md: call md_stop_writes from md_stop
[deliverable/linux.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/buffer_head.h> /* for invalidate_bdev */
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/reboot.h>
47 #include <linux/file.h>
48 #include <linux/compat.h>
49 #include <linux/delay.h>
50 #include <linux/raid/md_p.h>
51 #include <linux/raid/md_u.h>
52 #include "md.h"
53 #include "bitmap.h"
54
55 #define DEBUG 0
56 #define dprintk(x...) ((void)(DEBUG && printk(x)))
57
58
59 #ifndef MODULE
60 static void autostart_arrays(int part);
61 #endif
62
63 static LIST_HEAD(pers_list);
64 static DEFINE_SPINLOCK(pers_lock);
65
66 static void md_print_devices(void);
67
68 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
69
70 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
71
72 /*
73 * Default number of read corrections we'll attempt on an rdev
74 * before ejecting it from the array. We divide the read error
75 * count by 2 for every hour elapsed between read errors.
76 */
77 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
78 /*
79 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
80 * is 1000 KB/sec, so the extra system load does not show up that much.
81 * Increase it if you want to have more _guaranteed_ speed. Note that
82 * the RAID driver will use the maximum available bandwidth if the IO
83 * subsystem is idle. There is also an 'absolute maximum' reconstruction
84 * speed limit - in case reconstruction slows down your system despite
85 * idle IO detection.
86 *
87 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
88 * or /sys/block/mdX/md/sync_speed_{min,max}
89 */
90
91 static int sysctl_speed_limit_min = 1000;
92 static int sysctl_speed_limit_max = 200000;
93 static inline int speed_min(mddev_t *mddev)
94 {
95 return mddev->sync_speed_min ?
96 mddev->sync_speed_min : sysctl_speed_limit_min;
97 }
98
99 static inline int speed_max(mddev_t *mddev)
100 {
101 return mddev->sync_speed_max ?
102 mddev->sync_speed_max : sysctl_speed_limit_max;
103 }
104
105 static struct ctl_table_header *raid_table_header;
106
107 static ctl_table raid_table[] = {
108 {
109 .procname = "speed_limit_min",
110 .data = &sysctl_speed_limit_min,
111 .maxlen = sizeof(int),
112 .mode = S_IRUGO|S_IWUSR,
113 .proc_handler = proc_dointvec,
114 },
115 {
116 .procname = "speed_limit_max",
117 .data = &sysctl_speed_limit_max,
118 .maxlen = sizeof(int),
119 .mode = S_IRUGO|S_IWUSR,
120 .proc_handler = proc_dointvec,
121 },
122 { }
123 };
124
125 static ctl_table raid_dir_table[] = {
126 {
127 .procname = "raid",
128 .maxlen = 0,
129 .mode = S_IRUGO|S_IXUGO,
130 .child = raid_table,
131 },
132 { }
133 };
134
135 static ctl_table raid_root_table[] = {
136 {
137 .procname = "dev",
138 .maxlen = 0,
139 .mode = 0555,
140 .child = raid_dir_table,
141 },
142 { }
143 };
144
145 static const struct block_device_operations md_fops;
146
147 static int start_readonly;
148
149 /*
150 * We have a system wide 'event count' that is incremented
151 * on any 'interesting' event, and readers of /proc/mdstat
152 * can use 'poll' or 'select' to find out when the event
153 * count increases.
154 *
155 * Events are:
156 * start array, stop array, error, add device, remove device,
157 * start build, activate spare
158 */
159 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
160 static atomic_t md_event_count;
161 void md_new_event(mddev_t *mddev)
162 {
163 atomic_inc(&md_event_count);
164 wake_up(&md_event_waiters);
165 }
166 EXPORT_SYMBOL_GPL(md_new_event);
167
168 /* Alternate version that can be called from interrupts
169 * when calling sysfs_notify isn't needed.
170 */
171 static void md_new_event_inintr(mddev_t *mddev)
172 {
173 atomic_inc(&md_event_count);
174 wake_up(&md_event_waiters);
175 }
176
177 /*
178 * Enables to iterate over all existing md arrays
179 * all_mddevs_lock protects this list.
180 */
181 static LIST_HEAD(all_mddevs);
182 static DEFINE_SPINLOCK(all_mddevs_lock);
183
184
185 /*
186 * iterates through all used mddevs in the system.
187 * We take care to grab the all_mddevs_lock whenever navigating
188 * the list, and to always hold a refcount when unlocked.
189 * Any code which breaks out of this loop while own
190 * a reference to the current mddev and must mddev_put it.
191 */
192 #define for_each_mddev(mddev,tmp) \
193 \
194 for (({ spin_lock(&all_mddevs_lock); \
195 tmp = all_mddevs.next; \
196 mddev = NULL;}); \
197 ({ if (tmp != &all_mddevs) \
198 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
199 spin_unlock(&all_mddevs_lock); \
200 if (mddev) mddev_put(mddev); \
201 mddev = list_entry(tmp, mddev_t, all_mddevs); \
202 tmp != &all_mddevs;}); \
203 ({ spin_lock(&all_mddevs_lock); \
204 tmp = tmp->next;}) \
205 )
206
207
208 /* Rather than calling directly into the personality make_request function,
209 * IO requests come here first so that we can check if the device is
210 * being suspended pending a reconfiguration.
211 * We hold a refcount over the call to ->make_request. By the time that
212 * call has finished, the bio has been linked into some internal structure
213 * and so is visible to ->quiesce(), so we don't need the refcount any more.
214 */
215 static int md_make_request(struct request_queue *q, struct bio *bio)
216 {
217 const int rw = bio_data_dir(bio);
218 mddev_t *mddev = q->queuedata;
219 int rv;
220 int cpu;
221
222 if (mddev == NULL || mddev->pers == NULL) {
223 bio_io_error(bio);
224 return 0;
225 }
226 rcu_read_lock();
227 if (mddev->suspended || mddev->barrier) {
228 DEFINE_WAIT(__wait);
229 for (;;) {
230 prepare_to_wait(&mddev->sb_wait, &__wait,
231 TASK_UNINTERRUPTIBLE);
232 if (!mddev->suspended && !mddev->barrier)
233 break;
234 rcu_read_unlock();
235 schedule();
236 rcu_read_lock();
237 }
238 finish_wait(&mddev->sb_wait, &__wait);
239 }
240 atomic_inc(&mddev->active_io);
241 rcu_read_unlock();
242
243 rv = mddev->pers->make_request(q, bio);
244
245 cpu = part_stat_lock();
246 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
247 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
248 bio_sectors(bio));
249 part_stat_unlock();
250
251 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
252 wake_up(&mddev->sb_wait);
253
254 return rv;
255 }
256
257 static void mddev_suspend(mddev_t *mddev)
258 {
259 BUG_ON(mddev->suspended);
260 mddev->suspended = 1;
261 synchronize_rcu();
262 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
263 mddev->pers->quiesce(mddev, 1);
264 md_unregister_thread(mddev->thread);
265 mddev->thread = NULL;
266 /* we now know that no code is executing in the personality module,
267 * except possibly the tail end of a ->bi_end_io function, but that
268 * is certain to complete before the module has a chance to get
269 * unloaded
270 */
271 }
272
273 static void mddev_resume(mddev_t *mddev)
274 {
275 mddev->suspended = 0;
276 wake_up(&mddev->sb_wait);
277 mddev->pers->quiesce(mddev, 0);
278 }
279
280 int mddev_congested(mddev_t *mddev, int bits)
281 {
282 if (mddev->barrier)
283 return 1;
284 return mddev->suspended;
285 }
286 EXPORT_SYMBOL(mddev_congested);
287
288 /*
289 * Generic barrier handling for md
290 */
291
292 #define POST_REQUEST_BARRIER ((void*)1)
293
294 static void md_end_barrier(struct bio *bio, int err)
295 {
296 mdk_rdev_t *rdev = bio->bi_private;
297 mddev_t *mddev = rdev->mddev;
298 if (err == -EOPNOTSUPP && mddev->barrier != POST_REQUEST_BARRIER)
299 set_bit(BIO_EOPNOTSUPP, &mddev->barrier->bi_flags);
300
301 rdev_dec_pending(rdev, mddev);
302
303 if (atomic_dec_and_test(&mddev->flush_pending)) {
304 if (mddev->barrier == POST_REQUEST_BARRIER) {
305 /* This was a post-request barrier */
306 mddev->barrier = NULL;
307 wake_up(&mddev->sb_wait);
308 } else
309 /* The pre-request barrier has finished */
310 schedule_work(&mddev->barrier_work);
311 }
312 bio_put(bio);
313 }
314
315 static void submit_barriers(mddev_t *mddev)
316 {
317 mdk_rdev_t *rdev;
318
319 rcu_read_lock();
320 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
321 if (rdev->raid_disk >= 0 &&
322 !test_bit(Faulty, &rdev->flags)) {
323 /* Take two references, one is dropped
324 * when request finishes, one after
325 * we reclaim rcu_read_lock
326 */
327 struct bio *bi;
328 atomic_inc(&rdev->nr_pending);
329 atomic_inc(&rdev->nr_pending);
330 rcu_read_unlock();
331 bi = bio_alloc(GFP_KERNEL, 0);
332 bi->bi_end_io = md_end_barrier;
333 bi->bi_private = rdev;
334 bi->bi_bdev = rdev->bdev;
335 atomic_inc(&mddev->flush_pending);
336 submit_bio(WRITE_BARRIER, bi);
337 rcu_read_lock();
338 rdev_dec_pending(rdev, mddev);
339 }
340 rcu_read_unlock();
341 }
342
343 static void md_submit_barrier(struct work_struct *ws)
344 {
345 mddev_t *mddev = container_of(ws, mddev_t, barrier_work);
346 struct bio *bio = mddev->barrier;
347
348 atomic_set(&mddev->flush_pending, 1);
349
350 if (test_bit(BIO_EOPNOTSUPP, &bio->bi_flags))
351 bio_endio(bio, -EOPNOTSUPP);
352 else if (bio->bi_size == 0)
353 /* an empty barrier - all done */
354 bio_endio(bio, 0);
355 else {
356 bio->bi_rw &= ~(1<<BIO_RW_BARRIER);
357 if (mddev->pers->make_request(mddev->queue, bio))
358 generic_make_request(bio);
359 mddev->barrier = POST_REQUEST_BARRIER;
360 submit_barriers(mddev);
361 }
362 if (atomic_dec_and_test(&mddev->flush_pending)) {
363 mddev->barrier = NULL;
364 wake_up(&mddev->sb_wait);
365 }
366 }
367
368 void md_barrier_request(mddev_t *mddev, struct bio *bio)
369 {
370 spin_lock_irq(&mddev->write_lock);
371 wait_event_lock_irq(mddev->sb_wait,
372 !mddev->barrier,
373 mddev->write_lock, /*nothing*/);
374 mddev->barrier = bio;
375 spin_unlock_irq(&mddev->write_lock);
376
377 atomic_set(&mddev->flush_pending, 1);
378 INIT_WORK(&mddev->barrier_work, md_submit_barrier);
379
380 submit_barriers(mddev);
381
382 if (atomic_dec_and_test(&mddev->flush_pending))
383 schedule_work(&mddev->barrier_work);
384 }
385 EXPORT_SYMBOL(md_barrier_request);
386
387 static inline mddev_t *mddev_get(mddev_t *mddev)
388 {
389 atomic_inc(&mddev->active);
390 return mddev;
391 }
392
393 static void mddev_delayed_delete(struct work_struct *ws);
394
395 static void mddev_put(mddev_t *mddev)
396 {
397 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
398 return;
399 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
400 mddev->ctime == 0 && !mddev->hold_active) {
401 /* Array is not configured at all, and not held active,
402 * so destroy it */
403 list_del(&mddev->all_mddevs);
404 if (mddev->gendisk) {
405 /* we did a probe so need to clean up.
406 * Call schedule_work inside the spinlock
407 * so that flush_scheduled_work() after
408 * mddev_find will succeed in waiting for the
409 * work to be done.
410 */
411 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
412 schedule_work(&mddev->del_work);
413 } else
414 kfree(mddev);
415 }
416 spin_unlock(&all_mddevs_lock);
417 }
418
419 static mddev_t * mddev_find(dev_t unit)
420 {
421 mddev_t *mddev, *new = NULL;
422
423 retry:
424 spin_lock(&all_mddevs_lock);
425
426 if (unit) {
427 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
428 if (mddev->unit == unit) {
429 mddev_get(mddev);
430 spin_unlock(&all_mddevs_lock);
431 kfree(new);
432 return mddev;
433 }
434
435 if (new) {
436 list_add(&new->all_mddevs, &all_mddevs);
437 spin_unlock(&all_mddevs_lock);
438 new->hold_active = UNTIL_IOCTL;
439 return new;
440 }
441 } else if (new) {
442 /* find an unused unit number */
443 static int next_minor = 512;
444 int start = next_minor;
445 int is_free = 0;
446 int dev = 0;
447 while (!is_free) {
448 dev = MKDEV(MD_MAJOR, next_minor);
449 next_minor++;
450 if (next_minor > MINORMASK)
451 next_minor = 0;
452 if (next_minor == start) {
453 /* Oh dear, all in use. */
454 spin_unlock(&all_mddevs_lock);
455 kfree(new);
456 return NULL;
457 }
458
459 is_free = 1;
460 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
461 if (mddev->unit == dev) {
462 is_free = 0;
463 break;
464 }
465 }
466 new->unit = dev;
467 new->md_minor = MINOR(dev);
468 new->hold_active = UNTIL_STOP;
469 list_add(&new->all_mddevs, &all_mddevs);
470 spin_unlock(&all_mddevs_lock);
471 return new;
472 }
473 spin_unlock(&all_mddevs_lock);
474
475 new = kzalloc(sizeof(*new), GFP_KERNEL);
476 if (!new)
477 return NULL;
478
479 new->unit = unit;
480 if (MAJOR(unit) == MD_MAJOR)
481 new->md_minor = MINOR(unit);
482 else
483 new->md_minor = MINOR(unit) >> MdpMinorShift;
484
485 mutex_init(&new->open_mutex);
486 mutex_init(&new->reconfig_mutex);
487 mutex_init(&new->bitmap_info.mutex);
488 INIT_LIST_HEAD(&new->disks);
489 INIT_LIST_HEAD(&new->all_mddevs);
490 init_timer(&new->safemode_timer);
491 atomic_set(&new->active, 1);
492 atomic_set(&new->openers, 0);
493 atomic_set(&new->active_io, 0);
494 spin_lock_init(&new->write_lock);
495 atomic_set(&new->flush_pending, 0);
496 init_waitqueue_head(&new->sb_wait);
497 init_waitqueue_head(&new->recovery_wait);
498 new->reshape_position = MaxSector;
499 new->resync_min = 0;
500 new->resync_max = MaxSector;
501 new->level = LEVEL_NONE;
502
503 goto retry;
504 }
505
506 static inline int mddev_lock(mddev_t * mddev)
507 {
508 return mutex_lock_interruptible(&mddev->reconfig_mutex);
509 }
510
511 static inline int mddev_is_locked(mddev_t *mddev)
512 {
513 return mutex_is_locked(&mddev->reconfig_mutex);
514 }
515
516 static inline int mddev_trylock(mddev_t * mddev)
517 {
518 return mutex_trylock(&mddev->reconfig_mutex);
519 }
520
521 static struct attribute_group md_redundancy_group;
522
523 static void mddev_unlock(mddev_t * mddev)
524 {
525 if (mddev->to_remove) {
526 /* These cannot be removed under reconfig_mutex as
527 * an access to the files will try to take reconfig_mutex
528 * while holding the file unremovable, which leads to
529 * a deadlock.
530 * So hold open_mutex instead - we are allowed to take
531 * it while holding reconfig_mutex, and md_run can
532 * use it to wait for the remove to complete.
533 */
534 struct attribute_group *to_remove = mddev->to_remove;
535 mddev->to_remove = NULL;
536 mutex_lock(&mddev->open_mutex);
537 mutex_unlock(&mddev->reconfig_mutex);
538
539 if (to_remove != &md_redundancy_group)
540 sysfs_remove_group(&mddev->kobj, to_remove);
541 if (mddev->pers == NULL ||
542 mddev->pers->sync_request == NULL) {
543 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
544 if (mddev->sysfs_action)
545 sysfs_put(mddev->sysfs_action);
546 mddev->sysfs_action = NULL;
547 }
548 mutex_unlock(&mddev->open_mutex);
549 } else
550 mutex_unlock(&mddev->reconfig_mutex);
551
552 md_wakeup_thread(mddev->thread);
553 }
554
555 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
556 {
557 mdk_rdev_t *rdev;
558
559 list_for_each_entry(rdev, &mddev->disks, same_set)
560 if (rdev->desc_nr == nr)
561 return rdev;
562
563 return NULL;
564 }
565
566 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
567 {
568 mdk_rdev_t *rdev;
569
570 list_for_each_entry(rdev, &mddev->disks, same_set)
571 if (rdev->bdev->bd_dev == dev)
572 return rdev;
573
574 return NULL;
575 }
576
577 static struct mdk_personality *find_pers(int level, char *clevel)
578 {
579 struct mdk_personality *pers;
580 list_for_each_entry(pers, &pers_list, list) {
581 if (level != LEVEL_NONE && pers->level == level)
582 return pers;
583 if (strcmp(pers->name, clevel)==0)
584 return pers;
585 }
586 return NULL;
587 }
588
589 /* return the offset of the super block in 512byte sectors */
590 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
591 {
592 sector_t num_sectors = bdev->bd_inode->i_size / 512;
593 return MD_NEW_SIZE_SECTORS(num_sectors);
594 }
595
596 static int alloc_disk_sb(mdk_rdev_t * rdev)
597 {
598 if (rdev->sb_page)
599 MD_BUG();
600
601 rdev->sb_page = alloc_page(GFP_KERNEL);
602 if (!rdev->sb_page) {
603 printk(KERN_ALERT "md: out of memory.\n");
604 return -ENOMEM;
605 }
606
607 return 0;
608 }
609
610 static void free_disk_sb(mdk_rdev_t * rdev)
611 {
612 if (rdev->sb_page) {
613 put_page(rdev->sb_page);
614 rdev->sb_loaded = 0;
615 rdev->sb_page = NULL;
616 rdev->sb_start = 0;
617 rdev->sectors = 0;
618 }
619 }
620
621
622 static void super_written(struct bio *bio, int error)
623 {
624 mdk_rdev_t *rdev = bio->bi_private;
625 mddev_t *mddev = rdev->mddev;
626
627 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
628 printk("md: super_written gets error=%d, uptodate=%d\n",
629 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
630 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
631 md_error(mddev, rdev);
632 }
633
634 if (atomic_dec_and_test(&mddev->pending_writes))
635 wake_up(&mddev->sb_wait);
636 bio_put(bio);
637 }
638
639 static void super_written_barrier(struct bio *bio, int error)
640 {
641 struct bio *bio2 = bio->bi_private;
642 mdk_rdev_t *rdev = bio2->bi_private;
643 mddev_t *mddev = rdev->mddev;
644
645 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
646 error == -EOPNOTSUPP) {
647 unsigned long flags;
648 /* barriers don't appear to be supported :-( */
649 set_bit(BarriersNotsupp, &rdev->flags);
650 mddev->barriers_work = 0;
651 spin_lock_irqsave(&mddev->write_lock, flags);
652 bio2->bi_next = mddev->biolist;
653 mddev->biolist = bio2;
654 spin_unlock_irqrestore(&mddev->write_lock, flags);
655 wake_up(&mddev->sb_wait);
656 bio_put(bio);
657 } else {
658 bio_put(bio2);
659 bio->bi_private = rdev;
660 super_written(bio, error);
661 }
662 }
663
664 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
665 sector_t sector, int size, struct page *page)
666 {
667 /* write first size bytes of page to sector of rdev
668 * Increment mddev->pending_writes before returning
669 * and decrement it on completion, waking up sb_wait
670 * if zero is reached.
671 * If an error occurred, call md_error
672 *
673 * As we might need to resubmit the request if BIO_RW_BARRIER
674 * causes ENOTSUPP, we allocate a spare bio...
675 */
676 struct bio *bio = bio_alloc(GFP_NOIO, 1);
677 int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNCIO) | (1<<BIO_RW_UNPLUG);
678
679 bio->bi_bdev = rdev->bdev;
680 bio->bi_sector = sector;
681 bio_add_page(bio, page, size, 0);
682 bio->bi_private = rdev;
683 bio->bi_end_io = super_written;
684 bio->bi_rw = rw;
685
686 atomic_inc(&mddev->pending_writes);
687 if (!test_bit(BarriersNotsupp, &rdev->flags)) {
688 struct bio *rbio;
689 rw |= (1<<BIO_RW_BARRIER);
690 rbio = bio_clone(bio, GFP_NOIO);
691 rbio->bi_private = bio;
692 rbio->bi_end_io = super_written_barrier;
693 submit_bio(rw, rbio);
694 } else
695 submit_bio(rw, bio);
696 }
697
698 void md_super_wait(mddev_t *mddev)
699 {
700 /* wait for all superblock writes that were scheduled to complete.
701 * if any had to be retried (due to BARRIER problems), retry them
702 */
703 DEFINE_WAIT(wq);
704 for(;;) {
705 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
706 if (atomic_read(&mddev->pending_writes)==0)
707 break;
708 while (mddev->biolist) {
709 struct bio *bio;
710 spin_lock_irq(&mddev->write_lock);
711 bio = mddev->biolist;
712 mddev->biolist = bio->bi_next ;
713 bio->bi_next = NULL;
714 spin_unlock_irq(&mddev->write_lock);
715 submit_bio(bio->bi_rw, bio);
716 }
717 schedule();
718 }
719 finish_wait(&mddev->sb_wait, &wq);
720 }
721
722 static void bi_complete(struct bio *bio, int error)
723 {
724 complete((struct completion*)bio->bi_private);
725 }
726
727 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
728 struct page *page, int rw)
729 {
730 struct bio *bio = bio_alloc(GFP_NOIO, 1);
731 struct completion event;
732 int ret;
733
734 rw |= (1 << BIO_RW_SYNCIO) | (1 << BIO_RW_UNPLUG);
735
736 bio->bi_bdev = bdev;
737 bio->bi_sector = sector;
738 bio_add_page(bio, page, size, 0);
739 init_completion(&event);
740 bio->bi_private = &event;
741 bio->bi_end_io = bi_complete;
742 submit_bio(rw, bio);
743 wait_for_completion(&event);
744
745 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
746 bio_put(bio);
747 return ret;
748 }
749 EXPORT_SYMBOL_GPL(sync_page_io);
750
751 static int read_disk_sb(mdk_rdev_t * rdev, int size)
752 {
753 char b[BDEVNAME_SIZE];
754 if (!rdev->sb_page) {
755 MD_BUG();
756 return -EINVAL;
757 }
758 if (rdev->sb_loaded)
759 return 0;
760
761
762 if (!sync_page_io(rdev->bdev, rdev->sb_start, size, rdev->sb_page, READ))
763 goto fail;
764 rdev->sb_loaded = 1;
765 return 0;
766
767 fail:
768 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
769 bdevname(rdev->bdev,b));
770 return -EINVAL;
771 }
772
773 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
774 {
775 return sb1->set_uuid0 == sb2->set_uuid0 &&
776 sb1->set_uuid1 == sb2->set_uuid1 &&
777 sb1->set_uuid2 == sb2->set_uuid2 &&
778 sb1->set_uuid3 == sb2->set_uuid3;
779 }
780
781 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
782 {
783 int ret;
784 mdp_super_t *tmp1, *tmp2;
785
786 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
787 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
788
789 if (!tmp1 || !tmp2) {
790 ret = 0;
791 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
792 goto abort;
793 }
794
795 *tmp1 = *sb1;
796 *tmp2 = *sb2;
797
798 /*
799 * nr_disks is not constant
800 */
801 tmp1->nr_disks = 0;
802 tmp2->nr_disks = 0;
803
804 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
805 abort:
806 kfree(tmp1);
807 kfree(tmp2);
808 return ret;
809 }
810
811
812 static u32 md_csum_fold(u32 csum)
813 {
814 csum = (csum & 0xffff) + (csum >> 16);
815 return (csum & 0xffff) + (csum >> 16);
816 }
817
818 static unsigned int calc_sb_csum(mdp_super_t * sb)
819 {
820 u64 newcsum = 0;
821 u32 *sb32 = (u32*)sb;
822 int i;
823 unsigned int disk_csum, csum;
824
825 disk_csum = sb->sb_csum;
826 sb->sb_csum = 0;
827
828 for (i = 0; i < MD_SB_BYTES/4 ; i++)
829 newcsum += sb32[i];
830 csum = (newcsum & 0xffffffff) + (newcsum>>32);
831
832
833 #ifdef CONFIG_ALPHA
834 /* This used to use csum_partial, which was wrong for several
835 * reasons including that different results are returned on
836 * different architectures. It isn't critical that we get exactly
837 * the same return value as before (we always csum_fold before
838 * testing, and that removes any differences). However as we
839 * know that csum_partial always returned a 16bit value on
840 * alphas, do a fold to maximise conformity to previous behaviour.
841 */
842 sb->sb_csum = md_csum_fold(disk_csum);
843 #else
844 sb->sb_csum = disk_csum;
845 #endif
846 return csum;
847 }
848
849
850 /*
851 * Handle superblock details.
852 * We want to be able to handle multiple superblock formats
853 * so we have a common interface to them all, and an array of
854 * different handlers.
855 * We rely on user-space to write the initial superblock, and support
856 * reading and updating of superblocks.
857 * Interface methods are:
858 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
859 * loads and validates a superblock on dev.
860 * if refdev != NULL, compare superblocks on both devices
861 * Return:
862 * 0 - dev has a superblock that is compatible with refdev
863 * 1 - dev has a superblock that is compatible and newer than refdev
864 * so dev should be used as the refdev in future
865 * -EINVAL superblock incompatible or invalid
866 * -othererror e.g. -EIO
867 *
868 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
869 * Verify that dev is acceptable into mddev.
870 * The first time, mddev->raid_disks will be 0, and data from
871 * dev should be merged in. Subsequent calls check that dev
872 * is new enough. Return 0 or -EINVAL
873 *
874 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
875 * Update the superblock for rdev with data in mddev
876 * This does not write to disc.
877 *
878 */
879
880 struct super_type {
881 char *name;
882 struct module *owner;
883 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
884 int minor_version);
885 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
886 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
887 unsigned long long (*rdev_size_change)(mdk_rdev_t *rdev,
888 sector_t num_sectors);
889 };
890
891 /*
892 * Check that the given mddev has no bitmap.
893 *
894 * This function is called from the run method of all personalities that do not
895 * support bitmaps. It prints an error message and returns non-zero if mddev
896 * has a bitmap. Otherwise, it returns 0.
897 *
898 */
899 int md_check_no_bitmap(mddev_t *mddev)
900 {
901 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
902 return 0;
903 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
904 mdname(mddev), mddev->pers->name);
905 return 1;
906 }
907 EXPORT_SYMBOL(md_check_no_bitmap);
908
909 /*
910 * load_super for 0.90.0
911 */
912 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
913 {
914 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
915 mdp_super_t *sb;
916 int ret;
917
918 /*
919 * Calculate the position of the superblock (512byte sectors),
920 * it's at the end of the disk.
921 *
922 * It also happens to be a multiple of 4Kb.
