && sb->level != 5 && sb->level != 6
803 && sb->level != 10) {
804 /* FIXME use a better test */
805 printk(KERN_WARNING
806 "md: bitmaps not supported for this level.\n");
807 goto abort;
808 }
809 }
810
811 if (sb->level == LEVEL_MULTIPATH)
812 rdev->desc_nr = -1;
813 else
814 rdev->desc_nr = sb->this_disk.number;
815
816 if (!refdev) {
817 ret = 1;
818 } else {
819 __u64 ev1, ev2;
820 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
821 if (!uuid_equal(refsb, sb)) {
822 printk(KERN_WARNING "md: %s has different UUID to %s\n",
823 b, bdevname(refdev->bdev,b2));
824 goto abort;
825 }
826 if (!sb_equal(refsb, sb)) {
827 printk(KERN_WARNING "md: %s has same UUID"
828 " but different superblock to %s\n",
829 b, bdevname(refdev->bdev, b2));
830 goto abort;
831 }
832 ev1 = md_event(sb);
833 ev2 = md_event(refsb);
834 if (ev1 > ev2)
835 ret = 1;
836 else
837 ret = 0;
838 }
839 rdev->sectors = calc_num_sectors(rdev, sb->chunk_size);
840
841 if (rdev->sectors < sb->size * 2 && sb->level > 1)
842 /* "this cannot possibly happen" ... */
843 ret = -EINVAL;
844
845 abort:
846 return ret;
847 }
848
849 /*
850 * validate_super for 0.90.0
851 */
852 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
853 {
854 mdp_disk_t *desc;
855 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
856 __u64 ev1 = md_event(sb);
857
858 rdev->raid_disk = -1;
859 clear_bit(Faulty, &rdev->flags);
860 clear_bit(In_sync, &rdev->flags);
861 clear_bit(WriteMostly, &rdev->flags);
862 clear_bit(BarriersNotsupp, &rdev->flags);
863
864 if (mddev->raid_disks == 0) {
865 mddev->major_version = 0;
866 mddev->minor_version = sb->minor_version;
867 mddev->patch_version = sb->patch_version;
868 mddev->external = 0;
869 mddev->chunk_size = sb->chunk_size;
870 mddev->ctime = sb->ctime;
871 mddev->utime = sb->utime;
872 mddev->level = sb->level;
873 mddev->clevel[0] = 0;
874 mddev->layout = sb->layout;
875 mddev->raid_disks = sb->raid_disks;
876 mddev->dev_sectors = sb->size * 2;
877 mddev->events = ev1;
878 mddev->bitmap_offset = 0;
879 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
880
881 if (mddev->minor_version >= 91) {
882 mddev->reshape_position = sb->reshape_position;
883 mddev->delta_disks = sb->delta_disks;
884 mddev->new_level = sb->new_level;
885 mddev->new_layout = sb->new_layout;
886 mddev->new_chunk = sb->new_chunk;
887 } else {
888 mddev->reshape_position = MaxSector;
889 mddev->delta_disks = 0;
890 mddev->new_level = mddev->level;
891 mddev->new_layout = mddev->layout;
892 mddev->new_chunk = mddev->chunk_size;
893 }
894
895 if (sb->state & (1<<MD_SB_CLEAN))
896 mddev->recovery_cp = MaxSector;
897 else {
898 if (sb->events_hi == sb->cp_events_hi &&
899 sb->events_lo == sb->cp_events_lo) {
900 mddev->recovery_cp = sb->recovery_cp;
901 } else
902 mddev->recovery_cp = 0;
903 }
904
905 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
906 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
907 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
908 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
909
910 mddev->max_disks = MD_SB_DISKS;
911
912 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
913 mddev->bitmap_file == NULL)
914 mddev->bitmap_offset = mddev->default_bitmap_offset;
915
916 } else if (mddev->pers == NULL) {
917 /* Insist on good event counter while assembling */
918 ++ev1;
919 if (ev1 < mddev->events)
920 return -EINVAL;
921 } else if (mddev->bitmap) {
922 /* if adding to array with a bitmap, then we can accept an
923 * older device ... but not too old.
924 */
925 if (ev1 < mddev->bitmap->events_cleared)
926 return 0;
927 } else {
928 if (ev1 < mddev->events)
929 /* just a hot-add of a new device, leave raid_disk at -1 */
930 return 0;
931 }
932
933 if (mddev->level != LEVEL_MULTIPATH) {
934 desc = sb->disks + rdev->desc_nr;
935
936 if (desc->state & (1<<MD_DISK_FAULTY))
937 set_bit(Faulty, &rdev->flags);
938 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
939 desc->raid_disk < mddev->raid_disks */) {
940 set_bit(In_sync, &rdev->flags);
941 rdev->raid_disk = desc->raid_disk;
942 }
943 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
944 set_bit(WriteMostly, &rdev->flags);
945 } else /* MULTIPATH are always insync */
946 set_bit(In_sync, &rdev->flags);
947 return 0;
948 }
949
950 /*
951 * sync_super for 0.90.0
952 */
953 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
954 {
955 mdp_super_t *sb;
956 mdk_rdev_t *rdev2;
957 int next_spare = mddev->raid_disks;
958
959
960 /* make rdev->sb match mddev data..
961 *
962 * 1/ zero out disks
963 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
964 * 3/ any empty disks < next_spare become removed
965 *
966 * disks[0] gets initialised to REMOVED because
967 * we cannot be sure from other fields if it has
968 * been initialised or not.
969 */
970 int i;
971 int active=0, working=0,failed=0,spare=0,nr_disks=0;
972
973 rdev->sb_size = MD_SB_BYTES;
974
975 sb = (mdp_super_t*)page_address(rdev->sb_page);
976
977 memset(sb, 0, sizeof(*sb));
978
979 sb->md_magic = MD_SB_MAGIC;
980 sb->major_version = mddev->major_version;
981 sb->patch_version = mddev->patch_version;
982 sb->gvalid_words = 0; /* ignored */
983 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
984 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
985 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
986 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
987
988 sb->ctime = mddev->ctime;
989 sb->level = mddev->level;
990 sb->size = mddev->dev_sectors / 2;
991 sb->raid_disks = mddev->raid_disks;
992 sb->md_minor = mddev->md_minor;
993 sb->not_persistent = 0;
994 sb->utime = mddev->utime;
995 sb->state = 0;
996 sb->events_hi = (mddev->events>>32);
997 sb->events_lo = (u32)mddev->events;
998
999 if (mddev->reshape_position == MaxSector)
1000 sb->minor_version = 90;
1001 else {
1002 sb->minor_version = 91;
1003 sb->reshape_position = mddev->reshape_position;
1004 sb->new_level = mddev->new_level;
1005 sb->delta_disks = mddev->delta_disks;
1006 sb->new_layout = mddev->new_layout;
1007 sb->new_chunk = mddev->new_chunk;
1008 }
1009 mddev->minor_version = sb->minor_version;
1010 if (mddev->in_sync)
1011 {
1012 sb->recovery_cp = mddev->recovery_cp;
1013 sb->cp_events_hi = (mddev->events>>32);
1014 sb->cp_events_lo = (u32)mddev->events;
1015 if (mddev->recovery_cp == MaxSector)
1016 sb->state = (1<< MD_SB_CLEAN);
1017 } else
1018 sb->recovery_cp = 0;
1019
1020 sb->layout = mddev->layout;
1021 sb->chunk_size = mddev->chunk_size;
1022
1023 if (mddev->bitmap && mddev->bitmap_file == NULL)
1024 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1025
1026 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1027 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1028 mdp_disk_t *d;
1029 int desc_nr;
1030 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
1031 && !test_bit(Faulty, &rdev2->flags))
1032 desc_nr = rdev2->raid_disk;
1033 else
1034 desc_nr = next_spare++;
1035 rdev2->desc_nr = desc_nr;
1036 d = &sb->disks[rdev2->desc_nr];
1037 nr_disks++;
1038 d->number = rdev2->desc_nr;
1039 d->major = MAJOR(rdev2->bdev->bd_dev);
1040 d->minor = MINOR(rdev2->bdev->bd_dev);
1041 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
1042 && !test_bit(Faulty, &rdev2->flags))
1043 d->raid_disk = rdev2->raid_disk;
1044 else
1045 d->raid_disk = rdev2->desc_nr; /* compatibility */
1046 if (test_bit(Faulty, &rdev2->flags))
1047 d->state = (1<<MD_DISK_FAULTY);
1048 else if (test_bit(In_sync, &rdev2->flags)) {
1049 d->state = (1<<MD_DISK_ACTIVE);
1050 d->state |= (1<<MD_DISK_SYNC);
1051 active++;
1052 working++;
1053 } else {
1054 d->state = 0;
1055 spare++;
1056 working++;
1057 }
1058 if (test_bit(WriteMostly, &rdev2->flags))
1059 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1060 }
1061 /* now set the "removed" and "faulty" bits on any missing devices */
1062 for (i=0 ; i < mddev->raid_disks ; i++) {
1063 mdp_disk_t *d = &sb->disks[i];
1064 if (d->state == 0 && d->number == 0) {
1065 d->number = i;
1066 d->raid_disk = i;
1067 d->state = (1<<MD_DISK_REMOVED);
1068 d->state |= (1<<MD_DISK_FAULTY);
1069 failed++;
1070 }
1071 }
1072 sb->nr_disks = nr_disks;
1073 sb->active_disks = active;
1074 sb->working_disks = working;
1075 sb->failed_disks = failed;
1076 sb->spare_disks = spare;
1077
1078 sb->this_disk = sb->disks[rdev->desc_nr];
1079 sb->sb_csum = calc_sb_csum(sb);
1080 }
1081
1082 /*
1083 * rdev_size_change for 0.90.0
1084 */
1085 static unsigned long long
1086 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1087 {
1088 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1089 return 0; /* component must fit device */
1090 if (rdev->mddev->bitmap_offset)
1091 return 0; /* can't move bitmap */
1092 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
1093 if (!num_sectors || num_sectors > rdev->sb_start)
1094 num_sectors = rdev->sb_start;
1095 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1096 rdev->sb_page);
1097 md_super_wait(rdev->mddev);
1098 return num_sectors / 2; /* kB for sysfs */
1099 }
1100
1101
1102 /*
1103 * version 1 superblock
1104 */
1105
1106 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1107 {
1108 __le32 disk_csum;
1109 u32 csum;
1110 unsigned long long newcsum;
1111 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1112 __le32 *isuper = (__le32*)sb;
1113 int i;
1114
1115 disk_csum = sb->sb_csum;
1116 sb->sb_csum = 0;
1117 newcsum = 0;
1118 for (i=0; size>=4; size -= 4 )
1119 newcsum += le32_to_cpu(*isuper++);
1120
1121 if (size == 2)
1122 newcsum += le16_to_cpu(*(__le16*) isuper);
1123
1124 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1125 sb->sb_csum = disk_csum;
1126 return cpu_to_le32(csum);
1127 }
1128
1129 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1130 {
1131 struct mdp_superblock_1 *sb;
1132 int ret;
1133 sector_t sb_start;
1134 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1135 int bmask;
1136
1137 /*
1138 * Calculate the position of the superblock in 512byte sectors.
1139 * It is always aligned to a 4K boundary and
1140 * depeding on minor_version, it can be:
1141 * 0: At least 8K, but less than 12K, from end of device
1142 * 1: At start of device
1143 * 2: 4K from start of device.
1144 */
1145 switch(minor_version) {
1146 case 0:
1147 sb_start = rdev->bdev->bd_inode->i_size >> 9;
1148 sb_start -= 8*2;
1149 sb_start &= ~(sector_t)(4*2-1);
1150 break;
1151 case 1:
1152 sb_start = 0;
1153 break;
1154 case 2:
1155 sb_start = 8;
1156 break;
1157 default:
1158 return -EINVAL;
1159 }
1160 rdev->sb_start = sb_start;
1161
1162 /* superblock is rarely larger than 1K, but it can be larger,
1163 * and it is safe to read 4k, so we do that
1164 */
1165 ret = read_disk_sb(rdev, 4096);
1166 if (ret) return ret;
1167
1168
1169 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1170
1171 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1172 sb->major_version != cpu_to_le32(1) ||
1173 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1174 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1175 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1176 return -EINVAL;
1177
1178 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1179 printk("md: invalid superblock checksum on %s\n",
1180 bdevname(rdev->bdev,b));
1181 return -EINVAL;
1182 }
1183 if (le64_to_cpu(sb->data_size) < 10) {
1184 printk("md: data_size too small on %s\n",
1185 bdevname(rdev->bdev,b));
1186 return -EINVAL;
1187 }
1188 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET)) {
1189 if (sb->level != cpu_to_le32(1) &&
1190 sb->level != cpu_to_le32(4) &&
1191 sb->level != cpu_to_le32(5) &&
1192 sb->level != cpu_to_le32(6) &&
1193 sb->level != cpu_to_le32(10)) {
1194 printk(KERN_WARNING
1195 "md: bitmaps not supported for this level.\n");
1196 return -EINVAL;
1197 }
1198 }
1199
1200 rdev->preferred_minor = 0xffff;
1201 rdev->data_offset = le64_to_cpu(sb->data_offset);
1202 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1203
1204 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1205 bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
1206 if (rdev->sb_size & bmask)
1207 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1208
1209 if (minor_version
1210 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1211 return -EINVAL;
1212
1213 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1214 rdev->desc_nr = -1;
1215 else
1216 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1217
1218 if (!refdev) {
1219 ret = 1;
1220 } else {
1221 __u64 ev1, ev2;
1222 struct mdp_superblock_1 *refsb =
1223 (struct mdp_superblock_1*)page_address(refdev->sb_page);
1224
1225 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1226 sb->level != refsb->level ||
1227 sb->layout != refsb->layout ||
1228 sb->chunksize != refsb->chunksize) {
1229 printk(KERN_WARNING "md: %s has strangely different"
1230 " superblock to %s\n",
1231 bdevname(rdev->bdev,b),
1232 bdevname(refdev->bdev,b2));
1233 return -EINVAL;
1234 }
1235 ev1 = le64_to_cpu(sb->events);
1236 ev2 = le64_to_cpu(refsb->events);
1237
1238 if (ev1 > ev2)
1239 ret = 1;
1240 else
1241 ret = 0;
1242 }
1243 if (minor_version)
1244 rdev->sectors = (rdev->bdev->bd_inode->i_size >> 9) -
1245 le64_to_cpu(sb->data_offset);
1246 else
1247 rdev->sectors = rdev->sb_start;
1248 if (rdev->sectors < le64_to_cpu(sb->data_size))
1249 return -EINVAL;
1250 rdev->sectors = le64_to_cpu(sb->data_size);
1251 if (le32_to_cpu(sb->chunksize))
1252 rdev->sectors &= ~((sector_t)le32_to_cpu(sb->chunksize) - 1);
1253
1254 if (le64_to_cpu(sb->size) > rdev->sectors)
1255 return -EINVAL;
1256 return ret;
1257 }
1258
1259 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1260 {
1261 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1262 __u64 ev1 = le64_to_cpu(sb->events);
1263
1264 rdev->raid_disk = -1;
1265 clear_bit(Faulty, &rdev->flags);
1266 clear_bit(In_sync, &rdev->flags);
1267 clear_bit(WriteMostly, &rdev->flags);
1268 clear_bit(BarriersNotsupp, &rdev->flags);
1269
1270 if (mddev->raid_disks == 0) {
1271 mddev->major_version = 1;
1272 mddev->patch_version = 0;
1273 mddev->external = 0;
1274 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1275 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1276 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1277 mddev->level = le32_to_cpu(sb->level);
1278 mddev->clevel[0] = 0;
1279 mddev->layout = le32_to_cpu(sb->layout);
1280 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1281 mddev->dev_sectors = le64_to_cpu(sb->size);
1282 mddev->events = ev1;
1283 mddev->bitmap_offset = 0;
1284 mddev->default_bitmap_offset = 1024 >> 9;
1285
1286 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1287 memcpy(mddev->uuid, sb->set_uuid, 16);
1288
1289 mddev->max_disks = (4096-256)/2;
1290
1291 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1292 mddev->bitmap_file == NULL )
1293 mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1294
1295 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1296 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1297 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1298 mddev->new_level = le32_to_cpu(sb->new_level);
1299 mddev->new_layout = le32_to_cpu(sb->new_layout);
1300 mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
1301 } else {
1302 mddev->reshape_position = MaxSector;
1303 mddev->delta_disks = 0;
1304 mddev->new_level = mddev->level;
1305 mddev->new_layout = mddev->layout;
1306 mddev->new_chunk = mddev->chunk_size;
1307 }
1308
1309 } else if (mddev->pers == NULL) {
1310 /* Insist of good event counter while assembling */
1311 ++ev1;
1312 if (ev1 < mddev->events)
1313 return -EINVAL;
1314 } else if (mddev->bitmap) {
1315 /* If adding to array with a bitmap, then we can accept an
1316 * older device, but not too old.
1317 */
1318 if (ev1 < mddev->bitmap->events_cleared)
1319 return 0;
1320 } else {
1321 if (ev1 < mddev->events)
1322 /* just a hot-add of a new device, leave raid_disk at -1 */
1323 return 0;
1324 }
1325 if (mddev->level != LEVEL_MULTIPATH) {
1326 int role;
1327 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1328 switch(role) {
1329 case 0xffff: /* spare */
1330 break;
1331 case 0xfffe: /* faulty */
1332 set_bit(Faulty, &rdev->flags);
1333 break;
1334 default:
1335 if ((le32_to_cpu(sb->feature_map) &
1336 MD_FEATURE_RECOVERY_OFFSET))
1337 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1338 else
1339 set_bit(In_sync, &rdev->flags);
1340 rdev->raid_disk = role;
1341 break;
1342 }
1343 if (sb->devflags & WriteMostly1)
1344 set_bit(WriteMostly, &rdev->flags);
1345 } else /* MULTIPATH are always insync */
1346 set_bit(In_sync, &rdev->flags);
1347
1348 return 0;
1349 }
1350
1351 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1352 {
1353 struct mdp_superblock_1 *sb;
1354 mdk_rdev_t *rdev2;
1355 int max_dev, i;
1356 /* make rdev->sb match mddev and rdev data. */
1357
1358 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1359
1360 sb->feature_map = 0;
1361 sb->pad0 = 0;
1362 sb->recovery_offset = cpu_to_le64(0);
1363 memset(sb->pad1, 0, sizeof(sb->pad1));
1364 memset(sb->pad2, 0, sizeof(sb->pad2));
1365 memset(sb->pad3, 0, sizeof(sb->pad3));
1366
1367 sb->utime = cpu_to_le64((__u64)mddev->utime);
1368 sb->events = cpu_to_le64(mddev->events);
1369 if (mddev->in_sync)
1370 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1371 else
1372 sb->resync_offset = cpu_to_le64(0);
1373
1374 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1375
1376 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1377 sb->size = cpu_to_le64(mddev->dev_sectors);
1378
1379 if (mddev->bitmap && mddev->bitmap_file == NULL) {
1380 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1381 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1382 }
1383
1384 if (rdev->raid_disk >= 0 &&
1385 !test_bit(In_sync, &rdev->flags)) {
1386 if (mddev->curr_resync_completed > rdev->recovery_offset)
1387 rdev->recovery_offset = mddev->curr_resync_completed;
1388 if (rdev->recovery_offset > 0) {
1389 sb->feature_map |=
1390 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1391 sb->recovery_offset =
1392 cpu_to_le64(rdev->recovery_offset);
1393 }
1394 }
1395
1396 if (mddev->reshape_position != MaxSector) {
1397 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1398 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1399 sb->new_layout = cpu_to_le32(mddev->new_layout);
1400 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1401 sb->new_level = cpu_to_le32(mddev->new_level);
1402 sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
1403 }
1404
1405 max_dev = 0;
1406 list_for_each_entry(rdev2, &mddev->disks, same_set)
1407 if (rdev2->desc_nr+1 > max_dev)
1408 max_dev = rdev2->desc_nr+1;
1409
1410 if (max_dev > le32_to_cpu(sb->max_dev))
1411 sb->max_dev = cpu_to_le32(max_dev);
1412 for (i=0; i<max_dev;i++)
1413 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1414
1415 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1416 i = rdev2->desc_nr;
1417 if (test_bit(Faulty, &rdev2->flags))
1418 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1419 else if (test_bit(In_sync, &rdev2->flags))
1420 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1421 else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
1422 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1423 else
1424 sb->dev_roles[i] = cpu_to_le16(0xffff);
1425 }
1426
1427 sb->sb_csum = calc_sb_1_csum(sb);
1428 }
1429
1430 static unsigned long long
1431 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1432 {
1433 struct mdp_superblock_1 *sb;
1434 sector_t max_sectors;
1435 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1436 return 0; /* component must fit device */
1437 if (rdev->sb_start < rdev->data_offset) {
1438 /* minor versions 1 and 2; superblock before data */
1439 max_sectors = rdev->bdev->bd_inode->i_size >> 9;
1440 max_sectors -= rdev->data_offset;
1441 if (!num_sectors || num_sectors > max_sectors)
1442 num_sectors = max_sectors;
1443 } else if (rdev->mddev->bitmap_offset) {
1444 /* minor version 0 with bitmap we can't move */
1445 return 0;
1446 } else {
1447 /* minor version 0; superblock after data */
1448 sector_t sb_start;
1449 sb_start = (rdev->bdev->bd_inode->i_size >> 9) - 8*2;
1450 sb_start &= ~(sector_t)(4*2 - 1);
1451 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1452 if (!num_sectors || num_sectors > max_sectors)
1453 num_sectors = max_sectors;
1454 rdev->sb_start = sb_start;
1455 }
1456 sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page);
1457 sb->data_size = cpu_to_le64(num_sectors);
1458 sb->super_offset = rdev->sb_start;
1459 sb->sb_csum = calc_sb_1_csum(sb);
1460 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1461 rdev->sb_page);
1462 md_super_wait(rdev->mddev);
1463 return num_sectors / 2; /* kB for sysfs */
1464 }
1465
1466 static struct super_type super_types[] = {
1467 [0] = {
1468 .name = "0.90.0",
1469 .owner = THIS_MODULE,
1470 .load_super = super_90_load,
1471 .validate_super = super_90_validate,
1472 .sync_super = super_90_sync,
1473 .rdev_size_change = super_90_rdev_size_change,
1474 },
1475 [1] = {
1476 .name = "md-1",
1477 .owner = THIS_MODULE,
1478 .load_super = super_1_load,
1479 .validate_super = super_1_validate,
1480 .sync_super = super_1_sync,
1481 .rdev_size_change = super_1_rdev_size_change,
1482 },
1483 };
1484
1485 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1486 {
1487 mdk_rdev_t *rdev, *rdev2;
1488
1489 rcu_read_lock();
1490 rdev_for_each_rcu(rdev, mddev1)
1491 rdev_for_each_rcu(rdev2, mddev2)
1492 if (rdev->bdev->bd_contains ==
1493 rdev2->bdev->bd_contains) {
1494 rcu_read_unlock();
1495 return 1;
1496 }
1497 rcu_read_unlock();
1498 return 0;
1499 }
1500
1501 static LIST_HEAD(pending_raid_disks);
1502
1503 static void md_integrity_check(mdk_rdev_t *rdev, mddev_t *mddev)
1504 {
1505 struct mdk_personality *pers = mddev->pers;
1506 struct gendisk *disk = mddev->gendisk;
1507 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1508 struct blk_integrity *bi_mddev = blk_get_integrity(disk);
1509
1510 /* Data integrity passthrough not supported on RAID 4, 5 and 6 */
1511 if (pers && pers->level >= 4 && pers->level <= 6)
1512 return;
1513
1514 /* If rdev is integrity capable, register profile for mddev */
1515 if (!bi_mddev && bi_rdev) {
1516 if (blk_integrity_register(disk, bi_rdev))
1517 printk(KERN_ERR "%s: %s Could not register integrity!\n",
1518 __func__, disk->disk_name);
1519 else
1520 printk(KERN_NOTICE "Enabling data integrity on %s\n",
1521 disk->disk_name);
1522 return;
1523 }
1524
1525 /* Check that mddev and rdev have matching profiles */
1526 if (blk_integrity_compare(disk, rdev->bdev->bd_disk) < 0) {
1527 printk(KERN_ERR "%s: %s/%s integrity mismatch!\n", __func__,
1528 disk->disk_name, rdev->bdev->bd_disk->disk_name);
1529 printk(KERN_NOTICE "Disabling data integrity on %s\n",
1530 disk->disk_name);
1531 blk_integrity_unregister(disk);
1532 }
1533 }
1534
1535 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1536 {
1537 char b[BDEVNAME_SIZE];
1538 struct kobject *ko;
1539 char *s;
1540 int err;
1541
1542 if (rdev->mddev) {
1543 MD_BUG();
1544 return -EINVAL;
1545 }
1546
1547 /* prevent duplicates */
1548 if (find_rdev(mddev, rdev->bdev->bd_dev))
1549 return -EEXIST;
1550
1551 /* make sure rdev->sectors exceeds mddev->dev_sectors */
1552 if (rdev->sectors && (mddev->dev_sectors == 0 ||
1553 rdev->sectors < mddev->dev_sectors)) {
1554 if (mddev->pers) {
1555 /* Cannot change size, so fail
1556 * If mddev->level <= 0, then we don't care
1557 * about aligning sizes (e.g. linear)
1558 */
1559 if (mddev->level > 0)
1560 return -ENOSPC;
1561 } else
1562 mddev->dev_sectors = rdev->sectors;
1563 }
1564
1565 /* Verify rdev->desc_nr is unique.
