Merge branch 'for-2.6.37/core' of git://git.kernel.dk/linux-2.6-block
[deliverable/linux.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/mutex.h>
40 #include <linux/buffer_head.h> /* for invalidate_bdev */
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56
57 #define DEBUG 0
58 #define dprintk(x...) ((void)(DEBUG && printk(x)))
59
60 static DEFINE_MUTEX(md_mutex);
61
62 #ifndef MODULE
63 static void autostart_arrays(int part);
64 #endif
65
66 static LIST_HEAD(pers_list);
67 static DEFINE_SPINLOCK(pers_lock);
68
69 static void md_print_devices(void);
70
71 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
72
73 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
74
75 /*
76 * Default number of read corrections we'll attempt on an rdev
77 * before ejecting it from the array. We divide the read error
78 * count by 2 for every hour elapsed between read errors.
79 */
80 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
81 /*
82 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
83 * is 1000 KB/sec, so the extra system load does not show up that much.
84 * Increase it if you want to have more _guaranteed_ speed. Note that
85 * the RAID driver will use the maximum available bandwidth if the IO
86 * subsystem is idle. There is also an 'absolute maximum' reconstruction
87 * speed limit - in case reconstruction slows down your system despite
88 * idle IO detection.
89 *
90 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
91 * or /sys/block/mdX/md/sync_speed_{min,max}
92 */
93
94 static int sysctl_speed_limit_min = 1000;
95 static int sysctl_speed_limit_max = 200000;
96 static inline int speed_min(mddev_t *mddev)
97 {
98 return mddev->sync_speed_min ?
99 mddev->sync_speed_min : sysctl_speed_limit_min;
100 }
101
102 static inline int speed_max(mddev_t *mddev)
103 {
104 return mddev->sync_speed_max ?
105 mddev->sync_speed_max : sysctl_speed_limit_max;
106 }
107
108 static struct ctl_table_header *raid_table_header;
109
110 static ctl_table raid_table[] = {
111 {
112 .procname = "speed_limit_min",
113 .data = &sysctl_speed_limit_min,
114 .maxlen = sizeof(int),
115 .mode = S_IRUGO|S_IWUSR,
116 .proc_handler = proc_dointvec,
117 },
118 {
119 .procname = "speed_limit_max",
120 .data = &sysctl_speed_limit_max,
121 .maxlen = sizeof(int),
122 .mode = S_IRUGO|S_IWUSR,
123 .proc_handler = proc_dointvec,
124 },
125 { }
126 };
127
128 static ctl_table raid_dir_table[] = {
129 {
130 .procname = "raid",
131 .maxlen = 0,
132 .mode = S_IRUGO|S_IXUGO,
133 .child = raid_table,
134 },
135 { }
136 };
137
138 static ctl_table raid_root_table[] = {
139 {
140 .procname = "dev",
141 .maxlen = 0,
142 .mode = 0555,
143 .child = raid_dir_table,
144 },
145 { }
146 };
147
148 static const struct block_device_operations md_fops;
149
150 static int start_readonly;
151
152 /*
153 * We have a system wide 'event count' that is incremented
154 * on any 'interesting' event, and readers of /proc/mdstat
155 * can use 'poll' or 'select' to find out when the event
156 * count increases.
157 *
158 * Events are:
159 * start array, stop array, error, add device, remove device,
160 * start build, activate spare
161 */
162 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
163 static atomic_t md_event_count;
164 void md_new_event(mddev_t *mddev)
165 {
166 atomic_inc(&md_event_count);
167 wake_up(&md_event_waiters);
168 }
169 EXPORT_SYMBOL_GPL(md_new_event);
170
171 /* Alternate version that can be called from interrupts
172 * when calling sysfs_notify isn't needed.
173 */
174 static void md_new_event_inintr(mddev_t *mddev)
175 {
176 atomic_inc(&md_event_count);
177 wake_up(&md_event_waiters);
178 }
179
180 /*
181 * Enables to iterate over all existing md arrays
182 * all_mddevs_lock protects this list.
183 */
184 static LIST_HEAD(all_mddevs);
185 static DEFINE_SPINLOCK(all_mddevs_lock);
186
187
188 /*
189 * iterates through all used mddevs in the system.
190 * We take care to grab the all_mddevs_lock whenever navigating
191 * the list, and to always hold a refcount when unlocked.
192 * Any code which breaks out of this loop while own
193 * a reference to the current mddev and must mddev_put it.
194 */
195 #define for_each_mddev(mddev,tmp) \
196 \
197 for (({ spin_lock(&all_mddevs_lock); \
198 tmp = all_mddevs.next; \
199 mddev = NULL;}); \
200 ({ if (tmp != &all_mddevs) \
201 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
202 spin_unlock(&all_mddevs_lock); \
203 if (mddev) mddev_put(mddev); \
204 mddev = list_entry(tmp, mddev_t, all_mddevs); \
205 tmp != &all_mddevs;}); \
206 ({ spin_lock(&all_mddevs_lock); \
207 tmp = tmp->next;}) \
208 )
209
210
211 /* Rather than calling directly into the personality make_request function,
212 * IO requests come here first so that we can check if the device is
213 * being suspended pending a reconfiguration.
214 * We hold a refcount over the call to ->make_request. By the time that
215 * call has finished, the bio has been linked into some internal structure
216 * and so is visible to ->quiesce(), so we don't need the refcount any more.
217 */
218 static int md_make_request(struct request_queue *q, struct bio *bio)
219 {
220 const int rw = bio_data_dir(bio);
221 mddev_t *mddev = q->queuedata;
222 int rv;
223 int cpu;
224
225 if (mddev == NULL || mddev->pers == NULL) {
226 bio_io_error(bio);
227 return 0;
228 }
229 rcu_read_lock();
230 if (mddev->suspended || mddev->barrier) {
231 DEFINE_WAIT(__wait);
232 for (;;) {
233 prepare_to_wait(&mddev->sb_wait, &__wait,
234 TASK_UNINTERRUPTIBLE);
235 if (!mddev->suspended && !mddev->barrier)
236 break;
237 rcu_read_unlock();
238 schedule();
239 rcu_read_lock();
240 }
241 finish_wait(&mddev->sb_wait, &__wait);
242 }
243 atomic_inc(&mddev->active_io);
244 rcu_read_unlock();
245
246 rv = mddev->pers->make_request(mddev, bio);
247
248 cpu = part_stat_lock();
249 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
250 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
251 bio_sectors(bio));
252 part_stat_unlock();
253
254 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
255 wake_up(&mddev->sb_wait);
256
257 return rv;
258 }
259
260 /* mddev_suspend makes sure no new requests are submitted
261 * to the device, and that any requests that have been submitted
262 * are completely handled.
263 * Once ->stop is called and completes, the module will be completely
264 * unused.
265 */
266 void mddev_suspend(mddev_t *mddev)
267 {
268 BUG_ON(mddev->suspended);
269 mddev->suspended = 1;
270 synchronize_rcu();
271 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
272 mddev->pers->quiesce(mddev, 1);
273 }
274 EXPORT_SYMBOL_GPL(mddev_suspend);
275
276 void mddev_resume(mddev_t *mddev)
277 {
278 mddev->suspended = 0;
279 wake_up(&mddev->sb_wait);
280 mddev->pers->quiesce(mddev, 0);
281 }
282 EXPORT_SYMBOL_GPL(mddev_resume);
283
284 int mddev_congested(mddev_t *mddev, int bits)
285 {
286 if (mddev->barrier)
287 return 1;
288 return mddev->suspended;
289 }
290 EXPORT_SYMBOL(mddev_congested);
291
292 /*
293 * Generic barrier handling for md
294 */
295
296 #define POST_REQUEST_BARRIER ((void*)1)
297
298 static void md_end_barrier(struct bio *bio, int err)
299 {
300 mdk_rdev_t *rdev = bio->bi_private;
301 mddev_t *mddev = rdev->mddev;
302 if (err == -EOPNOTSUPP && mddev->barrier != POST_REQUEST_BARRIER)
303 set_bit(BIO_EOPNOTSUPP, &mddev->barrier->bi_flags);
304
305 rdev_dec_pending(rdev, mddev);
306
307 if (atomic_dec_and_test(&mddev->flush_pending)) {
308 if (mddev->barrier == POST_REQUEST_BARRIER) {
309 /* This was a post-request barrier */
310 mddev->barrier = NULL;
311 wake_up(&mddev->sb_wait);
312 } else
313 /* The pre-request barrier has finished */
314 schedule_work(&mddev->barrier_work);
315 }
316 bio_put(bio);
317 }
318
319 static void submit_barriers(mddev_t *mddev)
320 {
321 mdk_rdev_t *rdev;
322
323 rcu_read_lock();
324 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
325 if (rdev->raid_disk >= 0 &&
326 !test_bit(Faulty, &rdev->flags)) {
327 /* Take two references, one is dropped
328 * when request finishes, one after
329 * we reclaim rcu_read_lock
330 */
331 struct bio *bi;
332 atomic_inc(&rdev->nr_pending);
333 atomic_inc(&rdev->nr_pending);
334 rcu_read_unlock();
335 bi = bio_alloc(GFP_KERNEL, 0);
336 bi->bi_end_io = md_end_barrier;
337 bi->bi_private = rdev;
338 bi->bi_bdev = rdev->bdev;
339 atomic_inc(&mddev->flush_pending);
340 submit_bio(WRITE_BARRIER, bi);
341 rcu_read_lock();
342 rdev_dec_pending(rdev, mddev);
343 }
344 rcu_read_unlock();
345 }
346
347 static void md_submit_barrier(struct work_struct *ws)
348 {
349 mddev_t *mddev = container_of(ws, mddev_t, barrier_work);
350 struct bio *bio = mddev->barrier;
351
352 atomic_set(&mddev->flush_pending, 1);
353
354 if (test_bit(BIO_EOPNOTSUPP, &bio->bi_flags))
355 bio_endio(bio, -EOPNOTSUPP);
356 else if (bio->bi_size == 0)
357 /* an empty barrier - all done */
358 bio_endio(bio, 0);
359 else {
360 bio->bi_rw &= ~REQ_HARDBARRIER;
361 if (mddev->pers->make_request(mddev, bio))
362 generic_make_request(bio);
363 mddev->barrier = POST_REQUEST_BARRIER;
364 submit_barriers(mddev);
365 }
366 if (atomic_dec_and_test(&mddev->flush_pending)) {
367 mddev->barrier = NULL;
368 wake_up(&mddev->sb_wait);
369 }
370 }
371
372 void md_barrier_request(mddev_t *mddev, struct bio *bio)
373 {
374 spin_lock_irq(&mddev->write_lock);
375 wait_event_lock_irq(mddev->sb_wait,
376 !mddev->barrier,
377 mddev->write_lock, /*nothing*/);
378 mddev->barrier = bio;
379 spin_unlock_irq(&mddev->write_lock);
380
381 atomic_set(&mddev->flush_pending, 1);
382 INIT_WORK(&mddev->barrier_work, md_submit_barrier);
383
384 submit_barriers(mddev);
385
386 if (atomic_dec_and_test(&mddev->flush_pending))
387 schedule_work(&mddev->barrier_work);
388 }
389 EXPORT_SYMBOL(md_barrier_request);
390
391 /* Support for plugging.
392 * This mirrors the plugging support in request_queue, but does not
393 * require having a whole queue
394 */
395 static void plugger_work(struct work_struct *work)
396 {
397 struct plug_handle *plug =
398 container_of(work, struct plug_handle, unplug_work);
399 plug->unplug_fn(plug);
400 }
401 static void plugger_timeout(unsigned long data)
402 {
403 struct plug_handle *plug = (void *)data;
404 kblockd_schedule_work(NULL, &plug->unplug_work);
405 }
406 void plugger_init(struct plug_handle *plug,
407 void (*unplug_fn)(struct plug_handle *))
408 {
409 plug->unplug_flag = 0;
410 plug->unplug_fn = unplug_fn;
411 init_timer(&plug->unplug_timer);
412 plug->unplug_timer.function = plugger_timeout;
413 plug->unplug_timer.data = (unsigned long)plug;
414 INIT_WORK(&plug->unplug_work, plugger_work);
415 }
416 EXPORT_SYMBOL_GPL(plugger_init);
417
418 void plugger_set_plug(struct plug_handle *plug)
419 {
420 if (!test_and_set_bit(PLUGGED_FLAG, &plug->unplug_flag))
421 mod_timer(&plug->unplug_timer, jiffies + msecs_to_jiffies(3)+1);
422 }
423 EXPORT_SYMBOL_GPL(plugger_set_plug);
424
425 int plugger_remove_plug(struct plug_handle *plug)
426 {
427 if (test_and_clear_bit(PLUGGED_FLAG, &plug->unplug_flag)) {
428 del_timer(&plug->unplug_timer);
429 return 1;
430 } else
431 return 0;
432 }
433 EXPORT_SYMBOL_GPL(plugger_remove_plug);
434
435
436 static inline mddev_t *mddev_get(mddev_t *mddev)
437 {
438 atomic_inc(&mddev->active);
439 return mddev;
440 }
441
442 static void mddev_delayed_delete(struct work_struct *ws);
443
444 static void mddev_put(mddev_t *mddev)
445 {
446 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
447 return;
448 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
449 mddev->ctime == 0 && !mddev->hold_active) {
450 /* Array is not configured at all, and not held active,
451 * so destroy it */
452 list_del(&mddev->all_mddevs);
453 if (mddev->gendisk) {
454 /* we did a probe so need to clean up.
455 * Call schedule_work inside the spinlock
456 * so that flush_scheduled_work() after
457 * mddev_find will succeed in waiting for the
458 * work to be done.
459 */
460 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
461 schedule_work(&mddev->del_work);
462 } else
463 kfree(mddev);
464 }
465 spin_unlock(&all_mddevs_lock);
466 }
467
468 void mddev_init(mddev_t *mddev)
469 {
470 mutex_init(&mddev->open_mutex);
471 mutex_init(&mddev->reconfig_mutex);
472 mutex_init(&mddev->bitmap_info.mutex);
473 INIT_LIST_HEAD(&mddev->disks);
474 INIT_LIST_HEAD(&mddev->all_mddevs);
475 init_timer(&mddev->safemode_timer);
476 atomic_set(&mddev->active, 1);
477 atomic_set(&mddev->openers, 0);
478 atomic_set(&mddev->active_io, 0);
479 spin_lock_init(&mddev->write_lock);
480 atomic_set(&mddev->flush_pending, 0);
481 init_waitqueue_head(&mddev->sb_wait);
482 init_waitqueue_head(&mddev->recovery_wait);
483 mddev->reshape_position = MaxSector;
484 mddev->resync_min = 0;
485 mddev->resync_max = MaxSector;
486 mddev->level = LEVEL_NONE;
487 }
488 EXPORT_SYMBOL_GPL(mddev_init);
489
490 static mddev_t * mddev_find(dev_t unit)
491 {
492 mddev_t *mddev, *new = NULL;
493
494 retry:
495 spin_lock(&all_mddevs_lock);
496
497 if (unit) {
498 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
499 if (mddev->unit == unit) {
500 mddev_get(mddev);
501 spin_unlock(&all_mddevs_lock);
502 kfree(new);
503 return mddev;
504 }
505
506 if (new) {
507 list_add(&new->all_mddevs, &all_mddevs);
508 spin_unlock(&all_mddevs_lock);
509 new->hold_active = UNTIL_IOCTL;
510 return new;
511 }
512 } else if (new) {
513 /* find an unused unit number */
514 static int next_minor = 512;
515 int start = next_minor;
516 int is_free = 0;
517 int dev = 0;
518 while (!is_free) {
519 dev = MKDEV(MD_MAJOR, next_minor);
520 next_minor++;
521 if (next_minor > MINORMASK)
522 next_minor = 0;
523 if (next_minor == start) {
524 /* Oh dear, all in use. */
525 spin_unlock(&all_mddevs_lock);
526 kfree(new);
527 return NULL;
528 }
529
530 is_free = 1;
531 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
532 if (mddev->unit == dev) {
533 is_free = 0;
534 break;
535 }
536 }
537 new->unit = dev;
538 new->md_minor = MINOR(dev);
539 new->hold_active = UNTIL_STOP;
540 list_add(&new->all_mddevs, &all_mddevs);
541 spin_unlock(&all_mddevs_lock);
542 return new;
543 }
544 spin_unlock(&all_mddevs_lock);
545
546 new = kzalloc(sizeof(*new), GFP_KERNEL);
547 if (!new)
548 return NULL;
549
550 new->unit = unit;
551 if (MAJOR(unit) == MD_MAJOR)
552 new->md_minor = MINOR(unit);
553 else
554 new->md_minor = MINOR(unit) >> MdpMinorShift;
555
556 mddev_init(new);
557
558 goto retry;
559 }
560
561 static inline int mddev_lock(mddev_t * mddev)
562 {
563 return mutex_lock_interruptible(&mddev->reconfig_mutex);
564 }
565
566 static inline int mddev_is_locked(mddev_t *mddev)
567 {
568 return mutex_is_locked(&mddev->reconfig_mutex);
569 }
570
571 static inline int mddev_trylock(mddev_t * mddev)
572 {
573 return mutex_trylock(&mddev->reconfig_mutex);
574 }
575
576 static struct attribute_group md_redundancy_group;
577
578 static void mddev_unlock(mddev_t * mddev)
579 {
580 if (mddev->to_remove) {
581 /* These cannot be removed under reconfig_mutex as
582 * an access to the files will try to take reconfig_mutex
583 * while holding the file unremovable, which leads to
584 * a deadlock.
585 * So hold set sysfs_active while the remove in happeing,
586 * and anything else which might set ->to_remove or my
587 * otherwise change the sysfs namespace will fail with
588 * -EBUSY if sysfs_active is still set.
589 * We set sysfs_active under reconfig_mutex and elsewhere
590 * test it under the same mutex to ensure its correct value
591 * is seen.
592 */
593 struct attribute_group *to_remove = mddev->to_remove;
594 mddev->to_remove = NULL;
595 mddev->sysfs_active = 1;
596 mutex_unlock(&mddev->reconfig_mutex);
597
598 if (mddev->kobj.sd) {
599 if (to_remove != &md_redundancy_group)
600 sysfs_remove_group(&mddev->kobj, to_remove);
601 if (mddev->pers == NULL ||
602 mddev->pers->sync_request == NULL) {
603 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
604 if (mddev->sysfs_action)
605 sysfs_put(mddev->sysfs_action);
606 mddev->sysfs_action = NULL;
607 }
608 }
609 mddev->sysfs_active = 0;
610 } else
611 mutex_unlock(&mddev->reconfig_mutex);
612
613 md_wakeup_thread(mddev->thread);
614 }
615
616 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
617 {
618 mdk_rdev_t *rdev;
619
620 list_for_each_entry(rdev, &mddev->disks, same_set)
621 if (rdev->desc_nr == nr)
622 return rdev;
623
624 return NULL;
625 }
626
627 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
628 {
629 mdk_rdev_t *rdev;
630
631 list_for_each_entry(rdev, &mddev->disks, same_set)
632 if (rdev->bdev->bd_dev == dev)
633 return rdev;
634
635 return NULL;
636 }
637
638 static struct mdk_personality *find_pers(int level, char *clevel)
639 {
640 struct mdk_personality *pers;
641 list_for_each_entry(pers, &pers_list, list) {
642 if (level != LEVEL_NONE && pers->level == level)
643 return pers;
644 if (strcmp(pers->name, clevel)==0)
645 return pers;
646 }
647 return NULL;
648 }
649
650 /* return the offset of the super block in 512byte sectors */
651 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
652 {
653 sector_t num_sectors = bdev->bd_inode->i_size / 512;
654 return MD_NEW_SIZE_SECTORS(num_sectors);
655 }
656
657 static int alloc_disk_sb(mdk_rdev_t * rdev)
658 {
659 if (rdev->sb_page)
660 MD_BUG();
661
662 rdev->sb_page = alloc_page(GFP_KERNEL);
663 if (!rdev->sb_page) {
664 printk(KERN_ALERT "md: out of memory.\n");
665 return -ENOMEM;
666 }
667
668 return 0;
669 }
670
671 static void free_disk_sb(mdk_rdev_t * rdev)
672 {
673 if (rdev->sb_page) {
674 put_page(rdev->sb_page);
675 rdev->sb_loaded = 0;
676 rdev->sb_page = NULL;
677 rdev->sb_start = 0;
678 rdev->sectors = 0;
679 }
680 }
681
682
683 static void super_written(struct bio *bio, int error)
684 {
685 mdk_rdev_t *rdev = bio->bi_private;
686 mddev_t *mddev = rdev->mddev;
687
688 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
689 printk("md: super_written gets error=%d, uptodate=%d\n",
690 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
691 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
692 md_error(mddev, rdev);
693 }
694
695 if (atomic_dec_and_test(&mddev->pending_writes))
696 wake_up(&mddev->sb_wait);
697 bio_put(bio);
698 }
699
700 static void super_written_barrier(struct bio *bio, int error)
701 {
702 struct bio *bio2 = bio->bi_private;
703 mdk_rdev_t *rdev = bio2->bi_private;
704 mddev_t *mddev = rdev->mddev;
705
706 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
707 error == -EOPNOTSUPP) {
708 unsigned long flags;
709 /* barriers don't appear to be supported :-( */
710 set_bit(BarriersNotsupp, &rdev->flags);
711 mddev->barriers_work = 0;
712 spin_lock_irqsave(&mddev->write_lock, flags);
713 bio2->bi_next = mddev->biolist;
714 mddev->biolist = bio2;
715 spin_unlock_irqrestore(&mddev->write_lock, flags);
716 wake_up(&mddev->sb_wait);
717 bio_put(bio);
718 } else {
719 bio_put(bio2);
720 bio->bi_private = rdev;
721 super_written(bio, error);
722 }
723 }
724
725 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
726 sector_t sector, int size, struct page *page)
727 {
728 /* write first size bytes of page to sector of rdev
729 * Increment mddev->pending_writes before returning
730 * and decrement it on completion, waking up sb_wait
731 * if zero is reached.
732 * If an error occurred, call md_error
733 *
734 * As we might need to resubmit the request if REQ_HARDBARRIER
735 * causes ENOTSUPP, we allocate a spare bio...
736 */
737 struct bio *bio = bio_alloc(GFP_NOIO, 1);
738 int rw = REQ_WRITE | REQ_SYNC | REQ_UNPLUG;
739
740 bio->bi_bdev = rdev->bdev;
741 bio->bi_sector = sector;
742 bio_add_page(bio, page, size, 0);
743 bio->bi_private = rdev;
744 bio->bi_end_io = super_written;
745 bio->bi_rw = rw;
746
747 atomic_inc(&mddev->pending_writes);
748 if (!test_bit(BarriersNotsupp, &rdev->flags)) {
749 struct bio *rbio;
750 rw |= REQ_HARDBARRIER;
751 rbio = bio_clone(bio, GFP_NOIO);
752 rbio->bi_private = bio;
753 rbio->bi_end_io = super_written_barrier;
754 submit_bio(rw, rbio);
755 } else
756 submit_bio(rw, bio);
757 }
758
759 void md_super_wait(mddev_t *mddev)
760 {
761 /* wait for all superblock writes that were scheduled to complete.
762 * if any had to be retried (due to BARRIER problems), retry them
763 */
764 DEFINE_WAIT(wq);
765 for(;;) {
766 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
767 if (atomic_read(&mddev->pending_writes)==0)
768 break;
769 while (mddev->biolist) {
770 struct bio *bio;
771 spin_lock_irq(&mddev->write_lock);
772 bio = mddev->biolist;
773 mddev->biolist = bio->bi_next ;
774 bio->bi_next = NULL;
775 spin_unlock_irq(&mddev->write_lock);
776 submit_bio(bio->bi_rw, bio);
777 }
778 schedule();
779 }
780 finish_wait(&mddev->sb_wait, &wq);
781 }
782
783 static void bi_complete(struct bio *bio, int error)
784 {
785 complete((struct completion*)bio->bi_private);
786 }
787
788 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
789 struct page *page, int rw)
790 {
791 struct bio *bio = bio_alloc(GFP_NOIO, 1);
792 struct completion event;
793 int ret;
794
795 rw |= REQ_SYNC | REQ_UNPLUG;
796
797 bio->bi_bdev = bdev;
798 bio->bi_sector = sector;
799 bio_add_page(bio, page, size, 0);
800 init_completion(&event);
801 bio->bi_private = &event;
802 bio->bi_end_io = bi_complete;
803 submit_bio(rw, bio);
804 wait_for_completion(&event);
805
806 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
807 bio_put(bio);
808 return ret;
809 }
810 EXPORT_SYMBOL_GPL(sync_page_io);
811
812 static int read_disk_sb(mdk_rdev_t * rdev, int size)
813 {
814 char b[BDEVNAME_SIZE];
815 if (!rdev->sb_page) {
816 MD_BUG();
817 return -EINVAL;
818 }
819 if (rdev->sb_loaded)
820 return 0;
821
822
823 if (!sync_page_io(rdev->bdev, rdev->sb_start, size, rdev->sb_page, READ))
824 goto fail;
825 rdev->sb_loaded = 1;
826 return 0;
827
828 fail:
829 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
830 bdevname(rdev->bdev,b));
831 return -EINVAL;
832 }
833
834 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
835 {
836 return sb1->set_uuid0 == sb2->set_uuid0 &&
837 sb1->set_uuid1 == sb2->set_uuid1 &&
838 sb1->set_uuid2 == sb2->set_uuid2 &&
839 sb1->set_uuid3 == sb2->set_uuid3;
840 }
841
842 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
843 {
844 int ret;
845 mdp_super_t *tmp1, *tmp2;
846
847 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
848 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
849
850 if (!tmp1 || !tmp2) {
851 ret = 0;
852 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
853 goto abort;
854 }
855
856 *tmp1 = *sb1;
857 *tmp2 = *sb2;
858
859 /*
860 * nr_disks is not constant
861 */
862 tmp1->nr_disks = 0;
863 tmp2->nr_disks = 0;
864
865 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
866 abort:
867 kfree(tmp1);
868 kfree(tmp2);
869 return ret;
870 }
871
872
873 static u32 md_csum_fold(u32 csum)
874 {
875 csum = (csum & 0xffff) + (csum >> 16);
876 return (csum & 0xffff) + (csum >> 16);
877 }
878
879 static unsigned int calc_sb_csum(mdp_super_t * sb)
880 {
881 u64 newcsum = 0;
882 u32 *sb32 = (u32*)sb;
883 int i;
884 unsigned int disk_csum, csum;
885
886 disk_csum = sb->sb_csum;
887 sb->sb_csum = 0;
888
889 for (i = 0; i < MD_SB_BYTES/4 ; i++)
890 newcsum += sb32[i];
891 csum = (newcsum & 0xffffffff) + (newcsum>>32);
892
893
894 #ifdef CONFIG_ALPHA
895 /* This used to use csum_partial, which was wrong for several
896 * reasons including that different results are returned on
897 * different architectures. It isn't critical that we get exactly
898 * the same return value as before (we always csum_fold before
899 * testing, and that removes any differences). However as we
900 * know that csum_partial always returned a 16bit value on
901 * alphas, do a fold to maximise conformity to previous behaviour.
902 */
903 sb->sb_csum = md_csum_fold(disk_csum);
904 #else
905 sb->sb_csum = disk_csum;
906 #endif
907 return csum;
908 }
909
910
911 /*
912 * Handle superblock details.
913 * We want to be able to handle multiple superblock formats
914 * so we have a common interface to them all, and an array of
915 * different handlers.
916 * We rely on user-space to write the initial superblock, and support
917 * reading and updating of superblocks.
918 * Interface methods are:
919 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
920 * loads and validates a superblock on dev.
921 * if refdev != NULL, compare superblocks on both devices
922 * Return:
923 * 0 - dev has a superblock that is compatible with refdev
924 * 1 - dev has a superblock that is compatible and newer than refdev
925 * so dev should be used as the refdev in future
926 * -EINVAL superblock incompatible or invalid
927 * -othererror e.g. -EIO
928 *
929 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
930 * Verify that dev is acceptable into mddev.
931 * The first time, mddev->raid_disks will be 0, and data from
932 * dev should be merged in. Subsequent calls check that dev
933 * is new enough. Return 0 or -EINVAL
934 *
935 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
936 * Update the superblock for rdev with data in mddev
937 * This does not write to disc.
