Merge remote branch 'linus' into drm-intel-fixes
[deliverable/linux.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/smp_lock.h>
40 #include <linux/buffer_head.h> /* for invalidate_bdev */
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #define DEBUG 0
58 #define dprintk(x...) ((void)(DEBUG && printk(x)))
59
60
61 #ifndef MODULE
62 static void autostart_arrays(int part);
63 #endif
64
65 static LIST_HEAD(pers_list);
66 static DEFINE_SPINLOCK(pers_lock);
67
68 static void md_print_devices(void);
69
70 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
71
72 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
73
74 /*
75 * Default number of read corrections we'll attempt on an rdev
76 * before ejecting it from the array. We divide the read error
77 * count by 2 for every hour elapsed between read errors.
78 */
79 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
80 /*
81 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
82 * is 1000 KB/sec, so the extra system load does not show up that much.
83 * Increase it if you want to have more _guaranteed_ speed. Note that
84 * the RAID driver will use the maximum available bandwidth if the IO
85 * subsystem is idle. There is also an 'absolute maximum' reconstruction
86 * speed limit - in case reconstruction slows down your system despite
87 * idle IO detection.
88 *
89 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
90 * or /sys/block/mdX/md/sync_speed_{min,max}
91 */
92
93 static int sysctl_speed_limit_min = 1000;
94 static int sysctl_speed_limit_max = 200000;
95 static inline int speed_min(mddev_t *mddev)
96 {
97 return mddev->sync_speed_min ?
98 mddev->sync_speed_min : sysctl_speed_limit_min;
99 }
100
101 static inline int speed_max(mddev_t *mddev)
102 {
103 return mddev->sync_speed_max ?
104 mddev->sync_speed_max : sysctl_speed_limit_max;
105 }
106
107 static struct ctl_table_header *raid_table_header;
108
109 static ctl_table raid_table[] = {
110 {
111 .procname = "speed_limit_min",
112 .data = &sysctl_speed_limit_min,
113 .maxlen = sizeof(int),
114 .mode = S_IRUGO|S_IWUSR,
115 .proc_handler = proc_dointvec,
116 },
117 {
118 .procname = "speed_limit_max",
119 .data = &sysctl_speed_limit_max,
120 .maxlen = sizeof(int),
121 .mode = S_IRUGO|S_IWUSR,
122 .proc_handler = proc_dointvec,
123 },
124 { }
125 };
126
127 static ctl_table raid_dir_table[] = {
128 {
129 .procname = "raid",
130 .maxlen = 0,
131 .mode = S_IRUGO|S_IXUGO,
132 .child = raid_table,
133 },
134 { }
135 };
136
137 static ctl_table raid_root_table[] = {
138 {
139 .procname = "dev",
140 .maxlen = 0,
141 .mode = 0555,
142 .child = raid_dir_table,
143 },
144 { }
145 };
146
147 static const struct block_device_operations md_fops;
148
149 static int start_readonly;
150
151 /*
152 * We have a system wide 'event count' that is incremented
153 * on any 'interesting' event, and readers of /proc/mdstat
154 * can use 'poll' or 'select' to find out when the event
155 * count increases.
156 *
157 * Events are:
158 * start array, stop array, error, add device, remove device,
159 * start build, activate spare
160 */
161 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
162 static atomic_t md_event_count;
163 void md_new_event(mddev_t *mddev)
164 {
165 atomic_inc(&md_event_count);
166 wake_up(&md_event_waiters);
167 }
168 EXPORT_SYMBOL_GPL(md_new_event);
169
170 /* Alternate version that can be called from interrupts
171 * when calling sysfs_notify isn't needed.
172 */
173 static void md_new_event_inintr(mddev_t *mddev)
174 {
175 atomic_inc(&md_event_count);
176 wake_up(&md_event_waiters);
177 }
178
179 /*
180 * Enables to iterate over all existing md arrays
181 * all_mddevs_lock protects this list.
182 */
183 static LIST_HEAD(all_mddevs);
184 static DEFINE_SPINLOCK(all_mddevs_lock);
185
186
187 /*
188 * iterates through all used mddevs in the system.
189 * We take care to grab the all_mddevs_lock whenever navigating
190 * the list, and to always hold a refcount when unlocked.
191 * Any code which breaks out of this loop while own
192 * a reference to the current mddev and must mddev_put it.
193 */
194 #define for_each_mddev(mddev,tmp) \
195 \
196 for (({ spin_lock(&all_mddevs_lock); \
197 tmp = all_mddevs.next; \
198 mddev = NULL;}); \
199 ({ if (tmp != &all_mddevs) \
200 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
201 spin_unlock(&all_mddevs_lock); \
202 if (mddev) mddev_put(mddev); \
203 mddev = list_entry(tmp, mddev_t, all_mddevs); \
204 tmp != &all_mddevs;}); \
205 ({ spin_lock(&all_mddevs_lock); \
206 tmp = tmp->next;}) \
207 )
208
209
210 /* Rather than calling directly into the personality make_request function,
211 * IO requests come here first so that we can check if the device is
212 * being suspended pending a reconfiguration.
213 * We hold a refcount over the call to ->make_request. By the time that
214 * call has finished, the bio has been linked into some internal structure
215 * and so is visible to ->quiesce(), so we don't need the refcount any more.
216 */
217 static int md_make_request(struct request_queue *q, struct bio *bio)
218 {
219 const int rw = bio_data_dir(bio);
220 mddev_t *mddev = q->queuedata;
221 int rv;
222 int cpu;
223
224 if (mddev == NULL || mddev->pers == NULL) {
225 bio_io_error(bio);
226 return 0;
227 }
228 rcu_read_lock();
229 if (mddev->suspended || mddev->barrier) {
230 DEFINE_WAIT(__wait);
231 for (;;) {
232 prepare_to_wait(&mddev->sb_wait, &__wait,
233 TASK_UNINTERRUPTIBLE);
234 if (!mddev->suspended && !mddev->barrier)
235 break;
236 rcu_read_unlock();
237 schedule();
238 rcu_read_lock();
239 }
240 finish_wait(&mddev->sb_wait, &__wait);
241 }
242 atomic_inc(&mddev->active_io);
243 rcu_read_unlock();
244
245 rv = mddev->pers->make_request(mddev, bio);
246
247 cpu = part_stat_lock();
248 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
249 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
250 bio_sectors(bio));
251 part_stat_unlock();
252
253 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
254 wake_up(&mddev->sb_wait);
255
256 return rv;
257 }
258
259 /* mddev_suspend makes sure no new requests are submitted
260 * to the device, and that any requests that have been submitted
261 * are completely handled.
262 * Once ->stop is called and completes, the module will be completely
263 * unused.
264 */
265 void mddev_suspend(mddev_t *mddev)
266 {
267 BUG_ON(mddev->suspended);
268 mddev->suspended = 1;
269 synchronize_rcu();
270 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
271 mddev->pers->quiesce(mddev, 1);
272 }
273 EXPORT_SYMBOL_GPL(mddev_suspend);
274
275 void mddev_resume(mddev_t *mddev)
276 {
277 mddev->suspended = 0;
278 wake_up(&mddev->sb_wait);
279 mddev->pers->quiesce(mddev, 0);
280 }
281 EXPORT_SYMBOL_GPL(mddev_resume);
282
283 int mddev_congested(mddev_t *mddev, int bits)
284 {
285 if (mddev->barrier)
286 return 1;
287 return mddev->suspended;
288 }
289 EXPORT_SYMBOL(mddev_congested);
290
291 /*
292 * Generic barrier handling for md
293 */
294
295 #define POST_REQUEST_BARRIER ((void*)1)
296
297 static void md_end_barrier(struct bio *bio, int err)
298 {
299 mdk_rdev_t *rdev = bio->bi_private;
300 mddev_t *mddev = rdev->mddev;
301 if (err == -EOPNOTSUPP && mddev->barrier != POST_REQUEST_BARRIER)
302 set_bit(BIO_EOPNOTSUPP, &mddev->barrier->bi_flags);
303
304 rdev_dec_pending(rdev, mddev);
305
306 if (atomic_dec_and_test(&mddev->flush_pending)) {
307 if (mddev->barrier == POST_REQUEST_BARRIER) {
308 /* This was a post-request barrier */
309 mddev->barrier = NULL;
310 wake_up(&mddev->sb_wait);
311 } else
312 /* The pre-request barrier has finished */
313 schedule_work(&mddev->barrier_work);
314 }
315 bio_put(bio);
316 }
317
318 static void submit_barriers(mddev_t *mddev)
319 {
320 mdk_rdev_t *rdev;
321
322 rcu_read_lock();
323 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
324 if (rdev->raid_disk >= 0 &&
325 !test_bit(Faulty, &rdev->flags)) {
326 /* Take two references, one is dropped
327 * when request finishes, one after
328 * we reclaim rcu_read_lock
329 */
330 struct bio *bi;
331 atomic_inc(&rdev->nr_pending);
332 atomic_inc(&rdev->nr_pending);
333 rcu_read_unlock();
334 bi = bio_alloc(GFP_KERNEL, 0);
335 bi->bi_end_io = md_end_barrier;
336 bi->bi_private = rdev;
337 bi->bi_bdev = rdev->bdev;
338 atomic_inc(&mddev->flush_pending);
339 submit_bio(WRITE_BARRIER, bi);
340 rcu_read_lock();
341 rdev_dec_pending(rdev, mddev);
342 }
343 rcu_read_unlock();
344 }
345
346 static void md_submit_barrier(struct work_struct *ws)
347 {
348 mddev_t *mddev = container_of(ws, mddev_t, barrier_work);
349 struct bio *bio = mddev->barrier;
350
351 atomic_set(&mddev->flush_pending, 1);
352
353 if (test_bit(BIO_EOPNOTSUPP, &bio->bi_flags))
354 bio_endio(bio, -EOPNOTSUPP);
355 else if (bio->bi_size == 0)
356 /* an empty barrier - all done */
357 bio_endio(bio, 0);
358 else {
359 bio->bi_rw &= ~REQ_HARDBARRIER;
360 if (mddev->pers->make_request(mddev, bio))
361 generic_make_request(bio);
362 mddev->barrier = POST_REQUEST_BARRIER;
363 submit_barriers(mddev);
364 }
365 if (atomic_dec_and_test(&mddev->flush_pending)) {
366 mddev->barrier = NULL;
367 wake_up(&mddev->sb_wait);
368 }
369 }
370
371 void md_barrier_request(mddev_t *mddev, struct bio *bio)
372 {
373 spin_lock_irq(&mddev->write_lock);
374 wait_event_lock_irq(mddev->sb_wait,
375 !mddev->barrier,
376 mddev->write_lock, /*nothing*/);
377 mddev->barrier = bio;
378 spin_unlock_irq(&mddev->write_lock);
379
380 atomic_set(&mddev->flush_pending, 1);
381 INIT_WORK(&mddev->barrier_work, md_submit_barrier);
382
383 submit_barriers(mddev);
384
385 if (atomic_dec_and_test(&mddev->flush_pending))
386 schedule_work(&mddev->barrier_work);
387 }
388 EXPORT_SYMBOL(md_barrier_request);
389
390 /* Support for plugging.
391 * This mirrors the plugging support in request_queue, but does not
392 * require having a whole queue
393 */
394 static void plugger_work(struct work_struct *work)
395 {
396 struct plug_handle *plug =
397 container_of(work, struct plug_handle, unplug_work);
398 plug->unplug_fn(plug);
399 }
400 static void plugger_timeout(unsigned long data)
401 {
402 struct plug_handle *plug = (void *)data;
403 kblockd_schedule_work(NULL, &plug->unplug_work);
404 }
405 void plugger_init(struct plug_handle *plug,
406 void (*unplug_fn)(struct plug_handle *))
407 {
408 plug->unplug_flag = 0;
409 plug->unplug_fn = unplug_fn;
410 init_timer(&plug->unplug_timer);
411 plug->unplug_timer.function = plugger_timeout;
412 plug->unplug_timer.data = (unsigned long)plug;
413 INIT_WORK(&plug->unplug_work, plugger_work);
414 }
415 EXPORT_SYMBOL_GPL(plugger_init);
416
417 void plugger_set_plug(struct plug_handle *plug)
418 {
419 if (!test_and_set_bit(PLUGGED_FLAG, &plug->unplug_flag))
420 mod_timer(&plug->unplug_timer, jiffies + msecs_to_jiffies(3)+1);
421 }
422 EXPORT_SYMBOL_GPL(plugger_set_plug);
423
424 int plugger_remove_plug(struct plug_handle *plug)
425 {
426 if (test_and_clear_bit(PLUGGED_FLAG, &plug->unplug_flag)) {
427 del_timer(&plug->unplug_timer);
428 return 1;
429 } else
430 return 0;
431 }
432 EXPORT_SYMBOL_GPL(plugger_remove_plug);
433
434
435 static inline mddev_t *mddev_get(mddev_t *mddev)
436 {
437 atomic_inc(&mddev->active);
438 return mddev;
439 }
440
441 static void mddev_delayed_delete(struct work_struct *ws);
442
443 static void mddev_put(mddev_t *mddev)
444 {
445 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
446 return;
447 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
448 mddev->ctime == 0 && !mddev->hold_active) {
449 /* Array is not configured at all, and not held active,
450 * so destroy it */
451 list_del(&mddev->all_mddevs);
452 if (mddev->gendisk) {
453 /* we did a probe so need to clean up.
454 * Call schedule_work inside the spinlock
455 * so that flush_scheduled_work() after
456 * mddev_find will succeed in waiting for the
457 * work to be done.
458 */
459 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
460 schedule_work(&mddev->del_work);
461 } else
462 kfree(mddev);
463 }
464 spin_unlock(&all_mddevs_lock);
465 }
466
467 void mddev_init(mddev_t *mddev)
468 {
469 mutex_init(&mddev->open_mutex);
470 mutex_init(&mddev->reconfig_mutex);
471 mutex_init(&mddev->bitmap_info.mutex);
472 INIT_LIST_HEAD(&mddev->disks);
473 INIT_LIST_HEAD(&mddev->all_mddevs);
474 init_timer(&mddev->safemode_timer);
475 atomic_set(&mddev->active, 1);
476 atomic_set(&mddev->openers, 0);
477 atomic_set(&mddev->active_io, 0);
478 spin_lock_init(&mddev->write_lock);
479 atomic_set(&mddev->flush_pending, 0);
480 init_waitqueue_head(&mddev->sb_wait);
481 init_waitqueue_head(&mddev->recovery_wait);
482 mddev->reshape_position = MaxSector;
483 mddev->resync_min = 0;
484 mddev->resync_max = MaxSector;
485 mddev->level = LEVEL_NONE;
486 }
487 EXPORT_SYMBOL_GPL(mddev_init);
488
489 static mddev_t * mddev_find(dev_t unit)
490 {
491 mddev_t *mddev, *new = NULL;
492
493 retry:
494 spin_lock(&all_mddevs_lock);
495
496 if (unit) {
497 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
498 if (mddev->unit == unit) {
499 mddev_get(mddev);
500 spin_unlock(&all_mddevs_lock);
501 kfree(new);
502 return mddev;
503 }
504
505 if (new) {
506 list_add(&new->all_mddevs, &all_mddevs);
507 spin_unlock(&all_mddevs_lock);
508 new->hold_active = UNTIL_IOCTL;
509 return new;
510 }
511 } else if (new) {
512 /* find an unused unit number */
513 static int next_minor = 512;
514 int start = next_minor;
515 int is_free = 0;
516 int dev = 0;
517 while (!is_free) {
518 dev = MKDEV(MD_MAJOR, next_minor);
519 next_minor++;
520 if (next_minor > MINORMASK)
521 next_minor = 0;
522 if (next_minor == start) {
523 /* Oh dear, all in use. */
524 spin_unlock(&all_mddevs_lock);
525 kfree(new);
526 return NULL;
527 }
528
529 is_free = 1;
530 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
531 if (mddev->unit == dev) {
532 is_free = 0;
533 break;
534 }
535 }
536 new->unit = dev;
537 new->md_minor = MINOR(dev);
538 new->hold_active = UNTIL_STOP;
539 list_add(&new->all_mddevs, &all_mddevs);
540 spin_unlock(&all_mddevs_lock);
541 return new;
542 }
543 spin_unlock(&all_mddevs_lock);
544
545 new = kzalloc(sizeof(*new), GFP_KERNEL);
546 if (!new)
547 return NULL;
548
549 new->unit = unit;
550 if (MAJOR(unit) == MD_MAJOR)
551 new->md_minor = MINOR(unit);
552 else
553 new->md_minor = MINOR(unit) >> MdpMinorShift;
554
555 mddev_init(new);
556
557 goto retry;
558 }
559
560 static inline int mddev_lock(mddev_t * mddev)
561 {
562 return mutex_lock_interruptible(&mddev->reconfig_mutex);
563 }
564
565 static inline int mddev_is_locked(mddev_t *mddev)
566 {
567 return mutex_is_locked(&mddev->reconfig_mutex);
568 }
569
570 static inline int mddev_trylock(mddev_t * mddev)
571 {
572 return mutex_trylock(&mddev->reconfig_mutex);
573 }
574
575 static struct attribute_group md_redundancy_group;
576
577 static void mddev_unlock(mddev_t * mddev)
578 {
579 if (mddev->to_remove) {
580 /* These cannot be removed under reconfig_mutex as
581 * an access to the files will try to take reconfig_mutex
582 * while holding the file unremovable, which leads to
583 * a deadlock.
584 * So hold set sysfs_active while the remove in happeing,
585 * and anything else which might set ->to_remove or my
586 * otherwise change the sysfs namespace will fail with
587 * -EBUSY if sysfs_active is still set.
588 * We set sysfs_active under reconfig_mutex and elsewhere
589 * test it under the same mutex to ensure its correct value
590 * is seen.
591 */
592 struct attribute_group *to_remove = mddev->to_remove;
593 mddev->to_remove = NULL;
594 mddev->sysfs_active = 1;
595 mutex_unlock(&mddev->reconfig_mutex);
596
597 if (mddev->kobj.sd) {
598 if (to_remove != &md_redundancy_group)
599 sysfs_remove_group(&mddev->kobj, to_remove);
600 if (mddev->pers == NULL ||
601 mddev->pers->sync_request == NULL) {
602 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
603 if (mddev->sysfs_action)
604 sysfs_put(mddev->sysfs_action);
605 mddev->sysfs_action = NULL;
606 }
607 }
608 mddev->sysfs_active = 0;
609 } else
610 mutex_unlock(&mddev->reconfig_mutex);
611
612 md_wakeup_thread(mddev->thread);
613 }
614
615 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
616 {
617 mdk_rdev_t *rdev;
618
619 list_for_each_entry(rdev, &mddev->disks, same_set)
620 if (rdev->desc_nr == nr)
621 return rdev;
622
623 return NULL;
624 }
625
626 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
627 {
628 mdk_rdev_t *rdev;
629
630 list_for_each_entry(rdev, &mddev->disks, same_set)
631 if (rdev->bdev->bd_dev == dev)
632 return rdev;
633
634 return NULL;
635 }
636
637 static struct mdk_personality *find_pers(int level, char *clevel)
638 {
639 struct mdk_personality *pers;
640 list_for_each_entry(pers, &pers_list, list) {
641 if (level != LEVEL_NONE && pers->level == level)
642 return pers;
643 if (strcmp(pers->name, clevel)==0)
644 return pers;
645 }
646 return NULL;
647 }
648
649 /* return the offset of the super block in 512byte sectors */
650 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
651 {
652 sector_t num_sectors = bdev->bd_inode->i_size / 512;
653 return MD_NEW_SIZE_SECTORS(num_sectors);
654 }
655
656 static int alloc_disk_sb(mdk_rdev_t * rdev)
657 {
658 if (rdev->sb_page)
659 MD_BUG();
660
661 rdev->sb_page = alloc_page(GFP_KERNEL);
662 if (!rdev->sb_page) {
663 printk(KERN_ALERT "md: out of memory.\n");
664 return -ENOMEM;
665 }
666
667 return 0;
668 }
669
670 static void free_disk_sb(mdk_rdev_t * rdev)
671 {
672 if (rdev->sb_page) {
673 put_page(rdev->sb_page);
674 rdev->sb_loaded = 0;
675 rdev->sb_page = NULL;
676 rdev->sb_start = 0;
677 rdev->sectors = 0;
678 }
679 }
680
681
682 static void super_written(struct bio *bio, int error)
683 {
684 mdk_rdev_t *rdev = bio->bi_private;
685 mddev_t *mddev = rdev->mddev;
686
687 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
688 printk("md: super_written gets error=%d, uptodate=%d\n",
689 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
690 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
691 md_error(mddev, rdev);
692 }
693
694 if (atomic_dec_and_test(&mddev->pending_writes))
695 wake_up(&mddev->sb_wait);
696 bio_put(bio);
697 }
698
699 static void super_written_barrier(struct bio *bio, int error)
700 {
701 struct bio *bio2 = bio->bi_private;
702 mdk_rdev_t *rdev = bio2->bi_private;
703 mddev_t *mddev = rdev->mddev;
704
705 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
706 error == -EOPNOTSUPP) {
707 unsigned long flags;
708 /* barriers don't appear to be supported :-( */
709 set_bit(BarriersNotsupp, &rdev->flags);
710 mddev->barriers_work = 0;
711 spin_lock_irqsave(&mddev->write_lock, flags);
712 bio2->bi_next = mddev->biolist;
713 mddev->biolist = bio2;
714 spin_unlock_irqrestore(&mddev->write_lock, flags);
715 wake_up(&mddev->sb_wait);
716 bio_put(bio);
717 } else {
718 bio_put(bio2);
719 bio->bi_private = rdev;
720 super_written(bio, error);
721 }
722 }
723
724 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
725 sector_t sector, int size, struct page *page)
726 {
727 /* write first size bytes of page to sector of rdev
728 * Increment mddev->pending_writes before returning
729 * and decrement it on completion, waking up sb_wait
730 * if zero is reached.
731 * If an error occurred, call md_error
732 *
733 * As we might need to resubmit the request if REQ_HARDBARRIER
734 * causes ENOTSUPP, we allocate a spare bio...
735 */
736 struct bio *bio = bio_alloc(GFP_NOIO, 1);
737 int rw = REQ_WRITE | REQ_SYNC | REQ_UNPLUG;
738
739 bio->bi_bdev = rdev->bdev;
740 bio->bi_sector = sector;
741 bio_add_page(bio, page, size, 0);
742 bio->bi_private = rdev;
743 bio->bi_end_io = super_written;
744 bio->bi_rw = rw;
745
746 atomic_inc(&mddev->pending_writes);
747 if (!test_bit(BarriersNotsupp, &rdev->flags)) {
748 struct bio *rbio;
749 rw |= REQ_HARDBARRIER;
750 rbio = bio_clone(bio, GFP_NOIO);
751 rbio->bi_private = bio;
752 rbio->bi_end_io = super_written_barrier;
753 submit_bio(rw, rbio);
754 } else
755 submit_bio(rw, bio);
756 }
757
758 void md_super_wait(mddev_t *mddev)
759 {
760 /* wait for all superblock writes that were scheduled to complete.
761 * if any had to be retried (due to BARRIER problems), retry them
762 */
763 DEFINE_WAIT(wq);
764 for(;;) {
765 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
766 if (atomic_read(&mddev->pending_writes)==0)
767 break;
768 while (mddev->biolist) {
769 struct bio *bio;
770 spin_lock_irq(&mddev->write_lock);
771 bio = mddev->biolist;
772 mddev->biolist = bio->bi_next ;
773 bio->bi_next = NULL;
774 spin_unlock_irq(&mddev->write_lock);
775 submit_bio(bio->bi_rw, bio);
776 }
777 schedule();
778 }
779 finish_wait(&mddev->sb_wait, &wq);
780 }
781
782 static void bi_complete(struct bio *bio, int error)
783 {
784 complete((struct completion*)bio->bi_private);
785 }
786
787 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
788 struct page *page, int rw)
789 {
790 struct bio *bio = bio_alloc(GFP_NOIO, 1);
791 struct completion event;
792 int ret;
793
794 rw |= REQ_SYNC | REQ_UNPLUG;
795
796 bio->bi_bdev = bdev;
797 bio->bi_sector = sector;
798 bio_add_page(bio, page, size, 0);
799 init_completion(&event);
800 bio->bi_private = &event;
801 bio->bi_end_io = bi_complete;
802 submit_bio(rw, bio);
803 wait_for_completion(&event);
804
805 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
806 bio_put(bio);
807 return ret;
808 }
809 EXPORT_SYMBOL_GPL(sync_page_io);
810
811 static int read_disk_sb(mdk_rdev_t * rdev, int size)
812 {
813 char b[BDEVNAME_SIZE];
814 if (!rdev->sb_page) {
815 MD_BUG();
816 return -EINVAL;
817 }
818 if (rdev->sb_loaded)
819 return 0;
820
821
822 if (!sync_page_io(rdev->bdev, rdev->sb_start, size, rdev->sb_page, READ))
823 goto fail;
824 rdev->sb_loaded = 1;
825 return 0;
826
827 fail:
828 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
829 bdevname(rdev->bdev,b));
830 return -EINVAL;
831 }
832
833 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
834 {
835 return sb1->set_uuid0 == sb2->set_uuid0 &&
836 sb1->set_uuid1 == sb2->set_uuid1 &&
837 sb1->set_uuid2 == sb2->set_uuid2 &&
838 sb1->set_uuid3 == sb2->set_uuid3;
839 }
840
841 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
842 {
843 int ret;
844 mdp_super_t *tmp1, *tmp2;
845
846 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
847 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
848
849 if (!tmp1 || !tmp2) {
850 ret = 0;
851 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
852 goto abort;
853 }
854
855 *tmp1 = *sb1;
856 *tmp2 = *sb2;
857
858 /*
859 * nr_disks is not constant
860 */
861 tmp1->nr_disks = 0;
862 tmp2->nr_disks = 0;
863
864 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
865 abort:
866 kfree(tmp1);
867 kfree(tmp2);
868 return ret;
869 }
870
871
872 static u32 md_csum_fold(u32 csum)
873 {
874 csum = (csum & 0xffff) + (csum >> 16);
875 return (csum & 0xffff) + (csum >> 16);
876 }
877
878 static unsigned int calc_sb_csum(mdp_super_t * sb)
879 {
880 u64 newcsum = 0;
881 u32 *sb32 = (u32*)sb;
882 int i;
883 unsigned int disk_csum, csum;
884
885 disk_csum = sb->sb_csum;
886 sb->sb_csum = 0;
887
888 for (i = 0; i < MD_SB_BYTES/4 ; i++)
889 newcsum += sb32[i];
890 csum = (newcsum & 0xffffffff) + (newcsum>>32);
891
892
893 #ifdef CONFIG_ALPHA
894 /* This used to use csum_partial, which was wrong for several
895 * reasons including that different results are returned on
896 * different architectures. It isn't critical that we get exactly
897 * the same return value as before (we always csum_fold before
898 * testing, and that removes any differences). However as we
899 * know that csum_partial always returned a 16bit value on
900 * alphas, do a fold to maximise conformity to previous behaviour.
901 */
902 sb->sb_csum = md_csum_fold(disk_csum);
903 #else
904 sb->sb_csum = disk_csum;
905 #endif
906 return csum;
907 }
908
909
910 /*
911 * Handle superblock details.
912 * We want to be able to handle multiple superblock formats
913 * so we have a common interface to them all, and an array of
914 * different handlers.
915 * We rely on user-space to write the initial superblock, and support
916 * reading and updating of superblocks.
917 * Interface methods are:
918 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
919 * loads and validates a superblock on dev.
920 * if refdev != NULL, compare superblocks on both devices
921 * Return:
922 * 0 - dev has a superblock that is compatible with refdev
923 * 1 - dev has a superblock that is compatible and newer than refdev
924 * so dev should be used as the refdev in future
925 * -EINVAL superblock incompatible or invalid
926 * -othererror e.g. -EIO
927 *
928 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
929 * Verify that dev is acceptable into mddev.
930 * The first time, mddev->raid_disks will be 0, and data from
931 * dev should be merged in. Subsequent calls check that dev
932 * is new enough. Return 0 or -EINVAL
933 *
934 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
935 * Update the superblock for rdev with data in mddev
936 * This does not write to disc.
937 *
938 */
939
940 struct super_type {
941 char *name;
942 struct module *owner;
943 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
944 int minor_version);
945 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
946 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
947 unsigned long long (*rdev_size_change)(mdk_rdev_t *rdev,
948 sector_t num_sectors);
949 };
950
951 /*
952 * Check that the given mddev has no bitmap.
953 *
954 * This function is called from the run method of all personalities that do not
955 * support bitmaps. It prints an error message and returns non-zero if mddev
956 * has a bitmap. Otherwise, it returns 0.
957 *
958 */
959 int md_check_no_bitmap(mddev_t *mddev)
960 {
961 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
962 return 0;
963 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
964 mdname(mddev), mddev->pers->name);
965 return 1;
966 }
967 EXPORT_SYMBOL(md_check_no_bitmap);
968
969 /*
970 * load_super for 0.90.0
971 */
972 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
973 {
974 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
975 mdp_super_t *sb;
976 int ret;
977
978 /*
979 * Calculate the position of the superblock (512byte sectors),
980 * it's at the end of the disk.
981 *
982 * It also happens to be a multiple of 4Kb.