1566 * If it is -1, assign a free number, else
1567 * check number is not in use
1568 */
1569 if (rdev->desc_nr < 0) {
1570 int choice = 0;
1571 if (mddev->pers) choice = mddev->raid_disks;
1572 while (find_rdev_nr(mddev, choice))
1573 choice++;
1574 rdev->desc_nr = choice;
1575 } else {
1576 if (find_rdev_nr(mddev, rdev->desc_nr))
1577 return -EBUSY;
1578 }
1579 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
1580 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
1581 mdname(mddev), mddev->max_disks);
1582 return -EBUSY;
1583 }
1584 bdevname(rdev->bdev,b);
1585 while ( (s=strchr(b, '/')) != NULL)
1586 *s = '!';
1587
1588 rdev->mddev = mddev;
1589 printk(KERN_INFO "md: bind<%s>\n", b);
1590
1591 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
1592 goto fail;
1593
1594 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
1595 if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) {
1596 kobject_del(&rdev->kobj);
1597 goto fail;
1598 }
1599 rdev->sysfs_state = sysfs_get_dirent(rdev->kobj.sd, "state");
1600
1601 list_add_rcu(&rdev->same_set, &mddev->disks);
1602 bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk);
1603
1604 /* May as well allow recovery to be retried once */
1605 mddev->recovery_disabled = 0;
1606
1607 md_integrity_check(rdev, mddev);
1608 return 0;
1609
1610 fail:
1611 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1612 b, mdname(mddev));
1613 return err;
1614 }
1615
1616 static void md_delayed_delete(struct work_struct *ws)
1617 {
1618 mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1619 kobject_del(&rdev->kobj);
1620 kobject_put(&rdev->kobj);
1621 }
1622
1623 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1624 {
1625 char b[BDEVNAME_SIZE];
1626 if (!rdev->mddev) {
1627 MD_BUG();
1628 return;
1629 }
1630 bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1631 list_del_rcu(&rdev->same_set);
1632 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1633 rdev->mddev = NULL;
1634 sysfs_remove_link(&rdev->kobj, "block");
1635 sysfs_put(rdev->sysfs_state);
1636 rdev->sysfs_state = NULL;
1637 /* We need to delay this, otherwise we can deadlock when
1638 * writing to 'remove' to "dev/state". We also need
1639 * to delay it due to rcu usage.
1640 */
1641 synchronize_rcu();
1642 INIT_WORK(&rdev->del_work, md_delayed_delete);
1643 kobject_get(&rdev->kobj);
1644 schedule_work(&rdev->del_work);
1645 }
1646
1647 /*
1648 * prevent the device from being mounted, repartitioned or
1649 * otherwise reused by a RAID array (or any other kernel
1650 * subsystem), by bd_claiming the device.
1651 */
1652 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
1653 {
1654 int err = 0;
1655 struct block_device *bdev;
1656 char b[BDEVNAME_SIZE];
1657
1658 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1659 if (IS_ERR(bdev)) {
1660 printk(KERN_ERR "md: could not open %s.\n",
1661 __bdevname(dev, b));
1662 return PTR_ERR(bdev);
1663 }
1664 err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev);
1665 if (err) {
1666 printk(KERN_ERR "md: could not bd_claim %s.\n",
1667 bdevname(bdev, b));
1668 blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1669 return err;
1670 }
1671 if (!shared)
1672 set_bit(AllReserved, &rdev->flags);
1673 rdev->bdev = bdev;
1674 return err;
1675 }
1676
1677 static void unlock_rdev(mdk_rdev_t *rdev)
1678 {
1679 struct block_device *bdev = rdev->bdev;
1680 rdev->bdev = NULL;
1681 if (!bdev)
1682 MD_BUG();
1683 bd_release(bdev);
1684 blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1685 }
1686
1687 void md_autodetect_dev(dev_t dev);
1688
1689 static void export_rdev(mdk_rdev_t * rdev)
1690 {
1691 char b[BDEVNAME_SIZE];
1692 printk(KERN_INFO "md: export_rdev(%s)\n",
1693 bdevname(rdev->bdev,b));
1694 if (rdev->mddev)
1695 MD_BUG();
1696 free_disk_sb(rdev);
1697 #ifndef MODULE
1698 if (test_bit(AutoDetected, &rdev->flags))
1699 md_autodetect_dev(rdev->bdev->bd_dev);
1700 #endif
1701 unlock_rdev(rdev);
1702 kobject_put(&rdev->kobj);
1703 }
1704
1705 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1706 {
1707 unbind_rdev_from_array(rdev);
1708 export_rdev(rdev);
1709 }
1710
1711 static void export_array(mddev_t *mddev)
1712 {
1713 mdk_rdev_t *rdev, *tmp;
1714
1715 rdev_for_each(rdev, tmp, mddev) {
1716 if (!rdev->mddev) {
1717 MD_BUG();
1718 continue;
1719 }
1720 kick_rdev_from_array(rdev);
1721 }
1722 if (!list_empty(&mddev->disks))
1723 MD_BUG();
1724 mddev->raid_disks = 0;
1725 mddev->major_version = 0;
1726 }
1727
1728 static void print_desc(mdp_disk_t *desc)
1729 {
1730 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1731 desc->major,desc->minor,desc->raid_disk,desc->state);
1732 }
1733
1734 static void print_sb_90(mdp_super_t *sb)
1735 {
1736 int i;
1737
1738 printk(KERN_INFO
1739 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1740 sb->major_version, sb->minor_version, sb->patch_version,
1741 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1742 sb->ctime);
1743 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1744 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1745 sb->md_minor, sb->layout, sb->chunk_size);
1746 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
1747 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
1748 sb->utime, sb->state, sb->active_disks, sb->working_disks,
1749 sb->failed_disks, sb->spare_disks,
1750 sb->sb_csum, (unsigned long)sb->events_lo);
1751
1752 printk(KERN_INFO);
1753 for (i = 0; i < MD_SB_DISKS; i++) {
1754 mdp_disk_t *desc;
1755
1756 desc = sb->disks + i;
1757 if (desc->number || desc->major || desc->minor ||
1758 desc->raid_disk || (desc->state && (desc->state != 4))) {
1759 printk(" D %2d: ", i);
1760 print_desc(desc);
1761 }
1762 }
1763 printk(KERN_INFO "md: THIS: ");
1764 print_desc(&sb->this_disk);
1765 }
1766
1767 static void print_sb_1(struct mdp_superblock_1 *sb)
1768 {
1769 __u8 *uuid;
1770
1771 uuid = sb->set_uuid;
1772 printk(KERN_INFO "md: SB: (V:%u) (F:0x%08x) Array-ID:<%02x%02x%02x%02x"
1773 ":%02x%02x:%02x%02x:%02x%02x:%02x%02x%02x%02x%02x%02x>\n"
1774 KERN_INFO "md: Name: \"%s\" CT:%llu\n",
1775 le32_to_cpu(sb->major_version),
1776 le32_to_cpu(sb->feature_map),
1777 uuid[0], uuid[1], uuid[2], uuid[3],
1778 uuid[4], uuid[5], uuid[6], uuid[7],
1779 uuid[8], uuid[9], uuid[10], uuid[11],
1780 uuid[12], uuid[13], uuid[14], uuid[15],
1781 sb->set_name,
1782 (unsigned long long)le64_to_cpu(sb->ctime)
1783 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
1784
1785 uuid = sb->device_uuid;
1786 printk(KERN_INFO "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
1787 " RO:%llu\n"
1788 KERN_INFO "md: Dev:%08x UUID: %02x%02x%02x%02x:%02x%02x:%02x%02x:%02x%02x"
1789 ":%02x%02x%02x%02x%02x%02x\n"
1790 KERN_INFO "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
1791 KERN_INFO "md: (MaxDev:%u) \n",
1792 le32_to_cpu(sb->level),
1793 (unsigned long long)le64_to_cpu(sb->size),
1794 le32_to_cpu(sb->raid_disks),
1795 le32_to_cpu(sb->layout),
1796 le32_to_cpu(sb->chunksize),
1797 (unsigned long long)le64_to_cpu(sb->data_offset),
1798 (unsigned long long)le64_to_cpu(sb->data_size),
1799 (unsigned long long)le64_to_cpu(sb->super_offset),
1800 (unsigned long long)le64_to_cpu(sb->recovery_offset),
1801 le32_to_cpu(sb->dev_number),
1802 uuid[0], uuid[1], uuid[2], uuid[3],
1803 uuid[4], uuid[5], uuid[6], uuid[7],
1804 uuid[8], uuid[9], uuid[10], uuid[11],
1805 uuid[12], uuid[13], uuid[14], uuid[15],
1806 sb->devflags,
1807 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
1808 (unsigned long long)le64_to_cpu(sb->events),
1809 (unsigned long long)le64_to_cpu(sb->resync_offset),
1810 le32_to_cpu(sb->sb_csum),
1811 le32_to_cpu(sb->max_dev)
1812 );
1813 }
1814
1815 static void print_rdev(mdk_rdev_t *rdev, int major_version)
1816 {
1817 char b[BDEVNAME_SIZE];
1818 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
1819 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
1820 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1821 rdev->desc_nr);
1822 if (rdev->sb_loaded) {
1823 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
1824 switch (major_version) {
1825 case 0:
1826 print_sb_90((mdp_super_t*)page_address(rdev->sb_page));
1827 break;
1828 case 1:
1829 print_sb_1((struct mdp_superblock_1 *)page_address(rdev->sb_page));
1830 break;
1831 }
1832 } else
1833 printk(KERN_INFO "md: no rdev superblock!\n");
1834 }
1835
1836 static void md_print_devices(void)
1837 {
1838 struct list_head *tmp;
1839 mdk_rdev_t *rdev;
1840 mddev_t *mddev;
1841 char b[BDEVNAME_SIZE];
1842
1843 printk("\n");
1844 printk("md: **********************************\n");
1845 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
1846 printk("md: **********************************\n");
1847 for_each_mddev(mddev, tmp) {
1848
1849 if (mddev->bitmap)
1850 bitmap_print_sb(mddev->bitmap);
1851 else
1852 printk("%s: ", mdname(mddev));
1853 list_for_each_entry(rdev, &mddev->disks, same_set)
1854 printk("<%s>", bdevname(rdev->bdev,b));
1855 printk("\n");
1856
1857 list_for_each_entry(rdev, &mddev->disks, same_set)
1858 print_rdev(rdev, mddev->major_version);
1859 }
1860 printk("md: **********************************\n");
1861 printk("\n");
1862 }
1863
1864
1865 static void sync_sbs(mddev_t * mddev, int nospares)
1866 {
1867 /* Update each superblock (in-memory image), but
1868 * if we are allowed to, skip spares which already
1869 * have the right event counter, or have one earlier
1870 * (which would mean they aren't being marked as dirty
1871 * with the rest of the array)
1872 */
1873 mdk_rdev_t *rdev;
1874
1875 list_for_each_entry(rdev, &mddev->disks, same_set) {
1876 if (rdev->sb_events == mddev->events ||
1877 (nospares &&
1878 rdev->raid_disk < 0 &&
1879 (rdev->sb_events&1)==0 &&
1880 rdev->sb_events+1 == mddev->events)) {
1881 /* Don't update this superblock */
1882 rdev->sb_loaded = 2;
1883 } else {
1884 super_types[mddev->major_version].
1885 sync_super(mddev, rdev);
1886 rdev->sb_loaded = 1;
1887 }
1888 }
1889 }
1890
1891 static void md_update_sb(mddev_t * mddev, int force_change)
1892 {
1893 mdk_rdev_t *rdev;
1894 int sync_req;
1895 int nospares = 0;
1896
1897 if (mddev->external)
1898 return;
1899 repeat:
1900 spin_lock_irq(&mddev->write_lock);
1901
1902 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1903 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
1904 force_change = 1;
1905 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
1906 /* just a clean<-> dirty transition, possibly leave spares alone,
1907 * though if events isn't the right even/odd, we will have to do
1908 * spares after all
1909 */
1910 nospares = 1;
1911 if (force_change)
1912 nospares = 0;
1913 if (mddev->degraded)
1914 /* If the array is degraded, then skipping spares is both
1915 * dangerous and fairly pointless.
1916 * Dangerous because a device that was removed from the array
1917 * might have a event_count that still looks up-to-date,
1918 * so it can be re-added without a resync.
1919 * Pointless because if there are any spares to skip,
1920 * then a recovery will happen and soon that array won't
1921 * be degraded any more and the spare can go back to sleep then.
1922 */
1923 nospares = 0;
1924
1925 sync_req = mddev->in_sync;
1926 mddev->utime = get_seconds();
1927
1928 /* If this is just a dirty<->clean transition, and the array is clean
1929 * and 'events' is odd, we can roll back to the previous clean state */
1930 if (nospares
1931 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
1932 && (mddev->events & 1)
1933 && mddev->events != 1)
1934 mddev->events--;
1935 else {
1936 /* otherwise we have to go forward and ... */
1937 mddev->events ++;
1938 if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
1939 /* .. if the array isn't clean, insist on an odd 'events' */
1940 if ((mddev->events&1)==0) {
1941 mddev->events++;
1942 nospares = 0;
1943 }
1944 } else {
1945 /* otherwise insist on an even 'events' (for clean states) */
1946 if ((mddev->events&1)) {
1947 mddev->events++;
1948 nospares = 0;
1949 }
1950 }
1951 }
1952
1953 if (!mddev->events) {
1954 /*
1955 * oops, this 64-bit counter should never wrap.
1956 * Either we are in around ~1 trillion A.C., assuming
1957 * 1 reboot per second, or we have a bug:
1958 */
1959 MD_BUG();
1960 mddev->events --;
1961 }
1962
1963 /*
1964 * do not write anything to disk if using
1965 * nonpersistent superblocks
1966 */
1967 if (!mddev->persistent) {
1968 if (!mddev->external)
1969 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1970
1971 spin_unlock_irq(&mddev->write_lock);
1972 wake_up(&mddev->sb_wait);
1973 return;
1974 }
1975 sync_sbs(mddev, nospares);
1976 spin_unlock_irq(&mddev->write_lock);
1977
1978 dprintk(KERN_INFO
1979 "md: updating %s RAID superblock on device (in sync %d)\n",
1980 mdname(mddev),mddev->in_sync);
1981
1982 bitmap_update_sb(mddev->bitmap);
1983 list_for_each_entry(rdev, &mddev->disks, same_set) {
1984 char b[BDEVNAME_SIZE];
1985 dprintk(KERN_INFO "md: ");
1986 if (rdev->sb_loaded != 1)
1987 continue; /* no noise on spare devices */
1988 if (test_bit(Faulty, &rdev->flags))
1989 dprintk("(skipping faulty ");
1990
1991 dprintk("%s ", bdevname(rdev->bdev,b));
1992 if (!test_bit(Faulty, &rdev->flags)) {
1993 md_super_write(mddev,rdev,
1994 rdev->sb_start, rdev->sb_size,
1995 rdev->sb_page);
1996 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1997 bdevname(rdev->bdev,b),
1998 (unsigned long long)rdev->sb_start);
1999 rdev->sb_events = mddev->events;
2000
2001 } else
2002 dprintk(")\n");
2003 if (mddev->level == LEVEL_MULTIPATH)
2004 /* only need to write one superblock... */
2005 break;
2006 }
2007 md_super_wait(mddev);
2008 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2009
2010 spin_lock_irq(&mddev->write_lock);
2011 if (mddev->in_sync != sync_req ||
2012 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2013 /* have to write it out again */
2014 spin_unlock_irq(&mddev->write_lock);
2015 goto repeat;
2016 }
2017 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2018 spin_unlock_irq(&mddev->write_lock);
2019 wake_up(&mddev->sb_wait);
2020
2021 }
2022
2023 /* words written to sysfs files may, or may not, be \n terminated.
2024 * We want to accept with case. For this we use cmd_match.
2025 */
2026 static int cmd_match(const char *cmd, const char *str)
2027 {
2028 /* See if cmd, written into a sysfs file, matches
2029 * str. They must either be the same, or cmd can
2030 * have a trailing newline
2031 */
2032 while (*cmd && *str && *cmd == *str) {
2033 cmd++;
2034 str++;
2035 }
2036 if (*cmd == '\n')
2037 cmd++;
2038 if (*str || *cmd)
2039 return 0;
2040 return 1;
2041 }
2042
2043 struct rdev_sysfs_entry {
2044 struct attribute attr;
2045 ssize_t (*show)(mdk_rdev_t *, char *);
2046 ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
2047 };
2048
2049 static ssize_t
2050 state_show(mdk_rdev_t *rdev, char *page)
2051 {
2052 char *sep = "";
2053 size_t len = 0;
2054
2055 if (test_bit(Faulty, &rdev->flags)) {
2056 len+= sprintf(page+len, "%sfaulty",sep);
2057 sep = ",";
2058 }
2059 if (test_bit(In_sync, &rdev->flags)) {
2060 len += sprintf(page+len, "%sin_sync",sep);
2061 sep = ",";
2062 }
2063 if (test_bit(WriteMostly, &rdev->flags)) {
2064 len += sprintf(page+len, "%swrite_mostly",sep);
2065 sep = ",";
2066 }
2067 if (test_bit(Blocked, &rdev->flags)) {
2068 len += sprintf(page+len, "%sblocked", sep);
2069 sep = ",";
2070 }
2071 if (!test_bit(Faulty, &rdev->flags) &&
2072 !test_bit(In_sync, &rdev->flags)) {
2073 len += sprintf(page+len, "%sspare", sep);
2074 sep = ",";
2075 }
2076 return len+sprintf(page+len, "\n");
2077 }
2078
2079 static ssize_t
2080 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2081 {
2082 /* can write
2083 * faulty - simulates and error
2084 * remove - disconnects the device
2085 * writemostly - sets write_mostly
2086 * -writemostly - clears write_mostly
2087 * blocked - sets the Blocked flag
2088 * -blocked - clears the Blocked flag
2089 */
2090 int err = -EINVAL;
2091 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2092 md_error(rdev->mddev, rdev);
2093 err = 0;
2094 } else if (cmd_match(buf, "remove")) {
2095 if (rdev->raid_disk >= 0)
2096 err = -EBUSY;
2097 else {
2098 mddev_t *mddev = rdev->mddev;
2099 kick_rdev_from_array(rdev);
2100 if (mddev->pers)
2101 md_update_sb(mddev, 1);
2102 md_new_event(mddev);
2103 err = 0;
2104 }
2105 } else if (cmd_match(buf, "writemostly")) {
2106 set_bit(WriteMostly, &rdev->flags);
2107 err = 0;
2108 } else if (cmd_match(buf, "-writemostly")) {
2109 clear_bit(WriteMostly, &rdev->flags);
2110 err = 0;
2111 } else if (cmd_match(buf, "blocked")) {
2112 set_bit(Blocked, &rdev->flags);
2113 err = 0;
2114 } else if (cmd_match(buf, "-blocked")) {
2115 clear_bit(Blocked, &rdev->flags);
2116 wake_up(&rdev->blocked_wait);
2117 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2118 md_wakeup_thread(rdev->mddev->thread);
2119
2120 err = 0;
2121 }
2122 if (!err && rdev->sysfs_state)
2123 sysfs_notify_dirent(rdev->sysfs_state);
2124 return err ? err : len;
2125 }
2126 static struct rdev_sysfs_entry rdev_state =
2127 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2128
2129 static ssize_t
2130 errors_show(mdk_rdev_t *rdev, char *page)
2131 {
2132 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2133 }
2134
2135 static ssize_t
2136 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2137 {
2138 char *e;
2139 unsigned long n = simple_strtoul(buf, &e, 10);
2140 if (*buf && (*e == 0 || *e == '\n')) {
2141 atomic_set(&rdev->corrected_errors, n);
2142 return len;
2143 }
2144 return -EINVAL;
2145 }
2146 static struct rdev_sysfs_entry rdev_errors =
2147 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2148
2149 static ssize_t
2150 slot_show(mdk_rdev_t *rdev, char *page)
2151 {
2152 if (rdev->raid_disk < 0)
2153 return sprintf(page, "none\n");
2154 else
2155 return sprintf(page, "%d\n", rdev->raid_disk);
2156 }
2157
2158 static ssize_t
2159 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2160 {
2161 char *e;
2162 int err;
2163 char nm[20];
2164 int slot = simple_strtoul(buf, &e, 10);
2165 if (strncmp(buf, "none", 4)==0)
2166 slot = -1;
2167 else if (e==buf || (*e && *e!= '\n'))
2168 return -EINVAL;
2169 if (rdev->mddev->pers && slot == -1) {
2170 /* Setting 'slot' on an active array requires also
2171 * updating the 'rd%d' link, and communicating
2172 * with the personality with ->hot_*_disk.
2173 * For now we only support removing
2174 * failed/spare devices. This normally happens automatically,
2175 * but not when the metadata is externally managed.
2176 */
2177 if (rdev->raid_disk == -1)
2178 return -EEXIST;
2179 /* personality does all needed checks */
2180 if (rdev->mddev->pers->hot_add_disk == NULL)
2181 return -EINVAL;
2182 err = rdev->mddev->pers->
2183 hot_remove_disk(rdev->mddev, rdev->raid_disk);
2184 if (err)
2185 return err;
2186 sprintf(nm, "rd%d", rdev->raid_disk);
2187 sysfs_remove_link(&rdev->mddev->kobj, nm);
2188 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2189 md_wakeup_thread(rdev->mddev->thread);
2190 } else if (rdev->mddev->pers) {
2191 mdk_rdev_t *rdev2;
2192 /* Activating a spare .. or possibly reactivating
2193 * if we every get bitmaps working here.