938 *
939 */
940
941 struct super_type {
942 char *name;
943 struct module *owner;
944 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
945 int minor_version);
946 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
947 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
948 unsigned long long (*rdev_size_change)(mdk_rdev_t *rdev,
949 sector_t num_sectors);
950 };
951
952 /*
953 * Check that the given mddev has no bitmap.
954 *
955 * This function is called from the run method of all personalities that do not
956 * support bitmaps. It prints an error message and returns non-zero if mddev
957 * has a bitmap. Otherwise, it returns 0.
958 *
959 */
960 int md_check_no_bitmap(mddev_t *mddev)
961 {
962 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
963 return 0;
964 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
965 mdname(mddev), mddev->pers->name);
966 return 1;
967 }
968 EXPORT_SYMBOL(md_check_no_bitmap);
969
970 /*
971 * load_super for 0.90.0
972 */
973 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
974 {
975 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
976 mdp_super_t *sb;
977 int ret;
978
979 /*
980 * Calculate the position of the superblock (512byte sectors),
981 * it's at the end of the disk.
982 *
983 * It also happens to be a multiple of 4Kb.
984 */
985 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
986
987 ret = read_disk_sb(rdev, MD_SB_BYTES);
988 if (ret) return ret;
989
990 ret = -EINVAL;
991
992 bdevname(rdev->bdev, b);
993 sb = (mdp_super_t*)page_address(rdev->sb_page);
994
995 if (sb->md_magic != MD_SB_MAGIC) {
996 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
997 b);
998 goto abort;
999 }
1000
1001 if (sb->major_version != 0 ||
1002 sb->minor_version < 90 ||
1003 sb->minor_version > 91) {
1004 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1005 sb->major_version, sb->minor_version,
1006 b);
1007 goto abort;
1008 }
1009
1010 if (sb->raid_disks <= 0)
1011 goto abort;
1012
1013 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1014 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1015 b);
1016 goto abort;
1017 }
1018
1019 rdev->preferred_minor = sb->md_minor;
1020 rdev->data_offset = 0;
1021 rdev->sb_size = MD_SB_BYTES;
1022
1023 if (sb->level == LEVEL_MULTIPATH)
1024 rdev->desc_nr = -1;
1025 else
1026 rdev->desc_nr = sb->this_disk.number;
1027
1028 if (!refdev) {
1029 ret = 1;
1030 } else {
1031 __u64 ev1, ev2;
1032 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
1033 if (!uuid_equal(refsb, sb)) {
1034 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1035 b, bdevname(refdev->bdev,b2));
1036 goto abort;
1037 }
1038 if (!sb_equal(refsb, sb)) {
1039 printk(KERN_WARNING "md: %s has same UUID"
1040 " but different superblock to %s\n",
1041 b, bdevname(refdev->bdev, b2));
1042 goto abort;
1043 }
1044 ev1 = md_event(sb);
1045 ev2 = md_event(refsb);
1046 if (ev1 > ev2)
1047 ret = 1;
1048 else
1049 ret = 0;
1050 }
1051 rdev->sectors = rdev->sb_start;
1052
1053 if (rdev->sectors < sb->size * 2 && sb->level > 1)
1054 /* "this cannot possibly happen" ... */
1055 ret = -EINVAL;
1056
1057 abort:
1058 return ret;
1059 }
1060
1061 /*
1062 * validate_super for 0.90.0
1063 */
1064 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1065 {
1066 mdp_disk_t *desc;
1067 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
1068 __u64 ev1 = md_event(sb);
1069
1070 rdev->raid_disk = -1;
1071 clear_bit(Faulty, &rdev->flags);
1072 clear_bit(In_sync, &rdev->flags);
1073 clear_bit(WriteMostly, &rdev->flags);
1074 clear_bit(BarriersNotsupp, &rdev->flags);
1075
1076 if (mddev->raid_disks == 0) {
1077 mddev->major_version = 0;
1078 mddev->minor_version = sb->minor_version;
1079 mddev->patch_version = sb->patch_version;
1080 mddev->external = 0;
1081 mddev->chunk_sectors = sb->chunk_size >> 9;
1082 mddev->ctime = sb->ctime;
1083 mddev->utime = sb->utime;
1084 mddev->level = sb->level;
1085 mddev->clevel[0] = 0;
1086 mddev->layout = sb->layout;
1087 mddev->raid_disks = sb->raid_disks;
1088 mddev->dev_sectors = sb->size * 2;
1089 mddev->events = ev1;
1090 mddev->bitmap_info.offset = 0;
1091 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1092
1093 if (mddev->minor_version >= 91) {
1094 mddev->reshape_position = sb->reshape_position;
1095 mddev->delta_disks = sb->delta_disks;
1096 mddev->new_level = sb->new_level;
1097 mddev->new_layout = sb->new_layout;
1098 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1099 } else {
1100 mddev->reshape_position = MaxSector;
1101 mddev->delta_disks = 0;
1102 mddev->new_level = mddev->level;
1103 mddev->new_layout = mddev->layout;
1104 mddev->new_chunk_sectors = mddev->chunk_sectors;
1105 }
1106
1107 if (sb->state & (1<<MD_SB_CLEAN))
1108 mddev->recovery_cp = MaxSector;
1109 else {
1110 if (sb->events_hi == sb->cp_events_hi &&
1111 sb->events_lo == sb->cp_events_lo) {
1112 mddev->recovery_cp = sb->recovery_cp;
1113 } else
1114 mddev->recovery_cp = 0;
1115 }
1116
1117 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1118 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1119 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1120 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1121
1122 mddev->max_disks = MD_SB_DISKS;
1123
1124 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1125 mddev->bitmap_info.file == NULL)
1126 mddev->bitmap_info.offset =
1127 mddev->bitmap_info.default_offset;
1128
1129 } else if (mddev->pers == NULL) {
1130 /* Insist on good event counter while assembling, except
1131 * for spares (which don't need an event count) */
1132 ++ev1;
1133 if (sb->disks[rdev->desc_nr].state & (
1134 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1135 if (ev1 < mddev->events)
1136 return -EINVAL;
1137 } else if (mddev->bitmap) {
1138 /* if adding to array with a bitmap, then we can accept an
1139 * older device ... but not too old.
1140 */
1141 if (ev1 < mddev->bitmap->events_cleared)
1142 return 0;
1143 } else {
1144 if (ev1 < mddev->events)
1145 /* just a hot-add of a new device, leave raid_disk at -1 */
1146 return 0;
1147 }
1148
1149 if (mddev->level != LEVEL_MULTIPATH) {
1150 desc = sb->disks + rdev->desc_nr;
1151
1152 if (desc->state & (1<<MD_DISK_FAULTY))
1153 set_bit(Faulty, &rdev->flags);
1154 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1155 desc->raid_disk < mddev->raid_disks */) {
1156 set_bit(In_sync, &rdev->flags);
1157 rdev->raid_disk = desc->raid_disk;
1158 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1159 /* active but not in sync implies recovery up to
1160 * reshape position. We don't know exactly where
1161 * that is, so set to zero for now */
1162 if (mddev->minor_version >= 91) {
1163 rdev->recovery_offset = 0;
1164 rdev->raid_disk = desc->raid_disk;
1165 }
1166 }
1167 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1168 set_bit(WriteMostly, &rdev->flags);
1169 } else /* MULTIPATH are always insync */
1170 set_bit(In_sync, &rdev->flags);
1171 return 0;
1172 }
1173
1174 /*
1175 * sync_super for 0.90.0
1176 */
1177 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1178 {
1179 mdp_super_t *sb;
1180 mdk_rdev_t *rdev2;
1181 int next_spare = mddev->raid_disks;
1182
1183
1184 /* make rdev->sb match mddev data..
1185 *
1186 * 1/ zero out disks
1187 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1188 * 3/ any empty disks < next_spare become removed
1189 *
1190 * disks[0] gets initialised to REMOVED because
1191 * we cannot be sure from other fields if it has
1192 * been initialised or not.
1193 */
1194 int i;
1195 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1196
1197 rdev->sb_size = MD_SB_BYTES;
1198
1199 sb = (mdp_super_t*)page_address(rdev->sb_page);
1200
1201 memset(sb, 0, sizeof(*sb));
1202
1203 sb->md_magic = MD_SB_MAGIC;
1204 sb->major_version = mddev->major_version;
1205 sb->patch_version = mddev->patch_version;
1206 sb->gvalid_words = 0; /* ignored */
1207 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1208 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1209 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1210 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1211
1212 sb->ctime = mddev->ctime;
1213 sb->level = mddev->level;
1214 sb->size = mddev->dev_sectors / 2;
1215 sb->raid_disks = mddev->raid_disks;
1216 sb->md_minor = mddev->md_minor;
1217 sb->not_persistent = 0;
1218 sb->utime = mddev->utime;
1219 sb->state = 0;
1220 sb->events_hi = (mddev->events>>32);
1221 sb->events_lo = (u32)mddev->events;
1222
1223 if (mddev->reshape_position == MaxSector)
1224 sb->minor_version = 90;
1225 else {
1226 sb->minor_version = 91;
1227 sb->reshape_position = mddev->reshape_position;
1228 sb->new_level = mddev->new_level;
1229 sb->delta_disks = mddev->delta_disks;
1230 sb->new_layout = mddev->new_layout;
1231 sb->new_chunk = mddev->new_chunk_sectors << 9;
1232 }
1233 mddev->minor_version = sb->minor_version;
1234 if (mddev->in_sync)
1235 {
1236 sb->recovery_cp = mddev->recovery_cp;
1237 sb->cp_events_hi = (mddev->events>>32);
1238 sb->cp_events_lo = (u32)mddev->events;
1239 if (mddev->recovery_cp == MaxSector)
1240 sb->state = (1<< MD_SB_CLEAN);
1241 } else
1242 sb->recovery_cp = 0;
1243
1244 sb->layout = mddev->layout;
1245 sb->chunk_size = mddev->chunk_sectors << 9;
1246
1247 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1248 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1249
1250 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1251 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1252 mdp_disk_t *d;
1253 int desc_nr;
1254 int is_active = test_bit(In_sync, &rdev2->flags);
1255
1256 if (rdev2->raid_disk >= 0 &&
1257 sb->minor_version >= 91)
1258 /* we have nowhere to store the recovery_offset,
1259 * but if it is not below the reshape_position,
1260 * we can piggy-back on that.
1261 */
1262 is_active = 1;
1263 if (rdev2->raid_disk < 0 ||
1264 test_bit(Faulty, &rdev2->flags))
1265 is_active = 0;
1266 if (is_active)
1267 desc_nr = rdev2->raid_disk;
1268 else
1269 desc_nr = next_spare++;
1270 rdev2->desc_nr = desc_nr;
1271 d = &sb->disks[rdev2->desc_nr];
1272 nr_disks++;
1273 d->number = rdev2->desc_nr;
1274 d->major = MAJOR(rdev2->bdev->bd_dev);
1275 d->minor = MINOR(rdev2->bdev->bd_dev);
1276 if (is_active)
1277 d->raid_disk = rdev2->raid_disk;
1278 else
1279 d->raid_disk = rdev2->desc_nr; /* compatibility */
1280 if (test_bit(Faulty, &rdev2->flags))
1281 d->state = (1<<MD_DISK_FAULTY);
1282 else if (is_active) {
1283 d->state = (1<<MD_DISK_ACTIVE);
1284 if (test_bit(In_sync, &rdev2->flags))
1285 d->state |= (1<<MD_DISK_SYNC);
1286 active++;
1287 working++;
1288 } else {
1289 d->state = 0;
1290 spare++;
1291 working++;
1292 }
1293 if (test_bit(WriteMostly, &rdev2->flags))
1294 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1295 }
1296 /* now set the "removed" and "faulty" bits on any missing devices */
1297 for (i=0 ; i < mddev->raid_disks ; i++) {
1298 mdp_disk_t *d = &sb->disks[i];
1299 if (d->state == 0 && d->number == 0) {
1300 d->number = i;
1301 d->raid_disk = i;
1302 d->state = (1<<MD_DISK_REMOVED);
1303 d->state |= (1<<MD_DISK_FAULTY);
1304 failed++;
1305 }
1306 }
1307 sb->nr_disks = nr_disks;
1308 sb->active_disks = active;
1309 sb->working_disks = working;
1310 sb->failed_disks = failed;
1311 sb->spare_disks = spare;
1312
1313 sb->this_disk = sb->disks[rdev->desc_nr];
1314 sb->sb_csum = calc_sb_csum(sb);
1315 }
1316
1317 /*
1318 * rdev_size_change for 0.90.0
1319 */
1320 static unsigned long long
1321 super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1322 {
1323 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1324 return 0; /* component must fit device */
1325 if (rdev->mddev->bitmap_info.offset)
1326 return 0; /* can't move bitmap */
1327 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
1328 if (!num_sectors || num_sectors > rdev->sb_start)
1329 num_sectors = rdev->sb_start;
1330 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1331 rdev->sb_page);
1332 md_super_wait(rdev->mddev);
1333 return num_sectors / 2; /* kB for sysfs */
1334 }
1335
1336
1337 /*
1338 * version 1 superblock
1339 */
1340
1341 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1342 {
1343 __le32 disk_csum;
1344 u32 csum;
1345 unsigned long long newcsum;
1346 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1347 __le32 *isuper = (__le32*)sb;
1348 int i;
1349
1350 disk_csum = sb->sb_csum;
1351 sb->sb_csum = 0;
1352 newcsum = 0;
1353 for (i=0; size>=4; size -= 4 )
1354 newcsum += le32_to_cpu(*isuper++);
1355
1356 if (size == 2)
1357 newcsum += le16_to_cpu(*(__le16*) isuper);
1358
1359 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1360 sb->sb_csum = disk_csum;
1361 return cpu_to_le32(csum);
1362 }
1363
1364 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1365 {
1366 struct mdp_superblock_1 *sb;
1367 int ret;
1368 sector_t sb_start;
1369 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1370 int bmask;
1371
1372 /*
1373 * Calculate the position of the superblock in 512byte sectors.
1374 * It is always aligned to a 4K boundary and
1375 * depeding on minor_version, it can be:
1376 * 0: At least 8K, but less than 12K, from end of device
1377 * 1: At start of device
1378 * 2: 4K from start of device.
1379 */
1380 switch(minor_version) {
1381 case 0:
1382 sb_start = rdev->bdev->bd_inode->i_size >> 9;
1383 sb_start -= 8*2;
1384 sb_start &= ~(sector_t)(4*2-1);
1385 break;
1386 case 1:
1387 sb_start = 0;
1388 break;
1389 case 2:
1390 sb_start = 8;
1391 break;
1392 default:
1393 return -EINVAL;
1394 }
1395 rdev->sb_start = sb_start;
1396
1397 /* superblock is rarely larger than 1K, but it can be larger,
1398 * and it is safe to read 4k, so we do that
1399 */
1400 ret = read_disk_sb(rdev, 4096);
1401 if (ret) return ret;
1402
1403
1404 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1405
1406 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1407 sb->major_version != cpu_to_le32(1) ||
1408 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1409 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1410 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1411 return -EINVAL;
1412
1413 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1414 printk("md: invalid superblock checksum on %s\n",
1415 bdevname(rdev->bdev,b));
1416 return -EINVAL;
1417 }
1418 if (le64_to_cpu(sb->data_size) < 10) {
1419 printk("md: data_size too small on %s\n",
1420 bdevname(rdev->bdev,b));
1421 return -EINVAL;
1422 }
1423
1424 rdev->preferred_minor = 0xffff;
1425 rdev->data_offset = le64_to_cpu(sb->data_offset);
1426 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1427
1428 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1429 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1430 if (rdev->sb_size & bmask)
1431 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1432
1433 if (minor_version
1434 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1435 return -EINVAL;
1436
1437 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1438 rdev->desc_nr = -1;
1439 else
1440 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1441
1442 if (!refdev) {
1443 ret = 1;
1444 } else {
1445 __u64 ev1, ev2;
1446 struct mdp_superblock_1 *refsb =
1447 (struct mdp_superblock_1*)page_address(refdev->sb_page);
1448
1449 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1450 sb->level != refsb->level ||
1451 sb->layout != refsb->layout ||
1452 sb->chunksize != refsb->chunksize) {
1453 printk(KERN_WARNING "md: %s has strangely different"
1454 " superblock to %s\n",
1455 bdevname(rdev->bdev,b),
1456 bdevname(refdev->bdev,b2));
1457 return -EINVAL;
1458 }
1459 ev1 = le64_to_cpu(sb->events);
1460 ev2 = le64_to_cpu(refsb->events);
1461
1462 if (ev1 > ev2)
1463 ret = 1;
1464 else
1465 ret = 0;
1466 }
1467 if (minor_version)
1468 rdev->sectors = (rdev->bdev->bd_inode->i_size >> 9) -
1469 le64_to_cpu(sb->data_offset);
1470 else
1471 rdev->sectors = rdev->sb_start;
1472 if (rdev->sectors < le64_to_cpu(sb->data_size))
1473 return -EINVAL;
1474 rdev->sectors = le64_to_cpu(sb->data_size);
1475 if (le64_to_cpu(sb->size) > rdev->sectors)
1476 return -EINVAL;
1477 return ret;
1478 }
1479
1480 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1481 {
1482 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1483 __u64 ev1 = le64_to_cpu(sb->events);
1484
1485 rdev->raid_disk = -1;
1486 clear_bit(Faulty, &rdev->flags);
1487 clear_bit(In_sync, &rdev->flags);
1488 clear_bit(WriteMostly, &rdev->flags);
1489 clear_bit(BarriersNotsupp, &rdev->flags);
1490
1491 if (mddev->raid_disks == 0) {
1492 mddev->major_version = 1;
1493 mddev->patch_version = 0;
1494 mddev->external = 0;
1495 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1496 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1497 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1498 mddev->level = le32_to_cpu(sb->level);
1499 mddev->clevel[0] = 0;
1500 mddev->layout = le32_to_cpu(sb->layout);
1501 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1502 mddev->dev_sectors = le64_to_cpu(sb->size);
1503 mddev->events = ev1;
1504 mddev->bitmap_info.offset = 0;
1505 mddev->bitmap_info.default_offset = 1024 >> 9;
1506
1507 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1508 memcpy(mddev->uuid, sb->set_uuid, 16);
1509
1510 mddev->max_disks = (4096-256)/2;
1511
1512 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1513 mddev->bitmap_info.file == NULL )
1514 mddev->bitmap_info.offset =
1515 (__s32)le32_to_cpu(sb->bitmap_offset);
1516
1517 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1518 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1519 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1520 mddev->new_level = le32_to_cpu(sb->new_level);
1521 mddev->new_layout = le32_to_cpu(sb->new_layout);
1522 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1523 } else {
1524 mddev->reshape_position = MaxSector;
1525 mddev->delta_disks = 0;
1526 mddev->new_level = mddev->level;
1527 mddev->new_layout = mddev->layout;
1528 mddev->new_chunk_sectors = mddev->chunk_sectors;
1529 }
1530
1531 } else if (mddev->pers == NULL) {
1532 /* Insist of good event counter while assembling, except for
1533 * spares (which don't need an event count) */
1534 ++ev1;
1535 if (rdev->desc_nr >= 0 &&
1536 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1537 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1538 if (ev1 < mddev->events)
1539 return -EINVAL;
1540 } else if (mddev->bitmap) {
1541 /* If adding to array with a bitmap, then we can accept an
1542 * older device, but not too old.
1543 */
1544 if (ev1 < mddev->bitmap->events_cleared)
1545 return 0;
1546 } else {
1547 if (ev1 < mddev->events)
1548 /* just a hot-add of a new device, leave raid_disk at -1 */
1549 return 0;
1550 }
1551 if (mddev->level != LEVEL_MULTIPATH) {
1552 int role;
1553 if (rdev->desc_nr < 0 ||
1554 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1555 role = 0xffff;
1556 rdev->desc_nr = -1;
1557 } else
1558 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1559 switch(role) {
1560 case 0xffff: /* spare */
1561 break;
1562 case 0xfffe: /* faulty */
1563 set_bit(Faulty, &rdev->flags);
1564 break;
1565 default:
1566 if ((le32_to_cpu(sb->feature_map) &
1567 MD_FEATURE_RECOVERY_OFFSET))
1568 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1569 else
1570 set_bit(In_sync, &rdev->flags);
1571 rdev->raid_disk = role;
1572 break;
1573 }
1574 if (sb->devflags & WriteMostly1)
1575 set_bit(WriteMostly, &rdev->flags);
1576 } else /* MULTIPATH are always insync */
1577 set_bit(In_sync, &rdev->flags);
1578
1579 return 0;
1580 }
1581
1582 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1583 {
1584 struct mdp_superblock_1 *sb;
1585 mdk_rdev_t *rdev2;
1586 int max_dev, i;
1587 /* make rdev->sb match mddev and rdev data. */
1588
1589 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1590
1591 sb->feature_map = 0;
1592 sb->pad0 = 0;
1593 sb->recovery_offset = cpu_to_le64(0);
1594 memset(sb->pad1, 0, sizeof(sb->pad1));
1595 memset(sb->pad2, 0, sizeof(sb->pad2));
1596 memset(sb->pad3, 0, sizeof(sb->pad3));
1597
1598 sb->utime = cpu_to_le64((__u64)mddev->utime);
1599 sb->events = cpu_to_le64(mddev->events);
1600 if (mddev->in_sync)
1601 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1602 else
1603 sb->resync_offset = cpu_to_le64(0);
1604
1605 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1606
1607 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1608 sb->size = cpu_to_le64(mddev->dev_sectors);
1609 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1610 sb->level = cpu_to_le32(mddev->level);
1611 sb->layout = cpu_to_le32(mddev->layout);
1612
1613 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1614 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1615 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1616 }
1617
1618 if (rdev->raid_disk >= 0 &&
1619 !test_bit(In_sync, &rdev->flags)) {
1620 sb->feature_map |=
1621 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1622 sb->recovery_offset =
1623 cpu_to_le64(rdev->recovery_offset);
1624 }
1625
1626 if (mddev->reshape_position != MaxSector) {
1627 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1628 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1629 sb->new_layout = cpu_to_le32(mddev->new_layout);
1630 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1631 sb->new_level = cpu_to_le32(mddev->new_level);
1632 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1633 }
1634
1635 max_dev = 0;
1636 list_for_each_entry(rdev2, &mddev->disks, same_set)
1637 if (rdev2->desc_nr+1 > max_dev)
1638 max_dev = rdev2->desc_nr+1;
1639
1640 if (max_dev > le32_to_cpu(sb->max_dev)) {
1641 int bmask;
1642 sb->max_dev = cpu_to_le32(max_dev);
1643 rdev->sb_size = max_dev * 2 + 256;
1644 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1645 if (rdev->sb_size & bmask)
1646 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1647 } else
1648 max_dev = le32_to_cpu(sb->max_dev);
1649
1650 for (i=0; i<max_dev;i++)
1651 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1652
1653 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1654 i = rdev2->desc_nr;
1655 if (test_bit(Faulty, &rdev2->flags))
1656 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1657 else if (test_bit(In_sync, &rdev2->flags))
1658 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1659 else if (rdev2->raid_disk >= 0)
1660 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1661 else
1662 sb->dev_roles[i] = cpu_to_le16(0xffff);
1663 }
1664
1665 sb->sb_csum = calc_sb_1_csum(sb);
1666 }
1667
1668 static unsigned long long
1669 super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
1670 {
1671 struct mdp_superblock_1 *sb;
1672 sector_t max_sectors;
1673 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1674 return 0; /* component must fit device */
1675 if (rdev->sb_start < rdev->data_offset) {
1676 /* minor versions 1 and 2; superblock before data */
1677 max_sectors = rdev->bdev->bd_inode->i_size >> 9;
1678 max_sectors -= rdev->data_offset;
1679 if (!num_sectors || num_sectors > max_sectors)
1680 num_sectors = max_sectors;
1681 } else if (rdev->mddev->bitmap_info.offset) {
1682 /* minor version 0 with bitmap we can't move */
1683 return 0;
1684 } else {
1685 /* minor version 0; superblock after data */
1686 sector_t sb_start;
1687 sb_start = (rdev->bdev->bd_inode->i_size >> 9) - 8*2;
1688 sb_start &= ~(sector_t)(4*2 - 1);
1689 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1690 if (!num_sectors || num_sectors > max_sectors)
1691 num_sectors = max_sectors;
1692 rdev->sb_start = sb_start;
1693 }
1694 sb = (struct mdp_superblock_1 *) page_address(rdev->sb_page);
1695 sb->data_size = cpu_to_le64(num_sectors);
1696 sb->super_offset = rdev->sb_start;
1697 sb->sb_csum = calc_sb_1_csum(sb);
1698 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1699 rdev->sb_page);
1700 md_super_wait(rdev->mddev);
1701 return num_sectors / 2; /* kB for sysfs */
1702 }
1703
1704 static struct super_type super_types[] = {
1705 [0] = {
1706 .name = "0.90.0",
1707 .owner = THIS_MODULE,
1708 .load_super = super_90_load,
1709 .validate_super = super_90_validate,
1710 .sync_super = super_90_sync,
1711 .rdev_size_change = super_90_rdev_size_change,
1712 },
1713 [1] = {
1714 .name = "md-1",
1715 .owner = THIS_MODULE,
1716 .load_super = super_1_load,
1717 .validate_super = super_1_validate,
1718 .sync_super = super_1_sync,
1719 .rdev_size_change = super_1_rdev_size_change,
1720 },
1721 };
1722
1723 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1724 {
1725 mdk_rdev_t *rdev, *rdev2;
1726
1727 rcu_read_lock();
1728 rdev_for_each_rcu(rdev, mddev1)
1729 rdev_for_each_rcu(rdev2, mddev2)
1730 if (rdev->bdev->bd_contains ==
1731 rdev2->bdev->bd_contains) {
1732 rcu_read_unlock();
1733 return 1;
1734 }
1735 rcu_read_unlock();
1736 return 0;
1737 }
1738
1739 static LIST_HEAD(pending_raid_disks);
1740
1741 /*
1742 * Try to register data integrity profile for an mddev
1743 *
1744 * This is called when an array is started and after a disk has been kicked
1745 * from the array. It only succeeds if all working and active component devices
1746 * are integrity capable with matching profiles.
1747 */
1748 int md_integrity_register(mddev_t *mddev)
1749 {
1750 mdk_rdev_t *rdev, *reference = NULL;
1751
1752 if (list_empty(&mddev->disks))
1753 return 0; /* nothing to do */
1754 if (blk_get_integrity(mddev->gendisk))
1755 return 0; /* already registered */
1756 list_for_each_entry(rdev, &mddev->disks, same_set) {
1757 /* skip spares and non-functional disks */
1758 if (test_bit(Faulty, &rdev->flags))
1759 continue;
1760 if (rdev->raid_disk < 0)
1761 continue;
1762 /*
1763 * If at least one rdev is not integrity capable, we can not
1764 * enable data integrity for the md device.
1765 */
1766 if (!bdev_get_integrity(rdev->bdev))
1767 return -EINVAL;
1768 if (!reference) {
1769 /* Use the first rdev as the reference */
1770 reference = rdev;
1771 continue;
1772 }
1773 /* does this rdev's profile match the reference profile? */
1774 if (blk_integrity_compare(reference->bdev->bd_disk,
1775 rdev->bdev->bd_disk) < 0)
1776 return -EINVAL;
1777 }
1778 /*
1779 * All component devices are integrity capable and have matching
1780 * profiles, register the common profile for the md device.
1781 */
1782 if (blk_integrity_register(mddev->gendisk,
1783 bdev_get_integrity(reference->bdev)) != 0) {
1784 printk(KERN_ERR "md: failed to register integrity for %s\n",
1785 mdname(mddev));
1786 return -EINVAL;
1787 }
1788 printk(KERN_NOTICE "md: data integrity on %s enabled\n",
1789 mdname(mddev));
1790 return 0;
1791 }
1792 EXPORT_SYMBOL(md_integrity_register);
1793
1794 /* Disable data integrity if non-capable/non-matching disk is being added */
1795 void md_integrity_add_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
1796 {
1797 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1798 struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1799
1800 if (!bi_mddev) /* nothing to do */
1801 return;
1802 if (rdev->raid_disk < 0) /* skip spares */
1803 return;
1804 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
1805 rdev->bdev->bd_disk) >= 0)
1806 return;
1807 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
1808 blk_integrity_unregister(mddev->gendisk);
1809 }
1810 EXPORT_SYMBOL(md_integrity_add_rdev);
1811
1812 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1813 {
1814 char b[BDEVNAME_SIZE];
1815 struct kobject *ko;
1816 char *s;
1817 int err;
1818
1819 if (rdev->mddev) {
1820 MD_BUG();
1821 return -EINVAL;
1822 }
1823
1824 /* prevent duplicates */
1825 if (find_rdev(mddev, rdev->bdev->bd_dev))
1826 return -EEXIST;
1827
1828 /* make sure rdev->sectors exceeds mddev->dev_sectors */
1829 if (rdev->sectors && (mddev->dev_sectors == 0 ||
1830 rdev->sectors < mddev->dev_sectors)) {
1831 if (mddev->pers) {
1832 /* Cannot change size, so fail
1833 * If mddev->level <= 0, then we don't care
1834 * about aligning sizes (e.g. linear)
1835 */
1836 if (mddev->level > 0)
1837 return -ENOSPC;
1838 } else
1839 mddev->dev_sectors = rdev->sectors;
1840 }
1841
1842 /* Verify rdev->desc_nr is unique.