983 */
984 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
985
986 ret = read_disk_sb(rdev, MD_SB_BYTES);
987 if (ret) return ret;
988
989 ret = -EINVAL;
990
991 bdevname(rdev->bdev, b);
992 sb = (mdp_super_t*)page_address(rdev->sb_page);
993
994 if (sb->md_magic != MD_SB_MAGIC) {
995 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
996 b);
997 goto abort;
998 }
999
1000 if (sb->major_version != 0 ||
1001 sb->minor_version < 90 ||
1002 sb->minor_version > 91) {
1003 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1004 sb->major_version, sb->minor_version,
1005 b);
1006 goto abort;
1007 }
1008
1009 if (sb->raid_disks <= 0)
1010 goto abort;
1011
1012 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1013 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1014 b);
1015 goto abort;
1016 }
1017
1018 rdev->preferred_minor = sb->md_minor;
1019 rdev->data_offset = 0;
1020 rdev->sb_size = MD_SB_BYTES;
1021
1022 if (sb->level == LEVEL_MULTIPATH)
1023 rdev->desc_nr = -1;
1024 else
1025 rdev->desc_nr = sb->this_disk.number;
1026
1027 if (!refdev) {
1028 ret = 1;
1029 } else {
1030 __u64 ev1, ev2;
1031 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
1032 if (!uuid_equal(refsb, sb)) {
1033 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1034 b, bdevname(refdev->bdev,b2));
1035 goto abort;
1036 }
1037 if (!sb_equal(refsb, sb)) {
1038 printk(KERN_WARNING "md: %s has same UUID"
1039 " but different superblock to %s\n",
1040 b, bdevname(refdev->bdev, b2));
1041 goto abort;
1042 }
1043 ev1 = md_event(sb);
1044 ev2 = md_event(refsb);
1045 if (ev1 > ev2)
1046 ret = 1;
1047 else
1048 ret = 0;
1049 }
1050 rdev->sectors = rdev->sb_start;
1051
1052 if (rdev->sectors < sb->size * 2 && sb->level > 1)
1053 /* "this cannot possibly happen" ... */
1054 ret = -EINVAL;
1055
1056 abort:
1057 return ret;
1058 }
1059
1060 /*
1061 * validate_super for 0.90.0
1062 */
1063 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1064 {
1065 mdp_disk_t *desc;
1066 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
1067 __u64 ev1 = md_event(sb);
1068
1069 rdev->raid_disk = -1;
1070 clear_bit(Faulty, &rdev->flags);
1071 clear_bit(In_sync, &rdev->flags);
1072 clear_bit(WriteMostly, &rdev->flags);
1073 clear_bit(BarriersNotsupp, &rdev->flags);
1074
1075 if (mddev->raid_disks == 0) {
1076 mddev->major_version = 0;
1077 mddev->minor_version = sb->minor_version;
1078 mddev->patch_version = sb->patch_version;
1079 mddev->external = 0;
1080 mddev->chunk_sectors = sb->chunk_size >> 9;
1081 mddev->ctime = sb->ctime;
1082 mddev->utime = sb->utime;
1083 mddev->level = sb->level;
1084 mddev->clevel[0] = 0;
1085 mddev->layout = sb->layout;
1086 mddev->raid_disks = sb->raid_disks;
1087 mddev->dev_sectors = sb->size * 2;
1088 mddev->events = ev1;
1089 mddev->bitmap_info.offset = 0;
1090 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1091
1092 if (mddev->minor_version >= 91) {
1093 mddev->reshape_position = sb->reshape_position;
1094 mddev->delta_disks = sb->delta_disks;
1095 mddev->new_level = sb->new_level;
1096 mddev->new_layout = sb->new_layout;
1097 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1098 } else {
1099 mddev->reshape_position = MaxSector;
1100 mddev->delta_disks = 0;
1101 mddev->new_level = mddev->level;
1102 mddev->new_layout = mddev->layout;
1103 mddev->new_chunk_sectors = mddev->chunk_sectors;
1104 }
1105
1106 if (sb->state & (1<<MD_SB_CLEAN))
1107 mddev->recovery_cp = MaxSector;
1108 else {
1109 if (sb->events_hi == sb->cp_events_hi &&
1110 sb->events_lo == sb->cp_events_lo) {
1111 mddev->recovery_cp = sb->recovery_cp;
1112 } else
1113 mddev->recovery_cp = 0;
1114 }
1115
1116 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1117 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1118 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1119 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1120
1121 mddev->max_disks = MD_SB_DISKS;
1122
1123 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1124 mddev->bitmap_info.file == NULL)
1125 mddev->bitmap_info.offset =
1126 mddev->bitmap_info.default_offset;
1127
1128 } else if (mddev->pers == NULL) {
1129 /* Insist on good event counter while assembling, except
1130 * for spares (which don't need an event count) */
1131 ++ev1;
1132 if (sb->disks[rdev->desc_nr].state & (
1133 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1134 if (ev1 < mddev->events)
1135 return -EINVAL;
1136 } else if (mddev->bitmap) {
1137 /* if adding to array with a bitmap, then we can accept an
1138 * older device ... but not too old.
1139 */
1140 if (ev1 < mddev->bitmap->events_cleared)
1141 return 0;
1142 } else {
1143 if (ev1 < mddev->events)
1144 /* just a hot-add of a new device, leave raid_disk at -1 */
1145 return 0;
1146 }
1147
1148 if (mddev->level != LEVEL_MULTIPATH) {
1149 desc = sb->disks + rdev->desc_nr;
1150
1151 if (desc->state & (1<<MD_DISK_FAULTY))
1152 set_bit(Faulty, &rdev->flags);
1153 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1154 desc->raid_disk < mddev->raid_disks */) {
1155 set_bit(In_sync, &rdev->flags);
1156 rdev->raid_disk = desc->raid_disk;
1157 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1158 /* active but not in sync implies recovery up to
1159 * reshape position. We don't know exactly where
1160 * that is, so set to zero for now */
1161 if (mddev->minor_version >= 91) {
1162 rdev->recovery_offset = 0;
1163 rdev->raid_disk = desc->raid_disk;
1164 }
1165 }
1166 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1167 set_bit(WriteMostly, &rdev->flags);
1168 } else /* MULTIPATH are always insync */
1169 set_bit(In_sync, &rdev->flags);
1170 return 0;
1171 }
1172
1173 /*
1174 * sync_super for 0.90.0
1175 */
1176 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1177 {
1178 mdp_super_t *sb;
1179 mdk_rdev_t *rdev2;
1180 int next_spare = mddev->raid_disks;
1181
1182
1183 /* make rdev->sb match mddev data..
1184 *
1185 * 1/ zero out disks
1186 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1187 * 3/ any empty disks < next_spare become removed
1188 *
1189 * disks[0] gets initialised to REMOVED because
1190 * we cannot be sure from other fields if it has
1191 * been initialised or not.
1192 */
1193 int i;
1194 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1195
1196 rdev->sb_size = MD_SB_BYTES;
1197
1198 sb = (mdp_super_t*)page_address(rdev->sb_page);
1199
1200 memset(sb, 0, sizeof(*sb));
1201
1202 sb->md_magic = MD_SB_MAGIC;
1203 sb->major_version = mddev->major_version;
1204 sb->patch_version = mddev->patch_version;
1205 sb->gvalid_words = 0; /* ignored */
1206 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1207 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1208 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1209 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1210
1211 sb->ctime = mddev->ctime;
1212 sb->level = mddev->level;
1213 sb->size = mddev->dev_sectors / 2;
1214 sb->raid_disks = mddev->raid_disks;
1215 sb->md_minor = mddev->md_minor;
1216 sb->not_persistent = 0;
1217 sb->utime = mddev->utime;
1218 sb->state = 0;
1219 sb->events_hi = (mddev->events>>32);
1220 sb->events_lo = (u32)mddev->events;
1221
1222 if (mddev->reshape_position == MaxSector)
1223 sb->minor_version = 90;
1224 else {
1225 sb->minor_version = 91;
1226 sb->reshape_position = mddev->reshape_position;
1227 sb->new_level = mddev->new_level;
1228 sb->delta_disks = mddev->delta_disks;
1229 sb->new_layout = mddev->new_layout;
1230 sb->new_chunk = mddev->new_chunk_sectors << 9;
1231 }
1232 mddev->minor_version = sb->minor_version;
1233 if (mddev->in_sync)
1234 {
1235 sb->recovery_cp = mddev->recovery_cp;
1236 sb->cp_events_hi = (mddev->events>>32);
1237 sb->cp_events_lo = (u32)mddev->events;
1238 if (mddev->recovery_cp == MaxSector)
1239 sb->state = (1<< MD_SB_CLEAN);
1240 } else
1241 sb->recovery_cp = 0;
1242
1243 sb->layout = mddev->layout;
1244 sb->chunk_size = mddev->chunk_sectors << 9;
1245
1246 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1247 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1248
1249 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1250 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1251 mdp_disk_t *d;
1252 int desc_nr;
1253 int is_active = test_bit(In_sync, &rdev2->flags);
1254
1255 if (rdev2->raid_disk >= 0 &&
1256 sb->minor_version >= 91)
1257 /* we have nowhere to store the recovery_offset,
1258 * but if it is not below the reshape_position,
1259 * we can piggy-back on that.
1260 */
1261 is_active = 1;
1262 if (rdev2->raid_disk < 0 ||
1263 test_bit(Faulty, &rdev2->flags))
1264 is_active = 0;
1265 if (is_active)
1266 desc_nr = rdev2->raid_disk;
1267 else
1268 desc_nr = next_spare++;
1269 rdev2->desc_nr = desc_nr;
1270 d = &sb->disks[rdev2->desc_nr];
1271 nr_disks++;
1272 d->number = rdev2->desc_nr;
1273 d->major = MAJOR(rdev2->bdev->bd_dev);
1274 d->minor = MINOR(rdev2->bdev->bd_dev);
1275 if (is_active)
1276 d->raid_disk = rdev2->raid_disk;
1277 else
1278 d->raid_disk = rdev2->desc_nr; /* compatibility */
1279 if (test_bit(Faulty, &rdev2->flags))
1280 d->state = (1<<MD_DISK_FAULTY);
1281 else if (is_active) {
1282 d->state = (1<<MD_DISK_ACTIVE);
1283 if (test_bit(In_sync, &rdev2->flags))
1284 d->state |= (1<<MD_DISK_SYNC);
1285 active++;
1286 working++;
1287 } else {
1288 d->state = 0;
1289 spare++;
1290 working++;
1291 }
1292 if (test_bit(WriteMostly, &rdev2->flags))
1293 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1294 }
1295 /* now set the "removed" and "faulty" bits on any missing devices */
1296 for (i=0 ; i < mddev->raid_disks ; i++) {
1297 mdp_disk_t *d = &sb->disks[i];
1298 if (d->state == 0 && d->number == 0) {
1299 d->number = i;
1300 d->raid_disk = i;
1301 d->state = (1<<MD_DISK_REMOVED);
1302 d->state |= (1<<MD_DISK_FAULTY);
1303 failed++;
1304 }
1305 }
1306 sb->nr_disks = nr_disks;
1307 sb->active_disks = active;
1308 sb->working_disks = working;
1309 sb->failed_disks = failed;
1310 sb->spare_disks = spare;
1311
1312 sb->this_disk = sb->disks[rdev->desc_nr];
1313 sb->sb_csum = calc_sb_csum(sb);
1314 }
1315
1316 /*
1317 * rdev_size_change for 0.90.0
1318 */
1319 static unsigned long long
1320 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1321 {
1322 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1323 return 0; /* component must fit device */
1324 if (rdev->mddev->bitmap_info.offset)
1325 return 0; /* can't move bitmap */
1326 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
1327 if (!num_sectors || num_sectors > rdev->sb_start)
1328 num_sectors = rdev->sb_start;
1329 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1330 rdev->sb_page);
1331 md_super_wait(rdev->mddev);
1332 return num_sectors / 2; /* kB for sysfs */
1333 }
1334
1335
1336 /*
1337 * version 1 superblock
1338 */
1339
1340 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1341 {
1342 __le32 disk_csum;
1343 u32 csum;
1344 unsigned long long newcsum;
1345 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1346 __le32 *isuper = (__le32*)sb;
1347 int i;
1348
1349 disk_csum = sb->sb_csum;
1350 sb->sb_csum = 0;
1351 newcsum = 0;
1352 for (i=0; size>=4; size -= 4 )
1353 newcsum += le32_to_cpu(*isuper++);
1354
1355 if (size == 2)
1356 newcsum += le16_to_cpu(*(__le16*) isuper);
1357
1358 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1359 sb->sb_csum = disk_csum;
1360 return cpu_to_le32(csum);
1361 }
1362
1363 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1364 {
1365 struct mdp_superblock_1 *sb;
1366 int ret;
1367 sector_t sb_start;
1368 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1369 int bmask;
1370
1371 /*
1372 * Calculate the position of the superblock in 512byte sectors.
1373 * It is always aligned to a 4K boundary and
1374 * depeding on minor_version, it can be:
1375 * 0: At least 8K, but less than 12K, from end of device
1376 * 1: At start of device
1377 * 2: 4K from start of device.
1378 */
1379 switch(minor_version) {
1380 case 0:
1381 sb_start = rdev->bdev->bd_inode->i_size >> 9;
1382 sb_start -= 8*2;
1383 sb_start &= ~(sector_t)(4*2-1);
1384 break;
1385 case 1:
1386 sb_start = 0;
1387 break;
1388 case 2:
1389 sb_start = 8;
1390 break;
1391 default:
1392 return -EINVAL;
1393 }
1394 rdev->sb_start = sb_start;
1395
1396 /* superblock is rarely larger than 1K, but it can be larger,
1397 * and it is safe to read 4k, so we do that
1398 */
1399 ret = read_disk_sb(rdev, 4096);
1400 if (ret) return ret;
1401
1402
1403 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1404
1405 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1406 sb->major_version != cpu_to_le32(1) ||
1407 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1408 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1409 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1410 return -EINVAL;
1411
1412 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1413 printk("md: invalid superblock checksum on %s\n",
1414 bdevname(rdev->bdev,b));
1415 return -EINVAL;
1416 }
1417 if (le64_to_cpu(sb->data_size) < 10) {
1418 printk("md: data_size too small on %s\n",
1419 bdevname(rdev->bdev,b));
1420 return -EINVAL;
1421 }
1422
1423 rdev->preferred_minor = 0xffff;
1424 rdev->data_offset = le64_to_cpu(sb->data_offset);
1425 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1426
1427 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1428 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1429 if (rdev->sb_size & bmask)
1430 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1431
1432 if (minor_version
1433 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1434 return -EINVAL;
1435
1436 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1437 rdev->desc_nr = -1;
1438 else
1439 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1440
1441 if (!refdev) {
1442 ret = 1;
1443 } else {
1444 __u64 ev1, ev2;
1445 struct mdp_superblock_1 *refsb =
1446 (struct mdp_superblock_1*)page_address(refdev->sb_page);
1447
1448 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1449 sb->level != refsb->level ||
1450 sb->layout != refsb->layout ||
1451 sb->chunksize != refsb->chunksize) {
1452 printk(KERN_WARNING "md: %s has strangely different"
1453 " superblock to %s\n",
1454 bdevname(rdev->bdev,b),
1455 bdevname(refdev->bdev,b2));
1456 return -EINVAL;
1457 }
1458 ev1 = le64_to_cpu(sb->events);
1459 ev2 = le64_to_cpu(refsb->events);
1460
1461 if (ev1 > ev2)
1462 ret = 1;
1463 else
1464 ret = 0;
1465 }
1466 if (minor_version)
1467 rdev->sectors = (rdev->bdev->bd_inode->i_size >> 9) -
1468 le64_to_cpu(sb->data_offset);
1469 else
1470 rdev->sectors = rdev->sb_start;
1471 if (rdev->sectors < le64_to_cpu(sb->data_size))
1472 return -EINVAL;
1473 rdev->sectors = le64_to_cpu(sb->data_size);
1474 if (le64_to_cpu(sb->size) > rdev->sectors)
1475 return -EINVAL;
1476 return ret;
1477 }
1478
1479 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1480 {
1481 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1482 __u64 ev1 = le64_to_cpu(sb->events);
1483
1484 rdev->raid_disk = -1;
1485 clear_bit(Faulty, &rdev->flags);
1486 clear_bit(In_sync, &rdev->flags);
1487 clear_bit(WriteMostly, &rdev->flags);
1488 clear_bit(BarriersNotsupp, &rdev->flags);
1489
1490 if (mddev->raid_disks == 0) {
1491 mddev->major_version = 1;
1492 mddev->patch_version = 0;
1493 mddev->external = 0;
1494 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1495 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1496 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1497 mddev->level = le32_to_cpu(sb->level);
1498 mddev->clevel[0] = 0;
1499 mddev->layout = le32_to_cpu(sb->layout);
1500 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1501 mddev->dev_sectors = le64_to_cpu(sb->size);
1502 mddev->events = ev1;
1503 mddev->bitmap_info.offset = 0;
1504 mddev->bitmap_info.default_offset = 1024 >> 9;
1505
1506 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1507 memcpy(mddev->uuid, sb->set_uuid, 16);
1508
1509 mddev->max_disks = (4096-256)/2;
1510
1511 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1512 mddev->bitmap_info.file == NULL )
1513 mddev->bitmap_info.offset =
1514 (__s32)le32_to_cpu(sb->bitmap_offset);
1515
1516 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1517 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1518 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1519 mddev->new_level = le32_to_cpu(sb->new_level);
1520 mddev->new_layout = le32_to_cpu(sb->new_layout);
1521 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1522 } else {
1523 mddev->reshape_position = MaxSector;
1524 mddev->delta_disks = 0;
1525 mddev->new_level = mddev->level;
1526 mddev->new_layout = mddev->layout;
1527 mddev->new_chunk_sectors = mddev->chunk_sectors;
1528 }
1529
1530 } else if (mddev->pers == NULL) {
1531 /* Insist of good event counter while assembling, except for
1532 * spares (which don't need an event count) */
1533 ++ev1;
1534 if (rdev->desc_nr >= 0 &&
1535 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1536 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1537 if (ev1 < mddev->events)
1538 return -EINVAL;
1539 } else if (mddev->bitmap) {
1540 /* If adding to array with a bitmap, then we can accept an
1541 * older device, but not too old.
1542 */
1543 if (ev1 < mddev->bitmap->events_cleared)
1544 return 0;
1545 } else {
1546 if (ev1 < mddev->events)
1547 /* just a hot-add of a new device, leave raid_disk at -1 */
1548 return 0;
1549 }
1550 if (mddev->level != LEVEL_MULTIPATH) {
1551 int role;
1552 if (rdev->desc_nr < 0 ||
1553 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1554 role = 0xffff;
1555 rdev->desc_nr = -1;
1556 } else
1557 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1558 switch(role) {
1559 case 0xffff: /* spare */
1560 break;
1561 case 0xfffe: /* faulty */
1562 set_bit(Faulty, &rdev->flags);
1563 break;
1564 default:
1565 if ((le32_to_cpu(sb->feature_map) &
1566 MD_FEATURE_RECOVERY_OFFSET))
1567 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1568 else
1569 set_bit(In_sync, &rdev->flags);
1570 rdev->raid_disk = role;
1571 break;
1572 }
1573 if (sb->devflags & WriteMostly1)
1574 set_bit(WriteMostly, &rdev->flags);
1575 } else /* MULTIPATH are always insync */
1576 set_bit(In_sync, &rdev->flags);
1577
1578 return 0;
1579 }
1580
1581 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1582 {
1583 struct mdp_superblock_1 *sb;
1584 mdk_rdev_t *rdev2;
1585 int max_dev, i;
1586 /* make rdev->sb match mddev and rdev data. */
1587
1588 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1589
1590 sb->feature_map = 0;
1591 sb->pad0 = 0;
1592 sb->recovery_offset = cpu_to_le64(0);
1593 memset(sb->pad1, 0, sizeof(sb->pad1));
1594 memset(sb->pad2, 0, sizeof(sb->pad2));
1595 memset(sb->pad3, 0, sizeof(sb->pad3));
1596
1597 sb->utime = cpu_to_le64((__u64)mddev->utime);
1598 sb->events = cpu_to_le64(mddev->events);
1599 if (mddev->in_sync)
1600 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1601 else
1602 sb->resync_offset = cpu_to_le64(0);
1603
1604 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1605
1606 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1607 sb->size = cpu_to_le64(mddev->dev_sectors);
1608 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1609 sb->level = cpu_to_le32(mddev->level);
1610 sb->layout = cpu_to_le32(mddev->layout);
1611
1612 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1613 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1614 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1615 }
1616
1617 if (rdev->raid_disk >= 0 &&
1618 !test_bit(In_sync, &rdev->flags)) {
1619 sb->feature_map |=
1620 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1621 sb->recovery_offset =
1622 cpu_to_le64(rdev->recovery_offset);
1623 }
1624
1625 if (mddev->reshape_position != MaxSector) {
1626 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1627 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1628 sb->new_layout = cpu_to_le32(mddev->new_layout);
1629 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1630 sb->new_level = cpu_to_le32(mddev->new_level);
1631 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1632 }
1633
1634 max_dev = 0;
1635 list_for_each_entry(rdev2, &mddev->disks, same_set)
1636 if (rdev2->desc_nr+1 > max_dev)
1637 max_dev = rdev2->desc_nr+1;
1638
1639 if (max_dev > le32_to_cpu(sb->max_dev)) {
1640 int bmask;
1641 sb->max_dev = cpu_to_le32(max_dev);
1642 rdev->sb_size = max_dev * 2 + 256;
1643 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1644 if (rdev->sb_size & bmask)
1645 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1646 } else
1647 max_dev = le32_to_cpu(sb->max_dev);
1648
1649 for (i=0; i<max_dev;i++)
1650 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1651
1652 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1653 i = rdev2->desc_nr;
1654 if (test_bit(Faulty, &rdev2->flags))
1655 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1656 else if (test_bit(In_sync, &rdev2->flags))
1657 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1658 else if (rdev2->raid_disk >= 0)
1659 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1660 else
1661 sb->dev_roles[i] = cpu_to_le16(0xffff);
1662 }
1663
1664 sb->sb_csum = calc_sb_1_csum(sb);
1665 }
1666
1667 static unsigned long long
1668 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1669 {
1670 struct mdp_superblock_1 *sb;
1671 sector_t max_sectors;
1672 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1673 return 0; /* component must fit device */
1674 if (rdev->sb_start < rdev->data_offset) {
1675 /* minor versions 1 and 2; superblock before data */
1676 max_sectors = rdev->bdev->bd_inode->i_size >> 9;
1677 max_sectors -= rdev->data_offset;
1678 if (!num_sectors || num_sectors > max_sectors)
1679 num_sectors = max_sectors;
1680 } else if (rdev->mddev->bitmap_info.offset) {
1681 /* minor version 0 with bitmap we can't move */
1682 return 0;
1683 } else {
1684 /* minor version 0; superblock after data */
1685 sector_t sb_start;
1686 sb_start = (rdev->bdev->bd_inode->i_size >> 9) - 8*2;
1687 sb_start &= ~(sector_t)(4*2 - 1);
1688 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1689 if (!num_sectors || num_sectors > max_sectors)
1690 num_sectors = max_sectors;
1691 rdev->sb_start = sb_start;
1692 }
1693 sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page);
1694 sb->data_size = cpu_to_le64(num_sectors);
1695 sb->super_offset = rdev->sb_start;
1696 sb->sb_csum = calc_sb_1_csum(sb);
1697 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1698 rdev->sb_page);
1699 md_super_wait(rdev->mddev);
1700 return num_sectors / 2; /* kB for sysfs */
1701 }
1702
1703 static struct super_type super_types[] = {
1704 [0] = {
1705 .name = "0.90.0",
1706 .owner = THIS_MODULE,
1707 .load_super = super_90_load,
1708 .validate_super = super_90_validate,
1709 .sync_super = super_90_sync,
1710 .rdev_size_change = super_90_rdev_size_change,
1711 },
1712 [1] = {
1713 .name = "md-1",
1714 .owner = THIS_MODULE,
1715 .load_super = super_1_load,
1716 .validate_super = super_1_validate,
1717 .sync_super = super_1_sync,
1718 .rdev_size_change = super_1_rdev_size_change,
1719 },
1720 };
1721
1722 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1723 {
1724 mdk_rdev_t *rdev, *rdev2;
1725
1726 rcu_read_lock();
1727 rdev_for_each_rcu(rdev, mddev1)
1728 rdev_for_each_rcu(rdev2, mddev2)
1729 if (rdev->bdev->bd_contains ==
1730 rdev2->bdev->bd_contains) {
1731 rcu_read_unlock();
1732 return 1;
1733 }
1734 rcu_read_unlock();
1735 return 0;
1736 }
1737
1738 static LIST_HEAD(pending_raid_disks);
1739
1740 /*
1741 * Try to register data integrity profile for an mddev
1742 *
1743 * This is called when an array is started and after a disk has been kicked
1744 * from the array. It only succeeds if all working and active component devices
1745 * are integrity capable with matching profiles.
1746 */
1747 int md_integrity_register(mddev_t *mddev)
1748 {
1749 mdk_rdev_t *rdev, *reference = NULL;
1750
1751 if (list_empty(&mddev->disks))
1752 return 0; /* nothing to do */
1753 if (blk_get_integrity(mddev->gendisk))
1754 return 0; /* already registered */
1755 list_for_each_entry(rdev, &mddev->disks, same_set) {
1756 /* skip spares and non-functional disks */
1757 if (test_bit(Faulty, &rdev->flags))
1758 continue;
1759 if (rdev->raid_disk < 0)
1760 continue;
1761 /*
1762 * If at least one rdev is not integrity capable, we can not
1763 * enable data integrity for the md device.
1764 */
1765 if (!bdev_get_integrity(rdev->bdev))
1766 return -EINVAL;
1767 if (!reference) {
1768 /* Use the first rdev as the reference */
1769 reference = rdev;
1770 continue;
1771 }
1772 /* does this rdev's profile match the reference profile? */
1773 if (blk_integrity_compare(reference->bdev->bd_disk,
1774 rdev->bdev->bd_disk) < 0)
1775 return -EINVAL;
1776 }
1777 /*
1778 * All component devices are integrity capable and have matching
1779 * profiles, register the common profile for the md device.
1780 */
1781 if (blk_integrity_register(mddev->gendisk,
1782 bdev_get_integrity(reference->bdev)) != 0) {
1783 printk(KERN_ERR "md: failed to register integrity for %s\n",
1784 mdname(mddev));
1785 return -EINVAL;
1786 }
1787 printk(KERN_NOTICE "md: data integrity on %s enabled\n",
1788 mdname(mddev));
1789 return 0;
1790 }
1791 EXPORT_SYMBOL(md_integrity_register);
1792
1793 /* Disable data integrity if non-capable/non-matching disk is being added */
1794 void md_integrity_add_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
1795 {
1796 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1797 struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1798
1799 if (!bi_mddev) /* nothing to do */
1800 return;
1801 if (rdev->raid_disk < 0) /* skip spares */
1802 return;
1803 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
1804 rdev->bdev->bd_disk) >= 0)
1805 return;
1806 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
1807 blk_integrity_unregister(mddev->gendisk);
1808 }
1809 EXPORT_SYMBOL(md_integrity_add_rdev);
1810
1811 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1812 {
1813 char b[BDEVNAME_SIZE];
1814 struct kobject *ko;
1815 char *s;
1816 int err;
1817
1818 if (rdev->mddev) {
1819 MD_BUG();
1820 return -EINVAL;
1821 }
1822
1823 /* prevent duplicates */
1824 if (find_rdev(mddev, rdev->bdev->bd_dev))
1825 return -EEXIST;
1826
1827 /* make sure rdev->sectors exceeds mddev->dev_sectors */
1828 if (rdev->sectors && (mddev->dev_sectors == 0 ||
1829 rdev->sectors < mddev->dev_sectors)) {
1830 if (mddev->pers) {
1831 /* Cannot change size, so fail
1832 * If mddev->level <= 0, then we don't care
1833 * about aligning sizes (e.g. linear)
1834 */
1835 if (mddev->level > 0)
1836 return -ENOSPC;
1837 } else
1838 mddev->dev_sectors = rdev->sectors;
1839 }
1840
1841 /* Verify rdev->desc_nr is unique.