2194 */
2195
2196 if (rdev->raid_disk != -1)
2197 return -EBUSY;
2198
2199 if (rdev->mddev->pers->hot_add_disk == NULL)
2200 return -EINVAL;
2201
2202 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2203 if (rdev2->raid_disk == slot)
2204 return -EEXIST;
2205
2206 rdev->raid_disk = slot;
2207 if (test_bit(In_sync, &rdev->flags))
2208 rdev->saved_raid_disk = slot;
2209 else
2210 rdev->saved_raid_disk = -1;
2211 err = rdev->mddev->pers->
2212 hot_add_disk(rdev->mddev, rdev);
2213 if (err) {
2214 rdev->raid_disk = -1;
2215 return err;
2216 } else
2217 sysfs_notify_dirent(rdev->sysfs_state);
2218 sprintf(nm, "rd%d", rdev->raid_disk);
2219 if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm))
2220 printk(KERN_WARNING
2221 "md: cannot register "
2222 "%s for %s\n",
2223 nm, mdname(rdev->mddev));
2224
2225 /* don't wakeup anyone, leave that to userspace. */
2226 } else {
2227 if (slot >= rdev->mddev->raid_disks)
2228 return -ENOSPC;
2229 rdev->raid_disk = slot;
2230 /* assume it is working */
2231 clear_bit(Faulty, &rdev->flags);
2232 clear_bit(WriteMostly, &rdev->flags);
2233 set_bit(In_sync, &rdev->flags);
2234 sysfs_notify_dirent(rdev->sysfs_state);
2235 }
2236 return len;
2237 }
2238
2239
2240 static struct rdev_sysfs_entry rdev_slot =
2241 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2242
2243 static ssize_t
2244 offset_show(mdk_rdev_t *rdev, char *page)
2245 {
2246 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2247 }
2248
2249 static ssize_t
2250 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2251 {
2252 char *e;
2253 unsigned long long offset = simple_strtoull(buf, &e, 10);
2254 if (e==buf || (*e && *e != '\n'))
2255 return -EINVAL;
2256 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2257 return -EBUSY;
2258 if (rdev->sectors && rdev->mddev->external)
2259 /* Must set offset before size, so overlap checks
2260 * can be sane */
2261 return -EBUSY;
2262 rdev->data_offset = offset;
2263 return len;
2264 }
2265
2266 static struct rdev_sysfs_entry rdev_offset =
2267 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2268
2269 static ssize_t
2270 rdev_size_show(mdk_rdev_t *rdev, char *page)
2271 {
2272 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2273 }
2274
2275 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2276 {
2277 /* check if two start/length pairs overlap */
2278 if (s1+l1 <= s2)
2279 return 0;
2280 if (s2+l2 <= s1)
2281 return 0;
2282 return 1;
2283 }
2284
2285 static ssize_t
2286 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2287 {
2288 mddev_t *my_mddev = rdev->mddev;
2289 sector_t oldsectors = rdev->sectors;
2290 unsigned long long sectors;
2291
2292 if (strict_strtoull(buf, 10, &sectors) < 0)
2293 return -EINVAL;
2294 sectors *= 2;
2295 if (my_mddev->pers && rdev->raid_disk >= 0) {
2296 if (my_mddev->persistent) {
2297 sectors = super_types[my_mddev->major_version].
2298 rdev_size_change(rdev, sectors);
2299 if (!sectors)
2300 return -EBUSY;
2301 } else if (!sectors)
2302 sectors = (rdev->bdev->bd_inode->i_size >> 9) -
2303 rdev->data_offset;
2304 }
2305 if (sectors < my_mddev->dev_sectors)
2306 return -EINVAL; /* component must fit device */
2307
2308 rdev->sectors = sectors;
2309 if (sectors > oldsectors && my_mddev->external) {
2310 /* need to check that all other rdevs with the same ->bdev
2311 * do not overlap. We need to unlock the mddev to avoid
2312 * a deadlock. We have already changed rdev->sectors, and if
2313 * we have to change it back, we will have the lock again.
2314 */
2315 mddev_t *mddev;
2316 int overlap = 0;
2317 struct list_head *tmp;
2318
2319 mddev_unlock(my_mddev);
2320 for_each_mddev(mddev, tmp) {
2321 mdk_rdev_t *rdev2;
2322
2323 mddev_lock(mddev);
2324 list_for_each_entry(rdev2, &mddev->disks, same_set)
2325 if (test_bit(AllReserved, &rdev2->flags) ||
2326 (rdev->bdev == rdev2->bdev &&
2327 rdev != rdev2 &&
2328 overlaps(rdev->data_offset, rdev->sectors,
2329 rdev2->data_offset,
2330 rdev2->sectors))) {
2331 overlap = 1;
2332 break;
2333 }
2334 mddev_unlock(mddev);
2335 if (overlap) {
2336 mddev_put(mddev);
2337 break;
2338 }
2339 }
2340 mddev_lock(my_mddev);
2341 if (overlap) {
2342 /* Someone else could have slipped in a size
2343 * change here, but doing so is just silly.
2344 * We put oldsectors back because we *know* it is
2345 * safe, and trust userspace not to race with
2346 * itself
2347 */
2348 rdev->sectors = oldsectors;
2349 return -EBUSY;
2350 }
2351 }
2352 return len;
2353 }
2354
2355 static struct rdev_sysfs_entry rdev_size =
2356 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2357
2358 static struct attribute *rdev_default_attrs[] = {
2359 &rdev_state.attr,
2360 &rdev_errors.attr,
2361 &rdev_slot.attr,
2362 &rdev_offset.attr,
2363 &rdev_size.attr,
2364 NULL,
2365 };
2366 static ssize_t
2367 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2368 {
2369 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2370 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2371 mddev_t *mddev = rdev->mddev;
2372 ssize_t rv;
2373
2374 if (!entry->show)
2375 return -EIO;
2376
2377 rv = mddev ? mddev_lock(mddev) : -EBUSY;
2378 if (!rv) {
2379 if (rdev->mddev == NULL)
2380 rv = -EBUSY;
2381 else
2382 rv = entry->show(rdev, page);
2383 mddev_unlock(mddev);
2384 }
2385 return rv;
2386 }
2387
2388 static ssize_t
2389 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2390 const char *page, size_t length)
2391 {
2392 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2393 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2394 ssize_t rv;
2395 mddev_t *mddev = rdev->mddev;
2396
2397 if (!entry->store)
2398 return -EIO;
2399 if (!capable(CAP_SYS_ADMIN))
2400 return -EACCES;
2401 rv = mddev ? mddev_lock(mddev): -EBUSY;
2402 if (!rv) {
2403 if (rdev->mddev == NULL)
2404 rv = -EBUSY;
2405 else
2406 rv = entry->store(rdev, page, length);
2407 mddev_unlock(mddev);
2408 }
2409 return rv;
2410 }
2411
2412 static void rdev_free(struct kobject *ko)
2413 {
2414 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
2415 kfree(rdev);
2416 }
2417 static struct sysfs_ops rdev_sysfs_ops = {
2418 .show = rdev_attr_show,
2419 .store = rdev_attr_store,
2420 };
2421 static struct kobj_type rdev_ktype = {
2422 .release = rdev_free,
2423 .sysfs_ops = &rdev_sysfs_ops,
2424 .default_attrs = rdev_default_attrs,
2425 };
2426
2427 /*
2428 * Import a device. If 'super_format' >= 0, then sanity check the superblock
2429 *
2430 * mark the device faulty if:
2431 *
2432 * - the device is nonexistent (zero size)
2433 * - the device has no valid superblock
2434 *
2435 * a faulty rdev _never_ has rdev->sb set.
2436 */
2437 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
2438 {
2439 char b[BDEVNAME_SIZE];
2440 int err;
2441 mdk_rdev_t *rdev;
2442 sector_t size;
2443
2444 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
2445 if (!rdev) {
2446 printk(KERN_ERR "md: could not alloc mem for new device!\n");
2447 return ERR_PTR(-ENOMEM);
2448 }
2449
2450 if ((err = alloc_disk_sb(rdev)))
2451 goto abort_free;
2452
2453 err = lock_rdev(rdev, newdev, super_format == -2);
2454 if (err)
2455 goto abort_free;
2456
2457 kobject_init(&rdev->kobj, &rdev_ktype);
2458
2459 rdev->desc_nr = -1;
2460 rdev->saved_raid_disk = -1;
2461 rdev->raid_disk = -1;
2462 rdev->flags = 0;
2463 rdev->data_offset = 0;
2464 rdev->sb_events = 0;
2465 atomic_set(&rdev->nr_pending, 0);
2466 atomic_set(&rdev->read_errors, 0);
2467 atomic_set(&rdev->corrected_errors, 0);
2468
2469 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2470 if (!size) {
2471 printk(KERN_WARNING
2472 "md: %s has zero or unknown size, marking faulty!\n",
2473 bdevname(rdev->bdev,b));
2474 err = -EINVAL;
2475 goto abort_free;
2476 }
2477
2478 if (super_format >= 0) {
2479 err = super_types[super_format].
2480 load_super(rdev, NULL, super_minor);
2481 if (err == -EINVAL) {
2482 printk(KERN_WARNING
2483 "md: %s does not have a valid v%d.%d "
2484 "superblock, not importing!\n",
2485 bdevname(rdev->bdev,b),
2486 super_format, super_minor);
2487 goto abort_free;
2488 }
2489 if (err < 0) {
2490 printk(KERN_WARNING
2491 "md: could not read %s's sb, not importing!\n",
2492 bdevname(rdev->bdev,b));
2493 goto abort_free;
2494 }
2495 }
2496
2497 INIT_LIST_HEAD(&rdev->same_set);
2498 init_waitqueue_head(&rdev->blocked_wait);
2499
2500 return rdev;
2501
2502 abort_free:
2503 if (rdev->sb_page) {
2504 if (rdev->bdev)
2505 unlock_rdev(rdev);
2506 free_disk_sb(rdev);
2507 }
2508 kfree(rdev);
2509 return ERR_PTR(err);
2510 }
2511
2512 /*
2513 * Check a full RAID array for plausibility
2514 */
2515
2516
2517 static void analyze_sbs(mddev_t * mddev)
2518 {
2519 int i;
2520 mdk_rdev_t *rdev, *freshest, *tmp;
2521 char b[BDEVNAME_SIZE];
2522
2523 freshest = NULL;
2524 rdev_for_each(rdev, tmp, mddev)
2525 switch (super_types[mddev->major_version].
2526 load_super(rdev, freshest, mddev->minor_version)) {
2527 case 1:
2528 freshest = rdev;
2529 break;
2530 case 0:
2531 break;
2532 default:
2533 printk( KERN_ERR \
2534 "md: fatal superblock inconsistency in %s"
2535 " -- removing from array\n",
2536 bdevname(rdev->bdev,b));
2537 kick_rdev_from_array(rdev);
2538 }
2539
2540
2541 super_types[mddev->major_version].
2542 validate_super(mddev, freshest);
2543
2544 i = 0;
2545 rdev_for_each(rdev, tmp, mddev) {
2546 if (rdev->desc_nr >= mddev->max_disks ||
2547 i > mddev->max_disks) {
2548 printk(KERN_WARNING
2549 "md: %s: %s: only %d devices permitted\n",
2550 mdname(mddev), bdevname(rdev->bdev, b),
2551 mddev->max_disks);
2552 kick_rdev_from_array(rdev);
2553 continue;
2554 }
2555 if (rdev != freshest)
2556 if (super_types[mddev->major_version].
2557 validate_super(mddev, rdev)) {
2558 printk(KERN_WARNING "md: kicking non-fresh %s"
2559 " from array!\n",
2560 bdevname(rdev->bdev,b));
2561 kick_rdev_from_array(rdev);
2562 continue;
2563 }
2564 if (mddev->level == LEVEL_MULTIPATH) {
2565 rdev->desc_nr = i++;
2566 rdev->raid_disk = rdev->desc_nr;
2567 set_bit(In_sync, &rdev->flags);
2568 } else if (rdev->raid_disk >= mddev->raid_disks) {
2569 rdev->raid_disk = -1;
2570 clear_bit(In_sync, &rdev->flags);
2571 }
2572 }
2573
2574
2575
2576 if (mddev->recovery_cp != MaxSector &&
2577 mddev->level >= 1)
2578 printk(KERN_ERR "md: %s: raid array is not clean"
2579 " -- starting background reconstruction\n",
2580 mdname(mddev));
2581
2582 }
2583
2584 static void md_safemode_timeout(unsigned long data);
2585
2586 static ssize_t
2587 safe_delay_show(mddev_t *mddev, char *page)
2588 {
2589 int msec = (mddev->safemode_delay*1000)/HZ;
2590 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2591 }
2592 static ssize_t
2593 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2594 {
2595 int scale=1;
2596 int dot=0;
2597 int i;
2598 unsigned long msec;
2599 char buf[30];
2600
2601 /* remove a period, and count digits after it */
2602 if (len >= sizeof(buf))
2603 return -EINVAL;
2604 strlcpy(buf, cbuf, sizeof(buf));
2605 for (i=0; i<len; i++) {
2606 if (dot) {
2607 if (isdigit(buf[i])) {
2608 buf[i-1] = buf[i];
2609 scale *= 10;
2610 }
2611 buf[i] = 0;
2612 } else if (buf[i] == '.') {
2613 dot=1;
2614 buf[i] = 0;
2615 }
2616 }
2617 if (strict_strtoul(buf, 10, &msec) < 0)
2618 return -EINVAL;
2619 msec = (msec * 1000) / scale;
2620 if (msec == 0)
2621 mddev->safemode_delay = 0;
2622 else {
2623 unsigned long old_delay = mddev->safemode_delay;
2624 mddev->safemode_delay = (msec*HZ)/1000;
2625 if (mddev->safemode_delay == 0)
2626 mddev->safemode_delay = 1;
2627 if (mddev->safemode_delay < old_delay)
2628 md_safemode_timeout((unsigned long)mddev);
2629 }
2630 return len;
2631 }
2632 static struct md_sysfs_entry md_safe_delay =
2633 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2634
2635 static ssize_t
2636 level_show(mddev_t *mddev, char *page)
2637 {
2638 struct mdk_personality *p = mddev->pers;
2639 if (p)
2640 return sprintf(page, "%s\n", p->name);
2641 else if (mddev->clevel[0])
2642 return sprintf(page, "%s\n", mddev->clevel);
2643 else if (mddev->level != LEVEL_NONE)
2644 return sprintf(page, "%d\n", mddev->level);
2645 else
2646 return 0;
2647 }
2648
2649 static ssize_t
2650 level_store(mddev_t *mddev, const char *buf, size_t len)
2651 {
2652 char level[16];
2653 ssize_t rv = len;
2654 struct mdk_personality *pers;
2655 void *priv;
2656
2657 if (mddev->pers == NULL) {
2658 if (len == 0)
2659 return 0;
2660 if (len >= sizeof(mddev->clevel))
2661 return -ENOSPC;
2662 strncpy(mddev->clevel, buf, len);
2663 if (mddev->clevel[len-1] == '\n')
2664 len--;
2665 mddev->clevel[len] = 0;
2666 mddev->level = LEVEL_NONE;
2667 return rv;
2668 }
2669
2670 /* request to change the personality. Need to ensure:
2671 * - array is not engaged in resync/recovery/reshape
2672 * - old personality can be suspended
2673 * - new personality will access other array.
2674 */
2675
2676 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
2677 return -EBUSY;
2678
2679 if (!mddev->pers->quiesce) {
2680 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
2681 mdname(mddev), mddev->pers->name);
2682 return -EINVAL;
2683 }
2684
2685 /* Now find the new personality */
2686 if (len == 0 || len >= sizeof(level))
2687 return -EINVAL;
2688 strncpy(level, buf, len);
2689 if (level[len-1] == '\n')
2690 len--;
2691 level[len] = 0;
2692
2693 request_module("md-%s", level);
2694 spin_lock(&pers_lock);
2695 pers = find_pers(LEVEL_NONE, level);
2696 if (!pers || !try_module_get(pers->owner)) {
2697 spin_unlock(&pers_lock);
2698 printk(KERN_WARNING "md: personality %s not loaded\n", level);
2699 return -EINVAL;
2700 }
2701 spin_unlock(&pers_lock);
2702
2703 if (pers == mddev->pers) {
2704 /* Nothing to do! */
2705 module_put(pers->owner);
2706 return rv;
2707 }
2708 if (!pers->takeover) {
2709 module_put(pers->owner);
2710 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
2711 mdname(mddev), level);
2712 return -EINVAL;
2713 }
2714
2715 /* ->takeover must set new_* and/or delta_disks
2716 * if it succeeds, and may set them when it fails.
2717 */
2718 priv = pers->takeover(mddev);
2719 if (IS_ERR(priv)) {
2720 mddev->new_level = mddev->level;
2721 mddev->new_layout = mddev->layout;
2722 mddev->new_chunk = mddev->chunk_size;
2723 mddev->raid_disks -= mddev->delta_disks;
2724 mddev->delta_disks = 0;
2725 module_put(pers->owner);
2726 printk(KERN_WARNING "md: %s: %s would not accept array\n",
2727 mdname(mddev), level);
2728 return PTR_ERR(priv);
2729 }
2730
2731 /* Looks like we have a winner */
2732 mddev_suspend(mddev);
2733 mddev->pers->stop(mddev);
2734 module_put(mddev->pers->owner);
2735 mddev->pers = pers;
2736 mddev->private = priv;
2737 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
2738 mddev->level = mddev->new_level;
2739 mddev->layout = mddev->new_layout;
2740 mddev->chunk_size = mddev->new_chunk;
2741 mddev->delta_disks = 0;
2742 pers->run(mddev);
2743 mddev_resume(mddev);
2744 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2745 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2746 md_wakeup_thread(mddev->thread);
2747 return rv;
2748 }
2749
2750 static struct md_sysfs_entry md_level =
2751 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
2752
2753
2754 static ssize_t
2755 layout_show(mddev_t *mddev, char *page)
2756 {
2757 /* just a number, not meaningful for all levels */
2758 if (mddev->reshape_position != MaxSector &&
2759 mddev->layout != mddev->new_layout)
2760 return sprintf(page, "%d (%d)\n",
2761 mddev->new_layout, mddev->layout);
2762 return sprintf(page, "%d\n", mddev->layout);
2763 }
2764
2765 static ssize_t
2766 layout_store(mddev_t *mddev, const char *buf, size_t len)
2767 {
2768 char *e;
2769 unsigned long n = simple_strtoul(buf, &e, 10);
2770
2771 if (!*buf || (*e && *e != '\n'))
2772 return -EINVAL;
2773
2774 if (mddev->pers) {
2775 int err;
2776 if (mddev->pers->reconfig == NULL)
2777 return -EBUSY;
2778 err = mddev->pers->reconfig(mddev, n, -1);
2779 if (err)
2780 return err;
2781 } else {
2782 mddev->new_layout = n;
2783 if (mddev->reshape_position == MaxSector)
2784 mddev->layout = n;
2785 }
2786 return len;
2787 }
2788 static struct md_sysfs_entry md_layout =
2789 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
2790
2791
2792 static ssize_t
2793 raid_disks_show(mddev_t *mddev, char *page)
2794 {
2795 if (mddev->raid_disks == 0)
2796 return 0;
2797 if (mddev->reshape_position != MaxSector &&
2798 mddev->delta_disks != 0)
2799 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
2800 mddev->raid_disks - mddev->delta_disks);
2801 return sprintf(page, "%d\n", mddev->raid_disks);
2802 }
2803
2804 static int update_raid_disks(mddev_t *mddev, int raid_disks);
2805
2806 static ssize_t
2807 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
2808 {
2809 char *e;
2810 int rv = 0;
2811 unsigned long n = simple_strtoul(buf, &e, 10);
2812
2813 if (!*buf || (*e && *e != '\n'))
2814 return -EINVAL;
2815
2816 if (mddev->pers)
2817 rv = update_raid_disks(mddev, n);
2818 else if (mddev->reshape_position != MaxSector) {
2819 int olddisks = mddev->raid_disks - mddev->delta_disks;
2820 mddev->delta_disks = n - olddisks;
2821 mddev->raid_disks = n;
2822 } else
2823 mddev->raid_disks = n;
2824 return rv ? rv : len;
2825 }
2826 static struct md_sysfs_entry md_raid_disks =
2827 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
2828
2829 static ssize_t
2830 chunk_size_show(mddev_t *mddev, char *page)
2831 {
2832 if (mddev->reshape_position != MaxSector &&
2833 mddev->chunk_size != mddev->new_chunk)
2834 return sprintf(page, "%d (%d)\n", mddev->new_chunk,
2835 mddev->chunk_size);
2836 return sprintf(page, "%d\n", mddev->chunk_size);
2837 }
2838
2839 static ssize_t
2840 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
2841 {
2842 char *e;
2843 unsigned long n = simple_strtoul(buf, &e, 10);
2844
2845 if (!*buf || (*e && *e != '\n'))
2846 return -EINVAL;
2847
2848 if (mddev->pers) {
2849 int err;
2850 if (mddev->pers->reconfig == NULL)
2851 return -EBUSY;
2852 err = mddev->pers->reconfig(mddev, -1, n);
2853 if (err)
2854 return err;
2855 } else {
2856 mddev->new_chunk = n;
2857 if (mddev->reshape_position == MaxSector)
2858 mddev->chunk_size = n;
2859 }
2860 return len;
2861 }
2862 static struct md_sysfs_entry md_chunk_size =
2863 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
2864
2865 static ssize_t
2866 resync_start_show(mddev_t *mddev, char *page)
2867 {
2868 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
2869 }
2870
2871 static ssize_t
2872 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
2873 {
2874 char *e;
2875 unsigned long long n = simple_strtoull(buf, &e, 10);
2876
2877 if (mddev->pers)
2878 return -EBUSY;
2879 if (!*buf || (*e && *e != '\n'))
2880 return -EINVAL;
2881
2882 mddev->recovery_cp = n;
2883 return len;
2884 }
2885 static struct md_sysfs_entry md_resync_start =
2886 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
2887
2888 /*
2889 * The array state can be:
2890 *
2891 * clear
2892 * No devices, no size, no level
2893 * Equivalent to STOP_ARRAY ioctl
2894 * inactive
2895 * May have some settings, but array is not active
2896 * all IO results in error
2897 * When written, doesn't tear down array, but just stops it
2898 * suspended (not supported yet)
2899 * All IO requests will block. The array can be reconfigured.
2900 * Writing this, if accepted, will block until array is quiescent
2901 * readonly
2902 * no resync can happen. no superblocks get written.
2903 * write requests fail
2904 * read-auto
2905 * like readonly, but behaves like 'clean' on a write request.
2906 *
2907 * clean - no pending writes, but otherwise active.
2908 * When written to inactive array, starts without resync
2909 * If a write request arrives then
2910 * if metadata is known, mark 'dirty' and switch to 'active'.
2911 * if not known, block and switch to write-pending
2912 * If written to an active array that has pending writes, then fails.
2913 * active
2914 * fully active: IO and resync can be happening.
2915 * When written to inactive array, starts with resync
2916 *
2917 * write-pending
2918 * clean, but writes are blocked waiting for 'active' to be written.
2919 *
2920 * active-idle
2921 * like active, but no writes have been seen for a while (100msec).
2922 *
2923 */
2924 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
2925 write_pending, active_idle, bad_word};
2926 static char *array_states[] = {
2927 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
2928 "write-pending", "active-idle", NULL };
2929
2930 static int match_word(const char *word, char **list)
2931 {
2932 int n;
2933 for (n=0; list[n]; n++)
2934 if (cmd_match(word, list[n]))
2935 break;
2936 return n;
2937 }
2938
2939 static ssize_t
2940 array_state_show(mddev_t *mddev, char *page)
2941 {
2942 enum array_state st = inactive;
2943
2944 if (mddev->pers)
2945 switch(mddev->ro) {
2946 case 1:
2947 st = readonly;
2948 break;
2949 case 2:
2950 st = read_auto;
2951 break;
2952 case 0:
2953 if (mddev->in_sync)
2954 st = clean;
2955 else if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
2956 st = write_pending;
2957 else if (mddev->safemode)
2958 st = active_idle;
2959 else
2960 st = active;
2961 }
2962 else {
2963 if (list_empty(&mddev->disks) &&
2964 mddev->raid_disks == 0 &&
2965 mddev->dev_sectors == 0)
2966 st = clear;
2967 else
2968 st = inactive;
2969 }
2970 return sprintf(page, "%s\n", array_states[st]);
2971 }
2972
2973 static int do_md_stop(mddev_t * mddev, int ro, int is_open);
2974 static int do_md_run(mddev_t * mddev);
2975 static int restart_array(mddev_t *mddev);
2976
2977 static ssize_t
2978 array_state_store(mddev_t *mddev, const char *buf, size_t len)
2979 {
2980 int err = -EINVAL;
2981 enum array_state st = match_word(buf, array_states);
2982 switch(st) {
2983 case bad_word:
2984 break;
2985 case clear:
2986 /* stopping an active array */
2987 if (atomic_read(&mddev->openers) > 0)
2988 return -EBUSY;
2989 err = do_md_stop(mddev, 0, 0);
2990 break;
2991 case inactive:
2992 /* stopping an active array */
2993 if (mddev->pers) {
2994 if (atomic_read(&mddev->openers) > 0)
2995 return -EBUSY;
2996 err = do_md_stop(mddev, 2, 0);
2997 } else
2998 err = 0; /* already inactive */
2999 break;
3000 case suspended:
3001 break; /* not supported yet */
3002 case readonly:
3003 if (mddev->pers)
3004 err = do_md_stop(mddev, 1, 0);
3005 else {
3006 mddev->ro = 1;
3007 set_disk_ro(mddev->gendisk, 1);
3008 err = do_md_run(mddev);
3009 }
3010 break;
3011 case read_auto:
3012 if (mddev->pers) {
3013 if (mddev->ro == 0)
3014 err = do_md_stop(mddev, 1, 0);
3015 else if (mddev->ro == 1)
3016 err = restart_array(mddev);
3017 if (err == 0) {
3018 mddev->ro = 2;
3019 set_disk_ro(mddev->gendisk, 0);
3020 }
3021 } else {
3022 mddev->ro = 2;
3023 err = do_md_run(mddev);
3024 }
3025 break;
3026 case clean:
3027 if (mddev->pers) {
3028 restart_array(mddev);
3029 spin_lock_irq(&mddev->write_lock);
3030 if (atomic_read(&mddev->writes_pending) == 0) {
3031 if (mddev->in_sync == 0) {
3032 mddev->in_sync = 1;
3033 if (mddev->safemode == 1)
3034 mddev->safemode = 0;
3035 if (mddev->persistent)
3036 set_bit(MD_CHANGE_CLEAN,
3037 &mddev->flags);
3038 }
3039 err = 0;
3040 } else
3041 err = -EBUSY;
3042 spin_unlock_irq(&mddev->write_lock);
3043 } else {
3044 mddev->ro = 0;
3045 mddev->recovery_cp = MaxSector;
3046 err = do_md_run(mddev);
3047 }
3048 break;
3049 case active:
3050 if (mddev->pers) {
3051 restart_array(mddev);
3052 if (mddev->external)
3053 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
3054 wake_up(&mddev->sb_wait);
3055 err = 0;
3056 } else {
3057 mddev->ro = 0;
3058 set_disk_ro(mddev->gendisk, 0);
3059 err = do_md_run(mddev);
3060 }
3061 break;
3062 case write_pending:
3063 case active_idle:
3064 /* these cannot be set */
3065 break;
3066 }
3067 if (err)
3068 return err;
3069 else {
3070 sysfs_notify_dirent(mddev->sysfs_state);
3071 return len;
3072 }
3073 }
3074 static struct md_sysfs_entry md_array_state =
3075 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3076
3077 static ssize_t
3078 null_show(mddev_t *mddev, char *page)
3079 {
3080 return -EINVAL;
3081 }
3082
3083 static ssize_t
3084 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
3085 {
3086 /* buf must be %d:%d\n? giving major and minor numbers */
3087 /* The new device is added to the array.