1843 * If it is -1, assign a free number, else
1844 * check number is not in use
1845 */
1846 if (rdev->desc_nr < 0) {
1847 int choice = 0;
1848 if (mddev->pers) choice = mddev->raid_disks;
1849 while (find_rdev_nr(mddev, choice))
1850 choice++;
1851 rdev->desc_nr = choice;
1852 } else {
1853 if (find_rdev_nr(mddev, rdev->desc_nr))
1854 return -EBUSY;
1855 }
1856 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
1857 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
1858 mdname(mddev), mddev->max_disks);
1859 return -EBUSY;
1860 }
1861 bdevname(rdev->bdev,b);
1862 while ( (s=strchr(b, '/')) != NULL)
1863 *s = '!';
1864
1865 rdev->mddev = mddev;
1866 printk(KERN_INFO "md: bind<%s>\n", b);
1867
1868 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
1869 goto fail;
1870
1871 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
1872 if (sysfs_create_link(&rdev->kobj, ko, "block"))
1873 /* failure here is OK */;
1874 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
1875
1876 list_add_rcu(&rdev->same_set, &mddev->disks);
1877 bd_claim_by_disk(rdev->bdev, rdev->bdev->bd_holder, mddev->gendisk);
1878
1879 /* May as well allow recovery to be retried once */
1880 mddev->recovery_disabled = 0;
1881
1882 return 0;
1883
1884 fail:
1885 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
1886 b, mdname(mddev));
1887 return err;
1888 }
1889
1890 static void md_delayed_delete(struct work_struct *ws)
1891 {
1892 mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
1893 kobject_del(&rdev->kobj);
1894 kobject_put(&rdev->kobj);
1895 }
1896
1897 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1898 {
1899 char b[BDEVNAME_SIZE];
1900 if (!rdev->mddev) {
1901 MD_BUG();
1902 return;
1903 }
1904 bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1905 list_del_rcu(&rdev->same_set);
1906 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1907 rdev->mddev = NULL;
1908 sysfs_remove_link(&rdev->kobj, "block");
1909 sysfs_put(rdev->sysfs_state);
1910 rdev->sysfs_state = NULL;
1911 /* We need to delay this, otherwise we can deadlock when
1912 * writing to 'remove' to "dev/state". We also need
1913 * to delay it due to rcu usage.
1914 */
1915 synchronize_rcu();
1916 INIT_WORK(&rdev->del_work, md_delayed_delete);
1917 kobject_get(&rdev->kobj);
1918 schedule_work(&rdev->del_work);
1919 }
1920
1921 /*
1922 * prevent the device from being mounted, repartitioned or
1923 * otherwise reused by a RAID array (or any other kernel
1924 * subsystem), by bd_claiming the device.
1925 */
1926 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
1927 {
1928 int err = 0;
1929 struct block_device *bdev;
1930 char b[BDEVNAME_SIZE];
1931
1932 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1933 if (IS_ERR(bdev)) {
1934 printk(KERN_ERR "md: could not open %s.\n",
1935 __bdevname(dev, b));
1936 return PTR_ERR(bdev);
1937 }
1938 err = bd_claim(bdev, shared ? (mdk_rdev_t *)lock_rdev : rdev);
1939 if (err) {
1940 printk(KERN_ERR "md: could not bd_claim %s.\n",
1941 bdevname(bdev, b));
1942 blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1943 return err;
1944 }
1945 if (!shared)
1946 set_bit(AllReserved, &rdev->flags);
1947 rdev->bdev = bdev;
1948 return err;
1949 }
1950
1951 static void unlock_rdev(mdk_rdev_t *rdev)
1952 {
1953 struct block_device *bdev = rdev->bdev;
1954 rdev->bdev = NULL;
1955 if (!bdev)
1956 MD_BUG();
1957 bd_release(bdev);
1958 blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
1959 }
1960
1961 void md_autodetect_dev(dev_t dev);
1962
1963 static void export_rdev(mdk_rdev_t * rdev)
1964 {
1965 char b[BDEVNAME_SIZE];
1966 printk(KERN_INFO "md: export_rdev(%s)\n",
1967 bdevname(rdev->bdev,b));
1968 if (rdev->mddev)
1969 MD_BUG();
1970 free_disk_sb(rdev);
1971 #ifndef MODULE
1972 if (test_bit(AutoDetected, &rdev->flags))
1973 md_autodetect_dev(rdev->bdev->bd_dev);
1974 #endif
1975 unlock_rdev(rdev);
1976 kobject_put(&rdev->kobj);
1977 }
1978
1979 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1980 {
1981 unbind_rdev_from_array(rdev);
1982 export_rdev(rdev);
1983 }
1984
1985 static void export_array(mddev_t *mddev)
1986 {
1987 mdk_rdev_t *rdev, *tmp;
1988
1989 rdev_for_each(rdev, tmp, mddev) {
1990 if (!rdev->mddev) {
1991 MD_BUG();
1992 continue;
1993 }
1994 kick_rdev_from_array(rdev);
1995 }
1996 if (!list_empty(&mddev->disks))
1997 MD_BUG();
1998 mddev->raid_disks = 0;
1999 mddev->major_version = 0;
2000 }
2001
2002 static void print_desc(mdp_disk_t *desc)
2003 {
2004 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2005 desc->major,desc->minor,desc->raid_disk,desc->state);
2006 }
2007
2008 static void print_sb_90(mdp_super_t *sb)
2009 {
2010 int i;
2011
2012 printk(KERN_INFO
2013 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2014 sb->major_version, sb->minor_version, sb->patch_version,
2015 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2016 sb->ctime);
2017 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2018 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2019 sb->md_minor, sb->layout, sb->chunk_size);
2020 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
2021 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2022 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2023 sb->failed_disks, sb->spare_disks,
2024 sb->sb_csum, (unsigned long)sb->events_lo);
2025
2026 printk(KERN_INFO);
2027 for (i = 0; i < MD_SB_DISKS; i++) {
2028 mdp_disk_t *desc;
2029
2030 desc = sb->disks + i;
2031 if (desc->number || desc->major || desc->minor ||
2032 desc->raid_disk || (desc->state && (desc->state != 4))) {
2033 printk(" D %2d: ", i);
2034 print_desc(desc);
2035 }
2036 }
2037 printk(KERN_INFO "md: THIS: ");
2038 print_desc(&sb->this_disk);
2039 }
2040
2041 static void print_sb_1(struct mdp_superblock_1 *sb)
2042 {
2043 __u8 *uuid;
2044
2045 uuid = sb->set_uuid;
2046 printk(KERN_INFO
2047 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2048 "md: Name: \"%s\" CT:%llu\n",
2049 le32_to_cpu(sb->major_version),
2050 le32_to_cpu(sb->feature_map),
2051 uuid,
2052 sb->set_name,
2053 (unsigned long long)le64_to_cpu(sb->ctime)
2054 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2055
2056 uuid = sb->device_uuid;
2057 printk(KERN_INFO
2058 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2059 " RO:%llu\n"
2060 "md: Dev:%08x UUID: %pU\n"
2061 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2062 "md: (MaxDev:%u) \n",
2063 le32_to_cpu(sb->level),
2064 (unsigned long long)le64_to_cpu(sb->size),
2065 le32_to_cpu(sb->raid_disks),
2066 le32_to_cpu(sb->layout),
2067 le32_to_cpu(sb->chunksize),
2068 (unsigned long long)le64_to_cpu(sb->data_offset),
2069 (unsigned long long)le64_to_cpu(sb->data_size),
2070 (unsigned long long)le64_to_cpu(sb->super_offset),
2071 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2072 le32_to_cpu(sb->dev_number),
2073 uuid,
2074 sb->devflags,
2075 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2076 (unsigned long long)le64_to_cpu(sb->events),
2077 (unsigned long long)le64_to_cpu(sb->resync_offset),
2078 le32_to_cpu(sb->sb_csum),
2079 le32_to_cpu(sb->max_dev)
2080 );
2081 }
2082
2083 static void print_rdev(mdk_rdev_t *rdev, int major_version)
2084 {
2085 char b[BDEVNAME_SIZE];
2086 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2087 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2088 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2089 rdev->desc_nr);
2090 if (rdev->sb_loaded) {
2091 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2092 switch (major_version) {
2093 case 0:
2094 print_sb_90((mdp_super_t*)page_address(rdev->sb_page));
2095 break;
2096 case 1:
2097 print_sb_1((struct mdp_superblock_1 *)page_address(rdev->sb_page));
2098 break;
2099 }
2100 } else
2101 printk(KERN_INFO "md: no rdev superblock!\n");
2102 }
2103
2104 static void md_print_devices(void)
2105 {
2106 struct list_head *tmp;
2107 mdk_rdev_t *rdev;
2108 mddev_t *mddev;
2109 char b[BDEVNAME_SIZE];
2110
2111 printk("\n");
2112 printk("md: **********************************\n");
2113 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2114 printk("md: **********************************\n");
2115 for_each_mddev(mddev, tmp) {
2116
2117 if (mddev->bitmap)
2118 bitmap_print_sb(mddev->bitmap);
2119 else
2120 printk("%s: ", mdname(mddev));
2121 list_for_each_entry(rdev, &mddev->disks, same_set)
2122 printk("<%s>", bdevname(rdev->bdev,b));
2123 printk("\n");
2124
2125 list_for_each_entry(rdev, &mddev->disks, same_set)
2126 print_rdev(rdev, mddev->major_version);
2127 }
2128 printk("md: **********************************\n");
2129 printk("\n");
2130 }
2131
2132
2133 static void sync_sbs(mddev_t * mddev, int nospares)
2134 {
2135 /* Update each superblock (in-memory image), but
2136 * if we are allowed to, skip spares which already
2137 * have the right event counter, or have one earlier
2138 * (which would mean they aren't being marked as dirty
2139 * with the rest of the array)
2140 */
2141 mdk_rdev_t *rdev;
2142 list_for_each_entry(rdev, &mddev->disks, same_set) {
2143 if (rdev->sb_events == mddev->events ||
2144 (nospares &&
2145 rdev->raid_disk < 0 &&
2146 rdev->sb_events+1 == mddev->events)) {
2147 /* Don't update this superblock */
2148 rdev->sb_loaded = 2;
2149 } else {
2150 super_types[mddev->major_version].
2151 sync_super(mddev, rdev);
2152 rdev->sb_loaded = 1;
2153 }
2154 }
2155 }
2156
2157 static void md_update_sb(mddev_t * mddev, int force_change)
2158 {
2159 mdk_rdev_t *rdev;
2160 int sync_req;
2161 int nospares = 0;
2162
2163 repeat:
2164 /* First make sure individual recovery_offsets are correct */
2165 list_for_each_entry(rdev, &mddev->disks, same_set) {
2166 if (rdev->raid_disk >= 0 &&
2167 mddev->delta_disks >= 0 &&
2168 !test_bit(In_sync, &rdev->flags) &&
2169 mddev->curr_resync_completed > rdev->recovery_offset)
2170 rdev->recovery_offset = mddev->curr_resync_completed;
2171
2172 }
2173 if (!mddev->persistent) {
2174 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2175 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2176 wake_up(&mddev->sb_wait);
2177 return;
2178 }
2179
2180 spin_lock_irq(&mddev->write_lock);
2181
2182 mddev->utime = get_seconds();
2183
2184 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2185 force_change = 1;
2186 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2187 /* just a clean<-> dirty transition, possibly leave spares alone,
2188 * though if events isn't the right even/odd, we will have to do
2189 * spares after all
2190 */
2191 nospares = 1;
2192 if (force_change)
2193 nospares = 0;
2194 if (mddev->degraded)
2195 /* If the array is degraded, then skipping spares is both
2196 * dangerous and fairly pointless.
2197 * Dangerous because a device that was removed from the array
2198 * might have a event_count that still looks up-to-date,
2199 * so it can be re-added without a resync.
2200 * Pointless because if there are any spares to skip,
2201 * then a recovery will happen and soon that array won't
2202 * be degraded any more and the spare can go back to sleep then.
2203 */
2204 nospares = 0;
2205
2206 sync_req = mddev->in_sync;
2207
2208 /* If this is just a dirty<->clean transition, and the array is clean
2209 * and 'events' is odd, we can roll back to the previous clean state */
2210 if (nospares
2211 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2212 && mddev->can_decrease_events
2213 && mddev->events != 1) {
2214 mddev->events--;
2215 mddev->can_decrease_events = 0;
2216 } else {
2217 /* otherwise we have to go forward and ... */
2218 mddev->events ++;
2219 mddev->can_decrease_events = nospares;
2220 }
2221
2222 if (!mddev->events) {
2223 /*
2224 * oops, this 64-bit counter should never wrap.
2225 * Either we are in around ~1 trillion A.C., assuming
2226 * 1 reboot per second, or we have a bug:
2227 */
2228 MD_BUG();
2229 mddev->events --;
2230 }
2231 sync_sbs(mddev, nospares);
2232 spin_unlock_irq(&mddev->write_lock);
2233
2234 dprintk(KERN_INFO
2235 "md: updating %s RAID superblock on device (in sync %d)\n",
2236 mdname(mddev),mddev->in_sync);
2237
2238 bitmap_update_sb(mddev->bitmap);
2239 list_for_each_entry(rdev, &mddev->disks, same_set) {
2240 char b[BDEVNAME_SIZE];
2241 dprintk(KERN_INFO "md: ");
2242 if (rdev->sb_loaded != 1)
2243 continue; /* no noise on spare devices */
2244 if (test_bit(Faulty, &rdev->flags))
2245 dprintk("(skipping faulty ");
2246
2247 dprintk("%s ", bdevname(rdev->bdev,b));
2248 if (!test_bit(Faulty, &rdev->flags)) {
2249 md_super_write(mddev,rdev,
2250 rdev->sb_start, rdev->sb_size,
2251 rdev->sb_page);
2252 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
2253 bdevname(rdev->bdev,b),
2254 (unsigned long long)rdev->sb_start);
2255 rdev->sb_events = mddev->events;
2256
2257 } else
2258 dprintk(")\n");
2259 if (mddev->level == LEVEL_MULTIPATH)
2260 /* only need to write one superblock... */
2261 break;
2262 }
2263 md_super_wait(mddev);
2264 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2265
2266 spin_lock_irq(&mddev->write_lock);
2267 if (mddev->in_sync != sync_req ||
2268 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2269 /* have to write it out again */
2270 spin_unlock_irq(&mddev->write_lock);
2271 goto repeat;
2272 }
2273 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2274 spin_unlock_irq(&mddev->write_lock);
2275 wake_up(&mddev->sb_wait);
2276 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2277 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2278
2279 }
2280
2281 /* words written to sysfs files may, or may not, be \n terminated.
2282 * We want to accept with case. For this we use cmd_match.
2283 */
2284 static int cmd_match(const char *cmd, const char *str)
2285 {
2286 /* See if cmd, written into a sysfs file, matches
2287 * str. They must either be the same, or cmd can
2288 * have a trailing newline
2289 */
2290 while (*cmd && *str && *cmd == *str) {
2291 cmd++;
2292 str++;
2293 }
2294 if (*cmd == '\n')
2295 cmd++;
2296 if (*str || *cmd)
2297 return 0;
2298 return 1;
2299 }
2300
2301 struct rdev_sysfs_entry {
2302 struct attribute attr;
2303 ssize_t (*show)(mdk_rdev_t *, char *);
2304 ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
2305 };
2306
2307 static ssize_t
2308 state_show(mdk_rdev_t *rdev, char *page)
2309 {
2310 char *sep = "";
2311 size_t len = 0;
2312
2313 if (test_bit(Faulty, &rdev->flags)) {
2314 len+= sprintf(page+len, "%sfaulty",sep);
2315 sep = ",";
2316 }
2317 if (test_bit(In_sync, &rdev->flags)) {
2318 len += sprintf(page+len, "%sin_sync",sep);
2319 sep = ",";
2320 }
2321 if (test_bit(WriteMostly, &rdev->flags)) {
2322 len += sprintf(page+len, "%swrite_mostly",sep);
2323 sep = ",";
2324 }
2325 if (test_bit(Blocked, &rdev->flags)) {
2326 len += sprintf(page+len, "%sblocked", sep);
2327 sep = ",";
2328 }
2329 if (!test_bit(Faulty, &rdev->flags) &&
2330 !test_bit(In_sync, &rdev->flags)) {
2331 len += sprintf(page+len, "%sspare", sep);
2332 sep = ",";
2333 }
2334 return len+sprintf(page+len, "\n");
2335 }
2336
2337 static ssize_t
2338 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2339 {
2340 /* can write
2341 * faulty - simulates and error
2342 * remove - disconnects the device
2343 * writemostly - sets write_mostly
2344 * -writemostly - clears write_mostly
2345 * blocked - sets the Blocked flag
2346 * -blocked - clears the Blocked flag
2347 * insync - sets Insync providing device isn't active
2348 */
2349 int err = -EINVAL;
2350 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2351 md_error(rdev->mddev, rdev);
2352 err = 0;
2353 } else if (cmd_match(buf, "remove")) {
2354 if (rdev->raid_disk >= 0)
2355 err = -EBUSY;
2356 else {
2357 mddev_t *mddev = rdev->mddev;
2358 kick_rdev_from_array(rdev);
2359 if (mddev->pers)
2360 md_update_sb(mddev, 1);
2361 md_new_event(mddev);
2362 err = 0;
2363 }
2364 } else if (cmd_match(buf, "writemostly")) {
2365 set_bit(WriteMostly, &rdev->flags);
2366 err = 0;
2367 } else if (cmd_match(buf, "-writemostly")) {
2368 clear_bit(WriteMostly, &rdev->flags);
2369 err = 0;
2370 } else if (cmd_match(buf, "blocked")) {
2371 set_bit(Blocked, &rdev->flags);
2372 err = 0;
2373 } else if (cmd_match(buf, "-blocked")) {
2374 clear_bit(Blocked, &rdev->flags);
2375 wake_up(&rdev->blocked_wait);
2376 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2377 md_wakeup_thread(rdev->mddev->thread);
2378
2379 err = 0;
2380 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2381 set_bit(In_sync, &rdev->flags);
2382 err = 0;
2383 }
2384 if (!err)
2385 sysfs_notify_dirent_safe(rdev->sysfs_state);
2386 return err ? err : len;
2387 }
2388 static struct rdev_sysfs_entry rdev_state =
2389 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2390
2391 static ssize_t
2392 errors_show(mdk_rdev_t *rdev, char *page)
2393 {
2394 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2395 }
2396
2397 static ssize_t
2398 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2399 {
2400 char *e;
2401 unsigned long n = simple_strtoul(buf, &e, 10);
2402 if (*buf && (*e == 0 || *e == '\n')) {
2403 atomic_set(&rdev->corrected_errors, n);
2404 return len;
2405 }
2406 return -EINVAL;
2407 }
2408 static struct rdev_sysfs_entry rdev_errors =
2409 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2410
2411 static ssize_t
2412 slot_show(mdk_rdev_t *rdev, char *page)
2413 {
2414 if (rdev->raid_disk < 0)
2415 return sprintf(page, "none\n");
2416 else
2417 return sprintf(page, "%d\n", rdev->raid_disk);
2418 }
2419
2420 static ssize_t
2421 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2422 {
2423 char *e;
2424 int err;
2425 char nm[20];
2426 int slot = simple_strtoul(buf, &e, 10);
2427 if (strncmp(buf, "none", 4)==0)
2428 slot = -1;
2429 else if (e==buf || (*e && *e!= '\n'))
2430 return -EINVAL;
2431 if (rdev->mddev->pers && slot == -1) {
2432 /* Setting 'slot' on an active array requires also
2433 * updating the 'rd%d' link, and communicating
2434 * with the personality with ->hot_*_disk.
2435 * For now we only support removing
2436 * failed/spare devices. This normally happens automatically,
2437 * but not when the metadata is externally managed.
2438 */
2439 if (rdev->raid_disk == -1)
2440 return -EEXIST;
2441 /* personality does all needed checks */
2442 if (rdev->mddev->pers->hot_add_disk == NULL)
2443 return -EINVAL;
2444 err = rdev->mddev->pers->
2445 hot_remove_disk(rdev->mddev, rdev->raid_disk);
2446 if (err)
2447 return err;
2448 sprintf(nm, "rd%d", rdev->raid_disk);
2449 sysfs_remove_link(&rdev->mddev->kobj, nm);
2450 rdev->raid_disk = -1;
2451 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2452 md_wakeup_thread(rdev->mddev->thread);
2453 } else if (rdev->mddev->pers) {
2454 mdk_rdev_t *rdev2;
2455 /* Activating a spare .. or possibly reactivating
2456 * if we ever get bitmaps working here.
2457 */
2458
2459 if (rdev->raid_disk != -1)
2460 return -EBUSY;
2461
2462 if (rdev->mddev->pers->hot_add_disk == NULL)
2463 return -EINVAL;
2464
2465 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2466 if (rdev2->raid_disk == slot)
2467 return -EEXIST;
2468
2469 rdev->raid_disk = slot;
2470 if (test_bit(In_sync, &rdev->flags))
2471 rdev->saved_raid_disk = slot;
2472 else
2473 rdev->saved_raid_disk = -1;
2474 err = rdev->mddev->pers->
2475 hot_add_disk(rdev->mddev, rdev);
2476 if (err) {
2477 rdev->raid_disk = -1;
2478 return err;
2479 } else
2480 sysfs_notify_dirent_safe(rdev->sysfs_state);
2481 sprintf(nm, "rd%d", rdev->raid_disk);
2482 if (sysfs_create_link(&rdev->mddev->kobj, &rdev->kobj, nm))
2483 /* failure here is OK */;
2484 /* don't wakeup anyone, leave that to userspace. */
2485 } else {
2486 if (slot >= rdev->mddev->raid_disks)
2487 return -ENOSPC;
2488 rdev->raid_disk = slot;
2489 /* assume it is working */
2490 clear_bit(Faulty, &rdev->flags);
2491 clear_bit(WriteMostly, &rdev->flags);
2492 set_bit(In_sync, &rdev->flags);
2493 sysfs_notify_dirent_safe(rdev->sysfs_state);
2494 }
2495 return len;
2496 }
2497
2498
2499 static struct rdev_sysfs_entry rdev_slot =
2500 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2501
2502 static ssize_t
2503 offset_show(mdk_rdev_t *rdev, char *page)
2504 {
2505 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2506 }
2507
2508 static ssize_t
2509 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2510 {
2511 char *e;
2512 unsigned long long offset = simple_strtoull(buf, &e, 10);
2513 if (e==buf || (*e && *e != '\n'))
2514 return -EINVAL;
2515 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2516 return -EBUSY;
2517 if (rdev->sectors && rdev->mddev->external)
2518 /* Must set offset before size, so overlap checks
2519 * can be sane */
2520 return -EBUSY;
2521 rdev->data_offset = offset;
2522 return len;
2523 }
2524
2525 static struct rdev_sysfs_entry rdev_offset =
2526 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2527
2528 static ssize_t
2529 rdev_size_show(mdk_rdev_t *rdev, char *page)
2530 {
2531 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2532 }
2533
2534 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2535 {
2536 /* check if two start/length pairs overlap */
2537 if (s1+l1 <= s2)
2538 return 0;
2539 if (s2+l2 <= s1)
2540 return 0;
2541 return 1;
2542 }
2543
2544 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2545 {
2546 unsigned long long blocks;
2547 sector_t new;
2548
2549 if (strict_strtoull(buf, 10, &blocks) < 0)
2550 return -EINVAL;
2551
2552 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2553 return -EINVAL; /* sector conversion overflow */
2554
2555 new = blocks * 2;
2556 if (new != blocks * 2)
2557 return -EINVAL; /* unsigned long long to sector_t overflow */
2558
2559 *sectors = new;
2560 return 0;
2561 }
2562
2563 static ssize_t
2564 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2565 {
2566 mddev_t *my_mddev = rdev->mddev;
2567 sector_t oldsectors = rdev->sectors;
2568 sector_t sectors;
2569
2570 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2571 return -EINVAL;
2572 if (my_mddev->pers && rdev->raid_disk >= 0) {
2573 if (my_mddev->persistent) {
2574 sectors = super_types[my_mddev->major_version].
2575 rdev_size_change(rdev, sectors);
2576 if (!sectors)
2577 return -EBUSY;
2578 } else if (!sectors)
2579 sectors = (rdev->bdev->bd_inode->i_size >> 9) -
2580 rdev->data_offset;
2581 }
2582 if (sectors < my_mddev->dev_sectors)
2583 return -EINVAL; /* component must fit device */
2584
2585 rdev->sectors = sectors;
2586 if (sectors > oldsectors && my_mddev->external) {
2587 /* need to check that all other rdevs with the same ->bdev
2588 * do not overlap. We need to unlock the mddev to avoid
2589 * a deadlock. We have already changed rdev->sectors, and if
2590 * we have to change it back, we will have the lock again.
2591 */
2592 mddev_t *mddev;
2593 int overlap = 0;
2594 struct list_head *tmp;
2595
2596 mddev_unlock(my_mddev);
2597 for_each_mddev(mddev, tmp) {
2598 mdk_rdev_t *rdev2;
2599
2600 mddev_lock(mddev);
2601 list_for_each_entry(rdev2, &mddev->disks, same_set)
2602 if (test_bit(AllReserved, &rdev2->flags) ||
2603 (rdev->bdev == rdev2->bdev &&
2604 rdev != rdev2 &&
2605 overlaps(rdev->data_offset, rdev->sectors,
2606 rdev2->data_offset,
2607 rdev2->sectors))) {
2608 overlap = 1;
2609 break;
2610 }
2611 mddev_unlock(mddev);
2612 if (overlap) {
2613 mddev_put(mddev);
2614 break;
2615 }
2616 }
2617 mddev_lock(my_mddev);
2618 if (overlap) {
2619 /* Someone else could have slipped in a size
2620 * change here, but doing so is just silly.