1842 * If it is -1, assign a free number, else
1843 * check number is not in use
1844 */
1845 if (rdev->desc_nr < 0) {
1846 int choice = 0;
1847 if (mddev->pers) choice = mddev->raid_disks;
1848 while (find_rdev_nr(mddev, choice))
1849 choice++;
1850 rdev->desc_nr = choice;
1851 } else {
1852 if (find_rdev_nr(mddev, rdev->desc_nr))
1853 return -EBUSY;
1854 }
1855 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
1856 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
1857 mdname(mddev), mddev->max_disks);
1858 return -EBUSY;
1859 }
1860 bdevname(rdev->bdev,b);
1861 while ( (s=strchr(b, '/')) != NULL)
1862 *s = '!';
1863
1864 rdev->mddev = mddev;
1865 printk(KERN_INFO "md: bind<%s>\n", b);
1866
1867 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
1868 goto fail;
1869
1870 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
1871 if (sysfs_create_link(&rdev->kobj, ko, "block"))
1872 /* failure here is OK */;
1873 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
1874
1875 list_add_rcu(&rdev->same_set, &mddev->disks);
1876 bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk);
1877
1878 /* May as well allow recovery to be retried once */
1879 mddev->recovery_disabled = 0;
1880
1881 return 0;
1882
1883 fail:
1884 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1885 b, mdname(mddev));
1886 return err;
1887 }
1888
1889 static void md_delayed_delete(struct work_struct *ws)
1890 {
1891 mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1892 kobject_del(&rdev->kobj);
1893 kobject_put(&rdev->kobj);
1894 }
1895
1896 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1897 {
1898 char b[BDEVNAME_SIZE];
1899 if (!rdev->mddev) {
1900 MD_BUG();
1901 return;
1902 }
1903 bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1904 list_del_rcu(&rdev->same_set);
1905 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1906 rdev->mddev = NULL;
1907 sysfs_remove_link(&rdev->kobj, "block");
1908 sysfs_put(rdev->sysfs_state);
1909 rdev->sysfs_state = NULL;
1910 /* We need to delay this, otherwise we can deadlock when
1911 * writing to 'remove' to "dev/state". We also need
1912 * to delay it due to rcu usage.
1913 */
1914 synchronize_rcu();
1915 INIT_WORK(&rdev->del_work, md_delayed_delete);
1916 kobject_get(&rdev->kobj);
1917 schedule_work(&rdev->del_work);
1918 }
1919
1920 /*
1921 * prevent the device from being mounted, repartitioned or
1922 * otherwise reused by a RAID array (or any other kernel
1923 * subsystem), by bd_claiming the device.
1924 */
1925 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
1926 {
1927 int err = 0;
1928 struct block_device *bdev;
1929 char b[BDEVNAME_SIZE];
1930
1931 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1932 if (IS_ERR(bdev)) {
1933 printk(KERN_ERR "md: could not open %s.\n",
1934 __bdevname(dev, b));
1935 return PTR_ERR(bdev);
1936 }
1937 err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev);
1938 if (err) {
1939 printk(KERN_ERR "md: could not bd_claim %s.\n",
1940 bdevname(bdev, b));
1941 blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1942 return err;
1943 }
1944 if (!shared)
1945 set_bit(AllReserved, &rdev->flags);
1946 rdev->bdev = bdev;
1947 return err;
1948 }
1949
1950 static void unlock_rdev(mdk_rdev_t *rdev)
1951 {
1952 struct block_device *bdev = rdev->bdev;
1953 rdev->bdev = NULL;
1954 if (!bdev)
1955 MD_BUG();
1956 bd_release(bdev);
1957 blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1958 }
1959
1960 void md_autodetect_dev(dev_t dev);
1961
1962 static void export_rdev(mdk_rdev_t * rdev)
1963 {
1964 char b[BDEVNAME_SIZE];
1965 printk(KERN_INFO "md: export_rdev(%s)\n",
1966 bdevname(rdev->bdev,b));
1967 if (rdev->mddev)
1968 MD_BUG();
1969 free_disk_sb(rdev);
1970 #ifndef MODULE
1971 if (test_bit(AutoDetected, &rdev->flags))
1972 md_autodetect_dev(rdev->bdev->bd_dev);
1973 #endif
1974 unlock_rdev(rdev);
1975 kobject_put(&rdev->kobj);
1976 }
1977
1978 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1979 {
1980 unbind_rdev_from_array(rdev);
1981 export_rdev(rdev);
1982 }
1983
1984 static void export_array(mddev_t *mddev)
1985 {
1986 mdk_rdev_t *rdev, *tmp;
1987
1988 rdev_for_each(rdev, tmp, mddev) {
1989 if (!rdev->mddev) {
1990 MD_BUG();
1991 continue;
1992 }
1993 kick_rdev_from_array(rdev);
1994 }
1995 if (!list_empty(&mddev->disks))
1996 MD_BUG();
1997 mddev->raid_disks = 0;
1998 mddev->major_version = 0;
1999 }
2000
2001 static void print_desc(mdp_disk_t *desc)
2002 {
2003 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2004 desc->major,desc->minor,desc->raid_disk,desc->state);
2005 }
2006
2007 static void print_sb_90(mdp_super_t *sb)
2008 {
2009 int i;
2010
2011 printk(KERN_INFO
2012 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2013 sb->major_version, sb->minor_version, sb->patch_version,
2014 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2015 sb->ctime);
2016 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2017 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2018 sb->md_minor, sb->layout, sb->chunk_size);
2019 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
2020 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2021 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2022 sb->failed_disks, sb->spare_disks,
2023 sb->sb_csum, (unsigned long)sb->events_lo);
2024
2025 printk(KERN_INFO);
2026 for (i = 0; i < MD_SB_DISKS; i++) {
2027 mdp_disk_t *desc;
2028
2029 desc = sb->disks + i;
2030 if (desc->number || desc->major || desc->minor ||
2031 desc->raid_disk || (desc->state && (desc->state != 4))) {
2032 printk(" D %2d: ", i);
2033 print_desc(desc);
2034 }
2035 }
2036 printk(KERN_INFO "md: THIS: ");
2037 print_desc(&sb->this_disk);
2038 }
2039
2040 static void print_sb_1(struct mdp_superblock_1 *sb)
2041 {
2042 __u8 *uuid;
2043
2044 uuid = sb->set_uuid;
2045 printk(KERN_INFO
2046 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2047 "md: Name: \"%s\" CT:%llu\n",
2048 le32_to_cpu(sb->major_version),
2049 le32_to_cpu(sb->feature_map),
2050 uuid,
2051 sb->set_name,
2052 (unsigned long long)le64_to_cpu(sb->ctime)
2053 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2054
2055 uuid = sb->device_uuid;
2056 printk(KERN_INFO
2057 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2058 " RO:%llu\n"
2059 "md: Dev:%08x UUID: %pU\n"
2060 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2061 "md: (MaxDev:%u) \n",
2062 le32_to_cpu(sb->level),
2063 (unsigned long long)le64_to_cpu(sb->size),
2064 le32_to_cpu(sb->raid_disks),
2065 le32_to_cpu(sb->layout),
2066 le32_to_cpu(sb->chunksize),
2067 (unsigned long long)le64_to_cpu(sb->data_offset),
2068 (unsigned long long)le64_to_cpu(sb->data_size),
2069 (unsigned long long)le64_to_cpu(sb->super_offset),
2070 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2071 le32_to_cpu(sb->dev_number),
2072 uuid,
2073 sb->devflags,
2074 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2075 (unsigned long long)le64_to_cpu(sb->events),
2076 (unsigned long long)le64_to_cpu(sb->resync_offset),
2077 le32_to_cpu(sb->sb_csum),
2078 le32_to_cpu(sb->max_dev)
2079 );
2080 }
2081
2082 static void print_rdev(mdk_rdev_t *rdev, int major_version)
2083 {
2084 char b[BDEVNAME_SIZE];
2085 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2086 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2087 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2088 rdev->desc_nr);
2089 if (rdev->sb_loaded) {
2090 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2091 switch (major_version) {
2092 case 0:
2093 print_sb_90((mdp_super_t*)page_address(rdev->sb_page));
2094 break;
2095 case 1:
2096 print_sb_1((struct mdp_superblock_1 *)page_address(rdev->sb_page));
2097 break;
2098 }
2099 } else
2100 printk(KERN_INFO "md: no rdev superblock!\n");
2101 }
2102
2103 static void md_print_devices(void)
2104 {
2105 struct list_head *tmp;
2106 mdk_rdev_t *rdev;
2107 mddev_t *mddev;
2108 char b[BDEVNAME_SIZE];
2109
2110 printk("\n");
2111 printk("md: **********************************\n");
2112 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2113 printk("md: **********************************\n");
2114 for_each_mddev(mddev, tmp) {
2115
2116 if (mddev->bitmap)
2117 bitmap_print_sb(mddev->bitmap);
2118 else
2119 printk("%s: ", mdname(mddev));
2120 list_for_each_entry(rdev, &mddev->disks, same_set)
2121 printk("<%s>", bdevname(rdev->bdev,b));
2122 printk("\n");
2123
2124 list_for_each_entry(rdev, &mddev->disks, same_set)
2125 print_rdev(rdev, mddev->major_version);
2126 }
2127 printk("md: **********************************\n");
2128 printk("\n");
2129 }
2130
2131
2132 static void sync_sbs(mddev_t * mddev, int nospares)
2133 {
2134 /* Update each superblock (in-memory image), but
2135 * if we are allowed to, skip spares which already
2136 * have the right event counter, or have one earlier
2137 * (which would mean they aren't being marked as dirty
2138 * with the rest of the array)
2139 */
2140 mdk_rdev_t *rdev;
2141 list_for_each_entry(rdev, &mddev->disks, same_set) {
2142 if (rdev->sb_events == mddev->events ||
2143 (nospares &&
2144 rdev->raid_disk < 0 &&
2145 rdev->sb_events+1 == mddev->events)) {
2146 /* Don't update this superblock */
2147 rdev->sb_loaded = 2;
2148 } else {
2149 super_types[mddev->major_version].
2150 sync_super(mddev, rdev);
2151 rdev->sb_loaded = 1;
2152 }
2153 }
2154 }
2155
2156 static void md_update_sb(mddev_t * mddev, int force_change)
2157 {
2158 mdk_rdev_t *rdev;
2159 int sync_req;
2160 int nospares = 0;
2161
2162 repeat:
2163 /* First make sure individual recovery_offsets are correct */
2164 list_for_each_entry(rdev, &mddev->disks, same_set) {
2165 if (rdev->raid_disk >= 0 &&
2166 mddev->delta_disks >= 0 &&
2167 !test_bit(In_sync, &rdev->flags) &&
2168 mddev->curr_resync_completed > rdev->recovery_offset)
2169 rdev->recovery_offset = mddev->curr_resync_completed;
2170
2171 }
2172 if (!mddev->persistent) {
2173 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2174 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2175 wake_up(&mddev->sb_wait);
2176 return;
2177 }
2178
2179 spin_lock_irq(&mddev->write_lock);
2180
2181 mddev->utime = get_seconds();
2182
2183 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2184 force_change = 1;
2185 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2186 /* just a clean<-> dirty transition, possibly leave spares alone,
2187 * though if events isn't the right even/odd, we will have to do
2188 * spares after all
2189 */
2190 nospares = 1;
2191 if (force_change)
2192 nospares = 0;
2193 if (mddev->degraded)
2194 /* If the array is degraded, then skipping spares is both
2195 * dangerous and fairly pointless.
2196 * Dangerous because a device that was removed from the array
2197 * might have a event_count that still looks up-to-date,
2198 * so it can be re-added without a resync.
2199 * Pointless because if there are any spares to skip,
2200 * then a recovery will happen and soon that array won't
2201 * be degraded any more and the spare can go back to sleep then.
2202 */
2203 nospares = 0;
2204
2205 sync_req = mddev->in_sync;
2206
2207 /* If this is just a dirty<->clean transition, and the array is clean
2208 * and 'events' is odd, we can roll back to the previous clean state */
2209 if (nospares
2210 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2211 && mddev->can_decrease_events
2212 && mddev->events != 1) {
2213 mddev->events--;
2214 mddev->can_decrease_events = 0;
2215 } else {
2216 /* otherwise we have to go forward and ... */
2217 mddev->events ++;
2218 mddev->can_decrease_events = nospares;
2219 }
2220
2221 if (!mddev->events) {
2222 /*
2223 * oops, this 64-bit counter should never wrap.
2224 * Either we are in around ~1 trillion A.C., assuming
2225 * 1 reboot per second, or we have a bug:
2226 */
2227 MD_BUG();
2228 mddev->events --;
2229 }
2230 sync_sbs(mddev, nospares);
2231 spin_unlock_irq(&mddev->write_lock);
2232
2233 dprintk(KERN_INFO
2234 "md: updating %s RAID superblock on device (in sync %d)\n",
2235 mdname(mddev),mddev->in_sync);
2236
2237 bitmap_update_sb(mddev->bitmap);
2238 list_for_each_entry(rdev, &mddev->disks, same_set) {
2239 char b[BDEVNAME_SIZE];
2240 dprintk(KERN_INFO "md: ");
2241 if (rdev->sb_loaded != 1)
2242 continue; /* no noise on spare devices */
2243 if (test_bit(Faulty, &rdev->flags))
2244 dprintk("(skipping faulty ");
2245
2246 dprintk("%s ", bdevname(rdev->bdev,b));
2247 if (!test_bit(Faulty, &rdev->flags)) {
2248 md_super_write(mddev,rdev,
2249 rdev->sb_start, rdev->sb_size,
2250 rdev->sb_page);
2251 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
2252 bdevname(rdev->bdev,b),
2253 (unsigned long long)rdev->sb_start);
2254 rdev->sb_events = mddev->events;
2255
2256 } else
2257 dprintk(")\n");
2258 if (mddev->level == LEVEL_MULTIPATH)
2259 /* only need to write one superblock... */
2260 break;
2261 }
2262 md_super_wait(mddev);
2263 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2264
2265 spin_lock_irq(&mddev->write_lock);
2266 if (mddev->in_sync != sync_req ||
2267 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2268 /* have to write it out again */
2269 spin_unlock_irq(&mddev->write_lock);
2270 goto repeat;
2271 }
2272 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2273 spin_unlock_irq(&mddev->write_lock);
2274 wake_up(&mddev->sb_wait);
2275 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2276 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2277
2278 }
2279
2280 /* words written to sysfs files may, or may not, be \n terminated.
2281 * We want to accept with case. For this we use cmd_match.
2282 */
2283 static int cmd_match(const char *cmd, const char *str)
2284 {
2285 /* See if cmd, written into a sysfs file, matches
2286 * str. They must either be the same, or cmd can
2287 * have a trailing newline
2288 */
2289 while (*cmd && *str && *cmd == *str) {
2290 cmd++;
2291 str++;
2292 }
2293 if (*cmd == '\n')
2294 cmd++;
2295 if (*str || *cmd)
2296 return 0;
2297 return 1;
2298 }
2299
2300 struct rdev_sysfs_entry {
2301 struct attribute attr;
2302 ssize_t (*show)(mdk_rdev_t *, char *);
2303 ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
2304 };
2305
2306 static ssize_t
2307 state_show(mdk_rdev_t *rdev, char *page)
2308 {
2309 char *sep = "";
2310 size_t len = 0;
2311
2312 if (test_bit(Faulty, &rdev->flags)) {
2313 len+= sprintf(page+len, "%sfaulty",sep);
2314 sep = ",";
2315 }
2316 if (test_bit(In_sync, &rdev->flags)) {
2317 len += sprintf(page+len, "%sin_sync",sep);
2318 sep = ",";
2319 }
2320 if (test_bit(WriteMostly, &rdev->flags)) {
2321 len += sprintf(page+len, "%swrite_mostly",sep);
2322 sep = ",";
2323 }
2324 if (test_bit(Blocked, &rdev->flags)) {
2325 len += sprintf(page+len, "%sblocked", sep);
2326 sep = ",";
2327 }
2328 if (!test_bit(Faulty, &rdev->flags) &&
2329 !test_bit(In_sync, &rdev->flags)) {
2330 len += sprintf(page+len, "%sspare", sep);
2331 sep = ",";
2332 }
2333 return len+sprintf(page+len, "\n");
2334 }
2335
2336 static ssize_t
2337 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2338 {
2339 /* can write
2340 * faulty - simulates and error
2341 * remove - disconnects the device
2342 * writemostly - sets write_mostly
2343 * -writemostly - clears write_mostly
2344 * blocked - sets the Blocked flag
2345 * -blocked - clears the Blocked flag
2346 * insync - sets Insync providing device isn't active
2347 */
2348 int err = -EINVAL;
2349 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2350 md_error(rdev->mddev, rdev);
2351 err = 0;
2352 } else if (cmd_match(buf, "remove")) {
2353 if (rdev->raid_disk >= 0)
2354 err = -EBUSY;
2355 else {
2356 mddev_t *mddev = rdev->mddev;
2357 kick_rdev_from_array(rdev);
2358 if (mddev->pers)
2359 md_update_sb(mddev, 1);
2360 md_new_event(mddev);
2361 err = 0;
2362 }
2363 } else if (cmd_match(buf, "writemostly")) {
2364 set_bit(WriteMostly, &rdev->flags);
2365 err = 0;
2366 } else if (cmd_match(buf, "-writemostly")) {
2367 clear_bit(WriteMostly, &rdev->flags);
2368 err = 0;
2369 } else if (cmd_match(buf, "blocked")) {
2370 set_bit(Blocked, &rdev->flags);
2371 err = 0;
2372 } else if (cmd_match(buf, "-blocked")) {
2373 clear_bit(Blocked, &rdev->flags);
2374 wake_up(&rdev->blocked_wait);
2375 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2376 md_wakeup_thread(rdev->mddev->thread);
2377
2378 err = 0;
2379 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2380 set_bit(In_sync, &rdev->flags);
2381 err = 0;
2382 }
2383 if (!err)
2384 sysfs_notify_dirent_safe(rdev->sysfs_state);
2385 return err ? err : len;
2386 }
2387 static struct rdev_sysfs_entry rdev_state =
2388 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2389
2390 static ssize_t
2391 errors_show(mdk_rdev_t *rdev, char *page)
2392 {
2393 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2394 }
2395
2396 static ssize_t
2397 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2398 {
2399 char *e;
2400 unsigned long n = simple_strtoul(buf, &e, 10);
2401 if (*buf && (*e == 0 || *e == '\n')) {
2402 atomic_set(&rdev->corrected_errors, n);
2403 return len;
2404 }
2405 return -EINVAL;
2406 }
2407 static struct rdev_sysfs_entry rdev_errors =
2408 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2409
2410 static ssize_t
2411 slot_show(mdk_rdev_t *rdev, char *page)
2412 {
2413 if (rdev->raid_disk < 0)
2414 return sprintf(page, "none\n");
2415 else
2416 return sprintf(page, "%d\n", rdev->raid_disk);
2417 }
2418
2419 static ssize_t
2420 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2421 {
2422 char *e;
2423 int err;
2424 char nm[20];
2425 int slot = simple_strtoul(buf, &e, 10);
2426 if (strncmp(buf, "none", 4)==0)
2427 slot = -1;
2428 else if (e==buf || (*e && *e!= '\n'))
2429 return -EINVAL;
2430 if (rdev->mddev->pers && slot == -1) {
2431 /* Setting 'slot' on an active array requires also
2432 * updating the 'rd%d' link, and communicating
2433 * with the personality with ->hot_*_disk.
2434 * For now we only support removing
2435 * failed/spare devices. This normally happens automatically,
2436 * but not when the metadata is externally managed.
2437 */
2438 if (rdev->raid_disk == -1)
2439 return -EEXIST;
2440 /* personality does all needed checks */
2441 if (rdev->mddev->pers->hot_add_disk == NULL)
2442 return -EINVAL;
2443 err = rdev->mddev->pers->
2444 hot_remove_disk(rdev->mddev, rdev->raid_disk);
2445 if (err)
2446 return err;
2447 sprintf(nm, "rd%d", rdev->raid_disk);
2448 sysfs_remove_link(&rdev->mddev->kobj, nm);
2449 rdev->raid_disk = -1;
2450 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2451 md_wakeup_thread(rdev->mddev->thread);
2452 } else if (rdev->mddev->pers) {
2453 mdk_rdev_t *rdev2;
2454 /* Activating a spare .. or possibly reactivating
2455 * if we ever get bitmaps working here.
2456 */
2457
2458 if (rdev->raid_disk != -1)
2459 return -EBUSY;
2460
2461 if (rdev->mddev->pers->hot_add_disk == NULL)
2462 return -EINVAL;
2463
2464 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2465 if (rdev2->raid_disk == slot)
2466 return -EEXIST;
2467
2468 rdev->raid_disk = slot;
2469 if (test_bit(In_sync, &rdev->flags))
2470 rdev->saved_raid_disk = slot;
2471 else
2472 rdev->saved_raid_disk = -1;
2473 err = rdev->mddev->pers->
2474 hot_add_disk(rdev->mddev, rdev);
2475 if (err) {
2476 rdev->raid_disk = -1;
2477 return err;
2478 } else
2479 sysfs_notify_dirent_safe(rdev->sysfs_state);
2480 sprintf(nm, "rd%d", rdev->raid_disk);
2481 if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm))
2482 /* failure here is OK */;
2483 /* don't wakeup anyone, leave that to userspace. */
2484 } else {
2485 if (slot >= rdev->mddev->raid_disks)
2486 return -ENOSPC;
2487 rdev->raid_disk = slot;
2488 /* assume it is working */
2489 clear_bit(Faulty, &rdev->flags);
2490 clear_bit(WriteMostly, &rdev->flags);
2491 set_bit(In_sync, &rdev->flags);
2492 sysfs_notify_dirent_safe(rdev->sysfs_state);
2493 }
2494 return len;
2495 }
2496
2497
2498 static struct rdev_sysfs_entry rdev_slot =
2499 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2500
2501 static ssize_t
2502 offset_show(mdk_rdev_t *rdev, char *page)
2503 {
2504 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2505 }
2506
2507 static ssize_t
2508 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2509 {
2510 char *e;
2511 unsigned long long offset = simple_strtoull(buf, &e, 10);
2512 if (e==buf || (*e && *e != '\n'))
2513 return -EINVAL;
2514 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2515 return -EBUSY;
2516 if (rdev->sectors && rdev->mddev->external)
2517 /* Must set offset before size, so overlap checks
2518 * can be sane */
2519 return -EBUSY;
2520 rdev->data_offset = offset;
2521 return len;
2522 }
2523
2524 static struct rdev_sysfs_entry rdev_offset =
2525 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2526
2527 static ssize_t
2528 rdev_size_show(mdk_rdev_t *rdev, char *page)
2529 {
2530 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2531 }
2532
2533 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2534 {
2535 /* check if two start/length pairs overlap */
2536 if (s1+l1 <= s2)
2537 return 0;
2538 if (s2+l2 <= s1)
2539 return 0;
2540 return 1;
2541 }
2542
2543 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2544 {
2545 unsigned long long blocks;
2546 sector_t new;
2547
2548 if (strict_strtoull(buf, 10, &blocks) < 0)
2549 return -EINVAL;
2550
2551 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2552 return -EINVAL; /* sector conversion overflow */
2553
2554 new = blocks * 2;
2555 if (new != blocks * 2)
2556 return -EINVAL; /* unsigned long long to sector_t overflow */
2557
2558 *sectors = new;
2559 return 0;
2560 }
2561
2562 static ssize_t
2563 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2564 {
2565 mddev_t *my_mddev = rdev->mddev;
2566 sector_t oldsectors = rdev->sectors;
2567 sector_t sectors;
2568
2569 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2570 return -EINVAL;
2571 if (my_mddev->pers && rdev->raid_disk >= 0) {
2572 if (my_mddev->persistent) {
2573 sectors = super_types[my_mddev->major_version].
2574 rdev_size_change(rdev, sectors);
2575 if (!sectors)
2576 return -EBUSY;
2577 } else if (!sectors)
2578 sectors = (rdev->bdev->bd_inode->i_size >> 9) -
2579 rdev->data_offset;
2580 }
2581 if (sectors < my_mddev->dev_sectors)
2582 return -EINVAL; /* component must fit device */
2583
2584 rdev->sectors = sectors;
2585 if (sectors > oldsectors && my_mddev->external) {
2586 /* need to check that all other rdevs with the same ->bdev
2587 * do not overlap. We need to unlock the mddev to avoid
2588 * a deadlock. We have already changed rdev->sectors, and if
2589 * we have to change it back, we will have the lock again.
2590 */
2591 mddev_t *mddev;
2592 int overlap = 0;
2593 struct list_head *tmp;
2594
2595 mddev_unlock(my_mddev);
2596 for_each_mddev(mddev, tmp) {
2597 mdk_rdev_t *rdev2;
2598
2599 mddev_lock(mddev);
2600 list_for_each_entry(rdev2, &mddev->disks, same_set)
2601 if (test_bit(AllReserved, &rdev2->flags) ||
2602 (rdev->bdev == rdev2->bdev &&
2603 rdev != rdev2 &&
2604 overlaps(rdev->data_offset, rdev->sectors,
2605 rdev2->data_offset,
2606 rdev2->sectors))) {
2607 overlap = 1;
2608 break;
2609 }
2610 mddev_unlock(mddev);
2611 if (overlap) {
2612 mddev_put(mddev);
2613 break;
2614 }
2615 }
2616 mddev_lock(my_mddev);
2617 if (overlap) {
2618 /* Someone else could have slipped in a size
2619 * change here, but doing so is just silly.
2620 * We put oldsectors back because we *know* it is
2621 * safe, and trust userspace not to race with
2622 * itself
2623 */
2624 rdev->sectors = oldsectors;
2625 return -EBUSY;
2626 }
2627 }
2628 return len;
2629 }
2630
2631 static struct rdev_sysfs_entry rdev_size =
2632 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2633
2634
2635 static ssize_t recovery_start_show(mdk_rdev_t *rdev, char *page)
2636 {
2637 unsigned long long recovery_start = rdev->recovery_offset;
2638
2639 if (test_bit(In_sync, &rdev->flags) ||
2640 recovery_start == MaxSector)
2641 return sprintf(page, "none\n");
2642
2643 return sprintf(page, "%llu\n", recovery_start);
2644 }
2645
2646 static ssize_t recovery_start_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2647 {
2648 unsigned long long recovery_start;
2649
2650 if (cmd_match(buf, "none"))
2651 recovery_start = MaxSector;
2652 else if (strict_strtoull(buf, 10, &recovery_start))
2653 return -EINVAL;
2654
2655 if (rdev->mddev->pers &&
2656 rdev->raid_disk >= 0)
2657 return -EBUSY;
2658
2659 rdev->recovery_offset = recovery_start;
2660 if (recovery_start == MaxSector)
2661 set_bit(In_sync, &rdev->flags);
2662 else
2663 clear_bit(In_sync, &rdev->flags);
2664 return len;
2665 }
2666
2667 static struct rdev_sysfs_entry rdev_recovery_start =
2668 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2669
2670 static struct attribute *rdev_default_attrs[] = {
2671 &rdev_state.attr,
2672 &rdev_errors.attr,
2673 &rdev_slot.attr,
2674 &rdev_offset.attr,
2675 &rdev_size.attr,
2676 &rdev_recovery_start.attr,
2677 NULL,
2678 };
2679 static ssize_t
2680 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2681 {
2682 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2683 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2684 mddev_t *mddev = rdev->mddev;
2685 ssize_t rv;
2686
2687 if (!entry->show)
2688 return -EIO;
2689
2690 rv = mddev ? mddev_lock(mddev) : -EBUSY;
2691 if (!rv) {
2692 if (rdev->mddev == NULL)
2693 rv = -EBUSY;
2694 else
2695 rv = entry->show(rdev, page);
2696 mddev_unlock(mddev);
2697 }
2698 return rv;
2699 }
2700
2701 static ssize_t
2702 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2703 const char *page, size_t length)
2704 {
2705 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2706 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2707 ssize_t rv;
2708 mddev_t *mddev = rdev->mddev;
2709
2710 if (!entry->store)
2711 return -EIO;
2712 if (!capable(CAP_SYS_ADMIN))
2713 return -EACCES;
2714 rv = mddev ? mddev_lock(mddev): -EBUSY;
2715 if (!rv) {
2716 if (rdev->mddev == NULL)
2717 rv = -EBUSY;
2718 else
2719 rv = entry->store(rdev, page, length);
2720 mddev_unlock(mddev);
2721 }
2722 return rv;
2723 }
2724
2725 static void rdev_free(struct kobject *ko)
2726 {
2727 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
2728 kfree(rdev);
2729 }
2730 static const struct sysfs_ops rdev_sysfs_ops = {
2731 .show = rdev_attr_show,
2732 .store = rdev_attr_store,
2733 };
2734 static struct kobj_type rdev_ktype = {
2735 .release = rdev_free,
2736 .sysfs_ops = &rdev_sysfs_ops,
2737 .default_attrs = rdev_default_attrs,
2738 };
2739
2740 void md_rdev_init(mdk_rdev_t *rdev)
2741 {
2742 rdev->desc_nr = -1;
2743 rdev->saved_raid_disk = -1;
2744 rdev->raid_disk = -1;
2745 rdev->flags = 0;
2746 rdev->data_offset = 0;
2747 rdev->sb_events = 0;
2748 rdev->last_read_error.tv_sec = 0;
2749 rdev->last_read_error.tv_nsec = 0;
2750 atomic_set(&rdev->nr_pending, 0);
2751 atomic_set(&rdev->read_errors, 0);
2752 atomic_set(&rdev->corrected_errors, 0);
2753
2754 INIT_LIST_HEAD(&rdev->same_set);
2755 init_waitqueue_head(&rdev->blocked_wait);
2756 }
2757 EXPORT_SYMBOL_GPL(md_rdev_init);
2758 /*
2759 * Import a device. If 'super_format' >= 0, then sanity check the superblock
2760 *
2761 * mark the device faulty if:
2762 *
2763 * - the device is nonexistent (zero size)
2764 * - the device has no valid superblock
2765 *
2766 * a faulty rdev _never_ has rdev->sb set.