3088 * If the array has a persistent superblock, we read the
3089 * superblock to initialise info and check validity.
3090 * Otherwise, only checking done is that in bind_rdev_to_array,
3091 * which mainly checks size.
3092 */
3093 char *e;
3094 int major = simple_strtoul(buf, &e, 10);
3095 int minor;
3096 dev_t dev;
3097 mdk_rdev_t *rdev;
3098 int err;
3099
3100 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3101 return -EINVAL;
3102 minor = simple_strtoul(e+1, &e, 10);
3103 if (*e && *e != '\n')
3104 return -EINVAL;
3105 dev = MKDEV(major, minor);
3106 if (major != MAJOR(dev) ||
3107 minor != MINOR(dev))
3108 return -EOVERFLOW;
3109
3110
3111 if (mddev->persistent) {
3112 rdev = md_import_device(dev, mddev->major_version,
3113 mddev->minor_version);
3114 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3115 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3116 mdk_rdev_t, same_set);
3117 err = super_types[mddev->major_version]
3118 .load_super(rdev, rdev0, mddev->minor_version);
3119 if (err < 0)
3120 goto out;
3121 }
3122 } else if (mddev->external)
3123 rdev = md_import_device(dev, -2, -1);
3124 else
3125 rdev = md_import_device(dev, -1, -1);
3126
3127 if (IS_ERR(rdev))
3128 return PTR_ERR(rdev);
3129 err = bind_rdev_to_array(rdev, mddev);
3130 out:
3131 if (err)
3132 export_rdev(rdev);
3133 return err ? err : len;
3134 }
3135
3136 static struct md_sysfs_entry md_new_device =
3137 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3138
3139 static ssize_t
3140 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
3141 {
3142 char *end;
3143 unsigned long chunk, end_chunk;
3144
3145 if (!mddev->bitmap)
3146 goto out;
3147 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3148 while (*buf) {
3149 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3150 if (buf == end) break;
3151 if (*end == '-') { /* range */
3152 buf = end + 1;
3153 end_chunk = simple_strtoul(buf, &end, 0);
3154 if (buf == end) break;
3155 }
3156 if (*end && !isspace(*end)) break;
3157 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3158 buf = end;
3159 while (isspace(*buf)) buf++;
3160 }
3161 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3162 out:
3163 return len;
3164 }
3165
3166 static struct md_sysfs_entry md_bitmap =
3167 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3168
3169 static ssize_t
3170 size_show(mddev_t *mddev, char *page)
3171 {
3172 return sprintf(page, "%llu\n",
3173 (unsigned long long)mddev->dev_sectors / 2);
3174 }
3175
3176 static int update_size(mddev_t *mddev, sector_t num_sectors);
3177
3178 static ssize_t
3179 size_store(mddev_t *mddev, const char *buf, size_t len)
3180 {
3181 /* If array is inactive, we can reduce the component size, but
3182 * not increase it (except from 0).
3183 * If array is active, we can try an on-line resize
3184 */
3185 unsigned long long sectors;
3186 int err = strict_strtoull(buf, 10, &sectors);
3187
3188 if (err < 0)
3189 return err;
3190 sectors *= 2;
3191 if (mddev->pers) {
3192 err = update_size(mddev, sectors);
3193 md_update_sb(mddev, 1);
3194 } else {
3195 if (mddev->dev_sectors == 0 ||
3196 mddev->dev_sectors > sectors)
3197 mddev->dev_sectors = sectors;
3198 else
3199 err = -ENOSPC;
3200 }
3201 return err ? err : len;
3202 }
3203
3204 static struct md_sysfs_entry md_size =
3205 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3206
3207
3208 /* Metdata version.
3209 * This is one of
3210 * 'none' for arrays with no metadata (good luck...)
3211 * 'external' for arrays with externally managed metadata,
3212 * or N.M for internally known formats
3213 */
3214 static ssize_t
3215 metadata_show(mddev_t *mddev, char *page)
3216 {
3217 if (mddev->persistent)
3218 return sprintf(page, "%d.%d\n",
3219 mddev->major_version, mddev->minor_version);
3220 else if (mddev->external)
3221 return sprintf(page, "external:%s\n", mddev->metadata_type);
3222 else
3223 return sprintf(page, "none\n");
3224 }
3225
3226 static ssize_t
3227 metadata_store(mddev_t *mddev, const char *buf, size_t len)
3228 {
3229 int major, minor;
3230 char *e;
3231 /* Changing the details of 'external' metadata is
3232 * always permitted. Otherwise there must be
3233 * no devices attached to the array.
3234 */
3235 if (mddev->external && strncmp(buf, "external:", 9) == 0)
3236 ;
3237 else if (!list_empty(&mddev->disks))
3238 return -EBUSY;
3239
3240 if (cmd_match(buf, "none")) {
3241 mddev->persistent = 0;
3242 mddev->external = 0;
3243 mddev->major_version = 0;
3244 mddev->minor_version = 90;
3245 return len;
3246 }
3247 if (strncmp(buf, "external:", 9) == 0) {
3248 size_t namelen = len-9;
3249 if (namelen >= sizeof(mddev->metadata_type))
3250 namelen = sizeof(mddev->metadata_type)-1;
3251 strncpy(mddev->metadata_type, buf+9, namelen);
3252 mddev->metadata_type[namelen] = 0;
3253 if (namelen && mddev->metadata_type[namelen-1] == '\n')
3254 mddev->metadata_type[--namelen] = 0;
3255 mddev->persistent = 0;
3256 mddev->external = 1;
3257 mddev->major_version = 0;
3258 mddev->minor_version = 90;
3259 return len;
3260 }
3261 major = simple_strtoul(buf, &e, 10);
3262 if (e==buf || *e != '.')
3263 return -EINVAL;
3264 buf = e+1;
3265 minor = simple_strtoul(buf, &e, 10);
3266 if (e==buf || (*e && *e != '\n') )
3267 return -EINVAL;
3268 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
3269 return -ENOENT;
3270 mddev->major_version = major;
3271 mddev->minor_version = minor;
3272 mddev->persistent = 1;
3273 mddev->external = 0;
3274 return len;
3275 }
3276
3277 static struct md_sysfs_entry md_metadata =
3278 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
3279
3280 static ssize_t
3281 action_show(mddev_t *mddev, char *page)
3282 {
3283 char *type = "idle";
3284 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3285 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
3286 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3287 type = "reshape";
3288 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3289 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3290 type = "resync";
3291 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
3292 type = "check";
3293 else
3294 type = "repair";
3295 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
3296 type = "recover";
3297 }
3298 return sprintf(page, "%s\n", type);
3299 }
3300
3301 static ssize_t
3302 action_store(mddev_t *mddev, const char *page, size_t len)
3303 {
3304 if (!mddev->pers || !mddev->pers->sync_request)
3305 return -EINVAL;
3306
3307 if (cmd_match(page, "idle")) {
3308 if (mddev->sync_thread) {
3309 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3310 md_unregister_thread(mddev->sync_thread);
3311 mddev->sync_thread = NULL;
3312 mddev->recovery = 0;
3313 }
3314 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3315 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3316 return -EBUSY;
3317 else if (cmd_match(page, "resync"))
3318 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3319 else if (cmd_match(page, "recover")) {
3320 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3321 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3322 } else if (cmd_match(page, "reshape")) {
3323 int err;
3324 if (mddev->pers->start_reshape == NULL)
3325 return -EINVAL;
3326 err = mddev->pers->start_reshape(mddev);
3327 if (err)
3328 return err;
3329 sysfs_notify(&mddev->kobj, NULL, "degraded");
3330 } else {
3331 if (cmd_match(page, "check"))
3332 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3333 else if (!cmd_match(page, "repair"))
3334 return -EINVAL;
3335 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3336 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3337 }
3338 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3339 md_wakeup_thread(mddev->thread);
3340 sysfs_notify_dirent(mddev->sysfs_action);
3341 return len;
3342 }
3343
3344 static ssize_t
3345 mismatch_cnt_show(mddev_t *mddev, char *page)
3346 {
3347 return sprintf(page, "%llu\n",
3348 (unsigned long long) mddev->resync_mismatches);
3349 }
3350
3351 static struct md_sysfs_entry md_scan_mode =
3352 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
3353
3354
3355 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
3356
3357 static ssize_t
3358 sync_min_show(mddev_t *mddev, char *page)
3359 {
3360 return sprintf(page, "%d (%s)\n", speed_min(mddev),
3361 mddev->sync_speed_min ? "local": "system");
3362 }
3363
3364 static ssize_t
3365 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
3366 {
3367 int min;
3368 char *e;
3369 if (strncmp(buf, "system", 6)==0) {
3370 mddev->sync_speed_min = 0;
3371 return len;
3372 }
3373 min = simple_strtoul(buf, &e, 10);
3374 if (buf == e || (*e && *e != '\n') || min <= 0)
3375 return -EINVAL;
3376 mddev->sync_speed_min = min;
3377 return len;
3378 }
3379
3380 static struct md_sysfs_entry md_sync_min =
3381 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
3382
3383 static ssize_t
3384 sync_max_show(mddev_t *mddev, char *page)
3385 {
3386 return sprintf(page, "%d (%s)\n", speed_max(mddev),
3387 mddev->sync_speed_max ? "local": "system");
3388 }
3389
3390 static ssize_t
3391 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
3392 {
3393 int max;
3394 char *e;
3395 if (strncmp(buf, "system", 6)==0) {
3396 mddev->sync_speed_max = 0;
3397 return len;
3398 }
3399 max = simple_strtoul(buf, &e, 10);
3400 if (buf == e || (*e && *e != '\n') || max <= 0)
3401 return -EINVAL;
3402 mddev->sync_speed_max = max;
3403 return len;
3404 }
3405
3406 static struct md_sysfs_entry md_sync_max =
3407 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
3408
3409 static ssize_t
3410 degraded_show(mddev_t *mddev, char *page)
3411 {
3412 return sprintf(page, "%d\n", mddev->degraded);
3413 }
3414 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
3415
3416 static ssize_t
3417 sync_force_parallel_show(mddev_t *mddev, char *page)
3418 {
3419 return sprintf(page, "%d\n", mddev->parallel_resync);
3420 }
3421
3422 static ssize_t
3423 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
3424 {
3425 long n;
3426
3427 if (strict_strtol(buf, 10, &n))
3428 return -EINVAL;
3429
3430 if (n != 0 && n != 1)
3431 return -EINVAL;
3432
3433 mddev->parallel_resync = n;
3434
3435 if (mddev->sync_thread)
3436 wake_up(&resync_wait);
3437
3438 return len;
3439 }
3440
3441 /* force parallel resync, even with shared block devices */
3442 static struct md_sysfs_entry md_sync_force_parallel =
3443 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
3444 sync_force_parallel_show, sync_force_parallel_store);
3445
3446 static ssize_t
3447 sync_speed_show(mddev_t *mddev, char *page)
3448 {
3449 unsigned long resync, dt, db;
3450 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
3451 dt = (jiffies - mddev->resync_mark) / HZ;
3452 if (!dt) dt++;
3453 db = resync - mddev->resync_mark_cnt;
3454 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
3455 }
3456
3457 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
3458
3459 static ssize_t
3460 sync_completed_show(mddev_t *mddev, char *page)
3461 {
3462 unsigned long max_sectors, resync;
3463
3464 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3465 max_sectors = mddev->resync_max_sectors;
3466 else
3467 max_sectors = mddev->dev_sectors;
3468
3469 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
3470 return sprintf(page, "%lu / %lu\n", resync, max_sectors);
3471 }
3472
3473 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
3474
3475 static ssize_t
3476 min_sync_show(mddev_t *mddev, char *page)
3477 {
3478 return sprintf(page, "%llu\n",
3479 (unsigned long long)mddev->resync_min);
3480 }
3481 static ssize_t
3482 min_sync_store(mddev_t *mddev, const char *buf, size_t len)
3483 {
3484 unsigned long long min;
3485 if (strict_strtoull(buf, 10, &min))
3486 return -EINVAL;
3487 if (min > mddev->resync_max)
3488 return -EINVAL;
3489 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3490 return -EBUSY;
3491
3492 /* Must be a multiple of chunk_size */
3493 if (mddev->chunk_size) {
3494 if (min & (sector_t)((mddev->chunk_size>>9)-1))
3495 return -EINVAL;
3496 }
3497 mddev->resync_min = min;
3498
3499 return len;
3500 }
3501
3502 static struct md_sysfs_entry md_min_sync =
3503 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
3504
3505 static ssize_t
3506 max_sync_show(mddev_t *mddev, char *page)
3507 {
3508 if (mddev->resync_max == MaxSector)
3509 return sprintf(page, "max\n");
3510 else
3511 return sprintf(page, "%llu\n",
3512 (unsigned long long)mddev->resync_max);
3513 }
3514 static ssize_t
3515 max_sync_store(mddev_t *mddev, const char *buf, size_t len)
3516 {
3517 if (strncmp(buf, "max", 3) == 0)
3518 mddev->resync_max = MaxSector;
3519 else {
3520 unsigned long long max;
3521 if (strict_strtoull(buf, 10, &max))
3522 return -EINVAL;
3523 if (max < mddev->resync_min)
3524 return -EINVAL;
3525 if (max < mddev->resync_max &&
3526 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3527 return -EBUSY;
3528
3529 /* Must be a multiple of chunk_size */
3530 if (mddev->chunk_size) {
3531 if (max & (sector_t)((mddev->chunk_size>>9)-1))
3532 return -EINVAL;
3533 }
3534 mddev->resync_max = max;
3535 }
3536 wake_up(&mddev->recovery_wait);
3537 return len;
3538 }
3539
3540 static struct md_sysfs_entry md_max_sync =
3541 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
3542
3543 static ssize_t
3544 suspend_lo_show(mddev_t *mddev, char *page)
3545 {
3546 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
3547 }
3548
3549 static ssize_t
3550 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
3551 {
3552 char *e;
3553 unsigned long long new = simple_strtoull(buf, &e, 10);
3554
3555 if (mddev->pers->quiesce == NULL)
3556 return -EINVAL;
3557 if (buf == e || (*e && *e != '\n'))
3558 return -EINVAL;
3559 if (new >= mddev->suspend_hi ||
3560 (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
3561 mddev->suspend_lo = new;
3562 mddev->pers->quiesce(mddev, 2);
3563 return len;
3564 } else
3565 return -EINVAL;
3566 }
3567 static struct md_sysfs_entry md_suspend_lo =
3568 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
3569
3570
3571 static ssize_t
3572 suspend_hi_show(mddev_t *mddev, char *page)
3573 {
3574 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
3575 }
3576
3577 static ssize_t
3578 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
3579 {
3580 char *e;
3581 unsigned long long new = simple_strtoull(buf, &e, 10);
3582
3583 if (mddev->pers->quiesce == NULL)
3584 return -EINVAL;
3585 if (buf == e || (*e && *e != '\n'))
3586 return -EINVAL;
3587 if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
3588 (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
3589 mddev->suspend_hi = new;
3590 mddev->pers->quiesce(mddev, 1);
3591 mddev->pers->quiesce(mddev, 0);
3592 return len;
3593 } else
3594 return -EINVAL;
3595 }
3596 static struct md_sysfs_entry md_suspend_hi =
3597 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
3598
3599 static ssize_t
3600 reshape_position_show(mddev_t *mddev, char *page)
3601 {
3602 if (mddev->reshape_position != MaxSector)
3603 return sprintf(page, "%llu\n",
3604 (unsigned long long)mddev->reshape_position);
3605 strcpy(page, "none\n");
3606 return 5;
3607 }
3608
3609 static ssize_t
3610 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
3611 {
3612 char *e;
3613 unsigned long long new = simple_strtoull(buf, &e, 10);
3614 if (mddev->pers)
3615 return -EBUSY;
3616 if (buf == e || (*e && *e != '\n'))
3617 return -EINVAL;
3618 mddev->reshape_position = new;
3619 mddev->delta_disks = 0;
3620 mddev->new_level = mddev->level;
3621 mddev->new_layout = mddev->layout;
3622 mddev->new_chunk = mddev->chunk_size;
3623 return len;
3624 }
3625
3626 static struct md_sysfs_entry md_reshape_position =
3627 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
3628 reshape_position_store);
3629
3630
3631 static struct attribute *md_default_attrs[] = {
3632 &md_level.attr,
3633 &md_layout.attr,
3634 &md_raid_disks.attr,
3635 &md_chunk_size.attr,
3636 &md_size.attr,
3637 &md_resync_start.attr,
3638 &md_metadata.attr,
3639 &md_new_device.attr,
3640 &md_safe_delay.attr,
3641 &md_array_state.attr,
3642 &md_reshape_position.attr,
3643 NULL,
3644 };
3645
3646 static struct attribute *md_redundancy_attrs[] = {
3647 &md_scan_mode.attr,
3648 &md_mismatches.attr,
3649 &md_sync_min.attr,
3650 &md_sync_max.attr,
3651 &md_sync_speed.attr,
3652 &md_sync_force_parallel.attr,
3653 &md_sync_completed.attr,
3654 &md_min_sync.attr,
3655 &md_max_sync.attr,
3656 &md_suspend_lo.attr,
3657 &md_suspend_hi.attr,
3658 &md_bitmap.attr,
3659 &md_degraded.attr,
3660 NULL,
3661 };
3662 static struct attribute_group md_redundancy_group = {
3663 .name = NULL,
3664 .attrs = md_redundancy_attrs,
3665 };
3666
3667
3668 static ssize_t
3669 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3670 {
3671 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3672 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3673 ssize_t rv;
3674
3675 if (!entry->show)
3676 return -EIO;
3677 rv = mddev_lock(mddev);
3678 if (!rv) {
3679 rv = entry->show(mddev, page);
3680 mddev_unlock(mddev);
3681 }
3682 return rv;
3683 }
3684
3685 static ssize_t
3686 md_attr_store(struct kobject *kobj, struct attribute *attr,
3687 const char *page, size_t length)
3688 {
3689 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
3690 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
3691 ssize_t rv;
3692
3693 if (!entry->store)
3694 return -EIO;
3695 if (!capable(CAP_SYS_ADMIN))
3696 return -EACCES;
3697 rv = mddev_lock(mddev);
3698 if (mddev->hold_active == UNTIL_IOCTL)
3699 mddev->hold_active = 0;
3700 if (!rv) {
3701 rv = entry->store(mddev, page, length);
3702 mddev_unlock(mddev);
3703 }
3704 return rv;
3705 }
3706
3707 static void md_free(struct kobject *ko)
3708 {
3709 mddev_t *mddev = container_of(ko, mddev_t, kobj);
3710
3711 if (mddev->sysfs_state)
3712 sysfs_put(mddev->sysfs_state);
3713
3714 if (mddev->gendisk) {
3715 del_gendisk(mddev->gendisk);
3716 put_disk(mddev->gendisk);
3717 }
3718 if (mddev->queue)
3719 blk_cleanup_queue(mddev->queue);
3720
3721 kfree(mddev);
3722 }
3723
3724 static struct sysfs_ops md_sysfs_ops = {
3725 .show = md_attr_show,
3726 .store = md_attr_store,
3727 };
3728 static struct kobj_type md_ktype = {
3729 .release = md_free,
3730 .sysfs_ops = &md_sysfs_ops,
3731 .default_attrs = md_default_attrs,
3732 };
3733
3734 int mdp_major = 0;
3735
3736 static int md_alloc(dev_t dev, char *name)
3737 {
3738 static DEFINE_MUTEX(disks_mutex);
3739 mddev_t *mddev = mddev_find(dev);
3740 struct gendisk *disk;
3741 int partitioned;
3742 int shift;
3743 int unit;
3744 int error;
3745
3746 if (!mddev)
3747 return -ENODEV;
3748
3749 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
3750 shift = partitioned ? MdpMinorShift : 0;
3751 unit = MINOR(mddev->unit) >> shift;
3752
3753 /* wait for any previous instance if this device
3754 * to be completed removed (mddev_delayed_delete).
3755 */
3756 flush_scheduled_work();
3757
3758 mutex_lock(&disks_mutex);
3759 if (mddev->gendisk) {
3760 mutex_unlock(&disks_mutex);
3761 mddev_put(mddev);
3762 return -EEXIST;
3763 }
3764
3765 if (name) {
3766 /* Need to ensure that 'name' is not a duplicate.
3767 */
3768 mddev_t *mddev2;
3769 spin_lock(&all_mddevs_lock);
3770
3771 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
3772 if (mddev2->gendisk &&
3773 strcmp(mddev2->gendisk->disk_name, name) == 0) {
3774 spin_unlock(&all_mddevs_lock);
3775 return -EEXIST;
3776 }
3777 spin_unlock(&all_mddevs_lock);
3778 }
3779
3780 mddev->queue = blk_alloc_queue(GFP_KERNEL);
3781 if (!mddev->queue) {
3782 mutex_unlock(&disks_mutex);
3783 mddev_put(mddev);
3784 return -ENOMEM;
3785 }
3786 mddev->queue->queuedata = mddev;
3787
3788 /* Can be unlocked because the queue is new: no concurrency */
3789 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, mddev->queue);
3790
3791 blk_queue_make_request(mddev->queue, md_make_request);
3792
3793 disk = alloc_disk(1 << shift);
3794 if (!disk) {
3795 mutex_unlock(&disks_mutex);
3796 blk_cleanup_queue(mddev->queue);
3797 mddev->queue = NULL;
3798 mddev_put(mddev);
3799 return -ENOMEM;
3800 }
3801 disk->major = MAJOR(mddev->unit);
3802 disk->first_minor = unit << shift;
3803 if (name)
3804 strcpy(disk->disk_name, name);
3805 else if (partitioned)
3806 sprintf(disk->disk_name, "md_d%d", unit);
3807 else
3808 sprintf(disk->disk_name, "md%d", unit);
3809 disk->fops = &md_fops;
3810 disk->private_data = mddev;
3811 disk->queue = mddev->queue;
3812 /* Allow extended partitions. This makes the
3813 * 'mdp' device redundant, but we can't really
3814 * remove it now.