923 */
924 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
925
926 ret = read_disk_sb(rdev, MD_SB_BYTES);
927 if (ret) return ret;
928
929 ret = -EINVAL;
930
931 bdevname(rdev->bdev, b);
932 sb = (mdp_super_t*)page_address(rdev->sb_page);
933
934 if (sb->md_magic != MD_SB_MAGIC) {
935 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
936 b);
937 goto abort;
938 }
939
940 if (sb->major_version != 0 ||
941 sb->minor_version < 90 ||
942 sb->minor_version > 91) {
943 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
944 sb->major_version, sb->minor_version,
945 b);
946 goto abort;
947 }
948
949 if (sb->raid_disks <= 0)
950 goto abort;
951
952 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
953 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
954 b);
955 goto abort;
956 }
957
958 rdev->preferred_minor = sb->md_minor;
959 rdev->data_offset = 0;
960 rdev->sb_size = MD_SB_BYTES;
961
962 if (sb->level == LEVEL_MULTIPATH)
963 rdev->desc_nr = -1;
964 else
965 rdev->desc_nr = sb->this_disk.number;
966
967 if (!refdev) {
968 ret = 1;
969 } else {
970 __u64 ev1, ev2;
971 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
972 if (!uuid_equal(refsb, sb)) {
973 printk(KERN_WARNING "md: %s has different UUID to %s\n",
974 b, bdevname(refdev->bdev,b2));
975 goto abort;
976 }
977 if (!sb_equal(refsb, sb)) {
978 printk(KERN_WARNING "md: %s has same UUID"
979 " but different superblock to %s\n",
980 b, bdevname(refdev->bdev, b2));
981 goto abort;
982 }
983 ev1 = md_event(sb);
984 ev2 = md_event(refsb);
985 if (ev1 > ev2)
986 ret = 1;
987 else
988 ret = 0;
989 }
990 rdev->sectors = rdev->sb_start;
991
992 if (rdev->sectors < sb->size * 2 && sb->level > 1)
993 /* "this cannot possibly happen" ... */
994 ret = -EINVAL;
995
996 abort:
997 return ret;
998 }
999
1000 /*
1001 * validate_super for 0.90.0
1002 */
1003 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1004 {
1005 mdp_disk_t *desc;
1006 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
1007 __u64 ev1 = md_event(sb);
1008
1009 rdev->raid_disk = -1;
1010 clear_bit(Faulty, &rdev->flags);
1011 clear_bit(In_sync, &rdev->flags);
1012 clear_bit(WriteMostly, &rdev->flags);
1013 clear_bit(BarriersNotsupp, &rdev->flags);
1014
1015 if (mddev->raid_disks == 0) {
1016 mddev->major_version = 0;
1017 mddev->minor_version = sb->minor_version;
1018 mddev->patch_version = sb->patch_version;
1019 mddev->external = 0;
1020 mddev->chunk_sectors = sb->chunk_size >> 9;
1021 mddev->ctime = sb->ctime;
1022 mddev->utime = sb->utime;
1023 mddev->level = sb->level;
1024 mddev->clevel[0] = 0;
1025 mddev->layout = sb->layout;
1026 mddev->raid_disks = sb->raid_disks;
1027 mddev->dev_sectors = sb->size * 2;
1028 mddev->events = ev1;
1029 mddev->bitmap_info.offset = 0;
1030 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1031
1032 if (mddev->minor_version >= 91) {
1033 mddev->reshape_position = sb->reshape_position;
1034 mddev->delta_disks = sb->delta_disks;
1035 mddev->new_level = sb->new_level;
1036 mddev->new_layout = sb->new_layout;
1037 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1038 } else {
1039 mddev->reshape_position = MaxSector;
1040 mddev->delta_disks = 0;
1041 mddev->new_level = mddev->level;
1042 mddev->new_layout = mddev->layout;
1043 mddev->new_chunk_sectors = mddev->chunk_sectors;
1044 }
1045
1046 if (sb->state & (1<<MD_SB_CLEAN))
1047 mddev->recovery_cp = MaxSector;
1048 else {
1049 if (sb->events_hi == sb->cp_events_hi &&
1050 sb->events_lo == sb->cp_events_lo) {
1051 mddev->recovery_cp = sb->recovery_cp;
1052 } else
1053 mddev->recovery_cp = 0;
1054 }
1055
1056 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1057 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1058 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1059 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1060
1061 mddev->max_disks = MD_SB_DISKS;
1062
1063 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1064 mddev->bitmap_info.file == NULL)
1065 mddev->bitmap_info.offset =
1066 mddev->bitmap_info.default_offset;
1067
1068 } else if (mddev->pers == NULL) {
1069 /* Insist on good event counter while assembling */
1070 ++ev1;
1071 if (ev1 < mddev->events)
1072 return -EINVAL;
1073 } else if (mddev->bitmap) {
1074 /* if adding to array with a bitmap, then we can accept an
1075 * older device ... but not too old.
1076 */
1077 if (ev1 < mddev->bitmap->events_cleared)
1078 return 0;
1079 } else {
1080 if (ev1 < mddev->events)
1081 /* just a hot-add of a new device, leave raid_disk at -1 */
1082 return 0;
1083 }
1084
1085 if (mddev->level != LEVEL_MULTIPATH) {
1086 desc = sb->disks + rdev->desc_nr;
1087
1088 if (desc->state & (1<<MD_DISK_FAULTY))
1089 set_bit(Faulty, &rdev->flags);
1090 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1091 desc->raid_disk < mddev->raid_disks */) {
1092 set_bit(In_sync, &rdev->flags);
1093 rdev->raid_disk = desc->raid_disk;
1094 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1095 /* active but not in sync implies recovery up to
1096 * reshape position. We don't know exactly where
1097 * that is, so set to zero for now */
1098 if (mddev->minor_version >= 91) {
1099 rdev->recovery_offset = 0;
1100 rdev->raid_disk = desc->raid_disk;
1101 }
1102 }
1103 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1104 set_bit(WriteMostly, &rdev->flags);
1105 } else /* MULTIPATH are always insync */
1106 set_bit(In_sync, &rdev->flags);
1107 return 0;
1108 }
1109
1110 /*
1111 * sync_super for 0.90.0
1112 */
1113 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1114 {
1115 mdp_super_t *sb;
1116 mdk_rdev_t *rdev2;
1117 int next_spare = mddev->raid_disks;
1118
1119
1120 /* make rdev->sb match mddev data..
1121 *
1122 * 1/ zero out disks
1123 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1124 * 3/ any empty disks < next_spare become removed
1125 *
1126 * disks[0] gets initialised to REMOVED because
1127 * we cannot be sure from other fields if it has
1128 * been initialised or not.
1129 */
1130 int i;
1131 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1132
1133 rdev->sb_size = MD_SB_BYTES;
1134
1135 sb = (mdp_super_t*)page_address(rdev->sb_page);
1136
1137 memset(sb, 0, sizeof(*sb));
1138
1139 sb->md_magic = MD_SB_MAGIC;
1140 sb->major_version = mddev->major_version;
1141 sb->patch_version = mddev->patch_version;
1142 sb->gvalid_words = 0; /* ignored */
1143 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1144 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1145 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1146 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1147
1148 sb->ctime = mddev->ctime;
1149 sb->level = mddev->level;
1150 sb->size = mddev->dev_sectors / 2;
1151 sb->raid_disks = mddev->raid_disks;
1152 sb->md_minor = mddev->md_minor;
1153 sb->not_persistent = 0;
1154 sb->utime = mddev->utime;
1155 sb->state = 0;
1156 sb->events_hi = (mddev->events>>32);
1157 sb->events_lo = (u32)mddev->events;
1158
1159 if (mddev->reshape_position == MaxSector)
1160 sb->minor_version = 90;
1161 else {
1162 sb->minor_version = 91;
1163 sb->reshape_position = mddev->reshape_position;
1164 sb->new_level = mddev->new_level;
1165 sb->delta_disks = mddev->delta_disks;
1166 sb->new_layout = mddev->new_layout;
1167 sb->new_chunk = mddev->new_chunk_sectors << 9;
1168 }
1169 mddev->minor_version = sb->minor_version;
1170 if (mddev->in_sync)
1171 {
1172 sb->recovery_cp = mddev->recovery_cp;
1173 sb->cp_events_hi = (mddev->events>>32);
1174 sb->cp_events_lo = (u32)mddev->events;
1175 if (mddev->recovery_cp == MaxSector)
1176 sb->state = (1<< MD_SB_CLEAN);
1177 } else
1178 sb->recovery_cp = 0;
1179
1180 sb->layout = mddev->layout;
1181 sb->chunk_size = mddev->chunk_sectors << 9;
1182
1183 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1184 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1185
1186 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1187 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1188 mdp_disk_t *d;
1189 int desc_nr;
1190 int is_active = test_bit(In_sync, &rdev2->flags);
1191
1192 if (rdev2->raid_disk >= 0 &&
1193 sb->minor_version >= 91)
1194 /* we have nowhere to store the recovery_offset,
1195 * but if it is not below the reshape_position,
1196 * we can piggy-back on that.
1197 */
1198 is_active = 1;
1199 if (rdev2->raid_disk < 0 ||
1200 test_bit(Faulty, &rdev2->flags))
1201 is_active = 0;
1202 if (is_active)
1203 desc_nr = rdev2->raid_disk;
1204 else
1205 desc_nr = next_spare++;
1206 rdev2->desc_nr = desc_nr;
1207 d = &sb->disks[rdev2->desc_nr];
1208 nr_disks++;
1209 d->number = rdev2->desc_nr;
1210 d->major = MAJOR(rdev2->bdev->bd_dev);
1211 d->minor = MINOR(rdev2->bdev->bd_dev);
1212 if (is_active)
1213 d->raid_disk = rdev2->raid_disk;
1214 else
1215 d->raid_disk = rdev2->desc_nr; /* compatibility */
1216 if (test_bit(Faulty, &rdev2->flags))
1217 d->state = (1<<MD_DISK_FAULTY);
1218 else if (is_active) {
1219 d->state = (1<<MD_DISK_ACTIVE);
1220 if (test_bit(In_sync, &rdev2->flags))
1221 d->state |= (1<<MD_DISK_SYNC);
1222 active++;
1223 working++;
1224 } else {
1225 d->state = 0;
1226 spare++;
1227 working++;
1228 }
1229 if (test_bit(WriteMostly, &rdev2->flags))
1230 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1231 }
1232 /* now set the "removed" and "faulty" bits on any missing devices */
1233 for (i=0 ; i < mddev->raid_disks ; i++) {
1234 mdp_disk_t *d = &sb->disks[i];
1235 if (d->state == 0 && d->number == 0) {
1236 d->number = i;
1237 d->raid_disk = i;
1238 d->state = (1<<MD_DISK_REMOVED);
1239 d->state |= (1<<MD_DISK_FAULTY);
1240 failed++;
1241 }
1242 }
1243 sb->nr_disks = nr_disks;
1244 sb->active_disks = active;
1245 sb->working_disks = working;
1246 sb->failed_disks = failed;
1247 sb->spare_disks = spare;
1248
1249 sb->this_disk = sb->disks[rdev->desc_nr];
1250 sb->sb_csum = calc_sb_csum(sb);
1251 }
1252
1253 /*
1254 * rdev_size_change for 0.90.0
1255 */
1256 static unsigned long long
1257 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1258 {
1259 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1260 return 0; /* component must fit device */
1261 if (rdev->mddev->bitmap_info.offset)
1262 return 0; /* can't move bitmap */
1263 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
1264 if (!num_sectors || num_sectors > rdev->sb_start)
1265 num_sectors = rdev->sb_start;
1266 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1267 rdev->sb_page);
1268 md_super_wait(rdev->mddev);
1269 return num_sectors / 2; /* kB for sysfs */
1270 }
1271
1272
1273 /*
1274 * version 1 superblock
1275 */
1276
1277 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1278 {
1279 __le32 disk_csum;
1280 u32 csum;
1281 unsigned long long newcsum;
1282 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1283 __le32 *isuper = (__le32*)sb;
1284 int i;
1285
1286 disk_csum = sb->sb_csum;
1287 sb->sb_csum = 0;
1288 newcsum = 0;
1289 for (i=0; size>=4; size -= 4 )
1290 newcsum += le32_to_cpu(*isuper++);
1291
1292 if (size == 2)
1293 newcsum += le16_to_cpu(*(__le16*) isuper);
1294
1295 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1296 sb->sb_csum = disk_csum;
1297 return cpu_to_le32(csum);
1298 }
1299
1300 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1301 {
1302 struct mdp_superblock_1 *sb;
1303 int ret;
1304 sector_t sb_start;
1305 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1306 int bmask;
1307
1308 /*
1309 * Calculate the position of the superblock in 512byte sectors.
1310 * It is always aligned to a 4K boundary and
1311 * depeding on minor_version, it can be:
1312 * 0: At least 8K, but less than 12K, from end of device
1313 * 1: At start of device
1314 * 2: 4K from start of device.
1315 */
1316 switch(minor_version) {
1317 case 0:
1318 sb_start = rdev->bdev->bd_inode->i_size >> 9;
1319 sb_start -= 8*2;
1320 sb_start &= ~(sector_t)(4*2-1);
1321 break;
1322 case 1:
1323 sb_start = 0;
1324 break;
1325 case 2:
1326 sb_start = 8;
1327 break;
1328 default:
1329 return -EINVAL;
1330 }
1331 rdev->sb_start = sb_start;
1332
1333 /* superblock is rarely larger than 1K, but it can be larger,
1334 * and it is safe to read 4k, so we do that
1335 */
1336 ret = read_disk_sb(rdev, 4096);
1337 if (ret) return ret;
1338
1339
1340 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1341
1342 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1343 sb->major_version != cpu_to_le32(1) ||
1344 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1345 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1346 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1347 return -EINVAL;
1348
1349 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1350 printk("md: invalid superblock checksum on %s\n",
1351 bdevname(rdev->bdev,b));
1352 return -EINVAL;
1353 }
1354 if (le64_to_cpu(sb->data_size) < 10) {
1355 printk("md: data_size too small on %s\n",
1356 bdevname(rdev->bdev,b));
1357 return -EINVAL;
1358 }
1359
1360 rdev->preferred_minor = 0xffff;
1361 rdev->data_offset = le64_to_cpu(sb->data_offset);
1362 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1363
1364 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1365 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1366 if (rdev->sb_size & bmask)
1367 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1368
1369 if (minor_version
1370 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1371 return -EINVAL;
1372
1373 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1374 rdev->desc_nr = -1;
1375 else
1376 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1377
1378 if (!refdev) {
1379 ret = 1;
1380 } else {
1381 __u64 ev1, ev2;
1382 struct mdp_superblock_1 *refsb =
1383 (struct mdp_superblock_1*)page_address(refdev->sb_page);
1384
1385 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1386 sb->level != refsb->level ||
1387 sb->layout != refsb->layout ||
1388 sb->chunksize != refsb->chunksize) {
1389 printk(KERN_WARNING "md: %s has strangely different"
1390 " superblock to %s\n",
1391 bdevname(rdev->bdev,b),
1392 bdevname(refdev->bdev,b2));
1393 return -EINVAL;
1394 }
1395 ev1 = le64_to_cpu(sb->events);
1396 ev2 = le64_to_cpu(refsb->events);
1397
1398 if (ev1 > ev2)
1399 ret = 1;
1400 else
1401 ret = 0;
1402 }
1403 if (minor_version)
1404 rdev->sectors = (rdev->bdev->bd_inode->i_size >> 9) -
1405 le64_to_cpu(sb->data_offset);
1406 else
1407 rdev->sectors = rdev->sb_start;
1408 if (rdev->sectors < le64_to_cpu(sb->data_size))
1409 return -EINVAL;
1410 rdev->sectors = le64_to_cpu(sb->data_size);
1411 if (le64_to_cpu(sb->size) > rdev->sectors)
1412 return -EINVAL;
1413 return ret;
1414 }
1415
1416 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1417 {
1418 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1419 __u64 ev1 = le64_to_cpu(sb->events);
1420
1421 rdev->raid_disk = -1;
1422 clear_bit(Faulty, &rdev->flags);
1423 clear_bit(In_sync, &rdev->flags);
1424 clear_bit(WriteMostly, &rdev->flags);
1425 clear_bit(BarriersNotsupp, &rdev->flags);
1426
1427 if (mddev->raid_disks == 0) {
1428 mddev->major_version = 1;
1429 mddev->patch_version = 0;
1430 mddev->external = 0;
1431 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1432 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1433 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1434 mddev->level = le32_to_cpu(sb->level);
1435 mddev->clevel[0] = 0;
1436 mddev->layout = le32_to_cpu(sb->layout);
1437 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1438 mddev->dev_sectors = le64_to_cpu(sb->size);
1439 mddev->events = ev1;
1440 mddev->bitmap_info.offset = 0;
1441 mddev->bitmap_info.default_offset = 1024 >> 9;
1442
1443 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1444 memcpy(mddev->uuid, sb->set_uuid, 16);
1445
1446 mddev->max_disks = (4096-256)/2;
1447
1448 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1449 mddev->bitmap_info.file == NULL )
1450 mddev->bitmap_info.offset =
1451 (__s32)le32_to_cpu(sb->bitmap_offset);
1452
1453 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1454 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1455 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1456 mddev->new_level = le32_to_cpu(sb->new_level);
1457 mddev->new_layout = le32_to_cpu(sb->new_layout);
1458 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1459 } else {
1460 mddev->reshape_position = MaxSector;
1461 mddev->delta_disks = 0;
1462 mddev->new_level = mddev->level;
1463 mddev->new_layout = mddev->layout;
1464 mddev->new_chunk_sectors = mddev->chunk_sectors;
1465 }
1466
1467 } else if (mddev->pers == NULL) {
1468 /* Insist of good event counter while assembling */
1469 ++ev1;
1470 if (ev1 < mddev->events)
1471 return -EINVAL;
1472 } else if (mddev->bitmap) {
1473 /* If adding to array with a bitmap, then we can accept an
1474 * older device, but not too old.
1475 */
1476 if (ev1 < mddev->bitmap->events_cleared)
1477 return 0;
1478 } else {
1479 if (ev1 < mddev->events)
1480 /* just a hot-add of a new device, leave raid_disk at -1 */
1481 return 0;
1482 }
1483 if (mddev->level != LEVEL_MULTIPATH) {
1484 int role;
1485 if (rdev->desc_nr < 0 ||
1486 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1487 role = 0xffff;
1488 rdev->desc_nr = -1;
1489 } else
1490 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1491 switch(role) {
1492 case 0xffff: /* spare */
1493 break;
1494 case 0xfffe: /* faulty */
1495 set_bit(Faulty, &rdev->flags);
1496 break;
1497 default:
1498 if ((le32_to_cpu(sb->feature_map) &
1499 MD_FEATURE_RECOVERY_OFFSET))
1500 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1501 else
1502 set_bit(In_sync, &rdev->flags);
1503 rdev->raid_disk = role;
1504 break;
1505 }
1506 if (sb->devflags & WriteMostly1)
1507 set_bit(WriteMostly, &rdev->flags);
1508 } else /* MULTIPATH are always insync */
1509 set_bit(In_sync, &rdev->flags);
1510
1511 return 0;
1512 }
1513
1514 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1515 {
1516 struct mdp_superblock_1 *sb;
1517 mdk_rdev_t *rdev2;
1518 int max_dev, i;
1519 /* make rdev->sb match mddev and rdev data. */
1520
1521 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1522
1523 sb->feature_map = 0;
1524 sb->pad0 = 0;
1525 sb->recovery_offset = cpu_to_le64(0);
1526 memset(sb->pad1, 0, sizeof(sb->pad1));
1527 memset(sb->pad2, 0, sizeof(sb->pad2));
1528 memset(sb->pad3, 0, sizeof(sb->pad3));
1529
1530 sb->utime = cpu_to_le64((__u64)mddev->utime);
1531 sb->events = cpu_to_le64(mddev->events);
1532 if (mddev->in_sync)
1533 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1534 else
1535 sb->resync_offset = cpu_to_le64(0);
1536
1537 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1538
1539 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1540 sb->size = cpu_to_le64(mddev->dev_sectors);
1541 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1542 sb->level = cpu_to_le32(mddev->level);
1543 sb->layout = cpu_to_le32(mddev->layout);
1544
1545 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1546 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1547 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1548 }
1549
1550 if (rdev->raid_disk >= 0 &&
1551 !test_bit(In_sync, &rdev->flags)) {
1552 sb->feature_map |=
1553 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1554 sb->recovery_offset =
1555 cpu_to_le64(rdev->recovery_offset);
1556 }
1557
1558 if (mddev->reshape_position != MaxSector) {
1559 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1560 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1561 sb->new_layout = cpu_to_le32(mddev->new_layout);
1562 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1563 sb->new_level = cpu_to_le32(mddev->new_level);
1564 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1565 }
1566
1567 max_dev = 0;
1568 list_for_each_entry(rdev2, &mddev->disks, same_set)
1569 if (rdev2->desc_nr+1 > max_dev)
1570 max_dev = rdev2->desc_nr+1;
1571
1572 if (max_dev > le32_to_cpu(sb->max_dev)) {
1573 int bmask;
1574 sb->max_dev = cpu_to_le32(max_dev);
1575 rdev->sb_size = max_dev * 2 + 256;
1576 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1577 if (rdev->sb_size & bmask)
1578 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1579 }
1580 for (i=0; i<max_dev;i++)
1581 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1582
1583 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1584 i = rdev2->desc_nr;
1585 if (test_bit(Faulty, &rdev2->flags))
1586 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1587 else if (test_bit(In_sync, &rdev2->flags))
1588 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1589 else if (rdev2->raid_disk >= 0)
1590 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1591 else
1592 sb->dev_roles[i] = cpu_to_le16(0xffff);
1593 }
1594
1595 sb->sb_csum = calc_sb_1_csum(sb);
1596 }
1597
1598 static unsigned long long
1599 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1600 {
1601 struct mdp_superblock_1 *sb;
1602 sector_t max_sectors;
1603 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1604 return 0; /* component must fit device */
1605 if (rdev->sb_start < rdev->data_offset) {
1606 /* minor versions 1 and 2; superblock before data */
1607 max_sectors = rdev->bdev->bd_inode->i_size >> 9;
1608 max_sectors -= rdev->data_offset;
1609 if (!num_sectors || num_sectors > max_sectors)
1610 num_sectors = max_sectors;
1611 } else if (rdev->mddev->bitmap_info.offset) {
1612 /* minor version 0 with bitmap we can't move */
1613 return 0;
1614 } else {
1615 /* minor version 0; superblock after data */
1616 sector_t sb_start;
1617 sb_start = (rdev->bdev->bd_inode->i_size >> 9) - 8*2;
1618 sb_start &= ~(sector_t)(4*2 - 1);
1619 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1620 if (!num_sectors || num_sectors > max_sectors)
1621 num_sectors = max_sectors;
1622 rdev->sb_start = sb_start;
1623 }
1624 sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page);
1625 sb->data_size = cpu_to_le64(num_sectors);
1626 sb->super_offset = rdev->sb_start;
1627 sb->sb_csum = calc_sb_1_csum(sb);
1628 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1629 rdev->sb_page);
1630 md_super_wait(rdev->mddev);
1631 return num_sectors / 2; /* kB for sysfs */
1632 }
1633
1634 static struct super_type super_types[] = {
1635 [0] = {
1636 .name = "0.90.0",
1637 .owner = THIS_MODULE,
1638 .load_super = super_90_load,
1639 .validate_super = super_90_validate,
1640 .sync_super = super_90_sync,
1641 .rdev_size_change = super_90_rdev_size_change,
1642 },
1643 [1] = {
1644 .name = "md-1",
1645 .owner = THIS_MODULE,
1646 .load_super = super_1_load,
1647 .validate_super = super_1_validate,
1648 .sync_super = super_1_sync,
1649 .rdev_size_change = super_1_rdev_size_change,
1650 },
1651 };
1652
1653 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1654 {
1655 mdk_rdev_t *rdev, *rdev2;
1656
1657 rcu_read_lock();
1658 rdev_for_each_rcu(rdev, mddev1)
1659 rdev_for_each_rcu(rdev2, mddev2)
1660 if (rdev->bdev->bd_contains ==
1661 rdev2->bdev->bd_contains) {
1662 rcu_read_unlock();
1663 return 1;
1664 }
1665 rcu_read_unlock();
1666 return 0;
1667 }
1668
1669 static LIST_HEAD(pending_raid_disks);
1670
1671 /*
1672 * Try to register data integrity profile for an mddev
1673 *
1674 * This is called when an array is started and after a disk has been kicked
1675 * from the array. It only succeeds if all working and active component devices
1676 * are integrity capable with matching profiles.
1677 */
1678 int md_integrity_register(mddev_t *mddev)
1679 {
1680 mdk_rdev_t *rdev, *reference = NULL;
1681
1682 if (list_empty(&mddev->disks))
1683 return 0; /* nothing to do */
1684 if (blk_get_integrity(mddev->gendisk))
1685 return 0; /* already registered */
1686 list_for_each_entry(rdev, &mddev->disks, same_set) {
1687 /* skip spares and non-functional disks */
1688 if (test_bit(Faulty, &rdev->flags))
1689 continue;
1690 if (rdev->raid_disk < 0)
1691 continue;
1692 /*
1693 * If at least one rdev is not integrity capable, we can not
1694 * enable data integrity for the md device.
1695 */
1696 if (!bdev_get_integrity(rdev->bdev))
1697 return -EINVAL;
1698 if (!reference) {
1699 /* Use the first rdev as the reference */
1700 reference = rdev;
1701 continue;
1702 }
1703 /* does this rdev's profile match the reference profile? */
1704 if (blk_integrity_compare(reference->bdev->bd_disk,
1705 rdev->bdev->bd_disk) < 0)
1706 return -EINVAL;
1707 }
1708 /*
1709 * All component devices are integrity capable and have matching
1710 * profiles, register the common profile for the md device.
1711 */
1712 if (blk_integrity_register(mddev->gendisk,
1713 bdev_get_integrity(reference->bdev)) != 0) {
1714 printk(KERN_ERR "md: failed to register integrity for %s\n",
1715 mdname(mddev));
1716 return -EINVAL;
1717 }
1718 printk(KERN_NOTICE "md: data integrity on %s enabled\n",
1719 mdname(mddev));
1720 return 0;
1721 }
1722 EXPORT_SYMBOL(md_integrity_register);
1723
1724 /* Disable data integrity if non-capable/non-matching disk is being added */
1725 void md_integrity_add_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
1726 {
1727 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1728 struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1729
1730 if (!bi_mddev) /* nothing to do */
1731 return;
1732 if (rdev->raid_disk < 0) /* skip spares */
1733 return;
1734 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
1735 rdev->bdev->bd_disk) >= 0)
1736 return;
1737 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
1738 blk_integrity_unregister(mddev->gendisk);
1739 }
1740 EXPORT_SYMBOL(md_integrity_add_rdev);
1741
1742 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1743 {
1744 char b[BDEVNAME_SIZE];
1745 struct kobject *ko;
1746 char *s;
1747 int err;
1748
1749 if (rdev->mddev) {
1750 MD_BUG();
1751 return -EINVAL;
1752 }
1753
1754 /* prevent duplicates */
1755 if (find_rdev(mddev, rdev->bdev->bd_dev))
1756 return -EEXIST;
1757
1758 /* make sure rdev->sectors exceeds mddev->dev_sectors */
1759 if (rdev->sectors && (mddev->dev_sectors == 0 ||
1760 rdev->sectors < mddev->dev_sectors)) {
1761 if (mddev->pers) {
1762 /* Cannot change size, so fail
1763 * If mddev->level <= 0, then we don't care
1764 * about aligning sizes (e.g. linear)
1765 */
1766 if (mddev->level > 0)
1767 return -ENOSPC;
1768 } else
1769 mddev->dev_sectors = rdev->sectors;
1770 }
1771
1772 /* Verify rdev->desc_nr is unique.
1773 * If it is -1, assign a free number, else
1774 * check number is not in use
1775 */
1776 if (rdev->desc_nr < 0) {
1777 int choice = 0;
1778 if (mddev->pers) choice = mddev->raid_disks;
1779 while (find_rdev_nr(mddev, choice))
1780 choice++;
1781 rdev->desc_nr = choice;
1782 } else {
1783 if (find_rdev_nr(mddev, rdev->desc_nr))
1784 return -EBUSY;
1785 }
1786 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
1787 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
1788 mdname(mddev), mddev->max_disks);
1789 return -EBUSY;
1790 }
1791 bdevname(rdev->bdev,b);
1792 while ( (s=strchr(b, '/')) != NULL)
1793 *s = '!';
1794
1795 rdev->mddev = mddev;
1796 printk(KERN_INFO "md: bind<%s>\n", b);
1797
1798 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
1799 goto fail;
1800
1801 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
1802 if ((err = sysfs_create_link(&rdev->kobj, ko, "block"))) {
1803 kobject_del(&rdev->kobj);
1804 goto fail;
1805 }
1806 rdev->sysfs_state = sysfs_get_dirent(rdev->kobj.sd, "state");
1807
1808 list_add_rcu(&rdev->same_set, &mddev->disks);
1809 bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk);
1810
1811 /* May as well allow recovery to be retried once */
1812 mddev->recovery_disabled = 0;
1813
1814 return 0;
1815
1816 fail:
1817 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1818 b, mdname(mddev));
1819 return err;
1820 }
1821
1822 static void md_delayed_delete(struct work_struct *ws)
1823 {
1824 mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1825 kobject_del(&rdev->kobj);
1826 kobject_put(&rdev->kobj);
1827 }
1828
1829 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1830 {
1831 char b[BDEVNAME_SIZE];
1832 if (!rdev->mddev) {
1833 MD_BUG();
1834 return;
1835 }
1836 bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1837 list_del_rcu(&rdev->same_set);
1838 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1839 rdev->mddev = NULL;
1840 sysfs_remove_link(&rdev->kobj, "block");
1841 sysfs_put(rdev->sysfs_state);
1842 rdev->sysfs_state = NULL;
1843 /* We need to delay this, otherwise we can deadlock when
1844 * writing to 'remove' to "dev/state". We also need
1845 * to delay it due to rcu usage.
1846 */
1847 synchronize_rcu();
1848 INIT_WORK(&rdev->del_work, md_delayed_delete);
1849 kobject_get(&rdev->kobj);
1850 schedule_work(&rdev->del_work);
1851 }
1852
1853 /*
1854 * prevent the device from being mounted, repartitioned or
1855 * otherwise reused by a RAID array (or any other kernel
1856 * subsystem), by bd_claiming the device.