2767 */
2768 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
2769 {
2770 char b[BDEVNAME_SIZE];
2771 int err;
2772 mdk_rdev_t *rdev;
2773 sector_t size;
2774
2775 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
2776 if (!rdev) {
2777 printk(KERN_ERR "md: could not alloc mem for new device!\n");
2778 return ERR_PTR(-ENOMEM);
2779 }
2780
2781 md_rdev_init(rdev);
2782 if ((err = alloc_disk_sb(rdev)))
2783 goto abort_free;
2784
2785 err = lock_rdev(rdev, newdev, super_format == -2);
2786 if (err)
2787 goto abort_free;
2788
2789 kobject_init(&rdev->kobj, &rdev_ktype);
2790
2791 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2792 if (!size) {
2793 printk(KERN_WARNING
2794 "md: %s has zero or unknown size, marking faulty!\n",
2795 bdevname(rdev->bdev,b));
2796 err = -EINVAL;
2797 goto abort_free;
2798 }
2799
2800 if (super_format >= 0) {
2801 err = super_types[super_format].
2802 load_super(rdev, NULL, super_minor);
2803 if (err == -EINVAL) {
2804 printk(KERN_WARNING
2805 "md: %s does not have a valid v%d.%d "
2806 "superblock, not importing!\n",
2807 bdevname(rdev->bdev,b),
2808 super_format, super_minor);
2809 goto abort_free;
2810 }
2811 if (err < 0) {
2812 printk(KERN_WARNING
2813 "md: could not read %s's sb, not importing!\n",
2814 bdevname(rdev->bdev,b));
2815 goto abort_free;
2816 }
2817 }
2818
2819 return rdev;
2820
2821 abort_free:
2822 if (rdev->sb_page) {
2823 if (rdev->bdev)
2824 unlock_rdev(rdev);
2825 free_disk_sb(rdev);
2826 }
2827 kfree(rdev);
2828 return ERR_PTR(err);
2829 }
2830
2831 /*
2832 * Check a full RAID array for plausibility
2833 */
2834
2835
2836 static void analyze_sbs(mddev_t * mddev)
2837 {
2838 int i;
2839 mdk_rdev_t *rdev, *freshest, *tmp;
2840 char b[BDEVNAME_SIZE];
2841
2842 freshest = NULL;
2843 rdev_for_each(rdev, tmp, mddev)
2844 switch (super_types[mddev->major_version].
2845 load_super(rdev, freshest, mddev->minor_version)) {
2846 case 1:
2847 freshest = rdev;
2848 break;
2849 case 0:
2850 break;
2851 default:
2852 printk( KERN_ERR \
2853 "md: fatal superblock inconsistency in %s"
2854 " -- removing from array\n",
2855 bdevname(rdev->bdev,b));
2856 kick_rdev_from_array(rdev);
2857 }
2858
2859
2860 super_types[mddev->major_version].
2861 validate_super(mddev, freshest);
2862
2863 i = 0;
2864 rdev_for_each(rdev, tmp, mddev) {
2865 if (mddev->max_disks &&
2866 (rdev->desc_nr >= mddev->max_disks ||
2867 i > mddev->max_disks)) {
2868 printk(KERN_WARNING
2869 "md: %s: %s: only %d devices permitted\n",
2870 mdname(mddev), bdevname(rdev->bdev, b),
2871 mddev->max_disks);
2872 kick_rdev_from_array(rdev);
2873 continue;
2874 }
2875 if (rdev != freshest)
2876 if (super_types[mddev->major_version].
2877 validate_super(mddev, rdev)) {
2878 printk(KERN_WARNING "md: kicking non-fresh %s"
2879 " from array!\n",
2880 bdevname(rdev->bdev,b));
2881 kick_rdev_from_array(rdev);
2882 continue;
2883 }
2884 if (mddev->level == LEVEL_MULTIPATH) {
2885 rdev->desc_nr = i++;
2886 rdev->raid_disk = rdev->desc_nr;
2887 set_bit(In_sync, &rdev->flags);
2888 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
2889 rdev->raid_disk = -1;
2890 clear_bit(In_sync, &rdev->flags);
2891 }
2892 }
2893 }
2894
2895 /* Read a fixed-point number.
2896 * Numbers in sysfs attributes should be in "standard" units where
2897 * possible, so time should be in seconds.
2898 * However we internally use a a much smaller unit such as
2899 * milliseconds or jiffies.
2900 * This function takes a decimal number with a possible fractional
2901 * component, and produces an integer which is the result of
2902 * multiplying that number by 10^'scale'.
2903 * all without any floating-point arithmetic.
2904 */
2905 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
2906 {
2907 unsigned long result = 0;
2908 long decimals = -1;
2909 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
2910 if (*cp == '.')
2911 decimals = 0;
2912 else if (decimals < scale) {
2913 unsigned int value;
2914 value = *cp - '0';
2915 result = result * 10 + value;
2916 if (decimals >= 0)
2917 decimals++;
2918 }
2919 cp++;
2920 }
2921 if (*cp == '\n')
2922 cp++;
2923 if (*cp)
2924 return -EINVAL;
2925 if (decimals < 0)
2926 decimals = 0;
2927 while (decimals < scale) {
2928 result *= 10;
2929 decimals ++;
2930 }
2931 *res = result;
2932 return 0;
2933 }
2934
2935
2936 static void md_safemode_timeout(unsigned long data);
2937
2938 static ssize_t
2939 safe_delay_show(mddev_t *mddev, char *page)
2940 {
2941 int msec = (mddev->safemode_delay*1000)/HZ;
2942 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2943 }
2944 static ssize_t
2945 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2946 {
2947 unsigned long msec;
2948
2949 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
2950 return -EINVAL;
2951 if (msec == 0)
2952 mddev->safemode_delay = 0;
2953 else {
2954 unsigned long old_delay = mddev->safemode_delay;
2955 mddev->safemode_delay = (msec*HZ)/1000;
2956 if (mddev->safemode_delay == 0)
2957 mddev->safemode_delay = 1;
2958 if (mddev->safemode_delay < old_delay)
2959 md_safemode_timeout((unsigned long)mddev);
2960 }
2961 return len;
2962 }
2963 static struct md_sysfs_entry md_safe_delay =
2964 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2965
2966 static ssize_t
2967 level_show(mddev_t *mddev, char *page)
2968 {
2969 struct mdk_personality *p = mddev->pers;
2970 if (p)
2971 return sprintf(page, "%s\n", p->name);
2972 else if (mddev->clevel[0])
2973 return sprintf(page, "%s\n", mddev->clevel);
2974 else if (mddev->level != LEVEL_NONE)
2975 return sprintf(page, "%d\n", mddev->level);
2976 else
2977 return 0;
2978 }
2979
2980 static ssize_t
2981 level_store(mddev_t *mddev, const char *buf, size_t len)
2982 {
2983 char clevel[16];
2984 ssize_t rv = len;
2985 struct mdk_personality *pers;
2986 long level;
2987 void *priv;
2988 mdk_rdev_t *rdev;
2989
2990 if (mddev->pers == NULL) {
2991 if (len == 0)
2992 return 0;
2993 if (len >= sizeof(mddev->clevel))
2994 return -ENOSPC;
2995 strncpy(mddev->clevel, buf, len);
2996 if (mddev->clevel[len-1] == '\n')
2997 len--;
2998 mddev->clevel[len] = 0;
2999 mddev->level = LEVEL_NONE;
3000 return rv;
3001 }
3002
3003 /* request to change the personality. Need to ensure:
3004 * - array is not engaged in resync/recovery/reshape
3005 * - old personality can be suspended
3006 * - new personality will access other array.
3007 */
3008
3009 if (mddev->sync_thread ||
3010 mddev->reshape_position != MaxSector ||
3011 mddev->sysfs_active)
3012 return -EBUSY;
3013
3014 if (!mddev->pers->quiesce) {
3015 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3016 mdname(mddev), mddev->pers->name);
3017 return -EINVAL;
3018 }
3019
3020 /* Now find the new personality */
3021 if (len == 0 || len >= sizeof(clevel))
3022 return -EINVAL;
3023 strncpy(clevel, buf, len);
3024 if (clevel[len-1] == '\n')
3025 len--;
3026 clevel[len] = 0;
3027 if (strict_strtol(clevel, 10, &level))
3028 level = LEVEL_NONE;
3029
3030 if (request_module("md-%s", clevel) != 0)
3031 request_module("md-level-%s", clevel);
3032 spin_lock(&pers_lock);
3033 pers = find_pers(level, clevel);
3034 if (!pers || !try_module_get(pers->owner)) {
3035 spin_unlock(&pers_lock);
3036 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3037 return -EINVAL;
3038 }
3039 spin_unlock(&pers_lock);
3040
3041 if (pers == mddev->pers) {
3042 /* Nothing to do! */
3043 module_put(pers->owner);
3044 return rv;
3045 }
3046 if (!pers->takeover) {
3047 module_put(pers->owner);
3048 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3049 mdname(mddev), clevel);
3050 return -EINVAL;
3051 }
3052
3053 list_for_each_entry(rdev, &mddev->disks, same_set)
3054 rdev->new_raid_disk = rdev->raid_disk;
3055
3056 /* ->takeover must set new_* and/or delta_disks
3057 * if it succeeds, and may set them when it fails.
3058 */
3059 priv = pers->takeover(mddev);
3060 if (IS_ERR(priv)) {
3061 mddev->new_level = mddev->level;
3062 mddev->new_layout = mddev->layout;
3063 mddev->new_chunk_sectors = mddev->chunk_sectors;
3064 mddev->raid_disks -= mddev->delta_disks;
3065 mddev->delta_disks = 0;
3066 module_put(pers->owner);
3067 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3068 mdname(mddev), clevel);
3069 return PTR_ERR(priv);
3070 }
3071
3072 /* Looks like we have a winner */
3073 mddev_suspend(mddev);
3074 mddev->pers->stop(mddev);
3075
3076 if (mddev->pers->sync_request == NULL &&
3077 pers->sync_request != NULL) {
3078 /* need to add the md_redundancy_group */
3079 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3080 printk(KERN_WARNING
3081 "md: cannot register extra attributes for %s\n",
3082 mdname(mddev));
3083 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3084 }
3085 if (mddev->pers->sync_request != NULL &&
3086 pers->sync_request == NULL) {
3087 /* need to remove the md_redundancy_group */
3088 if (mddev->to_remove == NULL)
3089 mddev->to_remove = &md_redundancy_group;
3090 }
3091
3092 if (mddev->pers->sync_request == NULL &&
3093 mddev->external) {
3094 /* We are converting from a no-redundancy array
3095 * to a redundancy array and metadata is managed
3096 * externally so we need to be sure that writes
3097 * won't block due to a need to transition
3098 * clean->dirty
3099 * until external management is started.
3100 */
3101 mddev->in_sync = 0;
3102 mddev->safemode_delay = 0;
3103 mddev->safemode = 0;
3104 }
3105
3106 list_for_each_entry(rdev, &mddev->disks, same_set) {
3107 char nm[20];
3108 if (rdev->raid_disk < 0)
3109 continue;
3110 if (rdev->new_raid_disk > mddev->raid_disks)
3111 rdev->new_raid_disk = -1;
3112 if (rdev->new_raid_disk == rdev->raid_disk)
3113 continue;
3114 sprintf(nm, "rd%d", rdev->raid_disk);
3115 sysfs_remove_link(&mddev->kobj, nm);
3116 }
3117 list_for_each_entry(rdev, &mddev->disks, same_set) {
3118 if (rdev->raid_disk < 0)
3119 continue;
3120 if (rdev->new_raid_disk == rdev->raid_disk)
3121 continue;
3122 rdev->raid_disk = rdev->new_raid_disk;
3123 if (rdev->raid_disk < 0)
3124 clear_bit(In_sync, &rdev->flags);
3125 else {
3126 char nm[20];
3127 sprintf(nm, "rd%d", rdev->raid_disk);
3128 if(sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
3129 printk("md: cannot register %s for %s after level change\n",
3130 nm, mdname(mddev));
3131 }
3132 }
3133
3134 module_put(mddev->pers->owner);
3135 mddev->pers = pers;
3136 mddev->private = priv;
3137 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3138 mddev->level = mddev->new_level;
3139 mddev->layout = mddev->new_layout;
3140 mddev->chunk_sectors = mddev->new_chunk_sectors;
3141 mddev->delta_disks = 0;
3142 if (mddev->pers->sync_request == NULL) {
3143 /* this is now an array without redundancy, so
3144 * it must always be in_sync
3145 */
3146 mddev->in_sync = 1;
3147 del_timer_sync(&mddev->safemode_timer);
3148 }
3149 pers->run(mddev);
3150 mddev_resume(mddev);
3151 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3152 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3153 md_wakeup_thread(mddev->thread);
3154 sysfs_notify(&mddev->kobj, NULL, "level");
3155 md_new_event(mddev);
3156 return rv;
3157 }
3158
3159 static struct md_sysfs_entry md_level =
3160 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3161
3162
3163 static ssize_t
3164 layout_show(mddev_t *mddev, char *page)
3165 {
3166 /* just a number, not meaningful for all levels */
3167 if (mddev->reshape_position != MaxSector &&
3168 mddev->layout != mddev->new_layout)
3169 return sprintf(page, "%d (%d)\n",
3170 mddev->new_layout, mddev->layout);
3171 return sprintf(page, "%d\n", mddev->layout);
3172 }
3173
3174 static ssize_t
3175 layout_store(mddev_t *mddev, const char *buf, size_t len)
3176 {
3177 char *e;
3178 unsigned long n = simple_strtoul(buf, &e, 10);
3179
3180 if (!*buf || (*e && *e != '\n'))
3181 return -EINVAL;
3182
3183 if (mddev->pers) {
3184 int err;
3185 if (mddev->pers->check_reshape == NULL)
3186 return -EBUSY;
3187 mddev->new_layout = n;
3188 err = mddev->pers->check_reshape(mddev);
3189 if (err) {
3190 mddev->new_layout = mddev->layout;
3191 return err;
3192 }
3193 } else {
3194 mddev->new_layout = n;
3195 if (mddev->reshape_position == MaxSector)
3196 mddev->layout = n;
3197 }
3198 return len;
3199 }
3200 static struct md_sysfs_entry md_layout =
3201 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3202
3203
3204 static ssize_t
3205 raid_disks_show(mddev_t *mddev, char *page)
3206 {
3207 if (mddev->raid_disks == 0)
3208 return 0;
3209 if (mddev->reshape_position != MaxSector &&
3210 mddev->delta_disks != 0)
3211 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3212 mddev->raid_disks - mddev->delta_disks);
3213 return sprintf(page, "%d\n", mddev->raid_disks);
3214 }
3215
3216 static int update_raid_disks(mddev_t *mddev, int raid_disks);
3217
3218 static ssize_t
3219 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
3220 {
3221 char *e;
3222 int rv = 0;
3223 unsigned long n = simple_strtoul(buf, &e, 10);
3224
3225 if (!*buf || (*e && *e != '\n'))
3226 return -EINVAL;
3227
3228 if (mddev->pers)
3229 rv = update_raid_disks(mddev, n);
3230 else if (mddev->reshape_position != MaxSector) {
3231 int olddisks = mddev->raid_disks - mddev->delta_disks;
3232 mddev->delta_disks = n - olddisks;
3233 mddev->raid_disks = n;
3234 } else
3235 mddev->raid_disks = n;
3236 return rv ? rv : len;
3237 }
3238 static struct md_sysfs_entry md_raid_disks =
3239 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3240
3241 static ssize_t
3242 chunk_size_show(mddev_t *mddev, char *page)
3243 {
3244 if (mddev->reshape_position != MaxSector &&
3245 mddev->chunk_sectors != mddev->new_chunk_sectors)
3246 return sprintf(page, "%d (%d)\n",
3247 mddev->new_chunk_sectors << 9,
3248 mddev->chunk_sectors << 9);
3249 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3250 }
3251
3252 static ssize_t
3253 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
3254 {
3255 char *e;
3256 unsigned long n = simple_strtoul(buf, &e, 10);
3257
3258 if (!*buf || (*e && *e != '\n'))
3259 return -EINVAL;
3260
3261 if (mddev->pers) {
3262 int err;
3263 if (mddev->pers->check_reshape == NULL)
3264 return -EBUSY;
3265 mddev->new_chunk_sectors = n >> 9;
3266 err = mddev->pers->check_reshape(mddev);
3267 if (err) {
3268 mddev->new_chunk_sectors = mddev->chunk_sectors;
3269 return err;
3270 }
3271 } else {
3272 mddev->new_chunk_sectors = n >> 9;
3273 if (mddev->reshape_position == MaxSector)
3274 mddev->chunk_sectors = n >> 9;
3275 }
3276 return len;
3277 }
3278 static struct md_sysfs_entry md_chunk_size =
3279 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3280
3281 static ssize_t
3282 resync_start_show(mddev_t *mddev, char *page)
3283 {
3284 if (mddev->recovery_cp == MaxSector)
3285 return sprintf(page, "none\n");
3286 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3287 }
3288
3289 static ssize_t
3290 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
3291 {
3292 char *e;
3293 unsigned long long n = simple_strtoull(buf, &e, 10);
3294
3295 if (mddev->pers)
3296 return -EBUSY;
3297 if (cmd_match(buf, "none"))
3298 n = MaxSector;
3299 else if (!*buf || (*e && *e != '\n'))
3300 return -EINVAL;
3301
3302 mddev->recovery_cp = n;
3303 return len;
3304 }
3305 static struct md_sysfs_entry md_resync_start =
3306 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3307
3308 /*
3309 * The array state can be:
3310 *
3311 * clear
3312 * No devices, no size, no level
3313 * Equivalent to STOP_ARRAY ioctl
3314 * inactive
3315 * May have some settings, but array is not active
3316 * all IO results in error
3317 * When written, doesn't tear down array, but just stops it
3318 * suspended (not supported yet)
3319 * All IO requests will block. The array can be reconfigured.
3320 * Writing this, if accepted, will block until array is quiescent
3321 * readonly
3322 * no resync can happen. no superblocks get written.
3323 * write requests fail
3324 * read-auto
3325 * like readonly, but behaves like 'clean' on a write request.
3326 *
3327 * clean - no pending writes, but otherwise active.
3328 * When written to inactive array, starts without resync
3329 * If a write request arrives then
3330 * if metadata is known, mark 'dirty' and switch to 'active'.
3331 * if not known, block and switch to write-pending
3332 * If written to an active array that has pending writes, then fails.
3333 * active
3334 * fully active: IO and resync can be happening.
3335 * When written to inactive array, starts with resync
3336 *
3337 * write-pending
3338 * clean, but writes are blocked waiting for 'active' to be written.
3339 *
3340 * active-idle
3341 * like active, but no writes have been seen for a while (100msec).
3342 *
3343 */
3344 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3345 write_pending, active_idle, bad_word};
3346 static char *array_states[] = {
3347 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3348 "write-pending", "active-idle", NULL };
3349
3350 static int match_word(const char *word, char **list)
3351 {
3352 int n;
3353 for (n=0; list[n]; n++)
3354 if (cmd_match(word, list[n]))
3355 break;
3356 return n;
3357 }
3358
3359 static ssize_t
3360 array_state_show(mddev_t *mddev, char *page)
3361 {
3362 enum array_state st = inactive;
3363
3364 if (mddev->pers)
3365 switch(mddev->ro) {
3366 case 1:
3367 st = readonly;
3368 break;
3369 case 2:
3370 st = read_auto;
3371 break;
3372 case 0:
3373 if (mddev->in_sync)
3374 st = clean;
3375 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3376 st = write_pending;
3377 else if (mddev->safemode)
3378 st = active_idle;
3379 else
3380 st = active;
3381 }
3382 else {
3383 if (list_empty(&mddev->disks) &&
3384 mddev->raid_disks == 0 &&
3385 mddev->dev_sectors == 0)
3386 st = clear;
3387 else
3388 st = inactive;
3389 }
3390 return sprintf(page, "%s\n", array_states[st]);
3391 }
3392
3393 static int do_md_stop(mddev_t * mddev, int ro, int is_open);
3394 static int md_set_readonly(mddev_t * mddev, int is_open);
3395 static int do_md_run(mddev_t * mddev);
3396 static int restart_array(mddev_t *mddev);
3397
3398 static ssize_t
3399 array_state_store(mddev_t *mddev, const char *buf, size_t len)
3400 {
3401 int err = -EINVAL;
3402 enum array_state st = match_word(buf, array_states);
3403 switch(st) {
3404 case bad_word:
3405 break;
3406 case clear:
3407 /* stopping an active array */
3408 if (atomic_read(&mddev->openers) > 0)
3409 return -EBUSY;
3410 err = do_md_stop(mddev, 0, 0);
3411 break;
3412 case inactive:
3413 /* stopping an active array */
3414 if (mddev->pers) {
3415 if (atomic_read(&mddev->openers) > 0)
3416 return -EBUSY;
3417 err = do_md_stop(mddev, 2, 0);
3418 } else
3419 err = 0; /* already inactive */
3420 break;
3421 case suspended:
3422 break; /* not supported yet */
3423 case readonly:
3424 if (mddev->pers)
3425 err = md_set_readonly(mddev, 0);
3426 else {
3427 mddev->ro = 1;
3428 set_disk_ro(mddev->gendisk, 1);
3429 err = do_md_run(mddev);
3430 }
3431 break;
3432 case read_auto:
3433 if (mddev->pers) {
3434 if (mddev->ro == 0)
3435 err = md_set_readonly(mddev, 0);
3436 else if (mddev->ro == 1)
3437 err = restart_array(mddev);
3438 if (err == 0) {
3439 mddev->ro = 2;
3440 set_disk_ro(mddev->gendisk, 0);
3441 }
3442 } else {
3443 mddev->ro = 2;
3444 err = do_md_run(mddev);
3445 }
3446 break;
3447 case clean:
3448 if (mddev->pers) {
3449 restart_array(mddev);
3450 spin_lock_irq(&mddev->write_lock);
3451 if (atomic_read(&mddev->writes_pending) == 0) {
3452 if (mddev->in_sync == 0) {
3453 mddev->in_sync = 1;
3454 if (mddev->safemode == 1)
3455 mddev->safemode = 0;
3456 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3457 }
3458 err = 0;
3459 } else
3460 err = -EBUSY;
3461 spin_unlock_irq(&mddev->write_lock);
3462 } else
3463 err = -EINVAL;
3464 break;
3465 case active:
3466 if (mddev->pers) {
3467 restart_array(mddev);
3468 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3469 wake_up(&mddev->sb_wait);
3470 err = 0;
3471 } else {
3472 mddev->ro = 0;
3473 set_disk_ro(mddev->gendisk, 0);
3474 err = do_md_run(mddev);
3475 }
3476 break;
3477 case write_pending:
3478 case active_idle:
3479 /* these cannot be set */
3480 break;
3481 }
3482 if (err)
3483 return err;
3484 else {
3485 sysfs_notify_dirent_safe(mddev->sysfs_state);
3486 return len;
3487 }
3488 }
3489 static struct md_sysfs_entry md_array_state =
3490 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3491
3492 static ssize_t
3493 max_corrected_read_errors_show(mddev_t *mddev, char *page) {
3494 return sprintf(page, "%d\n",
3495 atomic_read(&mddev->max_corr_read_errors));
3496 }
3497
3498 static ssize_t
3499 max_corrected_read_errors_store(mddev_t *mddev, const char *buf, size_t len)
3500 {
3501 char *e;
3502 unsigned long n = simple_strtoul(buf, &e, 10);
3503
3504 if (*buf && (*e == 0 || *e == '\n')) {
3505 atomic_set(&mddev->max_corr_read_errors, n);
3506 return len;
3507 }
3508 return -EINVAL;
3509 }
3510
3511 static struct md_sysfs_entry max_corr_read_errors =
3512 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3513 max_corrected_read_errors_store);
3514
3515 static ssize_t
3516 null_show(mddev_t *mddev, char *page)
3517 {
3518 return -EINVAL;
3519 }
3520
3521 static ssize_t
3522 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
3523 {
3524 /* buf must be %d:%d\n? giving major and minor numbers */
3525 /* The new device is added to the array.
3526 * If the array has a persistent superblock, we read the
3527 * superblock to initialise info and check validity.
3528 * Otherwise, only checking done is that in bind_rdev_to_array,
3529 * which mainly checks size.
3530 */
3531 char *e;
3532 int major = simple_strtoul(buf, &e, 10);
3533 int minor;
3534 dev_t dev;
3535 mdk_rdev_t *rdev;
3536 int err;
3537
3538 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3539 return -EINVAL;
3540 minor = simple_strtoul(e+1, &e, 10);
3541 if (*e && *e != '\n')
3542 return -EINVAL;
3543 dev = MKDEV(major, minor);
3544 if (major != MAJOR(dev) ||
3545 minor != MINOR(dev))
3546 return -EOVERFLOW;
3547
3548
3549 if (mddev->persistent) {
3550 rdev = md_import_device(dev, mddev->major_version,
3551 mddev->minor_version);
3552 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3553 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3554 mdk_rdev_t, same_set);
3555 err = super_types[mddev->major_version]
3556 .load_super(rdev, rdev0, mddev->minor_version);
3557 if (err < 0)
3558 goto out;
3559 }
3560 } else if (mddev->external)
3561 rdev = md_import_device(dev, -2, -1);
3562 else
3563 rdev = md_import_device(dev, -1, -1);
3564
3565 if (IS_ERR(rdev))
3566 return PTR_ERR(rdev);
3567 err = bind_rdev_to_array(rdev, mddev);
3568 out:
3569 if (err)
3570 export_rdev(rdev);
3571 return err ? err : len;
3572 }
3573
3574 static struct md_sysfs_entry md_new_device =
3575 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3576
3577 static ssize_t
3578 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
3579 {
3580 char *end;
3581 unsigned long chunk, end_chunk;
3582
3583 if (!mddev->bitmap)
3584 goto out;
3585 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3586 while (*buf) {
3587 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3588 if (buf == end) break;
3589 if (*end == '-') { /* range */
3590 buf = end + 1;
3591 end_chunk = simple_strtoul(buf, &end, 0);
3592 if (buf == end) break;
3593 }
3594 if (*end && !isspace(*end)) break;
3595 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3596 buf = skip_spaces(end);
3597 }
3598 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3599 out:
3600 return len;
3601 }
3602
3603 static struct md_sysfs_entry md_bitmap =
3604 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3605
3606 static ssize_t
3607 size_show(mddev_t *mddev, char *page)
3608 {
3609 return sprintf(page, "%llu\n",
3610 (unsigned long long)mddev->dev_sectors / 2);
3611 }
3612
3613 static int update_size(mddev_t *mddev, sector_t num_sectors);
3614
3615 static ssize_t
3616 size_store(mddev_t *mddev, const char *buf, size_t len)
3617 {
3618 /* If array is inactive, we can reduce the component size, but
3619 * not increase it (except from 0).
3620 * If array is active, we can try an on-line resize
3621 */
3622 sector_t sectors;
3623 int err = strict_blocks_to_sectors(buf, &sectors);
3624
3625 if (err < 0)
3626 return err;
3627 if (mddev->pers) {
3628 err = update_size(mddev, sectors);
3629 md_update_sb(mddev, 1);
3630 } else {
3631 if (mddev->dev_sectors == 0 ||
3632 mddev->dev_sectors > sectors)
3633 mddev->dev_sectors = sectors;
3634 else
3635 err = -ENOSPC;
3636 }
3637 return err ? err : len;
3638 }
3639
3640 static struct md_sysfs_entry md_size =
3641 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3642
3643
3644 /* Metdata version.
3645 * This is one of
3646 * 'none' for arrays with no metadata (good luck...)
3647 * 'external' for arrays with externally managed metadata,
3648 * or N.M for internally known formats
3649 */
3650 static ssize_t
3651 metadata_show(mddev_t *mddev, char *page)
3652 {
3653 if (mddev->persistent)
3654 return sprintf(page, "%d.%d\n",
3655 mddev->major_version, mddev->minor_version);
3656 else if (mddev->external)
3657 return sprintf(page, "external:%s\n", mddev->metadata_type);
3658 else
3659 return sprintf(page, "none\n");
3660 }
3661
3662 static ssize_t
3663 metadata_store(mddev_t *mddev, const char *buf, size_t len)
3664 {
3665 int major, minor;
3666 char *e;
3667 /* Changing the details of 'external' metadata is
3668 * always permitted. Otherwise there must be
3669 * no devices attached to the array.
3670 */
3671 if (mddev->external && strncmp(buf, "external:", 9) == 0)
3672 ;
3673 else if (!list_empty(&mddev->disks))
3674 return -EBUSY;
3675
3676 if (cmd_match(buf, "none")) {
3677 mddev->persistent = 0;
3678 mddev->external = 0;
3679 mddev->major_version = 0;
3680 mddev->minor_version = 90;
3681 return len;
3682 }
3683 if (strncmp(buf, "external:", 9) == 0) {
3684 size_t namelen = len-9;
3685 if (namelen >= sizeof(mddev->metadata_type))
3686 namelen = sizeof(mddev->metadata_type)-1;
3687 strncpy(mddev->metadata_type, buf+9, namelen);
3688 mddev->metadata_type[namelen] = 0;
3689 if (namelen && mddev->metadata_type[namelen-1] == '\n')
3690 mddev->metadata_type[--namelen] = 0;
3691 mddev->persistent = 0;
3692 mddev->external = 1;
3693 mddev->major_version = 0;
3694 mddev->minor_version = 90;
3695 return len;
3696 }
3697 major = simple_strtoul(buf, &e, 10);
3698 if (e==buf || *e != '.')