3815 */
3816 disk->flags |= GENHD_FL_EXT_DEVT;
3817 add_disk(disk);
3818 mddev->gendisk = disk;
3819 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
3820 &disk_to_dev(disk)->kobj, "%s", "md");
3821 mutex_unlock(&disks_mutex);
3822 if (error)
3823 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
3824 disk->disk_name);
3825 else {
3826 kobject_uevent(&mddev->kobj, KOBJ_ADD);
3827 mddev->sysfs_state = sysfs_get_dirent(mddev->kobj.sd, "array_state");
3828 }
3829 mddev_put(mddev);
3830 return 0;
3831 }
3832
3833 static struct kobject *md_probe(dev_t dev, int *part, void *data)
3834 {
3835 md_alloc(dev, NULL);
3836 return NULL;
3837 }
3838
3839 static int add_named_array(const char *val, struct kernel_param *kp)
3840 {
3841 /* val must be "md_*" where * is not all digits.
3842 * We allocate an array with a large free minor number, and
3843 * set the name to val. val must not already be an active name.
3844 */
3845 int len = strlen(val);
3846 char buf[DISK_NAME_LEN];
3847
3848 while (len && val[len-1] == '\n')
3849 len--;
3850 if (len >= DISK_NAME_LEN)
3851 return -E2BIG;
3852 strlcpy(buf, val, len+1);
3853 if (strncmp(buf, "md_", 3) != 0)
3854 return -EINVAL;
3855 return md_alloc(0, buf);
3856 }
3857
3858 static void md_safemode_timeout(unsigned long data)
3859 {
3860 mddev_t *mddev = (mddev_t *) data;
3861
3862 if (!atomic_read(&mddev->writes_pending)) {
3863 mddev->safemode = 1;
3864 if (mddev->external)
3865 sysfs_notify_dirent(mddev->sysfs_state);
3866 }
3867 md_wakeup_thread(mddev->thread);
3868 }
3869
3870 static int start_dirty_degraded;
3871
3872 static int do_md_run(mddev_t * mddev)
3873 {
3874 int err;
3875 int chunk_size;
3876 mdk_rdev_t *rdev;
3877 struct gendisk *disk;
3878 struct mdk_personality *pers;
3879 char b[BDEVNAME_SIZE];
3880
3881 if (list_empty(&mddev->disks))
3882 /* cannot run an array with no devices.. */
3883 return -EINVAL;
3884
3885 if (mddev->pers)
3886 return -EBUSY;
3887
3888 /*
3889 * Analyze all RAID superblock(s)
3890 */
3891 if (!mddev->raid_disks) {
3892 if (!mddev->persistent)
3893 return -EINVAL;
3894 analyze_sbs(mddev);
3895 }
3896
3897 chunk_size = mddev->chunk_size;
3898
3899 if (chunk_size) {
3900 if (chunk_size > MAX_CHUNK_SIZE) {
3901 printk(KERN_ERR "too big chunk_size: %d > %d\n",
3902 chunk_size, MAX_CHUNK_SIZE);
3903 return -EINVAL;
3904 }
3905 /*
3906 * chunk-size has to be a power of 2
3907 */
3908 if ( (1 << ffz(~chunk_size)) != chunk_size) {
3909 printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
3910 return -EINVAL;
3911 }
3912
3913 /* devices must have minimum size of one chunk */
3914 list_for_each_entry(rdev, &mddev->disks, same_set) {
3915 if (test_bit(Faulty, &rdev->flags))
3916 continue;
3917 if (rdev->sectors < chunk_size / 512) {
3918 printk(KERN_WARNING
3919 "md: Dev %s smaller than chunk_size:"
3920 " %llu < %d\n",
3921 bdevname(rdev->bdev,b),
3922 (unsigned long long)rdev->sectors,
3923 chunk_size / 512);
3924 return -EINVAL;
3925 }
3926 }
3927 }
3928
3929 if (mddev->level != LEVEL_NONE)
3930 request_module("md-level-%d", mddev->level);
3931 else if (mddev->clevel[0])
3932 request_module("md-%s", mddev->clevel);
3933
3934 /*
3935 * Drop all container device buffers, from now on
3936 * the only valid external interface is through the md
3937 * device.
3938 */
3939 list_for_each_entry(rdev, &mddev->disks, same_set) {
3940 if (test_bit(Faulty, &rdev->flags))
3941 continue;
3942 sync_blockdev(rdev->bdev);
3943 invalidate_bdev(rdev->bdev);
3944
3945 /* perform some consistency tests on the device.
3946 * We don't want the data to overlap the metadata,
3947 * Internal Bitmap issues have been handled elsewhere.
3948 */
3949 if (rdev->data_offset < rdev->sb_start) {
3950 if (mddev->dev_sectors &&
3951 rdev->data_offset + mddev->dev_sectors
3952 > rdev->sb_start) {
3953 printk("md: %s: data overlaps metadata\n",
3954 mdname(mddev));
3955 return -EINVAL;
3956 }
3957 } else {
3958 if (rdev->sb_start + rdev->sb_size/512
3959 > rdev->data_offset) {
3960 printk("md: %s: metadata overlaps data\n",
3961 mdname(mddev));
3962 return -EINVAL;
3963 }
3964 }
3965 sysfs_notify_dirent(rdev->sysfs_state);
3966 }
3967
3968 md_probe(mddev->unit, NULL, NULL);
3969 disk = mddev->gendisk;
3970 if (!disk)
3971 return -ENOMEM;
3972
3973 spin_lock(&pers_lock);
3974 pers = find_pers(mddev->level, mddev->clevel);
3975 if (!pers || !try_module_get(pers->owner)) {
3976 spin_unlock(&pers_lock);
3977 if (mddev->level != LEVEL_NONE)
3978 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
3979 mddev->level);
3980 else
3981 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
3982 mddev->clevel);
3983 return -EINVAL;
3984 }
3985 mddev->pers = pers;
3986 spin_unlock(&pers_lock);
3987 if (mddev->level != pers->level) {
3988 mddev->level = pers->level;
3989 mddev->new_level = pers->level;
3990 }
3991 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3992
3993 if (pers->level >= 4 && pers->level <= 6)
3994 /* Cannot support integrity (yet) */
3995 blk_integrity_unregister(mddev->gendisk);
3996
3997 if (mddev->reshape_position != MaxSector &&
3998 pers->start_reshape == NULL) {
3999 /* This personality cannot handle reshaping... */
4000 mddev->pers = NULL;
4001 module_put(pers->owner);
4002 return -EINVAL;
4003 }
4004
4005 if (pers->sync_request) {
4006 /* Warn if this is a potentially silly
4007 * configuration.
4008 */
4009 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4010 mdk_rdev_t *rdev2;
4011 int warned = 0;
4012
4013 list_for_each_entry(rdev, &mddev->disks, same_set)
4014 list_for_each_entry(rdev2, &mddev->disks, same_set) {
4015 if (rdev < rdev2 &&
4016 rdev->bdev->bd_contains ==
4017 rdev2->bdev->bd_contains) {
4018 printk(KERN_WARNING
4019 "%s: WARNING: %s appears to be"
4020 " on the same physical disk as"
4021 " %s.\n",
4022 mdname(mddev),
4023 bdevname(rdev->bdev,b),
4024 bdevname(rdev2->bdev,b2));
4025 warned = 1;
4026 }
4027 }
4028
4029 if (warned)
4030 printk(KERN_WARNING
4031 "True protection against single-disk"
4032 " failure might be compromised.\n");
4033 }
4034
4035 mddev->recovery = 0;
4036 /* may be over-ridden by personality */
4037 mddev->resync_max_sectors = mddev->dev_sectors;
4038
4039 mddev->barriers_work = 1;
4040 mddev->ok_start_degraded = start_dirty_degraded;
4041
4042 if (start_readonly)
4043 mddev->ro = 2; /* read-only, but switch on first write */
4044
4045 err = mddev->pers->run(mddev);
4046 if (err)
4047 printk(KERN_ERR "md: pers->run() failed ...\n");
4048 else if (mddev->pers->sync_request) {
4049 err = bitmap_create(mddev);
4050 if (err) {
4051 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4052 mdname(mddev), err);
4053 mddev->pers->stop(mddev);
4054 }
4055 }
4056 if (err) {
4057 module_put(mddev->pers->owner);
4058 mddev->pers = NULL;
4059 bitmap_destroy(mddev);
4060 return err;
4061 }
4062 if (mddev->pers->sync_request) {
4063 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4064 printk(KERN_WARNING
4065 "md: cannot register extra attributes for %s\n",
4066 mdname(mddev));
4067 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
4068 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4069 mddev->ro = 0;
4070
4071 atomic_set(&mddev->writes_pending,0);
4072 mddev->safemode = 0;
4073 mddev->safemode_timer.function = md_safemode_timeout;
4074 mddev->safemode_timer.data = (unsigned long) mddev;
4075 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4076 mddev->in_sync = 1;
4077
4078 list_for_each_entry(rdev, &mddev->disks, same_set)
4079 if (rdev->raid_disk >= 0) {
4080 char nm[20];
4081 sprintf(nm, "rd%d", rdev->raid_disk);
4082 if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
4083 printk("md: cannot register %s for %s\n",
4084 nm, mdname(mddev));
4085 }
4086
4087 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4088
4089 if (mddev->flags)
4090 md_update_sb(mddev, 0);
4091
4092 set_capacity(disk, mddev->array_sectors);
4093
4094 /* If there is a partially-recovered drive we need to
4095 * start recovery here. If we leave it to md_check_recovery,
4096 * it will remove the drives and not do the right thing
4097 */
4098 if (mddev->degraded && !mddev->sync_thread) {
4099 int spares = 0;
4100 list_for_each_entry(rdev, &mddev->disks, same_set)
4101 if (rdev->raid_disk >= 0 &&
4102 !test_bit(In_sync, &rdev->flags) &&
4103 !test_bit(Faulty, &rdev->flags))
4104 /* complete an interrupted recovery */
4105 spares++;
4106 if (spares && mddev->pers->sync_request) {
4107 mddev->recovery = 0;
4108 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4109 mddev->sync_thread = md_register_thread(md_do_sync,
4110 mddev,
4111 "%s_resync");
4112 if (!mddev->sync_thread) {
4113 printk(KERN_ERR "%s: could not start resync"
4114 " thread...\n",
4115 mdname(mddev));
4116 /* leave the spares where they are, it shouldn't hurt */
4117 mddev->recovery = 0;
4118 }
4119 }
4120 }
4121 md_wakeup_thread(mddev->thread);
4122 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4123
4124 mddev->changed = 1;
4125 md_new_event(mddev);
4126 sysfs_notify_dirent(mddev->sysfs_state);
4127 if (mddev->sysfs_action)
4128 sysfs_notify_dirent(mddev->sysfs_action);
4129 sysfs_notify(&mddev->kobj, NULL, "degraded");
4130 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4131 return 0;
4132 }
4133
4134 static int restart_array(mddev_t *mddev)
4135 {
4136 struct gendisk *disk = mddev->gendisk;
4137
4138 /* Complain if it has no devices */
4139 if (list_empty(&mddev->disks))
4140 return -ENXIO;
4141 if (!mddev->pers)
4142 return -EINVAL;
4143 if (!mddev->ro)
4144 return -EBUSY;
4145 mddev->safemode = 0;
4146 mddev->ro = 0;
4147 set_disk_ro(disk, 0);
4148 printk(KERN_INFO "md: %s switched to read-write mode.\n",
4149 mdname(mddev));
4150 /* Kick recovery or resync if necessary */
4151 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4152 md_wakeup_thread(mddev->thread);
4153 md_wakeup_thread(mddev->sync_thread);
4154 sysfs_notify_dirent(mddev->sysfs_state);
4155 return 0;
4156 }
4157
4158 /* similar to deny_write_access, but accounts for our holding a reference
4159 * to the file ourselves */
4160 static int deny_bitmap_write_access(struct file * file)
4161 {
4162 struct inode *inode = file->f_mapping->host;
4163
4164 spin_lock(&inode->i_lock);
4165 if (atomic_read(&inode->i_writecount) > 1) {
4166 spin_unlock(&inode->i_lock);
4167 return -ETXTBSY;
4168 }
4169 atomic_set(&inode->i_writecount, -1);
4170 spin_unlock(&inode->i_lock);
4171
4172 return 0;
4173 }
4174
4175 static void restore_bitmap_write_access(struct file *file)
4176 {
4177 struct inode *inode = file->f_mapping->host;
4178
4179 spin_lock(&inode->i_lock);
4180 atomic_set(&inode->i_writecount, 1);
4181 spin_unlock(&inode->i_lock);
4182 }
4183
4184 /* mode:
4185 * 0 - completely stop and dis-assemble array
4186 * 1 - switch to readonly
4187 * 2 - stop but do not disassemble array
4188 */
4189 static int do_md_stop(mddev_t * mddev, int mode, int is_open)
4190 {
4191 int err = 0;
4192 struct gendisk *disk = mddev->gendisk;
4193
4194 if (atomic_read(&mddev->openers) > is_open) {
4195 printk("md: %s still in use.\n",mdname(mddev));
4196 return -EBUSY;
4197 }
4198
4199 if (mddev->pers) {
4200
4201 if (mddev->sync_thread) {
4202 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4203 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4204 md_unregister_thread(mddev->sync_thread);
4205 mddev->sync_thread = NULL;
4206 }
4207
4208 del_timer_sync(&mddev->safemode_timer);
4209
4210 switch(mode) {
4211 case 1: /* readonly */
4212 err = -ENXIO;
4213 if (mddev->ro==1)
4214 goto out;
4215 mddev->ro = 1;
4216 break;
4217 case 0: /* disassemble */
4218 case 2: /* stop */
4219 bitmap_flush(mddev);
4220 md_super_wait(mddev);
4221 if (mddev->ro)
4222 set_disk_ro(disk, 0);
4223
4224 mddev->pers->stop(mddev);
4225 mddev->queue->merge_bvec_fn = NULL;
4226 mddev->queue->unplug_fn = NULL;
4227 mddev->queue->backing_dev_info.congested_fn = NULL;
4228 if (mddev->pers->sync_request) {
4229 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
4230 if (mddev->sysfs_action)
4231 sysfs_put(mddev->sysfs_action);
4232 mddev->sysfs_action = NULL;
4233 }
4234 module_put(mddev->pers->owner);
4235 mddev->pers = NULL;
4236 /* tell userspace to handle 'inactive' */
4237 sysfs_notify_dirent(mddev->sysfs_state);
4238
4239 set_capacity(disk, 0);
4240 mddev->changed = 1;
4241
4242 if (mddev->ro)
4243 mddev->ro = 0;
4244 }
4245 if (!mddev->in_sync || mddev->flags) {
4246 /* mark array as shutdown cleanly */
4247 mddev->in_sync = 1;
4248 md_update_sb(mddev, 1);
4249 }
4250 if (mode == 1)
4251 set_disk_ro(disk, 1);
4252 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4253 }
4254
4255 /*
4256 * Free resources if final stop
4257 */
4258 if (mode == 0) {
4259 mdk_rdev_t *rdev;
4260
4261 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
4262
4263 bitmap_destroy(mddev);
4264 if (mddev->bitmap_file) {
4265 restore_bitmap_write_access(mddev->bitmap_file);
4266 fput(mddev->bitmap_file);
4267 mddev->bitmap_file = NULL;
4268 }
4269 mddev->bitmap_offset = 0;
4270
4271 list_for_each_entry(rdev, &mddev->disks, same_set)
4272 if (rdev->raid_disk >= 0) {
4273 char nm[20];
4274 sprintf(nm, "rd%d", rdev->raid_disk);
4275 sysfs_remove_link(&mddev->kobj, nm);
4276 }
4277
4278 /* make sure all md_delayed_delete calls have finished */
4279 flush_scheduled_work();
4280
4281 export_array(mddev);
4282
4283 mddev->array_sectors = 0;
4284 mddev->dev_sectors = 0;
4285 mddev->raid_disks = 0;
4286 mddev->recovery_cp = 0;
4287 mddev->resync_min = 0;
4288 mddev->resync_max = MaxSector;
4289 mddev->reshape_position = MaxSector;
4290 mddev->external = 0;
4291 mddev->persistent = 0;
4292 mddev->level = LEVEL_NONE;
4293 mddev->clevel[0] = 0;
4294 mddev->flags = 0;
4295 mddev->ro = 0;
4296 mddev->metadata_type[0] = 0;
4297 mddev->chunk_size = 0;
4298 mddev->ctime = mddev->utime = 0;
4299 mddev->layout = 0;
4300 mddev->max_disks = 0;
4301 mddev->events = 0;
4302 mddev->delta_disks = 0;
4303 mddev->new_level = LEVEL_NONE;
4304 mddev->new_layout = 0;
4305 mddev->new_chunk = 0;
4306 mddev->curr_resync = 0;
4307 mddev->resync_mismatches = 0;
4308 mddev->suspend_lo = mddev->suspend_hi = 0;
4309 mddev->sync_speed_min = mddev->sync_speed_max = 0;
4310 mddev->recovery = 0;
4311 mddev->in_sync = 0;
4312 mddev->changed = 0;
4313 mddev->degraded = 0;
4314 mddev->barriers_work = 0;
4315 mddev->safemode = 0;
4316 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4317 if (mddev->hold_active == UNTIL_STOP)
4318 mddev->hold_active = 0;
4319
4320 } else if (mddev->pers)
4321 printk(KERN_INFO "md: %s switched to read-only mode.\n",
4322 mdname(mddev));
4323 err = 0;
4324 blk_integrity_unregister(disk);
4325 md_new_event(mddev);
4326 sysfs_notify_dirent(mddev->sysfs_state);
4327 out:
4328 return err;
4329 }
4330
4331 #ifndef MODULE
4332 static void autorun_array(mddev_t *mddev)
4333 {
4334 mdk_rdev_t *rdev;
4335 int err;
4336
4337 if (list_empty(&mddev->disks))
4338 return;
4339
4340 printk(KERN_INFO "md: running: ");
4341
4342 list_for_each_entry(rdev, &mddev->disks, same_set) {
4343 char b[BDEVNAME_SIZE];
4344 printk("<%s>", bdevname(rdev->bdev,b));
4345 }
4346 printk("\n");
4347
4348 err = do_md_run(mddev);
4349 if (err) {
4350 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
4351 do_md_stop(mddev, 0, 0);
4352 }
4353 }
4354
4355 /*
4356 * lets try to run arrays based on all disks that have arrived
4357 * until now. (those are in pending_raid_disks)
4358 *
4359 * the method: pick the first pending disk, collect all disks with
4360 * the same UUID, remove all from the pending list and put them into
4361 * the 'same_array' list. Then order this list based on superblock
4362 * update time (freshest comes first), kick out 'old' disks and
4363 * compare superblocks. If everything's fine then run it.
4364 *
4365 * If "unit" is allocated, then bump its reference count
4366 */
4367 static void autorun_devices(int part)
4368 {
4369 mdk_rdev_t *rdev0, *rdev, *tmp;
4370 mddev_t *mddev;
4371 char b[BDEVNAME_SIZE];
4372
4373 printk(KERN_INFO "md: autorun ...\n");
4374 while (!list_empty(&pending_raid_disks)) {
4375 int unit;
4376 dev_t dev;
4377 LIST_HEAD(candidates);
4378 rdev0 = list_entry(pending_raid_disks.next,
4379 mdk_rdev_t, same_set);
4380
4381 printk(KERN_INFO "md: considering %s ...\n",
4382 bdevname(rdev0->bdev,b));
4383 INIT_LIST_HEAD(&candidates);
4384 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
4385 if (super_90_load(rdev, rdev0, 0) >= 0) {
4386 printk(KERN_INFO "md: adding %s ...\n",
4387 bdevname(rdev->bdev,b));
4388 list_move(&rdev->same_set, &candidates);
4389 }
4390 /*
4391 * now we have a set of devices, with all of them having
4392 * mostly sane superblocks. It's time to allocate the
4393 * mddev.
4394 */
4395 if (part) {
4396 dev = MKDEV(mdp_major,
4397 rdev0->preferred_minor << MdpMinorShift);
4398 unit = MINOR(dev) >> MdpMinorShift;
4399 } else {
4400 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
4401 unit = MINOR(dev);
4402 }
4403 if (rdev0->preferred_minor != unit) {
4404 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
4405 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
4406 break;
4407 }
4408
4409 md_probe(dev, NULL, NULL);
4410 mddev = mddev_find(dev);
4411 if (!mddev || !mddev->gendisk) {
4412 if (mddev)
4413 mddev_put(mddev);
4414 printk(KERN_ERR
4415 "md: cannot allocate memory for md drive.\n");
4416 break;
4417 }
4418 if (mddev_lock(mddev))
4419 printk(KERN_WARNING "md: %s locked, cannot run\n",
4420 mdname(mddev));
4421 else if (mddev->raid_disks || mddev->major_version
4422 || !list_empty(&mddev->disks)) {
4423 printk(KERN_WARNING
4424 "md: %s already running, cannot run %s\n",
4425 mdname(mddev), bdevname(rdev0->bdev,b));
4426 mddev_unlock(mddev);
4427 } else {
4428 printk(KERN_INFO "md: created %s\n", mdname(mddev));
4429 mddev->persistent = 1;
4430 rdev_for_each_list(rdev, tmp, &candidates) {
4431 list_del_init(&rdev->same_set);
4432 if (bind_rdev_to_array(rdev, mddev))
4433 export_rdev(rdev);
4434 }
4435 autorun_array(mddev);
4436 mddev_unlock(mddev);
4437 }
4438 /* on success, candidates will be empty, on error
4439 * it won't...