1857 */
1858 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
1859 {
1860 int err = 0;
1861 struct block_device *bdev;
1862 char b[BDEVNAME_SIZE];
1863
1864 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1865 if (IS_ERR(bdev)) {
1866 printk(KERN_ERR "md: could not open %s.\n",
1867 __bdevname(dev, b));
1868 return PTR_ERR(bdev);
1869 }
1870 err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev);
1871 if (err) {
1872 printk(KERN_ERR "md: could not bd_claim %s.\n",
1873 bdevname(bdev, b));
1874 blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1875 return err;
1876 }
1877 if (!shared)
1878 set_bit(AllReserved, &rdev->flags);
1879 rdev->bdev = bdev;
1880 return err;
1881 }
1882
1883 static void unlock_rdev(mdk_rdev_t *rdev)
1884 {
1885 struct block_device *bdev = rdev->bdev;
1886 rdev->bdev = NULL;
1887 if (!bdev)
1888 MD_BUG();
1889 bd_release(bdev);
1890 blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1891 }
1892
1893 void md_autodetect_dev(dev_t dev);
1894
1895 static void export_rdev(mdk_rdev_t * rdev)
1896 {
1897 char b[BDEVNAME_SIZE];
1898 printk(KERN_INFO "md: export_rdev(%s)\n",
1899 bdevname(rdev->bdev,b));
1900 if (rdev->mddev)
1901 MD_BUG();
1902 free_disk_sb(rdev);
1903 #ifndef MODULE
1904 if (test_bit(AutoDetected, &rdev->flags))
1905 md_autodetect_dev(rdev->bdev->bd_dev);
1906 #endif
1907 unlock_rdev(rdev);
1908 kobject_put(&rdev->kobj);
1909 }
1910
1911 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1912 {
1913 unbind_rdev_from_array(rdev);
1914 export_rdev(rdev);
1915 }
1916
1917 static void export_array(mddev_t *mddev)
1918 {
1919 mdk_rdev_t *rdev, *tmp;
1920
1921 rdev_for_each(rdev, tmp, mddev) {
1922 if (!rdev->mddev) {
1923 MD_BUG();
1924 continue;
1925 }
1926 kick_rdev_from_array(rdev);
1927 }
1928 if (!list_empty(&mddev->disks))
1929 MD_BUG();
1930 mddev->raid_disks = 0;
1931 mddev->major_version = 0;
1932 }
1933
1934 static void print_desc(mdp_disk_t *desc)
1935 {
1936 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1937 desc->major,desc->minor,desc->raid_disk,desc->state);
1938 }
1939
1940 static void print_sb_90(mdp_super_t *sb)
1941 {
1942 int i;
1943
1944 printk(KERN_INFO
1945 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1946 sb->major_version, sb->minor_version, sb->patch_version,
1947 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1948 sb->ctime);
1949 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1950 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1951 sb->md_minor, sb->layout, sb->chunk_size);
1952 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
1953 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
1954 sb->utime, sb->state, sb->active_disks, sb->working_disks,
1955 sb->failed_disks, sb->spare_disks,
1956 sb->sb_csum, (unsigned long)sb->events_lo);
1957
1958 printk(KERN_INFO);
1959 for (i = 0; i < MD_SB_DISKS; i++) {
1960 mdp_disk_t *desc;
1961
1962 desc = sb->disks + i;
1963 if (desc->number || desc->major || desc->minor ||
1964 desc->raid_disk || (desc->state && (desc->state != 4))) {
1965 printk(" D %2d: ", i);
1966 print_desc(desc);
1967 }
1968 }
1969 printk(KERN_INFO "md: THIS: ");
1970 print_desc(&sb->this_disk);
1971 }
1972
1973 static void print_sb_1(struct mdp_superblock_1 *sb)
1974 {
1975 __u8 *uuid;
1976
1977 uuid = sb->set_uuid;
1978 printk(KERN_INFO
1979 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
1980 "md: Name: \"%s\" CT:%llu\n",
1981 le32_to_cpu(sb->major_version),
1982 le32_to_cpu(sb->feature_map),
1983 uuid,
1984 sb->set_name,
1985 (unsigned long long)le64_to_cpu(sb->ctime)
1986 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
1987
1988 uuid = sb->device_uuid;
1989 printk(KERN_INFO
1990 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
1991 " RO:%llu\n"
1992 "md: Dev:%08x UUID: %pU\n"
1993 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
1994 "md: (MaxDev:%u) \n",
1995 le32_to_cpu(sb->level),
1996 (unsigned long long)le64_to_cpu(sb->size),
1997 le32_to_cpu(sb->raid_disks),
1998 le32_to_cpu(sb->layout),
1999 le32_to_cpu(sb->chunksize),
2000 (unsigned long long)le64_to_cpu(sb->data_offset),
2001 (unsigned long long)le64_to_cpu(sb->data_size),
2002 (unsigned long long)le64_to_cpu(sb->super_offset),
2003 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2004 le32_to_cpu(sb->dev_number),
2005 uuid,
2006 sb->devflags,
2007 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2008 (unsigned long long)le64_to_cpu(sb->events),
2009 (unsigned long long)le64_to_cpu(sb->resync_offset),
2010 le32_to_cpu(sb->sb_csum),
2011 le32_to_cpu(sb->max_dev)
2012 );
2013 }
2014
2015 static void print_rdev(mdk_rdev_t *rdev, int major_version)
2016 {
2017 char b[BDEVNAME_SIZE];
2018 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2019 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2020 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2021 rdev->desc_nr);
2022 if (rdev->sb_loaded) {
2023 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2024 switch (major_version) {
2025 case 0:
2026 print_sb_90((mdp_super_t*)page_address(rdev->sb_page));
2027 break;
2028 case 1:
2029 print_sb_1((struct mdp_superblock_1 *)page_address(rdev->sb_page));
2030 break;
2031 }
2032 } else
2033 printk(KERN_INFO "md: no rdev superblock!\n");
2034 }
2035
2036 static void md_print_devices(void)
2037 {
2038 struct list_head *tmp;
2039 mdk_rdev_t *rdev;
2040 mddev_t *mddev;
2041 char b[BDEVNAME_SIZE];
2042
2043 printk("\n");
2044 printk("md: **********************************\n");
2045 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2046 printk("md: **********************************\n");
2047 for_each_mddev(mddev, tmp) {
2048
2049 if (mddev->bitmap)
2050 bitmap_print_sb(mddev->bitmap);
2051 else
2052 printk("%s: ", mdname(mddev));
2053 list_for_each_entry(rdev, &mddev->disks, same_set)
2054 printk("<%s>", bdevname(rdev->bdev,b));
2055 printk("\n");
2056
2057 list_for_each_entry(rdev, &mddev->disks, same_set)
2058 print_rdev(rdev, mddev->major_version);
2059 }
2060 printk("md: **********************************\n");
2061 printk("\n");
2062 }
2063
2064
2065 static void sync_sbs(mddev_t * mddev, int nospares)
2066 {
2067 /* Update each superblock (in-memory image), but
2068 * if we are allowed to, skip spares which already
2069 * have the right event counter, or have one earlier
2070 * (which would mean they aren't being marked as dirty
2071 * with the rest of the array)
2072 */
2073 mdk_rdev_t *rdev;
2074
2075 /* First make sure individual recovery_offsets are correct */
2076 list_for_each_entry(rdev, &mddev->disks, same_set) {
2077 if (rdev->raid_disk >= 0 &&
2078 !test_bit(In_sync, &rdev->flags) &&
2079 mddev->curr_resync_completed > rdev->recovery_offset)
2080 rdev->recovery_offset = mddev->curr_resync_completed;
2081
2082 }
2083 list_for_each_entry(rdev, &mddev->disks, same_set) {
2084 if (rdev->sb_events == mddev->events ||
2085 (nospares &&
2086 rdev->raid_disk < 0 &&
2087 (rdev->sb_events&1)==0 &&
2088 rdev->sb_events+1 == mddev->events)) {
2089 /* Don't update this superblock */
2090 rdev->sb_loaded = 2;
2091 } else {
2092 super_types[mddev->major_version].
2093 sync_super(mddev, rdev);
2094 rdev->sb_loaded = 1;
2095 }
2096 }
2097 }
2098
2099 static void md_update_sb(mddev_t * mddev, int force_change)
2100 {
2101 mdk_rdev_t *rdev;
2102 int sync_req;
2103 int nospares = 0;
2104
2105 mddev->utime = get_seconds();
2106 if (mddev->external)
2107 return;
2108 repeat:
2109 spin_lock_irq(&mddev->write_lock);
2110
2111 set_bit(MD_CHANGE_PENDING, &mddev->flags);
2112 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2113 force_change = 1;
2114 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2115 /* just a clean<-> dirty transition, possibly leave spares alone,
2116 * though if events isn't the right even/odd, we will have to do
2117 * spares after all
2118 */
2119 nospares = 1;
2120 if (force_change)
2121 nospares = 0;
2122 if (mddev->degraded)
2123 /* If the array is degraded, then skipping spares is both
2124 * dangerous and fairly pointless.
2125 * Dangerous because a device that was removed from the array
2126 * might have a event_count that still looks up-to-date,
2127 * so it can be re-added without a resync.
2128 * Pointless because if there are any spares to skip,
2129 * then a recovery will happen and soon that array won't
2130 * be degraded any more and the spare can go back to sleep then.
2131 */
2132 nospares = 0;
2133
2134 sync_req = mddev->in_sync;
2135
2136 /* If this is just a dirty<->clean transition, and the array is clean
2137 * and 'events' is odd, we can roll back to the previous clean state */
2138 if (nospares
2139 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2140 && (mddev->events & 1)
2141 && mddev->events != 1)
2142 mddev->events--;
2143 else {
2144 /* otherwise we have to go forward and ... */
2145 mddev->events ++;
2146 if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
2147 /* .. if the array isn't clean, an 'even' event must also go
2148 * to spares. */
2149 if ((mddev->events&1)==0)
2150 nospares = 0;
2151 } else {
2152 /* otherwise an 'odd' event must go to spares */
2153 if ((mddev->events&1))
2154 nospares = 0;
2155 }
2156 }
2157
2158 if (!mddev->events) {
2159 /*
2160 * oops, this 64-bit counter should never wrap.
2161 * Either we are in around ~1 trillion A.C., assuming
2162 * 1 reboot per second, or we have a bug:
2163 */
2164 MD_BUG();
2165 mddev->events --;
2166 }
2167
2168 /*
2169 * do not write anything to disk if using
2170 * nonpersistent superblocks
2171 */
2172 if (!mddev->persistent) {
2173 if (!mddev->external)
2174 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2175
2176 spin_unlock_irq(&mddev->write_lock);
2177 wake_up(&mddev->sb_wait);
2178 return;
2179 }
2180 sync_sbs(mddev, nospares);
2181 spin_unlock_irq(&mddev->write_lock);
2182
2183 dprintk(KERN_INFO
2184 "md: updating %s RAID superblock on device (in sync %d)\n",
2185 mdname(mddev),mddev->in_sync);
2186
2187 bitmap_update_sb(mddev->bitmap);
2188 list_for_each_entry(rdev, &mddev->disks, same_set) {
2189 char b[BDEVNAME_SIZE];
2190 dprintk(KERN_INFO "md: ");
2191 if (rdev->sb_loaded != 1)
2192 continue; /* no noise on spare devices */
2193 if (test_bit(Faulty, &rdev->flags))
2194 dprintk("(skipping faulty ");
2195
2196 dprintk("%s ", bdevname(rdev->bdev,b));
2197 if (!test_bit(Faulty, &rdev->flags)) {
2198 md_super_write(mddev,rdev,
2199 rdev->sb_start, rdev->sb_size,
2200 rdev->sb_page);
2201 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
2202 bdevname(rdev->bdev,b),
2203 (unsigned long long)rdev->sb_start);
2204 rdev->sb_events = mddev->events;
2205
2206 } else
2207 dprintk(")\n");
2208 if (mddev->level == LEVEL_MULTIPATH)
2209 /* only need to write one superblock... */
2210 break;
2211 }
2212 md_super_wait(mddev);
2213 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2214
2215 spin_lock_irq(&mddev->write_lock);
2216 if (mddev->in_sync != sync_req ||
2217 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2218 /* have to write it out again */
2219 spin_unlock_irq(&mddev->write_lock);
2220 goto repeat;
2221 }
2222 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2223 spin_unlock_irq(&mddev->write_lock);
2224 wake_up(&mddev->sb_wait);
2225 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2226 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2227
2228 }
2229
2230 /* words written to sysfs files may, or may not, be \n terminated.
2231 * We want to accept with case. For this we use cmd_match.
2232 */
2233 static int cmd_match(const char *cmd, const char *str)
2234 {
2235 /* See if cmd, written into a sysfs file, matches
2236 * str. They must either be the same, or cmd can
2237 * have a trailing newline
2238 */
2239 while (*cmd && *str && *cmd == *str) {
2240 cmd++;
2241 str++;
2242 }
2243 if (*cmd == '\n')
2244 cmd++;
2245 if (*str || *cmd)
2246 return 0;
2247 return 1;
2248 }
2249
2250 struct rdev_sysfs_entry {
2251 struct attribute attr;
2252 ssize_t (*show)(mdk_rdev_t *, char *);
2253 ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
2254 };
2255
2256 static ssize_t
2257 state_show(mdk_rdev_t *rdev, char *page)
2258 {
2259 char *sep = "";
2260 size_t len = 0;
2261
2262 if (test_bit(Faulty, &rdev->flags)) {
2263 len+= sprintf(page+len, "%sfaulty",sep);
2264 sep = ",";
2265 }
2266 if (test_bit(In_sync, &rdev->flags)) {
2267 len += sprintf(page+len, "%sin_sync",sep);
2268 sep = ",";
2269 }
2270 if (test_bit(WriteMostly, &rdev->flags)) {
2271 len += sprintf(page+len, "%swrite_mostly",sep);
2272 sep = ",";
2273 }
2274 if (test_bit(Blocked, &rdev->flags)) {
2275 len += sprintf(page+len, "%sblocked", sep);
2276 sep = ",";
2277 }
2278 if (!test_bit(Faulty, &rdev->flags) &&
2279 !test_bit(In_sync, &rdev->flags)) {
2280 len += sprintf(page+len, "%sspare", sep);
2281 sep = ",";
2282 }
2283 return len+sprintf(page+len, "\n");
2284 }
2285
2286 static ssize_t
2287 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2288 {
2289 /* can write
2290 * faulty - simulates and error
2291 * remove - disconnects the device
2292 * writemostly - sets write_mostly
2293 * -writemostly - clears write_mostly
2294 * blocked - sets the Blocked flag
2295 * -blocked - clears the Blocked flag
2296 * insync - sets Insync providing device isn't active
2297 */
2298 int err = -EINVAL;
2299 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2300 md_error(rdev->mddev, rdev);
2301 err = 0;
2302 } else if (cmd_match(buf, "remove")) {
2303 if (rdev->raid_disk >= 0)
2304 err = -EBUSY;
2305 else {
2306 mddev_t *mddev = rdev->mddev;
2307 kick_rdev_from_array(rdev);
2308 if (mddev->pers)
2309 md_update_sb(mddev, 1);
2310 md_new_event(mddev);
2311 err = 0;
2312 }
2313 } else if (cmd_match(buf, "writemostly")) {
2314 set_bit(WriteMostly, &rdev->flags);
2315 err = 0;
2316 } else if (cmd_match(buf, "-writemostly")) {
2317 clear_bit(WriteMostly, &rdev->flags);
2318 err = 0;
2319 } else if (cmd_match(buf, "blocked")) {
2320 set_bit(Blocked, &rdev->flags);
2321 err = 0;
2322 } else if (cmd_match(buf, "-blocked")) {
2323 clear_bit(Blocked, &rdev->flags);
2324 wake_up(&rdev->blocked_wait);
2325 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2326 md_wakeup_thread(rdev->mddev->thread);
2327
2328 err = 0;
2329 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2330 set_bit(In_sync, &rdev->flags);
2331 err = 0;
2332 }
2333 if (!err && rdev->sysfs_state)
2334 sysfs_notify_dirent(rdev->sysfs_state);
2335 return err ? err : len;
2336 }
2337 static struct rdev_sysfs_entry rdev_state =
2338 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2339
2340 static ssize_t
2341 errors_show(mdk_rdev_t *rdev, char *page)
2342 {
2343 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2344 }
2345
2346 static ssize_t
2347 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2348 {
2349 char *e;
2350 unsigned long n = simple_strtoul(buf, &e, 10);
2351 if (*buf && (*e == 0 || *e == '\n')) {
2352 atomic_set(&rdev->corrected_errors, n);
2353 return len;
2354 }
2355 return -EINVAL;
2356 }
2357 static struct rdev_sysfs_entry rdev_errors =
2358 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2359
2360 static ssize_t
2361 slot_show(mdk_rdev_t *rdev, char *page)
2362 {
2363 if (rdev->raid_disk < 0)
2364 return sprintf(page, "none\n");
2365 else
2366 return sprintf(page, "%d\n", rdev->raid_disk);
2367 }
2368
2369 static ssize_t
2370 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2371 {
2372 char *e;
2373 int err;
2374 char nm[20];
2375 int slot = simple_strtoul(buf, &e, 10);
2376 if (strncmp(buf, "none", 4)==0)
2377 slot = -1;
2378 else if (e==buf || (*e && *e!= '\n'))
2379 return -EINVAL;
2380 if (rdev->mddev->pers && slot == -1) {
2381 /* Setting 'slot' on an active array requires also
2382 * updating the 'rd%d' link, and communicating
2383 * with the personality with ->hot_*_disk.
2384 * For now we only support removing
2385 * failed/spare devices. This normally happens automatically,
2386 * but not when the metadata is externally managed.
2387 */
2388 if (rdev->raid_disk == -1)
2389 return -EEXIST;
2390 /* personality does all needed checks */
2391 if (rdev->mddev->pers->hot_add_disk == NULL)
2392 return -EINVAL;
2393 err = rdev->mddev->pers->
2394 hot_remove_disk(rdev->mddev, rdev->raid_disk);
2395 if (err)
2396 return err;
2397 sprintf(nm, "rd%d", rdev->raid_disk);
2398 sysfs_remove_link(&rdev->mddev->kobj, nm);
2399 rdev->raid_disk = -1;
2400 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2401 md_wakeup_thread(rdev->mddev->thread);
2402 } else if (rdev->mddev->pers) {
2403 mdk_rdev_t *rdev2;
2404 /* Activating a spare .. or possibly reactivating
2405 * if we ever get bitmaps working here.
2406 */
2407
2408 if (rdev->raid_disk != -1)
2409 return -EBUSY;
2410
2411 if (rdev->mddev->pers->hot_add_disk == NULL)
2412 return -EINVAL;
2413
2414 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2415 if (rdev2->raid_disk == slot)
2416 return -EEXIST;
2417
2418 rdev->raid_disk = slot;
2419 if (test_bit(In_sync, &rdev->flags))
2420 rdev->saved_raid_disk = slot;
2421 else
2422 rdev->saved_raid_disk = -1;
2423 err = rdev->mddev->pers->
2424 hot_add_disk(rdev->mddev, rdev);
2425 if (err) {
2426 rdev->raid_disk = -1;
2427 return err;
2428 } else
2429 sysfs_notify_dirent(rdev->sysfs_state);
2430 sprintf(nm, "rd%d", rdev->raid_disk);
2431 if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm))
2432 printk(KERN_WARNING
2433 "md: cannot register "
2434 "%s for %s\n",
2435 nm, mdname(rdev->mddev));
2436
2437 /* don't wakeup anyone, leave that to userspace. */
2438 } else {
2439 if (slot >= rdev->mddev->raid_disks)
2440 return -ENOSPC;
2441 rdev->raid_disk = slot;
2442 /* assume it is working */
2443 clear_bit(Faulty, &rdev->flags);
2444 clear_bit(WriteMostly, &rdev->flags);
2445 set_bit(In_sync, &rdev->flags);
2446 sysfs_notify_dirent(rdev->sysfs_state);
2447 }
2448 return len;
2449 }
2450
2451
2452 static struct rdev_sysfs_entry rdev_slot =
2453 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2454
2455 static ssize_t
2456 offset_show(mdk_rdev_t *rdev, char *page)
2457 {
2458 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2459 }
2460
2461 static ssize_t
2462 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2463 {
2464 char *e;
2465 unsigned long long offset = simple_strtoull(buf, &e, 10);
2466 if (e==buf || (*e && *e != '\n'))
2467 return -EINVAL;
2468 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2469 return -EBUSY;
2470 if (rdev->sectors && rdev->mddev->external)
2471 /* Must set offset before size, so overlap checks
2472 * can be sane */
2473 return -EBUSY;
2474 rdev->data_offset = offset;
2475 return len;
2476 }
2477
2478 static struct rdev_sysfs_entry rdev_offset =
2479 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2480
2481 static ssize_t
2482 rdev_size_show(mdk_rdev_t *rdev, char *page)
2483 {
2484 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2485 }
2486
2487 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2488 {
2489 /* check if two start/length pairs overlap */
2490 if (s1+l1 <= s2)
2491 return 0;
2492 if (s2+l2 <= s1)
2493 return 0;
2494 return 1;
2495 }
2496
2497 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2498 {
2499 unsigned long long blocks;
2500 sector_t new;
2501
2502 if (strict_strtoull(buf, 10, &blocks) < 0)
2503 return -EINVAL;
2504
2505 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2506 return -EINVAL; /* sector conversion overflow */
2507
2508 new = blocks * 2;
2509 if (new != blocks * 2)
2510 return -EINVAL; /* unsigned long long to sector_t overflow */
2511
2512 *sectors = new;
2513 return 0;
2514 }
2515
2516 static ssize_t
2517 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2518 {
2519 mddev_t *my_mddev = rdev->mddev;
2520 sector_t oldsectors = rdev->sectors;
2521 sector_t sectors;
2522
2523 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2524 return -EINVAL;
2525 if (my_mddev->pers && rdev->raid_disk >= 0) {
2526 if (my_mddev->persistent) {
2527 sectors = super_types[my_mddev->major_version].
2528 rdev_size_change(rdev, sectors);
2529 if (!sectors)
2530 return -EBUSY;
2531 } else if (!sectors)
2532 sectors = (rdev->bdev->bd_inode->i_size >> 9) -
2533 rdev->data_offset;
2534 }
2535 if (sectors < my_mddev->dev_sectors)
2536 return -EINVAL; /* component must fit device */
2537
2538 rdev->sectors = sectors;
2539 if (sectors > oldsectors && my_mddev->external) {
2540 /* need to check that all other rdevs with the same ->bdev
2541 * do not overlap. We need to unlock the mddev to avoid
2542 * a deadlock. We have already changed rdev->sectors, and if
2543 * we have to change it back, we will have the lock again.
2544 */
2545 mddev_t *mddev;
2546 int overlap = 0;
2547 struct list_head *tmp;
2548
2549 mddev_unlock(my_mddev);
2550 for_each_mddev(mddev, tmp) {
2551 mdk_rdev_t *rdev2;
2552
2553 mddev_lock(mddev);
2554 list_for_each_entry(rdev2, &mddev->disks, same_set)
2555 if (test_bit(AllReserved, &rdev2->flags) ||
2556 (rdev->bdev == rdev2->bdev &&
2557 rdev != rdev2 &&
2558 overlaps(rdev->data_offset, rdev->sectors,
2559 rdev2->data_offset,
2560 rdev2->sectors))) {
2561 overlap = 1;
2562 break;
2563 }
2564 mddev_unlock(mddev);
2565 if (overlap) {
2566 mddev_put(mddev);
2567 break;
2568 }
2569 }
2570 mddev_lock(my_mddev);
2571 if (overlap) {
2572 /* Someone else could have slipped in a size
2573 * change here, but doing so is just silly.
2574 * We put oldsectors back because we *know* it is
2575 * safe, and trust userspace not to race with
2576 * itself
2577 */
2578 rdev->sectors = oldsectors;
2579 return -EBUSY;
2580 }
2581 }
2582 return len;
2583 }
2584
2585 static struct rdev_sysfs_entry rdev_size =
2586 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2587
2588
2589 static ssize_t recovery_start_show(mdk_rdev_t *rdev, char *page)
2590 {
2591 unsigned long long recovery_start = rdev->recovery_offset;
2592
2593 if (test_bit(In_sync, &rdev->flags) ||
2594 recovery_start == MaxSector)
2595 return sprintf(page, "none\n");
2596
2597 return sprintf(page, "%llu\n", recovery_start);
2598 }
2599
2600 static ssize_t recovery_start_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2601 {
2602 unsigned long long recovery_start;
2603
2604 if (cmd_match(buf, "none"))
2605 recovery_start = MaxSector;
2606 else if (strict_strtoull(buf, 10, &recovery_start))
2607 return -EINVAL;
2608
2609 if (rdev->mddev->pers &&
2610 rdev->raid_disk >= 0)
2611 return -EBUSY;
2612
2613 rdev->recovery_offset = recovery_start;
2614 if (recovery_start == MaxSector)
2615 set_bit(In_sync, &rdev->flags);
2616 else
2617 clear_bit(In_sync, &rdev->flags);
2618 return len;
2619 }
2620
2621 static struct rdev_sysfs_entry rdev_recovery_start =
2622 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2623
2624 static struct attribute *rdev_default_attrs[] = {
2625 &rdev_state.attr,
2626 &rdev_errors.attr,
2627 &rdev_slot.attr,
2628 &rdev_offset.attr,
2629 &rdev_size.attr,
2630 &rdev_recovery_start.attr,
2631 NULL,
2632 };
2633 static ssize_t
2634 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2635 {
2636 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2637 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2638 mddev_t *mddev = rdev->mddev;
2639 ssize_t rv;
2640
2641 if (!entry->show)
2642 return -EIO;
2643
2644 rv = mddev ? mddev_lock(mddev) : -EBUSY;
2645 if (!rv) {
2646 if (rdev->mddev == NULL)
2647 rv = -EBUSY;
2648 else
2649 rv = entry->show(rdev, page);
2650 mddev_unlock(mddev);
2651 }
2652 return rv;
2653 }
2654
2655 static ssize_t
2656 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2657 const char *page, size_t length)
2658 {
2659 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2660 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2661 ssize_t rv;
2662 mddev_t *mddev = rdev->mddev;
2663
2664 if (!entry->store)
2665 return -EIO;
2666 if (!capable(CAP_SYS_ADMIN))
2667 return -EACCES;
2668 rv = mddev ? mddev_lock(mddev): -EBUSY;
2669 if (!rv) {
2670 if (rdev->mddev == NULL)
2671 rv = -EBUSY;
2672 else
2673 rv = entry->store(rdev, page, length);
2674 mddev_unlock(mddev);
2675 }
2676 return rv;
2677 }
2678
2679 static void rdev_free(struct kobject *ko)
2680 {
2681 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
2682 kfree(rdev);
2683 }
2684 static struct sysfs_ops rdev_sysfs_ops = {
2685 .show = rdev_attr_show,
2686 .store = rdev_attr_store,
2687 };
2688 static struct kobj_type rdev_ktype = {
2689 .release = rdev_free,
2690 .sysfs_ops = &rdev_sysfs_ops,
2691 .default_attrs = rdev_default_attrs,
2692 };
2693
2694 /*
2695 * Import a device. If 'super_format' >= 0, then sanity check the superblock
2696 *
2697 * mark the device faulty if:
2698 *
2699 * - the device is nonexistent (zero size)
2700 * - the device has no valid superblock
2701 *
2702 * a faulty rdev _never_ has rdev->sb set.
2703 */
2704 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
2705 {
2706 char b[BDEVNAME_SIZE];
2707 int err;
2708 mdk_rdev_t *rdev;
2709 sector_t size;
2710
2711 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
2712 if (!rdev) {
2713 printk(KERN_ERR "md: could not alloc mem for new device!\n");
2714 return ERR_PTR(-ENOMEM);
2715 }
2716
2717 if ((err = alloc_disk_sb(rdev)))
2718 goto abort_free;
2719
2720 err = lock_rdev(rdev, newdev, super_format == -2);
2721 if (err)
2722 goto abort_free;
2723
2724 kobject_init(&rdev->kobj, &rdev_ktype);
2725
2726 rdev->desc_nr = -1;
2727 rdev->saved_raid_disk = -1;
2728 rdev->raid_disk = -1;
2729 rdev->flags = 0;
2730 rdev->data_offset = 0;
2731 rdev->sb_events = 0;
2732 rdev->last_read_error.tv_sec = 0;
2733 rdev->last_read_error.tv_nsec = 0;
2734 atomic_set(&rdev->nr_pending, 0);
2735 atomic_set(&rdev->read_errors, 0);
2736 atomic_set(&rdev->corrected_errors, 0);
2737
2738 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2739 if (!size) {
2740 printk(KERN_WARNING
2741 "md: %s has zero or unknown size, marking faulty!\n",
2742 bdevname(rdev->bdev,b));
2743 err = -EINVAL;
2744 goto abort_free;
2745 }
2746
2747 if (super_format >= 0) {
2748 err = super_types[super_format].