3699 return -EINVAL;
3700 buf = e+1;
3701 minor = simple_strtoul(buf, &e, 10);
3702 if (e==buf || (*e && *e != '\n') )
3703 return -EINVAL;
3704 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
3705 return -ENOENT;
3706 mddev->major_version = major;
3707 mddev->minor_version = minor;
3708 mddev->persistent = 1;
3709 mddev->external = 0;
3710 return len;
3711 }
3712
3713 static struct md_sysfs_entry md_metadata =
3714 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
3715
3716 static ssize_t
3717 action_show(mddev_t *mddev, char *page)
3718 {
3719 char *type = "idle";
3720 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3721 type = "frozen";
3722 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3723 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
3724 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3725 type = "reshape";
3726 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3727 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3728 type = "resync";
3729 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
3730 type = "check";
3731 else
3732 type = "repair";
3733 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
3734 type = "recover";
3735 }
3736 return sprintf(page, "%s\n", type);
3737 }
3738
3739 static ssize_t
3740 action_store(mddev_t *mddev, const char *page, size_t len)
3741 {
3742 if (!mddev->pers || !mddev->pers->sync_request)
3743 return -EINVAL;
3744
3745 if (cmd_match(page, "frozen"))
3746 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3747 else
3748 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3749
3750 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
3751 if (mddev->sync_thread) {
3752 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3753 md_unregister_thread(mddev->sync_thread);
3754 mddev->sync_thread = NULL;
3755 mddev->recovery = 0;
3756 }
3757 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3758 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3759 return -EBUSY;
3760 else if (cmd_match(page, "resync"))
3761 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3762 else if (cmd_match(page, "recover")) {
3763 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3764 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3765 } else if (cmd_match(page, "reshape")) {
3766 int err;
3767 if (mddev->pers->start_reshape == NULL)
3768 return -EINVAL;
3769 err = mddev->pers->start_reshape(mddev);
3770 if (err)
3771 return err;
3772 sysfs_notify(&mddev->kobj, NULL, "degraded");
3773 } else {
3774 if (cmd_match(page, "check"))
3775 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3776 else if (!cmd_match(page, "repair"))
3777 return -EINVAL;
3778 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3779 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3780 }
3781 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3782 md_wakeup_thread(mddev->thread);
3783 sysfs_notify_dirent_safe(mddev->sysfs_action);
3784 return len;
3785 }
3786
3787 static ssize_t
3788 mismatch_cnt_show(mddev_t *mddev, char *page)
3789 {
3790 return sprintf(page, "%llu\n",
3791 (unsigned long long) mddev->resync_mismatches);
3792 }
3793
3794 static struct md_sysfs_entry md_scan_mode =
3795 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
3796
3797
3798 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
3799
3800 static ssize_t
3801 sync_min_show(mddev_t *mddev, char *page)
3802 {
3803 return sprintf(page, "%d (%s)\n", speed_min(mddev),
3804 mddev->sync_speed_min ? "local": "system");
3805 }
3806
3807 static ssize_t
3808 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
3809 {
3810 int min;
3811 char *e;
3812 if (strncmp(buf, "system", 6)==0) {
3813 mddev->sync_speed_min = 0;
3814 return len;
3815 }
3816 min = simple_strtoul(buf, &e, 10);
3817 if (buf == e || (*e && *e != '\n') || min <= 0)
3818 return -EINVAL;
3819 mddev->sync_speed_min = min;
3820 return len;
3821 }
3822
3823 static struct md_sysfs_entry md_sync_min =
3824 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
3825
3826 static ssize_t
3827 sync_max_show(mddev_t *mddev, char *page)
3828 {
3829 return sprintf(page, "%d (%s)\n", speed_max(mddev),
3830 mddev->sync_speed_max ? "local": "system");
3831 }
3832
3833 static ssize_t
3834 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
3835 {
3836 int max;
3837 char *e;
3838 if (strncmp(buf, "system", 6)==0) {
3839 mddev->sync_speed_max = 0;
3840 return len;
3841 }
3842 max = simple_strtoul(buf, &e, 10);
3843 if (buf == e || (*e && *e != '\n') || max <= 0)
3844 return -EINVAL;
3845 mddev->sync_speed_max = max;
3846 return len;
3847 }
3848
3849 static struct md_sysfs_entry md_sync_max =
3850 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
3851
3852 static ssize_t
3853 degraded_show(mddev_t *mddev, char *page)
3854 {
3855 return sprintf(page, "%d\n", mddev->degraded);
3856 }
3857 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
3858
3859 static ssize_t
3860 sync_force_parallel_show(mddev_t *mddev, char *page)
3861 {
3862 return sprintf(page, "%d\n", mddev->parallel_resync);
3863 }
3864
3865 static ssize_t
3866 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
3867 {
3868 long n;
3869
3870 if (strict_strtol(buf, 10, &n))
3871 return -EINVAL;
3872
3873 if (n != 0 && n != 1)
3874 return -EINVAL;
3875
3876 mddev->parallel_resync = n;
3877
3878 if (mddev->sync_thread)
3879 wake_up(&resync_wait);
3880
3881 return len;
3882 }
3883
3884 /* force parallel resync, even with shared block devices */
3885 static struct md_sysfs_entry md_sync_force_parallel =
3886 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
3887 sync_force_parallel_show, sync_force_parallel_store);
3888
3889 static ssize_t
3890 sync_speed_show(mddev_t *mddev, char *page)
3891 {
3892 unsigned long resync, dt, db;
3893 if (mddev->curr_resync == 0)
3894 return sprintf(page, "none\n");
3895 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
3896 dt = (jiffies - mddev->resync_mark) / HZ;
3897 if (!dt) dt++;
3898 db = resync - mddev->resync_mark_cnt;
3899 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
3900 }
3901
3902 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
3903
3904 static ssize_t
3905 sync_completed_show(mddev_t *mddev, char *page)
3906 {
3907 unsigned long max_sectors, resync;
3908
3909 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3910 return sprintf(page, "none\n");
3911
3912 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3913 max_sectors = mddev->resync_max_sectors;
3914 else
3915 max_sectors = mddev->dev_sectors;
3916
3917 resync = mddev->curr_resync_completed;
3918 return sprintf(page, "%lu / %lu\n", resync, max_sectors);
3919 }
3920
3921 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
3922
3923 static ssize_t
3924 min_sync_show(mddev_t *mddev, char *page)
3925 {
3926 return sprintf(page, "%llu\n",
3927 (unsigned long long)mddev->resync_min);
3928 }
3929 static ssize_t
3930 min_sync_store(mddev_t *mddev, const char *buf, size_t len)
3931 {
3932 unsigned long long min;
3933 if (strict_strtoull(buf, 10, &min))
3934 return -EINVAL;
3935 if (min > mddev->resync_max)
3936 return -EINVAL;
3937 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3938 return -EBUSY;
3939
3940 /* Must be a multiple of chunk_size */
3941 if (mddev->chunk_sectors) {
3942 sector_t temp = min;
3943 if (sector_div(temp, mddev->chunk_sectors))
3944 return -EINVAL;
3945 }
3946 mddev->resync_min = min;
3947
3948 return len;
3949 }
3950
3951 static struct md_sysfs_entry md_min_sync =
3952 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
3953
3954 static ssize_t
3955 max_sync_show(mddev_t *mddev, char *page)
3956 {
3957 if (mddev->resync_max == MaxSector)
3958 return sprintf(page, "max\n");
3959 else
3960 return sprintf(page, "%llu\n",
3961 (unsigned long long)mddev->resync_max);
3962 }
3963 static ssize_t
3964 max_sync_store(mddev_t *mddev, const char *buf, size_t len)
3965 {
3966 if (strncmp(buf, "max", 3) == 0)
3967 mddev->resync_max = MaxSector;
3968 else {
3969 unsigned long long max;
3970 if (strict_strtoull(buf, 10, &max))
3971 return -EINVAL;
3972 if (max < mddev->resync_min)
3973 return -EINVAL;
3974 if (max < mddev->resync_max &&
3975 mddev->ro == 0 &&
3976 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3977 return -EBUSY;
3978
3979 /* Must be a multiple of chunk_size */
3980 if (mddev->chunk_sectors) {
3981 sector_t temp = max;
3982 if (sector_div(temp, mddev->chunk_sectors))
3983 return -EINVAL;
3984 }
3985 mddev->resync_max = max;
3986 }
3987 wake_up(&mddev->recovery_wait);
3988 return len;
3989 }
3990
3991 static struct md_sysfs_entry md_max_sync =
3992 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
3993
3994 static ssize_t
3995 suspend_lo_show(mddev_t *mddev, char *page)
3996 {
3997 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
3998 }
3999
4000 static ssize_t
4001 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
4002 {
4003 char *e;
4004 unsigned long long new = simple_strtoull(buf, &e, 10);
4005
4006 if (mddev->pers == NULL ||
4007 mddev->pers->quiesce == NULL)
4008 return -EINVAL;
4009 if (buf == e || (*e && *e != '\n'))
4010 return -EINVAL;
4011 if (new >= mddev->suspend_hi ||
4012 (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
4013 mddev->suspend_lo = new;
4014 mddev->pers->quiesce(mddev, 2);
4015 return len;
4016 } else
4017 return -EINVAL;
4018 }
4019 static struct md_sysfs_entry md_suspend_lo =
4020 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4021
4022
4023 static ssize_t
4024 suspend_hi_show(mddev_t *mddev, char *page)
4025 {
4026 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4027 }
4028
4029 static ssize_t
4030 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
4031 {
4032 char *e;
4033 unsigned long long new = simple_strtoull(buf, &e, 10);
4034
4035 if (mddev->pers == NULL ||
4036 mddev->pers->quiesce == NULL)
4037 return -EINVAL;
4038 if (buf == e || (*e && *e != '\n'))
4039 return -EINVAL;
4040 if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
4041 (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
4042 mddev->suspend_hi = new;
4043 mddev->pers->quiesce(mddev, 1);
4044 mddev->pers->quiesce(mddev, 0);
4045 return len;
4046 } else
4047 return -EINVAL;
4048 }
4049 static struct md_sysfs_entry md_suspend_hi =
4050 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4051
4052 static ssize_t
4053 reshape_position_show(mddev_t *mddev, char *page)
4054 {
4055 if (mddev->reshape_position != MaxSector)
4056 return sprintf(page, "%llu\n",
4057 (unsigned long long)mddev->reshape_position);
4058 strcpy(page, "none\n");
4059 return 5;
4060 }
4061
4062 static ssize_t
4063 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
4064 {
4065 char *e;
4066 unsigned long long new = simple_strtoull(buf, &e, 10);
4067 if (mddev->pers)
4068 return -EBUSY;
4069 if (buf == e || (*e && *e != '\n'))
4070 return -EINVAL;
4071 mddev->reshape_position = new;
4072 mddev->delta_disks = 0;
4073 mddev->new_level = mddev->level;
4074 mddev->new_layout = mddev->layout;
4075 mddev->new_chunk_sectors = mddev->chunk_sectors;
4076 return len;
4077 }
4078
4079 static struct md_sysfs_entry md_reshape_position =
4080 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4081 reshape_position_store);
4082
4083 static ssize_t
4084 array_size_show(mddev_t *mddev, char *page)
4085 {
4086 if (mddev->external_size)
4087 return sprintf(page, "%llu\n",
4088 (unsigned long long)mddev->array_sectors/2);
4089 else
4090 return sprintf(page, "default\n");
4091 }
4092
4093 static ssize_t
4094 array_size_store(mddev_t *mddev, const char *buf, size_t len)
4095 {
4096 sector_t sectors;
4097
4098 if (strncmp(buf, "default", 7) == 0) {
4099 if (mddev->pers)
4100 sectors = mddev->pers->size(mddev, 0, 0);
4101 else
4102 sectors = mddev->array_sectors;
4103
4104 mddev->external_size = 0;
4105 } else {
4106 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4107 return -EINVAL;
4108 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4109 return -E2BIG;
4110
4111 mddev->external_size = 1;
4112 }
4113
4114 mddev->array_sectors = sectors;
4115 set_capacity(mddev->gendisk, mddev->array_sectors);
4116 if (mddev->pers)
4117 revalidate_disk(mddev->gendisk);
4118
4119 return len;
4120 }
4121
4122 static struct md_sysfs_entry md_array_size =
4123 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4124 array_size_store);
4125
4126 static struct attribute *md_default_attrs[] = {
4127 &md_level.attr,
4128 &md_layout.attr,
4129 &md_raid_disks.attr,
4130 &md_chunk_size.attr,
4131 &md_size.attr,
4132 &md_resync_start.attr,
4133 &md_metadata.attr,
4134 &md_new_device.attr,
4135 &md_safe_delay.attr,
4136 &md_array_state.attr,
4137 &md_reshape_position.attr,
4138 &md_array_size.attr,
4139 &max_corr_read_errors.attr,
4140 NULL,
4141 };
4142
4143 static struct attribute *md_redundancy_attrs[] = {
4144 &md_scan_mode.attr,
4145 &md_mismatches.attr,
4146 &md_sync_min.attr,
4147 &md_sync_max.attr,
4148 &md_sync_speed.attr,
4149 &md_sync_force_parallel.attr,
4150 &md_sync_completed.attr,
4151 &md_min_sync.attr,
4152 &md_max_sync.attr,
4153 &md_suspend_lo.attr,
4154 &md_suspend_hi.attr,
4155 &md_bitmap.attr,
4156 &md_degraded.attr,
4157 NULL,
4158 };
4159 static struct attribute_group md_redundancy_group = {
4160 .name = NULL,
4161 .attrs = md_redundancy_attrs,
4162 };
4163
4164
4165 static ssize_t
4166 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4167 {
4168 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4169 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4170 ssize_t rv;
4171
4172 if (!entry->show)
4173 return -EIO;
4174 rv = mddev_lock(mddev);
4175 if (!rv) {
4176 rv = entry->show(mddev, page);
4177 mddev_unlock(mddev);
4178 }
4179 return rv;
4180 }
4181
4182 static ssize_t
4183 md_attr_store(struct kobject *kobj, struct attribute *attr,
4184 const char *page, size_t length)
4185 {
4186 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4187 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4188 ssize_t rv;
4189
4190 if (!entry->store)
4191 return -EIO;
4192 if (!capable(CAP_SYS_ADMIN))
4193 return -EACCES;
4194 rv = mddev_lock(mddev);
4195 if (mddev->hold_active == UNTIL_IOCTL)
4196 mddev->hold_active = 0;
4197 if (!rv) {
4198 rv = entry->store(mddev, page, length);
4199 mddev_unlock(mddev);
4200 }
4201 return rv;
4202 }
4203
4204 static void md_free(struct kobject *ko)
4205 {
4206 mddev_t *mddev = container_of(ko, mddev_t, kobj);
4207
4208 if (mddev->sysfs_state)
4209 sysfs_put(mddev->sysfs_state);
4210
4211 if (mddev->gendisk) {
4212 del_gendisk(mddev->gendisk);
4213 put_disk(mddev->gendisk);
4214 }
4215 if (mddev->queue)
4216 blk_cleanup_queue(mddev->queue);
4217
4218 kfree(mddev);
4219 }
4220
4221 static const struct sysfs_ops md_sysfs_ops = {
4222 .show = md_attr_show,
4223 .store = md_attr_store,
4224 };
4225 static struct kobj_type md_ktype = {
4226 .release = md_free,
4227 .sysfs_ops = &md_sysfs_ops,
4228 .default_attrs = md_default_attrs,
4229 };
4230
4231 int mdp_major = 0;
4232
4233 static void mddev_delayed_delete(struct work_struct *ws)
4234 {
4235 mddev_t *mddev = container_of(ws, mddev_t, del_work);
4236
4237 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4238 kobject_del(&mddev->kobj);
4239 kobject_put(&mddev->kobj);
4240 }
4241
4242 static int md_alloc(dev_t dev, char *name)
4243 {
4244 static DEFINE_MUTEX(disks_mutex);
4245 mddev_t *mddev = mddev_find(dev);
4246 struct gendisk *disk;
4247 int partitioned;
4248 int shift;
4249 int unit;
4250 int error;
4251
4252 if (!mddev)
4253 return -ENODEV;
4254
4255 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4256 shift = partitioned ? MdpMinorShift : 0;
4257 unit = MINOR(mddev->unit) >> shift;
4258
4259 /* wait for any previous instance if this device
4260 * to be completed removed (mddev_delayed_delete).
4261 */
4262 flush_scheduled_work();
4263
4264 mutex_lock(&disks_mutex);
4265 error = -EEXIST;
4266 if (mddev->gendisk)
4267 goto abort;
4268
4269 if (name) {
4270 /* Need to ensure that 'name' is not a duplicate.
4271 */
4272 mddev_t *mddev2;
4273 spin_lock(&all_mddevs_lock);
4274
4275 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4276 if (mddev2->gendisk &&
4277 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4278 spin_unlock(&all_mddevs_lock);
4279 goto abort;
4280 }
4281 spin_unlock(&all_mddevs_lock);
4282 }
4283
4284 error = -ENOMEM;
4285 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4286 if (!mddev->queue)
4287 goto abort;
4288 mddev->queue->queuedata = mddev;
4289
4290 /* Can be unlocked because the queue is new: no concurrency */
4291 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, mddev->queue);
4292
4293 blk_queue_make_request(mddev->queue, md_make_request);
4294
4295 disk = alloc_disk(1 << shift);
4296 if (!disk) {
4297 blk_cleanup_queue(mddev->queue);
4298 mddev->queue = NULL;
4299 goto abort;
4300 }
4301 disk->major = MAJOR(mddev->unit);
4302 disk->first_minor = unit << shift;
4303 if (name)
4304 strcpy(disk->disk_name, name);
4305 else if (partitioned)
4306 sprintf(disk->disk_name, "md_d%d", unit);
4307 else
4308 sprintf(disk->disk_name, "md%d", unit);
4309 disk->fops = &md_fops;
4310 disk->private_data = mddev;
4311 disk->queue = mddev->queue;
4312 /* Allow extended partitions. This makes the
4313 * 'mdp' device redundant, but we can't really
4314 * remove it now.
4315 */
4316 disk->flags |= GENHD_FL_EXT_DEVT;
4317 add_disk(disk);
4318 mddev->gendisk = disk;
4319 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4320 &disk_to_dev(disk)->kobj, "%s", "md");
4321 if (error) {
4322 /* This isn't possible, but as kobject_init_and_add is marked
4323 * __must_check, we must do something with the result
4324 */
4325 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4326 disk->disk_name);
4327 error = 0;
4328 }
4329 if (mddev->kobj.sd &&
4330 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4331 printk(KERN_DEBUG "pointless warning\n");
4332 abort:
4333 mutex_unlock(&disks_mutex);
4334 if (!error && mddev->kobj.sd) {
4335 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4336 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4337 }
4338 mddev_put(mddev);
4339 return error;
4340 }
4341
4342 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4343 {
4344 md_alloc(dev, NULL);
4345 return NULL;
4346 }
4347
4348 static int add_named_array(const char *val, struct kernel_param *kp)
4349 {
4350 /* val must be "md_*" where * is not all digits.
4351 * We allocate an array with a large free minor number, and
4352 * set the name to val. val must not already be an active name.
4353 */
4354 int len = strlen(val);
4355 char buf[DISK_NAME_LEN];
4356
4357 while (len && val[len-1] == '\n')
4358 len--;
4359 if (len >= DISK_NAME_LEN)
4360 return -E2BIG;
4361 strlcpy(buf, val, len+1);
4362 if (strncmp(buf, "md_", 3) != 0)
4363 return -EINVAL;
4364 return md_alloc(0, buf);
4365 }
4366
4367 static void md_safemode_timeout(unsigned long data)
4368 {
4369 mddev_t *mddev = (mddev_t *) data;
4370
4371 if (!atomic_read(&mddev->writes_pending)) {
4372 mddev->safemode = 1;
4373 if (mddev->external)
4374 sysfs_notify_dirent_safe(mddev->sysfs_state);
4375 }
4376 md_wakeup_thread(mddev->thread);
4377 }
4378
4379 static int start_dirty_degraded;
4380
4381 int md_run(mddev_t *mddev)
4382 {
4383 int err;
4384 mdk_rdev_t *rdev;
4385 struct mdk_personality *pers;
4386
4387 if (list_empty(&mddev->disks))
4388 /* cannot run an array with no devices.. */
4389 return -EINVAL;
4390
4391 if (mddev->pers)
4392 return -EBUSY;
4393 /* Cannot run until previous stop completes properly */
4394 if (mddev->sysfs_active)
4395 return -EBUSY;
4396
4397 /*
4398 * Analyze all RAID superblock(s)
4399 */
4400 if (!mddev->raid_disks) {
4401 if (!mddev->persistent)
4402 return -EINVAL;
4403 analyze_sbs(mddev);
4404 }
4405
4406 if (mddev->level != LEVEL_NONE)
4407 request_module("md-level-%d", mddev->level);
4408 else if (mddev->clevel[0])
4409 request_module("md-%s", mddev->clevel);
4410
4411 /*
4412 * Drop all container device buffers, from now on
4413 * the only valid external interface is through the md
4414 * device.
4415 */
4416 list_for_each_entry(rdev, &mddev->disks, same_set) {
4417 if (test_bit(Faulty, &rdev->flags))
4418 continue;
4419 sync_blockdev(rdev->bdev);
4420 invalidate_bdev(rdev->bdev);
4421
4422 /* perform some consistency tests on the device.
4423 * We don't want the data to overlap the metadata,
4424 * Internal Bitmap issues have been handled elsewhere.
4425 */
4426 if (rdev->data_offset < rdev->sb_start) {
4427 if (mddev->dev_sectors &&
4428 rdev->data_offset + mddev->dev_sectors
4429 > rdev->sb_start) {
4430 printk("md: %s: data overlaps metadata\n",
4431 mdname(mddev));
4432 return -EINVAL;
4433 }
4434 } else {
4435 if (rdev->sb_start + rdev->sb_size/512
4436 > rdev->data_offset) {
4437 printk("md: %s: metadata overlaps data\n",
4438 mdname(mddev));
4439 return -EINVAL;
4440 }
4441 }
4442 sysfs_notify_dirent_safe(rdev->sysfs_state);
4443 }
4444
4445 spin_lock(&pers_lock);
4446 pers = find_pers(mddev->level, mddev->clevel);
4447 if (!pers || !try_module_get(pers->owner)) {
4448 spin_unlock(&pers_lock);
4449 if (mddev->level != LEVEL_NONE)
4450 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4451 mddev->level);
4452 else
4453 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4454 mddev->clevel);
4455 return -EINVAL;
4456 }
4457 mddev->pers = pers;
4458 spin_unlock(&pers_lock);
4459 if (mddev->level != pers->level) {
4460 mddev->level = pers->level;
4461 mddev->new_level = pers->level;
4462 }
4463 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4464
4465 if (mddev->reshape_position != MaxSector &&
4466 pers->start_reshape == NULL) {
4467 /* This personality cannot handle reshaping... */
4468 mddev->pers = NULL;
4469 module_put(pers->owner);
4470 return -EINVAL;
4471 }
4472
4473 if (pers->sync_request) {
4474 /* Warn if this is a potentially silly
4475 * configuration.