4440 */
4441 rdev_for_each_list(rdev, tmp, &candidates) {
4442 list_del_init(&rdev->same_set);
4443 export_rdev(rdev);
4444 }
4445 mddev_put(mddev);
4446 }
4447 printk(KERN_INFO "md: ... autorun DONE.\n");
4448 }
4449 #endif /* !MODULE */
4450
4451 static int get_version(void __user * arg)
4452 {
4453 mdu_version_t ver;
4454
4455 ver.major = MD_MAJOR_VERSION;
4456 ver.minor = MD_MINOR_VERSION;
4457 ver.patchlevel = MD_PATCHLEVEL_VERSION;
4458
4459 if (copy_to_user(arg, &ver, sizeof(ver)))
4460 return -EFAULT;
4461
4462 return 0;
4463 }
4464
4465 static int get_array_info(mddev_t * mddev, void __user * arg)
4466 {
4467 mdu_array_info_t info;
4468 int nr,working,active,failed,spare;
4469 mdk_rdev_t *rdev;
4470
4471 nr=working=active=failed=spare=0;
4472 list_for_each_entry(rdev, &mddev->disks, same_set) {
4473 nr++;
4474 if (test_bit(Faulty, &rdev->flags))
4475 failed++;
4476 else {
4477 working++;
4478 if (test_bit(In_sync, &rdev->flags))
4479 active++;
4480 else
4481 spare++;
4482 }
4483 }
4484
4485 info.major_version = mddev->major_version;
4486 info.minor_version = mddev->minor_version;
4487 info.patch_version = MD_PATCHLEVEL_VERSION;
4488 info.ctime = mddev->ctime;
4489 info.level = mddev->level;
4490 info.size = mddev->dev_sectors / 2;
4491 if (info.size != mddev->dev_sectors / 2) /* overflow */
4492 info.size = -1;
4493 info.nr_disks = nr;
4494 info.raid_disks = mddev->raid_disks;
4495 info.md_minor = mddev->md_minor;
4496 info.not_persistent= !mddev->persistent;
4497
4498 info.utime = mddev->utime;
4499 info.state = 0;
4500 if (mddev->in_sync)
4501 info.state = (1<<MD_SB_CLEAN);
4502 if (mddev->bitmap && mddev->bitmap_offset)
4503 info.state = (1<<MD_SB_BITMAP_PRESENT);
4504 info.active_disks = active;
4505 info.working_disks = working;
4506 info.failed_disks = failed;
4507 info.spare_disks = spare;
4508
4509 info.layout = mddev->layout;
4510 info.chunk_size = mddev->chunk_size;
4511
4512 if (copy_to_user(arg, &info, sizeof(info)))
4513 return -EFAULT;
4514
4515 return 0;
4516 }
4517
4518 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
4519 {
4520 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
4521 char *ptr, *buf = NULL;
4522 int err = -ENOMEM;
4523
4524 if (md_allow_write(mddev))
4525 file = kmalloc(sizeof(*file), GFP_NOIO);
4526 else
4527 file = kmalloc(sizeof(*file), GFP_KERNEL);
4528
4529 if (!file)
4530 goto out;
4531
4532 /* bitmap disabled, zero the first byte and copy out */
4533 if (!mddev->bitmap || !mddev->bitmap->file) {
4534 file->pathname[0] = '\0';
4535 goto copy_out;
4536 }
4537
4538 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
4539 if (!buf)
4540 goto out;
4541
4542 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
4543 if (IS_ERR(ptr))
4544 goto out;
4545
4546 strcpy(file->pathname, ptr);
4547
4548 copy_out:
4549 err = 0;
4550 if (copy_to_user(arg, file, sizeof(*file)))
4551 err = -EFAULT;
4552 out:
4553 kfree(buf);
4554 kfree(file);
4555 return err;
4556 }
4557
4558 static int get_disk_info(mddev_t * mddev, void __user * arg)
4559 {
4560 mdu_disk_info_t info;
4561 mdk_rdev_t *rdev;
4562
4563 if (copy_from_user(&info, arg, sizeof(info)))
4564 return -EFAULT;
4565
4566 rdev = find_rdev_nr(mddev, info.number);
4567 if (rdev) {
4568 info.major = MAJOR(rdev->bdev->bd_dev);
4569 info.minor = MINOR(rdev->bdev->bd_dev);
4570 info.raid_disk = rdev->raid_disk;
4571 info.state = 0;
4572 if (test_bit(Faulty, &rdev->flags))
4573 info.state |= (1<<MD_DISK_FAULTY);
4574 else if (test_bit(In_sync, &rdev->flags)) {
4575 info.state |= (1<<MD_DISK_ACTIVE);
4576 info.state |= (1<<MD_DISK_SYNC);
4577 }
4578 if (test_bit(WriteMostly, &rdev->flags))
4579 info.state |= (1<<MD_DISK_WRITEMOSTLY);
4580 } else {
4581 info.major = info.minor = 0;
4582 info.raid_disk = -1;
4583 info.state = (1<<MD_DISK_REMOVED);
4584 }
4585
4586 if (copy_to_user(arg, &info, sizeof(info)))
4587 return -EFAULT;
4588
4589 return 0;
4590 }
4591
4592 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
4593 {
4594 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4595 mdk_rdev_t *rdev;
4596 dev_t dev = MKDEV(info->major,info->minor);
4597
4598 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
4599 return -EOVERFLOW;
4600
4601 if (!mddev->raid_disks) {
4602 int err;
4603 /* expecting a device which has a superblock */
4604 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
4605 if (IS_ERR(rdev)) {
4606 printk(KERN_WARNING
4607 "md: md_import_device returned %ld\n",
4608 PTR_ERR(rdev));
4609 return PTR_ERR(rdev);
4610 }
4611 if (!list_empty(&mddev->disks)) {
4612 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
4613 mdk_rdev_t, same_set);
4614 int err = super_types[mddev->major_version]
4615 .load_super(rdev, rdev0, mddev->minor_version);
4616 if (err < 0) {
4617 printk(KERN_WARNING
4618 "md: %s has different UUID to %s\n",
4619 bdevname(rdev->bdev,b),
4620 bdevname(rdev0->bdev,b2));
4621 export_rdev(rdev);
4622 return -EINVAL;
4623 }
4624 }
4625 err = bind_rdev_to_array(rdev, mddev);
4626 if (err)
4627 export_rdev(rdev);
4628 return err;
4629 }
4630
4631 /*
4632 * add_new_disk can be used once the array is assembled
4633 * to add "hot spares". They must already have a superblock
4634 * written
4635 */
4636 if (mddev->pers) {
4637 int err;
4638 if (!mddev->pers->hot_add_disk) {
4639 printk(KERN_WARNING
4640 "%s: personality does not support diskops!\n",
4641 mdname(mddev));
4642 return -EINVAL;
4643 }
4644 if (mddev->persistent)
4645 rdev = md_import_device(dev, mddev->major_version,
4646 mddev->minor_version);
4647 else
4648 rdev = md_import_device(dev, -1, -1);
4649 if (IS_ERR(rdev)) {
4650 printk(KERN_WARNING
4651 "md: md_import_device returned %ld\n",
4652 PTR_ERR(rdev));
4653 return PTR_ERR(rdev);
4654 }
4655 /* set save_raid_disk if appropriate */
4656 if (!mddev->persistent) {
4657 if (info->state & (1<<MD_DISK_SYNC) &&
4658 info->raid_disk < mddev->raid_disks)
4659 rdev->raid_disk = info->raid_disk;
4660 else
4661 rdev->raid_disk = -1;
4662 } else
4663 super_types[mddev->major_version].
4664 validate_super(mddev, rdev);
4665 rdev->saved_raid_disk = rdev->raid_disk;
4666
4667 clear_bit(In_sync, &rdev->flags); /* just to be sure */
4668 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
4669 set_bit(WriteMostly, &rdev->flags);
4670 else
4671 clear_bit(WriteMostly, &rdev->flags);
4672
4673 rdev->raid_disk = -1;
4674 err = bind_rdev_to_array(rdev, mddev);
4675 if (!err && !mddev->pers->hot_remove_disk) {
4676 /* If there is hot_add_disk but no hot_remove_disk
4677 * then added disks for geometry changes,
4678 * and should be added immediately.
4679 */
4680 super_types[mddev->major_version].
4681 validate_super(mddev, rdev);
4682 err = mddev->pers->hot_add_disk(mddev, rdev);
4683 if (err)
4684 unbind_rdev_from_array(rdev);
4685 }
4686 if (err)
4687 export_rdev(rdev);
4688 else
4689 sysfs_notify_dirent(rdev->sysfs_state);
4690
4691 md_update_sb(mddev, 1);
4692 if (mddev->degraded)
4693 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4694 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4695 md_wakeup_thread(mddev->thread);
4696 return err;
4697 }
4698
4699 /* otherwise, add_new_disk is only allowed
4700 * for major_version==0 superblocks
4701 */
4702 if (mddev->major_version != 0) {
4703 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
4704 mdname(mddev));
4705 return -EINVAL;
4706 }
4707
4708 if (!(info->state & (1<<MD_DISK_FAULTY))) {
4709 int err;
4710 rdev = md_import_device(dev, -1, 0);
4711 if (IS_ERR(rdev)) {
4712 printk(KERN_WARNING
4713 "md: error, md_import_device() returned %ld\n",
4714 PTR_ERR(rdev));
4715 return PTR_ERR(rdev);
4716 }
4717 rdev->desc_nr = info->number;
4718 if (info->raid_disk < mddev->raid_disks)
4719 rdev->raid_disk = info->raid_disk;
4720 else
4721 rdev->raid_disk = -1;
4722
4723 if (rdev->raid_disk < mddev->raid_disks)
4724 if (info->state & (1<<MD_DISK_SYNC))
4725 set_bit(In_sync, &rdev->flags);
4726
4727 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
4728 set_bit(WriteMostly, &rdev->flags);
4729
4730 if (!mddev->persistent) {
4731 printk(KERN_INFO "md: nonpersistent superblock ...\n");
4732 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
4733 } else
4734 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
4735 rdev->sectors = calc_num_sectors(rdev, mddev->chunk_size);
4736
4737 err = bind_rdev_to_array(rdev, mddev);
4738 if (err) {
4739 export_rdev(rdev);
4740 return err;
4741 }
4742 }
4743
4744 return 0;
4745 }
4746
4747 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
4748 {
4749 char b[BDEVNAME_SIZE];
4750 mdk_rdev_t *rdev;
4751
4752 rdev = find_rdev(mddev, dev);
4753 if (!rdev)
4754 return -ENXIO;
4755
4756 if (rdev->raid_disk >= 0)
4757 goto busy;
4758
4759 kick_rdev_from_array(rdev);
4760 md_update_sb(mddev, 1);
4761 md_new_event(mddev);
4762
4763 return 0;
4764 busy:
4765 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
4766 bdevname(rdev->bdev,b), mdname(mddev));
4767 return -EBUSY;
4768 }
4769
4770 static int hot_add_disk(mddev_t * mddev, dev_t dev)
4771 {
4772 char b[BDEVNAME_SIZE];
4773 int err;
4774 mdk_rdev_t *rdev;
4775
4776 if (!mddev->pers)
4777 return -ENODEV;
4778
4779 if (mddev->major_version != 0) {
4780 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
4781 " version-0 superblocks.\n",
4782 mdname(mddev));
4783 return -EINVAL;
4784 }
4785 if (!mddev->pers->hot_add_disk) {
4786 printk(KERN_WARNING
4787 "%s: personality does not support diskops!\n",
4788 mdname(mddev));
4789 return -EINVAL;
4790 }
4791
4792 rdev = md_import_device(dev, -1, 0);
4793 if (IS_ERR(rdev)) {
4794 printk(KERN_WARNING
4795 "md: error, md_import_device() returned %ld\n",
4796 PTR_ERR(rdev));
4797 return -EINVAL;
4798 }
4799
4800 if (mddev->persistent)
4801 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
4802 else
4803 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
4804
4805 rdev->sectors = calc_num_sectors(rdev, mddev->chunk_size);
4806
4807 if (test_bit(Faulty, &rdev->flags)) {
4808 printk(KERN_WARNING
4809 "md: can not hot-add faulty %s disk to %s!\n",
4810 bdevname(rdev->bdev,b), mdname(mddev));
4811 err = -EINVAL;
4812 goto abort_export;
4813 }
4814 clear_bit(In_sync, &rdev->flags);
4815 rdev->desc_nr = -1;
4816 rdev->saved_raid_disk = -1;
4817 err = bind_rdev_to_array(rdev, mddev);
4818 if (err)
4819 goto abort_export;
4820
4821 /*
4822 * The rest should better be atomic, we can have disk failures
4823 * noticed in interrupt contexts ...
4824 */
4825
4826 rdev->raid_disk = -1;
4827
4828 md_update_sb(mddev, 1);
4829
4830 /*
4831 * Kick recovery, maybe this spare has to be added to the
4832 * array immediately.
4833 */
4834 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4835 md_wakeup_thread(mddev->thread);
4836 md_new_event(mddev);
4837 return 0;
4838
4839 abort_export:
4840 export_rdev(rdev);
4841 return err;
4842 }
4843
4844 static int set_bitmap_file(mddev_t *mddev, int fd)
4845 {
4846 int err;
4847
4848 if (mddev->pers) {
4849 if (!mddev->pers->quiesce)
4850 return -EBUSY;
4851 if (mddev->recovery || mddev->sync_thread)
4852 return -EBUSY;
4853 /* we should be able to change the bitmap.. */
4854 }
4855
4856
4857 if (fd >= 0) {
4858 if (mddev->bitmap)
4859 return -EEXIST; /* cannot add when bitmap is present */
4860 mddev->bitmap_file = fget(fd);
4861
4862 if (mddev->bitmap_file == NULL) {
4863 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
4864 mdname(mddev));
4865 return -EBADF;
4866 }
4867
4868 err = deny_bitmap_write_access(mddev->bitmap_file);
4869 if (err) {
4870 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
4871 mdname(mddev));
4872 fput(mddev->bitmap_file);
4873 mddev->bitmap_file = NULL;
4874 return err;
4875 }
4876 mddev->bitmap_offset = 0; /* file overrides offset */
4877 } else if (mddev->bitmap == NULL)
4878 return -ENOENT; /* cannot remove what isn't there */
4879 err = 0;
4880 if (mddev->pers) {
4881 mddev->pers->quiesce(mddev, 1);
4882 if (fd >= 0)
4883 err = bitmap_create(mddev);
4884 if (fd < 0 || err) {
4885 bitmap_destroy(mddev);
4886 fd = -1; /* make sure to put the file */
4887 }
4888 mddev->pers->quiesce(mddev, 0);
4889 }
4890 if (fd < 0) {
4891 if (mddev->bitmap_file) {
4892 restore_bitmap_write_access(mddev->bitmap_file);
4893 fput(mddev->bitmap_file);
4894 }
4895 mddev->bitmap_file = NULL;
4896 }
4897
4898 return err;
4899 }
4900
4901 /*
4902 * set_array_info is used two different ways
4903 * The original usage is when creating a new array.
4904 * In this usage, raid_disks is > 0 and it together with
4905 * level, size, not_persistent,layout,chunksize determine the
4906 * shape of the array.
4907 * This will always create an array with a type-0.90.0 superblock.
4908 * The newer usage is when assembling an array.
4909 * In this case raid_disks will be 0, and the major_version field is
4910 * use to determine which style super-blocks are to be found on the devices.
4911 * The minor and patch _version numbers are also kept incase the
4912 * super_block handler wishes to interpret them.
4913 */
4914 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
4915 {
4916
4917 if (info->raid_disks == 0) {
4918 /* just setting version number for superblock loading */
4919 if (info->major_version < 0 ||
4920 info->major_version >= ARRAY_SIZE(super_types) ||
4921 super_types[info->major_version].name == NULL) {
4922 /* maybe try to auto-load a module? */
4923 printk(KERN_INFO
4924 "md: superblock version %d not known\n",
4925 info->major_version);
4926 return -EINVAL;
4927 }
4928 mddev->major_version = info->major_version;
4929 mddev->minor_version = info->minor_version;
4930 mddev->patch_version = info->patch_version;
4931 mddev->persistent = !info->not_persistent;
4932 return 0;
4933 }
4934 mddev->major_version = MD_MAJOR_VERSION;
4935 mddev->minor_version = MD_MINOR_VERSION;
4936 mddev->patch_version = MD_PATCHLEVEL_VERSION;
4937 mddev->ctime = get_seconds();
4938
4939 mddev->level = info->level;
4940 mddev->clevel[0] = 0;
4941 mddev->dev_sectors = 2 * (sector_t)info->size;
4942 mddev->raid_disks = info->raid_disks;
4943 /* don't set md_minor, it is determined by which /dev/md* was
4944 * openned
4945 */
4946 if (info->state & (1<<MD_SB_CLEAN))
4947 mddev->recovery_cp = MaxSector;
4948 else
4949 mddev->recovery_cp = 0;
4950 mddev->persistent = ! info->not_persistent;
4951 mddev->external = 0;
4952
4953 mddev->layout = info->layout;
4954 mddev->chunk_size = info->chunk_size;
4955
4956 mddev->max_disks = MD_SB_DISKS;
4957
4958 if (mddev->persistent)
4959 mddev->flags = 0;
4960 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4961
4962 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
4963 mddev->bitmap_offset = 0;
4964
4965 mddev->reshape_position = MaxSector;
4966
4967 /*
4968 * Generate a 128 bit UUID
4969 */
4970 get_random_bytes(mddev->uuid, 16);
4971
4972 mddev->new_level = mddev->level;
4973 mddev->new_chunk = mddev->chunk_size;
4974 mddev->new_layout = mddev->layout;
4975 mddev->delta_disks = 0;
4976
4977 return 0;
4978 }
4979
4980 static int update_size(mddev_t *mddev, sector_t num_sectors)
4981 {
4982 mdk_rdev_t *rdev;
4983 int rv;
4984 int fit = (num_sectors == 0);
4985
4986 if (mddev->pers->resize == NULL)
4987 return -EINVAL;
4988 /* The "num_sectors" is the number of sectors of each device that
4989 * is used. This can only make sense for arrays with redundancy.
4990 * linear and raid0 always use whatever space is available. We can only
4991 * consider changing this number if no resync or reconstruction is
4992 * happening, and if the new size is acceptable. It must fit before the
4993 * sb_start or, if that is <data_offset, it must fit before the size
4994 * of each device. If num_sectors is zero, we find the largest size
4995 * that fits.
4996
4997 */
4998 if (mddev->sync_thread)
4999 return -EBUSY;
5000 if (mddev->bitmap)
5001 /* Sorry, cannot grow a bitmap yet, just remove it,
5002 * grow, and re-add.
5003 */
5004 return -EBUSY;
5005 list_for_each_entry(rdev, &mddev->disks, same_set) {
5006 sector_t avail = rdev->sectors;
5007
5008 if (fit && (num_sectors == 0 || num_sectors > avail))
5009 num_sectors = avail;
5010 if (avail < num_sectors)
5011 return -ENOSPC;
5012 }
5013 rv = mddev->pers->resize(mddev, num_sectors);
5014 if (!rv) {
5015 struct block_device *bdev;
5016
5017 bdev = bdget_disk(mddev->gendisk, 0);
5018 if (bdev) {
5019 mutex_lock(&bdev->bd_inode->i_mutex);
5020 i_size_write(bdev->bd_inode,
5021 (loff_t)mddev->array_sectors << 9);
5022 mutex_unlock(&bdev->bd_inode->i_mutex);
5023 bdput(bdev);
5024 }
5025 }
5026 return rv;
5027 }
5028
5029 static int update_raid_disks(mddev_t *mddev, int raid_disks)
5030 {
5031 int rv;
5032 /* change the number of raid disks */
5033 if (mddev->pers->check_reshape == NULL)
5034 return -EINVAL;
5035 if (raid_disks <= 0 ||
5036 raid_disks >= mddev->max_disks)
5037 return -EINVAL;
5038 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5039 return -EBUSY;
5040 mddev->delta_disks = raid_disks - mddev->raid_disks;
5041
5042 rv = mddev->pers->check_reshape(mddev);
5043 return rv;
5044 }
5045
5046
5047 /*
5048 * update_array_info is used to change the configuration of an
5049 * on-line array.
5050 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5051 * fields in the info are checked against the array.
5052 * Any differences that cannot be handled will cause an error.
5053 * Normally, only one change can be managed at a time.
5054 */
5055 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
5056 {
5057 int rv = 0;
5058 int cnt = 0;
5059 int state = 0;
5060
5061 /* calculate expected state,ignoring low bits */
5062 if (mddev->bitmap && mddev->bitmap_offset)
5063 state |= (1 << MD_SB_BITMAP_PRESENT);
5064
5065 if (mddev->major_version != info->major_version ||
5066 mddev->minor_version != info->minor_version ||
5067 /* mddev->patch_version != info->patch_version || */
5068 mddev->ctime != info->ctime ||
5069 mddev->level != info->level ||
5070 /* mddev->layout != info->layout || */
5071 !mddev->persistent != info->not_persistent||
5072 mddev->chunk_size != info->chunk_size ||
5073 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5074 ((state^info->state) & 0xfffffe00)
5075 )
5076 return -EINVAL;
5077 /* Check there is only one change */
5078 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5079 cnt++;
5080 if (mddev->raid_disks != info->raid_disks)
5081 cnt++;
5082 if (mddev->layout != info->layout)
5083 cnt++;
5084 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5085 cnt++;
5086 if (cnt == 0)
5087 return 0;
5088 if (cnt > 1)
5089 return -EINVAL;
5090
5091 if (mddev->layout != info->layout) {
5092 /* Change layout
5093 * we don't need to do anything at the md level, the
5094 * personality will take care of it all.
5095 */
5096 if (mddev->pers->reconfig == NULL)
5097 return -EINVAL;
5098 else
5099 return mddev->pers->reconfig(mddev, info->layout, -1);
5100 }
5101 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5102 rv = update_size(mddev, (sector_t)info->size * 2);
5103
5104 if (mddev->raid_disks != info->raid_disks)
5105 rv = update_raid_disks(mddev, info->raid_disks);
5106
5107 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5108 if (mddev->pers->quiesce == NULL)
5109 return -EINVAL;
5110 if (mddev->recovery || mddev->sync_thread)
5111 return -EBUSY;
5112 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5113 /* add the bitmap */
5114 if (mddev->bitmap)
5115 return -EEXIST;
5116 if (mddev->default_bitmap_offset == 0)
5117 return -EINVAL;
5118 mddev->bitmap_offset = mddev->default_bitmap_offset;
5119 mddev->pers->quiesce(mddev, 1);
5120 rv = bitmap_create(mddev);
5121 if (rv)
5122 bitmap_destroy(mddev);
5123 mddev->pers->quiesce(mddev, 0);
5124 } else {
5125 /* remove the bitmap */
5126 if (!mddev->bitmap)
5127 return -ENOENT;
5128 if (mddev->bitmap->file)
5129 return -EINVAL;
5130 mddev->pers->quiesce(mddev, 1);
5131 bitmap_destroy(mddev);
5132 mddev->pers->quiesce(mddev, 0);
5133 mddev->bitmap_offset = 0;
5134 }
5135 }
5136 md_update_sb(mddev, 1);
5137 return rv;
5138 }
5139
5140 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
5141 {
5142 mdk_rdev_t *rdev;
5143
5144 if (mddev->pers == NULL)
5145 return -ENODEV;
5146
5147 rdev = find_rdev(mddev, dev);
5148 if (!rdev)
5149 return -ENODEV;
5150
5151 md_error(mddev, rdev);
5152 return 0;
5153 }
5154
5155 /*
5156 * We have a problem here : there is no easy way to give a CHS
5157 * virtual geometry. We currently pretend that we have a 2 heads
5158 * 4 sectors (with a BIG number of cylinders...). This drives
5159 * dosfs just mad... ;-)
5160 */
5161 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
5162 {
5163 mddev_t *mddev = bdev->bd_disk->private_data;
5164
5165 geo->heads = 2;
5166 geo->sectors = 4;
5167 geo->cylinders = get_capacity(mddev->gendisk) / 8;
5168 return 0;
5169 }
5170
5171 static int md_ioctl(struct block_device *bdev, fmode_t mode,
5172 unsigned int cmd, unsigned long arg)
5173 {
5174 int err = 0;
5175 void __user *argp = (void __user *)arg;
5176 mddev_t *mddev = NULL;
5177
5178 if (!capable(CAP_SYS_ADMIN))
5179 return -EACCES;
5180
5181 /*
5182 * Commands dealing with the RAID driver but not any
5183 * particular array:
5184 */
5185 switch (cmd)
5186 {
5187 case RAID_VERSION:
5188 err = get_version(argp);
5189 goto done;
5190
5191 case PRINT_RAID_DEBUG:
5192 err = 0;
5193 md_print_devices();
5194 goto done;
5195
5196 #ifndef MODULE
5197 case RAID_AUTORUN:
5198 err = 0;
5199 autostart_arrays(arg);
5200 goto done;
5201 #endif
5202 default:;
5203 }
5204
5205 /*
5206 * Commands creating/starting a new array:
5207 */
5208
5209 mddev = bdev->bd_disk->private_data;
5210
5211 if (!mddev) {
5212 BUG();
5213 goto abort;
5214 }
5215
5216 err = mddev_lock(mddev);
5217 if (err) {
5218 printk(KERN_INFO
5219 "md: ioctl lock interrupted, reason %d, cmd %d\n",
5220 err, cmd);
5221 goto abort;
5222 }
5223
5224 switch (cmd)
5225 {
5226 case SET_ARRAY_INFO:
5227 {
5228 mdu_array_info_t info;
5229 if (!arg)
5230 memset(&info, 0, sizeof(info));
5231 else if (copy_from_user(&info, argp, sizeof(info))) {
5232 err = -EFAULT;
5233 goto abort_unlock;
5234 }
5235 if (mddev->pers) {
5236 err = update_array_info(mddev, &info);
5237 if (err) {
5238 printk(KERN_WARNING "md: couldn't update"
5239 " array info. %d\n", err);
5240 goto abort_unlock;
5241 }
5242 goto done_unlock;
5243 }
5244 if (!list_empty(&mddev->disks)) {
5245 printk(KERN_WARNING
5246 "md: array %s already has disks!\n",
5247 mdname(mddev));
5248 err = -EBUSY;
5249 goto abort_unlock;
5250 }
5251 if (mddev->raid_disks) {
5252 printk(KERN_WARNING
5253 "md: array %s already initialised!\n",
5254 mdname(mddev));
5255 err = -EBUSY;
5256 goto abort_unlock;
5257 }
5258 err = set_array_info(mddev, &info);
5259 if (err) {
5260 printk(KERN_WARNING "md: couldn't set"
5261 " array info. %d\n", err);
5262 goto abort_unlock;
5263 }
5264 }
5265 goto done_unlock;
5266
5267 default:;
5268 }
5269
5270 /*
5271 * Commands querying/configuring an existing array:
5272 */
5273 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
5274 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
5275 if ((!mddev->raid_disks && !mddev->external)
5276 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
5277 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
5278 && cmd != GET_BITMAP_FILE) {
5279 err = -ENODEV;
5280 goto abort_unlock;
5281 }
5282
5283 /*
5284 * Commands even a read-only array can execute:
5285 */
5286 switch (cmd)
5287 {
5288 case GET_ARRAY_INFO:
5289 err = get_array_info(mddev, argp);
5290 goto done_unlock;
5291
5292 case GET_BITMAP_FILE:
5293 err = get_bitmap_file(mddev, argp);
5294 goto done_unlock;
5295
5296 case GET_DISK_INFO:
5297 err = get_disk_info(mddev, argp);
5298 goto done_unlock;
5299
5300 case RESTART_ARRAY_RW:
5301 err = restart_array(mddev);
5302 goto done_unlock;
5303
5304 case STOP_ARRAY:
5305 err = do_md_stop(mddev, 0, 1);
5306 goto done_unlock;
5307
5308 case STOP_ARRAY_RO:
5309 err = do_md_stop(mddev, 1, 1);
5310 goto done_unlock;
5311
5312 }
5313
5314 /*
5315 * The remaining ioctls are changing the state of the
5316 * superblock, so we do not allow them on read-only arrays.