2749 load_super(rdev, NULL, super_minor);
2750 if (err == -EINVAL) {
2751 printk(KERN_WARNING
2752 "md: %s does not have a valid v%d.%d "
2753 "superblock, not importing!\n",
2754 bdevname(rdev->bdev,b),
2755 super_format, super_minor);
2756 goto abort_free;
2757 }
2758 if (err < 0) {
2759 printk(KERN_WARNING
2760 "md: could not read %s's sb, not importing!\n",
2761 bdevname(rdev->bdev,b));
2762 goto abort_free;
2763 }
2764 }
2765
2766 INIT_LIST_HEAD(&rdev->same_set);
2767 init_waitqueue_head(&rdev->blocked_wait);
2768
2769 return rdev;
2770
2771 abort_free:
2772 if (rdev->sb_page) {
2773 if (rdev->bdev)
2774 unlock_rdev(rdev);
2775 free_disk_sb(rdev);
2776 }
2777 kfree(rdev);
2778 return ERR_PTR(err);
2779 }
2780
2781 /*
2782 * Check a full RAID array for plausibility
2783 */
2784
2785
2786 static void analyze_sbs(mddev_t * mddev)
2787 {
2788 int i;
2789 mdk_rdev_t *rdev, *freshest, *tmp;
2790 char b[BDEVNAME_SIZE];
2791
2792 freshest = NULL;
2793 rdev_for_each(rdev, tmp, mddev)
2794 switch (super_types[mddev->major_version].
2795 load_super(rdev, freshest, mddev->minor_version)) {
2796 case 1:
2797 freshest = rdev;
2798 break;
2799 case 0:
2800 break;
2801 default:
2802 printk( KERN_ERR \
2803 "md: fatal superblock inconsistency in %s"
2804 " -- removing from array\n",
2805 bdevname(rdev->bdev,b));
2806 kick_rdev_from_array(rdev);
2807 }
2808
2809
2810 super_types[mddev->major_version].
2811 validate_super(mddev, freshest);
2812
2813 i = 0;
2814 rdev_for_each(rdev, tmp, mddev) {
2815 if (mddev->max_disks &&
2816 (rdev->desc_nr >= mddev->max_disks ||
2817 i > mddev->max_disks)) {
2818 printk(KERN_WARNING
2819 "md: %s: %s: only %d devices permitted\n",
2820 mdname(mddev), bdevname(rdev->bdev, b),
2821 mddev->max_disks);
2822 kick_rdev_from_array(rdev);
2823 continue;
2824 }
2825 if (rdev != freshest)
2826 if (super_types[mddev->major_version].
2827 validate_super(mddev, rdev)) {
2828 printk(KERN_WARNING "md: kicking non-fresh %s"
2829 " from array!\n",
2830 bdevname(rdev->bdev,b));
2831 kick_rdev_from_array(rdev);
2832 continue;
2833 }
2834 if (mddev->level == LEVEL_MULTIPATH) {
2835 rdev->desc_nr = i++;
2836 rdev->raid_disk = rdev->desc_nr;
2837 set_bit(In_sync, &rdev->flags);
2838 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
2839 rdev->raid_disk = -1;
2840 clear_bit(In_sync, &rdev->flags);
2841 }
2842 }
2843 }
2844
2845 /* Read a fixed-point number.
2846 * Numbers in sysfs attributes should be in "standard" units where
2847 * possible, so time should be in seconds.
2848 * However we internally use a a much smaller unit such as
2849 * milliseconds or jiffies.
2850 * This function takes a decimal number with a possible fractional
2851 * component, and produces an integer which is the result of
2852 * multiplying that number by 10^'scale'.
2853 * all without any floating-point arithmetic.
2854 */
2855 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
2856 {
2857 unsigned long result = 0;
2858 long decimals = -1;
2859 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
2860 if (*cp == '.')
2861 decimals = 0;
2862 else if (decimals < scale) {
2863 unsigned int value;
2864 value = *cp - '0';
2865 result = result * 10 + value;
2866 if (decimals >= 0)
2867 decimals++;
2868 }
2869 cp++;
2870 }
2871 if (*cp == '\n')
2872 cp++;
2873 if (*cp)
2874 return -EINVAL;
2875 if (decimals < 0)
2876 decimals = 0;
2877 while (decimals < scale) {
2878 result *= 10;
2879 decimals ++;
2880 }
2881 *res = result;
2882 return 0;
2883 }
2884
2885
2886 static void md_safemode_timeout(unsigned long data);
2887
2888 static ssize_t
2889 safe_delay_show(mddev_t *mddev, char *page)
2890 {
2891 int msec = (mddev->safemode_delay*1000)/HZ;
2892 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2893 }
2894 static ssize_t
2895 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2896 {
2897 unsigned long msec;
2898
2899 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
2900 return -EINVAL;
2901 if (msec == 0)
2902 mddev->safemode_delay = 0;
2903 else {
2904 unsigned long old_delay = mddev->safemode_delay;
2905 mddev->safemode_delay = (msec*HZ)/1000;
2906 if (mddev->safemode_delay == 0)
2907 mddev->safemode_delay = 1;
2908 if (mddev->safemode_delay < old_delay)
2909 md_safemode_timeout((unsigned long)mddev);
2910 }
2911 return len;
2912 }
2913 static struct md_sysfs_entry md_safe_delay =
2914 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2915
2916 static ssize_t
2917 level_show(mddev_t *mddev, char *page)
2918 {
2919 struct mdk_personality *p = mddev->pers;
2920 if (p)
2921 return sprintf(page, "%s\n", p->name);
2922 else if (mddev->clevel[0])
2923 return sprintf(page, "%s\n", mddev->clevel);
2924 else if (mddev->level != LEVEL_NONE)
2925 return sprintf(page, "%d\n", mddev->level);
2926 else
2927 return 0;
2928 }
2929
2930 static ssize_t
2931 level_store(mddev_t *mddev, const char *buf, size_t len)
2932 {
2933 char level[16];
2934 ssize_t rv = len;
2935 struct mdk_personality *pers;
2936 void *priv;
2937 mdk_rdev_t *rdev;
2938
2939 if (mddev->pers == NULL) {
2940 if (len == 0)
2941 return 0;
2942 if (len >= sizeof(mddev->clevel))
2943 return -ENOSPC;
2944 strncpy(mddev->clevel, buf, len);
2945 if (mddev->clevel[len-1] == '\n')
2946 len--;
2947 mddev->clevel[len] = 0;
2948 mddev->level = LEVEL_NONE;
2949 return rv;
2950 }
2951
2952 /* request to change the personality. Need to ensure:
2953 * - array is not engaged in resync/recovery/reshape
2954 * - old personality can be suspended
2955 * - new personality will access other array.
2956 */
2957
2958 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
2959 return -EBUSY;
2960
2961 if (!mddev->pers->quiesce) {
2962 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
2963 mdname(mddev), mddev->pers->name);
2964 return -EINVAL;
2965 }
2966
2967 /* Now find the new personality */
2968 if (len == 0 || len >= sizeof(level))
2969 return -EINVAL;
2970 strncpy(level, buf, len);
2971 if (level[len-1] == '\n')
2972 len--;
2973 level[len] = 0;
2974
2975 request_module("md-%s", level);
2976 spin_lock(&pers_lock);
2977 pers = find_pers(LEVEL_NONE, level);
2978 if (!pers || !try_module_get(pers->owner)) {
2979 spin_unlock(&pers_lock);
2980 printk(KERN_WARNING "md: personality %s not loaded\n", level);
2981 return -EINVAL;
2982 }
2983 spin_unlock(&pers_lock);
2984
2985 if (pers == mddev->pers) {
2986 /* Nothing to do! */
2987 module_put(pers->owner);
2988 return rv;
2989 }
2990 if (!pers->takeover) {
2991 module_put(pers->owner);
2992 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
2993 mdname(mddev), level);
2994 return -EINVAL;
2995 }
2996
2997 /* ->takeover must set new_* and/or delta_disks
2998 * if it succeeds, and may set them when it fails.
2999 */
3000 priv = pers->takeover(mddev);
3001 if (IS_ERR(priv)) {
3002 mddev->new_level = mddev->level;
3003 mddev->new_layout = mddev->layout;
3004 mddev->new_chunk_sectors = mddev->chunk_sectors;
3005 mddev->raid_disks -= mddev->delta_disks;
3006 mddev->delta_disks = 0;
3007 module_put(pers->owner);
3008 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3009 mdname(mddev), level);
3010 return PTR_ERR(priv);
3011 }
3012
3013 /* Looks like we have a winner */
3014 mddev_suspend(mddev);
3015 mddev->pers->stop(mddev);
3016
3017 if (mddev->pers->sync_request == NULL &&
3018 pers->sync_request != NULL) {
3019 /* need to add the md_redundancy_group */
3020 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3021 printk(KERN_WARNING
3022 "md: cannot register extra attributes for %s\n",
3023 mdname(mddev));
3024 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3025 }
3026 if (mddev->pers->sync_request != NULL &&
3027 pers->sync_request == NULL) {
3028 /* need to remove the md_redundancy_group */
3029 if (mddev->to_remove == NULL)
3030 mddev->to_remove = &md_redundancy_group;
3031 }
3032
3033 if (mddev->pers->sync_request == NULL &&
3034 mddev->external) {
3035 /* We are converting from a no-redundancy array
3036 * to a redundancy array and metadata is managed
3037 * externally so we need to be sure that writes
3038 * won't block due to a need to transition
3039 * clean->dirty
3040 * until external management is started.
3041 */
3042 mddev->in_sync = 0;
3043 mddev->safemode_delay = 0;
3044 mddev->safemode = 0;
3045 }
3046
3047 module_put(mddev->pers->owner);
3048 /* Invalidate devices that are now superfluous */
3049 list_for_each_entry(rdev, &mddev->disks, same_set)
3050 if (rdev->raid_disk >= mddev->raid_disks) {
3051 rdev->raid_disk = -1;
3052 clear_bit(In_sync, &rdev->flags);
3053 }
3054 mddev->pers = pers;
3055 mddev->private = priv;
3056 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3057 mddev->level = mddev->new_level;
3058 mddev->layout = mddev->new_layout;
3059 mddev->chunk_sectors = mddev->new_chunk_sectors;
3060 mddev->delta_disks = 0;
3061 if (mddev->pers->sync_request == NULL) {
3062 /* this is now an array without redundancy, so
3063 * it must always be in_sync
3064 */
3065 mddev->in_sync = 1;
3066 del_timer_sync(&mddev->safemode_timer);
3067 }
3068 pers->run(mddev);
3069 mddev_resume(mddev);
3070 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3071 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3072 md_wakeup_thread(mddev->thread);
3073 sysfs_notify(&mddev->kobj, NULL, "level");
3074 return rv;
3075 }
3076
3077 static struct md_sysfs_entry md_level =
3078 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3079
3080
3081 static ssize_t
3082 layout_show(mddev_t *mddev, char *page)
3083 {
3084 /* just a number, not meaningful for all levels */
3085 if (mddev->reshape_position != MaxSector &&
3086 mddev->layout != mddev->new_layout)
3087 return sprintf(page, "%d (%d)\n",
3088 mddev->new_layout, mddev->layout);
3089 return sprintf(page, "%d\n", mddev->layout);
3090 }
3091
3092 static ssize_t
3093 layout_store(mddev_t *mddev, const char *buf, size_t len)
3094 {
3095 char *e;
3096 unsigned long n = simple_strtoul(buf, &e, 10);
3097
3098 if (!*buf || (*e && *e != '\n'))
3099 return -EINVAL;
3100
3101 if (mddev->pers) {
3102 int err;
3103 if (mddev->pers->check_reshape == NULL)
3104 return -EBUSY;
3105 mddev->new_layout = n;
3106 err = mddev->pers->check_reshape(mddev);
3107 if (err) {
3108 mddev->new_layout = mddev->layout;
3109 return err;
3110 }
3111 } else {
3112 mddev->new_layout = n;
3113 if (mddev->reshape_position == MaxSector)
3114 mddev->layout = n;
3115 }
3116 return len;
3117 }
3118 static struct md_sysfs_entry md_layout =
3119 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3120
3121
3122 static ssize_t
3123 raid_disks_show(mddev_t *mddev, char *page)
3124 {
3125 if (mddev->raid_disks == 0)
3126 return 0;
3127 if (mddev->reshape_position != MaxSector &&
3128 mddev->delta_disks != 0)
3129 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3130 mddev->raid_disks - mddev->delta_disks);
3131 return sprintf(page, "%d\n", mddev->raid_disks);
3132 }
3133
3134 static int update_raid_disks(mddev_t *mddev, int raid_disks);
3135
3136 static ssize_t
3137 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
3138 {
3139 char *e;
3140 int rv = 0;
3141 unsigned long n = simple_strtoul(buf, &e, 10);
3142
3143 if (!*buf || (*e && *e != '\n'))
3144 return -EINVAL;
3145
3146 if (mddev->pers)
3147 rv = update_raid_disks(mddev, n);
3148 else if (mddev->reshape_position != MaxSector) {
3149 int olddisks = mddev->raid_disks - mddev->delta_disks;
3150 mddev->delta_disks = n - olddisks;
3151 mddev->raid_disks = n;
3152 } else
3153 mddev->raid_disks = n;
3154 return rv ? rv : len;
3155 }
3156 static struct md_sysfs_entry md_raid_disks =
3157 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3158
3159 static ssize_t
3160 chunk_size_show(mddev_t *mddev, char *page)
3161 {
3162 if (mddev->reshape_position != MaxSector &&
3163 mddev->chunk_sectors != mddev->new_chunk_sectors)
3164 return sprintf(page, "%d (%d)\n",
3165 mddev->new_chunk_sectors << 9,
3166 mddev->chunk_sectors << 9);
3167 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3168 }
3169
3170 static ssize_t
3171 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
3172 {
3173 char *e;
3174 unsigned long n = simple_strtoul(buf, &e, 10);
3175
3176 if (!*buf || (*e && *e != '\n'))
3177 return -EINVAL;
3178
3179 if (mddev->pers) {
3180 int err;
3181 if (mddev->pers->check_reshape == NULL)
3182 return -EBUSY;
3183 mddev->new_chunk_sectors = n >> 9;
3184 err = mddev->pers->check_reshape(mddev);
3185 if (err) {
3186 mddev->new_chunk_sectors = mddev->chunk_sectors;
3187 return err;
3188 }
3189 } else {
3190 mddev->new_chunk_sectors = n >> 9;
3191 if (mddev->reshape_position == MaxSector)
3192 mddev->chunk_sectors = n >> 9;
3193 }
3194 return len;
3195 }
3196 static struct md_sysfs_entry md_chunk_size =
3197 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3198
3199 static ssize_t
3200 resync_start_show(mddev_t *mddev, char *page)
3201 {
3202 if (mddev->recovery_cp == MaxSector)
3203 return sprintf(page, "none\n");
3204 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3205 }
3206
3207 static ssize_t
3208 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
3209 {
3210 char *e;
3211 unsigned long long n = simple_strtoull(buf, &e, 10);
3212
3213 if (mddev->pers)
3214 return -EBUSY;
3215 if (cmd_match(buf, "none"))
3216 n = MaxSector;
3217 else if (!*buf || (*e && *e != '\n'))
3218 return -EINVAL;
3219
3220 mddev->recovery_cp = n;
3221 return len;
3222 }
3223 static struct md_sysfs_entry md_resync_start =
3224 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3225
3226 /*
3227 * The array state can be:
3228 *
3229 * clear
3230 * No devices, no size, no level
3231 * Equivalent to STOP_ARRAY ioctl
3232 * inactive
3233 * May have some settings, but array is not active
3234 * all IO results in error
3235 * When written, doesn't tear down array, but just stops it
3236 * suspended (not supported yet)
3237 * All IO requests will block. The array can be reconfigured.
3238 * Writing this, if accepted, will block until array is quiescent
3239 * readonly
3240 * no resync can happen. no superblocks get written.
3241 * write requests fail
3242 * read-auto
3243 * like readonly, but behaves like 'clean' on a write request.
3244 *
3245 * clean - no pending writes, but otherwise active.
3246 * When written to inactive array, starts without resync
3247 * If a write request arrives then
3248 * if metadata is known, mark 'dirty' and switch to 'active'.
3249 * if not known, block and switch to write-pending
3250 * If written to an active array that has pending writes, then fails.
3251 * active
3252 * fully active: IO and resync can be happening.
3253 * When written to inactive array, starts with resync
3254 *
3255 * write-pending
3256 * clean, but writes are blocked waiting for 'active' to be written.
3257 *
3258 * active-idle
3259 * like active, but no writes have been seen for a while (100msec).
3260 *
3261 */
3262 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3263 write_pending, active_idle, bad_word};
3264 static char *array_states[] = {
3265 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3266 "write-pending", "active-idle", NULL };
3267
3268 static int match_word(const char *word, char **list)
3269 {
3270 int n;
3271 for (n=0; list[n]; n++)
3272 if (cmd_match(word, list[n]))
3273 break;
3274 return n;
3275 }
3276
3277 static ssize_t
3278 array_state_show(mddev_t *mddev, char *page)
3279 {
3280 enum array_state st = inactive;
3281
3282 if (mddev->pers)
3283 switch(mddev->ro) {
3284 case 1:
3285 st = readonly;
3286 break;
3287 case 2:
3288 st = read_auto;
3289 break;
3290 case 0:
3291 if (mddev->in_sync)
3292 st = clean;
3293 else if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
3294 st = write_pending;
3295 else if (mddev->safemode)
3296 st = active_idle;
3297 else
3298 st = active;
3299 }
3300 else {
3301 if (list_empty(&mddev->disks) &&
3302 mddev->raid_disks == 0 &&
3303 mddev->dev_sectors == 0)
3304 st = clear;
3305 else
3306 st = inactive;
3307 }
3308 return sprintf(page, "%s\n", array_states[st]);
3309 }
3310
3311 static int do_md_stop(mddev_t * mddev, int ro, int is_open);
3312 static int md_set_readonly(mddev_t * mddev, int is_open);
3313 static int do_md_run(mddev_t * mddev);
3314 static int restart_array(mddev_t *mddev);
3315
3316 static ssize_t
3317 array_state_store(mddev_t *mddev, const char *buf, size_t len)
3318 {
3319 int err = -EINVAL;
3320 enum array_state st = match_word(buf, array_states);
3321 switch(st) {
3322 case bad_word:
3323 break;
3324 case clear:
3325 /* stopping an active array */
3326 if (atomic_read(&mddev->openers) > 0)
3327 return -EBUSY;
3328 err = do_md_stop(mddev, 0, 0);
3329 break;
3330 case inactive:
3331 /* stopping an active array */
3332 if (mddev->pers) {
3333 if (atomic_read(&mddev->openers) > 0)
3334 return -EBUSY;
3335 err = do_md_stop(mddev, 2, 0);
3336 } else
3337 err = 0; /* already inactive */
3338 break;
3339 case suspended:
3340 break; /* not supported yet */
3341 case readonly:
3342 if (mddev->pers)
3343 err = md_set_readonly(mddev, 0);
3344 else {
3345 mddev->ro = 1;
3346 set_disk_ro(mddev->gendisk, 1);
3347 err = do_md_run(mddev);
3348 }
3349 break;
3350 case read_auto:
3351 if (mddev->pers) {
3352 if (mddev->ro == 0)
3353 err = md_set_readonly(mddev, 0);
3354 else if (mddev->ro == 1)
3355 err = restart_array(mddev);
3356 if (err == 0) {
3357 mddev->ro = 2;
3358 set_disk_ro(mddev->gendisk, 0);
3359 }
3360 } else {
3361 mddev->ro = 2;
3362 err = do_md_run(mddev);
3363 }
3364 break;
3365 case clean:
3366 if (mddev->pers) {
3367 restart_array(mddev);
3368 spin_lock_irq(&mddev->write_lock);
3369 if (atomic_read(&mddev->writes_pending) == 0) {
3370 if (mddev->in_sync == 0) {
3371 mddev->in_sync = 1;
3372 if (mddev->safemode == 1)
3373 mddev->safemode = 0;
3374 if (mddev->persistent)
3375 set_bit(MD_CHANGE_CLEAN,
3376 &mddev->flags);
3377 }
3378 err = 0;
3379 } else
3380 err = -EBUSY;
3381 spin_unlock_irq(&mddev->write_lock);
3382 } else
3383 err = -EINVAL;
3384 break;
3385 case active:
3386 if (mddev->pers) {
3387 restart_array(mddev);
3388 if (mddev->external)
3389 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
3390 wake_up(&mddev->sb_wait);
3391 err = 0;
3392 } else {
3393 mddev->ro = 0;
3394 set_disk_ro(mddev->gendisk, 0);
3395 err = do_md_run(mddev);
3396 }
3397 break;
3398 case write_pending:
3399 case active_idle:
3400 /* these cannot be set */
3401 break;
3402 }
3403 if (err)
3404 return err;
3405 else {
3406 sysfs_notify_dirent(mddev->sysfs_state);
3407 return len;
3408 }
3409 }
3410 static struct md_sysfs_entry md_array_state =
3411 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3412
3413 static ssize_t
3414 max_corrected_read_errors_show(mddev_t *mddev, char *page) {
3415 return sprintf(page, "%d\n",
3416 atomic_read(&mddev->max_corr_read_errors));
3417 }
3418
3419 static ssize_t
3420 max_corrected_read_errors_store(mddev_t *mddev, const char *buf, size_t len)
3421 {
3422 char *e;
3423 unsigned long n = simple_strtoul(buf, &e, 10);
3424
3425 if (*buf && (*e == 0 || *e == '\n')) {
3426 atomic_set(&mddev->max_corr_read_errors, n);
3427 return len;
3428 }
3429 return -EINVAL;
3430 }
3431
3432 static struct md_sysfs_entry max_corr_read_errors =
3433 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3434 max_corrected_read_errors_store);
3435
3436 static ssize_t
3437 null_show(mddev_t *mddev, char *page)
3438 {
3439 return -EINVAL;
3440 }
3441
3442 static ssize_t
3443 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
3444 {
3445 /* buf must be %d:%d\n? giving major and minor numbers */
3446 /* The new device is added to the array.
3447 * If the array has a persistent superblock, we read the
3448 * superblock to initialise info and check validity.
3449 * Otherwise, only checking done is that in bind_rdev_to_array,
3450 * which mainly checks size.
3451 */
3452 char *e;
3453 int major = simple_strtoul(buf, &e, 10);
3454 int minor;
3455 dev_t dev;
3456 mdk_rdev_t *rdev;
3457 int err;
3458
3459 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3460 return -EINVAL;
3461 minor = simple_strtoul(e+1, &e, 10);
3462 if (*e && *e != '\n')
3463 return -EINVAL;
3464 dev = MKDEV(major, minor);
3465 if (major != MAJOR(dev) ||
3466 minor != MINOR(dev))
3467 return -EOVERFLOW;
3468
3469
3470 if (mddev->persistent) {
3471 rdev = md_import_device(dev, mddev->major_version,
3472 mddev->minor_version);
3473 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3474 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3475 mdk_rdev_t, same_set);
3476 err = super_types[mddev->major_version]
3477 .load_super(rdev, rdev0, mddev->minor_version);
3478 if (err < 0)
3479 goto out;
3480 }
3481 } else if (mddev->external)
3482 rdev = md_import_device(dev, -2, -1);
3483 else
3484 rdev = md_import_device(dev, -1, -1);
3485
3486 if (IS_ERR(rdev))
3487 return PTR_ERR(rdev);
3488 err = bind_rdev_to_array(rdev, mddev);
3489 out:
3490 if (err)
3491 export_rdev(rdev);
3492 return err ? err : len;
3493 }
3494
3495 static struct md_sysfs_entry md_new_device =
3496 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3497
3498 static ssize_t
3499 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
3500 {
3501 char *end;
3502 unsigned long chunk, end_chunk;
3503
3504 if (!mddev->bitmap)
3505 goto out;
3506 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3507 while (*buf) {
3508 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3509 if (buf == end) break;
3510 if (*end == '-') { /* range */
3511 buf = end + 1;
3512 end_chunk = simple_strtoul(buf, &end, 0);
3513 if (buf == end) break;
3514 }
3515 if (*end && !isspace(*end)) break;
3516 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3517 buf = skip_spaces(end);
3518 }
3519 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3520 out:
3521 return len;
3522 }
3523
3524 static struct md_sysfs_entry md_bitmap =
3525 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3526
3527 static ssize_t
3528 size_show(mddev_t *mddev, char *page)
3529 {
3530 return sprintf(page, "%llu\n",
3531 (unsigned long long)mddev->dev_sectors / 2);
3532 }
3533
3534 static int update_size(mddev_t *mddev, sector_t num_sectors);
3535
3536 static ssize_t
3537 size_store(mddev_t *mddev, const char *buf, size_t len)
3538 {
3539 /* If array is inactive, we can reduce the component size, but
3540 * not increase it (except from 0).
3541 * If array is active, we can try an on-line resize
3542 */
3543 sector_t sectors;
3544 int err = strict_blocks_to_sectors(buf, &sectors);
3545
3546 if (err < 0)
3547 return err;
3548 if (mddev->pers) {
3549 err = update_size(mddev, sectors);
3550 md_update_sb(mddev, 1);
3551 } else {
3552 if (mddev->dev_sectors == 0 ||
3553 mddev->dev_sectors > sectors)
3554 mddev->dev_sectors = sectors;
3555 else
3556 err = -ENOSPC;
3557 }
3558 return err ? err : len;
3559 }
3560
3561 static struct md_sysfs_entry md_size =
3562 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3563
3564
3565 /* Metdata version.
3566 * This is one of
3567 * 'none' for arrays with no metadata (good luck...)
3568 * 'external' for arrays with externally managed metadata,
3569 * or N.M for internally known formats
3570 */
3571 static ssize_t
3572 metadata_show(mddev_t *mddev, char *page)
3573 {
3574 if (mddev->persistent)
3575 return sprintf(page, "%d.%d\n",
3576 mddev->major_version, mddev->minor_version);
3577 else if (mddev->external)
3578 return sprintf(page, "external:%s\n", mddev->metadata_type);
3579 else
3580 return sprintf(page, "none\n");
3581 }
3582
3583 static ssize_t
3584 metadata_store(mddev_t *mddev, const char *buf, size_t len)
3585 {
3586 int major, minor;
3587 char *e;
3588 /* Changing the details of 'external' metadata is
3589 * always permitted. Otherwise there must be
3590 * no devices attached to the array.
3591 */
3592 if (mddev->external && strncmp(buf, "external:", 9) == 0)
3593 ;
3594 else if (!list_empty(&mddev->disks))
3595 return -EBUSY;
3596
3597 if (cmd_match(buf, "none")) {
3598 mddev->persistent = 0;
3599 mddev->external = 0;
3600 mddev->major_version = 0;
3601 mddev->minor_version = 90;
3602 return len;
3603 }
3604 if (strncmp(buf, "external:", 9) == 0) {
3605 size_t namelen = len-9;
3606 if (namelen >= sizeof(mddev->metadata_type))
3607 namelen = sizeof(mddev->metadata_type)-1;
3608 strncpy(mddev->metadata_type, buf+9, namelen);
3609 mddev->metadata_type[namelen] = 0;
3610 if (namelen && mddev->metadata_type[namelen-1] == '\n')
3611 mddev->metadata_type[--namelen] = 0;
3612 mddev->persistent = 0;
3613 mddev->external = 1;
3614 mddev->major_version = 0;
3615 mddev->minor_version = 90;
3616 return len;
3617 }
3618 major = simple_strtoul(buf, &e, 10);
3619 if (e==buf || *e != '.')