4476 */
4477 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4478 mdk_rdev_t *rdev2;
4479 int warned = 0;
4480
4481 list_for_each_entry(rdev, &mddev->disks, same_set)
4482 list_for_each_entry(rdev2, &mddev->disks, same_set) {
4483 if (rdev < rdev2 &&
4484 rdev->bdev->bd_contains ==
4485 rdev2->bdev->bd_contains) {
4486 printk(KERN_WARNING
4487 "%s: WARNING: %s appears to be"
4488 " on the same physical disk as"
4489 " %s.\n",
4490 mdname(mddev),
4491 bdevname(rdev->bdev,b),
4492 bdevname(rdev2->bdev,b2));
4493 warned = 1;
4494 }
4495 }
4496
4497 if (warned)
4498 printk(KERN_WARNING
4499 "True protection against single-disk"
4500 " failure might be compromised.\n");
4501 }
4502
4503 mddev->recovery = 0;
4504 /* may be over-ridden by personality */
4505 mddev->resync_max_sectors = mddev->dev_sectors;
4506
4507 mddev->barriers_work = 1;
4508 mddev->ok_start_degraded = start_dirty_degraded;
4509
4510 if (start_readonly && mddev->ro == 0)
4511 mddev->ro = 2; /* read-only, but switch on first write */
4512
4513 err = mddev->pers->run(mddev);
4514 if (err)
4515 printk(KERN_ERR "md: pers->run() failed ...\n");
4516 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4517 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4518 " but 'external_size' not in effect?\n", __func__);
4519 printk(KERN_ERR
4520 "md: invalid array_size %llu > default size %llu\n",
4521 (unsigned long long)mddev->array_sectors / 2,
4522 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4523 err = -EINVAL;
4524 mddev->pers->stop(mddev);
4525 }
4526 if (err == 0 && mddev->pers->sync_request) {
4527 err = bitmap_create(mddev);
4528 if (err) {
4529 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4530 mdname(mddev), err);
4531 mddev->pers->stop(mddev);
4532 }
4533 }
4534 if (err) {
4535 module_put(mddev->pers->owner);
4536 mddev->pers = NULL;
4537 bitmap_destroy(mddev);
4538 return err;
4539 }
4540 if (mddev->pers->sync_request) {
4541 if (mddev->kobj.sd &&
4542 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4543 printk(KERN_WARNING
4544 "md: cannot register extra attributes for %s\n",
4545 mdname(mddev));
4546 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4547 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4548 mddev->ro = 0;
4549
4550 atomic_set(&mddev->writes_pending,0);
4551 atomic_set(&mddev->max_corr_read_errors,
4552 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4553 mddev->safemode = 0;
4554 mddev->safemode_timer.function = md_safemode_timeout;
4555 mddev->safemode_timer.data = (unsigned long) mddev;
4556 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4557 mddev->in_sync = 1;
4558
4559 list_for_each_entry(rdev, &mddev->disks, same_set)
4560 if (rdev->raid_disk >= 0) {
4561 char nm[20];
4562 sprintf(nm, "rd%d", rdev->raid_disk);
4563 if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
4564 /* failure here is OK */;
4565 }
4566
4567 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4568
4569 if (mddev->flags)
4570 md_update_sb(mddev, 0);
4571
4572 md_wakeup_thread(mddev->thread);
4573 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4574
4575 md_new_event(mddev);
4576 sysfs_notify_dirent_safe(mddev->sysfs_state);
4577 sysfs_notify_dirent_safe(mddev->sysfs_action);
4578 sysfs_notify(&mddev->kobj, NULL, "degraded");
4579 return 0;
4580 }
4581 EXPORT_SYMBOL_GPL(md_run);
4582
4583 static int do_md_run(mddev_t *mddev)
4584 {
4585 int err;
4586
4587 err = md_run(mddev);
4588 if (err)
4589 goto out;
4590 err = bitmap_load(mddev);
4591 if (err) {
4592 bitmap_destroy(mddev);
4593 goto out;
4594 }
4595 set_capacity(mddev->gendisk, mddev->array_sectors);
4596 revalidate_disk(mddev->gendisk);
4597 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4598 out:
4599 return err;
4600 }
4601
4602 static int restart_array(mddev_t *mddev)
4603 {
4604 struct gendisk *disk = mddev->gendisk;
4605
4606 /* Complain if it has no devices */
4607 if (list_empty(&mddev->disks))
4608 return -ENXIO;
4609 if (!mddev->pers)
4610 return -EINVAL;
4611 if (!mddev->ro)
4612 return -EBUSY;
4613 mddev->safemode = 0;
4614 mddev->ro = 0;
4615 set_disk_ro(disk, 0);
4616 printk(KERN_INFO "md: %s switched to read-write mode.\n",
4617 mdname(mddev));
4618 /* Kick recovery or resync if necessary */
4619 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4620 md_wakeup_thread(mddev->thread);
4621 md_wakeup_thread(mddev->sync_thread);
4622 sysfs_notify_dirent_safe(mddev->sysfs_state);
4623 return 0;
4624 }
4625
4626 /* similar to deny_write_access, but accounts for our holding a reference
4627 * to the file ourselves */
4628 static int deny_bitmap_write_access(struct file * file)
4629 {
4630 struct inode *inode = file->f_mapping->host;
4631
4632 spin_lock(&inode->i_lock);
4633 if (atomic_read(&inode->i_writecount) > 1) {
4634 spin_unlock(&inode->i_lock);
4635 return -ETXTBSY;
4636 }
4637 atomic_set(&inode->i_writecount, -1);
4638 spin_unlock(&inode->i_lock);
4639
4640 return 0;
4641 }
4642
4643 void restore_bitmap_write_access(struct file *file)
4644 {
4645 struct inode *inode = file->f_mapping->host;
4646
4647 spin_lock(&inode->i_lock);
4648 atomic_set(&inode->i_writecount, 1);
4649 spin_unlock(&inode->i_lock);
4650 }
4651
4652 static void md_clean(mddev_t *mddev)
4653 {
4654 mddev->array_sectors = 0;
4655 mddev->external_size = 0;
4656 mddev->dev_sectors = 0;
4657 mddev->raid_disks = 0;
4658 mddev->recovery_cp = 0;
4659 mddev->resync_min = 0;
4660 mddev->resync_max = MaxSector;
4661 mddev->reshape_position = MaxSector;
4662 mddev->external = 0;
4663 mddev->persistent = 0;
4664 mddev->level = LEVEL_NONE;
4665 mddev->clevel[0] = 0;
4666 mddev->flags = 0;
4667 mddev->ro = 0;
4668 mddev->metadata_type[0] = 0;
4669 mddev->chunk_sectors = 0;
4670 mddev->ctime = mddev->utime = 0;
4671 mddev->layout = 0;
4672 mddev->max_disks = 0;
4673 mddev->events = 0;
4674 mddev->can_decrease_events = 0;
4675 mddev->delta_disks = 0;
4676 mddev->new_level = LEVEL_NONE;
4677 mddev->new_layout = 0;
4678 mddev->new_chunk_sectors = 0;
4679 mddev->curr_resync = 0;
4680 mddev->resync_mismatches = 0;
4681 mddev->suspend_lo = mddev->suspend_hi = 0;
4682 mddev->sync_speed_min = mddev->sync_speed_max = 0;
4683 mddev->recovery = 0;
4684 mddev->in_sync = 0;
4685 mddev->degraded = 0;
4686 mddev->barriers_work = 0;
4687 mddev->safemode = 0;
4688 mddev->bitmap_info.offset = 0;
4689 mddev->bitmap_info.default_offset = 0;
4690 mddev->bitmap_info.chunksize = 0;
4691 mddev->bitmap_info.daemon_sleep = 0;
4692 mddev->bitmap_info.max_write_behind = 0;
4693 mddev->plug = NULL;
4694 }
4695
4696 void md_stop_writes(mddev_t *mddev)
4697 {
4698 if (mddev->sync_thread) {
4699 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4700 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4701 md_unregister_thread(mddev->sync_thread);
4702 mddev->sync_thread = NULL;
4703 }
4704
4705 del_timer_sync(&mddev->safemode_timer);
4706
4707 bitmap_flush(mddev);
4708 md_super_wait(mddev);
4709
4710 if (!mddev->in_sync || mddev->flags) {
4711 /* mark array as shutdown cleanly */
4712 mddev->in_sync = 1;
4713 md_update_sb(mddev, 1);
4714 }
4715 }
4716 EXPORT_SYMBOL_GPL(md_stop_writes);
4717
4718 void md_stop(mddev_t *mddev)
4719 {
4720 mddev->pers->stop(mddev);
4721 if (mddev->pers->sync_request && mddev->to_remove == NULL)
4722 mddev->to_remove = &md_redundancy_group;
4723 module_put(mddev->pers->owner);
4724 mddev->pers = NULL;
4725 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4726 }
4727 EXPORT_SYMBOL_GPL(md_stop);
4728
4729 static int md_set_readonly(mddev_t *mddev, int is_open)
4730 {
4731 int err = 0;
4732 mutex_lock(&mddev->open_mutex);
4733 if (atomic_read(&mddev->openers) > is_open) {
4734 printk("md: %s still in use.\n",mdname(mddev));
4735 err = -EBUSY;
4736 goto out;
4737 }
4738 if (mddev->pers) {
4739 md_stop_writes(mddev);
4740
4741 err = -ENXIO;
4742 if (mddev->ro==1)
4743 goto out;
4744 mddev->ro = 1;
4745 set_disk_ro(mddev->gendisk, 1);
4746 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4747 sysfs_notify_dirent_safe(mddev->sysfs_state);
4748 err = 0;
4749 }
4750 out:
4751 mutex_unlock(&mddev->open_mutex);
4752 return err;
4753 }
4754
4755 /* mode:
4756 * 0 - completely stop and dis-assemble array
4757 * 2 - stop but do not disassemble array
4758 */
4759 static int do_md_stop(mddev_t * mddev, int mode, int is_open)
4760 {
4761 struct gendisk *disk = mddev->gendisk;
4762 mdk_rdev_t *rdev;
4763
4764 mutex_lock(&mddev->open_mutex);
4765 if (atomic_read(&mddev->openers) > is_open ||
4766 mddev->sysfs_active) {
4767 printk("md: %s still in use.\n",mdname(mddev));
4768 mutex_unlock(&mddev->open_mutex);
4769 return -EBUSY;
4770 }
4771
4772 if (mddev->pers) {
4773 if (mddev->ro)
4774 set_disk_ro(disk, 0);
4775
4776 md_stop_writes(mddev);
4777 md_stop(mddev);
4778 mddev->queue->merge_bvec_fn = NULL;
4779 mddev->queue->unplug_fn = NULL;
4780 mddev->queue->backing_dev_info.congested_fn = NULL;
4781
4782 /* tell userspace to handle 'inactive' */
4783 sysfs_notify_dirent_safe(mddev->sysfs_state);
4784
4785 list_for_each_entry(rdev, &mddev->disks, same_set)
4786 if (rdev->raid_disk >= 0) {
4787 char nm[20];
4788 sprintf(nm, "rd%d", rdev->raid_disk);
4789 sysfs_remove_link(&mddev->kobj, nm);
4790 }
4791
4792 set_capacity(disk, 0);
4793 mutex_unlock(&mddev->open_mutex);
4794 revalidate_disk(disk);
4795
4796 if (mddev->ro)
4797 mddev->ro = 0;
4798 } else
4799 mutex_unlock(&mddev->open_mutex);
4800 /*
4801 * Free resources if final stop
4802 */
4803 if (mode == 0) {
4804 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
4805
4806 bitmap_destroy(mddev);
4807 if (mddev->bitmap_info.file) {
4808 restore_bitmap_write_access(mddev->bitmap_info.file);
4809 fput(mddev->bitmap_info.file);
4810 mddev->bitmap_info.file = NULL;
4811 }
4812 mddev->bitmap_info.offset = 0;
4813
4814 export_array(mddev);
4815
4816 md_clean(mddev);
4817 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4818 if (mddev->hold_active == UNTIL_STOP)
4819 mddev->hold_active = 0;
4820 }
4821 blk_integrity_unregister(disk);
4822 md_new_event(mddev);
4823 sysfs_notify_dirent_safe(mddev->sysfs_state);
4824 return 0;
4825 }
4826
4827 #ifndef MODULE
4828 static void autorun_array(mddev_t *mddev)
4829 {
4830 mdk_rdev_t *rdev;
4831 int err;
4832
4833 if (list_empty(&mddev->disks))
4834 return;
4835
4836 printk(KERN_INFO "md: running: ");
4837
4838 list_for_each_entry(rdev, &mddev->disks, same_set) {
4839 char b[BDEVNAME_SIZE];
4840 printk("<%s>", bdevname(rdev->bdev,b));
4841 }
4842 printk("\n");
4843
4844 err = do_md_run(mddev);
4845 if (err) {
4846 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
4847 do_md_stop(mddev, 0, 0);
4848 }
4849 }
4850
4851 /*
4852 * lets try to run arrays based on all disks that have arrived
4853 * until now. (those are in pending_raid_disks)
4854 *
4855 * the method: pick the first pending disk, collect all disks with
4856 * the same UUID, remove all from the pending list and put them into
4857 * the 'same_array' list. Then order this list based on superblock
4858 * update time (freshest comes first), kick out 'old' disks and
4859 * compare superblocks. If everything's fine then run it.
4860 *
4861 * If "unit" is allocated, then bump its reference count
4862 */
4863 static void autorun_devices(int part)
4864 {
4865 mdk_rdev_t *rdev0, *rdev, *tmp;
4866 mddev_t *mddev;
4867 char b[BDEVNAME_SIZE];
4868
4869 printk(KERN_INFO "md: autorun ...\n");
4870 while (!list_empty(&pending_raid_disks)) {
4871 int unit;
4872 dev_t dev;
4873 LIST_HEAD(candidates);
4874 rdev0 = list_entry(pending_raid_disks.next,
4875 mdk_rdev_t, same_set);
4876
4877 printk(KERN_INFO "md: considering %s ...\n",
4878 bdevname(rdev0->bdev,b));
4879 INIT_LIST_HEAD(&candidates);
4880 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
4881 if (super_90_load(rdev, rdev0, 0) >= 0) {
4882 printk(KERN_INFO "md: adding %s ...\n",
4883 bdevname(rdev->bdev,b));
4884 list_move(&rdev->same_set, &candidates);
4885 }
4886 /*
4887 * now we have a set of devices, with all of them having
4888 * mostly sane superblocks. It's time to allocate the
4889 * mddev.
4890 */
4891 if (part) {
4892 dev = MKDEV(mdp_major,
4893 rdev0->preferred_minor << MdpMinorShift);
4894 unit = MINOR(dev) >> MdpMinorShift;
4895 } else {
4896 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
4897 unit = MINOR(dev);
4898 }
4899 if (rdev0->preferred_minor != unit) {
4900 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
4901 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
4902 break;
4903 }
4904
4905 md_probe(dev, NULL, NULL);
4906 mddev = mddev_find(dev);
4907 if (!mddev || !mddev->gendisk) {
4908 if (mddev)
4909 mddev_put(mddev);
4910 printk(KERN_ERR
4911 "md: cannot allocate memory for md drive.\n");
4912 break;
4913 }
4914 if (mddev_lock(mddev))
4915 printk(KERN_WARNING "md: %s locked, cannot run\n",
4916 mdname(mddev));
4917 else if (mddev->raid_disks || mddev->major_version
4918 || !list_empty(&mddev->disks)) {
4919 printk(KERN_WARNING
4920 "md: %s already running, cannot run %s\n",
4921 mdname(mddev), bdevname(rdev0->bdev,b));
4922 mddev_unlock(mddev);
4923 } else {
4924 printk(KERN_INFO "md: created %s\n", mdname(mddev));
4925 mddev->persistent = 1;
4926 rdev_for_each_list(rdev, tmp, &candidates) {
4927 list_del_init(&rdev->same_set);
4928 if (bind_rdev_to_array(rdev, mddev))
4929 export_rdev(rdev);
4930 }
4931 autorun_array(mddev);
4932 mddev_unlock(mddev);
4933 }
4934 /* on success, candidates will be empty, on error
4935 * it won't...
4936 */
4937 rdev_for_each_list(rdev, tmp, &candidates) {
4938 list_del_init(&rdev->same_set);
4939 export_rdev(rdev);
4940 }
4941 mddev_put(mddev);
4942 }
4943 printk(KERN_INFO "md: ... autorun DONE.\n");
4944 }
4945 #endif /* !MODULE */
4946
4947 static int get_version(void __user * arg)
4948 {
4949 mdu_version_t ver;
4950
4951 ver.major = MD_MAJOR_VERSION;
4952 ver.minor = MD_MINOR_VERSION;
4953 ver.patchlevel = MD_PATCHLEVEL_VERSION;
4954
4955 if (copy_to_user(arg, &ver, sizeof(ver)))
4956 return -EFAULT;
4957
4958 return 0;
4959 }
4960
4961 static int get_array_info(mddev_t * mddev, void __user * arg)
4962 {
4963 mdu_array_info_t info;
4964 int nr,working,insync,failed,spare;
4965 mdk_rdev_t *rdev;
4966
4967 nr=working=insync=failed=spare=0;
4968 list_for_each_entry(rdev, &mddev->disks, same_set) {
4969 nr++;
4970 if (test_bit(Faulty, &rdev->flags))
4971 failed++;
4972 else {
4973 working++;
4974 if (test_bit(In_sync, &rdev->flags))
4975 insync++;
4976 else
4977 spare++;
4978 }
4979 }
4980
4981 info.major_version = mddev->major_version;
4982 info.minor_version = mddev->minor_version;
4983 info.patch_version = MD_PATCHLEVEL_VERSION;
4984 info.ctime = mddev->ctime;
4985 info.level = mddev->level;
4986 info.size = mddev->dev_sectors / 2;
4987 if (info.size != mddev->dev_sectors / 2) /* overflow */
4988 info.size = -1;
4989 info.nr_disks = nr;
4990 info.raid_disks = mddev->raid_disks;
4991 info.md_minor = mddev->md_minor;
4992 info.not_persistent= !mddev->persistent;
4993
4994 info.utime = mddev->utime;
4995 info.state = 0;
4996 if (mddev->in_sync)
4997 info.state = (1<<MD_SB_CLEAN);
4998 if (mddev->bitmap && mddev->bitmap_info.offset)
4999 info.state = (1<<MD_SB_BITMAP_PRESENT);
5000 info.active_disks = insync;
5001 info.working_disks = working;
5002 info.failed_disks = failed;
5003 info.spare_disks = spare;
5004
5005 info.layout = mddev->layout;
5006 info.chunk_size = mddev->chunk_sectors << 9;
5007
5008 if (copy_to_user(arg, &info, sizeof(info)))
5009 return -EFAULT;
5010
5011 return 0;
5012 }
5013
5014 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
5015 {
5016 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5017 char *ptr, *buf = NULL;
5018 int err = -ENOMEM;
5019
5020 if (md_allow_write(mddev))
5021 file = kmalloc(sizeof(*file), GFP_NOIO);
5022 else
5023 file = kmalloc(sizeof(*file), GFP_KERNEL);
5024
5025 if (!file)
5026 goto out;
5027
5028 /* bitmap disabled, zero the first byte and copy out */
5029 if (!mddev->bitmap || !mddev->bitmap->file) {
5030 file->pathname[0] = '\0';
5031 goto copy_out;
5032 }
5033
5034 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5035 if (!buf)
5036 goto out;
5037
5038 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5039 if (IS_ERR(ptr))
5040 goto out;
5041
5042 strcpy(file->pathname, ptr);
5043
5044 copy_out:
5045 err = 0;
5046 if (copy_to_user(arg, file, sizeof(*file)))
5047 err = -EFAULT;
5048 out:
5049 kfree(buf);
5050 kfree(file);
5051 return err;
5052 }
5053
5054 static int get_disk_info(mddev_t * mddev, void __user * arg)
5055 {
5056 mdu_disk_info_t info;
5057 mdk_rdev_t *rdev;
5058
5059 if (copy_from_user(&info, arg, sizeof(info)))
5060 return -EFAULT;
5061
5062 rdev = find_rdev_nr(mddev, info.number);
5063 if (rdev) {
5064 info.major = MAJOR(rdev->bdev->bd_dev);
5065 info.minor = MINOR(rdev->bdev->bd_dev);
5066 info.raid_disk = rdev->raid_disk;
5067 info.state = 0;
5068 if (test_bit(Faulty, &rdev->flags))
5069 info.state |= (1<<MD_DISK_FAULTY);
5070 else if (test_bit(In_sync, &rdev->flags)) {
5071 info.state |= (1<<MD_DISK_ACTIVE);
5072 info.state |= (1<<MD_DISK_SYNC);
5073 }
5074 if (test_bit(WriteMostly, &rdev->flags))
5075 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5076 } else {
5077 info.major = info.minor = 0;
5078 info.raid_disk = -1;
5079 info.state = (1<<MD_DISK_REMOVED);
5080 }
5081
5082 if (copy_to_user(arg, &info, sizeof(info)))
5083 return -EFAULT;
5084
5085 return 0;
5086 }
5087
5088 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
5089 {
5090 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5091 mdk_rdev_t *rdev;
5092 dev_t dev = MKDEV(info->major,info->minor);
5093
5094 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5095 return -EOVERFLOW;
5096
5097 if (!mddev->raid_disks) {
5098 int err;
5099 /* expecting a device which has a superblock */
5100 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5101 if (IS_ERR(rdev)) {
5102 printk(KERN_WARNING
5103 "md: md_import_device returned %ld\n",
5104 PTR_ERR(rdev));
5105 return PTR_ERR(rdev);
5106 }
5107 if (!list_empty(&mddev->disks)) {
5108 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
5109 mdk_rdev_t, same_set);
5110 err = super_types[mddev->major_version]
5111 .load_super(rdev, rdev0, mddev->minor_version);
5112 if (err < 0) {
5113 printk(KERN_WARNING
5114 "md: %s has different UUID to %s\n",
5115 bdevname(rdev->bdev,b),
5116 bdevname(rdev0->bdev,b2));
5117 export_rdev(rdev);
5118 return -EINVAL;
5119 }
5120 }
5121 err = bind_rdev_to_array(rdev, mddev);
5122 if (err)
5123 export_rdev(rdev);
5124 return err;
5125 }
5126
5127 /*
5128 * add_new_disk can be used once the array is assembled
5129 * to add "hot spares". They must already have a superblock
5130 * written
5131 */
5132 if (mddev->pers) {
5133 int err;
5134 if (!mddev->pers->hot_add_disk) {
5135 printk(KERN_WARNING
5136 "%s: personality does not support diskops!\n",
5137 mdname(mddev));
5138 return -EINVAL;
5139 }
5140 if (mddev->persistent)
5141 rdev = md_import_device(dev, mddev->major_version,
5142 mddev->minor_version);
5143 else
5144 rdev = md_import_device(dev, -1, -1);
5145 if (IS_ERR(rdev)) {
5146 printk(KERN_WARNING
5147 "md: md_import_device returned %ld\n",
5148 PTR_ERR(rdev));
5149 return PTR_ERR(rdev);
5150 }
5151 /* set save_raid_disk if appropriate */
5152 if (!mddev->persistent) {
5153 if (info->state & (1<<MD_DISK_SYNC) &&
5154 info->raid_disk < mddev->raid_disks)
5155 rdev->raid_disk = info->raid_disk;
5156 else
5157 rdev->raid_disk = -1;
5158 } else
5159 super_types[mddev->major_version].
5160 validate_super(mddev, rdev);
5161 rdev->saved_raid_disk = rdev->raid_disk;
5162
5163 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5164 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5165 set_bit(WriteMostly, &rdev->flags);
5166 else
5167 clear_bit(WriteMostly, &rdev->flags);
5168
5169 rdev->raid_disk = -1;
5170 err = bind_rdev_to_array(rdev, mddev);
5171 if (!err && !mddev->pers->hot_remove_disk) {
5172 /* If there is hot_add_disk but no hot_remove_disk
5173 * then added disks for geometry changes,
5174 * and should be added immediately.
5175 */
5176 super_types[mddev->major_version].
5177 validate_super(mddev, rdev);
5178 err = mddev->pers->hot_add_disk(mddev, rdev);
5179 if (err)
5180 unbind_rdev_from_array(rdev);
5181 }
5182 if (err)
5183 export_rdev(rdev);
5184 else
5185 sysfs_notify_dirent_safe(rdev->sysfs_state);
5186
5187 md_update_sb(mddev, 1);
5188 if (mddev->degraded)
5189 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5190 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5191 md_wakeup_thread(mddev->thread);
5192 return err;
5193 }
5194
5195 /* otherwise, add_new_disk is only allowed
5196 * for major_version==0 superblocks
5197 */
5198 if (mddev->major_version != 0) {
5199 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5200 mdname(mddev));
5201 return -EINVAL;
5202 }
5203
5204 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5205 int err;
5206 rdev = md_import_device(dev, -1, 0);
5207 if (IS_ERR(rdev)) {
5208 printk(KERN_WARNING
5209 "md: error, md_import_device() returned %ld\n",
5210 PTR_ERR(rdev));
5211 return PTR_ERR(rdev);
5212 }
5213 rdev->desc_nr = info->number;
5214 if (info->raid_disk < mddev->raid_disks)
5215 rdev->raid_disk = info->raid_disk;
5216 else
5217 rdev->raid_disk = -1;
5218
5219 if (rdev->raid_disk < mddev->raid_disks)
5220 if (info->state & (1<<MD_DISK_SYNC))
5221 set_bit(In_sync, &rdev->flags);
5222
5223 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5224 set_bit(WriteMostly, &rdev->flags);
5225
5226 if (!mddev->persistent) {
5227 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5228 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
5229 } else
5230 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
5231 rdev->sectors = rdev->sb_start;
5232
5233 err = bind_rdev_to_array(rdev, mddev);
5234 if (err) {
5235 export_rdev(rdev);
5236 return err;
5237 }
5238 }
5239
5240 return 0;
5241 }
5242
5243 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
5244 {
5245 char b[BDEVNAME_SIZE];
5246 mdk_rdev_t *rdev;
5247
5248 rdev = find_rdev(mddev, dev);
5249 if (!rdev)
5250 return -ENXIO;
5251
5252 if (rdev->raid_disk >= 0)
5253 goto busy;
5254
5255 kick_rdev_from_array(rdev);
5256 md_update_sb(mddev, 1);
5257 md_new_event(mddev);
5258
5259 return 0;
5260 busy:
5261 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5262 bdevname(rdev->bdev,b), mdname(mddev));
5263 return -EBUSY;
5264 }
5265
5266 static int hot_add_disk(mddev_t * mddev, dev_t dev)
5267 {
5268 char b[BDEVNAME_SIZE];
5269 int err;
5270 mdk_rdev_t *rdev;
5271
5272 if (!mddev->pers)
5273 return -ENODEV;
5274
5275 if (mddev->major_version != 0) {
5276 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5277 " version-0 superblocks.\n",
5278 mdname(mddev));
5279 return -EINVAL;
5280 }
5281 if (!mddev->pers->hot_add_disk) {
5282 printk(KERN_WARNING
5283 "%s: personality does not support diskops!\n",
5284 mdname(mddev));
5285 return -EINVAL;
5286 }
5287
5288 rdev = md_import_device(dev, -1, 0);
5289 if (IS_ERR(rdev)) {
5290 printk(KERN_WARNING
5291 "md: error, md_import_device() returned %ld\n",
5292 PTR_ERR(rdev));
5293 return -EINVAL;
5294 }
5295
5296 if (mddev->persistent)
5297 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
5298 else
5299 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
5300
5301 rdev->sectors = rdev->sb_start;
5302
5303 if (test_bit(Faulty, &rdev->flags)) {
5304 printk(KERN_WARNING
5305 "md: can not hot-add faulty %s disk to %s!\n",
5306 bdevname(rdev->bdev,b), mdname(mddev));
5307 err = -EINVAL;
5308 goto abort_export;
5309 }
5310 clear_bit(In_sync, &rdev->flags);
5311 rdev->desc_nr = -1;
5312 rdev->saved_raid_disk = -1;
5313 err = bind_rdev_to_array(rdev, mddev);
5314 if (err)
5315 goto abort_export;
5316
5317 /*
5318 * The rest should better be atomic, we can have disk failures
5319 * noticed in interrupt contexts ...
5320 */
5321
5322 rdev->raid_disk = -1;
5323
5324 md_update_sb(mddev, 1);
5325
5326 /*
5327 * Kick recovery, maybe this spare has to be added to the
5328 * array immediately.
5329 */
5330 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5331 md_wakeup_thread(mddev->thread);
5332 md_new_event(mddev);
5333 return 0;
5334
5335 abort_export:
5336 export_rdev(rdev);
5337 return err;
5338 }
5339
5340 static int set_bitmap_file(mddev_t *mddev, int fd)
5341 {
5342 int err;
5343
5344 if (mddev->pers) {
5345 if (!mddev->pers->quiesce)
5346 return -EBUSY;
5347 if (mddev->recovery || mddev->sync_thread)
5348 return -EBUSY;
5349 /* we should be able to change the bitmap.. */
5350 }
5351
5352
5353 if (fd >= 0) {
5354 if (mddev->bitmap)
5355 return -EEXIST; /* cannot add when bitmap is present */
5356 mddev->bitmap_info.file = fget(fd);
5357
5358 if (mddev->bitmap_info.file == NULL) {
5359 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5360 mdname(mddev));
5361 return -EBADF;
5362 }
5363
5364 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5365 if (err) {
5366 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5367 mdname(mddev));
5368 fput(mddev->bitmap_info.file);
5369 mddev->bitmap_info.file = NULL;
5370 return err;
5371 }
5372 mddev->bitmap_info.offset = 0; /* file overrides offset */
5373 } else if (mddev->bitmap == NULL)
5374 return -ENOENT; /* cannot remove what isn't there */
5375 err = 0;
5376 if (mddev->pers) {
5377 mddev->pers->quiesce(mddev, 1);
5378 if (fd >= 0) {
5379 err = bitmap_create(mddev);
5380 if (!err)
5381 err = bitmap_load(mddev);
5382 }
5383 if (fd < 0 || err) {
5384 bitmap_destroy(mddev);
5385 fd = -1; /* make sure to put the file */
5386 }
5387 mddev->pers->quiesce(mddev, 0);
5388 }
5389 if (fd < 0) {
5390 if (mddev->bitmap_info.file) {
5391 restore_bitmap_write_access(mddev->bitmap_info.file);
5392 fput(mddev->bitmap_info.file);
5393 }
5394 mddev->bitmap_info.file = NULL;
5395 }
5396
5397 return err;
5398 }
5399
5400 /*
5401 * set_array_info is used two different ways
5402 * The original usage is when creating a new array.
5403 * In this usage, raid_disks is > 0 and it together with
5404 * level, size, not_persistent,layout,chunksize determine the
5405 * shape of the array.
5406 * This will always create an array with a type-0.90.0 superblock.
5407 * The newer usage is when assembling an array.
5408 * In this case raid_disks will be 0, and the major_version field is
5409 * use to determine which style super-blocks are to be found on the devices.
5410 * The minor and patch _version numbers are also kept incase the
5411 * super_block handler wishes to interpret them.
5412 */
5413 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
5414 {
5415
5416 if (info->raid_disks == 0) {
5417 /* just setting version number for superblock loading */
5418 if (info->major_version < 0 ||
5419 info->major_version >= ARRAY_SIZE(super_types) ||
5420 super_types[info->major_version].name == NULL) {
5421 /* maybe try to auto-load a module? */
5422 printk(KERN_INFO
5423 "md: superblock version %d not known\n",
5424 info->major_version);
5425 return -EINVAL;
5426 }
5427 mddev->major_version = info->major_version;
5428 mddev->minor_version = info->minor_version;
5429 mddev->patch_version = info->patch_version;
5430 mddev->persistent = !info->not_persistent;
5431 /* ensure mddev_put doesn't delete this now that there
5432 * is some minimal configuration.
5433 */
5434 mddev->ctime = get_seconds();
5435 return 0;
5436 }
5437 mddev->major_version = MD_MAJOR_VERSION;
5438 mddev->minor_version = MD_MINOR_VERSION;
5439 mddev->patch_version = MD_PATCHLEVEL_VERSION;
5440 mddev->ctime = get_seconds();
5441
5442 mddev->level = info->level;
5443 mddev->clevel[0] = 0;
5444 mddev->dev_sectors = 2 * (sector_t)info->size;
5445 mddev->raid_disks = info->raid_disks;
5446 /* don't set md_minor, it is determined by which /dev/md* was
5447 * openned
5448 */
5449 if (info->state & (1<<MD_SB_CLEAN))
5450 mddev->recovery_cp = MaxSector;
5451 else
5452 mddev->recovery_cp = 0;
5453 mddev->persistent = ! info->not_persistent;
5454 mddev->external = 0;
5455
5456 mddev->layout = info->layout;
5457 mddev->chunk_sectors = info->chunk_size >> 9;
5458
5459 mddev->max_disks = MD_SB_DISKS;
5460
5461 if (mddev->persistent)
5462 mddev->flags = 0;
5463 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5464
5465 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5466 mddev->bitmap_info.offset = 0;
5467
5468 mddev->reshape_position = MaxSector;
5469
5470 /*
5471 * Generate a 128 bit UUID
5472 */
5473 get_random_bytes(mddev->uuid, 16);
5474
5475 mddev->new_level = mddev->level;
5476 mddev->new_chunk_sectors = mddev->chunk_sectors;
5477 mddev->new_layout = mddev->layout;
5478 mddev->delta_disks = 0;
5479
5480 return 0;
5481 }
5482
5483 void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors)
5484 {
5485 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5486
5487 if (mddev->external_size)
5488 return;
5489
5490 mddev->array_sectors = array_sectors;
5491 }
5492 EXPORT_SYMBOL(md_set_array_sectors);
5493
5494 static int update_size(mddev_t *mddev, sector_t num_sectors)
5495 {
5496 mdk_rdev_t *rdev;
5497 int rv;
5498 int fit = (num_sectors == 0);
5499
5500 if (mddev->pers->resize == NULL)
5501 return -EINVAL;
5502 /* The "num_sectors" is the number of sectors of each device that
5503 * is used. This can only make sense for arrays with redundancy.
5504 * linear and raid0 always use whatever space is available. We can only
5505 * consider changing this number if no resync or reconstruction is
5506 * happening, and if the new size is acceptable. It must fit before the
5507 * sb_start or, if that is <data_offset, it must fit before the size
5508 * of each device. If num_sectors is zero, we find the largest size
5509 * that fits.
5510
5511 */
5512 if (mddev->sync_thread)
5513 return -EBUSY;
5514 if (mddev->bitmap)
5515 /* Sorry, cannot grow a bitmap yet, just remove it,
5516 * grow, and re-add.
5517 */
5518 return -EBUSY;
5519 list_for_each_entry(rdev, &mddev->disks, same_set) {
5520 sector_t avail = rdev->sectors;
5521
5522 if (fit && (num_sectors == 0 || num_sectors > avail))
5523 num_sectors = avail;
5524 if (avail < num_sectors)
5525 return -ENOSPC;
5526 }
5527 rv = mddev->pers->resize(mddev, num_sectors);
5528 if (!rv)
5529 revalidate_disk(mddev->gendisk);
5530 return rv;
5531 }
5532
5533 static int update_raid_disks(mddev_t *mddev, int raid_disks)
5534 {
5535 int rv;
5536 /* change the number of raid disks */
5537 if (mddev->pers->check_reshape == NULL)
5538 return -EINVAL;
5539 if (raid_disks <= 0 ||
5540 (mddev->max_disks && raid_disks >= mddev->max_disks))
5541 return -EINVAL;
5542 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5543 return -EBUSY;
5544 mddev->delta_disks = raid_disks - mddev->raid_disks;
5545
5546 rv = mddev->pers->check_reshape(mddev);
5547 return rv;
5548 }
5549
5550
5551 /*
5552 * update_array_info is used to change the configuration of an
5553 * on-line array.