2621 * We put oldsectors back because we *know* it is
2622 * safe, and trust userspace not to race with
2623 * itself
2624 */
2625 rdev->sectors = oldsectors;
2626 return -EBUSY;
2627 }
2628 }
2629 return len;
2630 }
2631
2632 static struct rdev_sysfs_entry rdev_size =
2633 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2634
2635
2636 static ssize_t recovery_start_show(mdk_rdev_t *rdev, char *page)
2637 {
2638 unsigned long long recovery_start = rdev->recovery_offset;
2639
2640 if (test_bit(In_sync, &rdev->flags) ||
2641 recovery_start == MaxSector)
2642 return sprintf(page, "none\n");
2643
2644 return sprintf(page, "%llu\n", recovery_start);
2645 }
2646
2647 static ssize_t recovery_start_store(mdk_rdev_t *rdev, const char *buf, size_t len)
2648 {
2649 unsigned long long recovery_start;
2650
2651 if (cmd_match(buf, "none"))
2652 recovery_start = MaxSector;
2653 else if (strict_strtoull(buf, 10, &recovery_start))
2654 return -EINVAL;
2655
2656 if (rdev->mddev->pers &&
2657 rdev->raid_disk >= 0)
2658 return -EBUSY;
2659
2660 rdev->recovery_offset = recovery_start;
2661 if (recovery_start == MaxSector)
2662 set_bit(In_sync, &rdev->flags);
2663 else
2664 clear_bit(In_sync, &rdev->flags);
2665 return len;
2666 }
2667
2668 static struct rdev_sysfs_entry rdev_recovery_start =
2669 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2670
2671 static struct attribute *rdev_default_attrs[] = {
2672 &rdev_state.attr,
2673 &rdev_errors.attr,
2674 &rdev_slot.attr,
2675 &rdev_offset.attr,
2676 &rdev_size.attr,
2677 &rdev_recovery_start.attr,
2678 NULL,
2679 };
2680 static ssize_t
2681 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2682 {
2683 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2684 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2685 mddev_t *mddev = rdev->mddev;
2686 ssize_t rv;
2687
2688 if (!entry->show)
2689 return -EIO;
2690
2691 rv = mddev ? mddev_lock(mddev) : -EBUSY;
2692 if (!rv) {
2693 if (rdev->mddev == NULL)
2694 rv = -EBUSY;
2695 else
2696 rv = entry->show(rdev, page);
2697 mddev_unlock(mddev);
2698 }
2699 return rv;
2700 }
2701
2702 static ssize_t
2703 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2704 const char *page, size_t length)
2705 {
2706 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2707 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
2708 ssize_t rv;
2709 mddev_t *mddev = rdev->mddev;
2710
2711 if (!entry->store)
2712 return -EIO;
2713 if (!capable(CAP_SYS_ADMIN))
2714 return -EACCES;
2715 rv = mddev ? mddev_lock(mddev): -EBUSY;
2716 if (!rv) {
2717 if (rdev->mddev == NULL)
2718 rv = -EBUSY;
2719 else
2720 rv = entry->store(rdev, page, length);
2721 mddev_unlock(mddev);
2722 }
2723 return rv;
2724 }
2725
2726 static void rdev_free(struct kobject *ko)
2727 {
2728 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
2729 kfree(rdev);
2730 }
2731 static const struct sysfs_ops rdev_sysfs_ops = {
2732 .show = rdev_attr_show,
2733 .store = rdev_attr_store,
2734 };
2735 static struct kobj_type rdev_ktype = {
2736 .release = rdev_free,
2737 .sysfs_ops = &rdev_sysfs_ops,
2738 .default_attrs = rdev_default_attrs,
2739 };
2740
2741 void md_rdev_init(mdk_rdev_t *rdev)
2742 {
2743 rdev->desc_nr = -1;
2744 rdev->saved_raid_disk = -1;
2745 rdev->raid_disk = -1;
2746 rdev->flags = 0;
2747 rdev->data_offset = 0;
2748 rdev->sb_events = 0;
2749 rdev->last_read_error.tv_sec = 0;
2750 rdev->last_read_error.tv_nsec = 0;
2751 atomic_set(&rdev->nr_pending, 0);
2752 atomic_set(&rdev->read_errors, 0);
2753 atomic_set(&rdev->corrected_errors, 0);
2754
2755 INIT_LIST_HEAD(&rdev->same_set);
2756 init_waitqueue_head(&rdev->blocked_wait);
2757 }
2758 EXPORT_SYMBOL_GPL(md_rdev_init);
2759 /*
2760 * Import a device. If 'super_format' >= 0, then sanity check the superblock
2761 *
2762 * mark the device faulty if:
2763 *
2764 * - the device is nonexistent (zero size)
2765 * - the device has no valid superblock
2766 *
2767 * a faulty rdev _never_ has rdev->sb set.
2768 */
2769 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
2770 {
2771 char b[BDEVNAME_SIZE];
2772 int err;
2773 mdk_rdev_t *rdev;
2774 sector_t size;
2775
2776 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
2777 if (!rdev) {
2778 printk(KERN_ERR "md: could not alloc mem for new device!\n");
2779 return ERR_PTR(-ENOMEM);
2780 }
2781
2782 md_rdev_init(rdev);
2783 if ((err = alloc_disk_sb(rdev)))
2784 goto abort_free;
2785
2786 err = lock_rdev(rdev, newdev, super_format == -2);
2787 if (err)
2788 goto abort_free;
2789
2790 kobject_init(&rdev->kobj, &rdev_ktype);
2791
2792 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2793 if (!size) {
2794 printk(KERN_WARNING
2795 "md: %s has zero or unknown size, marking faulty!\n",
2796 bdevname(rdev->bdev,b));
2797 err = -EINVAL;
2798 goto abort_free;
2799 }
2800
2801 if (super_format >= 0) {
2802 err = super_types[super_format].
2803 load_super(rdev, NULL, super_minor);
2804 if (err == -EINVAL) {
2805 printk(KERN_WARNING
2806 "md: %s does not have a valid v%d.%d "
2807 "superblock, not importing!\n",
2808 bdevname(rdev->bdev,b),
2809 super_format, super_minor);
2810 goto abort_free;
2811 }
2812 if (err < 0) {
2813 printk(KERN_WARNING
2814 "md: could not read %s's sb, not importing!\n",
2815 bdevname(rdev->bdev,b));
2816 goto abort_free;
2817 }
2818 }
2819
2820 return rdev;
2821
2822 abort_free:
2823 if (rdev->sb_page) {
2824 if (rdev->bdev)
2825 unlock_rdev(rdev);
2826 free_disk_sb(rdev);
2827 }
2828 kfree(rdev);
2829 return ERR_PTR(err);
2830 }
2831
2832 /*
2833 * Check a full RAID array for plausibility
2834 */
2835
2836
2837 static void analyze_sbs(mddev_t * mddev)
2838 {
2839 int i;
2840 mdk_rdev_t *rdev, *freshest, *tmp;
2841 char b[BDEVNAME_SIZE];
2842
2843 freshest = NULL;
2844 rdev_for_each(rdev, tmp, mddev)
2845 switch (super_types[mddev->major_version].
2846 load_super(rdev, freshest, mddev->minor_version)) {
2847 case 1:
2848 freshest = rdev;
2849 break;
2850 case 0:
2851 break;
2852 default:
2853 printk( KERN_ERR \
2854 "md: fatal superblock inconsistency in %s"
2855 " -- removing from array\n",
2856 bdevname(rdev->bdev,b));
2857 kick_rdev_from_array(rdev);
2858 }
2859
2860
2861 super_types[mddev->major_version].
2862 validate_super(mddev, freshest);
2863
2864 i = 0;
2865 rdev_for_each(rdev, tmp, mddev) {
2866 if (mddev->max_disks &&
2867 (rdev->desc_nr >= mddev->max_disks ||
2868 i > mddev->max_disks)) {
2869 printk(KERN_WARNING
2870 "md: %s: %s: only %d devices permitted\n",
2871 mdname(mddev), bdevname(rdev->bdev, b),
2872 mddev->max_disks);
2873 kick_rdev_from_array(rdev);
2874 continue;
2875 }
2876 if (rdev != freshest)
2877 if (super_types[mddev->major_version].
2878 validate_super(mddev, rdev)) {
2879 printk(KERN_WARNING "md: kicking non-fresh %s"
2880 " from array!\n",
2881 bdevname(rdev->bdev,b));
2882 kick_rdev_from_array(rdev);
2883 continue;
2884 }
2885 if (mddev->level == LEVEL_MULTIPATH) {
2886 rdev->desc_nr = i++;
2887 rdev->raid_disk = rdev->desc_nr;
2888 set_bit(In_sync, &rdev->flags);
2889 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
2890 rdev->raid_disk = -1;
2891 clear_bit(In_sync, &rdev->flags);
2892 }
2893 }
2894 }
2895
2896 /* Read a fixed-point number.
2897 * Numbers in sysfs attributes should be in "standard" units where
2898 * possible, so time should be in seconds.
2899 * However we internally use a a much smaller unit such as
2900 * milliseconds or jiffies.
2901 * This function takes a decimal number with a possible fractional
2902 * component, and produces an integer which is the result of
2903 * multiplying that number by 10^'scale'.
2904 * all without any floating-point arithmetic.
2905 */
2906 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
2907 {
2908 unsigned long result = 0;
2909 long decimals = -1;
2910 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
2911 if (*cp == '.')
2912 decimals = 0;
2913 else if (decimals < scale) {
2914 unsigned int value;
2915 value = *cp - '0';
2916 result = result * 10 + value;
2917 if (decimals >= 0)
2918 decimals++;
2919 }
2920 cp++;
2921 }
2922 if (*cp == '\n')
2923 cp++;
2924 if (*cp)
2925 return -EINVAL;
2926 if (decimals < 0)
2927 decimals = 0;
2928 while (decimals < scale) {
2929 result *= 10;
2930 decimals ++;
2931 }
2932 *res = result;
2933 return 0;
2934 }
2935
2936
2937 static void md_safemode_timeout(unsigned long data);
2938
2939 static ssize_t
2940 safe_delay_show(mddev_t *mddev, char *page)
2941 {
2942 int msec = (mddev->safemode_delay*1000)/HZ;
2943 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2944 }
2945 static ssize_t
2946 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2947 {
2948 unsigned long msec;
2949
2950 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
2951 return -EINVAL;
2952 if (msec == 0)
2953 mddev->safemode_delay = 0;
2954 else {
2955 unsigned long old_delay = mddev->safemode_delay;
2956 mddev->safemode_delay = (msec*HZ)/1000;
2957 if (mddev->safemode_delay == 0)
2958 mddev->safemode_delay = 1;
2959 if (mddev->safemode_delay < old_delay)
2960 md_safemode_timeout((unsigned long)mddev);
2961 }
2962 return len;
2963 }
2964 static struct md_sysfs_entry md_safe_delay =
2965 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2966
2967 static ssize_t
2968 level_show(mddev_t *mddev, char *page)
2969 {
2970 struct mdk_personality *p = mddev->pers;
2971 if (p)
2972 return sprintf(page, "%s\n", p->name);
2973 else if (mddev->clevel[0])
2974 return sprintf(page, "%s\n", mddev->clevel);
2975 else if (mddev->level != LEVEL_NONE)
2976 return sprintf(page, "%d\n", mddev->level);
2977 else
2978 return 0;
2979 }
2980
2981 static ssize_t
2982 level_store(mddev_t *mddev, const char *buf, size_t len)
2983 {
2984 char clevel[16];
2985 ssize_t rv = len;
2986 struct mdk_personality *pers;
2987 long level;
2988 void *priv;
2989 mdk_rdev_t *rdev;
2990
2991 if (mddev->pers == NULL) {
2992 if (len == 0)
2993 return 0;
2994 if (len >= sizeof(mddev->clevel))
2995 return -ENOSPC;
2996 strncpy(mddev->clevel, buf, len);
2997 if (mddev->clevel[len-1] == '\n')
2998 len--;
2999 mddev->clevel[len] = 0;
3000 mddev->level = LEVEL_NONE;
3001 return rv;
3002 }
3003
3004 /* request to change the personality. Need to ensure:
3005 * - array is not engaged in resync/recovery/reshape
3006 * - old personality can be suspended
3007 * - new personality will access other array.
3008 */
3009
3010 if (mddev->sync_thread ||
3011 mddev->reshape_position != MaxSector ||
3012 mddev->sysfs_active)
3013 return -EBUSY;
3014
3015 if (!mddev->pers->quiesce) {
3016 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3017 mdname(mddev), mddev->pers->name);
3018 return -EINVAL;
3019 }
3020
3021 /* Now find the new personality */
3022 if (len == 0 || len >= sizeof(clevel))
3023 return -EINVAL;
3024 strncpy(clevel, buf, len);
3025 if (clevel[len-1] == '\n')
3026 len--;
3027 clevel[len] = 0;
3028 if (strict_strtol(clevel, 10, &level))
3029 level = LEVEL_NONE;
3030
3031 if (request_module("md-%s", clevel) != 0)
3032 request_module("md-level-%s", clevel);
3033 spin_lock(&pers_lock);
3034 pers = find_pers(level, clevel);
3035 if (!pers || !try_module_get(pers->owner)) {
3036 spin_unlock(&pers_lock);
3037 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3038 return -EINVAL;
3039 }
3040 spin_unlock(&pers_lock);
3041
3042 if (pers == mddev->pers) {
3043 /* Nothing to do! */
3044 module_put(pers->owner);
3045 return rv;
3046 }
3047 if (!pers->takeover) {
3048 module_put(pers->owner);
3049 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3050 mdname(mddev), clevel);
3051 return -EINVAL;
3052 }
3053
3054 list_for_each_entry(rdev, &mddev->disks, same_set)
3055 rdev->new_raid_disk = rdev->raid_disk;
3056
3057 /* ->takeover must set new_* and/or delta_disks
3058 * if it succeeds, and may set them when it fails.
3059 */
3060 priv = pers->takeover(mddev);
3061 if (IS_ERR(priv)) {
3062 mddev->new_level = mddev->level;
3063 mddev->new_layout = mddev->layout;
3064 mddev->new_chunk_sectors = mddev->chunk_sectors;
3065 mddev->raid_disks -= mddev->delta_disks;
3066 mddev->delta_disks = 0;
3067 module_put(pers->owner);
3068 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3069 mdname(mddev), clevel);
3070 return PTR_ERR(priv);
3071 }
3072
3073 /* Looks like we have a winner */
3074 mddev_suspend(mddev);
3075 mddev->pers->stop(mddev);
3076
3077 if (mddev->pers->sync_request == NULL &&
3078 pers->sync_request != NULL) {
3079 /* need to add the md_redundancy_group */
3080 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3081 printk(KERN_WARNING
3082 "md: cannot register extra attributes for %s\n",
3083 mdname(mddev));
3084 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3085 }
3086 if (mddev->pers->sync_request != NULL &&
3087 pers->sync_request == NULL) {
3088 /* need to remove the md_redundancy_group */
3089 if (mddev->to_remove == NULL)
3090 mddev->to_remove = &md_redundancy_group;
3091 }
3092
3093 if (mddev->pers->sync_request == NULL &&
3094 mddev->external) {
3095 /* We are converting from a no-redundancy array
3096 * to a redundancy array and metadata is managed
3097 * externally so we need to be sure that writes
3098 * won't block due to a need to transition
3099 * clean->dirty
3100 * until external management is started.
3101 */
3102 mddev->in_sync = 0;
3103 mddev->safemode_delay = 0;
3104 mddev->safemode = 0;
3105 }
3106
3107 list_for_each_entry(rdev, &mddev->disks, same_set) {
3108 char nm[20];
3109 if (rdev->raid_disk < 0)
3110 continue;
3111 if (rdev->new_raid_disk > mddev->raid_disks)
3112 rdev->new_raid_disk = -1;
3113 if (rdev->new_raid_disk == rdev->raid_disk)
3114 continue;
3115 sprintf(nm, "rd%d", rdev->raid_disk);
3116 sysfs_remove_link(&mddev->kobj, nm);
3117 }
3118 list_for_each_entry(rdev, &mddev->disks, same_set) {
3119 if (rdev->raid_disk < 0)
3120 continue;
3121 if (rdev->new_raid_disk == rdev->raid_disk)
3122 continue;
3123 rdev->raid_disk = rdev->new_raid_disk;
3124 if (rdev->raid_disk < 0)
3125 clear_bit(In_sync, &rdev->flags);
3126 else {
3127 char nm[20];
3128 sprintf(nm, "rd%d", rdev->raid_disk);
3129 if(sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
3130 printk("md: cannot register %s for %s after level change\n",
3131 nm, mdname(mddev));
3132 }
3133 }
3134
3135 module_put(mddev->pers->owner);
3136 mddev->pers = pers;
3137 mddev->private = priv;
3138 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3139 mddev->level = mddev->new_level;
3140 mddev->layout = mddev->new_layout;
3141 mddev->chunk_sectors = mddev->new_chunk_sectors;
3142 mddev->delta_disks = 0;
3143 if (mddev->pers->sync_request == NULL) {
3144 /* this is now an array without redundancy, so
3145 * it must always be in_sync
3146 */
3147 mddev->in_sync = 1;
3148 del_timer_sync(&mddev->safemode_timer);
3149 }
3150 pers->run(mddev);
3151 mddev_resume(mddev);
3152 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3153 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3154 md_wakeup_thread(mddev->thread);
3155 sysfs_notify(&mddev->kobj, NULL, "level");
3156 md_new_event(mddev);
3157 return rv;
3158 }
3159
3160 static struct md_sysfs_entry md_level =
3161 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3162
3163
3164 static ssize_t
3165 layout_show(mddev_t *mddev, char *page)
3166 {
3167 /* just a number, not meaningful for all levels */
3168 if (mddev->reshape_position != MaxSector &&
3169 mddev->layout != mddev->new_layout)
3170 return sprintf(page, "%d (%d)\n",
3171 mddev->new_layout, mddev->layout);
3172 return sprintf(page, "%d\n", mddev->layout);
3173 }
3174
3175 static ssize_t
3176 layout_store(mddev_t *mddev, const char *buf, size_t len)
3177 {
3178 char *e;
3179 unsigned long n = simple_strtoul(buf, &e, 10);
3180
3181 if (!*buf || (*e && *e != '\n'))
3182 return -EINVAL;
3183
3184 if (mddev->pers) {
3185 int err;
3186 if (mddev->pers->check_reshape == NULL)
3187 return -EBUSY;
3188 mddev->new_layout = n;
3189 err = mddev->pers->check_reshape(mddev);
3190 if (err) {
3191 mddev->new_layout = mddev->layout;
3192 return err;
3193 }
3194 } else {
3195 mddev->new_layout = n;
3196 if (mddev->reshape_position == MaxSector)
3197 mddev->layout = n;
3198 }
3199 return len;
3200 }
3201 static struct md_sysfs_entry md_layout =
3202 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3203
3204
3205 static ssize_t
3206 raid_disks_show(mddev_t *mddev, char *page)
3207 {
3208 if (mddev->raid_disks == 0)
3209 return 0;
3210 if (mddev->reshape_position != MaxSector &&
3211 mddev->delta_disks != 0)
3212 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3213 mddev->raid_disks - mddev->delta_disks);
3214 return sprintf(page, "%d\n", mddev->raid_disks);
3215 }
3216
3217 static int update_raid_disks(mddev_t *mddev, int raid_disks);
3218
3219 static ssize_t
3220 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
3221 {
3222 char *e;
3223 int rv = 0;
3224 unsigned long n = simple_strtoul(buf, &e, 10);
3225
3226 if (!*buf || (*e && *e != '\n'))
3227 return -EINVAL;
3228
3229 if (mddev->pers)
3230 rv = update_raid_disks(mddev, n);
3231 else if (mddev->reshape_position != MaxSector) {
3232 int olddisks = mddev->raid_disks - mddev->delta_disks;
3233 mddev->delta_disks = n - olddisks;
3234 mddev->raid_disks = n;
3235 } else
3236 mddev->raid_disks = n;
3237 return rv ? rv : len;
3238 }
3239 static struct md_sysfs_entry md_raid_disks =
3240 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3241
3242 static ssize_t
3243 chunk_size_show(mddev_t *mddev, char *page)
3244 {
3245 if (mddev->reshape_position != MaxSector &&
3246 mddev->chunk_sectors != mddev->new_chunk_sectors)
3247 return sprintf(page, "%d (%d)\n",
3248 mddev->new_chunk_sectors << 9,
3249 mddev->chunk_sectors << 9);
3250 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3251 }
3252
3253 static ssize_t
3254 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
3255 {
3256 char *e;
3257 unsigned long n = simple_strtoul(buf, &e, 10);
3258
3259 if (!*buf || (*e && *e != '\n'))
3260 return -EINVAL;
3261
3262 if (mddev->pers) {
3263 int err;
3264 if (mddev->pers->check_reshape == NULL)
3265 return -EBUSY;
3266 mddev->new_chunk_sectors = n >> 9;
3267 err = mddev->pers->check_reshape(mddev);
3268 if (err) {
3269 mddev->new_chunk_sectors = mddev->chunk_sectors;
3270 return err;
3271 }
3272 } else {
3273 mddev->new_chunk_sectors = n >> 9;
3274 if (mddev->reshape_position == MaxSector)
3275 mddev->chunk_sectors = n >> 9;
3276 }
3277 return len;
3278 }
3279 static struct md_sysfs_entry md_chunk_size =
3280 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3281
3282 static ssize_t
3283 resync_start_show(mddev_t *mddev, char *page)
3284 {
3285 if (mddev->recovery_cp == MaxSector)
3286 return sprintf(page, "none\n");
3287 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3288 }
3289
3290 static ssize_t
3291 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
3292 {
3293 char *e;
3294 unsigned long long n = simple_strtoull(buf, &e, 10);
3295
3296 if (mddev->pers)
3297 return -EBUSY;
3298 if (cmd_match(buf, "none"))
3299 n = MaxSector;
3300 else if (!*buf || (*e && *e != '\n'))
3301 return -EINVAL;
3302
3303 mddev->recovery_cp = n;
3304 return len;
3305 }
3306 static struct md_sysfs_entry md_resync_start =
3307 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3308
3309 /*
3310 * The array state can be:
3311 *
3312 * clear
3313 * No devices, no size, no level
3314 * Equivalent to STOP_ARRAY ioctl
3315 * inactive
3316 * May have some settings, but array is not active
3317 * all IO results in error
3318 * When written, doesn't tear down array, but just stops it
3319 * suspended (not supported yet)
3320 * All IO requests will block. The array can be reconfigured.
3321 * Writing this, if accepted, will block until array is quiescent
3322 * readonly
3323 * no resync can happen. no superblocks get written.
3324 * write requests fail
3325 * read-auto
3326 * like readonly, but behaves like 'clean' on a write request.
3327 *
3328 * clean - no pending writes, but otherwise active.
3329 * When written to inactive array, starts without resync
3330 * If a write request arrives then
3331 * if metadata is known, mark 'dirty' and switch to 'active'.
3332 * if not known, block and switch to write-pending
3333 * If written to an active array that has pending writes, then fails.
3334 * active
3335 * fully active: IO and resync can be happening.
3336 * When written to inactive array, starts with resync
3337 *
3338 * write-pending
3339 * clean, but writes are blocked waiting for 'active' to be written.
3340 *
3341 * active-idle
3342 * like active, but no writes have been seen for a while (100msec).
3343 *
3344 */
3345 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3346 write_pending, active_idle, bad_word};
3347 static char *array_states[] = {
3348 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3349 "write-pending", "active-idle", NULL };
3350
3351 static int match_word(const char *word, char **list)
3352 {
3353 int n;
3354 for (n=0; list[n]; n++)
3355 if (cmd_match(word, list[n]))
3356 break;
3357 return n;
3358 }
3359
3360 static ssize_t
3361 array_state_show(mddev_t *mddev, char *page)
3362 {
3363 enum array_state st = inactive;
3364
3365 if (mddev->pers)
3366 switch(mddev->ro) {
3367 case 1:
3368 st = readonly;
3369 break;
3370 case 2:
3371 st = read_auto;
3372 break;
3373 case 0:
3374 if (mddev->in_sync)
3375 st = clean;
3376 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3377 st = write_pending;
3378 else if (mddev->safemode)
3379 st = active_idle;
3380 else
3381 st = active;
3382 }
3383 else {
3384 if (list_empty(&mddev->disks) &&
3385 mddev->raid_disks == 0 &&
3386 mddev->dev_sectors == 0)
3387 st = clear;
3388 else
3389 st = inactive;
3390 }
3391 return sprintf(page, "%s\n", array_states[st]);
3392 }
3393
3394 static int do_md_stop(mddev_t * mddev, int ro, int is_open);
3395 static int md_set_readonly(mddev_t * mddev, int is_open);
3396 static int do_md_run(mddev_t * mddev);
3397 static int restart_array(mddev_t *mddev);
3398
3399 static ssize_t
3400 array_state_store(mddev_t *mddev, const char *buf, size_t len)
3401 {
3402 int err = -EINVAL;
3403 enum array_state st = match_word(buf, array_states);
3404 switch(st) {
3405 case bad_word:
3406 break;
3407 case clear:
3408 /* stopping an active array */
3409 if (atomic_read(&mddev->openers) > 0)
3410 return -EBUSY;
3411 err = do_md_stop(mddev, 0, 0);
3412 break;
3413 case inactive:
3414 /* stopping an active array */
3415 if (mddev->pers) {
3416 if (atomic_read(&mddev->openers) > 0)
3417 return -EBUSY;
3418 err = do_md_stop(mddev, 2, 0);
3419 } else
3420 err = 0; /* already inactive */
3421 break;
3422 case suspended:
3423 break; /* not supported yet */
3424 case readonly:
3425 if (mddev->pers)
3426 err = md_set_readonly(mddev, 0);
3427 else {
3428 mddev->ro = 1;
3429 set_disk_ro(mddev->gendisk, 1);
3430 err = do_md_run(mddev);
3431 }
3432 break;
3433 case read_auto:
3434 if (mddev->pers) {
3435 if (mddev->ro == 0)
3436 err = md_set_readonly(mddev, 0);
3437 else if (mddev->ro == 1)
3438 err = restart_array(mddev);
3439 if (err == 0) {
3440 mddev->ro = 2;
3441 set_disk_ro(mddev->gendisk, 0);
3442 }
3443 } else {
3444 mddev->ro = 2;
3445 err = do_md_run(mddev);
3446 }
3447 break;
3448 case clean:
3449 if (mddev->pers) {
3450 restart_array(mddev);
3451 spin_lock_irq(&mddev->write_lock);
3452 if (atomic_read(&mddev->writes_pending) == 0) {
3453 if (mddev->in_sync == 0) {
3454 mddev->in_sync = 1;
3455 if (mddev->safemode == 1)
3456 mddev->safemode = 0;
3457 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3458 }
3459 err = 0;
3460 } else
3461 err = -EBUSY;
3462 spin_unlock_irq(&mddev->write_lock);
3463 } else
3464 err = -EINVAL;
3465 break;
3466 case active:
3467 if (mddev->pers) {
3468 restart_array(mddev);
3469 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3470 wake_up(&mddev->sb_wait);
3471 err = 0;
3472 } else {
3473 mddev->ro = 0;
3474 set_disk_ro(mddev->gendisk, 0);
3475 err = do_md_run(mddev);
3476 }
3477 break;
3478 case write_pending:
3479 case active_idle:
3480 /* these cannot be set */
3481 break;
3482 }
3483 if (err)
3484 return err;
3485 else {
3486 sysfs_notify_dirent_safe(mddev->sysfs_state);
3487 return len;
3488 }
3489 }
3490 static struct md_sysfs_entry md_array_state =
3491 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3492
3493 static ssize_t
3494 max_corrected_read_errors_show(mddev_t *mddev, char *page) {
3495 return sprintf(page, "%d\n",
3496 atomic_read(&mddev->max_corr_read_errors));
3497 }
3498
3499 static ssize_t
3500 max_corrected_read_errors_store(mddev_t *mddev, const char *buf, size_t len)
3501 {
3502 char *e;
3503 unsigned long n = simple_strtoul(buf, &e, 10);
3504
3505 if (*buf && (*e == 0 || *e == '\n')) {
3506 atomic_set(&mddev->max_corr_read_errors, n);
3507 return len;
3508 }
3509 return -EINVAL;
3510 }
3511
3512 static struct md_sysfs_entry max_corr_read_errors =
3513 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3514 max_corrected_read_errors_store);
3515
3516 static ssize_t
3517 null_show(mddev_t *mddev, char *page)
3518 {
3519 return -EINVAL;
3520 }
3521
3522 static ssize_t
3523 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
3524 {
3525 /* buf must be %d:%d\n? giving major and minor numbers */
3526 /* The new device is added to the array.
3527 * If the array has a persistent superblock, we read the
3528 * superblock to initialise info and check validity.
3529 * Otherwise, only checking done is that in bind_rdev_to_array,
3530 * which mainly checks size.