3620 return -EINVAL;
3621 buf = e+1;
3622 minor = simple_strtoul(buf, &e, 10);
3623 if (e==buf || (*e && *e != '\n') )
3624 return -EINVAL;
3625 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
3626 return -ENOENT;
3627 mddev->major_version = major;
3628 mddev->minor_version = minor;
3629 mddev->persistent = 1;
3630 mddev->external = 0;
3631 return len;
3632 }
3633
3634 static struct md_sysfs_entry md_metadata =
3635 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
3636
3637 static ssize_t
3638 action_show(mddev_t *mddev, char *page)
3639 {
3640 char *type = "idle";
3641 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3642 type = "frozen";
3643 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3644 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
3645 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3646 type = "reshape";
3647 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3648 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3649 type = "resync";
3650 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
3651 type = "check";
3652 else
3653 type = "repair";
3654 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
3655 type = "recover";
3656 }
3657 return sprintf(page, "%s\n", type);
3658 }
3659
3660 static ssize_t
3661 action_store(mddev_t *mddev, const char *page, size_t len)
3662 {
3663 if (!mddev->pers || !mddev->pers->sync_request)
3664 return -EINVAL;
3665
3666 if (cmd_match(page, "frozen"))
3667 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3668 else
3669 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3670
3671 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
3672 if (mddev->sync_thread) {
3673 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3674 md_unregister_thread(mddev->sync_thread);
3675 mddev->sync_thread = NULL;
3676 mddev->recovery = 0;
3677 }
3678 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3679 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3680 return -EBUSY;
3681 else if (cmd_match(page, "resync"))
3682 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3683 else if (cmd_match(page, "recover")) {
3684 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3685 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3686 } else if (cmd_match(page, "reshape")) {
3687 int err;
3688 if (mddev->pers->start_reshape == NULL)
3689 return -EINVAL;
3690 err = mddev->pers->start_reshape(mddev);
3691 if (err)
3692 return err;
3693 sysfs_notify(&mddev->kobj, NULL, "degraded");
3694 } else {
3695 if (cmd_match(page, "check"))
3696 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3697 else if (!cmd_match(page, "repair"))
3698 return -EINVAL;
3699 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3700 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3701 }
3702 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3703 md_wakeup_thread(mddev->thread);
3704 sysfs_notify_dirent(mddev->sysfs_action);
3705 return len;
3706 }
3707
3708 static ssize_t
3709 mismatch_cnt_show(mddev_t *mddev, char *page)
3710 {
3711 return sprintf(page, "%llu\n",
3712 (unsigned long long) mddev->resync_mismatches);
3713 }
3714
3715 static struct md_sysfs_entry md_scan_mode =
3716 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
3717
3718
3719 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
3720
3721 static ssize_t
3722 sync_min_show(mddev_t *mddev, char *page)
3723 {
3724 return sprintf(page, "%d (%s)\n", speed_min(mddev),
3725 mddev->sync_speed_min ? "local": "system");
3726 }
3727
3728 static ssize_t
3729 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
3730 {
3731 int min;
3732 char *e;
3733 if (strncmp(buf, "system", 6)==0) {
3734 mddev->sync_speed_min = 0;
3735 return len;
3736 }
3737 min = simple_strtoul(buf, &e, 10);
3738 if (buf == e || (*e && *e != '\n') || min <= 0)
3739 return -EINVAL;
3740 mddev->sync_speed_min = min;
3741 return len;
3742 }
3743
3744 static struct md_sysfs_entry md_sync_min =
3745 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
3746
3747 static ssize_t
3748 sync_max_show(mddev_t *mddev, char *page)
3749 {
3750 return sprintf(page, "%d (%s)\n", speed_max(mddev),
3751 mddev->sync_speed_max ? "local": "system");
3752 }
3753
3754 static ssize_t
3755 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
3756 {
3757 int max;
3758 char *e;
3759 if (strncmp(buf, "system", 6)==0) {
3760 mddev->sync_speed_max = 0;
3761 return len;
3762 }
3763 max = simple_strtoul(buf, &e, 10);
3764 if (buf == e || (*e && *e != '\n') || max <= 0)
3765 return -EINVAL;
3766 mddev->sync_speed_max = max;
3767 return len;
3768 }
3769
3770 static struct md_sysfs_entry md_sync_max =
3771 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
3772
3773 static ssize_t
3774 degraded_show(mddev_t *mddev, char *page)
3775 {
3776 return sprintf(page, "%d\n", mddev->degraded);
3777 }
3778 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
3779
3780 static ssize_t
3781 sync_force_parallel_show(mddev_t *mddev, char *page)
3782 {
3783 return sprintf(page, "%d\n", mddev->parallel_resync);
3784 }
3785
3786 static ssize_t
3787 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
3788 {
3789 long n;
3790
3791 if (strict_strtol(buf, 10, &n))
3792 return -EINVAL;
3793
3794 if (n != 0 && n != 1)
3795 return -EINVAL;
3796
3797 mddev->parallel_resync = n;
3798
3799 if (mddev->sync_thread)
3800 wake_up(&resync_wait);
3801
3802 return len;
3803 }
3804
3805 /* force parallel resync, even with shared block devices */
3806 static struct md_sysfs_entry md_sync_force_parallel =
3807 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
3808 sync_force_parallel_show, sync_force_parallel_store);
3809
3810 static ssize_t
3811 sync_speed_show(mddev_t *mddev, char *page)
3812 {
3813 unsigned long resync, dt, db;
3814 if (mddev->curr_resync == 0)
3815 return sprintf(page, "none\n");
3816 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
3817 dt = (jiffies - mddev->resync_mark) / HZ;
3818 if (!dt) dt++;
3819 db = resync - mddev->resync_mark_cnt;
3820 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
3821 }
3822
3823 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
3824
3825 static ssize_t
3826 sync_completed_show(mddev_t *mddev, char *page)
3827 {
3828 unsigned long max_sectors, resync;
3829
3830 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3831 return sprintf(page, "none\n");
3832
3833 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3834 max_sectors = mddev->resync_max_sectors;
3835 else
3836 max_sectors = mddev->dev_sectors;
3837
3838 resync = mddev->curr_resync_completed;
3839 return sprintf(page, "%lu / %lu\n", resync, max_sectors);
3840 }
3841
3842 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
3843
3844 static ssize_t
3845 min_sync_show(mddev_t *mddev, char *page)
3846 {
3847 return sprintf(page, "%llu\n",
3848 (unsigned long long)mddev->resync_min);
3849 }
3850 static ssize_t
3851 min_sync_store(mddev_t *mddev, const char *buf, size_t len)
3852 {
3853 unsigned long long min;
3854 if (strict_strtoull(buf, 10, &min))
3855 return -EINVAL;
3856 if (min > mddev->resync_max)
3857 return -EINVAL;
3858 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3859 return -EBUSY;
3860
3861 /* Must be a multiple of chunk_size */
3862 if (mddev->chunk_sectors) {
3863 sector_t temp = min;
3864 if (sector_div(temp, mddev->chunk_sectors))
3865 return -EINVAL;
3866 }
3867 mddev->resync_min = min;
3868
3869 return len;
3870 }
3871
3872 static struct md_sysfs_entry md_min_sync =
3873 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
3874
3875 static ssize_t
3876 max_sync_show(mddev_t *mddev, char *page)
3877 {
3878 if (mddev->resync_max == MaxSector)
3879 return sprintf(page, "max\n");
3880 else
3881 return sprintf(page, "%llu\n",
3882 (unsigned long long)mddev->resync_max);
3883 }
3884 static ssize_t
3885 max_sync_store(mddev_t *mddev, const char *buf, size_t len)
3886 {
3887 if (strncmp(buf, "max", 3) == 0)
3888 mddev->resync_max = MaxSector;
3889 else {
3890 unsigned long long max;
3891 if (strict_strtoull(buf, 10, &max))
3892 return -EINVAL;
3893 if (max < mddev->resync_min)
3894 return -EINVAL;
3895 if (max < mddev->resync_max &&
3896 mddev->ro == 0 &&
3897 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3898 return -EBUSY;
3899
3900 /* Must be a multiple of chunk_size */
3901 if (mddev->chunk_sectors) {
3902 sector_t temp = max;
3903 if (sector_div(temp, mddev->chunk_sectors))
3904 return -EINVAL;
3905 }
3906 mddev->resync_max = max;
3907 }
3908 wake_up(&mddev->recovery_wait);
3909 return len;
3910 }
3911
3912 static struct md_sysfs_entry md_max_sync =
3913 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
3914
3915 static ssize_t
3916 suspend_lo_show(mddev_t *mddev, char *page)
3917 {
3918 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
3919 }
3920
3921 static ssize_t
3922 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
3923 {
3924 char *e;
3925 unsigned long long new = simple_strtoull(buf, &e, 10);
3926
3927 if (mddev->pers == NULL ||
3928 mddev->pers->quiesce == NULL)
3929 return -EINVAL;
3930 if (buf == e || (*e && *e != '\n'))
3931 return -EINVAL;
3932 if (new >= mddev->suspend_hi ||
3933 (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
3934 mddev->suspend_lo = new;
3935 mddev->pers->quiesce(mddev, 2);
3936 return len;
3937 } else
3938 return -EINVAL;
3939 }
3940 static struct md_sysfs_entry md_suspend_lo =
3941 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
3942
3943
3944 static ssize_t
3945 suspend_hi_show(mddev_t *mddev, char *page)
3946 {
3947 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
3948 }
3949
3950 static ssize_t
3951 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
3952 {
3953 char *e;
3954 unsigned long long new = simple_strtoull(buf, &e, 10);
3955
3956 if (mddev->pers == NULL ||
3957 mddev->pers->quiesce == NULL)
3958 return -EINVAL;
3959 if (buf == e || (*e && *e != '\n'))
3960 return -EINVAL;
3961 if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
3962 (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
3963 mddev->suspend_hi = new;
3964 mddev->pers->quiesce(mddev, 1);
3965 mddev->pers->quiesce(mddev, 0);
3966 return len;
3967 } else
3968 return -EINVAL;
3969 }
3970 static struct md_sysfs_entry md_suspend_hi =
3971 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
3972
3973 static ssize_t
3974 reshape_position_show(mddev_t *mddev, char *page)
3975 {
3976 if (mddev->reshape_position != MaxSector)
3977 return sprintf(page, "%llu\n",
3978 (unsigned long long)mddev->reshape_position);
3979 strcpy(page, "none\n");
3980 return 5;
3981 }
3982
3983 static ssize_t
3984 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
3985 {
3986 char *e;
3987 unsigned long long new = simple_strtoull(buf, &e, 10);
3988 if (mddev->pers)
3989 return -EBUSY;
3990 if (buf == e || (*e && *e != '\n'))
3991 return -EINVAL;
3992 mddev->reshape_position = new;
3993 mddev->delta_disks = 0;
3994 mddev->new_level = mddev->level;
3995 mddev->new_layout = mddev->layout;
3996 mddev->new_chunk_sectors = mddev->chunk_sectors;
3997 return len;
3998 }
3999
4000 static struct md_sysfs_entry md_reshape_position =
4001 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4002 reshape_position_store);
4003
4004 static ssize_t
4005 array_size_show(mddev_t *mddev, char *page)
4006 {
4007 if (mddev->external_size)
4008 return sprintf(page, "%llu\n",
4009 (unsigned long long)mddev->array_sectors/2);
4010 else
4011 return sprintf(page, "default\n");
4012 }
4013
4014 static ssize_t
4015 array_size_store(mddev_t *mddev, const char *buf, size_t len)
4016 {
4017 sector_t sectors;
4018
4019 if (strncmp(buf, "default", 7) == 0) {
4020 if (mddev->pers)
4021 sectors = mddev->pers->size(mddev, 0, 0);
4022 else
4023 sectors = mddev->array_sectors;
4024
4025 mddev->external_size = 0;
4026 } else {
4027 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4028 return -EINVAL;
4029 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4030 return -E2BIG;
4031
4032 mddev->external_size = 1;
4033 }
4034
4035 mddev->array_sectors = sectors;
4036 set_capacity(mddev->gendisk, mddev->array_sectors);
4037 if (mddev->pers)
4038 revalidate_disk(mddev->gendisk);
4039
4040 return len;
4041 }
4042
4043 static struct md_sysfs_entry md_array_size =
4044 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4045 array_size_store);
4046
4047 static struct attribute *md_default_attrs[] = {
4048 &md_level.attr,
4049 &md_layout.attr,
4050 &md_raid_disks.attr,
4051 &md_chunk_size.attr,
4052 &md_size.attr,
4053 &md_resync_start.attr,
4054 &md_metadata.attr,
4055 &md_new_device.attr,
4056 &md_safe_delay.attr,
4057 &md_array_state.attr,
4058 &md_reshape_position.attr,
4059 &md_array_size.attr,
4060 &max_corr_read_errors.attr,
4061 NULL,
4062 };
4063
4064 static struct attribute *md_redundancy_attrs[] = {
4065 &md_scan_mode.attr,
4066 &md_mismatches.attr,
4067 &md_sync_min.attr,
4068 &md_sync_max.attr,
4069 &md_sync_speed.attr,
4070 &md_sync_force_parallel.attr,
4071 &md_sync_completed.attr,
4072 &md_min_sync.attr,
4073 &md_max_sync.attr,
4074 &md_suspend_lo.attr,
4075 &md_suspend_hi.attr,
4076 &md_bitmap.attr,
4077 &md_degraded.attr,
4078 NULL,
4079 };
4080 static struct attribute_group md_redundancy_group = {
4081 .name = NULL,
4082 .attrs = md_redundancy_attrs,
4083 };
4084
4085
4086 static ssize_t
4087 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4088 {
4089 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4090 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4091 ssize_t rv;
4092
4093 if (!entry->show)
4094 return -EIO;
4095 rv = mddev_lock(mddev);
4096 if (!rv) {
4097 rv = entry->show(mddev, page);
4098 mddev_unlock(mddev);
4099 }
4100 return rv;
4101 }
4102
4103 static ssize_t
4104 md_attr_store(struct kobject *kobj, struct attribute *attr,
4105 const char *page, size_t length)
4106 {
4107 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4108 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4109 ssize_t rv;
4110
4111 if (!entry->store)
4112 return -EIO;
4113 if (!capable(CAP_SYS_ADMIN))
4114 return -EACCES;
4115 rv = mddev_lock(mddev);
4116 if (mddev->hold_active == UNTIL_IOCTL)
4117 mddev->hold_active = 0;
4118 if (!rv) {
4119 rv = entry->store(mddev, page, length);
4120 mddev_unlock(mddev);
4121 }
4122 return rv;
4123 }
4124
4125 static void md_free(struct kobject *ko)
4126 {
4127 mddev_t *mddev = container_of(ko, mddev_t, kobj);
4128
4129 if (mddev->sysfs_state)
4130 sysfs_put(mddev->sysfs_state);
4131
4132 if (mddev->gendisk) {
4133 del_gendisk(mddev->gendisk);
4134 put_disk(mddev->gendisk);
4135 }
4136 if (mddev->queue)
4137 blk_cleanup_queue(mddev->queue);
4138
4139 kfree(mddev);
4140 }
4141
4142 static struct sysfs_ops md_sysfs_ops = {
4143 .show = md_attr_show,
4144 .store = md_attr_store,
4145 };
4146 static struct kobj_type md_ktype = {
4147 .release = md_free,
4148 .sysfs_ops = &md_sysfs_ops,
4149 .default_attrs = md_default_attrs,
4150 };
4151
4152 int mdp_major = 0;
4153
4154 static void mddev_delayed_delete(struct work_struct *ws)
4155 {
4156 mddev_t *mddev = container_of(ws, mddev_t, del_work);
4157
4158 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4159 kobject_del(&mddev->kobj);
4160 kobject_put(&mddev->kobj);
4161 }
4162
4163 static int md_alloc(dev_t dev, char *name)
4164 {
4165 static DEFINE_MUTEX(disks_mutex);
4166 mddev_t *mddev = mddev_find(dev);
4167 struct gendisk *disk;
4168 int partitioned;
4169 int shift;
4170 int unit;
4171 int error;
4172
4173 if (!mddev)
4174 return -ENODEV;
4175
4176 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4177 shift = partitioned ? MdpMinorShift : 0;
4178 unit = MINOR(mddev->unit) >> shift;
4179
4180 /* wait for any previous instance if this device
4181 * to be completed removed (mddev_delayed_delete).
4182 */
4183 flush_scheduled_work();
4184
4185 mutex_lock(&disks_mutex);
4186 error = -EEXIST;
4187 if (mddev->gendisk)
4188 goto abort;
4189
4190 if (name) {
4191 /* Need to ensure that 'name' is not a duplicate.
4192 */
4193 mddev_t *mddev2;
4194 spin_lock(&all_mddevs_lock);
4195
4196 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4197 if (mddev2->gendisk &&
4198 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4199 spin_unlock(&all_mddevs_lock);
4200 goto abort;
4201 }
4202 spin_unlock(&all_mddevs_lock);
4203 }
4204
4205 error = -ENOMEM;
4206 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4207 if (!mddev->queue)
4208 goto abort;
4209 mddev->queue->queuedata = mddev;
4210
4211 /* Can be unlocked because the queue is new: no concurrency */
4212 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, mddev->queue);
4213
4214 blk_queue_make_request(mddev->queue, md_make_request);
4215
4216 disk = alloc_disk(1 << shift);
4217 if (!disk) {
4218 blk_cleanup_queue(mddev->queue);
4219 mddev->queue = NULL;
4220 goto abort;
4221 }
4222 disk->major = MAJOR(mddev->unit);
4223 disk->first_minor = unit << shift;
4224 if (name)
4225 strcpy(disk->disk_name, name);
4226 else if (partitioned)
4227 sprintf(disk->disk_name, "md_d%d", unit);
4228 else
4229 sprintf(disk->disk_name, "md%d", unit);
4230 disk->fops = &md_fops;
4231 disk->private_data = mddev;
4232 disk->queue = mddev->queue;
4233 /* Allow extended partitions. This makes the
4234 * 'mdp' device redundant, but we can't really
4235 * remove it now.
4236 */
4237 disk->flags |= GENHD_FL_EXT_DEVT;
4238 add_disk(disk);
4239 mddev->gendisk = disk;
4240 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4241 &disk_to_dev(disk)->kobj, "%s", "md");
4242 if (error) {
4243 /* This isn't possible, but as kobject_init_and_add is marked
4244 * __must_check, we must do something with the result
4245 */
4246 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4247 disk->disk_name);
4248 error = 0;
4249 }
4250 if (sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4251 printk(KERN_DEBUG "pointless warning\n");
4252 abort:
4253 mutex_unlock(&disks_mutex);
4254 if (!error) {
4255 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4256 mddev->sysfs_state = sysfs_get_dirent(mddev->kobj.sd, "array_state");
4257 }
4258 mddev_put(mddev);
4259 return error;
4260 }
4261
4262 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4263 {
4264 md_alloc(dev, NULL);
4265 return NULL;
4266 }
4267
4268 static int add_named_array(const char *val, struct kernel_param *kp)
4269 {
4270 /* val must be "md_*" where * is not all digits.
4271 * We allocate an array with a large free minor number, and
4272 * set the name to val. val must not already be an active name.
4273 */
4274 int len = strlen(val);
4275 char buf[DISK_NAME_LEN];
4276
4277 while (len && val[len-1] == '\n')
4278 len--;
4279 if (len >= DISK_NAME_LEN)
4280 return -E2BIG;
4281 strlcpy(buf, val, len+1);
4282 if (strncmp(buf, "md_", 3) != 0)
4283 return -EINVAL;
4284 return md_alloc(0, buf);
4285 }
4286
4287 static void md_safemode_timeout(unsigned long data)
4288 {
4289 mddev_t *mddev = (mddev_t *) data;
4290
4291 if (!atomic_read(&mddev->writes_pending)) {
4292 mddev->safemode = 1;
4293 if (mddev->external)
4294 sysfs_notify_dirent(mddev->sysfs_state);
4295 }
4296 md_wakeup_thread(mddev->thread);
4297 }
4298
4299 static int start_dirty_degraded;
4300
4301 static int md_run(mddev_t *mddev)
4302 {
4303 int err;
4304 mdk_rdev_t *rdev;
4305 struct mdk_personality *pers;
4306
4307 if (list_empty(&mddev->disks))
4308 /* cannot run an array with no devices.. */
4309 return -EINVAL;
4310
4311 if (mddev->pers)
4312 return -EBUSY;
4313
4314 /* These two calls synchronise us with the
4315 * sysfs_remove_group calls in mddev_unlock,
4316 * so they must have completed.
4317 */
4318 mutex_lock(&mddev->open_mutex);
4319 mutex_unlock(&mddev->open_mutex);
4320
4321 /*
4322 * Analyze all RAID superblock(s)
4323 */
4324 if (!mddev->raid_disks) {
4325 if (!mddev->persistent)
4326 return -EINVAL;
4327 analyze_sbs(mddev);
4328 }
4329
4330 if (mddev->level != LEVEL_NONE)
4331 request_module("md-level-%d", mddev->level);
4332 else if (mddev->clevel[0])
4333 request_module("md-%s", mddev->clevel);
4334
4335 /*
4336 * Drop all container device buffers, from now on
4337 * the only valid external interface is through the md
4338 * device.
4339 */
4340 list_for_each_entry(rdev, &mddev->disks, same_set) {
4341 if (test_bit(Faulty, &rdev->flags))
4342 continue;
4343 sync_blockdev(rdev->bdev);
4344 invalidate_bdev(rdev->bdev);
4345
4346 /* perform some consistency tests on the device.
4347 * We don't want the data to overlap the metadata,
4348 * Internal Bitmap issues have been handled elsewhere.
4349 */
4350 if (rdev->data_offset < rdev->sb_start) {
4351 if (mddev->dev_sectors &&
4352 rdev->data_offset + mddev->dev_sectors
4353 > rdev->sb_start) {
4354 printk("md: %s: data overlaps metadata\n",
4355 mdname(mddev));
4356 return -EINVAL;
4357 }
4358 } else {
4359 if (rdev->sb_start + rdev->sb_size/512
4360 > rdev->data_offset) {
4361 printk("md: %s: metadata overlaps data\n",
4362 mdname(mddev));
4363 return -EINVAL;
4364 }
4365 }
4366 sysfs_notify_dirent(rdev->sysfs_state);
4367 }
4368
4369 spin_lock(&pers_lock);
4370 pers = find_pers(mddev->level, mddev->clevel);
4371 if (!pers || !try_module_get(pers->owner)) {
4372 spin_unlock(&pers_lock);
4373 if (mddev->level != LEVEL_NONE)
4374 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4375 mddev->level);
4376 else
4377 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4378 mddev->clevel);
4379 return -EINVAL;
4380 }
4381 mddev->pers = pers;
4382 spin_unlock(&pers_lock);
4383 if (mddev->level != pers->level) {
4384 mddev->level = pers->level;
4385 mddev->new_level = pers->level;
4386 }
4387 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4388
4389 if (mddev->reshape_position != MaxSector &&
4390 pers->start_reshape == NULL) {
4391 /* This personality cannot handle reshaping... */
4392 mddev->pers = NULL;
4393 module_put(pers->owner);
4394 return -EINVAL;
4395 }
4396
4397 if (pers->sync_request) {
4398 /* Warn if this is a potentially silly
4399 * configuration.
4400 */
4401 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4402 mdk_rdev_t *rdev2;
4403 int warned = 0;
4404
4405 list_for_each_entry(rdev, &mddev->disks, same_set)
4406 list_for_each_entry(rdev2, &mddev->disks, same_set) {
4407 if (rdev < rdev2 &&
4408 rdev->bdev->bd_contains ==
4409 rdev2->bdev->bd_contains) {
4410 printk(KERN_WARNING
4411 "%s: WARNING: %s appears to be"
4412 " on the same physical disk as"
4413 " %s.\n",
4414 mdname(mddev),
4415 bdevname(rdev->bdev,b),
4416 bdevname(rdev2->bdev,b2));
4417 warned = 1;
4418 }
4419 }
4420
4421 if (warned)
4422 printk(KERN_WARNING
4423 "True protection against single-disk"
4424 " failure might be compromised.\n");
4425 }
4426
4427 mddev->recovery = 0;
4428 /* may be over-ridden by personality */
4429 mddev->resync_max_sectors = mddev->dev_sectors;
4430
4431 mddev->barriers_work = 1;
4432 mddev->ok_start_degraded = start_dirty_degraded;
4433
4434 if (start_readonly && mddev->ro == 0)
4435 mddev->ro = 2; /* read-only, but switch on first write */
4436
4437 err = mddev->pers->run(mddev);
4438 if (err)
4439 printk(KERN_ERR "md: pers->run() failed ...\n");
4440 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4441 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4442 " but 'external_size' not in effect?\n", __func__);
4443 printk(KERN_ERR
4444 "md: invalid array_size %llu > default size %llu\n",
4445 (unsigned long long)mddev->array_sectors / 2,
4446 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4447 err = -EINVAL;
4448 mddev->pers->stop(mddev);
4449 }
4450 if (err == 0 && mddev->pers->sync_request) {
4451 err = bitmap_create(mddev);
4452 if (err) {
4453 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4454 mdname(mddev), err);
4455 mddev->pers->stop(mddev);
4456 }
4457 }
4458 if (err) {
4459 module_put(mddev->pers->owner);
4460 mddev->pers = NULL;
4461 bitmap_destroy(mddev);
4462 return err;
4463 }
4464 if (mddev->pers->sync_request) {
4465 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4466 printk(KERN_WARNING
4467 "md: cannot register extra attributes for %s\n",
4468 mdname(mddev));
4469 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
4470 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4471 mddev->ro = 0;
4472
4473 atomic_set(&mddev->writes_pending,0);
4474 atomic_set(&mddev->max_corr_read_errors,
4475 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4476 mddev->safemode = 0;
4477 mddev->safemode_timer.function = md_safemode_timeout;
4478 mddev->safemode_timer.data = (unsigned long) mddev;
4479 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4480 mddev->in_sync = 1;
4481
4482 list_for_each_entry(rdev, &mddev->disks, same_set)
4483 if (rdev->raid_disk >= 0) {
4484 char nm[20];
4485 sprintf(nm, "rd%d", rdev->raid_disk);
4486 if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
4487 printk("md: cannot register %s for %s\n",
4488 nm, mdname(mddev));
4489 }
4490
4491 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4492
4493 if (mddev->flags)
4494 md_update_sb(mddev, 0);
4495
4496 md_wakeup_thread(mddev->thread);
4497 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4498
4499 md_new_event(mddev);
4500 sysfs_notify_dirent(mddev->sysfs_state);
4501 if (mddev->sysfs_action)
4502 sysfs_notify_dirent(mddev->sysfs_action);
4503 sysfs_notify(&mddev->kobj, NULL, "degraded");
4504 return 0;
4505 }
4506
4507 static int do_md_run(mddev_t *mddev)
4508 {
4509 int err;
4510
4511 err = md_run(mddev);
4512 if (err)
4513 goto out;
4514
4515 set_capacity(mddev->gendisk, mddev->array_sectors);
4516 revalidate_disk(mddev->gendisk);
4517 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4518 out:
4519 return err;
4520 }
4521
4522 static int restart_array(mddev_t *mddev)
4523 {
4524 struct gendisk *disk = mddev->gendisk;
4525
4526 /* Complain if it has no devices */
4527 if (list_empty(&mddev->disks))
4528 return -ENXIO;
4529 if (!mddev->pers)
4530 return -EINVAL;
4531 if (!mddev->ro)
4532 return -EBUSY;
4533 mddev->safemode = 0;
4534 mddev->ro = 0;
4535 set_disk_ro(disk, 0);
4536 printk(KERN_INFO "md: %s switched to read-write mode.\n",
4537 mdname(mddev));
4538 /* Kick recovery or resync if necessary */
4539 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4540 md_wakeup_thread(mddev->thread);
4541 md_wakeup_thread(mddev->sync_thread);
4542 sysfs_notify_dirent(mddev->sysfs_state);
4543 return 0;
4544 }
4545
4546 /* similar to deny_write_access, but accounts for our holding a reference
4547 * to the file ourselves */
4548 static int deny_bitmap_write_access(struct file * file)
4549 {
4550 struct inode *inode = file->f_mapping->host;
4551
4552 spin_lock(&inode->i_lock);
4553 if (atomic_read(&inode->i_writecount) > 1) {
4554 spin_unlock(&inode->i_lock);
4555 return -ETXTBSY;
4556 }
4557 atomic_set(&inode->i_writecount, -1);
4558 spin_unlock(&inode->i_lock);
4559
4560 return 0;
4561 }
4562
4563 void restore_bitmap_write_access(struct file *file)
4564 {
4565 struct inode *inode = file->f_mapping->host;
4566
4567 spin_lock(&inode->i_lock);
4568 atomic_set(&inode->i_writecount, 1);
4569 spin_unlock(&inode->i_lock);
4570 }
4571
4572 static void md_clean(mddev_t *mddev)
4573 {
4574 mddev->array_sectors = 0;
4575 mddev->external_size = 0;
4576 mddev->dev_sectors = 0;
4577 mddev->raid_disks = 0;
4578 mddev->recovery_cp = 0;
4579 mddev->resync_min = 0;
4580 mddev->resync_max = MaxSector;
4581 mddev->reshape_position = MaxSector;
4582 mddev->external = 0;
4583 mddev->persistent = 0;
4584 mddev->level = LEVEL_NONE;
4585 mddev->clevel[0] = 0;
4586 mddev->flags = 0;
4587 mddev->ro = 0;
4588 mddev->metadata_type[0] = 0;
4589 mddev->chunk_sectors = 0;
4590 mddev->ctime = mddev->utime = 0;
4591 mddev->layout = 0;
4592 mddev->max_disks = 0;
4593 mddev->events = 0;
4594 mddev->delta_disks = 0;
4595 mddev->new_level = LEVEL_NONE;
4596 mddev->new_layout = 0;
4597 mddev->new_chunk_sectors = 0;
4598 mddev->curr_resync = 0;
4599 mddev->resync_mismatches = 0;
4600 mddev->suspend_lo = mddev->suspend_hi = 0;
4601 mddev->sync_speed_min = mddev->sync_speed_max = 0;
4602 mddev->recovery = 0;
4603 mddev->in_sync = 0;
4604 mddev->degraded = 0;
4605 mddev->barriers_work = 0;
4606 mddev->safemode = 0;
4607 mddev->bitmap_info.offset = 0;
4608 mddev->bitmap_info.default_offset = 0;
4609 mddev->bitmap_info.chunksize = 0;
4610 mddev->bitmap_info.daemon_sleep = 0;
4611 mddev->bitmap_info.max_write_behind = 0;
4612 }
4613
4614 static void md_stop_writes(mddev_t *mddev)
4615 {
4616 if (mddev->sync_thread) {
4617 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4618 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4619 md_unregister_thread(mddev->sync_thread);
4620 mddev->sync_thread = NULL;
4621 }
4622
4623 del_timer_sync(&mddev->safemode_timer);
4624
4625 bitmap_flush(mddev);
4626 md_super_wait(mddev);
4627
4628 if (!mddev->in_sync || mddev->flags) {
4629 /* mark array as shutdown cleanly */
4630 mddev->in_sync = 1;
4631 md_update_sb(mddev, 1);
4632 }
4633 }
4634
4635 static void md_stop(mddev_t *mddev)
4636 {
4637 md_stop_writes(mddev);
4638
4639 mddev->pers->stop(mddev);
4640 if (mddev->pers->sync_request && mddev->to_remove == NULL)
4641 mddev->to_remove = &md_redundancy_group;
4642 module_put(mddev->pers->owner);
4643 mddev->pers = NULL;
4644 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4645 }
4646
4647 static int md_set_readonly(mddev_t *mddev, int is_open)
4648 {
4649 int err = 0;
4650 mutex_lock(&mddev->open_mutex);
4651 if (atomic_read(&mddev->openers) > is_open) {
4652 printk("md: %s still in use.\n",mdname(mddev));
4653 err = -EBUSY;
4654 goto out;
4655 }
4656 if (mddev->pers) {
4657 md_stop_writes(mddev);
4658
4659 err = -ENXIO;
4660 if (mddev->ro==1)
4661 goto out;
4662 mddev->ro = 1;
4663 set_disk_ro(mddev->gendisk, 1);
4664 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4665 sysfs_notify_dirent(mddev->sysfs_state);
4666 err = 0;
4667 }
4668 out:
4669 mutex_unlock(&mddev->open_mutex);
4670 return err;
4671 }
4672
4673 /* mode:
4674 * 0 - completely stop and dis-assemble array
4675 * 2 - stop but do not disassemble array
4676 */
4677 static int do_md_stop(mddev_t * mddev, int mode, int is_open)
4678 {
4679 int err = 0;
4680 struct gendisk *disk = mddev->gendisk;
4681 mdk_rdev_t *rdev;
4682
4683 mutex_lock(&mddev->open_mutex);
4684 if (atomic_read(&mddev->openers) > is_open) {
4685 printk("md: %s still in use.\n",mdname(mddev));
4686 err = -EBUSY;
4687 } else if (mddev->pers) {
4688
4689 if (mddev->ro)
4690 set_disk_ro(disk, 0);
4691
4692 md_stop(mddev);
4693 mddev->queue->merge_bvec_fn = NULL;
4694 mddev->queue->unplug_fn = NULL;
4695 mddev->queue->backing_dev_info.congested_fn = NULL;
4696
4697 /* tell userspace to handle 'inactive' */
4698 sysfs_notify_dirent(mddev->sysfs_state);
4699
4700 list_for_each_entry(rdev, &mddev->disks, same_set)
4701 if (rdev->raid_disk >= 0) {
4702 char nm[20];
4703 sprintf(nm, "rd%d", rdev->raid_disk);
4704 sysfs_remove_link(&mddev->kobj, nm);
4705 }
4706
4707 set_capacity(disk, 0);
4708 revalidate_disk(disk);
4709
4710 if (mddev->ro)
4711 mddev->ro = 0;
4712
4713 err = 0;
4714 }
4715 mutex_unlock(&mddev->open_mutex);
4716 if (err)
4717 return err;
4718 /*
4719 * Free resources if final stop
4720 */
4721 if (mode == 0) {
4722
4723 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
4724
4725 bitmap_destroy(mddev);
4726 if (mddev->bitmap_info.file) {
4727 restore_bitmap_write_access(mddev->bitmap_info.file);
4728 fput(mddev->bitmap_info.file);
4729 mddev->bitmap_info.file = NULL;
4730 }
4731 mddev->bitmap_info.offset = 0;
4732
4733 export_array(mddev);
4734
4735 md_clean(mddev);
4736 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4737 if (mddev->hold_active == UNTIL_STOP)
4738 mddev->hold_active = 0;
4739
4740 }
4741 err = 0;
4742 blk_integrity_unregister(disk);
4743 md_new_event(mddev);
4744 sysfs_notify_dirent(mddev->sysfs_state);
4745 return err;
4746 }
4747
4748 #ifndef MODULE
4749 static void autorun_array(mddev_t *mddev)
4750 {
4751 mdk_rdev_t *rdev;
4752 int err;
4753
4754 if (list_empty(&mddev->disks))
4755 return;
4756
4757 printk(KERN_INFO "md: running: ");
4758
4759 list_for_each_entry(rdev, &mddev->disks, same_set) {
4760 char b[BDEVNAME_SIZE];
4761 printk("<%s>", bdevname(rdev->bdev,b));
4762 }
4763 printk("\n");
4764
4765 err = do_md_run(mddev);
4766 if (err) {
4767 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
4768 do_md_stop(mddev, 0, 0);
4769 }
4770 }
4771
4772 /*
4773 * lets try to run arrays based on all disks that have arrived
4774 * until now. (those are in pending_raid_disks)
4775 *
4776 * the method: pick the first pending disk, collect all disks with
4777 * the same UUID, remove all from the pending list and put them into
4778 * the 'same_array' list. Then order this list based on superblock
4779 * update time (freshest comes first), kick out 'old' disks and
4780 * compare superblocks. If everything's fine then run it.