5317 * However non-MD ioctls (e.g. get-size) will still come through
5318 * here and hit the 'default' below, so only disallow
5319 * 'md' ioctls, and switch to rw mode if started auto-readonly.
5320 */
5321 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
5322 if (mddev->ro == 2) {
5323 mddev->ro = 0;
5324 sysfs_notify_dirent(mddev->sysfs_state);
5325 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5326 md_wakeup_thread(mddev->thread);
5327 } else {
5328 err = -EROFS;
5329 goto abort_unlock;
5330 }
5331 }
5332
5333 switch (cmd)
5334 {
5335 case ADD_NEW_DISK:
5336 {
5337 mdu_disk_info_t info;
5338 if (copy_from_user(&info, argp, sizeof(info)))
5339 err = -EFAULT;
5340 else
5341 err = add_new_disk(mddev, &info);
5342 goto done_unlock;
5343 }
5344
5345 case HOT_REMOVE_DISK:
5346 err = hot_remove_disk(mddev, new_decode_dev(arg));
5347 goto done_unlock;
5348
5349 case HOT_ADD_DISK:
5350 err = hot_add_disk(mddev, new_decode_dev(arg));
5351 goto done_unlock;
5352
5353 case SET_DISK_FAULTY:
5354 err = set_disk_faulty(mddev, new_decode_dev(arg));
5355 goto done_unlock;
5356
5357 case RUN_ARRAY:
5358 err = do_md_run(mddev);
5359 goto done_unlock;
5360
5361 case SET_BITMAP_FILE:
5362 err = set_bitmap_file(mddev, (int)arg);
5363 goto done_unlock;
5364
5365 default:
5366 err = -EINVAL;
5367 goto abort_unlock;
5368 }
5369
5370 done_unlock:
5371 abort_unlock:
5372 if (mddev->hold_active == UNTIL_IOCTL &&
5373 err != -EINVAL)
5374 mddev->hold_active = 0;
5375 mddev_unlock(mddev);
5376
5377 return err;
5378 done:
5379 if (err)
5380 MD_BUG();
5381 abort:
5382 return err;
5383 }
5384
5385 static int md_open(struct block_device *bdev, fmode_t mode)
5386 {
5387 /*
5388 * Succeed if we can lock the mddev, which confirms that
5389 * it isn't being stopped right now.
5390 */
5391 mddev_t *mddev = mddev_find(bdev->bd_dev);
5392 int err;
5393
5394 if (mddev->gendisk != bdev->bd_disk) {
5395 /* we are racing with mddev_put which is discarding this
5396 * bd_disk.
5397 */
5398 mddev_put(mddev);
5399 /* Wait until bdev->bd_disk is definitely gone */
5400 flush_scheduled_work();
5401 /* Then retry the open from the top */
5402 return -ERESTARTSYS;
5403 }
5404 BUG_ON(mddev != bdev->bd_disk->private_data);
5405
5406 if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1)))
5407 goto out;
5408
5409 err = 0;
5410 atomic_inc(&mddev->openers);
5411 mddev_unlock(mddev);
5412
5413 check_disk_change(bdev);
5414 out:
5415 return err;
5416 }
5417
5418 static int md_release(struct gendisk *disk, fmode_t mode)
5419 {
5420 mddev_t *mddev = disk->private_data;
5421
5422 BUG_ON(!mddev);
5423 atomic_dec(&mddev->openers);
5424 mddev_put(mddev);
5425
5426 return 0;
5427 }
5428
5429 static int md_media_changed(struct gendisk *disk)
5430 {
5431 mddev_t *mddev = disk->private_data;
5432
5433 return mddev->changed;
5434 }
5435
5436 static int md_revalidate(struct gendisk *disk)
5437 {
5438 mddev_t *mddev = disk->private_data;
5439
5440 mddev->changed = 0;
5441 return 0;
5442 }
5443 static struct block_device_operations md_fops =
5444 {
5445 .owner = THIS_MODULE,
5446 .open = md_open,
5447 .release = md_release,
5448 .locked_ioctl = md_ioctl,
5449 .getgeo = md_getgeo,
5450 .media_changed = md_media_changed,
5451 .revalidate_disk= md_revalidate,
5452 };
5453
5454 static int md_thread(void * arg)
5455 {
5456 mdk_thread_t *thread = arg;
5457
5458 /*
5459 * md_thread is a 'system-thread', it's priority should be very
5460 * high. We avoid resource deadlocks individually in each
5461 * raid personality. (RAID5 does preallocation) We also use RR and
5462 * the very same RT priority as kswapd, thus we will never get
5463 * into a priority inversion deadlock.
5464 *
5465 * we definitely have to have equal or higher priority than
5466 * bdflush, otherwise bdflush will deadlock if there are too
5467 * many dirty RAID5 blocks.
5468 */
5469
5470 allow_signal(SIGKILL);
5471 while (!kthread_should_stop()) {
5472
5473 /* We need to wait INTERRUPTIBLE so that
5474 * we don't add to the load-average.
5475 * That means we need to be sure no signals are
5476 * pending
5477 */
5478 if (signal_pending(current))
5479 flush_signals(current);
5480
5481 wait_event_interruptible_timeout
5482 (thread->wqueue,
5483 test_bit(THREAD_WAKEUP, &thread->flags)
5484 || kthread_should_stop(),
5485 thread->timeout);
5486
5487 clear_bit(THREAD_WAKEUP, &thread->flags);
5488
5489 thread->run(thread->mddev);
5490 }
5491
5492 return 0;
5493 }
5494
5495 void md_wakeup_thread(mdk_thread_t *thread)
5496 {
5497 if (thread) {
5498 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
5499 set_bit(THREAD_WAKEUP, &thread->flags);
5500 wake_up(&thread->wqueue);
5501 }
5502 }
5503
5504 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
5505 const char *name)
5506 {
5507 mdk_thread_t *thread;
5508
5509 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
5510 if (!thread)
5511 return NULL;
5512
5513 init_waitqueue_head(&thread->wqueue);
5514
5515 thread->run = run;
5516 thread->mddev = mddev;
5517 thread->timeout = MAX_SCHEDULE_TIMEOUT;
5518 thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
5519 if (IS_ERR(thread->tsk)) {
5520 kfree(thread);
5521 return NULL;
5522 }
5523 return thread;
5524 }
5525
5526 void md_unregister_thread(mdk_thread_t *thread)
5527 {
5528 if (!thread)
5529 return;
5530 dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
5531
5532 kthread_stop(thread->tsk);
5533 kfree(thread);
5534 }
5535
5536 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
5537 {
5538 if (!mddev) {
5539 MD_BUG();
5540 return;
5541 }
5542
5543 if (!rdev || test_bit(Faulty, &rdev->flags))
5544 return;
5545
5546 if (mddev->external)
5547 set_bit(Blocked, &rdev->flags);
5548 /*
5549 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
5550 mdname(mddev),
5551 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
5552 __builtin_return_address(0),__builtin_return_address(1),
5553 __builtin_return_address(2),__builtin_return_address(3));
5554 */
5555 if (!mddev->pers)
5556 return;
5557 if (!mddev->pers->error_handler)
5558 return;
5559 mddev->pers->error_handler(mddev,rdev);
5560 if (mddev->degraded)
5561 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5562 set_bit(StateChanged, &rdev->flags);
5563 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5564 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5565 md_wakeup_thread(mddev->thread);
5566 md_new_event_inintr(mddev);
5567 }
5568
5569 /* seq_file implementation /proc/mdstat */
5570
5571 static void status_unused(struct seq_file *seq)
5572 {
5573 int i = 0;
5574 mdk_rdev_t *rdev;
5575
5576 seq_printf(seq, "unused devices: ");
5577
5578 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
5579 char b[BDEVNAME_SIZE];
5580 i++;
5581 seq_printf(seq, "%s ",
5582 bdevname(rdev->bdev,b));
5583 }
5584 if (!i)
5585 seq_printf(seq, "<none>");
5586
5587 seq_printf(seq, "\n");
5588 }
5589
5590
5591 static void status_resync(struct seq_file *seq, mddev_t * mddev)
5592 {
5593 sector_t max_blocks, resync, res;
5594 unsigned long dt, db, rt;
5595 int scale;
5596 unsigned int per_milli;
5597
5598 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
5599
5600 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
5601 max_blocks = mddev->resync_max_sectors >> 1;
5602 else
5603 max_blocks = mddev->dev_sectors / 2;
5604
5605 /*
5606 * Should not happen.
5607 */
5608 if (!max_blocks) {
5609 MD_BUG();
5610 return;
5611 }
5612 /* Pick 'scale' such that (resync>>scale)*1000 will fit
5613 * in a sector_t, and (max_blocks>>scale) will fit in a
5614 * u32, as those are the requirements for sector_div.
5615 * Thus 'scale' must be at least 10
5616 */
5617 scale = 10;
5618 if (sizeof(sector_t) > sizeof(unsigned long)) {
5619 while ( max_blocks/2 > (1ULL<<(scale+32)))
5620 scale++;
5621 }
5622 res = (resync>>scale)*1000;
5623 sector_div(res, (u32)((max_blocks>>scale)+1));
5624
5625 per_milli = res;
5626 {
5627 int i, x = per_milli/50, y = 20-x;
5628 seq_printf(seq, "[");
5629 for (i = 0; i < x; i++)
5630 seq_printf(seq, "=");
5631 seq_printf(seq, ">");
5632 for (i = 0; i < y; i++)
5633 seq_printf(seq, ".");
5634 seq_printf(seq, "] ");
5635 }
5636 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
5637 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
5638 "reshape" :
5639 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
5640 "check" :
5641 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
5642 "resync" : "recovery"))),
5643 per_milli/10, per_milli % 10,
5644 (unsigned long long) resync,
5645 (unsigned long long) max_blocks);
5646
5647 /*
5648 * We do not want to overflow, so the order of operands and
5649 * the * 100 / 100 trick are important. We do a +1 to be
5650 * safe against division by zero. We only estimate anyway.
5651 *
5652 * dt: time from mark until now
5653 * db: blocks written from mark until now
5654 * rt: remaining time
5655 */
5656 dt = ((jiffies - mddev->resync_mark) / HZ);
5657 if (!dt) dt++;
5658 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
5659 - mddev->resync_mark_cnt;
5660 rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100;
5661
5662 seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
5663
5664 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
5665 }
5666
5667 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
5668 {
5669 struct list_head *tmp;
5670 loff_t l = *pos;
5671 mddev_t *mddev;
5672
5673 if (l >= 0x10000)
5674 return NULL;
5675 if (!l--)
5676 /* header */
5677 return (void*)1;
5678
5679 spin_lock(&all_mddevs_lock);
5680 list_for_each(tmp,&all_mddevs)
5681 if (!l--) {
5682 mddev = list_entry(tmp, mddev_t, all_mddevs);
5683 mddev_get(mddev);
5684 spin_unlock(&all_mddevs_lock);
5685 return mddev;
5686 }
5687 spin_unlock(&all_mddevs_lock);
5688 if (!l--)
5689 return (void*)2;/* tail */
5690 return NULL;
5691 }
5692
5693 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
5694 {
5695 struct list_head *tmp;
5696 mddev_t *next_mddev, *mddev = v;
5697
5698 ++*pos;
5699 if (v == (void*)2)
5700 return NULL;
5701
5702 spin_lock(&all_mddevs_lock);
5703 if (v == (void*)1)
5704 tmp = all_mddevs.next;
5705 else
5706 tmp = mddev->all_mddevs.next;
5707 if (tmp != &all_mddevs)
5708 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
5709 else {
5710 next_mddev = (void*)2;
5711 *pos = 0x10000;
5712 }
5713 spin_unlock(&all_mddevs_lock);
5714
5715 if (v != (void*)1)
5716 mddev_put(mddev);
5717 return next_mddev;
5718
5719 }
5720
5721 static void md_seq_stop(struct seq_file *seq, void *v)
5722 {
5723 mddev_t *mddev = v;
5724
5725 if (mddev && v != (void*)1 && v != (void*)2)
5726 mddev_put(mddev);
5727 }
5728
5729 struct mdstat_info {
5730 int event;
5731 };
5732
5733 static int md_seq_show(struct seq_file *seq, void *v)
5734 {
5735 mddev_t *mddev = v;
5736 sector_t sectors;
5737 mdk_rdev_t *rdev;
5738 struct mdstat_info *mi = seq->private;
5739 struct bitmap *bitmap;
5740
5741 if (v == (void*)1) {
5742 struct mdk_personality *pers;
5743 seq_printf(seq, "Personalities : ");
5744 spin_lock(&pers_lock);
5745 list_for_each_entry(pers, &pers_list, list)
5746 seq_printf(seq, "[%s] ", pers->name);
5747
5748 spin_unlock(&pers_lock);
5749 seq_printf(seq, "\n");
5750 mi->event = atomic_read(&md_event_count);
5751 return 0;
5752 }
5753 if (v == (void*)2) {
5754 status_unused(seq);
5755 return 0;
5756 }
5757
5758 if (mddev_lock(mddev) < 0)
5759 return -EINTR;
5760
5761 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
5762 seq_printf(seq, "%s : %sactive", mdname(mddev),
5763 mddev->pers ? "" : "in");
5764 if (mddev->pers) {
5765 if (mddev->ro==1)
5766 seq_printf(seq, " (read-only)");
5767 if (mddev->ro==2)
5768 seq_printf(seq, " (auto-read-only)");
5769 seq_printf(seq, " %s", mddev->pers->name);
5770 }
5771
5772 sectors = 0;
5773 list_for_each_entry(rdev, &mddev->disks, same_set) {
5774 char b[BDEVNAME_SIZE];
5775 seq_printf(seq, " %s[%d]",
5776 bdevname(rdev->bdev,b), rdev->desc_nr);
5777 if (test_bit(WriteMostly, &rdev->flags))
5778 seq_printf(seq, "(W)");
5779 if (test_bit(Faulty, &rdev->flags)) {
5780 seq_printf(seq, "(F)");
5781 continue;
5782 } else if (rdev->raid_disk < 0)
5783 seq_printf(seq, "(S)"); /* spare */
5784 sectors += rdev->sectors;
5785 }
5786
5787 if (!list_empty(&mddev->disks)) {
5788 if (mddev->pers)
5789 seq_printf(seq, "\n %llu blocks",
5790 (unsigned long long)
5791 mddev->array_sectors / 2);
5792 else
5793 seq_printf(seq, "\n %llu blocks",
5794 (unsigned long long)sectors / 2);
5795 }
5796 if (mddev->persistent) {
5797 if (mddev->major_version != 0 ||
5798 mddev->minor_version != 90) {
5799 seq_printf(seq," super %d.%d",
5800 mddev->major_version,
5801 mddev->minor_version);
5802 }
5803 } else if (mddev->external)
5804 seq_printf(seq, " super external:%s",
5805 mddev->metadata_type);
5806 else
5807 seq_printf(seq, " super non-persistent");
5808
5809 if (mddev->pers) {
5810 mddev->pers->status(seq, mddev);
5811 seq_printf(seq, "\n ");
5812 if (mddev->pers->sync_request) {
5813 if (mddev->curr_resync > 2) {
5814 status_resync(seq, mddev);
5815 seq_printf(seq, "\n ");
5816 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
5817 seq_printf(seq, "\tresync=DELAYED\n ");
5818 else if (mddev->recovery_cp < MaxSector)
5819 seq_printf(seq, "\tresync=PENDING\n ");
5820 }
5821 } else
5822 seq_printf(seq, "\n ");
5823
5824 if ((bitmap = mddev->bitmap)) {
5825 unsigned long chunk_kb;
5826 unsigned long flags;
5827 spin_lock_irqsave(&bitmap->lock, flags);
5828 chunk_kb = bitmap->chunksize >> 10;
5829 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
5830 "%lu%s chunk",
5831 bitmap->pages - bitmap->missing_pages,
5832 bitmap->pages,
5833 (bitmap->pages - bitmap->missing_pages)
5834 << (PAGE_SHIFT - 10),
5835 chunk_kb ? chunk_kb : bitmap->chunksize,
5836 chunk_kb ? "KB" : "B");
5837 if (bitmap->file) {
5838 seq_printf(seq, ", file: ");
5839 seq_path(seq, &bitmap->file->f_path, " \t\n");
5840 }
5841
5842 seq_printf(seq, "\n");
5843 spin_unlock_irqrestore(&bitmap->lock, flags);
5844 }
5845
5846 seq_printf(seq, "\n");
5847 }
5848 mddev_unlock(mddev);
5849
5850 return 0;
5851 }
5852
5853 static struct seq_operations md_seq_ops = {
5854 .start = md_seq_start,
5855 .next = md_seq_next,
5856 .stop = md_seq_stop,
5857 .show = md_seq_show,
5858 };
5859
5860 static int md_seq_open(struct inode *inode, struct file *file)
5861 {
5862 int error;
5863 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
5864 if (mi == NULL)
5865 return -ENOMEM;
5866
5867 error = seq_open(file, &md_seq_ops);
5868 if (error)
5869 kfree(mi);
5870 else {
5871 struct seq_file *p = file->private_data;
5872 p->private = mi;
5873 mi->event = atomic_read(&md_event_count);
5874 }
5875 return error;
5876 }
5877
5878 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
5879 {
5880 struct seq_file *m = filp->private_data;
5881 struct mdstat_info *mi = m->private;
5882 int mask;
5883
5884 poll_wait(filp, &md_event_waiters, wait);
5885
5886 /* always allow read */
5887 mask = POLLIN | POLLRDNORM;
5888
5889 if (mi->event != atomic_read(&md_event_count))
5890 mask |= POLLERR | POLLPRI;
5891 return mask;
5892 }
5893
5894 static const struct file_operations md_seq_fops = {
5895 .owner = THIS_MODULE,
5896 .open = md_seq_open,
5897 .read = seq_read,
5898 .llseek = seq_lseek,
5899 .release = seq_release_private,
5900 .poll = mdstat_poll,
5901 };
5902
5903 int register_md_personality(struct mdk_personality *p)
5904 {
5905 spin_lock(&pers_lock);
5906 list_add_tail(&p->list, &pers_list);
5907 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
5908 spin_unlock(&pers_lock);
5909 return 0;
5910 }
5911
5912 int unregister_md_personality(struct mdk_personality *p)
5913 {
5914 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
5915 spin_lock(&pers_lock);
5916 list_del_init(&p->list);
5917 spin_unlock(&pers_lock);
5918 return 0;
5919 }
5920
5921 static int is_mddev_idle(mddev_t *mddev, int init)
5922 {
5923 mdk_rdev_t * rdev;
5924 int idle;
5925 int curr_events;
5926
5927 idle = 1;
5928 rcu_read_lock();
5929 rdev_for_each_rcu(rdev, mddev) {
5930 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
5931 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
5932 (int)part_stat_read(&disk->part0, sectors[1]) -
5933 atomic_read(&disk->sync_io);
5934 /* sync IO will cause sync_io to increase before the disk_stats
5935 * as sync_io is counted when a request starts, and
5936 * disk_stats is counted when it completes.
5937 * So resync activity will cause curr_events to be smaller than
5938 * when there was no such activity.
5939 * non-sync IO will cause disk_stat to increase without
5940 * increasing sync_io so curr_events will (eventually)
5941 * be larger than it was before. Once it becomes
5942 * substantially larger, the test below will cause
5943 * the array to appear non-idle, and resync will slow
5944 * down.
5945 * If there is a lot of outstanding resync activity when
5946 * we set last_event to curr_events, then all that activity
5947 * completing might cause the array to appear non-idle
5948 * and resync will be slowed down even though there might
5949 * not have been non-resync activity. This will only
5950 * happen once though. 'last_events' will soon reflect
5951 * the state where there is little or no outstanding
5952 * resync requests, and further resync activity will
5953 * always make curr_events less than last_events.
5954 *
5955 */
5956 if (init || curr_events - rdev->last_events > 64) {
5957 rdev->last_events = curr_events;
5958 idle = 0;
5959 }
5960 }
5961 rcu_read_unlock();
5962 return idle;
5963 }
5964
5965 void md_done_sync(mddev_t *mddev, int blocks, int ok)
5966 {
5967 /* another "blocks" (512byte) blocks have been synced */
5968 atomic_sub(blocks, &mddev->recovery_active);
5969 wake_up(&mddev->recovery_wait);
5970 if (!ok) {
5971 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5972 md_wakeup_thread(mddev->thread);
5973 // stop recovery, signal do_sync ....
5974 }
5975 }
5976
5977
5978 /* md_write_start(mddev, bi)
5979 * If we need to update some array metadata (e.g. 'active' flag
5980 * in superblock) before writing, schedule a superblock update
5981 * and wait for it to complete.
5982 */
5983 void md_write_start(mddev_t *mddev, struct bio *bi)
5984 {
5985 int did_change = 0;
5986 if (bio_data_dir(bi) != WRITE)
5987 return;
5988
5989 BUG_ON(mddev->ro == 1);
5990 if (mddev->ro == 2) {
5991 /* need to switch to read/write */
5992 mddev->ro = 0;
5993 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5994 md_wakeup_thread(mddev->thread);
5995 md_wakeup_thread(mddev->sync_thread);
5996 did_change = 1;
5997 }
5998 atomic_inc(&mddev->writes_pending);
5999 if (mddev->safemode == 1)
6000 mddev->safemode = 0;
6001 if (mddev->in_sync) {
6002 spin_lock_irq(&mddev->write_lock);
6003 if (mddev->in_sync) {
6004 mddev->in_sync = 0;
6005 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6006 md_wakeup_thread(mddev->thread);
6007 did_change = 1;
6008 }
6009 spin_unlock_irq(&mddev->write_lock);
6010 }
6011 if (did_change)
6012 sysfs_notify_dirent(mddev->sysfs_state);
6013 wait_event(mddev->sb_wait,
6014 !test_bit(MD_CHANGE_CLEAN, &mddev->flags) &&
6015 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6016 }
6017
6018 void md_write_end(mddev_t *mddev)
6019 {
6020 if (atomic_dec_and_test(&mddev->writes_pending)) {
6021 if (mddev->safemode == 2)
6022 md_wakeup_thread(mddev->thread);
6023 else if (mddev->safemode_delay)
6024 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6025 }
6026 }
6027
6028 /* md_allow_write(mddev)
6029 * Calling this ensures that the array is marked 'active' so that writes
6030 * may proceed without blocking. It is important to call this before
6031 * attempting a GFP_KERNEL allocation while holding the mddev lock.
6032 * Must be called with mddev_lock held.
6033 *
6034 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6035 * is dropped, so return -EAGAIN after notifying userspace.