3531 */
3532 char *e;
3533 int major = simple_strtoul(buf, &e, 10);
3534 int minor;
3535 dev_t dev;
3536 mdk_rdev_t *rdev;
3537 int err;
3538
3539 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3540 return -EINVAL;
3541 minor = simple_strtoul(e+1, &e, 10);
3542 if (*e && *e != '\n')
3543 return -EINVAL;
3544 dev = MKDEV(major, minor);
3545 if (major != MAJOR(dev) ||
3546 minor != MINOR(dev))
3547 return -EOVERFLOW;
3548
3549
3550 if (mddev->persistent) {
3551 rdev = md_import_device(dev, mddev->major_version,
3552 mddev->minor_version);
3553 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3554 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3555 mdk_rdev_t, same_set);
3556 err = super_types[mddev->major_version]
3557 .load_super(rdev, rdev0, mddev->minor_version);
3558 if (err < 0)
3559 goto out;
3560 }
3561 } else if (mddev->external)
3562 rdev = md_import_device(dev, -2, -1);
3563 else
3564 rdev = md_import_device(dev, -1, -1);
3565
3566 if (IS_ERR(rdev))
3567 return PTR_ERR(rdev);
3568 err = bind_rdev_to_array(rdev, mddev);
3569 out:
3570 if (err)
3571 export_rdev(rdev);
3572 return err ? err : len;
3573 }
3574
3575 static struct md_sysfs_entry md_new_device =
3576 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3577
3578 static ssize_t
3579 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
3580 {
3581 char *end;
3582 unsigned long chunk, end_chunk;
3583
3584 if (!mddev->bitmap)
3585 goto out;
3586 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3587 while (*buf) {
3588 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3589 if (buf == end) break;
3590 if (*end == '-') { /* range */
3591 buf = end + 1;
3592 end_chunk = simple_strtoul(buf, &end, 0);
3593 if (buf == end) break;
3594 }
3595 if (*end && !isspace(*end)) break;
3596 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3597 buf = skip_spaces(end);
3598 }
3599 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3600 out:
3601 return len;
3602 }
3603
3604 static struct md_sysfs_entry md_bitmap =
3605 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3606
3607 static ssize_t
3608 size_show(mddev_t *mddev, char *page)
3609 {
3610 return sprintf(page, "%llu\n",
3611 (unsigned long long)mddev->dev_sectors / 2);
3612 }
3613
3614 static int update_size(mddev_t *mddev, sector_t num_sectors);
3615
3616 static ssize_t
3617 size_store(mddev_t *mddev, const char *buf, size_t len)
3618 {
3619 /* If array is inactive, we can reduce the component size, but
3620 * not increase it (except from 0).
3621 * If array is active, we can try an on-line resize
3622 */
3623 sector_t sectors;
3624 int err = strict_blocks_to_sectors(buf, &sectors);
3625
3626 if (err < 0)
3627 return err;
3628 if (mddev->pers) {
3629 err = update_size(mddev, sectors);
3630 md_update_sb(mddev, 1);
3631 } else {
3632 if (mddev->dev_sectors == 0 ||
3633 mddev->dev_sectors > sectors)
3634 mddev->dev_sectors = sectors;
3635 else
3636 err = -ENOSPC;
3637 }
3638 return err ? err : len;
3639 }
3640
3641 static struct md_sysfs_entry md_size =
3642 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3643
3644
3645 /* Metdata version.
3646 * This is one of
3647 * 'none' for arrays with no metadata (good luck...)
3648 * 'external' for arrays with externally managed metadata,
3649 * or N.M for internally known formats
3650 */
3651 static ssize_t
3652 metadata_show(mddev_t *mddev, char *page)
3653 {
3654 if (mddev->persistent)
3655 return sprintf(page, "%d.%d\n",
3656 mddev->major_version, mddev->minor_version);
3657 else if (mddev->external)
3658 return sprintf(page, "external:%s\n", mddev->metadata_type);
3659 else
3660 return sprintf(page, "none\n");
3661 }
3662
3663 static ssize_t
3664 metadata_store(mddev_t *mddev, const char *buf, size_t len)
3665 {
3666 int major, minor;
3667 char *e;
3668 /* Changing the details of 'external' metadata is
3669 * always permitted. Otherwise there must be
3670 * no devices attached to the array.
3671 */
3672 if (mddev->external && strncmp(buf, "external:", 9) == 0)
3673 ;
3674 else if (!list_empty(&mddev->disks))
3675 return -EBUSY;
3676
3677 if (cmd_match(buf, "none")) {
3678 mddev->persistent = 0;
3679 mddev->external = 0;
3680 mddev->major_version = 0;
3681 mddev->minor_version = 90;
3682 return len;
3683 }
3684 if (strncmp(buf, "external:", 9) == 0) {
3685 size_t namelen = len-9;
3686 if (namelen >= sizeof(mddev->metadata_type))
3687 namelen = sizeof(mddev->metadata_type)-1;
3688 strncpy(mddev->metadata_type, buf+9, namelen);
3689 mddev->metadata_type[namelen] = 0;
3690 if (namelen && mddev->metadata_type[namelen-1] == '\n')
3691 mddev->metadata_type[--namelen] = 0;
3692 mddev->persistent = 0;
3693 mddev->external = 1;
3694 mddev->major_version = 0;
3695 mddev->minor_version = 90;
3696 return len;
3697 }
3698 major = simple_strtoul(buf, &e, 10);
3699 if (e==buf || *e != '.')
3700 return -EINVAL;
3701 buf = e+1;
3702 minor = simple_strtoul(buf, &e, 10);
3703 if (e==buf || (*e && *e != '\n') )
3704 return -EINVAL;
3705 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
3706 return -ENOENT;
3707 mddev->major_version = major;
3708 mddev->minor_version = minor;
3709 mddev->persistent = 1;
3710 mddev->external = 0;
3711 return len;
3712 }
3713
3714 static struct md_sysfs_entry md_metadata =
3715 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
3716
3717 static ssize_t
3718 action_show(mddev_t *mddev, char *page)
3719 {
3720 char *type = "idle";
3721 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3722 type = "frozen";
3723 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3724 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
3725 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3726 type = "reshape";
3727 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3728 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
3729 type = "resync";
3730 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
3731 type = "check";
3732 else
3733 type = "repair";
3734 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
3735 type = "recover";
3736 }
3737 return sprintf(page, "%s\n", type);
3738 }
3739
3740 static ssize_t
3741 action_store(mddev_t *mddev, const char *page, size_t len)
3742 {
3743 if (!mddev->pers || !mddev->pers->sync_request)
3744 return -EINVAL;
3745
3746 if (cmd_match(page, "frozen"))
3747 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3748 else
3749 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3750
3751 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
3752 if (mddev->sync_thread) {
3753 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3754 md_unregister_thread(mddev->sync_thread);
3755 mddev->sync_thread = NULL;
3756 mddev->recovery = 0;
3757 }
3758 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3759 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
3760 return -EBUSY;
3761 else if (cmd_match(page, "resync"))
3762 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3763 else if (cmd_match(page, "recover")) {
3764 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3765 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3766 } else if (cmd_match(page, "reshape")) {
3767 int err;
3768 if (mddev->pers->start_reshape == NULL)
3769 return -EINVAL;
3770 err = mddev->pers->start_reshape(mddev);
3771 if (err)
3772 return err;
3773 sysfs_notify(&mddev->kobj, NULL, "degraded");
3774 } else {
3775 if (cmd_match(page, "check"))
3776 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3777 else if (!cmd_match(page, "repair"))
3778 return -EINVAL;
3779 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
3780 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3781 }
3782 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3783 md_wakeup_thread(mddev->thread);
3784 sysfs_notify_dirent_safe(mddev->sysfs_action);
3785 return len;
3786 }
3787
3788 static ssize_t
3789 mismatch_cnt_show(mddev_t *mddev, char *page)
3790 {
3791 return sprintf(page, "%llu\n",
3792 (unsigned long long) mddev->resync_mismatches);
3793 }
3794
3795 static struct md_sysfs_entry md_scan_mode =
3796 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
3797
3798
3799 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
3800
3801 static ssize_t
3802 sync_min_show(mddev_t *mddev, char *page)
3803 {
3804 return sprintf(page, "%d (%s)\n", speed_min(mddev),
3805 mddev->sync_speed_min ? "local": "system");
3806 }
3807
3808 static ssize_t
3809 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
3810 {
3811 int min;
3812 char *e;
3813 if (strncmp(buf, "system", 6)==0) {
3814 mddev->sync_speed_min = 0;
3815 return len;
3816 }
3817 min = simple_strtoul(buf, &e, 10);
3818 if (buf == e || (*e && *e != '\n') || min <= 0)
3819 return -EINVAL;
3820 mddev->sync_speed_min = min;
3821 return len;
3822 }
3823
3824 static struct md_sysfs_entry md_sync_min =
3825 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
3826
3827 static ssize_t
3828 sync_max_show(mddev_t *mddev, char *page)
3829 {
3830 return sprintf(page, "%d (%s)\n", speed_max(mddev),
3831 mddev->sync_speed_max ? "local": "system");
3832 }
3833
3834 static ssize_t
3835 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
3836 {
3837 int max;
3838 char *e;
3839 if (strncmp(buf, "system", 6)==0) {
3840 mddev->sync_speed_max = 0;
3841 return len;
3842 }
3843 max = simple_strtoul(buf, &e, 10);
3844 if (buf == e || (*e && *e != '\n') || max <= 0)
3845 return -EINVAL;
3846 mddev->sync_speed_max = max;
3847 return len;
3848 }
3849
3850 static struct md_sysfs_entry md_sync_max =
3851 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
3852
3853 static ssize_t
3854 degraded_show(mddev_t *mddev, char *page)
3855 {
3856 return sprintf(page, "%d\n", mddev->degraded);
3857 }
3858 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
3859
3860 static ssize_t
3861 sync_force_parallel_show(mddev_t *mddev, char *page)
3862 {
3863 return sprintf(page, "%d\n", mddev->parallel_resync);
3864 }
3865
3866 static ssize_t
3867 sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
3868 {
3869 long n;
3870
3871 if (strict_strtol(buf, 10, &n))
3872 return -EINVAL;
3873
3874 if (n != 0 && n != 1)
3875 return -EINVAL;
3876
3877 mddev->parallel_resync = n;
3878
3879 if (mddev->sync_thread)
3880 wake_up(&resync_wait);
3881
3882 return len;
3883 }
3884
3885 /* force parallel resync, even with shared block devices */
3886 static struct md_sysfs_entry md_sync_force_parallel =
3887 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
3888 sync_force_parallel_show, sync_force_parallel_store);
3889
3890 static ssize_t
3891 sync_speed_show(mddev_t *mddev, char *page)
3892 {
3893 unsigned long resync, dt, db;
3894 if (mddev->curr_resync == 0)
3895 return sprintf(page, "none\n");
3896 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
3897 dt = (jiffies - mddev->resync_mark) / HZ;
3898 if (!dt) dt++;
3899 db = resync - mddev->resync_mark_cnt;
3900 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
3901 }
3902
3903 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
3904
3905 static ssize_t
3906 sync_completed_show(mddev_t *mddev, char *page)
3907 {
3908 unsigned long max_sectors, resync;
3909
3910 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3911 return sprintf(page, "none\n");
3912
3913 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
3914 max_sectors = mddev->resync_max_sectors;
3915 else
3916 max_sectors = mddev->dev_sectors;
3917
3918 resync = mddev->curr_resync_completed;
3919 return sprintf(page, "%lu / %lu\n", resync, max_sectors);
3920 }
3921
3922 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
3923
3924 static ssize_t
3925 min_sync_show(mddev_t *mddev, char *page)
3926 {
3927 return sprintf(page, "%llu\n",
3928 (unsigned long long)mddev->resync_min);
3929 }
3930 static ssize_t
3931 min_sync_store(mddev_t *mddev, const char *buf, size_t len)
3932 {
3933 unsigned long long min;
3934 if (strict_strtoull(buf, 10, &min))
3935 return -EINVAL;
3936 if (min > mddev->resync_max)
3937 return -EINVAL;
3938 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3939 return -EBUSY;
3940
3941 /* Must be a multiple of chunk_size */
3942 if (mddev->chunk_sectors) {
3943 sector_t temp = min;
3944 if (sector_div(temp, mddev->chunk_sectors))
3945 return -EINVAL;
3946 }
3947 mddev->resync_min = min;
3948
3949 return len;
3950 }
3951
3952 static struct md_sysfs_entry md_min_sync =
3953 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
3954
3955 static ssize_t
3956 max_sync_show(mddev_t *mddev, char *page)
3957 {
3958 if (mddev->resync_max == MaxSector)
3959 return sprintf(page, "max\n");
3960 else
3961 return sprintf(page, "%llu\n",
3962 (unsigned long long)mddev->resync_max);
3963 }
3964 static ssize_t
3965 max_sync_store(mddev_t *mddev, const char *buf, size_t len)
3966 {
3967 if (strncmp(buf, "max", 3) == 0)
3968 mddev->resync_max = MaxSector;
3969 else {
3970 unsigned long long max;
3971 if (strict_strtoull(buf, 10, &max))
3972 return -EINVAL;
3973 if (max < mddev->resync_min)
3974 return -EINVAL;
3975 if (max < mddev->resync_max &&
3976 mddev->ro == 0 &&
3977 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
3978 return -EBUSY;
3979
3980 /* Must be a multiple of chunk_size */
3981 if (mddev->chunk_sectors) {
3982 sector_t temp = max;
3983 if (sector_div(temp, mddev->chunk_sectors))
3984 return -EINVAL;
3985 }
3986 mddev->resync_max = max;
3987 }
3988 wake_up(&mddev->recovery_wait);
3989 return len;
3990 }
3991
3992 static struct md_sysfs_entry md_max_sync =
3993 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
3994
3995 static ssize_t
3996 suspend_lo_show(mddev_t *mddev, char *page)
3997 {
3998 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
3999 }
4000
4001 static ssize_t
4002 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
4003 {
4004 char *e;
4005 unsigned long long new = simple_strtoull(buf, &e, 10);
4006
4007 if (mddev->pers == NULL ||
4008 mddev->pers->quiesce == NULL)
4009 return -EINVAL;
4010 if (buf == e || (*e && *e != '\n'))
4011 return -EINVAL;
4012 if (new >= mddev->suspend_hi ||
4013 (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
4014 mddev->suspend_lo = new;
4015 mddev->pers->quiesce(mddev, 2);
4016 return len;
4017 } else
4018 return -EINVAL;
4019 }
4020 static struct md_sysfs_entry md_suspend_lo =
4021 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4022
4023
4024 static ssize_t
4025 suspend_hi_show(mddev_t *mddev, char *page)
4026 {
4027 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4028 }
4029
4030 static ssize_t
4031 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
4032 {
4033 char *e;
4034 unsigned long long new = simple_strtoull(buf, &e, 10);
4035
4036 if (mddev->pers == NULL ||
4037 mddev->pers->quiesce == NULL)
4038 return -EINVAL;
4039 if (buf == e || (*e && *e != '\n'))
4040 return -EINVAL;
4041 if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
4042 (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
4043 mddev->suspend_hi = new;
4044 mddev->pers->quiesce(mddev, 1);
4045 mddev->pers->quiesce(mddev, 0);
4046 return len;
4047 } else
4048 return -EINVAL;
4049 }
4050 static struct md_sysfs_entry md_suspend_hi =
4051 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4052
4053 static ssize_t
4054 reshape_position_show(mddev_t *mddev, char *page)
4055 {
4056 if (mddev->reshape_position != MaxSector)
4057 return sprintf(page, "%llu\n",
4058 (unsigned long long)mddev->reshape_position);
4059 strcpy(page, "none\n");
4060 return 5;
4061 }
4062
4063 static ssize_t
4064 reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
4065 {
4066 char *e;
4067 unsigned long long new = simple_strtoull(buf, &e, 10);
4068 if (mddev->pers)
4069 return -EBUSY;
4070 if (buf == e || (*e && *e != '\n'))
4071 return -EINVAL;
4072 mddev->reshape_position = new;
4073 mddev->delta_disks = 0;
4074 mddev->new_level = mddev->level;
4075 mddev->new_layout = mddev->layout;
4076 mddev->new_chunk_sectors = mddev->chunk_sectors;
4077 return len;
4078 }
4079
4080 static struct md_sysfs_entry md_reshape_position =
4081 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4082 reshape_position_store);
4083
4084 static ssize_t
4085 array_size_show(mddev_t *mddev, char *page)
4086 {
4087 if (mddev->external_size)
4088 return sprintf(page, "%llu\n",
4089 (unsigned long long)mddev->array_sectors/2);
4090 else
4091 return sprintf(page, "default\n");
4092 }
4093
4094 static ssize_t
4095 array_size_store(mddev_t *mddev, const char *buf, size_t len)
4096 {
4097 sector_t sectors;
4098
4099 if (strncmp(buf, "default", 7) == 0) {
4100 if (mddev->pers)
4101 sectors = mddev->pers->size(mddev, 0, 0);
4102 else
4103 sectors = mddev->array_sectors;
4104
4105 mddev->external_size = 0;
4106 } else {
4107 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4108 return -EINVAL;
4109 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4110 return -E2BIG;
4111
4112 mddev->external_size = 1;
4113 }
4114
4115 mddev->array_sectors = sectors;
4116 set_capacity(mddev->gendisk, mddev->array_sectors);
4117 if (mddev->pers)
4118 revalidate_disk(mddev->gendisk);
4119
4120 return len;
4121 }
4122
4123 static struct md_sysfs_entry md_array_size =
4124 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4125 array_size_store);
4126
4127 static struct attribute *md_default_attrs[] = {
4128 &md_level.attr,
4129 &md_layout.attr,
4130 &md_raid_disks.attr,
4131 &md_chunk_size.attr,
4132 &md_size.attr,
4133 &md_resync_start.attr,
4134 &md_metadata.attr,
4135 &md_new_device.attr,
4136 &md_safe_delay.attr,
4137 &md_array_state.attr,
4138 &md_reshape_position.attr,
4139 &md_array_size.attr,
4140 &max_corr_read_errors.attr,
4141 NULL,
4142 };
4143
4144 static struct attribute *md_redundancy_attrs[] = {
4145 &md_scan_mode.attr,
4146 &md_mismatches.attr,
4147 &md_sync_min.attr,
4148 &md_sync_max.attr,
4149 &md_sync_speed.attr,
4150 &md_sync_force_parallel.attr,
4151 &md_sync_completed.attr,
4152 &md_min_sync.attr,
4153 &md_max_sync.attr,
4154 &md_suspend_lo.attr,
4155 &md_suspend_hi.attr,
4156 &md_bitmap.attr,
4157 &md_degraded.attr,
4158 NULL,
4159 };
4160 static struct attribute_group md_redundancy_group = {
4161 .name = NULL,
4162 .attrs = md_redundancy_attrs,
4163 };
4164
4165
4166 static ssize_t
4167 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4168 {
4169 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4170 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4171 ssize_t rv;
4172
4173 if (!entry->show)
4174 return -EIO;
4175 rv = mddev_lock(mddev);
4176 if (!rv) {
4177 rv = entry->show(mddev, page);
4178 mddev_unlock(mddev);
4179 }
4180 return rv;
4181 }
4182
4183 static ssize_t
4184 md_attr_store(struct kobject *kobj, struct attribute *attr,
4185 const char *page, size_t length)
4186 {
4187 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4188 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
4189 ssize_t rv;
4190
4191 if (!entry->store)
4192 return -EIO;
4193 if (!capable(CAP_SYS_ADMIN))
4194 return -EACCES;
4195 rv = mddev_lock(mddev);
4196 if (mddev->hold_active == UNTIL_IOCTL)
4197 mddev->hold_active = 0;
4198 if (!rv) {
4199 rv = entry->store(mddev, page, length);
4200 mddev_unlock(mddev);
4201 }
4202 return rv;
4203 }
4204
4205 static void md_free(struct kobject *ko)
4206 {
4207 mddev_t *mddev = container_of(ko, mddev_t, kobj);
4208
4209 if (mddev->sysfs_state)
4210 sysfs_put(mddev->sysfs_state);
4211
4212 if (mddev->gendisk) {
4213 del_gendisk(mddev->gendisk);
4214 put_disk(mddev->gendisk);
4215 }
4216 if (mddev->queue)
4217 blk_cleanup_queue(mddev->queue);
4218
4219 kfree(mddev);
4220 }
4221
4222 static const struct sysfs_ops md_sysfs_ops = {
4223 .show = md_attr_show,
4224 .store = md_attr_store,
4225 };
4226 static struct kobj_type md_ktype = {
4227 .release = md_free,
4228 .sysfs_ops = &md_sysfs_ops,
4229 .default_attrs = md_default_attrs,
4230 };
4231
4232 int mdp_major = 0;
4233
4234 static void mddev_delayed_delete(struct work_struct *ws)
4235 {
4236 mddev_t *mddev = container_of(ws, mddev_t, del_work);
4237
4238 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4239 kobject_del(&mddev->kobj);
4240 kobject_put(&mddev->kobj);
4241 }
4242
4243 static int md_alloc(dev_t dev, char *name)
4244 {
4245 static DEFINE_MUTEX(disks_mutex);
4246 mddev_t *mddev = mddev_find(dev);
4247 struct gendisk *disk;
4248 int partitioned;
4249 int shift;
4250 int unit;
4251 int error;
4252
4253 if (!mddev)
4254 return -ENODEV;
4255
4256 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4257 shift = partitioned ? MdpMinorShift : 0;
4258 unit = MINOR(mddev->unit) >> shift;
4259
4260 /* wait for any previous instance if this device
4261 * to be completed removed (mddev_delayed_delete).
4262 */
4263 flush_scheduled_work();
4264
4265 mutex_lock(&disks_mutex);
4266 error = -EEXIST;
4267 if (mddev->gendisk)
4268 goto abort;
4269
4270 if (name) {
4271 /* Need to ensure that 'name' is not a duplicate.
4272 */
4273 mddev_t *mddev2;
4274 spin_lock(&all_mddevs_lock);
4275
4276 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4277 if (mddev2->gendisk &&
4278 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4279 spin_unlock(&all_mddevs_lock);
4280 goto abort;
4281 }
4282 spin_unlock(&all_mddevs_lock);
4283 }
4284
4285 error = -ENOMEM;
4286 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4287 if (!mddev->queue)
4288 goto abort;
4289 mddev->queue->queuedata = mddev;
4290
4291 /* Can be unlocked because the queue is new: no concurrency */
4292 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, mddev->queue);
4293
4294 blk_queue_make_request(mddev->queue, md_make_request);
4295
4296 disk = alloc_disk(1 << shift);
4297 if (!disk) {
4298 blk_cleanup_queue(mddev->queue);
4299 mddev->queue = NULL;
4300 goto abort;
4301 }
4302 disk->major = MAJOR(mddev->unit);
4303 disk->first_minor = unit << shift;
4304 if (name)
4305 strcpy(disk->disk_name, name);
4306 else if (partitioned)
4307 sprintf(disk->disk_name, "md_d%d", unit);
4308 else
4309 sprintf(disk->disk_name, "md%d", unit);
4310 disk->fops = &md_fops;
4311 disk->private_data = mddev;
4312 disk->queue = mddev->queue;
4313 /* Allow extended partitions. This makes the
4314 * 'mdp' device redundant, but we can't really
4315 * remove it now.
4316 */
4317 disk->flags |= GENHD_FL_EXT_DEVT;
4318 add_disk(disk);
4319 mddev->gendisk = disk;
4320 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4321 &disk_to_dev(disk)->kobj, "%s", "md");
4322 if (error) {
4323 /* This isn't possible, but as kobject_init_and_add is marked
4324 * __must_check, we must do something with the result
4325 */
4326 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4327 disk->disk_name);
4328 error = 0;
4329 }
4330 if (mddev->kobj.sd &&
4331 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4332 printk(KERN_DEBUG "pointless warning\n");
4333 abort:
4334 mutex_unlock(&disks_mutex);
4335 if (!error && mddev->kobj.sd) {
4336 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4337 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4338 }
4339 mddev_put(mddev);
4340 return error;
4341 }
4342
4343 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4344 {
4345 md_alloc(dev, NULL);
4346 return NULL;
4347 }
4348
4349 static int add_named_array(const char *val, struct kernel_param *kp)
4350 {
4351 /* val must be "md_*" where * is not all digits.
4352 * We allocate an array with a large free minor number, and
4353 * set the name to val. val must not already be an active name.
4354 */
4355 int len = strlen(val);
4356 char buf[DISK_NAME_LEN];
4357
4358 while (len && val[len-1] == '\n')
4359 len--;
4360 if (len >= DISK_NAME_LEN)
4361 return -E2BIG;
4362 strlcpy(buf, val, len+1);
4363 if (strncmp(buf, "md_", 3) != 0)
4364 return -EINVAL;
4365 return md_alloc(0, buf);
4366 }
4367
4368 static void md_safemode_timeout(unsigned long data)
4369 {
4370 mddev_t *mddev = (mddev_t *) data;
4371
4372 if (!atomic_read(&mddev->writes_pending)) {
4373 mddev->safemode = 1;
4374 if (mddev->external)
4375 sysfs_notify_dirent_safe(mddev->sysfs_state);
4376 }
4377 md_wakeup_thread(mddev->thread);
4378 }
4379
4380 static int start_dirty_degraded;
4381
4382 int md_run(mddev_t *mddev)
4383 {
4384 int err;
4385 mdk_rdev_t *rdev;
4386 struct mdk_personality *pers;
4387
4388 if (list_empty(&mddev->disks))
4389 /* cannot run an array with no devices.. */
4390 return -EINVAL;
4391
4392 if (mddev->pers)
4393 return -EBUSY;
4394 /* Cannot run until previous stop completes properly */
4395 if (mddev->sysfs_active)
4396 return -EBUSY;
4397
4398 /*
4399 * Analyze all RAID superblock(s)
4400 */
4401 if (!mddev->raid_disks) {
4402 if (!mddev->persistent)
4403 return -EINVAL;
4404 analyze_sbs(mddev);
4405 }
4406
4407 if (mddev->level != LEVEL_NONE)
4408 request_module("md-level-%d", mddev->level);
4409 else if (mddev->clevel[0])
4410 request_module("md-%s", mddev->clevel);
4411
4412 /*
4413 * Drop all container device buffers, from now on
4414 * the only valid external interface is through the md
4415 * device.
4416 */
4417 list_for_each_entry(rdev, &mddev->disks, same_set) {
4418 if (test_bit(Faulty, &rdev->flags))
4419 continue;
4420 sync_blockdev(rdev->bdev);
4421 invalidate_bdev(rdev->bdev);
4422
4423 /* perform some consistency tests on the device.
4424 * We don't want the data to overlap the metadata,
4425 * Internal Bitmap issues have been handled elsewhere.
4426 */
4427 if (rdev->data_offset < rdev->sb_start) {
4428 if (mddev->dev_sectors &&
4429 rdev->data_offset + mddev->dev_sectors
4430 > rdev->sb_start) {
4431 printk("md: %s: data overlaps metadata\n",
4432 mdname(mddev));
4433 return -EINVAL;
4434 }
4435 } else {
4436 if (rdev->sb_start + rdev->sb_size/512
4437 > rdev->data_offset) {
4438 printk("md: %s: metadata overlaps data\n",
4439 mdname(mddev));
4440 return -EINVAL;
4441 }
4442 }
4443 sysfs_notify_dirent_safe(rdev->sysfs_state);
4444 }
4445
4446 spin_lock(&pers_lock);
4447 pers = find_pers(mddev->level, mddev->clevel);
4448 if (!pers || !try_module_get(pers->owner)) {
4449 spin_unlock(&pers_lock);
4450 if (mddev->level != LEVEL_NONE)
4451 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4452 mddev->level);
4453 else
4454 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4455 mddev->clevel);
4456 return -EINVAL;
4457 }
4458 mddev->pers = pers;
4459 spin_unlock(&pers_lock);
4460 if (mddev->level != pers->level) {
4461 mddev->level = pers->level;
4462 mddev->new_level = pers->level;
4463 }
4464 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4465
4466 if (mddev->reshape_position != MaxSector &&
4467 pers->start_reshape == NULL) {
4468 /* This personality cannot handle reshaping... */
4469 mddev->pers = NULL;
4470 module_put(pers->owner);
4471 return -EINVAL;
4472 }
4473
4474 if (pers->sync_request) {
4475 /* Warn if this is a potentially silly
4476 * configuration.