4781 *
4782 * If "unit" is allocated, then bump its reference count
4783 */
4784 static void autorun_devices(int part)
4785 {
4786 mdk_rdev_t *rdev0, *rdev, *tmp;
4787 mddev_t *mddev;
4788 char b[BDEVNAME_SIZE];
4789
4790 printk(KERN_INFO "md: autorun ...\n");
4791 while (!list_empty(&pending_raid_disks)) {
4792 int unit;
4793 dev_t dev;
4794 LIST_HEAD(candidates);
4795 rdev0 = list_entry(pending_raid_disks.next,
4796 mdk_rdev_t, same_set);
4797
4798 printk(KERN_INFO "md: considering %s ...\n",
4799 bdevname(rdev0->bdev,b));
4800 INIT_LIST_HEAD(&candidates);
4801 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
4802 if (super_90_load(rdev, rdev0, 0) >= 0) {
4803 printk(KERN_INFO "md: adding %s ...\n",
4804 bdevname(rdev->bdev,b));
4805 list_move(&rdev->same_set, &candidates);
4806 }
4807 /*
4808 * now we have a set of devices, with all of them having
4809 * mostly sane superblocks. It's time to allocate the
4810 * mddev.
4811 */
4812 if (part) {
4813 dev = MKDEV(mdp_major,
4814 rdev0->preferred_minor << MdpMinorShift);
4815 unit = MINOR(dev) >> MdpMinorShift;
4816 } else {
4817 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
4818 unit = MINOR(dev);
4819 }
4820 if (rdev0->preferred_minor != unit) {
4821 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
4822 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
4823 break;
4824 }
4825
4826 md_probe(dev, NULL, NULL);
4827 mddev = mddev_find(dev);
4828 if (!mddev || !mddev->gendisk) {
4829 if (mddev)
4830 mddev_put(mddev);
4831 printk(KERN_ERR
4832 "md: cannot allocate memory for md drive.\n");
4833 break;
4834 }
4835 if (mddev_lock(mddev))
4836 printk(KERN_WARNING "md: %s locked, cannot run\n",
4837 mdname(mddev));
4838 else if (mddev->raid_disks || mddev->major_version
4839 || !list_empty(&mddev->disks)) {
4840 printk(KERN_WARNING
4841 "md: %s already running, cannot run %s\n",
4842 mdname(mddev), bdevname(rdev0->bdev,b));
4843 mddev_unlock(mddev);
4844 } else {
4845 printk(KERN_INFO "md: created %s\n", mdname(mddev));
4846 mddev->persistent = 1;
4847 rdev_for_each_list(rdev, tmp, &candidates) {
4848 list_del_init(&rdev->same_set);
4849 if (bind_rdev_to_array(rdev, mddev))
4850 export_rdev(rdev);
4851 }
4852 autorun_array(mddev);
4853 mddev_unlock(mddev);
4854 }
4855 /* on success, candidates will be empty, on error
4856 * it won't...
4857 */
4858 rdev_for_each_list(rdev, tmp, &candidates) {
4859 list_del_init(&rdev->same_set);
4860 export_rdev(rdev);
4861 }
4862 mddev_put(mddev);
4863 }
4864 printk(KERN_INFO "md: ... autorun DONE.\n");
4865 }
4866 #endif /* !MODULE */
4867
4868 static int get_version(void __user * arg)
4869 {
4870 mdu_version_t ver;
4871
4872 ver.major = MD_MAJOR_VERSION;
4873 ver.minor = MD_MINOR_VERSION;
4874 ver.patchlevel = MD_PATCHLEVEL_VERSION;
4875
4876 if (copy_to_user(arg, &ver, sizeof(ver)))
4877 return -EFAULT;
4878
4879 return 0;
4880 }
4881
4882 static int get_array_info(mddev_t * mddev, void __user * arg)
4883 {
4884 mdu_array_info_t info;
4885 int nr,working,insync,failed,spare;
4886 mdk_rdev_t *rdev;
4887
4888 nr=working=insync=failed=spare=0;
4889 list_for_each_entry(rdev, &mddev->disks, same_set) {
4890 nr++;
4891 if (test_bit(Faulty, &rdev->flags))
4892 failed++;
4893 else {
4894 working++;
4895 if (test_bit(In_sync, &rdev->flags))
4896 insync++;
4897 else
4898 spare++;
4899 }
4900 }
4901
4902 info.major_version = mddev->major_version;
4903 info.minor_version = mddev->minor_version;
4904 info.patch_version = MD_PATCHLEVEL_VERSION;
4905 info.ctime = mddev->ctime;
4906 info.level = mddev->level;
4907 info.size = mddev->dev_sectors / 2;
4908 if (info.size != mddev->dev_sectors / 2) /* overflow */
4909 info.size = -1;
4910 info.nr_disks = nr;
4911 info.raid_disks = mddev->raid_disks;
4912 info.md_minor = mddev->md_minor;
4913 info.not_persistent= !mddev->persistent;
4914
4915 info.utime = mddev->utime;
4916 info.state = 0;
4917 if (mddev->in_sync)
4918 info.state = (1<<MD_SB_CLEAN);
4919 if (mddev->bitmap && mddev->bitmap_info.offset)
4920 info.state = (1<<MD_SB_BITMAP_PRESENT);
4921 info.active_disks = insync;
4922 info.working_disks = working;
4923 info.failed_disks = failed;
4924 info.spare_disks = spare;
4925
4926 info.layout = mddev->layout;
4927 info.chunk_size = mddev->chunk_sectors << 9;
4928
4929 if (copy_to_user(arg, &info, sizeof(info)))
4930 return -EFAULT;
4931
4932 return 0;
4933 }
4934
4935 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
4936 {
4937 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
4938 char *ptr, *buf = NULL;
4939 int err = -ENOMEM;
4940
4941 if (md_allow_write(mddev))
4942 file = kmalloc(sizeof(*file), GFP_NOIO);
4943 else
4944 file = kmalloc(sizeof(*file), GFP_KERNEL);
4945
4946 if (!file)
4947 goto out;
4948
4949 /* bitmap disabled, zero the first byte and copy out */
4950 if (!mddev->bitmap || !mddev->bitmap->file) {
4951 file->pathname[0] = '\0';
4952 goto copy_out;
4953 }
4954
4955 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
4956 if (!buf)
4957 goto out;
4958
4959 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
4960 if (IS_ERR(ptr))
4961 goto out;
4962
4963 strcpy(file->pathname, ptr);
4964
4965 copy_out:
4966 err = 0;
4967 if (copy_to_user(arg, file, sizeof(*file)))
4968 err = -EFAULT;
4969 out:
4970 kfree(buf);
4971 kfree(file);
4972 return err;
4973 }
4974
4975 static int get_disk_info(mddev_t * mddev, void __user * arg)
4976 {
4977 mdu_disk_info_t info;
4978 mdk_rdev_t *rdev;
4979
4980 if (copy_from_user(&info, arg, sizeof(info)))
4981 return -EFAULT;
4982
4983 rdev = find_rdev_nr(mddev, info.number);
4984 if (rdev) {
4985 info.major = MAJOR(rdev->bdev->bd_dev);
4986 info.minor = MINOR(rdev->bdev->bd_dev);
4987 info.raid_disk = rdev->raid_disk;
4988 info.state = 0;
4989 if (test_bit(Faulty, &rdev->flags))
4990 info.state |= (1<<MD_DISK_FAULTY);
4991 else if (test_bit(In_sync, &rdev->flags)) {
4992 info.state |= (1<<MD_DISK_ACTIVE);
4993 info.state |= (1<<MD_DISK_SYNC);
4994 }
4995 if (test_bit(WriteMostly, &rdev->flags))
4996 info.state |= (1<<MD_DISK_WRITEMOSTLY);
4997 } else {
4998 info.major = info.minor = 0;
4999 info.raid_disk = -1;
5000 info.state = (1<<MD_DISK_REMOVED);
5001 }
5002
5003 if (copy_to_user(arg, &info, sizeof(info)))
5004 return -EFAULT;
5005
5006 return 0;
5007 }
5008
5009 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
5010 {
5011 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5012 mdk_rdev_t *rdev;
5013 dev_t dev = MKDEV(info->major,info->minor);
5014
5015 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5016 return -EOVERFLOW;
5017
5018 if (!mddev->raid_disks) {
5019 int err;
5020 /* expecting a device which has a superblock */
5021 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5022 if (IS_ERR(rdev)) {
5023 printk(KERN_WARNING
5024 "md: md_import_device returned %ld\n",
5025 PTR_ERR(rdev));
5026 return PTR_ERR(rdev);
5027 }
5028 if (!list_empty(&mddev->disks)) {
5029 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
5030 mdk_rdev_t, same_set);
5031 err = super_types[mddev->major_version]
5032 .load_super(rdev, rdev0, mddev->minor_version);
5033 if (err < 0) {
5034 printk(KERN_WARNING
5035 "md: %s has different UUID to %s\n",
5036 bdevname(rdev->bdev,b),
5037 bdevname(rdev0->bdev,b2));
5038 export_rdev(rdev);
5039 return -EINVAL;
5040 }
5041 }
5042 err = bind_rdev_to_array(rdev, mddev);
5043 if (err)
5044 export_rdev(rdev);
5045 return err;
5046 }
5047
5048 /*
5049 * add_new_disk can be used once the array is assembled
5050 * to add "hot spares". They must already have a superblock
5051 * written
5052 */
5053 if (mddev->pers) {
5054 int err;
5055 if (!mddev->pers->hot_add_disk) {
5056 printk(KERN_WARNING
5057 "%s: personality does not support diskops!\n",
5058 mdname(mddev));
5059 return -EINVAL;
5060 }
5061 if (mddev->persistent)
5062 rdev = md_import_device(dev, mddev->major_version,
5063 mddev->minor_version);
5064 else
5065 rdev = md_import_device(dev, -1, -1);
5066 if (IS_ERR(rdev)) {
5067 printk(KERN_WARNING
5068 "md: md_import_device returned %ld\n",
5069 PTR_ERR(rdev));
5070 return PTR_ERR(rdev);
5071 }
5072 /* set save_raid_disk if appropriate */
5073 if (!mddev->persistent) {
5074 if (info->state & (1<<MD_DISK_SYNC) &&
5075 info->raid_disk < mddev->raid_disks)
5076 rdev->raid_disk = info->raid_disk;
5077 else
5078 rdev->raid_disk = -1;
5079 } else
5080 super_types[mddev->major_version].
5081 validate_super(mddev, rdev);
5082 rdev->saved_raid_disk = rdev->raid_disk;
5083
5084 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5085 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5086 set_bit(WriteMostly, &rdev->flags);
5087 else
5088 clear_bit(WriteMostly, &rdev->flags);
5089
5090 rdev->raid_disk = -1;
5091 err = bind_rdev_to_array(rdev, mddev);
5092 if (!err && !mddev->pers->hot_remove_disk) {
5093 /* If there is hot_add_disk but no hot_remove_disk
5094 * then added disks for geometry changes,
5095 * and should be added immediately.
5096 */
5097 super_types[mddev->major_version].
5098 validate_super(mddev, rdev);
5099 err = mddev->pers->hot_add_disk(mddev, rdev);
5100 if (err)
5101 unbind_rdev_from_array(rdev);
5102 }
5103 if (err)
5104 export_rdev(rdev);
5105 else
5106 sysfs_notify_dirent(rdev->sysfs_state);
5107
5108 md_update_sb(mddev, 1);
5109 if (mddev->degraded)
5110 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5111 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5112 md_wakeup_thread(mddev->thread);
5113 return err;
5114 }
5115
5116 /* otherwise, add_new_disk is only allowed
5117 * for major_version==0 superblocks
5118 */
5119 if (mddev->major_version != 0) {
5120 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5121 mdname(mddev));
5122 return -EINVAL;
5123 }
5124
5125 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5126 int err;
5127 rdev = md_import_device(dev, -1, 0);
5128 if (IS_ERR(rdev)) {
5129 printk(KERN_WARNING
5130 "md: error, md_import_device() returned %ld\n",
5131 PTR_ERR(rdev));
5132 return PTR_ERR(rdev);
5133 }
5134 rdev->desc_nr = info->number;
5135 if (info->raid_disk < mddev->raid_disks)
5136 rdev->raid_disk = info->raid_disk;
5137 else
5138 rdev->raid_disk = -1;
5139
5140 if (rdev->raid_disk < mddev->raid_disks)
5141 if (info->state & (1<<MD_DISK_SYNC))
5142 set_bit(In_sync, &rdev->flags);
5143
5144 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5145 set_bit(WriteMostly, &rdev->flags);
5146
5147 if (!mddev->persistent) {
5148 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5149 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
5150 } else
5151 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
5152 rdev->sectors = rdev->sb_start;
5153
5154 err = bind_rdev_to_array(rdev, mddev);
5155 if (err) {
5156 export_rdev(rdev);
5157 return err;
5158 }
5159 }
5160
5161 return 0;
5162 }
5163
5164 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
5165 {
5166 char b[BDEVNAME_SIZE];
5167 mdk_rdev_t *rdev;
5168
5169 rdev = find_rdev(mddev, dev);
5170 if (!rdev)
5171 return -ENXIO;
5172
5173 if (rdev->raid_disk >= 0)
5174 goto busy;
5175
5176 kick_rdev_from_array(rdev);
5177 md_update_sb(mddev, 1);
5178 md_new_event(mddev);
5179
5180 return 0;
5181 busy:
5182 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5183 bdevname(rdev->bdev,b), mdname(mddev));
5184 return -EBUSY;
5185 }
5186
5187 static int hot_add_disk(mddev_t * mddev, dev_t dev)
5188 {
5189 char b[BDEVNAME_SIZE];
5190 int err;
5191 mdk_rdev_t *rdev;
5192
5193 if (!mddev->pers)
5194 return -ENODEV;
5195
5196 if (mddev->major_version != 0) {
5197 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5198 " version-0 superblocks.\n",
5199 mdname(mddev));
5200 return -EINVAL;
5201 }
5202 if (!mddev->pers->hot_add_disk) {
5203 printk(KERN_WARNING
5204 "%s: personality does not support diskops!\n",
5205 mdname(mddev));
5206 return -EINVAL;
5207 }
5208
5209 rdev = md_import_device(dev, -1, 0);
5210 if (IS_ERR(rdev)) {
5211 printk(KERN_WARNING
5212 "md: error, md_import_device() returned %ld\n",
5213 PTR_ERR(rdev));
5214 return -EINVAL;
5215 }
5216
5217 if (mddev->persistent)
5218 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
5219 else
5220 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
5221
5222 rdev->sectors = rdev->sb_start;
5223
5224 if (test_bit(Faulty, &rdev->flags)) {
5225 printk(KERN_WARNING
5226 "md: can not hot-add faulty %s disk to %s!\n",
5227 bdevname(rdev->bdev,b), mdname(mddev));
5228 err = -EINVAL;
5229 goto abort_export;
5230 }
5231 clear_bit(In_sync, &rdev->flags);
5232 rdev->desc_nr = -1;
5233 rdev->saved_raid_disk = -1;
5234 err = bind_rdev_to_array(rdev, mddev);
5235 if (err)
5236 goto abort_export;
5237
5238 /*
5239 * The rest should better be atomic, we can have disk failures
5240 * noticed in interrupt contexts ...
5241 */
5242
5243 rdev->raid_disk = -1;
5244
5245 md_update_sb(mddev, 1);
5246
5247 /*
5248 * Kick recovery, maybe this spare has to be added to the
5249 * array immediately.
5250 */
5251 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5252 md_wakeup_thread(mddev->thread);
5253 md_new_event(mddev);
5254 return 0;
5255
5256 abort_export:
5257 export_rdev(rdev);
5258 return err;
5259 }
5260
5261 static int set_bitmap_file(mddev_t *mddev, int fd)
5262 {
5263 int err;
5264
5265 if (mddev->pers) {
5266 if (!mddev->pers->quiesce)
5267 return -EBUSY;
5268 if (mddev->recovery || mddev->sync_thread)
5269 return -EBUSY;
5270 /* we should be able to change the bitmap.. */
5271 }
5272
5273
5274 if (fd >= 0) {
5275 if (mddev->bitmap)
5276 return -EEXIST; /* cannot add when bitmap is present */
5277 mddev->bitmap_info.file = fget(fd);
5278
5279 if (mddev->bitmap_info.file == NULL) {
5280 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5281 mdname(mddev));
5282 return -EBADF;
5283 }
5284
5285 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5286 if (err) {
5287 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5288 mdname(mddev));
5289 fput(mddev->bitmap_info.file);
5290 mddev->bitmap_info.file = NULL;
5291 return err;
5292 }
5293 mddev->bitmap_info.offset = 0; /* file overrides offset */
5294 } else if (mddev->bitmap == NULL)
5295 return -ENOENT; /* cannot remove what isn't there */
5296 err = 0;
5297 if (mddev->pers) {
5298 mddev->pers->quiesce(mddev, 1);
5299 if (fd >= 0)
5300 err = bitmap_create(mddev);
5301 if (fd < 0 || err) {
5302 bitmap_destroy(mddev);
5303 fd = -1; /* make sure to put the file */
5304 }
5305 mddev->pers->quiesce(mddev, 0);
5306 }
5307 if (fd < 0) {
5308 if (mddev->bitmap_info.file) {
5309 restore_bitmap_write_access(mddev->bitmap_info.file);
5310 fput(mddev->bitmap_info.file);
5311 }
5312 mddev->bitmap_info.file = NULL;
5313 }
5314
5315 return err;
5316 }
5317
5318 /*
5319 * set_array_info is used two different ways
5320 * The original usage is when creating a new array.
5321 * In this usage, raid_disks is > 0 and it together with
5322 * level, size, not_persistent,layout,chunksize determine the
5323 * shape of the array.
5324 * This will always create an array with a type-0.90.0 superblock.
5325 * The newer usage is when assembling an array.
5326 * In this case raid_disks will be 0, and the major_version field is
5327 * use to determine which style super-blocks are to be found on the devices.
5328 * The minor and patch _version numbers are also kept incase the
5329 * super_block handler wishes to interpret them.
5330 */
5331 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
5332 {
5333
5334 if (info->raid_disks == 0) {
5335 /* just setting version number for superblock loading */
5336 if (info->major_version < 0 ||
5337 info->major_version >= ARRAY_SIZE(super_types) ||
5338 super_types[info->major_version].name == NULL) {
5339 /* maybe try to auto-load a module? */
5340 printk(KERN_INFO
5341 "md: superblock version %d not known\n",
5342 info->major_version);
5343 return -EINVAL;
5344 }
5345 mddev->major_version = info->major_version;
5346 mddev->minor_version = info->minor_version;
5347 mddev->patch_version = info->patch_version;
5348 mddev->persistent = !info->not_persistent;
5349 /* ensure mddev_put doesn't delete this now that there
5350 * is some minimal configuration.
5351 */
5352 mddev->ctime = get_seconds();
5353 return 0;
5354 }
5355 mddev->major_version = MD_MAJOR_VERSION;
5356 mddev->minor_version = MD_MINOR_VERSION;
5357 mddev->patch_version = MD_PATCHLEVEL_VERSION;
5358 mddev->ctime = get_seconds();
5359
5360 mddev->level = info->level;
5361 mddev->clevel[0] = 0;
5362 mddev->dev_sectors = 2 * (sector_t)info->size;
5363 mddev->raid_disks = info->raid_disks;
5364 /* don't set md_minor, it is determined by which /dev/md* was
5365 * openned
5366 */
5367 if (info->state & (1<<MD_SB_CLEAN))
5368 mddev->recovery_cp = MaxSector;
5369 else
5370 mddev->recovery_cp = 0;
5371 mddev->persistent = ! info->not_persistent;
5372 mddev->external = 0;
5373
5374 mddev->layout = info->layout;
5375 mddev->chunk_sectors = info->chunk_size >> 9;
5376
5377 mddev->max_disks = MD_SB_DISKS;
5378
5379 if (mddev->persistent)
5380 mddev->flags = 0;
5381 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5382
5383 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5384 mddev->bitmap_info.offset = 0;
5385
5386 mddev->reshape_position = MaxSector;
5387
5388 /*
5389 * Generate a 128 bit UUID
5390 */
5391 get_random_bytes(mddev->uuid, 16);
5392
5393 mddev->new_level = mddev->level;
5394 mddev->new_chunk_sectors = mddev->chunk_sectors;
5395 mddev->new_layout = mddev->layout;
5396 mddev->delta_disks = 0;
5397
5398 return 0;
5399 }
5400
5401 void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors)
5402 {
5403 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5404
5405 if (mddev->external_size)
5406 return;
5407
5408 mddev->array_sectors = array_sectors;
5409 }
5410 EXPORT_SYMBOL(md_set_array_sectors);
5411
5412 static int update_size(mddev_t *mddev, sector_t num_sectors)
5413 {
5414 mdk_rdev_t *rdev;
5415 int rv;
5416 int fit = (num_sectors == 0);
5417
5418 if (mddev->pers->resize == NULL)
5419 return -EINVAL;
5420 /* The "num_sectors" is the number of sectors of each device that
5421 * is used. This can only make sense for arrays with redundancy.
5422 * linear and raid0 always use whatever space is available. We can only
5423 * consider changing this number if no resync or reconstruction is
5424 * happening, and if the new size is acceptable. It must fit before the
5425 * sb_start or, if that is <data_offset, it must fit before the size
5426 * of each device. If num_sectors is zero, we find the largest size
5427 * that fits.
5428
5429 */
5430 if (mddev->sync_thread)
5431 return -EBUSY;
5432 if (mddev->bitmap)
5433 /* Sorry, cannot grow a bitmap yet, just remove it,
5434 * grow, and re-add.
5435 */
5436 return -EBUSY;
5437 list_for_each_entry(rdev, &mddev->disks, same_set) {
5438 sector_t avail = rdev->sectors;
5439
5440 if (fit && (num_sectors == 0 || num_sectors > avail))
5441 num_sectors = avail;
5442 if (avail < num_sectors)
5443 return -ENOSPC;
5444 }
5445 rv = mddev->pers->resize(mddev, num_sectors);
5446 if (!rv)
5447 revalidate_disk(mddev->gendisk);
5448 return rv;
5449 }
5450
5451 static int update_raid_disks(mddev_t *mddev, int raid_disks)
5452 {
5453 int rv;
5454 /* change the number of raid disks */
5455 if (mddev->pers->check_reshape == NULL)
5456 return -EINVAL;
5457 if (raid_disks <= 0 ||
5458 (mddev->max_disks && raid_disks >= mddev->max_disks))
5459 return -EINVAL;
5460 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5461 return -EBUSY;
5462 mddev->delta_disks = raid_disks - mddev->raid_disks;
5463
5464 rv = mddev->pers->check_reshape(mddev);
5465 return rv;
5466 }
5467
5468
5469 /*
5470 * update_array_info is used to change the configuration of an
5471 * on-line array.