6036 */
6037 int md_allow_write(mddev_t *mddev)
6038 {
6039 if (!mddev->pers)
6040 return 0;
6041 if (mddev->ro)
6042 return 0;
6043 if (!mddev->pers->sync_request)
6044 return 0;
6045
6046 spin_lock_irq(&mddev->write_lock);
6047 if (mddev->in_sync) {
6048 mddev->in_sync = 0;
6049 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6050 if (mddev->safemode_delay &&
6051 mddev->safemode == 0)
6052 mddev->safemode = 1;
6053 spin_unlock_irq(&mddev->write_lock);
6054 md_update_sb(mddev, 0);
6055 sysfs_notify_dirent(mddev->sysfs_state);
6056 } else
6057 spin_unlock_irq(&mddev->write_lock);
6058
6059 if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
6060 return -EAGAIN;
6061 else
6062 return 0;
6063 }
6064 EXPORT_SYMBOL_GPL(md_allow_write);
6065
6066 #define SYNC_MARKS 10
6067 #define SYNC_MARK_STEP (3*HZ)
6068 void md_do_sync(mddev_t *mddev)
6069 {
6070 mddev_t *mddev2;
6071 unsigned int currspeed = 0,
6072 window;
6073 sector_t max_sectors,j, io_sectors;
6074 unsigned long mark[SYNC_MARKS];
6075 sector_t mark_cnt[SYNC_MARKS];
6076 int last_mark,m;
6077 struct list_head *tmp;
6078 sector_t last_check;
6079 int skipped = 0;
6080 mdk_rdev_t *rdev;
6081 char *desc;
6082
6083 /* just incase thread restarts... */
6084 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
6085 return;
6086 if (mddev->ro) /* never try to sync a read-only array */
6087 return;
6088
6089 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6090 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
6091 desc = "data-check";
6092 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6093 desc = "requested-resync";
6094 else
6095 desc = "resync";
6096 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6097 desc = "reshape";
6098 else
6099 desc = "recovery";
6100
6101 /* we overload curr_resync somewhat here.
6102 * 0 == not engaged in resync at all
6103 * 2 == checking that there is no conflict with another sync
6104 * 1 == like 2, but have yielded to allow conflicting resync to
6105 * commense
6106 * other == active in resync - this many blocks
6107 *
6108 * Before starting a resync we must have set curr_resync to
6109 * 2, and then checked that every "conflicting" array has curr_resync
6110 * less than ours. When we find one that is the same or higher
6111 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
6112 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
6113 * This will mean we have to start checking from the beginning again.
6114 *
6115 */
6116
6117 do {
6118 mddev->curr_resync = 2;
6119
6120 try_again:
6121 if (kthread_should_stop()) {
6122 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6123 goto skip;
6124 }
6125 for_each_mddev(mddev2, tmp) {
6126 if (mddev2 == mddev)
6127 continue;
6128 if (!mddev->parallel_resync
6129 && mddev2->curr_resync
6130 && match_mddev_units(mddev, mddev2)) {
6131 DEFINE_WAIT(wq);
6132 if (mddev < mddev2 && mddev->curr_resync == 2) {
6133 /* arbitrarily yield */
6134 mddev->curr_resync = 1;
6135 wake_up(&resync_wait);
6136 }
6137 if (mddev > mddev2 && mddev->curr_resync == 1)
6138 /* no need to wait here, we can wait the next
6139 * time 'round when curr_resync == 2
6140 */
6141 continue;
6142 /* We need to wait 'interruptible' so as not to
6143 * contribute to the load average, and not to
6144 * be caught by 'softlockup'
6145 */
6146 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
6147 if (!kthread_should_stop() &&
6148 mddev2->curr_resync >= mddev->curr_resync) {
6149 printk(KERN_INFO "md: delaying %s of %s"
6150 " until %s has finished (they"
6151 " share one or more physical units)\n",
6152 desc, mdname(mddev), mdname(mddev2));
6153 mddev_put(mddev2);
6154 if (signal_pending(current))
6155 flush_signals(current);
6156 schedule();
6157 finish_wait(&resync_wait, &wq);
6158 goto try_again;
6159 }
6160 finish_wait(&resync_wait, &wq);
6161 }
6162 }
6163 } while (mddev->curr_resync < 2);
6164
6165 j = 0;
6166 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6167 /* resync follows the size requested by the personality,
6168 * which defaults to physical size, but can be virtual size
6169 */
6170 max_sectors = mddev->resync_max_sectors;
6171 mddev->resync_mismatches = 0;
6172 /* we don't use the checkpoint if there's a bitmap */
6173 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6174 j = mddev->resync_min;
6175 else if (!mddev->bitmap)
6176 j = mddev->recovery_cp;
6177
6178 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6179 max_sectors = mddev->dev_sectors;
6180 else {
6181 /* recovery follows the physical size of devices */
6182 max_sectors = mddev->dev_sectors;
6183 j = MaxSector;
6184 list_for_each_entry(rdev, &mddev->disks, same_set)
6185 if (rdev->raid_disk >= 0 &&
6186 !test_bit(Faulty, &rdev->flags) &&
6187 !test_bit(In_sync, &rdev->flags) &&
6188 rdev->recovery_offset < j)
6189 j = rdev->recovery_offset;
6190 }
6191
6192 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
6193 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
6194 " %d KB/sec/disk.\n", speed_min(mddev));
6195 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
6196 "(but not more than %d KB/sec) for %s.\n",
6197 speed_max(mddev), desc);
6198
6199 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
6200
6201 io_sectors = 0;
6202 for (m = 0; m < SYNC_MARKS; m++) {
6203 mark[m] = jiffies;
6204 mark_cnt[m] = io_sectors;
6205 }
6206 last_mark = 0;
6207 mddev->resync_mark = mark[last_mark];
6208 mddev->resync_mark_cnt = mark_cnt[last_mark];
6209
6210 /*
6211 * Tune reconstruction:
6212 */
6213 window = 32*(PAGE_SIZE/512);
6214 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
6215 window/2,(unsigned long long) max_sectors/2);
6216
6217 atomic_set(&mddev->recovery_active, 0);
6218 last_check = 0;
6219
6220 if (j>2) {
6221 printk(KERN_INFO
6222 "md: resuming %s of %s from checkpoint.\n",
6223 desc, mdname(mddev));
6224 mddev->curr_resync = j;
6225 }
6226
6227 while (j < max_sectors) {
6228 sector_t sectors;
6229
6230 skipped = 0;
6231 if (j >= mddev->resync_max) {
6232 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6233 wait_event(mddev->recovery_wait,
6234 mddev->resync_max > j
6235 || kthread_should_stop());
6236 }
6237 if (kthread_should_stop())
6238 goto interrupted;
6239
6240 if (mddev->curr_resync > mddev->curr_resync_completed &&
6241 (mddev->curr_resync - mddev->curr_resync_completed)
6242 > (max_sectors >> 4)) {
6243 /* time to update curr_resync_completed */
6244 blk_unplug(mddev->queue);
6245 wait_event(mddev->recovery_wait,
6246 atomic_read(&mddev->recovery_active) == 0);
6247 mddev->curr_resync_completed =
6248 mddev->curr_resync;
6249 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6250 }
6251 sectors = mddev->pers->sync_request(mddev, j, &skipped,
6252 currspeed < speed_min(mddev));
6253 if (sectors == 0) {
6254 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6255 goto out;
6256 }
6257
6258 if (!skipped) { /* actual IO requested */
6259 io_sectors += sectors;
6260 atomic_add(sectors, &mddev->recovery_active);
6261 }
6262
6263 j += sectors;
6264 if (j>1) mddev->curr_resync = j;
6265 mddev->curr_mark_cnt = io_sectors;
6266 if (last_check == 0)
6267 /* this is the earliers that rebuilt will be
6268 * visible in /proc/mdstat
6269 */
6270 md_new_event(mddev);
6271
6272 if (last_check + window > io_sectors || j == max_sectors)
6273 continue;
6274
6275 last_check = io_sectors;
6276
6277 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6278 break;
6279
6280 repeat:
6281 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
6282 /* step marks */
6283 int next = (last_mark+1) % SYNC_MARKS;
6284
6285 mddev->resync_mark = mark[next];
6286 mddev->resync_mark_cnt = mark_cnt[next];
6287 mark[next] = jiffies;
6288 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
6289 last_mark = next;
6290 }
6291
6292
6293 if (kthread_should_stop())
6294 goto interrupted;
6295
6296
6297 /*
6298 * this loop exits only if either when we are slower than
6299 * the 'hard' speed limit, or the system was IO-idle for
6300 * a jiffy.
6301 * the system might be non-idle CPU-wise, but we only care
6302 * about not overloading the IO subsystem. (things like an
6303 * e2fsck being done on the RAID array should execute fast)
6304 */
6305 blk_unplug(mddev->queue);
6306 cond_resched();
6307
6308 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
6309 /((jiffies-mddev->resync_mark)/HZ +1) +1;
6310
6311 if (currspeed > speed_min(mddev)) {
6312 if ((currspeed > speed_max(mddev)) ||
6313 !is_mddev_idle(mddev, 0)) {
6314 msleep(500);
6315 goto repeat;
6316 }
6317 }
6318 }
6319 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
6320 /*
6321 * this also signals 'finished resyncing' to md_stop
6322 */
6323 out:
6324 blk_unplug(mddev->queue);
6325
6326 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
6327
6328 /* tell personality that we are finished */
6329 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
6330
6331 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
6332 mddev->curr_resync > 2) {
6333 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6334 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6335 if (mddev->curr_resync >= mddev->recovery_cp) {
6336 printk(KERN_INFO
6337 "md: checkpointing %s of %s.\n",
6338 desc, mdname(mddev));
6339 mddev->recovery_cp = mddev->curr_resync;
6340 }
6341 } else
6342 mddev->recovery_cp = MaxSector;
6343 } else {
6344 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6345 mddev->curr_resync = MaxSector;
6346 list_for_each_entry(rdev, &mddev->disks, same_set)
6347 if (rdev->raid_disk >= 0 &&
6348 !test_bit(Faulty, &rdev->flags) &&
6349 !test_bit(In_sync, &rdev->flags) &&
6350 rdev->recovery_offset < mddev->curr_resync)
6351 rdev->recovery_offset = mddev->curr_resync;
6352 }
6353 }
6354 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6355
6356 skip:
6357 mddev->curr_resync = 0;
6358 mddev->resync_min = 0;
6359 mddev->resync_max = MaxSector;
6360 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6361 wake_up(&resync_wait);
6362 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
6363 md_wakeup_thread(mddev->thread);
6364 return;
6365
6366 interrupted:
6367 /*
6368 * got a signal, exit.
6369 */
6370 printk(KERN_INFO
6371 "md: md_do_sync() got signal ... exiting\n");
6372 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6373 goto out;
6374
6375 }
6376 EXPORT_SYMBOL_GPL(md_do_sync);
6377
6378
6379 static int remove_and_add_spares(mddev_t *mddev)
6380 {
6381 mdk_rdev_t *rdev;
6382 int spares = 0;
6383
6384 mddev->curr_resync_completed = 0;
6385
6386 list_for_each_entry(rdev, &mddev->disks, same_set)
6387 if (rdev->raid_disk >= 0 &&
6388 !test_bit(Blocked, &rdev->flags) &&
6389 (test_bit(Faulty, &rdev->flags) ||
6390 ! test_bit(In_sync, &rdev->flags)) &&
6391 atomic_read(&rdev->nr_pending)==0) {
6392 if (mddev->pers->hot_remove_disk(
6393 mddev, rdev->raid_disk)==0) {
6394 char nm[20];
6395 sprintf(nm,"rd%d", rdev->raid_disk);
6396 sysfs_remove_link(&mddev->kobj, nm);
6397 rdev->raid_disk = -1;
6398 }
6399 }
6400
6401 if (mddev->degraded && ! mddev->ro && !mddev->recovery_disabled) {
6402 list_for_each_entry(rdev, &mddev->disks, same_set) {
6403 if (rdev->raid_disk >= 0 &&
6404 !test_bit(In_sync, &rdev->flags) &&
6405 !test_bit(Blocked, &rdev->flags))
6406 spares++;
6407 if (rdev->raid_disk < 0
6408 && !test_bit(Faulty, &rdev->flags)) {
6409 rdev->recovery_offset = 0;
6410 if (mddev->pers->
6411 hot_add_disk(mddev, rdev) == 0) {
6412 char nm[20];
6413 sprintf(nm, "rd%d", rdev->raid_disk);
6414 if (sysfs_create_link(&mddev->kobj,
6415 &rdev->kobj, nm))
6416 printk(KERN_WARNING
6417 "md: cannot register "
6418 "%s for %s\n",
6419 nm, mdname(mddev));
6420 spares++;
6421 md_new_event(mddev);
6422 } else
6423 break;
6424 }
6425 }
6426 }
6427 return spares;
6428 }
6429 /*
6430 * This routine is regularly called by all per-raid-array threads to
6431 * deal with generic issues like resync and super-block update.
6432 * Raid personalities that don't have a thread (linear/raid0) do not
6433 * need this as they never do any recovery or update the superblock.
6434 *
6435 * It does not do any resync itself, but rather "forks" off other threads
6436 * to do that as needed.
6437 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
6438 * "->recovery" and create a thread at ->sync_thread.
6439 * When the thread finishes it sets MD_RECOVERY_DONE
6440 * and wakeups up this thread which will reap the thread and finish up.
6441 * This thread also removes any faulty devices (with nr_pending == 0).
6442 *
6443 * The overall approach is:
6444 * 1/ if the superblock needs updating, update it.
6445 * 2/ If a recovery thread is running, don't do anything else.
6446 * 3/ If recovery has finished, clean up, possibly marking spares active.
6447 * 4/ If there are any faulty devices, remove them.
6448 * 5/ If array is degraded, try to add spares devices
6449 * 6/ If array has spares or is not in-sync, start a resync thread.
6450 */
6451 void md_check_recovery(mddev_t *mddev)
6452 {
6453 mdk_rdev_t *rdev;
6454
6455
6456 if (mddev->bitmap)
6457 bitmap_daemon_work(mddev->bitmap);
6458
6459 if (mddev->ro)
6460 return;
6461
6462 if (signal_pending(current)) {
6463 if (mddev->pers->sync_request && !mddev->external) {
6464 printk(KERN_INFO "md: %s in immediate safe mode\n",
6465 mdname(mddev));
6466 mddev->safemode = 2;
6467 }
6468 flush_signals(current);
6469 }
6470
6471 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
6472 return;
6473 if ( ! (
6474 (mddev->flags && !mddev->external) ||
6475 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
6476 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
6477 (mddev->external == 0 && mddev->safemode == 1) ||
6478 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
6479 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
6480 ))
6481 return;
6482
6483 if (mddev_trylock(mddev)) {
6484 int spares = 0;
6485
6486 if (mddev->ro) {
6487 /* Only thing we do on a ro array is remove
6488 * failed devices.
6489 */
6490 remove_and_add_spares(mddev);
6491 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6492 goto unlock;
6493 }
6494
6495 if (!mddev->external) {
6496 int did_change = 0;
6497 spin_lock_irq(&mddev->write_lock);
6498 if (mddev->safemode &&
6499 !atomic_read(&mddev->writes_pending) &&
6500 !mddev->in_sync &&
6501 mddev->recovery_cp == MaxSector) {
6502 mddev->in_sync = 1;
6503 did_change = 1;
6504 if (mddev->persistent)
6505 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6506 }
6507 if (mddev->safemode == 1)
6508 mddev->safemode = 0;
6509 spin_unlock_irq(&mddev->write_lock);
6510 if (did_change)
6511 sysfs_notify_dirent(mddev->sysfs_state);
6512 }
6513
6514 if (mddev->flags)
6515 md_update_sb(mddev, 0);
6516
6517 list_for_each_entry(rdev, &mddev->disks, same_set)
6518 if (test_and_clear_bit(StateChanged, &rdev->flags))
6519 sysfs_notify_dirent(rdev->sysfs_state);
6520
6521
6522 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
6523 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
6524 /* resync/recovery still happening */
6525 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6526 goto unlock;
6527 }
6528 if (mddev->sync_thread) {
6529 /* resync has finished, collect result */
6530 md_unregister_thread(mddev->sync_thread);
6531 mddev->sync_thread = NULL;
6532 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
6533 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
6534 /* success...*/
6535 /* activate any spares */
6536 if (mddev->pers->spare_active(mddev))
6537 sysfs_notify(&mddev->kobj, NULL,
6538 "degraded");
6539 }
6540 md_update_sb(mddev, 1);
6541
6542 /* if array is no-longer degraded, then any saved_raid_disk
6543 * information must be scrapped
6544 */
6545 if (!mddev->degraded)
6546 list_for_each_entry(rdev, &mddev->disks, same_set)
6547 rdev->saved_raid_disk = -1;
6548
6549 mddev->recovery = 0;
6550 /* flag recovery needed just to double check */
6551 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6552 sysfs_notify_dirent(mddev->sysfs_action);
6553 md_new_event(mddev);
6554 goto unlock;
6555 }
6556 /* Set RUNNING before clearing NEEDED to avoid
6557 * any transients in the value of "sync_action".
6558 */
6559 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6560 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6561 /* Clear some bits that don't mean anything, but
6562 * might be left set
6563 */
6564 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
6565 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
6566
6567 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
6568 goto unlock;
6569 /* no recovery is running.
6570 * remove any failed drives, then
6571 * add spares if possible.
6572 * Spare are also removed and re-added, to allow
6573 * the personality to fail the re-add.
6574 */
6575
6576 if (mddev->reshape_position != MaxSector) {
6577 if (mddev->pers->check_reshape(mddev) != 0)
6578 /* Cannot proceed */
6579 goto unlock;
6580 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6581 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6582 } else if ((spares = remove_and_add_spares(mddev))) {
6583 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6584 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6585 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
6586 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6587 } else if (mddev->recovery_cp < MaxSector) {
6588 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6589 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6590 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6591 /* nothing to be done ... */
6592 goto unlock;
6593
6594 if (mddev->pers->sync_request) {
6595 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
6596 /* We are adding a device or devices to an array
6597 * which has the bitmap stored on all devices.
6598 * So make sure all bitmap pages get written
6599 */
6600 bitmap_write_all(mddev->bitmap);
6601 }
6602 mddev->sync_thread = md_register_thread(md_do_sync,
6603 mddev,
6604 "%s_resync");
6605 if (!mddev->sync_thread) {
6606 printk(KERN_ERR "%s: could not start resync"
6607 " thread...\n",
6608 mdname(mddev));
6609 /* leave the spares where they are, it shouldn't hurt */
6610 mddev->recovery = 0;
6611 } else
6612 md_wakeup_thread(mddev->sync_thread);
6613 sysfs_notify_dirent(mddev->sysfs_action);
6614 md_new_event(mddev);
6615 }
6616 unlock:
6617 if (!mddev->sync_thread) {
6618 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6619 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
6620 &mddev->recovery))
6621 if (mddev->sysfs_action)
6622 sysfs_notify_dirent(mddev->sysfs_action);
6623 }
6624 mddev_unlock(mddev);
6625 }
6626 }
6627
6628 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
6629 {
6630 sysfs_notify_dirent(rdev->sysfs_state);
6631 wait_event_timeout(rdev->blocked_wait,
6632 !test_bit(Blocked, &rdev->flags),
6633 msecs_to_jiffies(5000));
6634 rdev_dec_pending(rdev, mddev);
6635 }
6636 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
6637
6638 static int md_notify_reboot(struct notifier_block *this,
6639 unsigned long code, void *x)
6640 {
6641 struct list_head *tmp;
6642 mddev_t *mddev;
6643
6644 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
6645
6646 printk(KERN_INFO "md: stopping all md devices.\n");
6647
6648 for_each_mddev(mddev, tmp)
6649 if (mddev_trylock(mddev)) {
6650 /* Force a switch to readonly even array
6651 * appears to still be in use. Hence
6652 * the '100'.
6653 */
6654 do_md_stop(mddev, 1, 100);
6655 mddev_unlock(mddev);
6656 }
6657 /*
6658 * certain more exotic SCSI devices are known to be
6659 * volatile wrt too early system reboots. While the
6660 * right place to handle this issue is the given
6661 * driver, we do want to have a safe RAID driver ...
6662 */
6663 mdelay(1000*1);
6664 }
6665 return NOTIFY_DONE;
6666 }
6667
6668 static struct notifier_block md_notifier = {
6669 .notifier_call = md_notify_reboot,
6670 .next = NULL,
6671 .priority = INT_MAX, /* before any real devices */
6672 };
6673
6674 static void md_geninit(void)
6675 {
6676 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
6677
6678 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
6679 }
6680
6681 static int __init md_init(void)
6682 {
6683 if (register_blkdev(MD_MAJOR, "md"))
6684 return -1;
6685 if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
6686 unregister_blkdev(MD_MAJOR, "md");
6687 return -1;
6688 }
6689 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
6690 md_probe, NULL, NULL);
6691 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
6692 md_probe, NULL, NULL);
6693
6694 register_reboot_notifier(&md_notifier);
6695 raid_table_header = register_sysctl_table(raid_root_table);
6696
6697 md_geninit();
6698 return 0;
6699 }
6700
6701
6702 #ifndef MODULE
6703
6704 /*
6705 * Searches all registered partitions for autorun RAID arrays
6706 * at boot time.
6707 */
6708
6709 static LIST_HEAD(all_detected_devices);
6710 struct detected_devices_node {
6711 struct list_head list;
6712 dev_t dev;
6713 };
6714
6715 void md_autodetect_dev(dev_t dev)
6716 {
6717 struct detected_devices_node *node_detected_dev;
6718
6719 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
6720 if (node_detected_dev) {
6721 node_detected_dev->dev = dev;
6722 list_add_tail(&node_detected_dev->list, &all_detected_devices);
6723 } else {
6724 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
6725 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
6726 }
6727 }
6728
6729
6730 static void autostart_arrays(int part)
6731 {
6732 mdk_rdev_t *rdev;
6733 struct detected_devices_node *node_detected_dev;
6734 dev_t dev;
6735 int i_scanned, i_passed;
6736
6737 i_scanned = 0;
6738 i_passed = 0;
6739
6740 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
6741
6742 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
6743 i_scanned++;
6744 node_detected_dev = list_entry(all_detected_devices.next,
6745 struct detected_devices_node, list);
6746 list_del(&node_detected_dev->list);
6747 dev = node_detected_dev->dev;
6748 kfree(node_detected_dev);
6749 rdev = md_import_device(dev,0, 90);
6750 if (IS_ERR(rdev))
6751 continue;
6752
6753 if (test_bit(Faulty, &rdev->flags)) {
6754 MD_BUG();
6755 continue;
6756 }
6757 set_bit(AutoDetected, &rdev->flags);
6758 list_add(&rdev->same_set, &pending_raid_disks);
6759 i_passed++;
6760 }
6761
6762 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
6763 i_scanned, i_passed);
6764
6765 autorun_devices(part);
6766 }
6767
6768 #endif /* !MODULE */
6769
6770 static __exit void md_exit(void)
6771 {
6772 mddev_t *mddev;
6773 struct list_head *tmp;
6774
6775 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
6776 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
6777
6778 unregister_blkdev(MD_MAJOR,"md");
6779 unregister_blkdev(mdp_major, "mdp");
6780 unregister_reboot_notifier(&md_notifier);
6781 unregister_sysctl_table(raid_table_header);
6782 remove_proc_entry("mdstat", NULL);
6783 for_each_mddev(mddev, tmp) {
6784 export_array(mddev);
6785 mddev->hold_active = 0;
6786 }
6787 }
6788
6789 subsys_initcall(md_init);
6790 module_exit(md_exit)
6791
6792 static int get_ro(char *buffer, struct kernel_param *kp)
6793 {
6794 return sprintf(buffer, "%d", start_readonly);
6795 }
6796 static int set_ro(const char *val, struct kernel_param *kp)
6797 {
6798 char *e;
6799 int num = simple_strtoul(val, &e, 10);
6800 if (*val && (*e == '\0' || *e == '\n')) {
6801 start_readonly = num;
6802 return 0;
6803 }
6804 return -EINVAL;
6805 }
6806
6807 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
6808 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
6809
6810 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
6811
6812 EXPORT_SYMBOL(register_md_personality);
6813 EXPORT_SYMBOL(unregister_md_personality);
6814 EXPORT_SYMBOL(md_error);
6815 EXPORT_SYMBOL(md_done_sync);
6816 EXPORT_SYMBOL(md_write_start);
6817 EXPORT_SYMBOL(md_write_end);
6818 EXPORT_SYMBOL(md_register_thread);
6819 EXPORT_SYMBOL(md_unregister_thread);
6820 EXPORT_SYMBOL(md_wakeup_thread);
6821 EXPORT_SYMBOL(md_check_recovery);
6822 MODULE_LICENSE("GPL");
6823 MODULE_ALIAS("md");
6824 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
This page took 0.25647 seconds and 6 git commands to generate.