4477 */
4478 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4479 mdk_rdev_t *rdev2;
4480 int warned = 0;
4481
4482 list_for_each_entry(rdev, &mddev->disks, same_set)
4483 list_for_each_entry(rdev2, &mddev->disks, same_set) {
4484 if (rdev < rdev2 &&
4485 rdev->bdev->bd_contains ==
4486 rdev2->bdev->bd_contains) {
4487 printk(KERN_WARNING
4488 "%s: WARNING: %s appears to be"
4489 " on the same physical disk as"
4490 " %s.\n",
4491 mdname(mddev),
4492 bdevname(rdev->bdev,b),
4493 bdevname(rdev2->bdev,b2));
4494 warned = 1;
4495 }
4496 }
4497
4498 if (warned)
4499 printk(KERN_WARNING
4500 "True protection against single-disk"
4501 " failure might be compromised.\n");
4502 }
4503
4504 mddev->recovery = 0;
4505 /* may be over-ridden by personality */
4506 mddev->resync_max_sectors = mddev->dev_sectors;
4507
4508 mddev->barriers_work = 1;
4509 mddev->ok_start_degraded = start_dirty_degraded;
4510
4511 if (start_readonly && mddev->ro == 0)
4512 mddev->ro = 2; /* read-only, but switch on first write */
4513
4514 err = mddev->pers->run(mddev);
4515 if (err)
4516 printk(KERN_ERR "md: pers->run() failed ...\n");
4517 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4518 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4519 " but 'external_size' not in effect?\n", __func__);
4520 printk(KERN_ERR
4521 "md: invalid array_size %llu > default size %llu\n",
4522 (unsigned long long)mddev->array_sectors / 2,
4523 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4524 err = -EINVAL;
4525 mddev->pers->stop(mddev);
4526 }
4527 if (err == 0 && mddev->pers->sync_request) {
4528 err = bitmap_create(mddev);
4529 if (err) {
4530 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4531 mdname(mddev), err);
4532 mddev->pers->stop(mddev);
4533 }
4534 }
4535 if (err) {
4536 module_put(mddev->pers->owner);
4537 mddev->pers = NULL;
4538 bitmap_destroy(mddev);
4539 return err;
4540 }
4541 if (mddev->pers->sync_request) {
4542 if (mddev->kobj.sd &&
4543 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4544 printk(KERN_WARNING
4545 "md: cannot register extra attributes for %s\n",
4546 mdname(mddev));
4547 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4548 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4549 mddev->ro = 0;
4550
4551 atomic_set(&mddev->writes_pending,0);
4552 atomic_set(&mddev->max_corr_read_errors,
4553 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4554 mddev->safemode = 0;
4555 mddev->safemode_timer.function = md_safemode_timeout;
4556 mddev->safemode_timer.data = (unsigned long) mddev;
4557 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4558 mddev->in_sync = 1;
4559
4560 list_for_each_entry(rdev, &mddev->disks, same_set)
4561 if (rdev->raid_disk >= 0) {
4562 char nm[20];
4563 sprintf(nm, "rd%d", rdev->raid_disk);
4564 if (sysfs_create_link(&mddev->kobj, &rdev->kobj, nm))
4565 /* failure here is OK */;
4566 }
4567
4568 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4569
4570 if (mddev->flags)
4571 md_update_sb(mddev, 0);
4572
4573 md_wakeup_thread(mddev->thread);
4574 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4575
4576 md_new_event(mddev);
4577 sysfs_notify_dirent_safe(mddev->sysfs_state);
4578 sysfs_notify_dirent_safe(mddev->sysfs_action);
4579 sysfs_notify(&mddev->kobj, NULL, "degraded");
4580 return 0;
4581 }
4582 EXPORT_SYMBOL_GPL(md_run);
4583
4584 static int do_md_run(mddev_t *mddev)
4585 {
4586 int err;
4587
4588 err = md_run(mddev);
4589 if (err)
4590 goto out;
4591 err = bitmap_load(mddev);
4592 if (err) {
4593 bitmap_destroy(mddev);
4594 goto out;
4595 }
4596 set_capacity(mddev->gendisk, mddev->array_sectors);
4597 revalidate_disk(mddev->gendisk);
4598 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4599 out:
4600 return err;
4601 }
4602
4603 static int restart_array(mddev_t *mddev)
4604 {
4605 struct gendisk *disk = mddev->gendisk;
4606
4607 /* Complain if it has no devices */
4608 if (list_empty(&mddev->disks))
4609 return -ENXIO;
4610 if (!mddev->pers)
4611 return -EINVAL;
4612 if (!mddev->ro)
4613 return -EBUSY;
4614 mddev->safemode = 0;
4615 mddev->ro = 0;
4616 set_disk_ro(disk, 0);
4617 printk(KERN_INFO "md: %s switched to read-write mode.\n",
4618 mdname(mddev));
4619 /* Kick recovery or resync if necessary */
4620 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4621 md_wakeup_thread(mddev->thread);
4622 md_wakeup_thread(mddev->sync_thread);
4623 sysfs_notify_dirent_safe(mddev->sysfs_state);
4624 return 0;
4625 }
4626
4627 /* similar to deny_write_access, but accounts for our holding a reference
4628 * to the file ourselves */
4629 static int deny_bitmap_write_access(struct file * file)
4630 {
4631 struct inode *inode = file->f_mapping->host;
4632
4633 spin_lock(&inode->i_lock);
4634 if (atomic_read(&inode->i_writecount) > 1) {
4635 spin_unlock(&inode->i_lock);
4636 return -ETXTBSY;
4637 }
4638 atomic_set(&inode->i_writecount, -1);
4639 spin_unlock(&inode->i_lock);
4640
4641 return 0;
4642 }
4643
4644 void restore_bitmap_write_access(struct file *file)
4645 {
4646 struct inode *inode = file->f_mapping->host;
4647
4648 spin_lock(&inode->i_lock);
4649 atomic_set(&inode->i_writecount, 1);
4650 spin_unlock(&inode->i_lock);
4651 }
4652
4653 static void md_clean(mddev_t *mddev)
4654 {
4655 mddev->array_sectors = 0;
4656 mddev->external_size = 0;
4657 mddev->dev_sectors = 0;
4658 mddev->raid_disks = 0;
4659 mddev->recovery_cp = 0;
4660 mddev->resync_min = 0;
4661 mddev->resync_max = MaxSector;
4662 mddev->reshape_position = MaxSector;
4663 mddev->external = 0;
4664 mddev->persistent = 0;
4665 mddev->level = LEVEL_NONE;
4666 mddev->clevel[0] = 0;
4667 mddev->flags = 0;
4668 mddev->ro = 0;
4669 mddev->metadata_type[0] = 0;
4670 mddev->chunk_sectors = 0;
4671 mddev->ctime = mddev->utime = 0;
4672 mddev->layout = 0;
4673 mddev->max_disks = 0;
4674 mddev->events = 0;
4675 mddev->can_decrease_events = 0;
4676 mddev->delta_disks = 0;
4677 mddev->new_level = LEVEL_NONE;
4678 mddev->new_layout = 0;
4679 mddev->new_chunk_sectors = 0;
4680 mddev->curr_resync = 0;
4681 mddev->resync_mismatches = 0;
4682 mddev->suspend_lo = mddev->suspend_hi = 0;
4683 mddev->sync_speed_min = mddev->sync_speed_max = 0;
4684 mddev->recovery = 0;
4685 mddev->in_sync = 0;
4686 mddev->degraded = 0;
4687 mddev->barriers_work = 0;
4688 mddev->safemode = 0;
4689 mddev->bitmap_info.offset = 0;
4690 mddev->bitmap_info.default_offset = 0;
4691 mddev->bitmap_info.chunksize = 0;
4692 mddev->bitmap_info.daemon_sleep = 0;
4693 mddev->bitmap_info.max_write_behind = 0;
4694 mddev->plug = NULL;
4695 }
4696
4697 void md_stop_writes(mddev_t *mddev)
4698 {
4699 if (mddev->sync_thread) {
4700 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4701 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4702 md_unregister_thread(mddev->sync_thread);
4703 mddev->sync_thread = NULL;
4704 }
4705
4706 del_timer_sync(&mddev->safemode_timer);
4707
4708 bitmap_flush(mddev);
4709 md_super_wait(mddev);
4710
4711 if (!mddev->in_sync || mddev->flags) {
4712 /* mark array as shutdown cleanly */
4713 mddev->in_sync = 1;
4714 md_update_sb(mddev, 1);
4715 }
4716 }
4717 EXPORT_SYMBOL_GPL(md_stop_writes);
4718
4719 void md_stop(mddev_t *mddev)
4720 {
4721 mddev->pers->stop(mddev);
4722 if (mddev->pers->sync_request && mddev->to_remove == NULL)
4723 mddev->to_remove = &md_redundancy_group;
4724 module_put(mddev->pers->owner);
4725 mddev->pers = NULL;
4726 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4727 }
4728 EXPORT_SYMBOL_GPL(md_stop);
4729
4730 static int md_set_readonly(mddev_t *mddev, int is_open)
4731 {
4732 int err = 0;
4733 mutex_lock(&mddev->open_mutex);
4734 if (atomic_read(&mddev->openers) > is_open) {
4735 printk("md: %s still in use.\n",mdname(mddev));
4736 err = -EBUSY;
4737 goto out;
4738 }
4739 if (mddev->pers) {
4740 md_stop_writes(mddev);
4741
4742 err = -ENXIO;
4743 if (mddev->ro==1)
4744 goto out;
4745 mddev->ro = 1;
4746 set_disk_ro(mddev->gendisk, 1);
4747 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4748 sysfs_notify_dirent_safe(mddev->sysfs_state);
4749 err = 0;
4750 }
4751 out:
4752 mutex_unlock(&mddev->open_mutex);
4753 return err;
4754 }
4755
4756 /* mode:
4757 * 0 - completely stop and dis-assemble array
4758 * 2 - stop but do not disassemble array
4759 */
4760 static int do_md_stop(mddev_t * mddev, int mode, int is_open)
4761 {
4762 struct gendisk *disk = mddev->gendisk;
4763 mdk_rdev_t *rdev;
4764
4765 mutex_lock(&mddev->open_mutex);
4766 if (atomic_read(&mddev->openers) > is_open ||
4767 mddev->sysfs_active) {
4768 printk("md: %s still in use.\n",mdname(mddev));
4769 mutex_unlock(&mddev->open_mutex);
4770 return -EBUSY;
4771 }
4772
4773 if (mddev->pers) {
4774 if (mddev->ro)
4775 set_disk_ro(disk, 0);
4776
4777 md_stop_writes(mddev);
4778 md_stop(mddev);
4779 mddev->queue->merge_bvec_fn = NULL;
4780 mddev->queue->unplug_fn = NULL;
4781 mddev->queue->backing_dev_info.congested_fn = NULL;
4782
4783 /* tell userspace to handle 'inactive' */
4784 sysfs_notify_dirent_safe(mddev->sysfs_state);
4785
4786 list_for_each_entry(rdev, &mddev->disks, same_set)
4787 if (rdev->raid_disk >= 0) {
4788 char nm[20];
4789 sprintf(nm, "rd%d", rdev->raid_disk);
4790 sysfs_remove_link(&mddev->kobj, nm);
4791 }
4792
4793 set_capacity(disk, 0);
4794 mutex_unlock(&mddev->open_mutex);
4795 revalidate_disk(disk);
4796
4797 if (mddev->ro)
4798 mddev->ro = 0;
4799 } else
4800 mutex_unlock(&mddev->open_mutex);
4801 /*
4802 * Free resources if final stop
4803 */
4804 if (mode == 0) {
4805 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
4806
4807 bitmap_destroy(mddev);
4808 if (mddev->bitmap_info.file) {
4809 restore_bitmap_write_access(mddev->bitmap_info.file);
4810 fput(mddev->bitmap_info.file);
4811 mddev->bitmap_info.file = NULL;
4812 }
4813 mddev->bitmap_info.offset = 0;
4814
4815 export_array(mddev);
4816
4817 md_clean(mddev);
4818 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4819 if (mddev->hold_active == UNTIL_STOP)
4820 mddev->hold_active = 0;
4821 }
4822 blk_integrity_unregister(disk);
4823 md_new_event(mddev);
4824 sysfs_notify_dirent_safe(mddev->sysfs_state);
4825 return 0;
4826 }
4827
4828 #ifndef MODULE
4829 static void autorun_array(mddev_t *mddev)
4830 {
4831 mdk_rdev_t *rdev;
4832 int err;
4833
4834 if (list_empty(&mddev->disks))
4835 return;
4836
4837 printk(KERN_INFO "md: running: ");
4838
4839 list_for_each_entry(rdev, &mddev->disks, same_set) {
4840 char b[BDEVNAME_SIZE];
4841 printk("<%s>", bdevname(rdev->bdev,b));
4842 }
4843 printk("\n");
4844
4845 err = do_md_run(mddev);
4846 if (err) {
4847 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
4848 do_md_stop(mddev, 0, 0);
4849 }
4850 }
4851
4852 /*
4853 * lets try to run arrays based on all disks that have arrived
4854 * until now. (those are in pending_raid_disks)
4855 *
4856 * the method: pick the first pending disk, collect all disks with
4857 * the same UUID, remove all from the pending list and put them into
4858 * the 'same_array' list. Then order this list based on superblock
4859 * update time (freshest comes first), kick out 'old' disks and
4860 * compare superblocks. If everything's fine then run it.
4861 *
4862 * If "unit" is allocated, then bump its reference count
4863 */
4864 static void autorun_devices(int part)
4865 {
4866 mdk_rdev_t *rdev0, *rdev, *tmp;
4867 mddev_t *mddev;
4868 char b[BDEVNAME_SIZE];
4869
4870 printk(KERN_INFO "md: autorun ...\n");
4871 while (!list_empty(&pending_raid_disks)) {
4872 int unit;
4873 dev_t dev;
4874 LIST_HEAD(candidates);
4875 rdev0 = list_entry(pending_raid_disks.next,
4876 mdk_rdev_t, same_set);
4877
4878 printk(KERN_INFO "md: considering %s ...\n",
4879 bdevname(rdev0->bdev,b));
4880 INIT_LIST_HEAD(&candidates);
4881 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
4882 if (super_90_load(rdev, rdev0, 0) >= 0) {
4883 printk(KERN_INFO "md: adding %s ...\n",
4884 bdevname(rdev->bdev,b));
4885 list_move(&rdev->same_set, &candidates);
4886 }
4887 /*
4888 * now we have a set of devices, with all of them having
4889 * mostly sane superblocks. It's time to allocate the
4890 * mddev.
4891 */
4892 if (part) {
4893 dev = MKDEV(mdp_major,
4894 rdev0->preferred_minor << MdpMinorShift);
4895 unit = MINOR(dev) >> MdpMinorShift;
4896 } else {
4897 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
4898 unit = MINOR(dev);
4899 }
4900 if (rdev0->preferred_minor != unit) {
4901 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
4902 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
4903 break;
4904 }
4905
4906 md_probe(dev, NULL, NULL);
4907 mddev = mddev_find(dev);
4908 if (!mddev || !mddev->gendisk) {
4909 if (mddev)
4910 mddev_put(mddev);
4911 printk(KERN_ERR
4912 "md: cannot allocate memory for md drive.\n");
4913 break;
4914 }
4915 if (mddev_lock(mddev))
4916 printk(KERN_WARNING "md: %s locked, cannot run\n",
4917 mdname(mddev));
4918 else if (mddev->raid_disks || mddev->major_version
4919 || !list_empty(&mddev->disks)) {
4920 printk(KERN_WARNING
4921 "md: %s already running, cannot run %s\n",
4922 mdname(mddev), bdevname(rdev0->bdev,b));
4923 mddev_unlock(mddev);
4924 } else {
4925 printk(KERN_INFO "md: created %s\n", mdname(mddev));
4926 mddev->persistent = 1;
4927 rdev_for_each_list(rdev, tmp, &candidates) {
4928 list_del_init(&rdev->same_set);
4929 if (bind_rdev_to_array(rdev, mddev))
4930 export_rdev(rdev);
4931 }
4932 autorun_array(mddev);
4933 mddev_unlock(mddev);
4934 }
4935 /* on success, candidates will be empty, on error
4936 * it won't...
4937 */
4938 rdev_for_each_list(rdev, tmp, &candidates) {
4939 list_del_init(&rdev->same_set);
4940 export_rdev(rdev);
4941 }
4942 mddev_put(mddev);
4943 }
4944 printk(KERN_INFO "md: ... autorun DONE.\n");
4945 }
4946 #endif /* !MODULE */
4947
4948 static int get_version(void __user * arg)
4949 {
4950 mdu_version_t ver;
4951
4952 ver.major = MD_MAJOR_VERSION;
4953 ver.minor = MD_MINOR_VERSION;
4954 ver.patchlevel = MD_PATCHLEVEL_VERSION;
4955
4956 if (copy_to_user(arg, &ver, sizeof(ver)))
4957 return -EFAULT;
4958
4959 return 0;
4960 }
4961
4962 static int get_array_info(mddev_t * mddev, void __user * arg)
4963 {
4964 mdu_array_info_t info;
4965 int nr,working,insync,failed,spare;
4966 mdk_rdev_t *rdev;
4967
4968 nr=working=insync=failed=spare=0;
4969 list_for_each_entry(rdev, &mddev->disks, same_set) {
4970 nr++;
4971 if (test_bit(Faulty, &rdev->flags))
4972 failed++;
4973 else {
4974 working++;
4975 if (test_bit(In_sync, &rdev->flags))
4976 insync++;
4977 else
4978 spare++;
4979 }
4980 }
4981
4982 info.major_version = mddev->major_version;
4983 info.minor_version = mddev->minor_version;
4984 info.patch_version = MD_PATCHLEVEL_VERSION;
4985 info.ctime = mddev->ctime;
4986 info.level = mddev->level;
4987 info.size = mddev->dev_sectors / 2;
4988 if (info.size != mddev->dev_sectors / 2) /* overflow */
4989 info.size = -1;
4990 info.nr_disks = nr;
4991 info.raid_disks = mddev->raid_disks;
4992 info.md_minor = mddev->md_minor;
4993 info.not_persistent= !mddev->persistent;
4994
4995 info.utime = mddev->utime;
4996 info.state = 0;
4997 if (mddev->in_sync)
4998 info.state = (1<<MD_SB_CLEAN);
4999 if (mddev->bitmap && mddev->bitmap_info.offset)
5000 info.state = (1<<MD_SB_BITMAP_PRESENT);
5001 info.active_disks = insync;
5002 info.working_disks = working;
5003 info.failed_disks = failed;
5004 info.spare_disks = spare;
5005
5006 info.layout = mddev->layout;
5007 info.chunk_size = mddev->chunk_sectors << 9;
5008
5009 if (copy_to_user(arg, &info, sizeof(info)))
5010 return -EFAULT;
5011
5012 return 0;
5013 }
5014
5015 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
5016 {
5017 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5018 char *ptr, *buf = NULL;
5019 int err = -ENOMEM;
5020
5021 if (md_allow_write(mddev))
5022 file = kmalloc(sizeof(*file), GFP_NOIO);
5023 else
5024 file = kmalloc(sizeof(*file), GFP_KERNEL);
5025
5026 if (!file)
5027 goto out;
5028
5029 /* bitmap disabled, zero the first byte and copy out */
5030 if (!mddev->bitmap || !mddev->bitmap->file) {
5031 file->pathname[0] = '\0';
5032 goto copy_out;
5033 }
5034
5035 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5036 if (!buf)
5037 goto out;
5038
5039 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5040 if (IS_ERR(ptr))
5041 goto out;
5042
5043 strcpy(file->pathname, ptr);
5044
5045 copy_out:
5046 err = 0;
5047 if (copy_to_user(arg, file, sizeof(*file)))
5048 err = -EFAULT;
5049 out:
5050 kfree(buf);
5051 kfree(file);
5052 return err;
5053 }
5054
5055 static int get_disk_info(mddev_t * mddev, void __user * arg)
5056 {
5057 mdu_disk_info_t info;
5058 mdk_rdev_t *rdev;
5059
5060 if (copy_from_user(&info, arg, sizeof(info)))
5061 return -EFAULT;
5062
5063 rdev = find_rdev_nr(mddev, info.number);
5064 if (rdev) {
5065 info.major = MAJOR(rdev->bdev->bd_dev);
5066 info.minor = MINOR(rdev->bdev->bd_dev);
5067 info.raid_disk = rdev->raid_disk;
5068 info.state = 0;
5069 if (test_bit(Faulty, &rdev->flags))
5070 info.state |= (1<<MD_DISK_FAULTY);
5071 else if (test_bit(In_sync, &rdev->flags)) {
5072 info.state |= (1<<MD_DISK_ACTIVE);
5073 info.state |= (1<<MD_DISK_SYNC);
5074 }
5075 if (test_bit(WriteMostly, &rdev->flags))
5076 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5077 } else {
5078 info.major = info.minor = 0;
5079 info.raid_disk = -1;
5080 info.state = (1<<MD_DISK_REMOVED);
5081 }
5082
5083 if (copy_to_user(arg, &info, sizeof(info)))
5084 return -EFAULT;
5085
5086 return 0;
5087 }
5088
5089 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
5090 {
5091 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5092 mdk_rdev_t *rdev;
5093 dev_t dev = MKDEV(info->major,info->minor);
5094
5095 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5096 return -EOVERFLOW;
5097
5098 if (!mddev->raid_disks) {
5099 int err;
5100 /* expecting a device which has a superblock */
5101 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5102 if (IS_ERR(rdev)) {
5103 printk(KERN_WARNING
5104 "md: md_import_device returned %ld\n",
5105 PTR_ERR(rdev));
5106 return PTR_ERR(rdev);
5107 }
5108 if (!list_empty(&mddev->disks)) {
5109 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
5110 mdk_rdev_t, same_set);
5111 err = super_types[mddev->major_version]
5112 .load_super(rdev, rdev0, mddev->minor_version);
5113 if (err < 0) {
5114 printk(KERN_WARNING
5115 "md: %s has different UUID to %s\n",
5116 bdevname(rdev->bdev,b),
5117 bdevname(rdev0->bdev,b2));
5118 export_rdev(rdev);
5119 return -EINVAL;
5120 }
5121 }
5122 err = bind_rdev_to_array(rdev, mddev);
5123 if (err)
5124 export_rdev(rdev);
5125 return err;
5126 }
5127
5128 /*
5129 * add_new_disk can be used once the array is assembled
5130 * to add "hot spares". They must already have a superblock
5131 * written
5132 */
5133 if (mddev->pers) {
5134 int err;
5135 if (!mddev->pers->hot_add_disk) {
5136 printk(KERN_WARNING
5137 "%s: personality does not support diskops!\n",
5138 mdname(mddev));
5139 return -EINVAL;
5140 }
5141 if (mddev->persistent)
5142 rdev = md_import_device(dev, mddev->major_version,
5143 mddev->minor_version);
5144 else
5145 rdev = md_import_device(dev, -1, -1);
5146 if (IS_ERR(rdev)) {
5147 printk(KERN_WARNING
5148 "md: md_import_device returned %ld\n",
5149 PTR_ERR(rdev));
5150 return PTR_ERR(rdev);
5151 }
5152 /* set save_raid_disk if appropriate */
5153 if (!mddev->persistent) {
5154 if (info->state & (1<<MD_DISK_SYNC) &&
5155 info->raid_disk < mddev->raid_disks)
5156 rdev->raid_disk = info->raid_disk;
5157 else
5158 rdev->raid_disk = -1;
5159 } else
5160 super_types[mddev->major_version].
5161 validate_super(mddev, rdev);
5162 rdev->saved_raid_disk = rdev->raid_disk;
5163
5164 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5165 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5166 set_bit(WriteMostly, &rdev->flags);
5167 else
5168 clear_bit(WriteMostly, &rdev->flags);
5169
5170 rdev->raid_disk = -1;
5171 err = bind_rdev_to_array(rdev, mddev);
5172 if (!err && !mddev->pers->hot_remove_disk) {
5173 /* If there is hot_add_disk but no hot_remove_disk
5174 * then added disks for geometry changes,
5175 * and should be added immediately.
5176 */
5177 super_types[mddev->major_version].
5178 validate_super(mddev, rdev);
5179 err = mddev->pers->hot_add_disk(mddev, rdev);
5180 if (err)
5181 unbind_rdev_from_array(rdev);
5182 }
5183 if (err)
5184 export_rdev(rdev);
5185 else
5186 sysfs_notify_dirent_safe(rdev->sysfs_state);
5187
5188 md_update_sb(mddev, 1);
5189 if (mddev->degraded)
5190 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5191 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5192 md_wakeup_thread(mddev->thread);
5193 return err;
5194 }
5195
5196 /* otherwise, add_new_disk is only allowed
5197 * for major_version==0 superblocks
5198 */
5199 if (mddev->major_version != 0) {
5200 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5201 mdname(mddev));
5202 return -EINVAL;
5203 }
5204
5205 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5206 int err;
5207 rdev = md_import_device(dev, -1, 0);
5208 if (IS_ERR(rdev)) {
5209 printk(KERN_WARNING
5210 "md: error, md_import_device() returned %ld\n",
5211 PTR_ERR(rdev));
5212 return PTR_ERR(rdev);
5213 }
5214 rdev->desc_nr = info->number;
5215 if (info->raid_disk < mddev->raid_disks)
5216 rdev->raid_disk = info->raid_disk;
5217 else
5218 rdev->raid_disk = -1;
5219
5220 if (rdev->raid_disk < mddev->raid_disks)
5221 if (info->state & (1<<MD_DISK_SYNC))
5222 set_bit(In_sync, &rdev->flags);
5223
5224 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5225 set_bit(WriteMostly, &rdev->flags);
5226
5227 if (!mddev->persistent) {
5228 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5229 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
5230 } else
5231 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
5232 rdev->sectors = rdev->sb_start;
5233
5234 err = bind_rdev_to_array(rdev, mddev);
5235 if (err) {
5236 export_rdev(rdev);
5237 return err;
5238 }
5239 }
5240
5241 return 0;
5242 }
5243
5244 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
5245 {
5246 char b[BDEVNAME_SIZE];
5247 mdk_rdev_t *rdev;
5248
5249 rdev = find_rdev(mddev, dev);
5250 if (!rdev)
5251 return -ENXIO;
5252
5253 if (rdev->raid_disk >= 0)
5254 goto busy;
5255
5256 kick_rdev_from_array(rdev);
5257 md_update_sb(mddev, 1);
5258 md_new_event(mddev);
5259
5260 return 0;
5261 busy:
5262 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5263 bdevname(rdev->bdev,b), mdname(mddev));
5264 return -EBUSY;
5265 }
5266
5267 static int hot_add_disk(mddev_t * mddev, dev_t dev)
5268 {
5269 char b[BDEVNAME_SIZE];
5270 int err;
5271 mdk_rdev_t *rdev;
5272
5273 if (!mddev->pers)
5274 return -ENODEV;
5275
5276 if (mddev->major_version != 0) {
5277 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5278 " version-0 superblocks.\n",
5279 mdname(mddev));
5280 return -EINVAL;
5281 }
5282 if (!mddev->pers->hot_add_disk) {
5283 printk(KERN_WARNING
5284 "%s: personality does not support diskops!\n",
5285 mdname(mddev));
5286 return -EINVAL;
5287 }
5288
5289 rdev = md_import_device(dev, -1, 0);
5290 if (IS_ERR(rdev)) {
5291 printk(KERN_WARNING
5292 "md: error, md_import_device() returned %ld\n",
5293 PTR_ERR(rdev));
5294 return -EINVAL;
5295 }
5296
5297 if (mddev->persistent)
5298 rdev->sb_start = calc_dev_sboffset(rdev->bdev);
5299 else
5300 rdev->sb_start = rdev->bdev->bd_inode->i_size / 512;
5301
5302 rdev->sectors = rdev->sb_start;
5303
5304 if (test_bit(Faulty, &rdev->flags)) {
5305 printk(KERN_WARNING
5306 "md: can not hot-add faulty %s disk to %s!\n",
5307 bdevname(rdev->bdev,b), mdname(mddev));
5308 err = -EINVAL;
5309 goto abort_export;
5310 }
5311 clear_bit(In_sync, &rdev->flags);
5312 rdev->desc_nr = -1;
5313 rdev->saved_raid_disk = -1;
5314 err = bind_rdev_to_array(rdev, mddev);
5315 if (err)
5316 goto abort_export;
5317
5318 /*
5319 * The rest should better be atomic, we can have disk failures
5320 * noticed in interrupt contexts ...
5321 */
5322
5323 rdev->raid_disk = -1;
5324
5325 md_update_sb(mddev, 1);
5326
5327 /*
5328 * Kick recovery, maybe this spare has to be added to the
5329 * array immediately.