5472 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5473 * fields in the info are checked against the array.
5474 * Any differences that cannot be handled will cause an error.
5475 * Normally, only one change can be managed at a time.
5476 */
5477 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
5478 {
5479 int rv = 0;
5480 int cnt = 0;
5481 int state = 0;
5482
5483 /* calculate expected state,ignoring low bits */
5484 if (mddev->bitmap && mddev->bitmap_info.offset)
5485 state |= (1 << MD_SB_BITMAP_PRESENT);
5486
5487 if (mddev->major_version != info->major_version ||
5488 mddev->minor_version != info->minor_version ||
5489 /* mddev->patch_version != info->patch_version || */
5490 mddev->ctime != info->ctime ||
5491 mddev->level != info->level ||
5492 /* mddev->layout != info->layout || */
5493 !mddev->persistent != info->not_persistent||
5494 mddev->chunk_sectors != info->chunk_size >> 9 ||
5495 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5496 ((state^info->state) & 0xfffffe00)
5497 )
5498 return -EINVAL;
5499 /* Check there is only one change */
5500 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5501 cnt++;
5502 if (mddev->raid_disks != info->raid_disks)
5503 cnt++;
5504 if (mddev->layout != info->layout)
5505 cnt++;
5506 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5507 cnt++;
5508 if (cnt == 0)
5509 return 0;
5510 if (cnt > 1)
5511 return -EINVAL;
5512
5513 if (mddev->layout != info->layout) {
5514 /* Change layout
5515 * we don't need to do anything at the md level, the
5516 * personality will take care of it all.
5517 */
5518 if (mddev->pers->check_reshape == NULL)
5519 return -EINVAL;
5520 else {
5521 mddev->new_layout = info->layout;
5522 rv = mddev->pers->check_reshape(mddev);
5523 if (rv)
5524 mddev->new_layout = mddev->layout;
5525 return rv;
5526 }
5527 }
5528 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5529 rv = update_size(mddev, (sector_t)info->size * 2);
5530
5531 if (mddev->raid_disks != info->raid_disks)
5532 rv = update_raid_disks(mddev, info->raid_disks);
5533
5534 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5535 if (mddev->pers->quiesce == NULL)
5536 return -EINVAL;
5537 if (mddev->recovery || mddev->sync_thread)
5538 return -EBUSY;
5539 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5540 /* add the bitmap */
5541 if (mddev->bitmap)
5542 return -EEXIST;
5543 if (mddev->bitmap_info.default_offset == 0)
5544 return -EINVAL;
5545 mddev->bitmap_info.offset =
5546 mddev->bitmap_info.default_offset;
5547 mddev->pers->quiesce(mddev, 1);
5548 rv = bitmap_create(mddev);
5549 if (rv)
5550 bitmap_destroy(mddev);
5551 mddev->pers->quiesce(mddev, 0);
5552 } else {
5553 /* remove the bitmap */
5554 if (!mddev->bitmap)
5555 return -ENOENT;
5556 if (mddev->bitmap->file)
5557 return -EINVAL;
5558 mddev->pers->quiesce(mddev, 1);
5559 bitmap_destroy(mddev);
5560 mddev->pers->quiesce(mddev, 0);
5561 mddev->bitmap_info.offset = 0;
5562 }
5563 }
5564 md_update_sb(mddev, 1);
5565 return rv;
5566 }
5567
5568 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
5569 {
5570 mdk_rdev_t *rdev;
5571
5572 if (mddev->pers == NULL)
5573 return -ENODEV;
5574
5575 rdev = find_rdev(mddev, dev);
5576 if (!rdev)
5577 return -ENODEV;
5578
5579 md_error(mddev, rdev);
5580 return 0;
5581 }
5582
5583 /*
5584 * We have a problem here : there is no easy way to give a CHS
5585 * virtual geometry. We currently pretend that we have a 2 heads
5586 * 4 sectors (with a BIG number of cylinders...). This drives
5587 * dosfs just mad... ;-)
5588 */
5589 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
5590 {
5591 mddev_t *mddev = bdev->bd_disk->private_data;
5592
5593 geo->heads = 2;
5594 geo->sectors = 4;
5595 geo->cylinders = mddev->array_sectors / 8;
5596 return 0;
5597 }
5598
5599 static int md_ioctl(struct block_device *bdev, fmode_t mode,
5600 unsigned int cmd, unsigned long arg)
5601 {
5602 int err = 0;
5603 void __user *argp = (void __user *)arg;
5604 mddev_t *mddev = NULL;
5605 int ro;
5606
5607 if (!capable(CAP_SYS_ADMIN))
5608 return -EACCES;
5609
5610 /*
5611 * Commands dealing with the RAID driver but not any
5612 * particular array:
5613 */
5614 switch (cmd)
5615 {
5616 case RAID_VERSION:
5617 err = get_version(argp);
5618 goto done;
5619
5620 case PRINT_RAID_DEBUG:
5621 err = 0;
5622 md_print_devices();
5623 goto done;
5624
5625 #ifndef MODULE
5626 case RAID_AUTORUN:
5627 err = 0;
5628 autostart_arrays(arg);
5629 goto done;
5630 #endif
5631 default:;
5632 }
5633
5634 /*
5635 * Commands creating/starting a new array:
5636 */
5637
5638 mddev = bdev->bd_disk->private_data;
5639
5640 if (!mddev) {
5641 BUG();
5642 goto abort;
5643 }
5644
5645 err = mddev_lock(mddev);
5646 if (err) {
5647 printk(KERN_INFO
5648 "md: ioctl lock interrupted, reason %d, cmd %d\n",
5649 err, cmd);
5650 goto abort;
5651 }
5652
5653 switch (cmd)
5654 {
5655 case SET_ARRAY_INFO:
5656 {
5657 mdu_array_info_t info;
5658 if (!arg)
5659 memset(&info, 0, sizeof(info));
5660 else if (copy_from_user(&info, argp, sizeof(info))) {
5661 err = -EFAULT;
5662 goto abort_unlock;
5663 }
5664 if (mddev->pers) {
5665 err = update_array_info(mddev, &info);
5666 if (err) {
5667 printk(KERN_WARNING "md: couldn't update"
5668 " array info. %d\n", err);
5669 goto abort_unlock;
5670 }
5671 goto done_unlock;
5672 }
5673 if (!list_empty(&mddev->disks)) {
5674 printk(KERN_WARNING
5675 "md: array %s already has disks!\n",
5676 mdname(mddev));
5677 err = -EBUSY;
5678 goto abort_unlock;
5679 }
5680 if (mddev->raid_disks) {
5681 printk(KERN_WARNING
5682 "md: array %s already initialised!\n",
5683 mdname(mddev));
5684 err = -EBUSY;
5685 goto abort_unlock;
5686 }
5687 err = set_array_info(mddev, &info);
5688 if (err) {
5689 printk(KERN_WARNING "md: couldn't set"
5690 " array info. %d\n", err);
5691 goto abort_unlock;
5692 }
5693 }
5694 goto done_unlock;
5695
5696 default:;
5697 }
5698
5699 /*
5700 * Commands querying/configuring an existing array:
5701 */
5702 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
5703 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
5704 if ((!mddev->raid_disks && !mddev->external)
5705 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
5706 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
5707 && cmd != GET_BITMAP_FILE) {
5708 err = -ENODEV;
5709 goto abort_unlock;
5710 }
5711
5712 /*
5713 * Commands even a read-only array can execute:
5714 */
5715 switch (cmd)
5716 {
5717 case GET_ARRAY_INFO:
5718 err = get_array_info(mddev, argp);
5719 goto done_unlock;
5720
5721 case GET_BITMAP_FILE:
5722 err = get_bitmap_file(mddev, argp);
5723 goto done_unlock;
5724
5725 case GET_DISK_INFO:
5726 err = get_disk_info(mddev, argp);
5727 goto done_unlock;
5728
5729 case RESTART_ARRAY_RW:
5730 err = restart_array(mddev);
5731 goto done_unlock;
5732
5733 case STOP_ARRAY:
5734 err = do_md_stop(mddev, 0, 1);
5735 goto done_unlock;
5736
5737 case STOP_ARRAY_RO:
5738 err = md_set_readonly(mddev, 1);
5739 goto done_unlock;
5740
5741 case BLKROSET:
5742 if (get_user(ro, (int __user *)(arg))) {
5743 err = -EFAULT;
5744 goto done_unlock;
5745 }
5746 err = -EINVAL;
5747
5748 /* if the bdev is going readonly the value of mddev->ro
5749 * does not matter, no writes are coming
5750 */
5751 if (ro)
5752 goto done_unlock;
5753
5754 /* are we are already prepared for writes? */
5755 if (mddev->ro != 1)
5756 goto done_unlock;
5757
5758 /* transitioning to readauto need only happen for
5759 * arrays that call md_write_start
5760 */
5761 if (mddev->pers) {
5762 err = restart_array(mddev);
5763 if (err == 0) {
5764 mddev->ro = 2;
5765 set_disk_ro(mddev->gendisk, 0);
5766 }
5767 }
5768 goto done_unlock;
5769 }
5770
5771 /*
5772 * The remaining ioctls are changing the state of the
5773 * superblock, so we do not allow them on read-only arrays.
5774 * However non-MD ioctls (e.g. get-size) will still come through
5775 * here and hit the 'default' below, so only disallow
5776 * 'md' ioctls, and switch to rw mode if started auto-readonly.
5777 */
5778 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
5779 if (mddev->ro == 2) {
5780 mddev->ro = 0;
5781 sysfs_notify_dirent(mddev->sysfs_state);
5782 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5783 md_wakeup_thread(mddev->thread);
5784 } else {
5785 err = -EROFS;
5786 goto abort_unlock;
5787 }
5788 }
5789
5790 switch (cmd)
5791 {
5792 case ADD_NEW_DISK:
5793 {
5794 mdu_disk_info_t info;
5795 if (copy_from_user(&info, argp, sizeof(info)))
5796 err = -EFAULT;
5797 else
5798 err = add_new_disk(mddev, &info);
5799 goto done_unlock;
5800 }
5801
5802 case HOT_REMOVE_DISK:
5803 err = hot_remove_disk(mddev, new_decode_dev(arg));
5804 goto done_unlock;
5805
5806 case HOT_ADD_DISK:
5807 err = hot_add_disk(mddev, new_decode_dev(arg));
5808 goto done_unlock;
5809
5810 case SET_DISK_FAULTY:
5811 err = set_disk_faulty(mddev, new_decode_dev(arg));
5812 goto done_unlock;
5813
5814 case RUN_ARRAY:
5815 err = do_md_run(mddev);
5816 goto done_unlock;
5817
5818 case SET_BITMAP_FILE:
5819 err = set_bitmap_file(mddev, (int)arg);
5820 goto done_unlock;
5821
5822 default:
5823 err = -EINVAL;
5824 goto abort_unlock;
5825 }
5826
5827 done_unlock:
5828 abort_unlock:
5829 if (mddev->hold_active == UNTIL_IOCTL &&
5830 err != -EINVAL)
5831 mddev->hold_active = 0;
5832 mddev_unlock(mddev);
5833
5834 return err;
5835 done:
5836 if (err)
5837 MD_BUG();
5838 abort:
5839 return err;
5840 }
5841 #ifdef CONFIG_COMPAT
5842 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
5843 unsigned int cmd, unsigned long arg)
5844 {
5845 switch (cmd) {
5846 case HOT_REMOVE_DISK:
5847 case HOT_ADD_DISK:
5848 case SET_DISK_FAULTY:
5849 case SET_BITMAP_FILE:
5850 /* These take in integer arg, do not convert */
5851 break;
5852 default:
5853 arg = (unsigned long)compat_ptr(arg);
5854 break;
5855 }
5856
5857 return md_ioctl(bdev, mode, cmd, arg);
5858 }
5859 #endif /* CONFIG_COMPAT */
5860
5861 static int md_open(struct block_device *bdev, fmode_t mode)
5862 {
5863 /*
5864 * Succeed if we can lock the mddev, which confirms that
5865 * it isn't being stopped right now.
5866 */
5867 mddev_t *mddev = mddev_find(bdev->bd_dev);
5868 int err;
5869
5870 if (mddev->gendisk != bdev->bd_disk) {
5871 /* we are racing with mddev_put which is discarding this
5872 * bd_disk.
5873 */
5874 mddev_put(mddev);
5875 /* Wait until bdev->bd_disk is definitely gone */
5876 flush_scheduled_work();
5877 /* Then retry the open from the top */
5878 return -ERESTARTSYS;
5879 }
5880 BUG_ON(mddev != bdev->bd_disk->private_data);
5881
5882 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
5883 goto out;
5884
5885 err = 0;
5886 atomic_inc(&mddev->openers);
5887 mutex_unlock(&mddev->open_mutex);
5888
5889 out:
5890 return err;
5891 }
5892
5893 static int md_release(struct gendisk *disk, fmode_t mode)
5894 {
5895 mddev_t *mddev = disk->private_data;
5896
5897 BUG_ON(!mddev);
5898 atomic_dec(&mddev->openers);
5899 mddev_put(mddev);
5900
5901 return 0;
5902 }
5903 static const struct block_device_operations md_fops =
5904 {
5905 .owner = THIS_MODULE,
5906 .open = md_open,
5907 .release = md_release,
5908 .ioctl = md_ioctl,
5909 #ifdef CONFIG_COMPAT
5910 .compat_ioctl = md_compat_ioctl,
5911 #endif
5912 .getgeo = md_getgeo,
5913 };
5914
5915 static int md_thread(void * arg)
5916 {
5917 mdk_thread_t *thread = arg;
5918
5919 /*
5920 * md_thread is a 'system-thread', it's priority should be very
5921 * high. We avoid resource deadlocks individually in each
5922 * raid personality. (RAID5 does preallocation) We also use RR and
5923 * the very same RT priority as kswapd, thus we will never get
5924 * into a priority inversion deadlock.
5925 *
5926 * we definitely have to have equal or higher priority than
5927 * bdflush, otherwise bdflush will deadlock if there are too
5928 * many dirty RAID5 blocks.
5929 */
5930
5931 allow_signal(SIGKILL);
5932 while (!kthread_should_stop()) {
5933
5934 /* We need to wait INTERRUPTIBLE so that
5935 * we don't add to the load-average.
5936 * That means we need to be sure no signals are
5937 * pending
5938 */
5939 if (signal_pending(current))
5940 flush_signals(current);
5941
5942 wait_event_interruptible_timeout
5943 (thread->wqueue,
5944 test_bit(THREAD_WAKEUP, &thread->flags)
5945 || kthread_should_stop(),
5946 thread->timeout);
5947
5948 clear_bit(THREAD_WAKEUP, &thread->flags);
5949
5950 thread->run(thread->mddev);
5951 }
5952
5953 return 0;
5954 }
5955
5956 void md_wakeup_thread(mdk_thread_t *thread)
5957 {
5958 if (thread) {
5959 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
5960 set_bit(THREAD_WAKEUP, &thread->flags);
5961 wake_up(&thread->wqueue);
5962 }
5963 }
5964
5965 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
5966 const char *name)
5967 {
5968 mdk_thread_t *thread;
5969
5970 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
5971 if (!thread)
5972 return NULL;
5973
5974 init_waitqueue_head(&thread->wqueue);
5975
5976 thread->run = run;
5977 thread->mddev = mddev;
5978 thread->timeout = MAX_SCHEDULE_TIMEOUT;
5979 thread->tsk = kthread_run(md_thread, thread,
5980 "%s_%s",
5981 mdname(thread->mddev),
5982 name ?: mddev->pers->name);
5983 if (IS_ERR(thread->tsk)) {
5984 kfree(thread);
5985 return NULL;
5986 }
5987 return thread;
5988 }
5989
5990 void md_unregister_thread(mdk_thread_t *thread)
5991 {
5992 if (!thread)
5993 return;
5994 dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
5995
5996 kthread_stop(thread->tsk);
5997 kfree(thread);
5998 }
5999
6000 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
6001 {
6002 if (!mddev) {
6003 MD_BUG();
6004 return;
6005 }
6006
6007 if (!rdev || test_bit(Faulty, &rdev->flags))
6008 return;
6009
6010 if (mddev->external)
6011 set_bit(Blocked, &rdev->flags);
6012 /*
6013 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
6014 mdname(mddev),
6015 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
6016 __builtin_return_address(0),__builtin_return_address(1),
6017 __builtin_return_address(2),__builtin_return_address(3));
6018 */
6019 if (!mddev->pers)
6020 return;
6021 if (!mddev->pers->error_handler)
6022 return;
6023 mddev->pers->error_handler(mddev,rdev);
6024 if (mddev->degraded)
6025 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6026 sysfs_notify_dirent(rdev->sysfs_state);
6027 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6028 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6029 md_wakeup_thread(mddev->thread);
6030 md_new_event_inintr(mddev);
6031 }
6032
6033 /* seq_file implementation /proc/mdstat */
6034
6035 static void status_unused(struct seq_file *seq)
6036 {
6037 int i = 0;
6038 mdk_rdev_t *rdev;
6039
6040 seq_printf(seq, "unused devices: ");
6041
6042 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6043 char b[BDEVNAME_SIZE];
6044 i++;
6045 seq_printf(seq, "%s ",
6046 bdevname(rdev->bdev,b));
6047 }
6048 if (!i)
6049 seq_printf(seq, "<none>");
6050
6051 seq_printf(seq, "\n");
6052 }
6053
6054
6055 static void status_resync(struct seq_file *seq, mddev_t * mddev)
6056 {
6057 sector_t max_sectors, resync, res;
6058 unsigned long dt, db;
6059 sector_t rt;
6060 int scale;
6061 unsigned int per_milli;
6062
6063 resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6064
6065 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6066 max_sectors = mddev->resync_max_sectors;
6067 else
6068 max_sectors = mddev->dev_sectors;
6069
6070 /*
6071 * Should not happen.
6072 */
6073 if (!max_sectors) {
6074 MD_BUG();
6075 return;
6076 }
6077 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6078 * in a sector_t, and (max_sectors>>scale) will fit in a
6079 * u32, as those are the requirements for sector_div.
6080 * Thus 'scale' must be at least 10
6081 */
6082 scale = 10;
6083 if (sizeof(sector_t) > sizeof(unsigned long)) {
6084 while ( max_sectors/2 > (1ULL<<(scale+32)))
6085 scale++;
6086 }
6087 res = (resync>>scale)*1000;
6088 sector_div(res, (u32)((max_sectors>>scale)+1));
6089
6090 per_milli = res;
6091 {
6092 int i, x = per_milli/50, y = 20-x;
6093 seq_printf(seq, "[");
6094 for (i = 0; i < x; i++)
6095 seq_printf(seq, "=");
6096 seq_printf(seq, ">");
6097 for (i = 0; i < y; i++)
6098 seq_printf(seq, ".");
6099 seq_printf(seq, "] ");
6100 }
6101 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6102 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6103 "reshape" :
6104 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6105 "check" :
6106 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6107 "resync" : "recovery"))),
6108 per_milli/10, per_milli % 10,
6109 (unsigned long long) resync/2,
6110 (unsigned long long) max_sectors/2);
6111
6112 /*
6113 * dt: time from mark until now
6114 * db: blocks written from mark until now
6115 * rt: remaining time
6116 *
6117 * rt is a sector_t, so could be 32bit or 64bit.
6118 * So we divide before multiply in case it is 32bit and close
6119 * to the limit.
6120 * We scale the divisor (db) by 32 to avoid loosing precision
6121 * near the end of resync when the number of remaining sectors
6122 * is close to 'db'.
6123 * We then divide rt by 32 after multiplying by db to compensate.
6124 * The '+1' avoids division by zero if db is very small.
6125 */
6126 dt = ((jiffies - mddev->resync_mark) / HZ);
6127 if (!dt) dt++;
6128 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6129 - mddev->resync_mark_cnt;
6130
6131 rt = max_sectors - resync; /* number of remaining sectors */
6132 sector_div(rt, db/32+1);
6133 rt *= dt;
6134 rt >>= 5;
6135
6136 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6137 ((unsigned long)rt % 60)/6);
6138
6139 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6140 }
6141
6142 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6143 {
6144 struct list_head *tmp;
6145 loff_t l = *pos;
6146 mddev_t *mddev;
6147
6148 if (l >= 0x10000)
6149 return NULL;
6150 if (!l--)
6151 /* header */
6152 return (void*)1;
6153
6154 spin_lock(&all_mddevs_lock);
6155 list_for_each(tmp,&all_mddevs)
6156 if (!l--) {
6157 mddev = list_entry(tmp, mddev_t, all_mddevs);
6158 mddev_get(mddev);
6159 spin_unlock(&all_mddevs_lock);
6160 return mddev;
6161 }
6162 spin_unlock(&all_mddevs_lock);
6163 if (!l--)
6164 return (void*)2;/* tail */
6165 return NULL;
6166 }
6167
6168 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6169 {
6170 struct list_head *tmp;
6171 mddev_t *next_mddev, *mddev = v;
6172
6173 ++*pos;
6174 if (v == (void*)2)
6175 return NULL;
6176
6177 spin_lock(&all_mddevs_lock);
6178 if (v == (void*)1)
6179 tmp = all_mddevs.next;
6180 else
6181 tmp = mddev->all_mddevs.next;
6182 if (tmp != &all_mddevs)
6183 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
6184 else {
6185 next_mddev = (void*)2;
6186 *pos = 0x10000;
6187 }
6188 spin_unlock(&all_mddevs_lock);
6189
6190 if (v != (void*)1)
6191 mddev_put(mddev);
6192 return next_mddev;
6193
6194 }
6195
6196 static void md_seq_stop(struct seq_file *seq, void *v)
6197 {
6198 mddev_t *mddev = v;
6199
6200 if (mddev && v != (void*)1 && v != (void*)2)
6201 mddev_put(mddev);
6202 }
6203
6204 struct mdstat_info {
6205 int event;
6206 };
6207
6208 static int md_seq_show(struct seq_file *seq, void *v)
6209 {
6210 mddev_t *mddev = v;
6211 sector_t sectors;
6212 mdk_rdev_t *rdev;
6213 struct mdstat_info *mi = seq->private;
6214 struct bitmap *bitmap;
6215
6216 if (v == (void*)1) {
6217 struct mdk_personality *pers;
6218 seq_printf(seq, "Personalities : ");
6219 spin_lock(&pers_lock);
6220 list_for_each_entry(pers, &pers_list, list)
6221 seq_printf(seq, "[%s] ", pers->name);
6222
6223 spin_unlock(&pers_lock);
6224 seq_printf(seq, "\n");
6225 mi->event = atomic_read(&md_event_count);
6226 return 0;
6227 }
6228 if (v == (void*)2) {
6229 status_unused(seq);
6230 return 0;
6231 }
6232
6233 if (mddev_lock(mddev) < 0)
6234 return -EINTR;
6235
6236 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6237 seq_printf(seq, "%s : %sactive", mdname(mddev),
6238 mddev->pers ? "" : "in");
6239 if (mddev->pers) {
6240 if (mddev->ro==1)
6241 seq_printf(seq, " (read-only)");
6242 if (mddev->ro==2)
6243 seq_printf(seq, " (auto-read-only)");
6244 seq_printf(seq, " %s", mddev->pers->name);
6245 }
6246
6247 sectors = 0;
6248 list_for_each_entry(rdev, &mddev->disks, same_set) {
6249 char b[BDEVNAME_SIZE];
6250 seq_printf(seq, " %s[%d]",
6251 bdevname(rdev->bdev,b), rdev->desc_nr);
6252 if (test_bit(WriteMostly, &rdev->flags))
6253 seq_printf(seq, "(W)");
6254 if (test_bit(Faulty, &rdev->flags)) {
6255 seq_printf(seq, "(F)");
6256 continue;
6257 } else if (rdev->raid_disk < 0)
6258 seq_printf(seq, "(S)"); /* spare */
6259 sectors += rdev->sectors;
6260 }
6261
6262 if (!list_empty(&mddev->disks)) {
6263 if (mddev->pers)
6264 seq_printf(seq, "\n %llu blocks",
6265 (unsigned long long)
6266 mddev->array_sectors / 2);
6267 else
6268 seq_printf(seq, "\n %llu blocks",
6269 (unsigned long long)sectors / 2);
6270 }
6271 if (mddev->persistent) {
6272 if (mddev->major_version != 0 ||
6273 mddev->minor_version != 90) {
6274 seq_printf(seq," super %d.%d",
6275 mddev->major_version,
6276 mddev->minor_version);
6277 }
6278 } else if (mddev->external)
6279 seq_printf(seq, " super external:%s",
6280 mddev->metadata_type);
6281 else
6282 seq_printf(seq, " super non-persistent");
6283
6284 if (mddev->pers) {
6285 mddev->pers->status(seq, mddev);
6286 seq_printf(seq, "\n ");
6287 if (mddev->pers->sync_request) {
6288 if (mddev->curr_resync > 2) {
6289 status_resync(seq, mddev);
6290 seq_printf(seq, "\n ");
6291 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6292 seq_printf(seq, "\tresync=DELAYED\n ");
6293 else if (mddev->recovery_cp < MaxSector)
6294 seq_printf(seq, "\tresync=PENDING\n ");
6295 }
6296 } else
6297 seq_printf(seq, "\n ");
6298
6299 if ((bitmap = mddev->bitmap)) {
6300 unsigned long chunk_kb;
6301 unsigned long flags;
6302 spin_lock_irqsave(&bitmap->lock, flags);
6303 chunk_kb = mddev->bitmap_info.chunksize >> 10;
6304 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6305 "%lu%s chunk",
6306 bitmap->pages - bitmap->missing_pages,
6307 bitmap->pages,
6308 (bitmap->pages - bitmap->missing_pages)
6309 << (PAGE_SHIFT - 10),
6310 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
6311 chunk_kb ? "KB" : "B");
6312 if (bitmap->file) {
6313 seq_printf(seq, ", file: ");
6314 seq_path(seq, &bitmap->file->f_path, " \t\n");
6315 }
6316
6317 seq_printf(seq, "\n");
6318 spin_unlock_irqrestore(&bitmap->lock, flags);
6319 }
6320
6321 seq_printf(seq, "\n");
6322 }
6323 mddev_unlock(mddev);
6324
6325 return 0;
6326 }
6327
6328 static const struct seq_operations md_seq_ops = {
6329 .start = md_seq_start,
6330 .next = md_seq_next,
6331 .stop = md_seq_stop,
6332 .show = md_seq_show,
6333 };
6334
6335 static int md_seq_open(struct inode *inode, struct file *file)
6336 {
6337 int error;
6338 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
6339 if (mi == NULL)
6340 return -ENOMEM;
6341
6342 error = seq_open(file, &md_seq_ops);
6343 if (error)
6344 kfree(mi);
6345 else {
6346 struct seq_file *p = file->private_data;
6347 p->private = mi;
6348 mi->event = atomic_read(&md_event_count);
6349 }
6350 return error;
6351 }
6352
6353 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6354 {
6355 struct seq_file *m = filp->private_data;
6356 struct mdstat_info *mi = m->private;
6357 int mask;
6358
6359 poll_wait(filp, &md_event_waiters, wait);
6360
6361 /* always allow read */
6362 mask = POLLIN | POLLRDNORM;
6363
6364 if (mi->event != atomic_read(&md_event_count))
6365 mask |= POLLERR | POLLPRI;
6366 return mask;
6367 }
6368
6369 static const struct file_operations md_seq_fops = {
6370 .owner = THIS_MODULE,
6371 .open = md_seq_open,
6372 .read = seq_read,
6373 .llseek = seq_lseek,
6374 .release = seq_release_private,
6375 .poll = mdstat_poll,
6376 };
6377
6378 int register_md_personality(struct mdk_personality *p)
6379 {
6380 spin_lock(&pers_lock);
6381 list_add_tail(&p->list, &pers_list);
6382 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6383 spin_unlock(&pers_lock);
6384 return 0;
6385 }
6386
6387 int unregister_md_personality(struct mdk_personality *p)
6388 {
6389 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6390 spin_lock(&pers_lock);
6391 list_del_init(&p->list);
6392 spin_unlock(&pers_lock);
6393 return 0;
6394 }
6395
6396 static int is_mddev_idle(mddev_t *mddev, int init)
6397 {
6398 mdk_rdev_t * rdev;
6399 int idle;
6400 int curr_events;
6401
6402 idle = 1;
6403 rcu_read_lock();
6404 rdev_for_each_rcu(rdev, mddev) {
6405 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6406 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6407 (int)part_stat_read(&disk->part0, sectors[1]) -
6408 atomic_read(&disk->sync_io);
6409 /* sync IO will cause sync_io to increase before the disk_stats
6410 * as sync_io is counted when a request starts, and
6411 * disk_stats is counted when it completes.
6412 * So resync activity will cause curr_events to be smaller than
6413 * when there was no such activity.
6414 * non-sync IO will cause disk_stat to increase without
6415 * increasing sync_io so curr_events will (eventually)
6416 * be larger than it was before. Once it becomes
6417 * substantially larger, the test below will cause
6418 * the array to appear non-idle, and resync will slow
6419 * down.