5554 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5555 * fields in the info are checked against the array.
5556 * Any differences that cannot be handled will cause an error.
5557 * Normally, only one change can be managed at a time.
5558 */
5559 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
5560 {
5561 int rv = 0;
5562 int cnt = 0;
5563 int state = 0;
5564
5565 /* calculate expected state,ignoring low bits */
5566 if (mddev->bitmap && mddev->bitmap_info.offset)
5567 state |= (1 << MD_SB_BITMAP_PRESENT);
5568
5569 if (mddev->major_version != info->major_version ||
5570 mddev->minor_version != info->minor_version ||
5571 /* mddev->patch_version != info->patch_version || */
5572 mddev->ctime != info->ctime ||
5573 mddev->level != info->level ||
5574 /* mddev->layout != info->layout || */
5575 !mddev->persistent != info->not_persistent||
5576 mddev->chunk_sectors != info->chunk_size >> 9 ||
5577 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5578 ((state^info->state) & 0xfffffe00)
5579 )
5580 return -EINVAL;
5581 /* Check there is only one change */
5582 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5583 cnt++;
5584 if (mddev->raid_disks != info->raid_disks)
5585 cnt++;
5586 if (mddev->layout != info->layout)
5587 cnt++;
5588 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5589 cnt++;
5590 if (cnt == 0)
5591 return 0;
5592 if (cnt > 1)
5593 return -EINVAL;
5594
5595 if (mddev->layout != info->layout) {
5596 /* Change layout
5597 * we don't need to do anything at the md level, the
5598 * personality will take care of it all.
5599 */
5600 if (mddev->pers->check_reshape == NULL)
5601 return -EINVAL;
5602 else {
5603 mddev->new_layout = info->layout;
5604 rv = mddev->pers->check_reshape(mddev);
5605 if (rv)
5606 mddev->new_layout = mddev->layout;
5607 return rv;
5608 }
5609 }
5610 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5611 rv = update_size(mddev, (sector_t)info->size * 2);
5612
5613 if (mddev->raid_disks != info->raid_disks)
5614 rv = update_raid_disks(mddev, info->raid_disks);
5615
5616 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5617 if (mddev->pers->quiesce == NULL)
5618 return -EINVAL;
5619 if (mddev->recovery || mddev->sync_thread)
5620 return -EBUSY;
5621 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5622 /* add the bitmap */
5623 if (mddev->bitmap)
5624 return -EEXIST;
5625 if (mddev->bitmap_info.default_offset == 0)
5626 return -EINVAL;
5627 mddev->bitmap_info.offset =
5628 mddev->bitmap_info.default_offset;
5629 mddev->pers->quiesce(mddev, 1);
5630 rv = bitmap_create(mddev);
5631 if (!rv)
5632 rv = bitmap_load(mddev);
5633 if (rv)
5634 bitmap_destroy(mddev);
5635 mddev->pers->quiesce(mddev, 0);
5636 } else {
5637 /* remove the bitmap */
5638 if (!mddev->bitmap)
5639 return -ENOENT;
5640 if (mddev->bitmap->file)
5641 return -EINVAL;
5642 mddev->pers->quiesce(mddev, 1);
5643 bitmap_destroy(mddev);
5644 mddev->pers->quiesce(mddev, 0);
5645 mddev->bitmap_info.offset = 0;
5646 }
5647 }
5648 md_update_sb(mddev, 1);
5649 return rv;
5650 }
5651
5652 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
5653 {
5654 mdk_rdev_t *rdev;
5655
5656 if (mddev->pers == NULL)
5657 return -ENODEV;
5658
5659 rdev = find_rdev(mddev, dev);
5660 if (!rdev)
5661 return -ENODEV;
5662
5663 md_error(mddev, rdev);
5664 return 0;
5665 }
5666
5667 /*
5668 * We have a problem here : there is no easy way to give a CHS
5669 * virtual geometry. We currently pretend that we have a 2 heads
5670 * 4 sectors (with a BIG number of cylinders...). This drives
5671 * dosfs just mad... ;-)
5672 */
5673 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
5674 {
5675 mddev_t *mddev = bdev->bd_disk->private_data;
5676
5677 geo->heads = 2;
5678 geo->sectors = 4;
5679 geo->cylinders = mddev->array_sectors / 8;
5680 return 0;
5681 }
5682
5683 static int md_ioctl(struct block_device *bdev, fmode_t mode,
5684 unsigned int cmd, unsigned long arg)
5685 {
5686 int err = 0;
5687 void __user *argp = (void __user *)arg;
5688 mddev_t *mddev = NULL;
5689 int ro;
5690
5691 if (!capable(CAP_SYS_ADMIN))
5692 return -EACCES;
5693
5694 /*
5695 * Commands dealing with the RAID driver but not any
5696 * particular array:
5697 */
5698 switch (cmd)
5699 {
5700 case RAID_VERSION:
5701 err = get_version(argp);
5702 goto done;
5703
5704 case PRINT_RAID_DEBUG:
5705 err = 0;
5706 md_print_devices();
5707 goto done;
5708
5709 #ifndef MODULE
5710 case RAID_AUTORUN:
5711 err = 0;
5712 autostart_arrays(arg);
5713 goto done;
5714 #endif
5715 default:;
5716 }
5717
5718 /*
5719 * Commands creating/starting a new array:
5720 */
5721
5722 mddev = bdev->bd_disk->private_data;
5723
5724 if (!mddev) {
5725 BUG();
5726 goto abort;
5727 }
5728
5729 err = mddev_lock(mddev);
5730 if (err) {
5731 printk(KERN_INFO
5732 "md: ioctl lock interrupted, reason %d, cmd %d\n",
5733 err, cmd);
5734 goto abort;
5735 }
5736
5737 switch (cmd)
5738 {
5739 case SET_ARRAY_INFO:
5740 {
5741 mdu_array_info_t info;
5742 if (!arg)
5743 memset(&info, 0, sizeof(info));
5744 else if (copy_from_user(&info, argp, sizeof(info))) {
5745 err = -EFAULT;
5746 goto abort_unlock;
5747 }
5748 if (mddev->pers) {
5749 err = update_array_info(mddev, &info);
5750 if (err) {
5751 printk(KERN_WARNING "md: couldn't update"
5752 " array info. %d\n", err);
5753 goto abort_unlock;
5754 }
5755 goto done_unlock;
5756 }
5757 if (!list_empty(&mddev->disks)) {
5758 printk(KERN_WARNING
5759 "md: array %s already has disks!\n",
5760 mdname(mddev));
5761 err = -EBUSY;
5762 goto abort_unlock;
5763 }
5764 if (mddev->raid_disks) {
5765 printk(KERN_WARNING
5766 "md: array %s already initialised!\n",
5767 mdname(mddev));
5768 err = -EBUSY;
5769 goto abort_unlock;
5770 }
5771 err = set_array_info(mddev, &info);
5772 if (err) {
5773 printk(KERN_WARNING "md: couldn't set"
5774 " array info. %d\n", err);
5775 goto abort_unlock;
5776 }
5777 }
5778 goto done_unlock;
5779
5780 default:;
5781 }
5782
5783 /*
5784 * Commands querying/configuring an existing array:
5785 */
5786 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
5787 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
5788 if ((!mddev->raid_disks && !mddev->external)
5789 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
5790 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
5791 && cmd != GET_BITMAP_FILE) {
5792 err = -ENODEV;
5793 goto abort_unlock;
5794 }
5795
5796 /*
5797 * Commands even a read-only array can execute:
5798 */
5799 switch (cmd)
5800 {
5801 case GET_ARRAY_INFO:
5802 err = get_array_info(mddev, argp);
5803 goto done_unlock;
5804
5805 case GET_BITMAP_FILE:
5806 err = get_bitmap_file(mddev, argp);
5807 goto done_unlock;
5808
5809 case GET_DISK_INFO:
5810 err = get_disk_info(mddev, argp);
5811 goto done_unlock;
5812
5813 case RESTART_ARRAY_RW:
5814 err = restart_array(mddev);
5815 goto done_unlock;
5816
5817 case STOP_ARRAY:
5818 err = do_md_stop(mddev, 0, 1);
5819 goto done_unlock;
5820
5821 case STOP_ARRAY_RO:
5822 err = md_set_readonly(mddev, 1);
5823 goto done_unlock;
5824
5825 case BLKROSET:
5826 if (get_user(ro, (int __user *)(arg))) {
5827 err = -EFAULT;
5828 goto done_unlock;
5829 }
5830 err = -EINVAL;
5831
5832 /* if the bdev is going readonly the value of mddev->ro
5833 * does not matter, no writes are coming
5834 */
5835 if (ro)
5836 goto done_unlock;
5837
5838 /* are we are already prepared for writes? */
5839 if (mddev->ro != 1)
5840 goto done_unlock;
5841
5842 /* transitioning to readauto need only happen for
5843 * arrays that call md_write_start
5844 */
5845 if (mddev->pers) {
5846 err = restart_array(mddev);
5847 if (err == 0) {
5848 mddev->ro = 2;
5849 set_disk_ro(mddev->gendisk, 0);
5850 }
5851 }
5852 goto done_unlock;
5853 }
5854
5855 /*
5856 * The remaining ioctls are changing the state of the
5857 * superblock, so we do not allow them on read-only arrays.
5858 * However non-MD ioctls (e.g. get-size) will still come through
5859 * here and hit the 'default' below, so only disallow
5860 * 'md' ioctls, and switch to rw mode if started auto-readonly.
5861 */
5862 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
5863 if (mddev->ro == 2) {
5864 mddev->ro = 0;
5865 sysfs_notify_dirent_safe(mddev->sysfs_state);
5866 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5867 md_wakeup_thread(mddev->thread);
5868 } else {
5869 err = -EROFS;
5870 goto abort_unlock;
5871 }
5872 }
5873
5874 switch (cmd)
5875 {
5876 case ADD_NEW_DISK:
5877 {
5878 mdu_disk_info_t info;
5879 if (copy_from_user(&info, argp, sizeof(info)))
5880 err = -EFAULT;
5881 else
5882 err = add_new_disk(mddev, &info);
5883 goto done_unlock;
5884 }
5885
5886 case HOT_REMOVE_DISK:
5887 err = hot_remove_disk(mddev, new_decode_dev(arg));
5888 goto done_unlock;
5889
5890 case HOT_ADD_DISK:
5891 err = hot_add_disk(mddev, new_decode_dev(arg));
5892 goto done_unlock;
5893
5894 case SET_DISK_FAULTY:
5895 err = set_disk_faulty(mddev, new_decode_dev(arg));
5896 goto done_unlock;
5897
5898 case RUN_ARRAY:
5899 err = do_md_run(mddev);
5900 goto done_unlock;
5901
5902 case SET_BITMAP_FILE:
5903 err = set_bitmap_file(mddev, (int)arg);
5904 goto done_unlock;
5905
5906 default:
5907 err = -EINVAL;
5908 goto abort_unlock;
5909 }
5910
5911 done_unlock:
5912 abort_unlock:
5913 if (mddev->hold_active == UNTIL_IOCTL &&
5914 err != -EINVAL)
5915 mddev->hold_active = 0;
5916 mddev_unlock(mddev);
5917
5918 return err;
5919 done:
5920 if (err)
5921 MD_BUG();
5922 abort:
5923 return err;
5924 }
5925 #ifdef CONFIG_COMPAT
5926 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
5927 unsigned int cmd, unsigned long arg)
5928 {
5929 switch (cmd) {
5930 case HOT_REMOVE_DISK:
5931 case HOT_ADD_DISK:
5932 case SET_DISK_FAULTY:
5933 case SET_BITMAP_FILE:
5934 /* These take in integer arg, do not convert */
5935 break;
5936 default:
5937 arg = (unsigned long)compat_ptr(arg);
5938 break;
5939 }
5940
5941 return md_ioctl(bdev, mode, cmd, arg);
5942 }
5943 #endif /* CONFIG_COMPAT */
5944
5945 static int md_open(struct block_device *bdev, fmode_t mode)
5946 {
5947 /*
5948 * Succeed if we can lock the mddev, which confirms that
5949 * it isn't being stopped right now.
5950 */
5951 mddev_t *mddev = mddev_find(bdev->bd_dev);
5952 int err;
5953
5954 lock_kernel();
5955 if (mddev->gendisk != bdev->bd_disk) {
5956 /* we are racing with mddev_put which is discarding this
5957 * bd_disk.
5958 */
5959 mddev_put(mddev);
5960 /* Wait until bdev->bd_disk is definitely gone */
5961 flush_scheduled_work();
5962 /* Then retry the open from the top */
5963 unlock_kernel();
5964 return -ERESTARTSYS;
5965 }
5966 BUG_ON(mddev != bdev->bd_disk->private_data);
5967
5968 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
5969 goto out;
5970
5971 err = 0;
5972 atomic_inc(&mddev->openers);
5973 mutex_unlock(&mddev->open_mutex);
5974
5975 check_disk_size_change(mddev->gendisk, bdev);
5976 out:
5977 unlock_kernel();
5978 return err;
5979 }
5980
5981 static int md_release(struct gendisk *disk, fmode_t mode)
5982 {
5983 mddev_t *mddev = disk->private_data;
5984
5985 BUG_ON(!mddev);
5986 lock_kernel();
5987 atomic_dec(&mddev->openers);
5988 mddev_put(mddev);
5989 unlock_kernel();
5990
5991 return 0;
5992 }
5993 static const struct block_device_operations md_fops =
5994 {
5995 .owner = THIS_MODULE,
5996 .open = md_open,
5997 .release = md_release,
5998 .ioctl = md_ioctl,
5999 #ifdef CONFIG_COMPAT
6000 .compat_ioctl = md_compat_ioctl,
6001 #endif
6002 .getgeo = md_getgeo,
6003 };
6004
6005 static int md_thread(void * arg)
6006 {
6007 mdk_thread_t *thread = arg;
6008
6009 /*
6010 * md_thread is a 'system-thread', it's priority should be very
6011 * high. We avoid resource deadlocks individually in each
6012 * raid personality. (RAID5 does preallocation) We also use RR and
6013 * the very same RT priority as kswapd, thus we will never get
6014 * into a priority inversion deadlock.
6015 *
6016 * we definitely have to have equal or higher priority than
6017 * bdflush, otherwise bdflush will deadlock if there are too
6018 * many dirty RAID5 blocks.
6019 */
6020
6021 allow_signal(SIGKILL);
6022 while (!kthread_should_stop()) {
6023
6024 /* We need to wait INTERRUPTIBLE so that
6025 * we don't add to the load-average.
6026 * That means we need to be sure no signals are
6027 * pending
6028 */
6029 if (signal_pending(current))
6030 flush_signals(current);
6031
6032 wait_event_interruptible_timeout
6033 (thread->wqueue,
6034 test_bit(THREAD_WAKEUP, &thread->flags)
6035 || kthread_should_stop(),
6036 thread->timeout);
6037
6038 clear_bit(THREAD_WAKEUP, &thread->flags);
6039
6040 thread->run(thread->mddev);
6041 }
6042
6043 return 0;
6044 }
6045
6046 void md_wakeup_thread(mdk_thread_t *thread)
6047 {
6048 if (thread) {
6049 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
6050 set_bit(THREAD_WAKEUP, &thread->flags);
6051 wake_up(&thread->wqueue);
6052 }
6053 }
6054
6055 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
6056 const char *name)
6057 {
6058 mdk_thread_t *thread;
6059
6060 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
6061 if (!thread)
6062 return NULL;
6063
6064 init_waitqueue_head(&thread->wqueue);
6065
6066 thread->run = run;
6067 thread->mddev = mddev;
6068 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6069 thread->tsk = kthread_run(md_thread, thread,
6070 "%s_%s",
6071 mdname(thread->mddev),
6072 name ?: mddev->pers->name);
6073 if (IS_ERR(thread->tsk)) {
6074 kfree(thread);
6075 return NULL;
6076 }
6077 return thread;
6078 }
6079
6080 void md_unregister_thread(mdk_thread_t *thread)
6081 {
6082 if (!thread)
6083 return;
6084 dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6085
6086 kthread_stop(thread->tsk);
6087 kfree(thread);
6088 }
6089
6090 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
6091 {
6092 if (!mddev) {
6093 MD_BUG();
6094 return;
6095 }
6096
6097 if (!rdev || test_bit(Faulty, &rdev->flags))
6098 return;
6099
6100 if (mddev->external)
6101 set_bit(Blocked, &rdev->flags);
6102 /*
6103 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
6104 mdname(mddev),
6105 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
6106 __builtin_return_address(0),__builtin_return_address(1),
6107 __builtin_return_address(2),__builtin_return_address(3));
6108 */
6109 if (!mddev->pers)
6110 return;
6111 if (!mddev->pers->error_handler)
6112 return;
6113 mddev->pers->error_handler(mddev,rdev);
6114 if (mddev->degraded)
6115 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6116 sysfs_notify_dirent_safe(rdev->sysfs_state);
6117 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6118 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6119 md_wakeup_thread(mddev->thread);
6120 if (mddev->event_work.func)
6121 schedule_work(&mddev->event_work);
6122 md_new_event_inintr(mddev);
6123 }
6124
6125 /* seq_file implementation /proc/mdstat */
6126
6127 static void status_unused(struct seq_file *seq)
6128 {
6129 int i = 0;
6130 mdk_rdev_t *rdev;
6131
6132 seq_printf(seq, "unused devices: ");
6133
6134 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6135 char b[BDEVNAME_SIZE];
6136 i++;
6137 seq_printf(seq, "%s ",
6138 bdevname(rdev->bdev,b));
6139 }
6140 if (!i)
6141 seq_printf(seq, "<none>");
6142
6143 seq_printf(seq, "\n");
6144 }
6145
6146
6147 static void status_resync(struct seq_file *seq, mddev_t * mddev)
6148 {
6149 sector_t max_sectors, resync, res;
6150 unsigned long dt, db;
6151 sector_t rt;
6152 int scale;
6153 unsigned int per_milli;
6154
6155 resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6156
6157 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6158 max_sectors = mddev->resync_max_sectors;
6159 else
6160 max_sectors = mddev->dev_sectors;
6161
6162 /*
6163 * Should not happen.
6164 */
6165 if (!max_sectors) {
6166 MD_BUG();
6167 return;
6168 }
6169 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6170 * in a sector_t, and (max_sectors>>scale) will fit in a
6171 * u32, as those are the requirements for sector_div.
6172 * Thus 'scale' must be at least 10
6173 */
6174 scale = 10;
6175 if (sizeof(sector_t) > sizeof(unsigned long)) {
6176 while ( max_sectors/2 > (1ULL<<(scale+32)))
6177 scale++;
6178 }
6179 res = (resync>>scale)*1000;
6180 sector_div(res, (u32)((max_sectors>>scale)+1));
6181
6182 per_milli = res;
6183 {
6184 int i, x = per_milli/50, y = 20-x;
6185 seq_printf(seq, "[");
6186 for (i = 0; i < x; i++)
6187 seq_printf(seq, "=");
6188 seq_printf(seq, ">");
6189 for (i = 0; i < y; i++)
6190 seq_printf(seq, ".");
6191 seq_printf(seq, "] ");
6192 }
6193 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6194 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6195 "reshape" :
6196 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6197 "check" :
6198 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6199 "resync" : "recovery"))),
6200 per_milli/10, per_milli % 10,
6201 (unsigned long long) resync/2,
6202 (unsigned long long) max_sectors/2);
6203
6204 /*
6205 * dt: time from mark until now
6206 * db: blocks written from mark until now
6207 * rt: remaining time
6208 *
6209 * rt is a sector_t, so could be 32bit or 64bit.
6210 * So we divide before multiply in case it is 32bit and close
6211 * to the limit.
6212 * We scale the divisor (db) by 32 to avoid loosing precision
6213 * near the end of resync when the number of remaining sectors
6214 * is close to 'db'.
6215 * We then divide rt by 32 after multiplying by db to compensate.
6216 * The '+1' avoids division by zero if db is very small.
6217 */
6218 dt = ((jiffies - mddev->resync_mark) / HZ);
6219 if (!dt) dt++;
6220 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6221 - mddev->resync_mark_cnt;
6222
6223 rt = max_sectors - resync; /* number of remaining sectors */
6224 sector_div(rt, db/32+1);
6225 rt *= dt;
6226 rt >>= 5;
6227
6228 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6229 ((unsigned long)rt % 60)/6);
6230
6231 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6232 }
6233
6234 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6235 {
6236 struct list_head *tmp;
6237 loff_t l = *pos;
6238 mddev_t *mddev;
6239
6240 if (l >= 0x10000)
6241 return NULL;
6242 if (!l--)
6243 /* header */
6244 return (void*)1;
6245
6246 spin_lock(&all_mddevs_lock);
6247 list_for_each(tmp,&all_mddevs)
6248 if (!l--) {
6249 mddev = list_entry(tmp, mddev_t, all_mddevs);
6250 mddev_get(mddev);
6251 spin_unlock(&all_mddevs_lock);
6252 return mddev;
6253 }
6254 spin_unlock(&all_mddevs_lock);
6255 if (!l--)
6256 return (void*)2;/* tail */
6257 return NULL;
6258 }
6259
6260 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6261 {
6262 struct list_head *tmp;
6263 mddev_t *next_mddev, *mddev = v;
6264
6265 ++*pos;
6266 if (v == (void*)2)
6267 return NULL;
6268
6269 spin_lock(&all_mddevs_lock);
6270 if (v == (void*)1)
6271 tmp = all_mddevs.next;
6272 else
6273 tmp = mddev->all_mddevs.next;
6274 if (tmp != &all_mddevs)
6275 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
6276 else {
6277 next_mddev = (void*)2;
6278 *pos = 0x10000;
6279 }
6280 spin_unlock(&all_mddevs_lock);
6281
6282 if (v != (void*)1)
6283 mddev_put(mddev);
6284 return next_mddev;
6285
6286 }
6287
6288 static void md_seq_stop(struct seq_file *seq, void *v)
6289 {
6290 mddev_t *mddev = v;
6291
6292 if (mddev && v != (void*)1 && v != (void*)2)
6293 mddev_put(mddev);
6294 }
6295
6296 struct mdstat_info {
6297 int event;
6298 };
6299
6300 static int md_seq_show(struct seq_file *seq, void *v)
6301 {
6302 mddev_t *mddev = v;
6303 sector_t sectors;
6304 mdk_rdev_t *rdev;
6305 struct mdstat_info *mi = seq->private;
6306 struct bitmap *bitmap;
6307
6308 if (v == (void*)1) {
6309 struct mdk_personality *pers;
6310 seq_printf(seq, "Personalities : ");
6311 spin_lock(&pers_lock);
6312 list_for_each_entry(pers, &pers_list, list)
6313 seq_printf(seq, "[%s] ", pers->name);
6314
6315 spin_unlock(&pers_lock);
6316 seq_printf(seq, "\n");
6317 mi->event = atomic_read(&md_event_count);
6318 return 0;
6319 }
6320 if (v == (void*)2) {
6321 status_unused(seq);
6322 return 0;
6323 }
6324
6325 if (mddev_lock(mddev) < 0)
6326 return -EINTR;
6327
6328 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6329 seq_printf(seq, "%s : %sactive", mdname(mddev),
6330 mddev->pers ? "" : "in");
6331 if (mddev->pers) {
6332 if (mddev->ro==1)
6333 seq_printf(seq, " (read-only)");
6334 if (mddev->ro==2)
6335 seq_printf(seq, " (auto-read-only)");
6336 seq_printf(seq, " %s", mddev->pers->name);
6337 }
6338
6339 sectors = 0;
6340 list_for_each_entry(rdev, &mddev->disks, same_set) {
6341 char b[BDEVNAME_SIZE];
6342 seq_printf(seq, " %s[%d]",
6343 bdevname(rdev->bdev,b), rdev->desc_nr);
6344 if (test_bit(WriteMostly, &rdev->flags))
6345 seq_printf(seq, "(W)");
6346 if (test_bit(Faulty, &rdev->flags)) {
6347 seq_printf(seq, "(F)");
6348 continue;
6349 } else if (rdev->raid_disk < 0)
6350 seq_printf(seq, "(S)"); /* spare */
6351 sectors += rdev->sectors;
6352 }
6353
6354 if (!list_empty(&mddev->disks)) {
6355 if (mddev->pers)
6356 seq_printf(seq, "\n %llu blocks",
6357 (unsigned long long)
6358 mddev->array_sectors / 2);
6359 else
6360 seq_printf(seq, "\n %llu blocks",
6361 (unsigned long long)sectors / 2);
6362 }
6363 if (mddev->persistent) {
6364 if (mddev->major_version != 0 ||
6365 mddev->minor_version != 90) {
6366 seq_printf(seq," super %d.%d",
6367 mddev->major_version,
6368 mddev->minor_version);
6369 }
6370 } else if (mddev->external)
6371 seq_printf(seq, " super external:%s",
6372 mddev->metadata_type);
6373 else
6374 seq_printf(seq, " super non-persistent");
6375
6376 if (mddev->pers) {
6377 mddev->pers->status(seq, mddev);
6378 seq_printf(seq, "\n ");
6379 if (mddev->pers->sync_request) {
6380 if (mddev->curr_resync > 2) {
6381 status_resync(seq, mddev);
6382 seq_printf(seq, "\n ");
6383 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6384 seq_printf(seq, "\tresync=DELAYED\n ");
6385 else if (mddev->recovery_cp < MaxSector)
6386 seq_printf(seq, "\tresync=PENDING\n ");
6387 }
6388 } else
6389 seq_printf(seq, "\n ");
6390
6391 if ((bitmap = mddev->bitmap)) {
6392 unsigned long chunk_kb;
6393 unsigned long flags;
6394 spin_lock_irqsave(&bitmap->lock, flags);
6395 chunk_kb = mddev->bitmap_info.chunksize >> 10;
6396 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6397 "%lu%s chunk",
6398 bitmap->pages - bitmap->missing_pages,
6399 bitmap->pages,
6400 (bitmap->pages - bitmap->missing_pages)
6401 << (PAGE_SHIFT - 10),
6402 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
6403 chunk_kb ? "KB" : "B");
6404 if (bitmap->file) {
6405 seq_printf(seq, ", file: ");
6406 seq_path(seq, &bitmap->file->f_path, " \t\n");
6407 }
6408
6409 seq_printf(seq, "\n");
6410 spin_unlock_irqrestore(&bitmap->lock, flags);
6411 }
6412
6413 seq_printf(seq, "\n");
6414 }
6415 mddev_unlock(mddev);
6416
6417 return 0;
6418 }
6419
6420 static const struct seq_operations md_seq_ops = {
6421 .start = md_seq_start,
6422 .next = md_seq_next,
6423 .stop = md_seq_stop,
6424 .show = md_seq_show,
6425 };
6426
6427 static int md_seq_open(struct inode *inode, struct file *file)
6428 {
6429 int error;
6430 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
6431 if (mi == NULL)
6432 return -ENOMEM;
6433
6434 error = seq_open(file, &md_seq_ops);
6435 if (error)
6436 kfree(mi);
6437 else {
6438 struct seq_file *p = file->private_data;
6439 p->private = mi;
6440 mi->event = atomic_read(&md_event_count);
6441 }
6442 return error;
6443 }
6444
6445 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6446 {
6447 struct seq_file *m = filp->private_data;
6448 struct mdstat_info *mi = m->private;
6449 int mask;
6450
6451 poll_wait(filp, &md_event_waiters, wait);
6452
6453 /* always allow read */
6454 mask = POLLIN | POLLRDNORM;
6455
6456 if (mi->event != atomic_read(&md_event_count))
6457 mask |= POLLERR | POLLPRI;
6458 return mask;
6459 }
6460
6461 static const struct file_operations md_seq_fops = {
6462 .owner = THIS_MODULE,
6463 .open = md_seq_open,
6464 .read = seq_read,
6465 .llseek = seq_lseek,
6466 .release = seq_release_private,
6467 .poll = mdstat_poll,
6468 };
6469
6470 int register_md_personality(struct mdk_personality *p)
6471 {
6472 spin_lock(&pers_lock);
6473 list_add_tail(&p->list, &pers_list);
6474 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6475 spin_unlock(&pers_lock);
6476 return 0;
6477 }
6478
6479 int unregister_md_personality(struct mdk_personality *p)
6480 {
6481 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6482 spin_lock(&pers_lock);
6483 list_del_init(&p->list);
6484 spin_unlock(&pers_lock);
6485 return 0;
6486 }
6487
6488 static int is_mddev_idle(mddev_t *mddev, int init)
6489 {
6490 mdk_rdev_t * rdev;
6491 int idle;
6492 int curr_events;
6493
6494 idle = 1;
6495 rcu_read_lock();
6496 rdev_for_each_rcu(rdev, mddev) {
6497 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6498 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6499 (int)part_stat_read(&disk->part0, sectors[1]) -
6500 atomic_read(&disk->sync_io);
6501 /* sync IO will cause sync_io to increase before the disk_stats
6502 * as sync_io is counted when a request starts, and
6503 * disk_stats is counted when it completes.