5330 */
5331 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5332 md_wakeup_thread(mddev->thread);
5333 md_new_event(mddev);
5334 return 0;
5335
5336 abort_export:
5337 export_rdev(rdev);
5338 return err;
5339 }
5340
5341 static int set_bitmap_file(mddev_t *mddev, int fd)
5342 {
5343 int err;
5344
5345 if (mddev->pers) {
5346 if (!mddev->pers->quiesce)
5347 return -EBUSY;
5348 if (mddev->recovery || mddev->sync_thread)
5349 return -EBUSY;
5350 /* we should be able to change the bitmap.. */
5351 }
5352
5353
5354 if (fd >= 0) {
5355 if (mddev->bitmap)
5356 return -EEXIST; /* cannot add when bitmap is present */
5357 mddev->bitmap_info.file = fget(fd);
5358
5359 if (mddev->bitmap_info.file == NULL) {
5360 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5361 mdname(mddev));
5362 return -EBADF;
5363 }
5364
5365 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5366 if (err) {
5367 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5368 mdname(mddev));
5369 fput(mddev->bitmap_info.file);
5370 mddev->bitmap_info.file = NULL;
5371 return err;
5372 }
5373 mddev->bitmap_info.offset = 0; /* file overrides offset */
5374 } else if (mddev->bitmap == NULL)
5375 return -ENOENT; /* cannot remove what isn't there */
5376 err = 0;
5377 if (mddev->pers) {
5378 mddev->pers->quiesce(mddev, 1);
5379 if (fd >= 0) {
5380 err = bitmap_create(mddev);
5381 if (!err)
5382 err = bitmap_load(mddev);
5383 }
5384 if (fd < 0 || err) {
5385 bitmap_destroy(mddev);
5386 fd = -1; /* make sure to put the file */
5387 }
5388 mddev->pers->quiesce(mddev, 0);
5389 }
5390 if (fd < 0) {
5391 if (mddev->bitmap_info.file) {
5392 restore_bitmap_write_access(mddev->bitmap_info.file);
5393 fput(mddev->bitmap_info.file);
5394 }
5395 mddev->bitmap_info.file = NULL;
5396 }
5397
5398 return err;
5399 }
5400
5401 /*
5402 * set_array_info is used two different ways
5403 * The original usage is when creating a new array.
5404 * In this usage, raid_disks is > 0 and it together with
5405 * level, size, not_persistent,layout,chunksize determine the
5406 * shape of the array.
5407 * This will always create an array with a type-0.90.0 superblock.
5408 * The newer usage is when assembling an array.
5409 * In this case raid_disks will be 0, and the major_version field is
5410 * use to determine which style super-blocks are to be found on the devices.
5411 * The minor and patch _version numbers are also kept incase the
5412 * super_block handler wishes to interpret them.
5413 */
5414 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
5415 {
5416
5417 if (info->raid_disks == 0) {
5418 /* just setting version number for superblock loading */
5419 if (info->major_version < 0 ||
5420 info->major_version >= ARRAY_SIZE(super_types) ||
5421 super_types[info->major_version].name == NULL) {
5422 /* maybe try to auto-load a module? */
5423 printk(KERN_INFO
5424 "md: superblock version %d not known\n",
5425 info->major_version);
5426 return -EINVAL;
5427 }
5428 mddev->major_version = info->major_version;
5429 mddev->minor_version = info->minor_version;
5430 mddev->patch_version = info->patch_version;
5431 mddev->persistent = !info->not_persistent;
5432 /* ensure mddev_put doesn't delete this now that there
5433 * is some minimal configuration.
5434 */
5435 mddev->ctime = get_seconds();
5436 return 0;
5437 }
5438 mddev->major_version = MD_MAJOR_VERSION;
5439 mddev->minor_version = MD_MINOR_VERSION;
5440 mddev->patch_version = MD_PATCHLEVEL_VERSION;
5441 mddev->ctime = get_seconds();
5442
5443 mddev->level = info->level;
5444 mddev->clevel[0] = 0;
5445 mddev->dev_sectors = 2 * (sector_t)info->size;
5446 mddev->raid_disks = info->raid_disks;
5447 /* don't set md_minor, it is determined by which /dev/md* was
5448 * openned
5449 */
5450 if (info->state & (1<<MD_SB_CLEAN))
5451 mddev->recovery_cp = MaxSector;
5452 else
5453 mddev->recovery_cp = 0;
5454 mddev->persistent = ! info->not_persistent;
5455 mddev->external = 0;
5456
5457 mddev->layout = info->layout;
5458 mddev->chunk_sectors = info->chunk_size >> 9;
5459
5460 mddev->max_disks = MD_SB_DISKS;
5461
5462 if (mddev->persistent)
5463 mddev->flags = 0;
5464 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5465
5466 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5467 mddev->bitmap_info.offset = 0;
5468
5469 mddev->reshape_position = MaxSector;
5470
5471 /*
5472 * Generate a 128 bit UUID
5473 */
5474 get_random_bytes(mddev->uuid, 16);
5475
5476 mddev->new_level = mddev->level;
5477 mddev->new_chunk_sectors = mddev->chunk_sectors;
5478 mddev->new_layout = mddev->layout;
5479 mddev->delta_disks = 0;
5480
5481 return 0;
5482 }
5483
5484 void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors)
5485 {
5486 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5487
5488 if (mddev->external_size)
5489 return;
5490
5491 mddev->array_sectors = array_sectors;
5492 }
5493 EXPORT_SYMBOL(md_set_array_sectors);
5494
5495 static int update_size(mddev_t *mddev, sector_t num_sectors)
5496 {
5497 mdk_rdev_t *rdev;
5498 int rv;
5499 int fit = (num_sectors == 0);
5500
5501 if (mddev->pers->resize == NULL)
5502 return -EINVAL;
5503 /* The "num_sectors" is the number of sectors of each device that
5504 * is used. This can only make sense for arrays with redundancy.
5505 * linear and raid0 always use whatever space is available. We can only
5506 * consider changing this number if no resync or reconstruction is
5507 * happening, and if the new size is acceptable. It must fit before the
5508 * sb_start or, if that is <data_offset, it must fit before the size
5509 * of each device. If num_sectors is zero, we find the largest size
5510 * that fits.
5511
5512 */
5513 if (mddev->sync_thread)
5514 return -EBUSY;
5515 if (mddev->bitmap)
5516 /* Sorry, cannot grow a bitmap yet, just remove it,
5517 * grow, and re-add.
5518 */
5519 return -EBUSY;
5520 list_for_each_entry(rdev, &mddev->disks, same_set) {
5521 sector_t avail = rdev->sectors;
5522
5523 if (fit && (num_sectors == 0 || num_sectors > avail))
5524 num_sectors = avail;
5525 if (avail < num_sectors)
5526 return -ENOSPC;
5527 }
5528 rv = mddev->pers->resize(mddev, num_sectors);
5529 if (!rv)
5530 revalidate_disk(mddev->gendisk);
5531 return rv;
5532 }
5533
5534 static int update_raid_disks(mddev_t *mddev, int raid_disks)
5535 {
5536 int rv;
5537 /* change the number of raid disks */
5538 if (mddev->pers->check_reshape == NULL)
5539 return -EINVAL;
5540 if (raid_disks <= 0 ||
5541 (mddev->max_disks && raid_disks >= mddev->max_disks))
5542 return -EINVAL;
5543 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5544 return -EBUSY;
5545 mddev->delta_disks = raid_disks - mddev->raid_disks;
5546
5547 rv = mddev->pers->check_reshape(mddev);
5548 return rv;
5549 }
5550
5551
5552 /*
5553 * update_array_info is used to change the configuration of an
5554 * on-line array.
5555 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5556 * fields in the info are checked against the array.
5557 * Any differences that cannot be handled will cause an error.
5558 * Normally, only one change can be managed at a time.
5559 */
5560 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
5561 {
5562 int rv = 0;
5563 int cnt = 0;
5564 int state = 0;
5565
5566 /* calculate expected state,ignoring low bits */
5567 if (mddev->bitmap && mddev->bitmap_info.offset)
5568 state |= (1 << MD_SB_BITMAP_PRESENT);
5569
5570 if (mddev->major_version != info->major_version ||
5571 mddev->minor_version != info->minor_version ||
5572 /* mddev->patch_version != info->patch_version || */
5573 mddev->ctime != info->ctime ||
5574 mddev->level != info->level ||
5575 /* mddev->layout != info->layout || */
5576 !mddev->persistent != info->not_persistent||
5577 mddev->chunk_sectors != info->chunk_size >> 9 ||
5578 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5579 ((state^info->state) & 0xfffffe00)
5580 )
5581 return -EINVAL;
5582 /* Check there is only one change */
5583 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5584 cnt++;
5585 if (mddev->raid_disks != info->raid_disks)
5586 cnt++;
5587 if (mddev->layout != info->layout)
5588 cnt++;
5589 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5590 cnt++;
5591 if (cnt == 0)
5592 return 0;
5593 if (cnt > 1)
5594 return -EINVAL;
5595
5596 if (mddev->layout != info->layout) {
5597 /* Change layout
5598 * we don't need to do anything at the md level, the
5599 * personality will take care of it all.
5600 */
5601 if (mddev->pers->check_reshape == NULL)
5602 return -EINVAL;
5603 else {
5604 mddev->new_layout = info->layout;
5605 rv = mddev->pers->check_reshape(mddev);
5606 if (rv)
5607 mddev->new_layout = mddev->layout;
5608 return rv;
5609 }
5610 }
5611 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5612 rv = update_size(mddev, (sector_t)info->size * 2);
5613
5614 if (mddev->raid_disks != info->raid_disks)
5615 rv = update_raid_disks(mddev, info->raid_disks);
5616
5617 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5618 if (mddev->pers->quiesce == NULL)
5619 return -EINVAL;
5620 if (mddev->recovery || mddev->sync_thread)
5621 return -EBUSY;
5622 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5623 /* add the bitmap */
5624 if (mddev->bitmap)
5625 return -EEXIST;
5626 if (mddev->bitmap_info.default_offset == 0)
5627 return -EINVAL;
5628 mddev->bitmap_info.offset =
5629 mddev->bitmap_info.default_offset;
5630 mddev->pers->quiesce(mddev, 1);
5631 rv = bitmap_create(mddev);
5632 if (!rv)
5633 rv = bitmap_load(mddev);
5634 if (rv)
5635 bitmap_destroy(mddev);
5636 mddev->pers->quiesce(mddev, 0);
5637 } else {
5638 /* remove the bitmap */
5639 if (!mddev->bitmap)
5640 return -ENOENT;
5641 if (mddev->bitmap->file)
5642 return -EINVAL;
5643 mddev->pers->quiesce(mddev, 1);
5644 bitmap_destroy(mddev);
5645 mddev->pers->quiesce(mddev, 0);
5646 mddev->bitmap_info.offset = 0;
5647 }
5648 }
5649 md_update_sb(mddev, 1);
5650 return rv;
5651 }
5652
5653 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
5654 {
5655 mdk_rdev_t *rdev;
5656
5657 if (mddev->pers == NULL)
5658 return -ENODEV;
5659
5660 rdev = find_rdev(mddev, dev);
5661 if (!rdev)
5662 return -ENODEV;
5663
5664 md_error(mddev, rdev);
5665 return 0;
5666 }
5667
5668 /*
5669 * We have a problem here : there is no easy way to give a CHS
5670 * virtual geometry. We currently pretend that we have a 2 heads
5671 * 4 sectors (with a BIG number of cylinders...). This drives
5672 * dosfs just mad... ;-)
5673 */
5674 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
5675 {
5676 mddev_t *mddev = bdev->bd_disk->private_data;
5677
5678 geo->heads = 2;
5679 geo->sectors = 4;
5680 geo->cylinders = mddev->array_sectors / 8;
5681 return 0;
5682 }
5683
5684 static int md_ioctl(struct block_device *bdev, fmode_t mode,
5685 unsigned int cmd, unsigned long arg)
5686 {
5687 int err = 0;
5688 void __user *argp = (void __user *)arg;
5689 mddev_t *mddev = NULL;
5690 int ro;
5691
5692 if (!capable(CAP_SYS_ADMIN))
5693 return -EACCES;
5694
5695 /*
5696 * Commands dealing with the RAID driver but not any
5697 * particular array:
5698 */
5699 switch (cmd)
5700 {
5701 case RAID_VERSION:
5702 err = get_version(argp);
5703 goto done;
5704
5705 case PRINT_RAID_DEBUG:
5706 err = 0;
5707 md_print_devices();
5708 goto done;
5709
5710 #ifndef MODULE
5711 case RAID_AUTORUN:
5712 err = 0;
5713 autostart_arrays(arg);
5714 goto done;
5715 #endif
5716 default:;
5717 }
5718
5719 /*
5720 * Commands creating/starting a new array:
5721 */
5722
5723 mddev = bdev->bd_disk->private_data;
5724
5725 if (!mddev) {
5726 BUG();
5727 goto abort;
5728 }
5729
5730 err = mddev_lock(mddev);
5731 if (err) {
5732 printk(KERN_INFO
5733 "md: ioctl lock interrupted, reason %d, cmd %d\n",
5734 err, cmd);
5735 goto abort;
5736 }
5737
5738 switch (cmd)
5739 {
5740 case SET_ARRAY_INFO:
5741 {
5742 mdu_array_info_t info;
5743 if (!arg)
5744 memset(&info, 0, sizeof(info));
5745 else if (copy_from_user(&info, argp, sizeof(info))) {
5746 err = -EFAULT;
5747 goto abort_unlock;
5748 }
5749 if (mddev->pers) {
5750 err = update_array_info(mddev, &info);
5751 if (err) {
5752 printk(KERN_WARNING "md: couldn't update"
5753 " array info. %d\n", err);
5754 goto abort_unlock;
5755 }
5756 goto done_unlock;
5757 }
5758 if (!list_empty(&mddev->disks)) {
5759 printk(KERN_WARNING
5760 "md: array %s already has disks!\n",
5761 mdname(mddev));
5762 err = -EBUSY;
5763 goto abort_unlock;
5764 }
5765 if (mddev->raid_disks) {
5766 printk(KERN_WARNING
5767 "md: array %s already initialised!\n",
5768 mdname(mddev));
5769 err = -EBUSY;
5770 goto abort_unlock;
5771 }
5772 err = set_array_info(mddev, &info);
5773 if (err) {
5774 printk(KERN_WARNING "md: couldn't set"
5775 " array info. %d\n", err);
5776 goto abort_unlock;
5777 }
5778 }
5779 goto done_unlock;
5780
5781 default:;
5782 }
5783
5784 /*
5785 * Commands querying/configuring an existing array:
5786 */
5787 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
5788 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
5789 if ((!mddev->raid_disks && !mddev->external)
5790 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
5791 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
5792 && cmd != GET_BITMAP_FILE) {
5793 err = -ENODEV;
5794 goto abort_unlock;
5795 }
5796
5797 /*
5798 * Commands even a read-only array can execute:
5799 */
5800 switch (cmd)
5801 {
5802 case GET_ARRAY_INFO:
5803 err = get_array_info(mddev, argp);
5804 goto done_unlock;
5805
5806 case GET_BITMAP_FILE:
5807 err = get_bitmap_file(mddev, argp);
5808 goto done_unlock;
5809
5810 case GET_DISK_INFO:
5811 err = get_disk_info(mddev, argp);
5812 goto done_unlock;
5813
5814 case RESTART_ARRAY_RW:
5815 err = restart_array(mddev);
5816 goto done_unlock;
5817
5818 case STOP_ARRAY:
5819 err = do_md_stop(mddev, 0, 1);
5820 goto done_unlock;
5821
5822 case STOP_ARRAY_RO:
5823 err = md_set_readonly(mddev, 1);
5824 goto done_unlock;
5825
5826 case BLKROSET:
5827 if (get_user(ro, (int __user *)(arg))) {
5828 err = -EFAULT;
5829 goto done_unlock;
5830 }
5831 err = -EINVAL;
5832
5833 /* if the bdev is going readonly the value of mddev->ro
5834 * does not matter, no writes are coming
5835 */
5836 if (ro)
5837 goto done_unlock;
5838
5839 /* are we are already prepared for writes? */
5840 if (mddev->ro != 1)
5841 goto done_unlock;
5842
5843 /* transitioning to readauto need only happen for
5844 * arrays that call md_write_start
5845 */
5846 if (mddev->pers) {
5847 err = restart_array(mddev);
5848 if (err == 0) {
5849 mddev->ro = 2;
5850 set_disk_ro(mddev->gendisk, 0);
5851 }
5852 }
5853 goto done_unlock;
5854 }
5855
5856 /*
5857 * The remaining ioctls are changing the state of the
5858 * superblock, so we do not allow them on read-only arrays.
5859 * However non-MD ioctls (e.g. get-size) will still come through
5860 * here and hit the 'default' below, so only disallow
5861 * 'md' ioctls, and switch to rw mode if started auto-readonly.
5862 */
5863 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
5864 if (mddev->ro == 2) {
5865 mddev->ro = 0;
5866 sysfs_notify_dirent_safe(mddev->sysfs_state);
5867 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5868 md_wakeup_thread(mddev->thread);
5869 } else {
5870 err = -EROFS;
5871 goto abort_unlock;
5872 }
5873 }
5874
5875 switch (cmd)
5876 {
5877 case ADD_NEW_DISK:
5878 {
5879 mdu_disk_info_t info;
5880 if (copy_from_user(&info, argp, sizeof(info)))
5881 err = -EFAULT;
5882 else
5883 err = add_new_disk(mddev, &info);
5884 goto done_unlock;
5885 }
5886
5887 case HOT_REMOVE_DISK:
5888 err = hot_remove_disk(mddev, new_decode_dev(arg));
5889 goto done_unlock;
5890
5891 case HOT_ADD_DISK:
5892 err = hot_add_disk(mddev, new_decode_dev(arg));
5893 goto done_unlock;
5894
5895 case SET_DISK_FAULTY:
5896 err = set_disk_faulty(mddev, new_decode_dev(arg));
5897 goto done_unlock;
5898
5899 case RUN_ARRAY:
5900 err = do_md_run(mddev);
5901 goto done_unlock;
5902
5903 case SET_BITMAP_FILE:
5904 err = set_bitmap_file(mddev, (int)arg);
5905 goto done_unlock;
5906
5907 default:
5908 err = -EINVAL;
5909 goto abort_unlock;
5910 }
5911
5912 done_unlock:
5913 abort_unlock:
5914 if (mddev->hold_active == UNTIL_IOCTL &&
5915 err != -EINVAL)
5916 mddev->hold_active = 0;
5917 mddev_unlock(mddev);
5918
5919 return err;
5920 done:
5921 if (err)
5922 MD_BUG();
5923 abort:
5924 return err;
5925 }
5926 #ifdef CONFIG_COMPAT
5927 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
5928 unsigned int cmd, unsigned long arg)
5929 {
5930 switch (cmd) {
5931 case HOT_REMOVE_DISK:
5932 case HOT_ADD_DISK:
5933 case SET_DISK_FAULTY:
5934 case SET_BITMAP_FILE:
5935 /* These take in integer arg, do not convert */
5936 break;
5937 default:
5938 arg = (unsigned long)compat_ptr(arg);
5939 break;
5940 }
5941
5942 return md_ioctl(bdev, mode, cmd, arg);
5943 }
5944 #endif /* CONFIG_COMPAT */
5945
5946 static int md_open(struct block_device *bdev, fmode_t mode)
5947 {
5948 /*
5949 * Succeed if we can lock the mddev, which confirms that
5950 * it isn't being stopped right now.
5951 */
5952 mddev_t *mddev = mddev_find(bdev->bd_dev);
5953 int err;
5954
5955 mutex_lock(&md_mutex);
5956 if (mddev->gendisk != bdev->bd_disk) {
5957 /* we are racing with mddev_put which is discarding this
5958 * bd_disk.
5959 */
5960 mddev_put(mddev);
5961 /* Wait until bdev->bd_disk is definitely gone */
5962 flush_scheduled_work();
5963 /* Then retry the open from the top */
5964 mutex_unlock(&md_mutex);
5965 return -ERESTARTSYS;
5966 }
5967 BUG_ON(mddev != bdev->bd_disk->private_data);
5968
5969 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
5970 goto out;
5971
5972 err = 0;
5973 atomic_inc(&mddev->openers);
5974 mutex_unlock(&mddev->open_mutex);
5975
5976 check_disk_size_change(mddev->gendisk, bdev);
5977 out:
5978 mutex_unlock(&md_mutex);
5979 return err;
5980 }
5981
5982 static int md_release(struct gendisk *disk, fmode_t mode)
5983 {
5984 mddev_t *mddev = disk->private_data;
5985
5986 BUG_ON(!mddev);
5987 mutex_lock(&md_mutex);
5988 atomic_dec(&mddev->openers);
5989 mddev_put(mddev);
5990 mutex_unlock(&md_mutex);
5991
5992 return 0;
5993 }
5994 static const struct block_device_operations md_fops =
5995 {
5996 .owner = THIS_MODULE,
5997 .open = md_open,
5998 .release = md_release,
5999 .ioctl = md_ioctl,
6000 #ifdef CONFIG_COMPAT
6001 .compat_ioctl = md_compat_ioctl,
6002 #endif
6003 .getgeo = md_getgeo,
6004 };
6005
6006 static int md_thread(void * arg)
6007 {
6008 mdk_thread_t *thread = arg;
6009
6010 /*
6011 * md_thread is a 'system-thread', it's priority should be very
6012 * high. We avoid resource deadlocks individually in each
6013 * raid personality. (RAID5 does preallocation) We also use RR and
6014 * the very same RT priority as kswapd, thus we will never get
6015 * into a priority inversion deadlock.
6016 *
6017 * we definitely have to have equal or higher priority than
6018 * bdflush, otherwise bdflush will deadlock if there are too
6019 * many dirty RAID5 blocks.
6020 */
6021
6022 allow_signal(SIGKILL);
6023 while (!kthread_should_stop()) {
6024
6025 /* We need to wait INTERRUPTIBLE so that
6026 * we don't add to the load-average.
6027 * That means we need to be sure no signals are
6028 * pending
6029 */
6030 if (signal_pending(current))
6031 flush_signals(current);
6032
6033 wait_event_interruptible_timeout
6034 (thread->wqueue,
6035 test_bit(THREAD_WAKEUP, &thread->flags)
6036 || kthread_should_stop(),
6037 thread->timeout);
6038
6039 clear_bit(THREAD_WAKEUP, &thread->flags);
6040
6041 thread->run(thread->mddev);
6042 }
6043
6044 return 0;
6045 }
6046
6047 void md_wakeup_thread(mdk_thread_t *thread)
6048 {
6049 if (thread) {
6050 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
6051 set_bit(THREAD_WAKEUP, &thread->flags);
6052 wake_up(&thread->wqueue);
6053 }
6054 }
6055
6056 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
6057 const char *name)
6058 {
6059 mdk_thread_t *thread;
6060
6061 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
6062 if (!thread)
6063 return NULL;
6064
6065 init_waitqueue_head(&thread->wqueue);
6066
6067 thread->run = run;
6068 thread->mddev = mddev;
6069 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6070 thread->tsk = kthread_run(md_thread, thread,
6071 "%s_%s",
6072 mdname(thread->mddev),
6073 name ?: mddev->pers->name);
6074 if (IS_ERR(thread->tsk)) {
6075 kfree(thread);
6076 return NULL;
6077 }
6078 return thread;
6079 }
6080
6081 void md_unregister_thread(mdk_thread_t *thread)
6082 {
6083 if (!thread)
6084 return;
6085 dprintk("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6086
6087 kthread_stop(thread->tsk);
6088 kfree(thread);
6089 }
6090
6091 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
6092 {
6093 if (!mddev) {
6094 MD_BUG();
6095 return;
6096 }
6097
6098 if (!rdev || test_bit(Faulty, &rdev->flags))
6099 return;
6100
6101 if (mddev->external)
6102 set_bit(Blocked, &rdev->flags);
6103 /*
6104 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
6105 mdname(mddev),
6106 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
6107 __builtin_return_address(0),__builtin_return_address(1),
6108 __builtin_return_address(2),__builtin_return_address(3));
6109 */
6110 if (!mddev->pers)
6111 return;
6112 if (!mddev->pers->error_handler)
6113 return;
6114 mddev->pers->error_handler(mddev,rdev);
6115 if (mddev->degraded)
6116 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6117 sysfs_notify_dirent_safe(rdev->sysfs_state);
6118 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6119 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6120 md_wakeup_thread(mddev->thread);
6121 if (mddev->event_work.func)
6122 schedule_work(&mddev->event_work);
6123 md_new_event_inintr(mddev);
6124 }
6125
6126 /* seq_file implementation /proc/mdstat */
6127
6128 static void status_unused(struct seq_file *seq)
6129 {
6130 int i = 0;
6131 mdk_rdev_t *rdev;
6132
6133 seq_printf(seq, "unused devices: ");
6134
6135 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6136 char b[BDEVNAME_SIZE];
6137 i++;
6138 seq_printf(seq, "%s ",
6139 bdevname(rdev->bdev,b));
6140 }
6141 if (!i)
6142 seq_printf(seq, "<none>");
6143
6144 seq_printf(seq, "\n");
6145 }
6146
6147
6148 static void status_resync(struct seq_file *seq, mddev_t * mddev)
6149 {
6150 sector_t max_sectors, resync, res;
6151 unsigned long dt, db;
6152 sector_t rt;
6153 int scale;
6154 unsigned int per_milli;
6155
6156 resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6157
6158 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6159 max_sectors = mddev->resync_max_sectors;
6160 else
6161 max_sectors = mddev->dev_sectors;
6162
6163 /*
6164 * Should not happen.
6165 */
6166 if (!max_sectors) {
6167 MD_BUG();
6168 return;
6169 }
6170 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6171 * in a sector_t, and (max_sectors>>scale) will fit in a
6172 * u32, as those are the requirements for sector_div.
6173 * Thus 'scale' must be at least 10
6174 */
6175 scale = 10;
6176 if (sizeof(sector_t) > sizeof(unsigned long)) {
6177 while ( max_sectors/2 > (1ULL<<(scale+32)))
6178 scale++;
6179 }
6180 res = (resync>>scale)*1000;
6181 sector_div(res, (u32)((max_sectors>>scale)+1));
6182
6183 per_milli = res;
6184 {
6185 int i, x = per_milli/50, y = 20-x;
6186 seq_printf(seq, "[");
6187 for (i = 0; i < x; i++)
6188 seq_printf(seq, "=");
6189 seq_printf(seq, ">");
6190 for (i = 0; i < y; i++)
6191 seq_printf(seq, ".");
6192 seq_printf(seq, "] ");
6193 }
6194 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6195 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6196 "reshape" :
6197 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6198 "check" :
6199 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6200 "resync" : "recovery"))),
6201 per_milli/10, per_milli % 10,
6202 (unsigned long long) resync/2,
6203 (unsigned long long) max_sectors/2);
6204
6205 /*
6206 * dt: time from mark until now
6207 * db: blocks written from mark until now
6208 * rt: remaining time
6209 *
6210 * rt is a sector_t, so could be 32bit or 64bit.
6211 * So we divide before multiply in case it is 32bit and close
6212 * to the limit.
6213 * We scale the divisor (db) by 32 to avoid loosing precision
6214 * near the end of resync when the number of remaining sectors
6215 * is close to 'db'.
6216 * We then divide rt by 32 after multiplying by db to compensate.
6217 * The '+1' avoids division by zero if db is very small.