6420 * If there is a lot of outstanding resync activity when
6421 * we set last_event to curr_events, then all that activity
6422 * completing might cause the array to appear non-idle
6423 * and resync will be slowed down even though there might
6424 * not have been non-resync activity. This will only
6425 * happen once though. 'last_events' will soon reflect
6426 * the state where there is little or no outstanding
6427 * resync requests, and further resync activity will
6428 * always make curr_events less than last_events.
6429 *
6430 */
6431 if (init || curr_events - rdev->last_events > 64) {
6432 rdev->last_events = curr_events;
6433 idle = 0;
6434 }
6435 }
6436 rcu_read_unlock();
6437 return idle;
6438 }
6439
6440 void md_done_sync(mddev_t *mddev, int blocks, int ok)
6441 {
6442 /* another "blocks" (512byte) blocks have been synced */
6443 atomic_sub(blocks, &mddev->recovery_active);
6444 wake_up(&mddev->recovery_wait);
6445 if (!ok) {
6446 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6447 md_wakeup_thread(mddev->thread);
6448 // stop recovery, signal do_sync ....
6449 }
6450 }
6451
6452
6453 /* md_write_start(mddev, bi)
6454 * If we need to update some array metadata (e.g. 'active' flag
6455 * in superblock) before writing, schedule a superblock update
6456 * and wait for it to complete.
6457 */
6458 void md_write_start(mddev_t *mddev, struct bio *bi)
6459 {
6460 int did_change = 0;
6461 if (bio_data_dir(bi) != WRITE)
6462 return;
6463
6464 BUG_ON(mddev->ro == 1);
6465 if (mddev->ro == 2) {
6466 /* need to switch to read/write */
6467 mddev->ro = 0;
6468 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6469 md_wakeup_thread(mddev->thread);
6470 md_wakeup_thread(mddev->sync_thread);
6471 did_change = 1;
6472 }
6473 atomic_inc(&mddev->writes_pending);
6474 if (mddev->safemode == 1)
6475 mddev->safemode = 0;
6476 if (mddev->in_sync) {
6477 spin_lock_irq(&mddev->write_lock);
6478 if (mddev->in_sync) {
6479 mddev->in_sync = 0;
6480 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6481 md_wakeup_thread(mddev->thread);
6482 did_change = 1;
6483 }
6484 spin_unlock_irq(&mddev->write_lock);
6485 }
6486 if (did_change)
6487 sysfs_notify_dirent(mddev->sysfs_state);
6488 wait_event(mddev->sb_wait,
6489 !test_bit(MD_CHANGE_CLEAN, &mddev->flags) &&
6490 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6491 }
6492
6493 void md_write_end(mddev_t *mddev)
6494 {
6495 if (atomic_dec_and_test(&mddev->writes_pending)) {
6496 if (mddev->safemode == 2)
6497 md_wakeup_thread(mddev->thread);
6498 else if (mddev->safemode_delay)
6499 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6500 }
6501 }
6502
6503 /* md_allow_write(mddev)
6504 * Calling this ensures that the array is marked 'active' so that writes
6505 * may proceed without blocking. It is important to call this before
6506 * attempting a GFP_KERNEL allocation while holding the mddev lock.
6507 * Must be called with mddev_lock held.
6508 *
6509 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6510 * is dropped, so return -EAGAIN after notifying userspace.
6511 */
6512 int md_allow_write(mddev_t *mddev)
6513 {
6514 if (!mddev->pers)
6515 return 0;
6516 if (mddev->ro)
6517 return 0;
6518 if (!mddev->pers->sync_request)
6519 return 0;
6520
6521 spin_lock_irq(&mddev->write_lock);
6522 if (mddev->in_sync) {
6523 mddev->in_sync = 0;
6524 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6525 if (mddev->safemode_delay &&
6526 mddev->safemode == 0)
6527 mddev->safemode = 1;
6528 spin_unlock_irq(&mddev->write_lock);
6529 md_update_sb(mddev, 0);
6530 sysfs_notify_dirent(mddev->sysfs_state);
6531 } else
6532 spin_unlock_irq(&mddev->write_lock);
6533
6534 if (test_bit(MD_CHANGE_CLEAN, &mddev->flags))
6535 return -EAGAIN;
6536 else
6537 return 0;
6538 }
6539 EXPORT_SYMBOL_GPL(md_allow_write);
6540
6541 #define SYNC_MARKS 10
6542 #define SYNC_MARK_STEP (3*HZ)
6543 void md_do_sync(mddev_t *mddev)
6544 {
6545 mddev_t *mddev2;
6546 unsigned int currspeed = 0,
6547 window;
6548 sector_t max_sectors,j, io_sectors;
6549 unsigned long mark[SYNC_MARKS];
6550 sector_t mark_cnt[SYNC_MARKS];
6551 int last_mark,m;
6552 struct list_head *tmp;
6553 sector_t last_check;
6554 int skipped = 0;
6555 mdk_rdev_t *rdev;
6556 char *desc;
6557
6558 /* just incase thread restarts... */
6559 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
6560 return;
6561 if (mddev->ro) /* never try to sync a read-only array */
6562 return;
6563
6564 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6565 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
6566 desc = "data-check";
6567 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6568 desc = "requested-resync";
6569 else
6570 desc = "resync";
6571 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6572 desc = "reshape";
6573 else
6574 desc = "recovery";
6575
6576 /* we overload curr_resync somewhat here.
6577 * 0 == not engaged in resync at all
6578 * 2 == checking that there is no conflict with another sync
6579 * 1 == like 2, but have yielded to allow conflicting resync to
6580 * commense
6581 * other == active in resync - this many blocks
6582 *
6583 * Before starting a resync we must have set curr_resync to
6584 * 2, and then checked that every "conflicting" array has curr_resync
6585 * less than ours. When we find one that is the same or higher
6586 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
6587 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
6588 * This will mean we have to start checking from the beginning again.
6589 *
6590 */
6591
6592 do {
6593 mddev->curr_resync = 2;
6594
6595 try_again:
6596 if (kthread_should_stop())
6597 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6598
6599 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6600 goto skip;
6601 for_each_mddev(mddev2, tmp) {
6602 if (mddev2 == mddev)
6603 continue;
6604 if (!mddev->parallel_resync
6605 && mddev2->curr_resync
6606 && match_mddev_units(mddev, mddev2)) {
6607 DEFINE_WAIT(wq);
6608 if (mddev < mddev2 && mddev->curr_resync == 2) {
6609 /* arbitrarily yield */
6610 mddev->curr_resync = 1;
6611 wake_up(&resync_wait);
6612 }
6613 if (mddev > mddev2 && mddev->curr_resync == 1)
6614 /* no need to wait here, we can wait the next
6615 * time 'round when curr_resync == 2
6616 */
6617 continue;
6618 /* We need to wait 'interruptible' so as not to
6619 * contribute to the load average, and not to
6620 * be caught by 'softlockup'
6621 */
6622 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
6623 if (!kthread_should_stop() &&
6624 mddev2->curr_resync >= mddev->curr_resync) {
6625 printk(KERN_INFO "md: delaying %s of %s"
6626 " until %s has finished (they"
6627 " share one or more physical units)\n",
6628 desc, mdname(mddev), mdname(mddev2));
6629 mddev_put(mddev2);
6630 if (signal_pending(current))
6631 flush_signals(current);
6632 schedule();
6633 finish_wait(&resync_wait, &wq);
6634 goto try_again;
6635 }
6636 finish_wait(&resync_wait, &wq);
6637 }
6638 }
6639 } while (mddev->curr_resync < 2);
6640
6641 j = 0;
6642 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6643 /* resync follows the size requested by the personality,
6644 * which defaults to physical size, but can be virtual size
6645 */
6646 max_sectors = mddev->resync_max_sectors;
6647 mddev->resync_mismatches = 0;
6648 /* we don't use the checkpoint if there's a bitmap */
6649 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6650 j = mddev->resync_min;
6651 else if (!mddev->bitmap)
6652 j = mddev->recovery_cp;
6653
6654 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6655 max_sectors = mddev->dev_sectors;
6656 else {
6657 /* recovery follows the physical size of devices */
6658 max_sectors = mddev->dev_sectors;
6659 j = MaxSector;
6660 rcu_read_lock();
6661 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
6662 if (rdev->raid_disk >= 0 &&
6663 !test_bit(Faulty, &rdev->flags) &&
6664 !test_bit(In_sync, &rdev->flags) &&
6665 rdev->recovery_offset < j)
6666 j = rdev->recovery_offset;
6667 rcu_read_unlock();
6668 }
6669
6670 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
6671 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
6672 " %d KB/sec/disk.\n", speed_min(mddev));
6673 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
6674 "(but not more than %d KB/sec) for %s.\n",
6675 speed_max(mddev), desc);
6676
6677 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
6678
6679 io_sectors = 0;
6680 for (m = 0; m < SYNC_MARKS; m++) {
6681 mark[m] = jiffies;
6682 mark_cnt[m] = io_sectors;
6683 }
6684 last_mark = 0;
6685 mddev->resync_mark = mark[last_mark];
6686 mddev->resync_mark_cnt = mark_cnt[last_mark];
6687
6688 /*
6689 * Tune reconstruction:
6690 */
6691 window = 32*(PAGE_SIZE/512);
6692 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
6693 window/2,(unsigned long long) max_sectors/2);
6694
6695 atomic_set(&mddev->recovery_active, 0);
6696 last_check = 0;
6697
6698 if (j>2) {
6699 printk(KERN_INFO
6700 "md: resuming %s of %s from checkpoint.\n",
6701 desc, mdname(mddev));
6702 mddev->curr_resync = j;
6703 }
6704 mddev->curr_resync_completed = mddev->curr_resync;
6705
6706 while (j < max_sectors) {
6707 sector_t sectors;
6708
6709 skipped = 0;
6710
6711 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
6712 ((mddev->curr_resync > mddev->curr_resync_completed &&
6713 (mddev->curr_resync - mddev->curr_resync_completed)
6714 > (max_sectors >> 4)) ||
6715 (j - mddev->curr_resync_completed)*2
6716 >= mddev->resync_max - mddev->curr_resync_completed
6717 )) {
6718 /* time to update curr_resync_completed */
6719 blk_unplug(mddev->queue);
6720 wait_event(mddev->recovery_wait,
6721 atomic_read(&mddev->recovery_active) == 0);
6722 mddev->curr_resync_completed =
6723 mddev->curr_resync;
6724 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6725 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6726 }
6727
6728 while (j >= mddev->resync_max && !kthread_should_stop()) {
6729 /* As this condition is controlled by user-space,
6730 * we can block indefinitely, so use '_interruptible'
6731 * to avoid triggering warnings.
6732 */
6733 flush_signals(current); /* just in case */
6734 wait_event_interruptible(mddev->recovery_wait,
6735 mddev->resync_max > j
6736 || kthread_should_stop());
6737 }
6738
6739 if (kthread_should_stop())
6740 goto interrupted;
6741
6742 sectors = mddev->pers->sync_request(mddev, j, &skipped,
6743 currspeed < speed_min(mddev));
6744 if (sectors == 0) {
6745 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6746 goto out;
6747 }
6748
6749 if (!skipped) { /* actual IO requested */
6750 io_sectors += sectors;
6751 atomic_add(sectors, &mddev->recovery_active);
6752 }
6753
6754 j += sectors;
6755 if (j>1) mddev->curr_resync = j;
6756 mddev->curr_mark_cnt = io_sectors;
6757 if (last_check == 0)
6758 /* this is the earliers that rebuilt will be
6759 * visible in /proc/mdstat
6760 */
6761 md_new_event(mddev);
6762
6763 if (last_check + window > io_sectors || j == max_sectors)
6764 continue;
6765
6766 last_check = io_sectors;
6767
6768 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6769 break;
6770
6771 repeat:
6772 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
6773 /* step marks */
6774 int next = (last_mark+1) % SYNC_MARKS;
6775
6776 mddev->resync_mark = mark[next];
6777 mddev->resync_mark_cnt = mark_cnt[next];
6778 mark[next] = jiffies;
6779 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
6780 last_mark = next;
6781 }
6782
6783
6784 if (kthread_should_stop())
6785 goto interrupted;
6786
6787
6788 /*
6789 * this loop exits only if either when we are slower than
6790 * the 'hard' speed limit, or the system was IO-idle for
6791 * a jiffy.
6792 * the system might be non-idle CPU-wise, but we only care
6793 * about not overloading the IO subsystem. (things like an
6794 * e2fsck being done on the RAID array should execute fast)
6795 */
6796 blk_unplug(mddev->queue);
6797 cond_resched();
6798
6799 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
6800 /((jiffies-mddev->resync_mark)/HZ +1) +1;
6801
6802 if (currspeed > speed_min(mddev)) {
6803 if ((currspeed > speed_max(mddev)) ||
6804 !is_mddev_idle(mddev, 0)) {
6805 msleep(500);
6806 goto repeat;
6807 }
6808 }
6809 }
6810 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
6811 /*
6812 * this also signals 'finished resyncing' to md_stop
6813 */
6814 out:
6815 blk_unplug(mddev->queue);
6816
6817 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
6818
6819 /* tell personality that we are finished */
6820 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
6821
6822 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
6823 mddev->curr_resync > 2) {
6824 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6825 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6826 if (mddev->curr_resync >= mddev->recovery_cp) {
6827 printk(KERN_INFO
6828 "md: checkpointing %s of %s.\n",
6829 desc, mdname(mddev));
6830 mddev->recovery_cp = mddev->curr_resync;
6831 }
6832 } else
6833 mddev->recovery_cp = MaxSector;
6834 } else {
6835 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6836 mddev->curr_resync = MaxSector;
6837 rcu_read_lock();
6838 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
6839 if (rdev->raid_disk >= 0 &&
6840 !test_bit(Faulty, &rdev->flags) &&
6841 !test_bit(In_sync, &rdev->flags) &&
6842 rdev->recovery_offset < mddev->curr_resync)
6843 rdev->recovery_offset = mddev->curr_resync;
6844 rcu_read_unlock();
6845 }
6846 }
6847 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6848
6849 skip:
6850 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6851 /* We completed so min/max setting can be forgotten if used. */
6852 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6853 mddev->resync_min = 0;
6854 mddev->resync_max = MaxSector;
6855 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6856 mddev->resync_min = mddev->curr_resync_completed;
6857 mddev->curr_resync = 0;
6858 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6859 mddev->curr_resync_completed = 0;
6860 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6861 wake_up(&resync_wait);
6862 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
6863 md_wakeup_thread(mddev->thread);
6864 return;
6865
6866 interrupted:
6867 /*
6868 * got a signal, exit.
6869 */
6870 printk(KERN_INFO
6871 "md: md_do_sync() got signal ... exiting\n");
6872 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6873 goto out;
6874
6875 }
6876 EXPORT_SYMBOL_GPL(md_do_sync);
6877
6878
6879 static int remove_and_add_spares(mddev_t *mddev)
6880 {
6881 mdk_rdev_t *rdev;
6882 int spares = 0;
6883
6884 mddev->curr_resync_completed = 0;
6885
6886 list_for_each_entry(rdev, &mddev->disks, same_set)
6887 if (rdev->raid_disk >= 0 &&
6888 !test_bit(Blocked, &rdev->flags) &&
6889 (test_bit(Faulty, &rdev->flags) ||
6890 ! test_bit(In_sync, &rdev->flags)) &&
6891 atomic_read(&rdev->nr_pending)==0) {
6892 if (mddev->pers->hot_remove_disk(
6893 mddev, rdev->raid_disk)==0) {
6894 char nm[20];
6895 sprintf(nm,"rd%d", rdev->raid_disk);
6896 sysfs_remove_link(&mddev->kobj, nm);
6897 rdev->raid_disk = -1;
6898 }
6899 }
6900
6901 if (mddev->degraded && ! mddev->ro && !mddev->recovery_disabled) {
6902 list_for_each_entry(rdev, &mddev->disks, same_set) {
6903 if (rdev->raid_disk >= 0 &&
6904 !test_bit(In_sync, &rdev->flags) &&
6905 !test_bit(Blocked, &rdev->flags))
6906 spares++;
6907 if (rdev->raid_disk < 0
6908 && !test_bit(Faulty, &rdev->flags)) {
6909 rdev->recovery_offset = 0;
6910 if (mddev->pers->
6911 hot_add_disk(mddev, rdev) == 0) {
6912 char nm[20];
6913 sprintf(nm, "rd%d", rdev->raid_disk);
6914 if (sysfs_create_link(&mddev->kobj,
6915 &rdev->kobj, nm))
6916 printk(KERN_WARNING
6917 "md: cannot register "
6918 "%s for %s\n",
6919 nm, mdname(mddev));
6920 spares++;
6921 md_new_event(mddev);
6922 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6923 } else
6924 break;
6925 }
6926 }
6927 }
6928 return spares;
6929 }
6930 /*
6931 * This routine is regularly called by all per-raid-array threads to
6932 * deal with generic issues like resync and super-block update.
6933 * Raid personalities that don't have a thread (linear/raid0) do not
6934 * need this as they never do any recovery or update the superblock.
6935 *
6936 * It does not do any resync itself, but rather "forks" off other threads
6937 * to do that as needed.
6938 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
6939 * "->recovery" and create a thread at ->sync_thread.
6940 * When the thread finishes it sets MD_RECOVERY_DONE
6941 * and wakeups up this thread which will reap the thread and finish up.
6942 * This thread also removes any faulty devices (with nr_pending == 0).
6943 *
6944 * The overall approach is:
6945 * 1/ if the superblock needs updating, update it.
6946 * 2/ If a recovery thread is running, don't do anything else.
6947 * 3/ If recovery has finished, clean up, possibly marking spares active.
6948 * 4/ If there are any faulty devices, remove them.
6949 * 5/ If array is degraded, try to add spares devices
6950 * 6/ If array has spares or is not in-sync, start a resync thread.
6951 */
6952 void md_check_recovery(mddev_t *mddev)
6953 {
6954 mdk_rdev_t *rdev;
6955
6956
6957 if (mddev->bitmap)
6958 bitmap_daemon_work(mddev);
6959
6960 if (mddev->ro)
6961 return;
6962
6963 if (signal_pending(current)) {
6964 if (mddev->pers->sync_request && !mddev->external) {
6965 printk(KERN_INFO "md: %s in immediate safe mode\n",
6966 mdname(mddev));
6967 mddev->safemode = 2;
6968 }
6969 flush_signals(current);
6970 }
6971
6972 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
6973 return;
6974 if ( ! (
6975 (mddev->flags && !mddev->external) ||
6976 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
6977 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
6978 (mddev->external == 0 && mddev->safemode == 1) ||
6979 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
6980 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
6981 ))
6982 return;
6983
6984 if (mddev_trylock(mddev)) {
6985 int spares = 0;
6986
6987 if (mddev->ro) {
6988 /* Only thing we do on a ro array is remove
6989 * failed devices.
6990 */
6991 remove_and_add_spares(mddev);
6992 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6993 goto unlock;
6994 }
6995
6996 if (!mddev->external) {
6997 int did_change = 0;
6998 spin_lock_irq(&mddev->write_lock);
6999 if (mddev->safemode &&
7000 !atomic_read(&mddev->writes_pending) &&
7001 !mddev->in_sync &&
7002 mddev->recovery_cp == MaxSector) {
7003 mddev->in_sync = 1;
7004 did_change = 1;
7005 if (mddev->persistent)
7006 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7007 }
7008 if (mddev->safemode == 1)
7009 mddev->safemode = 0;
7010 spin_unlock_irq(&mddev->write_lock);
7011 if (did_change)
7012 sysfs_notify_dirent(mddev->sysfs_state);
7013 }
7014
7015 if (mddev->flags)
7016 md_update_sb(mddev, 0);
7017
7018 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7019 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7020 /* resync/recovery still happening */
7021 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7022 goto unlock;
7023 }
7024 if (mddev->sync_thread) {
7025 /* resync has finished, collect result */
7026 md_unregister_thread(mddev->sync_thread);
7027 mddev->sync_thread = NULL;
7028 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7029 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7030 /* success...*/
7031 /* activate any spares */
7032 if (mddev->pers->spare_active(mddev))
7033 sysfs_notify(&mddev->kobj, NULL,
7034 "degraded");
7035 }
7036 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7037 mddev->pers->finish_reshape)
7038 mddev->pers->finish_reshape(mddev);
7039 md_update_sb(mddev, 1);
7040
7041 /* if array is no-longer degraded, then any saved_raid_disk
7042 * information must be scrapped
7043 */
7044 if (!mddev->degraded)
7045 list_for_each_entry(rdev, &mddev->disks, same_set)
7046 rdev->saved_raid_disk = -1;
7047
7048 mddev->recovery = 0;
7049 /* flag recovery needed just to double check */
7050 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7051 sysfs_notify_dirent(mddev->sysfs_action);
7052 md_new_event(mddev);
7053 goto unlock;
7054 }
7055 /* Set RUNNING before clearing NEEDED to avoid
7056 * any transients in the value of "sync_action".
7057 */
7058 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7059 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7060 /* Clear some bits that don't mean anything, but
7061 * might be left set
7062 */
7063 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7064 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7065
7066 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7067 goto unlock;
7068 /* no recovery is running.
7069 * remove any failed drives, then
7070 * add spares if possible.
7071 * Spare are also removed and re-added, to allow
7072 * the personality to fail the re-add.
7073 */
7074
7075 if (mddev->reshape_position != MaxSector) {
7076 if (mddev->pers->check_reshape == NULL ||
7077 mddev->pers->check_reshape(mddev) != 0)
7078 /* Cannot proceed */
7079 goto unlock;
7080 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7081 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7082 } else if ((spares = remove_and_add_spares(mddev))) {
7083 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7084 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7085 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7086 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7087 } else if (mddev->recovery_cp < MaxSector) {
7088 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7089 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7090 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7091 /* nothing to be done ... */
7092 goto unlock;
7093
7094 if (mddev->pers->sync_request) {
7095 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7096 /* We are adding a device or devices to an array
7097 * which has the bitmap stored on all devices.
7098 * So make sure all bitmap pages get written
7099 */
7100 bitmap_write_all(mddev->bitmap);
7101 }
7102 mddev->sync_thread = md_register_thread(md_do_sync,
7103 mddev,
7104 "resync");
7105 if (!mddev->sync_thread) {
7106 printk(KERN_ERR "%s: could not start resync"
7107 " thread...\n",
7108 mdname(mddev));
7109 /* leave the spares where they are, it shouldn't hurt */
7110 mddev->recovery = 0;
7111 } else
7112 md_wakeup_thread(mddev->sync_thread);
7113 sysfs_notify_dirent(mddev->sysfs_action);
7114 md_new_event(mddev);
7115 }
7116 unlock:
7117 if (!mddev->sync_thread) {
7118 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7119 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7120 &mddev->recovery))
7121 if (mddev->sysfs_action)
7122 sysfs_notify_dirent(mddev->sysfs_action);
7123 }
7124 mddev_unlock(mddev);
7125 }
7126 }
7127
7128 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
7129 {
7130 sysfs_notify_dirent(rdev->sysfs_state);
7131 wait_event_timeout(rdev->blocked_wait,
7132 !test_bit(Blocked, &rdev->flags),
7133 msecs_to_jiffies(5000));
7134 rdev_dec_pending(rdev, mddev);
7135 }
7136 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7137
7138 static int md_notify_reboot(struct notifier_block *this,
7139 unsigned long code, void *x)
7140 {
7141 struct list_head *tmp;
7142 mddev_t *mddev;
7143
7144 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
7145
7146 printk(KERN_INFO "md: stopping all md devices.\n");
7147
7148 for_each_mddev(mddev, tmp)
7149 if (mddev_trylock(mddev)) {
7150 /* Force a switch to readonly even array
7151 * appears to still be in use. Hence
7152 * the '100'.
7153 */
7154 md_set_readonly(mddev, 100);
7155 mddev_unlock(mddev);
7156 }
7157 /*
7158 * certain more exotic SCSI devices are known to be
7159 * volatile wrt too early system reboots. While the
7160 * right place to handle this issue is the given
7161 * driver, we do want to have a safe RAID driver ...
7162 */
7163 mdelay(1000*1);
7164 }
7165 return NOTIFY_DONE;
7166 }
7167
7168 static struct notifier_block md_notifier = {
7169 .notifier_call = md_notify_reboot,
7170 .next = NULL,
7171 .priority = INT_MAX, /* before any real devices */
7172 };
7173
7174 static void md_geninit(void)
7175 {
7176 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
7177
7178 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
7179 }
7180
7181 static int __init md_init(void)
7182 {
7183 if (register_blkdev(MD_MAJOR, "md"))
7184 return -1;
7185 if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
7186 unregister_blkdev(MD_MAJOR, "md");
7187 return -1;
7188 }
7189 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
7190 md_probe, NULL, NULL);
7191 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
7192 md_probe, NULL, NULL);
7193
7194 register_reboot_notifier(&md_notifier);
7195 raid_table_header = register_sysctl_table(raid_root_table);
7196
7197 md_geninit();
7198 return 0;
7199 }
7200
7201
7202 #ifndef MODULE
7203
7204 /*
7205 * Searches all registered partitions for autorun RAID arrays
7206 * at boot time.
7207 */
7208
7209 static LIST_HEAD(all_detected_devices);
7210 struct detected_devices_node {
7211 struct list_head list;
7212 dev_t dev;
7213 };
7214
7215 void md_autodetect_dev(dev_t dev)
7216 {
7217 struct detected_devices_node *node_detected_dev;
7218
7219 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
7220 if (node_detected_dev) {
7221 node_detected_dev->dev = dev;
7222 list_add_tail(&node_detected_dev->list, &all_detected_devices);
7223 } else {
7224 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
7225 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
7226 }
7227 }
7228
7229
7230 static void autostart_arrays(int part)
7231 {
7232 mdk_rdev_t *rdev;
7233 struct detected_devices_node *node_detected_dev;
7234 dev_t dev;
7235 int i_scanned, i_passed;
7236
7237 i_scanned = 0;
7238 i_passed = 0;
7239
7240 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
7241
7242 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
7243 i_scanned++;
7244 node_detected_dev = list_entry(all_detected_devices.next,
7245 struct detected_devices_node, list);
7246 list_del(&node_detected_dev->list);
7247 dev = node_detected_dev->dev;
7248 kfree(node_detected_dev);
7249 rdev = md_import_device(dev,0, 90);
7250 if (IS_ERR(rdev))
7251 continue;
7252
7253 if (test_bit(Faulty, &rdev->flags)) {
7254 MD_BUG();
7255 continue;
7256 }
7257 set_bit(AutoDetected, &rdev->flags);
7258 list_add(&rdev->same_set, &pending_raid_disks);
7259 i_passed++;
7260 }
7261
7262 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
7263 i_scanned, i_passed);
7264
7265 autorun_devices(part);
7266 }
7267
7268 #endif /* !MODULE */
7269
7270 static __exit void md_exit(void)
7271 {
7272 mddev_t *mddev;
7273 struct list_head *tmp;
7274
7275 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
7276 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
7277
7278 unregister_blkdev(MD_MAJOR,"md");
7279 unregister_blkdev(mdp_major, "mdp");
7280 unregister_reboot_notifier(&md_notifier);
7281 unregister_sysctl_table(raid_table_header);
7282 remove_proc_entry("mdstat", NULL);
7283 for_each_mddev(mddev, tmp) {
7284 export_array(mddev);
7285 mddev->hold_active = 0;
7286 }
7287 }
7288
7289 subsys_initcall(md_init);
7290 module_exit(md_exit)
7291
7292 static int get_ro(char *buffer, struct kernel_param *kp)
7293 {
7294 return sprintf(buffer, "%d", start_readonly);
7295 }
7296 static int set_ro(const char *val, struct kernel_param *kp)
7297 {
7298 char *e;
7299 int num = simple_strtoul(val, &e, 10);
7300 if (*val && (*e == '\0' || *e == '\n')) {
7301 start_readonly = num;
7302 return 0;
7303 }
7304 return -EINVAL;
7305 }
7306
7307 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
7308 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
7309
7310 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
7311
7312 EXPORT_SYMBOL(register_md_personality);
7313 EXPORT_SYMBOL(unregister_md_personality);
7314 EXPORT_SYMBOL(md_error);
7315 EXPORT_SYMBOL(md_done_sync);
7316 EXPORT_SYMBOL(md_write_start);
7317 EXPORT_SYMBOL(md_write_end);
7318 EXPORT_SYMBOL(md_register_thread);
7319 EXPORT_SYMBOL(md_unregister_thread);
7320 EXPORT_SYMBOL(md_wakeup_thread);
7321 EXPORT_SYMBOL(md_check_recovery);
7322 MODULE_LICENSE("GPL");
7323 MODULE_DESCRIPTION("MD RAID framework");
7324 MODULE_ALIAS("md");
7325 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
This page took 0.315892 seconds and 6 git commands to generate.