6504 * So resync activity will cause curr_events to be smaller than
6505 * when there was no such activity.
6506 * non-sync IO will cause disk_stat to increase without
6507 * increasing sync_io so curr_events will (eventually)
6508 * be larger than it was before. Once it becomes
6509 * substantially larger, the test below will cause
6510 * the array to appear non-idle, and resync will slow
6511 * down.
6512 * If there is a lot of outstanding resync activity when
6513 * we set last_event to curr_events, then all that activity
6514 * completing might cause the array to appear non-idle
6515 * and resync will be slowed down even though there might
6516 * not have been non-resync activity. This will only
6517 * happen once though. 'last_events' will soon reflect
6518 * the state where there is little or no outstanding
6519 * resync requests, and further resync activity will
6520 * always make curr_events less than last_events.
6521 *
6522 */
6523 if (init || curr_events - rdev->last_events > 64) {
6524 rdev->last_events = curr_events;
6525 idle = 0;
6526 }
6527 }
6528 rcu_read_unlock();
6529 return idle;
6530 }
6531
6532 void md_done_sync(mddev_t *mddev, int blocks, int ok)
6533 {
6534 /* another "blocks" (512byte) blocks have been synced */
6535 atomic_sub(blocks, &mddev->recovery_active);
6536 wake_up(&mddev->recovery_wait);
6537 if (!ok) {
6538 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6539 md_wakeup_thread(mddev->thread);
6540 // stop recovery, signal do_sync ....
6541 }
6542 }
6543
6544
6545 /* md_write_start(mddev, bi)
6546 * If we need to update some array metadata (e.g. 'active' flag
6547 * in superblock) before writing, schedule a superblock update
6548 * and wait for it to complete.
6549 */
6550 void md_write_start(mddev_t *mddev, struct bio *bi)
6551 {
6552 int did_change = 0;
6553 if (bio_data_dir(bi) != WRITE)
6554 return;
6555
6556 BUG_ON(mddev->ro == 1);
6557 if (mddev->ro == 2) {
6558 /* need to switch to read/write */
6559 mddev->ro = 0;
6560 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6561 md_wakeup_thread(mddev->thread);
6562 md_wakeup_thread(mddev->sync_thread);
6563 did_change = 1;
6564 }
6565 atomic_inc(&mddev->writes_pending);
6566 if (mddev->safemode == 1)
6567 mddev->safemode = 0;
6568 if (mddev->in_sync) {
6569 spin_lock_irq(&mddev->write_lock);
6570 if (mddev->in_sync) {
6571 mddev->in_sync = 0;
6572 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6573 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6574 md_wakeup_thread(mddev->thread);
6575 did_change = 1;
6576 }
6577 spin_unlock_irq(&mddev->write_lock);
6578 }
6579 if (did_change)
6580 sysfs_notify_dirent_safe(mddev->sysfs_state);
6581 wait_event(mddev->sb_wait,
6582 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6583 }
6584
6585 void md_write_end(mddev_t *mddev)
6586 {
6587 if (atomic_dec_and_test(&mddev->writes_pending)) {
6588 if (mddev->safemode == 2)
6589 md_wakeup_thread(mddev->thread);
6590 else if (mddev->safemode_delay)
6591 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6592 }
6593 }
6594
6595 /* md_allow_write(mddev)
6596 * Calling this ensures that the array is marked 'active' so that writes
6597 * may proceed without blocking. It is important to call this before
6598 * attempting a GFP_KERNEL allocation while holding the mddev lock.
6599 * Must be called with mddev_lock held.
6600 *
6601 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6602 * is dropped, so return -EAGAIN after notifying userspace.
6603 */
6604 int md_allow_write(mddev_t *mddev)
6605 {
6606 if (!mddev->pers)
6607 return 0;
6608 if (mddev->ro)
6609 return 0;
6610 if (!mddev->pers->sync_request)
6611 return 0;
6612
6613 spin_lock_irq(&mddev->write_lock);
6614 if (mddev->in_sync) {
6615 mddev->in_sync = 0;
6616 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6617 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6618 if (mddev->safemode_delay &&
6619 mddev->safemode == 0)
6620 mddev->safemode = 1;
6621 spin_unlock_irq(&mddev->write_lock);
6622 md_update_sb(mddev, 0);
6623 sysfs_notify_dirent_safe(mddev->sysfs_state);
6624 } else
6625 spin_unlock_irq(&mddev->write_lock);
6626
6627 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
6628 return -EAGAIN;
6629 else
6630 return 0;
6631 }
6632 EXPORT_SYMBOL_GPL(md_allow_write);
6633
6634 void md_unplug(mddev_t *mddev)
6635 {
6636 if (mddev->queue)
6637 blk_unplug(mddev->queue);
6638 if (mddev->plug)
6639 mddev->plug->unplug_fn(mddev->plug);
6640 }
6641
6642 #define SYNC_MARKS 10
6643 #define SYNC_MARK_STEP (3*HZ)
6644 void md_do_sync(mddev_t *mddev)
6645 {
6646 mddev_t *mddev2;
6647 unsigned int currspeed = 0,
6648 window;
6649 sector_t max_sectors,j, io_sectors;
6650 unsigned long mark[SYNC_MARKS];
6651 sector_t mark_cnt[SYNC_MARKS];
6652 int last_mark,m;
6653 struct list_head *tmp;
6654 sector_t last_check;
6655 int skipped = 0;
6656 mdk_rdev_t *rdev;
6657 char *desc;
6658
6659 /* just incase thread restarts... */
6660 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
6661 return;
6662 if (mddev->ro) /* never try to sync a read-only array */
6663 return;
6664
6665 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6666 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
6667 desc = "data-check";
6668 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6669 desc = "requested-resync";
6670 else
6671 desc = "resync";
6672 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6673 desc = "reshape";
6674 else
6675 desc = "recovery";
6676
6677 /* we overload curr_resync somewhat here.
6678 * 0 == not engaged in resync at all
6679 * 2 == checking that there is no conflict with another sync
6680 * 1 == like 2, but have yielded to allow conflicting resync to
6681 * commense
6682 * other == active in resync - this many blocks
6683 *
6684 * Before starting a resync we must have set curr_resync to
6685 * 2, and then checked that every "conflicting" array has curr_resync
6686 * less than ours. When we find one that is the same or higher
6687 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
6688 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
6689 * This will mean we have to start checking from the beginning again.
6690 *
6691 */
6692
6693 do {
6694 mddev->curr_resync = 2;
6695
6696 try_again:
6697 if (kthread_should_stop())
6698 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6699
6700 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6701 goto skip;
6702 for_each_mddev(mddev2, tmp) {
6703 if (mddev2 == mddev)
6704 continue;
6705 if (!mddev->parallel_resync
6706 && mddev2->curr_resync
6707 && match_mddev_units(mddev, mddev2)) {
6708 DEFINE_WAIT(wq);
6709 if (mddev < mddev2 && mddev->curr_resync == 2) {
6710 /* arbitrarily yield */
6711 mddev->curr_resync = 1;
6712 wake_up(&resync_wait);
6713 }
6714 if (mddev > mddev2 && mddev->curr_resync == 1)
6715 /* no need to wait here, we can wait the next
6716 * time 'round when curr_resync == 2
6717 */
6718 continue;
6719 /* We need to wait 'interruptible' so as not to
6720 * contribute to the load average, and not to
6721 * be caught by 'softlockup'
6722 */
6723 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
6724 if (!kthread_should_stop() &&
6725 mddev2->curr_resync >= mddev->curr_resync) {
6726 printk(KERN_INFO "md: delaying %s of %s"
6727 " until %s has finished (they"
6728 " share one or more physical units)\n",
6729 desc, mdname(mddev), mdname(mddev2));
6730 mddev_put(mddev2);
6731 if (signal_pending(current))
6732 flush_signals(current);
6733 schedule();
6734 finish_wait(&resync_wait, &wq);
6735 goto try_again;
6736 }
6737 finish_wait(&resync_wait, &wq);
6738 }
6739 }
6740 } while (mddev->curr_resync < 2);
6741
6742 j = 0;
6743 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6744 /* resync follows the size requested by the personality,
6745 * which defaults to physical size, but can be virtual size
6746 */
6747 max_sectors = mddev->resync_max_sectors;
6748 mddev->resync_mismatches = 0;
6749 /* we don't use the checkpoint if there's a bitmap */
6750 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6751 j = mddev->resync_min;
6752 else if (!mddev->bitmap)
6753 j = mddev->recovery_cp;
6754
6755 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6756 max_sectors = mddev->dev_sectors;
6757 else {
6758 /* recovery follows the physical size of devices */
6759 max_sectors = mddev->dev_sectors;
6760 j = MaxSector;
6761 rcu_read_lock();
6762 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
6763 if (rdev->raid_disk >= 0 &&
6764 !test_bit(Faulty, &rdev->flags) &&
6765 !test_bit(In_sync, &rdev->flags) &&
6766 rdev->recovery_offset < j)
6767 j = rdev->recovery_offset;
6768 rcu_read_unlock();
6769 }
6770
6771 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
6772 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
6773 " %d KB/sec/disk.\n", speed_min(mddev));
6774 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
6775 "(but not more than %d KB/sec) for %s.\n",
6776 speed_max(mddev), desc);
6777
6778 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
6779
6780 io_sectors = 0;
6781 for (m = 0; m < SYNC_MARKS; m++) {
6782 mark[m] = jiffies;
6783 mark_cnt[m] = io_sectors;
6784 }
6785 last_mark = 0;
6786 mddev->resync_mark = mark[last_mark];
6787 mddev->resync_mark_cnt = mark_cnt[last_mark];
6788
6789 /*
6790 * Tune reconstruction:
6791 */
6792 window = 32*(PAGE_SIZE/512);
6793 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
6794 window/2,(unsigned long long) max_sectors/2);
6795
6796 atomic_set(&mddev->recovery_active, 0);
6797 last_check = 0;
6798
6799 if (j>2) {
6800 printk(KERN_INFO
6801 "md: resuming %s of %s from checkpoint.\n",
6802 desc, mdname(mddev));
6803 mddev->curr_resync = j;
6804 }
6805 mddev->curr_resync_completed = mddev->curr_resync;
6806
6807 while (j < max_sectors) {
6808 sector_t sectors;
6809
6810 skipped = 0;
6811
6812 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
6813 ((mddev->curr_resync > mddev->curr_resync_completed &&
6814 (mddev->curr_resync - mddev->curr_resync_completed)
6815 > (max_sectors >> 4)) ||
6816 (j - mddev->curr_resync_completed)*2
6817 >= mddev->resync_max - mddev->curr_resync_completed
6818 )) {
6819 /* time to update curr_resync_completed */
6820 md_unplug(mddev);
6821 wait_event(mddev->recovery_wait,
6822 atomic_read(&mddev->recovery_active) == 0);
6823 mddev->curr_resync_completed =
6824 mddev->curr_resync;
6825 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6826 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6827 }
6828
6829 while (j >= mddev->resync_max && !kthread_should_stop()) {
6830 /* As this condition is controlled by user-space,
6831 * we can block indefinitely, so use '_interruptible'
6832 * to avoid triggering warnings.
6833 */
6834 flush_signals(current); /* just in case */
6835 wait_event_interruptible(mddev->recovery_wait,
6836 mddev->resync_max > j
6837 || kthread_should_stop());
6838 }
6839
6840 if (kthread_should_stop())
6841 goto interrupted;
6842
6843 sectors = mddev->pers->sync_request(mddev, j, &skipped,
6844 currspeed < speed_min(mddev));
6845 if (sectors == 0) {
6846 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6847 goto out;
6848 }
6849
6850 if (!skipped) { /* actual IO requested */
6851 io_sectors += sectors;
6852 atomic_add(sectors, &mddev->recovery_active);
6853 }
6854
6855 j += sectors;
6856 if (j>1) mddev->curr_resync = j;
6857 mddev->curr_mark_cnt = io_sectors;
6858 if (last_check == 0)
6859 /* this is the earliers that rebuilt will be
6860 * visible in /proc/mdstat
6861 */
6862 md_new_event(mddev);
6863
6864 if (last_check + window > io_sectors || j == max_sectors)
6865 continue;
6866
6867 last_check = io_sectors;
6868
6869 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6870 break;
6871
6872 repeat:
6873 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
6874 /* step marks */
6875 int next = (last_mark+1) % SYNC_MARKS;
6876
6877 mddev->resync_mark = mark[next];
6878 mddev->resync_mark_cnt = mark_cnt[next];
6879 mark[next] = jiffies;
6880 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
6881 last_mark = next;
6882 }
6883
6884
6885 if (kthread_should_stop())
6886 goto interrupted;
6887
6888
6889 /*
6890 * this loop exits only if either when we are slower than
6891 * the 'hard' speed limit, or the system was IO-idle for
6892 * a jiffy.
6893 * the system might be non-idle CPU-wise, but we only care
6894 * about not overloading the IO subsystem. (things like an
6895 * e2fsck being done on the RAID array should execute fast)
6896 */
6897 md_unplug(mddev);
6898 cond_resched();
6899
6900 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
6901 /((jiffies-mddev->resync_mark)/HZ +1) +1;
6902
6903 if (currspeed > speed_min(mddev)) {
6904 if ((currspeed > speed_max(mddev)) ||
6905 !is_mddev_idle(mddev, 0)) {
6906 msleep(500);
6907 goto repeat;
6908 }
6909 }
6910 }
6911 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
6912 /*
6913 * this also signals 'finished resyncing' to md_stop
6914 */
6915 out:
6916 md_unplug(mddev);
6917
6918 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
6919
6920 /* tell personality that we are finished */
6921 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
6922
6923 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
6924 mddev->curr_resync > 2) {
6925 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6926 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6927 if (mddev->curr_resync >= mddev->recovery_cp) {
6928 printk(KERN_INFO
6929 "md: checkpointing %s of %s.\n",
6930 desc, mdname(mddev));
6931 mddev->recovery_cp = mddev->curr_resync;
6932 }
6933 } else
6934 mddev->recovery_cp = MaxSector;
6935 } else {
6936 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6937 mddev->curr_resync = MaxSector;
6938 rcu_read_lock();
6939 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
6940 if (rdev->raid_disk >= 0 &&
6941 mddev->delta_disks >= 0 &&
6942 !test_bit(Faulty, &rdev->flags) &&
6943 !test_bit(In_sync, &rdev->flags) &&
6944 rdev->recovery_offset < mddev->curr_resync)
6945 rdev->recovery_offset = mddev->curr_resync;
6946 rcu_read_unlock();
6947 }
6948 }
6949 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6950
6951 skip:
6952 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6953 /* We completed so min/max setting can be forgotten if used. */
6954 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6955 mddev->resync_min = 0;
6956 mddev->resync_max = MaxSector;
6957 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6958 mddev->resync_min = mddev->curr_resync_completed;
6959 mddev->curr_resync = 0;
6960 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6961 mddev->curr_resync_completed = 0;
6962 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6963 wake_up(&resync_wait);
6964 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
6965 md_wakeup_thread(mddev->thread);
6966 return;
6967
6968 interrupted:
6969 /*
6970 * got a signal, exit.
6971 */
6972 printk(KERN_INFO
6973 "md: md_do_sync() got signal ... exiting\n");
6974 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6975 goto out;
6976
6977 }
6978 EXPORT_SYMBOL_GPL(md_do_sync);
6979
6980
6981 static int remove_and_add_spares(mddev_t *mddev)
6982 {
6983 mdk_rdev_t *rdev;
6984 int spares = 0;
6985
6986 mddev->curr_resync_completed = 0;
6987
6988 list_for_each_entry(rdev, &mddev->disks, same_set)
6989 if (rdev->raid_disk >= 0 &&
6990 !test_bit(Blocked, &rdev->flags) &&
6991 (test_bit(Faulty, &rdev->flags) ||
6992 ! test_bit(In_sync, &rdev->flags)) &&
6993 atomic_read(&rdev->nr_pending)==0) {
6994 if (mddev->pers->hot_remove_disk(
6995 mddev, rdev->raid_disk)==0) {
6996 char nm[20];
6997 sprintf(nm,"rd%d", rdev->raid_disk);
6998 sysfs_remove_link(&mddev->kobj, nm);
6999 rdev->raid_disk = -1;
7000 }
7001 }
7002
7003 if (mddev->degraded && ! mddev->ro && !mddev->recovery_disabled) {
7004 list_for_each_entry(rdev, &mddev->disks, same_set) {
7005 if (rdev->raid_disk >= 0 &&
7006 !test_bit(In_sync, &rdev->flags) &&
7007 !test_bit(Blocked, &rdev->flags))
7008 spares++;
7009 if (rdev->raid_disk < 0
7010 && !test_bit(Faulty, &rdev->flags)) {
7011 rdev->recovery_offset = 0;
7012 if (mddev->pers->
7013 hot_add_disk(mddev, rdev) == 0) {
7014 char nm[20];
7015 sprintf(nm, "rd%d", rdev->raid_disk);
7016 if (sysfs_create_link(&mddev->kobj,
7017 &rdev->kobj, nm))
7018 /* failure here is OK */;
7019 spares++;
7020 md_new_event(mddev);
7021 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7022 } else
7023 break;
7024 }
7025 }
7026 }
7027 return spares;
7028 }
7029 /*
7030 * This routine is regularly called by all per-raid-array threads to
7031 * deal with generic issues like resync and super-block update.
7032 * Raid personalities that don't have a thread (linear/raid0) do not
7033 * need this as they never do any recovery or update the superblock.
7034 *
7035 * It does not do any resync itself, but rather "forks" off other threads
7036 * to do that as needed.
7037 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7038 * "->recovery" and create a thread at ->sync_thread.
7039 * When the thread finishes it sets MD_RECOVERY_DONE
7040 * and wakeups up this thread which will reap the thread and finish up.
7041 * This thread also removes any faulty devices (with nr_pending == 0).
7042 *
7043 * The overall approach is:
7044 * 1/ if the superblock needs updating, update it.
7045 * 2/ If a recovery thread is running, don't do anything else.
7046 * 3/ If recovery has finished, clean up, possibly marking spares active.
7047 * 4/ If there are any faulty devices, remove them.
7048 * 5/ If array is degraded, try to add spares devices
7049 * 6/ If array has spares or is not in-sync, start a resync thread.
7050 */
7051 void md_check_recovery(mddev_t *mddev)
7052 {
7053 mdk_rdev_t *rdev;
7054
7055
7056 if (mddev->bitmap)
7057 bitmap_daemon_work(mddev);
7058
7059 if (mddev->ro)
7060 return;
7061
7062 if (signal_pending(current)) {
7063 if (mddev->pers->sync_request && !mddev->external) {
7064 printk(KERN_INFO "md: %s in immediate safe mode\n",
7065 mdname(mddev));
7066 mddev->safemode = 2;
7067 }
7068 flush_signals(current);
7069 }
7070
7071 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7072 return;
7073 if ( ! (
7074 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7075 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7076 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7077 (mddev->external == 0 && mddev->safemode == 1) ||
7078 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7079 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7080 ))
7081 return;
7082
7083 if (mddev_trylock(mddev)) {
7084 int spares = 0;
7085
7086 if (mddev->ro) {
7087 /* Only thing we do on a ro array is remove
7088 * failed devices.
7089 */
7090 remove_and_add_spares(mddev);
7091 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7092 goto unlock;
7093 }
7094
7095 if (!mddev->external) {
7096 int did_change = 0;
7097 spin_lock_irq(&mddev->write_lock);
7098 if (mddev->safemode &&
7099 !atomic_read(&mddev->writes_pending) &&
7100 !mddev->in_sync &&
7101 mddev->recovery_cp == MaxSector) {
7102 mddev->in_sync = 1;
7103 did_change = 1;
7104 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7105 }
7106 if (mddev->safemode == 1)
7107 mddev->safemode = 0;
7108 spin_unlock_irq(&mddev->write_lock);
7109 if (did_change)
7110 sysfs_notify_dirent_safe(mddev->sysfs_state);
7111 }
7112
7113 if (mddev->flags)
7114 md_update_sb(mddev, 0);
7115
7116 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7117 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7118 /* resync/recovery still happening */
7119 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7120 goto unlock;
7121 }
7122 if (mddev->sync_thread) {
7123 /* resync has finished, collect result */
7124 md_unregister_thread(mddev->sync_thread);
7125 mddev->sync_thread = NULL;
7126 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7127 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7128 /* success...*/
7129 /* activate any spares */
7130 if (mddev->pers->spare_active(mddev))
7131 sysfs_notify(&mddev->kobj, NULL,
7132 "degraded");
7133 }
7134 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7135 mddev->pers->finish_reshape)
7136 mddev->pers->finish_reshape(mddev);
7137 md_update_sb(mddev, 1);
7138
7139 /* if array is no-longer degraded, then any saved_raid_disk
7140 * information must be scrapped
7141 */
7142 if (!mddev->degraded)
7143 list_for_each_entry(rdev, &mddev->disks, same_set)
7144 rdev->saved_raid_disk = -1;
7145
7146 mddev->recovery = 0;
7147 /* flag recovery needed just to double check */
7148 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7149 sysfs_notify_dirent_safe(mddev->sysfs_action);
7150 md_new_event(mddev);
7151 goto unlock;
7152 }
7153 /* Set RUNNING before clearing NEEDED to avoid
7154 * any transients in the value of "sync_action".
7155 */
7156 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7157 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7158 /* Clear some bits that don't mean anything, but
7159 * might be left set
7160 */
7161 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7162 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7163
7164 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7165 goto unlock;
7166 /* no recovery is running.
7167 * remove any failed drives, then
7168 * add spares if possible.
7169 * Spare are also removed and re-added, to allow
7170 * the personality to fail the re-add.
7171 */
7172
7173 if (mddev->reshape_position != MaxSector) {
7174 if (mddev->pers->check_reshape == NULL ||
7175 mddev->pers->check_reshape(mddev) != 0)
7176 /* Cannot proceed */
7177 goto unlock;
7178 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7179 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7180 } else if ((spares = remove_and_add_spares(mddev))) {
7181 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7182 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7183 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7184 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7185 } else if (mddev->recovery_cp < MaxSector) {
7186 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7187 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7188 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7189 /* nothing to be done ... */
7190 goto unlock;
7191
7192 if (mddev->pers->sync_request) {
7193 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7194 /* We are adding a device or devices to an array
7195 * which has the bitmap stored on all devices.
7196 * So make sure all bitmap pages get written
7197 */
7198 bitmap_write_all(mddev->bitmap);
7199 }
7200 mddev->sync_thread = md_register_thread(md_do_sync,
7201 mddev,
7202 "resync");
7203 if (!mddev->sync_thread) {
7204 printk(KERN_ERR "%s: could not start resync"
7205 " thread...\n",
7206 mdname(mddev));
7207 /* leave the spares where they are, it shouldn't hurt */
7208 mddev->recovery = 0;
7209 } else
7210 md_wakeup_thread(mddev->sync_thread);
7211 sysfs_notify_dirent_safe(mddev->sysfs_action);
7212 md_new_event(mddev);
7213 }
7214 unlock:
7215 if (!mddev->sync_thread) {
7216 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7217 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7218 &mddev->recovery))
7219 if (mddev->sysfs_action)
7220 sysfs_notify_dirent_safe(mddev->sysfs_action);
7221 }
7222 mddev_unlock(mddev);
7223 }
7224 }
7225
7226 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
7227 {
7228 sysfs_notify_dirent_safe(rdev->sysfs_state);
7229 wait_event_timeout(rdev->blocked_wait,
7230 !test_bit(Blocked, &rdev->flags),
7231 msecs_to_jiffies(5000));
7232 rdev_dec_pending(rdev, mddev);
7233 }
7234 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7235
7236 static int md_notify_reboot(struct notifier_block *this,
7237 unsigned long code, void *x)
7238 {
7239 struct list_head *tmp;
7240 mddev_t *mddev;
7241
7242 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
7243
7244 printk(KERN_INFO "md: stopping all md devices.\n");
7245
7246 for_each_mddev(mddev, tmp)
7247 if (mddev_trylock(mddev)) {
7248 /* Force a switch to readonly even array
7249 * appears to still be in use. Hence
7250 * the '100'.
7251 */
7252 md_set_readonly(mddev, 100);
7253 mddev_unlock(mddev);
7254 }
7255 /*
7256 * certain more exotic SCSI devices are known to be
7257 * volatile wrt too early system reboots. While the
7258 * right place to handle this issue is the given
7259 * driver, we do want to have a safe RAID driver ...
7260 */
7261 mdelay(1000*1);
7262 }
7263 return NOTIFY_DONE;
7264 }
7265
7266 static struct notifier_block md_notifier = {
7267 .notifier_call = md_notify_reboot,
7268 .next = NULL,
7269 .priority = INT_MAX, /* before any real devices */
7270 };
7271
7272 static void md_geninit(void)
7273 {
7274 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
7275
7276 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
7277 }
7278
7279 static int __init md_init(void)
7280 {
7281 if (register_blkdev(MD_MAJOR, "md"))
7282 return -1;
7283 if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
7284 unregister_blkdev(MD_MAJOR, "md");
7285 return -1;
7286 }
7287 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
7288 md_probe, NULL, NULL);
7289 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
7290 md_probe, NULL, NULL);
7291
7292 register_reboot_notifier(&md_notifier);
7293 raid_table_header = register_sysctl_table(raid_root_table);
7294
7295 md_geninit();
7296 return 0;
7297 }
7298
7299
7300 #ifndef MODULE
7301
7302 /*
7303 * Searches all registered partitions for autorun RAID arrays
7304 * at boot time.
7305 */
7306
7307 static LIST_HEAD(all_detected_devices);
7308 struct detected_devices_node {
7309 struct list_head list;
7310 dev_t dev;
7311 };
7312
7313 void md_autodetect_dev(dev_t dev)
7314 {
7315 struct detected_devices_node *node_detected_dev;
7316
7317 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
7318 if (node_detected_dev) {
7319 node_detected_dev->dev = dev;
7320 list_add_tail(&node_detected_dev->list, &all_detected_devices);
7321 } else {
7322 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
7323 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
7324 }
7325 }
7326
7327
7328 static void autostart_arrays(int part)
7329 {
7330 mdk_rdev_t *rdev;
7331 struct detected_devices_node *node_detected_dev;
7332 dev_t dev;
7333 int i_scanned, i_passed;
7334
7335 i_scanned = 0;
7336 i_passed = 0;
7337
7338 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
7339
7340 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
7341 i_scanned++;
7342 node_detected_dev = list_entry(all_detected_devices.next,
7343 struct detected_devices_node, list);
7344 list_del(&node_detected_dev->list);
7345 dev = node_detected_dev->dev;
7346 kfree(node_detected_dev);
7347 rdev = md_import_device(dev,0, 90);
7348 if (IS_ERR(rdev))
7349 continue;
7350
7351 if (test_bit(Faulty, &rdev->flags)) {
7352 MD_BUG();
7353 continue;
7354 }
7355 set_bit(AutoDetected, &rdev->flags);
7356 list_add(&rdev->same_set, &pending_raid_disks);
7357 i_passed++;
7358 }
7359
7360 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
7361 i_scanned, i_passed);
7362
7363 autorun_devices(part);
7364 }
7365
7366 #endif /* !MODULE */
7367
7368 static __exit void md_exit(void)
7369 {
7370 mddev_t *mddev;
7371 struct list_head *tmp;
7372
7373 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
7374 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
7375
7376 unregister_blkdev(MD_MAJOR,"md");
7377 unregister_blkdev(mdp_major, "mdp");
7378 unregister_reboot_notifier(&md_notifier);
7379 unregister_sysctl_table(raid_table_header);
7380 remove_proc_entry("mdstat", NULL);
7381 for_each_mddev(mddev, tmp) {
7382 export_array(mddev);
7383 mddev->hold_active = 0;
7384 }
7385 }
7386
7387 subsys_initcall(md_init);
7388 module_exit(md_exit)
7389
7390 static int get_ro(char *buffer, struct kernel_param *kp)
7391 {
7392 return sprintf(buffer, "%d", start_readonly);
7393 }
7394 static int set_ro(const char *val, struct kernel_param *kp)
7395 {
7396 char *e;
7397 int num = simple_strtoul(val, &e, 10);
7398 if (*val && (*e == '\0' || *e == '\n')) {
7399 start_readonly = num;
7400 return 0;
7401 }
7402 return -EINVAL;
7403 }
7404
7405 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
7406 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
7407
7408 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
7409
7410 EXPORT_SYMBOL(register_md_personality);
7411 EXPORT_SYMBOL(unregister_md_personality);
7412 EXPORT_SYMBOL(md_error);
7413 EXPORT_SYMBOL(md_done_sync);
7414 EXPORT_SYMBOL(md_write_start);
7415 EXPORT_SYMBOL(md_write_end);
7416 EXPORT_SYMBOL(md_register_thread);
7417 EXPORT_SYMBOL(md_unregister_thread);
7418 EXPORT_SYMBOL(md_wakeup_thread);
7419 EXPORT_SYMBOL(md_check_recovery);
7420 MODULE_LICENSE("GPL");
7421 MODULE_DESCRIPTION("MD RAID framework");
7422 MODULE_ALIAS("md");
7423 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
This page took 0.185882 seconds and 6 git commands to generate.