6218 */
6219 dt = ((jiffies - mddev->resync_mark) / HZ);
6220 if (!dt) dt++;
6221 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6222 - mddev->resync_mark_cnt;
6223
6224 rt = max_sectors - resync; /* number of remaining sectors */
6225 sector_div(rt, db/32+1);
6226 rt *= dt;
6227 rt >>= 5;
6228
6229 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6230 ((unsigned long)rt % 60)/6);
6231
6232 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6233 }
6234
6235 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6236 {
6237 struct list_head *tmp;
6238 loff_t l = *pos;
6239 mddev_t *mddev;
6240
6241 if (l >= 0x10000)
6242 return NULL;
6243 if (!l--)
6244 /* header */
6245 return (void*)1;
6246
6247 spin_lock(&all_mddevs_lock);
6248 list_for_each(tmp,&all_mddevs)
6249 if (!l--) {
6250 mddev = list_entry(tmp, mddev_t, all_mddevs);
6251 mddev_get(mddev);
6252 spin_unlock(&all_mddevs_lock);
6253 return mddev;
6254 }
6255 spin_unlock(&all_mddevs_lock);
6256 if (!l--)
6257 return (void*)2;/* tail */
6258 return NULL;
6259 }
6260
6261 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6262 {
6263 struct list_head *tmp;
6264 mddev_t *next_mddev, *mddev = v;
6265
6266 ++*pos;
6267 if (v == (void*)2)
6268 return NULL;
6269
6270 spin_lock(&all_mddevs_lock);
6271 if (v == (void*)1)
6272 tmp = all_mddevs.next;
6273 else
6274 tmp = mddev->all_mddevs.next;
6275 if (tmp != &all_mddevs)
6276 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
6277 else {
6278 next_mddev = (void*)2;
6279 *pos = 0x10000;
6280 }
6281 spin_unlock(&all_mddevs_lock);
6282
6283 if (v != (void*)1)
6284 mddev_put(mddev);
6285 return next_mddev;
6286
6287 }
6288
6289 static void md_seq_stop(struct seq_file *seq, void *v)
6290 {
6291 mddev_t *mddev = v;
6292
6293 if (mddev && v != (void*)1 && v != (void*)2)
6294 mddev_put(mddev);
6295 }
6296
6297 struct mdstat_info {
6298 int event;
6299 };
6300
6301 static int md_seq_show(struct seq_file *seq, void *v)
6302 {
6303 mddev_t *mddev = v;
6304 sector_t sectors;
6305 mdk_rdev_t *rdev;
6306 struct mdstat_info *mi = seq->private;
6307 struct bitmap *bitmap;
6308
6309 if (v == (void*)1) {
6310 struct mdk_personality *pers;
6311 seq_printf(seq, "Personalities : ");
6312 spin_lock(&pers_lock);
6313 list_for_each_entry(pers, &pers_list, list)
6314 seq_printf(seq, "[%s] ", pers->name);
6315
6316 spin_unlock(&pers_lock);
6317 seq_printf(seq, "\n");
6318 mi->event = atomic_read(&md_event_count);
6319 return 0;
6320 }
6321 if (v == (void*)2) {
6322 status_unused(seq);
6323 return 0;
6324 }
6325
6326 if (mddev_lock(mddev) < 0)
6327 return -EINTR;
6328
6329 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6330 seq_printf(seq, "%s : %sactive", mdname(mddev),
6331 mddev->pers ? "" : "in");
6332 if (mddev->pers) {
6333 if (mddev->ro==1)
6334 seq_printf(seq, " (read-only)");
6335 if (mddev->ro==2)
6336 seq_printf(seq, " (auto-read-only)");
6337 seq_printf(seq, " %s", mddev->pers->name);
6338 }
6339
6340 sectors = 0;
6341 list_for_each_entry(rdev, &mddev->disks, same_set) {
6342 char b[BDEVNAME_SIZE];
6343 seq_printf(seq, " %s[%d]",
6344 bdevname(rdev->bdev,b), rdev->desc_nr);
6345 if (test_bit(WriteMostly, &rdev->flags))
6346 seq_printf(seq, "(W)");
6347 if (test_bit(Faulty, &rdev->flags)) {
6348 seq_printf(seq, "(F)");
6349 continue;
6350 } else if (rdev->raid_disk < 0)
6351 seq_printf(seq, "(S)"); /* spare */
6352 sectors += rdev->sectors;
6353 }
6354
6355 if (!list_empty(&mddev->disks)) {
6356 if (mddev->pers)
6357 seq_printf(seq, "\n %llu blocks",
6358 (unsigned long long)
6359 mddev->array_sectors / 2);
6360 else
6361 seq_printf(seq, "\n %llu blocks",
6362 (unsigned long long)sectors / 2);
6363 }
6364 if (mddev->persistent) {
6365 if (mddev->major_version != 0 ||
6366 mddev->minor_version != 90) {
6367 seq_printf(seq," super %d.%d",
6368 mddev->major_version,
6369 mddev->minor_version);
6370 }
6371 } else if (mddev->external)
6372 seq_printf(seq, " super external:%s",
6373 mddev->metadata_type);
6374 else
6375 seq_printf(seq, " super non-persistent");
6376
6377 if (mddev->pers) {
6378 mddev->pers->status(seq, mddev);
6379 seq_printf(seq, "\n ");
6380 if (mddev->pers->sync_request) {
6381 if (mddev->curr_resync > 2) {
6382 status_resync(seq, mddev);
6383 seq_printf(seq, "\n ");
6384 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6385 seq_printf(seq, "\tresync=DELAYED\n ");
6386 else if (mddev->recovery_cp < MaxSector)
6387 seq_printf(seq, "\tresync=PENDING\n ");
6388 }
6389 } else
6390 seq_printf(seq, "\n ");
6391
6392 if ((bitmap = mddev->bitmap)) {
6393 unsigned long chunk_kb;
6394 unsigned long flags;
6395 spin_lock_irqsave(&bitmap->lock, flags);
6396 chunk_kb = mddev->bitmap_info.chunksize >> 10;
6397 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6398 "%lu%s chunk",
6399 bitmap->pages - bitmap->missing_pages,
6400 bitmap->pages,
6401 (bitmap->pages - bitmap->missing_pages)
6402 << (PAGE_SHIFT - 10),
6403 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
6404 chunk_kb ? "KB" : "B");
6405 if (bitmap->file) {
6406 seq_printf(seq, ", file: ");
6407 seq_path(seq, &bitmap->file->f_path, " \t\n");
6408 }
6409
6410 seq_printf(seq, "\n");
6411 spin_unlock_irqrestore(&bitmap->lock, flags);
6412 }
6413
6414 seq_printf(seq, "\n");
6415 }
6416 mddev_unlock(mddev);
6417
6418 return 0;
6419 }
6420
6421 static const struct seq_operations md_seq_ops = {
6422 .start = md_seq_start,
6423 .next = md_seq_next,
6424 .stop = md_seq_stop,
6425 .show = md_seq_show,
6426 };
6427
6428 static int md_seq_open(struct inode *inode, struct file *file)
6429 {
6430 int error;
6431 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
6432 if (mi == NULL)
6433 return -ENOMEM;
6434
6435 error = seq_open(file, &md_seq_ops);
6436 if (error)
6437 kfree(mi);
6438 else {
6439 struct seq_file *p = file->private_data;
6440 p->private = mi;
6441 mi->event = atomic_read(&md_event_count);
6442 }
6443 return error;
6444 }
6445
6446 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6447 {
6448 struct seq_file *m = filp->private_data;
6449 struct mdstat_info *mi = m->private;
6450 int mask;
6451
6452 poll_wait(filp, &md_event_waiters, wait);
6453
6454 /* always allow read */
6455 mask = POLLIN | POLLRDNORM;
6456
6457 if (mi->event != atomic_read(&md_event_count))
6458 mask |= POLLERR | POLLPRI;
6459 return mask;
6460 }
6461
6462 static const struct file_operations md_seq_fops = {
6463 .owner = THIS_MODULE,
6464 .open = md_seq_open,
6465 .read = seq_read,
6466 .llseek = seq_lseek,
6467 .release = seq_release_private,
6468 .poll = mdstat_poll,
6469 };
6470
6471 int register_md_personality(struct mdk_personality *p)
6472 {
6473 spin_lock(&pers_lock);
6474 list_add_tail(&p->list, &pers_list);
6475 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6476 spin_unlock(&pers_lock);
6477 return 0;
6478 }
6479
6480 int unregister_md_personality(struct mdk_personality *p)
6481 {
6482 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6483 spin_lock(&pers_lock);
6484 list_del_init(&p->list);
6485 spin_unlock(&pers_lock);
6486 return 0;
6487 }
6488
6489 static int is_mddev_idle(mddev_t *mddev, int init)
6490 {
6491 mdk_rdev_t * rdev;
6492 int idle;
6493 int curr_events;
6494
6495 idle = 1;
6496 rcu_read_lock();
6497 rdev_for_each_rcu(rdev, mddev) {
6498 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6499 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6500 (int)part_stat_read(&disk->part0, sectors[1]) -
6501 atomic_read(&disk->sync_io);
6502 /* sync IO will cause sync_io to increase before the disk_stats
6503 * as sync_io is counted when a request starts, and
6504 * disk_stats is counted when it completes.
6505 * So resync activity will cause curr_events to be smaller than
6506 * when there was no such activity.
6507 * non-sync IO will cause disk_stat to increase without
6508 * increasing sync_io so curr_events will (eventually)
6509 * be larger than it was before. Once it becomes
6510 * substantially larger, the test below will cause
6511 * the array to appear non-idle, and resync will slow
6512 * down.
6513 * If there is a lot of outstanding resync activity when
6514 * we set last_event to curr_events, then all that activity
6515 * completing might cause the array to appear non-idle
6516 * and resync will be slowed down even though there might
6517 * not have been non-resync activity. This will only
6518 * happen once though. 'last_events' will soon reflect
6519 * the state where there is little or no outstanding
6520 * resync requests, and further resync activity will
6521 * always make curr_events less than last_events.
6522 *
6523 */
6524 if (init || curr_events - rdev->last_events > 64) {
6525 rdev->last_events = curr_events;
6526 idle = 0;
6527 }
6528 }
6529 rcu_read_unlock();
6530 return idle;
6531 }
6532
6533 void md_done_sync(mddev_t *mddev, int blocks, int ok)
6534 {
6535 /* another "blocks" (512byte) blocks have been synced */
6536 atomic_sub(blocks, &mddev->recovery_active);
6537 wake_up(&mddev->recovery_wait);
6538 if (!ok) {
6539 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6540 md_wakeup_thread(mddev->thread);
6541 // stop recovery, signal do_sync ....
6542 }
6543 }
6544
6545
6546 /* md_write_start(mddev, bi)
6547 * If we need to update some array metadata (e.g. 'active' flag
6548 * in superblock) before writing, schedule a superblock update
6549 * and wait for it to complete.
6550 */
6551 void md_write_start(mddev_t *mddev, struct bio *bi)
6552 {
6553 int did_change = 0;
6554 if (bio_data_dir(bi) != WRITE)
6555 return;
6556
6557 BUG_ON(mddev->ro == 1);
6558 if (mddev->ro == 2) {
6559 /* need to switch to read/write */
6560 mddev->ro = 0;
6561 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6562 md_wakeup_thread(mddev->thread);
6563 md_wakeup_thread(mddev->sync_thread);
6564 did_change = 1;
6565 }
6566 atomic_inc(&mddev->writes_pending);
6567 if (mddev->safemode == 1)
6568 mddev->safemode = 0;
6569 if (mddev->in_sync) {
6570 spin_lock_irq(&mddev->write_lock);
6571 if (mddev->in_sync) {
6572 mddev->in_sync = 0;
6573 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6574 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6575 md_wakeup_thread(mddev->thread);
6576 did_change = 1;
6577 }
6578 spin_unlock_irq(&mddev->write_lock);
6579 }
6580 if (did_change)
6581 sysfs_notify_dirent_safe(mddev->sysfs_state);
6582 wait_event(mddev->sb_wait,
6583 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6584 }
6585
6586 void md_write_end(mddev_t *mddev)
6587 {
6588 if (atomic_dec_and_test(&mddev->writes_pending)) {
6589 if (mddev->safemode == 2)
6590 md_wakeup_thread(mddev->thread);
6591 else if (mddev->safemode_delay)
6592 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6593 }
6594 }
6595
6596 /* md_allow_write(mddev)
6597 * Calling this ensures that the array is marked 'active' so that writes
6598 * may proceed without blocking. It is important to call this before
6599 * attempting a GFP_KERNEL allocation while holding the mddev lock.
6600 * Must be called with mddev_lock held.
6601 *
6602 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6603 * is dropped, so return -EAGAIN after notifying userspace.
6604 */
6605 int md_allow_write(mddev_t *mddev)
6606 {
6607 if (!mddev->pers)
6608 return 0;
6609 if (mddev->ro)
6610 return 0;
6611 if (!mddev->pers->sync_request)
6612 return 0;
6613
6614 spin_lock_irq(&mddev->write_lock);
6615 if (mddev->in_sync) {
6616 mddev->in_sync = 0;
6617 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6618 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6619 if (mddev->safemode_delay &&
6620 mddev->safemode == 0)
6621 mddev->safemode = 1;
6622 spin_unlock_irq(&mddev->write_lock);
6623 md_update_sb(mddev, 0);
6624 sysfs_notify_dirent_safe(mddev->sysfs_state);
6625 } else
6626 spin_unlock_irq(&mddev->write_lock);
6627
6628 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
6629 return -EAGAIN;
6630 else
6631 return 0;
6632 }
6633 EXPORT_SYMBOL_GPL(md_allow_write);
6634
6635 void md_unplug(mddev_t *mddev)
6636 {
6637 if (mddev->queue)
6638 blk_unplug(mddev->queue);
6639 if (mddev->plug)
6640 mddev->plug->unplug_fn(mddev->plug);
6641 }
6642
6643 #define SYNC_MARKS 10
6644 #define SYNC_MARK_STEP (3*HZ)
6645 void md_do_sync(mddev_t *mddev)
6646 {
6647 mddev_t *mddev2;
6648 unsigned int currspeed = 0,
6649 window;
6650 sector_t max_sectors,j, io_sectors;
6651 unsigned long mark[SYNC_MARKS];
6652 sector_t mark_cnt[SYNC_MARKS];
6653 int last_mark,m;
6654 struct list_head *tmp;
6655 sector_t last_check;
6656 int skipped = 0;
6657 mdk_rdev_t *rdev;
6658 char *desc;
6659
6660 /* just incase thread restarts... */
6661 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
6662 return;
6663 if (mddev->ro) /* never try to sync a read-only array */
6664 return;
6665
6666 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6667 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
6668 desc = "data-check";
6669 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6670 desc = "requested-resync";
6671 else
6672 desc = "resync";
6673 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6674 desc = "reshape";
6675 else
6676 desc = "recovery";
6677
6678 /* we overload curr_resync somewhat here.
6679 * 0 == not engaged in resync at all
6680 * 2 == checking that there is no conflict with another sync
6681 * 1 == like 2, but have yielded to allow conflicting resync to
6682 * commense
6683 * other == active in resync - this many blocks
6684 *
6685 * Before starting a resync we must have set curr_resync to
6686 * 2, and then checked that every "conflicting" array has curr_resync
6687 * less than ours. When we find one that is the same or higher
6688 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
6689 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
6690 * This will mean we have to start checking from the beginning again.
6691 *
6692 */
6693
6694 do {
6695 mddev->curr_resync = 2;
6696
6697 try_again:
6698 if (kthread_should_stop())
6699 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6700
6701 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6702 goto skip;
6703 for_each_mddev(mddev2, tmp) {
6704 if (mddev2 == mddev)
6705 continue;
6706 if (!mddev->parallel_resync
6707 && mddev2->curr_resync
6708 && match_mddev_units(mddev, mddev2)) {
6709 DEFINE_WAIT(wq);
6710 if (mddev < mddev2 && mddev->curr_resync == 2) {
6711 /* arbitrarily yield */
6712 mddev->curr_resync = 1;
6713 wake_up(&resync_wait);
6714 }
6715 if (mddev > mddev2 && mddev->curr_resync == 1)
6716 /* no need to wait here, we can wait the next
6717 * time 'round when curr_resync == 2
6718 */
6719 continue;
6720 /* We need to wait 'interruptible' so as not to
6721 * contribute to the load average, and not to
6722 * be caught by 'softlockup'
6723 */
6724 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
6725 if (!kthread_should_stop() &&
6726 mddev2->curr_resync >= mddev->curr_resync) {
6727 printk(KERN_INFO "md: delaying %s of %s"
6728 " until %s has finished (they"
6729 " share one or more physical units)\n",
6730 desc, mdname(mddev), mdname(mddev2));
6731 mddev_put(mddev2);
6732 if (signal_pending(current))
6733 flush_signals(current);
6734 schedule();
6735 finish_wait(&resync_wait, &wq);
6736 goto try_again;
6737 }
6738 finish_wait(&resync_wait, &wq);
6739 }
6740 }
6741 } while (mddev->curr_resync < 2);
6742
6743 j = 0;
6744 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6745 /* resync follows the size requested by the personality,
6746 * which defaults to physical size, but can be virtual size
6747 */
6748 max_sectors = mddev->resync_max_sectors;
6749 mddev->resync_mismatches = 0;
6750 /* we don't use the checkpoint if there's a bitmap */
6751 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6752 j = mddev->resync_min;
6753 else if (!mddev->bitmap)
6754 j = mddev->recovery_cp;
6755
6756 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6757 max_sectors = mddev->dev_sectors;
6758 else {
6759 /* recovery follows the physical size of devices */
6760 max_sectors = mddev->dev_sectors;
6761 j = MaxSector;
6762 rcu_read_lock();
6763 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
6764 if (rdev->raid_disk >= 0 &&
6765 !test_bit(Faulty, &rdev->flags) &&
6766 !test_bit(In_sync, &rdev->flags) &&
6767 rdev->recovery_offset < j)
6768 j = rdev->recovery_offset;
6769 rcu_read_unlock();
6770 }
6771
6772 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
6773 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
6774 " %d KB/sec/disk.\n", speed_min(mddev));
6775 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
6776 "(but not more than %d KB/sec) for %s.\n",
6777 speed_max(mddev), desc);
6778
6779 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
6780
6781 io_sectors = 0;
6782 for (m = 0; m < SYNC_MARKS; m++) {
6783 mark[m] = jiffies;
6784 mark_cnt[m] = io_sectors;
6785 }
6786 last_mark = 0;
6787 mddev->resync_mark = mark[last_mark];
6788 mddev->resync_mark_cnt = mark_cnt[last_mark];
6789
6790 /*
6791 * Tune reconstruction:
6792 */
6793 window = 32*(PAGE_SIZE/512);
6794 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
6795 window/2,(unsigned long long) max_sectors/2);
6796
6797 atomic_set(&mddev->recovery_active, 0);
6798 last_check = 0;
6799
6800 if (j>2) {
6801 printk(KERN_INFO
6802 "md: resuming %s of %s from checkpoint.\n",
6803 desc, mdname(mddev));
6804 mddev->curr_resync = j;
6805 }
6806 mddev->curr_resync_completed = mddev->curr_resync;
6807
6808 while (j < max_sectors) {
6809 sector_t sectors;
6810
6811 skipped = 0;
6812
6813 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
6814 ((mddev->curr_resync > mddev->curr_resync_completed &&
6815 (mddev->curr_resync - mddev->curr_resync_completed)
6816 > (max_sectors >> 4)) ||
6817 (j - mddev->curr_resync_completed)*2
6818 >= mddev->resync_max - mddev->curr_resync_completed
6819 )) {
6820 /* time to update curr_resync_completed */
6821 md_unplug(mddev);
6822 wait_event(mddev->recovery_wait,
6823 atomic_read(&mddev->recovery_active) == 0);
6824 mddev->curr_resync_completed =
6825 mddev->curr_resync;
6826 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6827 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6828 }
6829
6830 while (j >= mddev->resync_max && !kthread_should_stop()) {
6831 /* As this condition is controlled by user-space,
6832 * we can block indefinitely, so use '_interruptible'
6833 * to avoid triggering warnings.
6834 */
6835 flush_signals(current); /* just in case */
6836 wait_event_interruptible(mddev->recovery_wait,
6837 mddev->resync_max > j
6838 || kthread_should_stop());
6839 }
6840
6841 if (kthread_should_stop())
6842 goto interrupted;
6843
6844 sectors = mddev->pers->sync_request(mddev, j, &skipped,
6845 currspeed < speed_min(mddev));
6846 if (sectors == 0) {
6847 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6848 goto out;
6849 }
6850
6851 if (!skipped) { /* actual IO requested */
6852 io_sectors += sectors;
6853 atomic_add(sectors, &mddev->recovery_active);
6854 }
6855
6856 j += sectors;
6857 if (j>1) mddev->curr_resync = j;
6858 mddev->curr_mark_cnt = io_sectors;
6859 if (last_check == 0)
6860 /* this is the earliers that rebuilt will be
6861 * visible in /proc/mdstat
6862 */
6863 md_new_event(mddev);
6864
6865 if (last_check + window > io_sectors || j == max_sectors)
6866 continue;
6867
6868 last_check = io_sectors;
6869
6870 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6871 break;
6872
6873 repeat:
6874 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
6875 /* step marks */
6876 int next = (last_mark+1) % SYNC_MARKS;
6877
6878 mddev->resync_mark = mark[next];
6879 mddev->resync_mark_cnt = mark_cnt[next];
6880 mark[next] = jiffies;
6881 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
6882 last_mark = next;
6883 }
6884
6885
6886 if (kthread_should_stop())
6887 goto interrupted;
6888
6889
6890 /*
6891 * this loop exits only if either when we are slower than
6892 * the 'hard' speed limit, or the system was IO-idle for
6893 * a jiffy.
6894 * the system might be non-idle CPU-wise, but we only care
6895 * about not overloading the IO subsystem. (things like an
6896 * e2fsck being done on the RAID array should execute fast)
6897 */
6898 md_unplug(mddev);
6899 cond_resched();
6900
6901 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
6902 /((jiffies-mddev->resync_mark)/HZ +1) +1;
6903
6904 if (currspeed > speed_min(mddev)) {
6905 if ((currspeed > speed_max(mddev)) ||
6906 !is_mddev_idle(mddev, 0)) {
6907 msleep(500);
6908 goto repeat;
6909 }
6910 }
6911 }
6912 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
6913 /*
6914 * this also signals 'finished resyncing' to md_stop
6915 */
6916 out:
6917 md_unplug(mddev);
6918
6919 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
6920
6921 /* tell personality that we are finished */
6922 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
6923
6924 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
6925 mddev->curr_resync > 2) {
6926 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6927 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6928 if (mddev->curr_resync >= mddev->recovery_cp) {
6929 printk(KERN_INFO
6930 "md: checkpointing %s of %s.\n",
6931 desc, mdname(mddev));
6932 mddev->recovery_cp = mddev->curr_resync;
6933 }
6934 } else
6935 mddev->recovery_cp = MaxSector;
6936 } else {
6937 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6938 mddev->curr_resync = MaxSector;
6939 rcu_read_lock();
6940 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
6941 if (rdev->raid_disk >= 0 &&
6942 mddev->delta_disks >= 0 &&
6943 !test_bit(Faulty, &rdev->flags) &&
6944 !test_bit(In_sync, &rdev->flags) &&
6945 rdev->recovery_offset < mddev->curr_resync)
6946 rdev->recovery_offset = mddev->curr_resync;
6947 rcu_read_unlock();
6948 }
6949 }
6950 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6951
6952 skip:
6953 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6954 /* We completed so min/max setting can be forgotten if used. */
6955 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6956 mddev->resync_min = 0;
6957 mddev->resync_max = MaxSector;
6958 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6959 mddev->resync_min = mddev->curr_resync_completed;
6960 mddev->curr_resync = 0;
6961 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6962 mddev->curr_resync_completed = 0;
6963 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6964 wake_up(&resync_wait);
6965 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
6966 md_wakeup_thread(mddev->thread);
6967 return;
6968
6969 interrupted:
6970 /*
6971 * got a signal, exit.
6972 */
6973 printk(KERN_INFO
6974 "md: md_do_sync() got signal ... exiting\n");
6975 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6976 goto out;
6977
6978 }
6979 EXPORT_SYMBOL_GPL(md_do_sync);
6980
6981
6982 static int remove_and_add_spares(mddev_t *mddev)
6983 {
6984 mdk_rdev_t *rdev;
6985 int spares = 0;
6986
6987 mddev->curr_resync_completed = 0;
6988
6989 list_for_each_entry(rdev, &mddev->disks, same_set)
6990 if (rdev->raid_disk >= 0 &&
6991 !test_bit(Blocked, &rdev->flags) &&
6992 (test_bit(Faulty, &rdev->flags) ||
6993 ! test_bit(In_sync, &rdev->flags)) &&
6994 atomic_read(&rdev->nr_pending)==0) {
6995 if (mddev->pers->hot_remove_disk(
6996 mddev, rdev->raid_disk)==0) {
6997 char nm[20];
6998 sprintf(nm,"rd%d", rdev->raid_disk);
6999 sysfs_remove_link(&mddev->kobj, nm);
7000 rdev->raid_disk = -1;
7001 }
7002 }
7003
7004 if (mddev->degraded && ! mddev->ro && !mddev->recovery_disabled) {
7005 list_for_each_entry(rdev, &mddev->disks, same_set) {
7006 if (rdev->raid_disk >= 0 &&
7007 !test_bit(In_sync, &rdev->flags) &&
7008 !test_bit(Blocked, &rdev->flags))
7009 spares++;
7010 if (rdev->raid_disk < 0
7011 && !test_bit(Faulty, &rdev->flags)) {
7012 rdev->recovery_offset = 0;
7013 if (mddev->pers->
7014 hot_add_disk(mddev, rdev) == 0) {
7015 char nm[20];
7016 sprintf(nm, "rd%d", rdev->raid_disk);
7017 if (sysfs_create_link(&mddev->kobj,
7018 &rdev->kobj, nm))
7019 /* failure here is OK */;
7020 spares++;
7021 md_new_event(mddev);
7022 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7023 } else
7024 break;
7025 }
7026 }
7027 }
7028 return spares;
7029 }
7030 /*
7031 * This routine is regularly called by all per-raid-array threads to
7032 * deal with generic issues like resync and super-block update.
7033 * Raid personalities that don't have a thread (linear/raid0) do not
7034 * need this as they never do any recovery or update the superblock.
7035 *
7036 * It does not do any resync itself, but rather "forks" off other threads
7037 * to do that as needed.
7038 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7039 * "->recovery" and create a thread at ->sync_thread.
7040 * When the thread finishes it sets MD_RECOVERY_DONE
7041 * and wakeups up this thread which will reap the thread and finish up.
7042 * This thread also removes any faulty devices (with nr_pending == 0).
7043 *
7044 * The overall approach is:
7045 * 1/ if the superblock needs updating, update it.
7046 * 2/ If a recovery thread is running, don't do anything else.
7047 * 3/ If recovery has finished, clean up, possibly marking spares active.
7048 * 4/ If there are any faulty devices, remove them.
7049 * 5/ If array is degraded, try to add spares devices
7050 * 6/ If array has spares or is not in-sync, start a resync thread.
7051 */
7052 void md_check_recovery(mddev_t *mddev)
7053 {
7054 mdk_rdev_t *rdev;
7055
7056
7057 if (mddev->bitmap)
7058 bitmap_daemon_work(mddev);
7059
7060 if (mddev->ro)
7061 return;
7062
7063 if (signal_pending(current)) {
7064 if (mddev->pers->sync_request && !mddev->external) {
7065 printk(KERN_INFO "md: %s in immediate safe mode\n",
7066 mdname(mddev));
7067 mddev->safemode = 2;
7068 }
7069 flush_signals(current);
7070 }
7071
7072 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7073 return;
7074 if ( ! (
7075 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7076 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7077 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7078 (mddev->external == 0 && mddev->safemode == 1) ||
7079 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7080 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7081 ))
7082 return;
7083
7084 if (mddev_trylock(mddev)) {
7085 int spares = 0;
7086
7087 if (mddev->ro) {
7088 /* Only thing we do on a ro array is remove
7089 * failed devices.
7090 */
7091 remove_and_add_spares(mddev);
7092 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7093 goto unlock;
7094 }
7095
7096 if (!mddev->external) {
7097 int did_change = 0;
7098 spin_lock_irq(&mddev->write_lock);
7099 if (mddev->safemode &&
7100 !atomic_read(&mddev->writes_pending) &&
7101 !mddev->in_sync &&
7102 mddev->recovery_cp == MaxSector) {
7103 mddev->in_sync = 1;
7104 did_change = 1;
7105 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7106 }
7107 if (mddev->safemode == 1)
7108 mddev->safemode = 0;
7109 spin_unlock_irq(&mddev->write_lock);
7110 if (did_change)
7111 sysfs_notify_dirent_safe(mddev->sysfs_state);
7112 }
7113
7114 if (mddev->flags)
7115 md_update_sb(mddev, 0);
7116
7117 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7118 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7119 /* resync/recovery still happening */
7120 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7121 goto unlock;
7122 }
7123 if (mddev->sync_thread) {
7124 /* resync has finished, collect result */
7125 md_unregister_thread(mddev->sync_thread);
7126 mddev->sync_thread = NULL;
7127 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7128 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7129 /* success...*/
7130 /* activate any spares */
7131 if (mddev->pers->spare_active(mddev))
7132 sysfs_notify(&mddev->kobj, NULL,
7133 "degraded");
7134 }
7135 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7136 mddev->pers->finish_reshape)
7137 mddev->pers->finish_reshape(mddev);
7138 md_update_sb(mddev, 1);
7139
7140 /* if array is no-longer degraded, then any saved_raid_disk
7141 * information must be scrapped
7142 */
7143 if (!mddev->degraded)
7144 list_for_each_entry(rdev, &mddev->disks, same_set)
7145 rdev->saved_raid_disk = -1;
7146
7147 mddev->recovery = 0;
7148 /* flag recovery needed just to double check */
7149 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7150 sysfs_notify_dirent_safe(mddev->sysfs_action);
7151 md_new_event(mddev);
7152 goto unlock;
7153 }
7154 /* Set RUNNING before clearing NEEDED to avoid
7155 * any transients in the value of "sync_action".
7156 */
7157 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7158 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7159 /* Clear some bits that don't mean anything, but
7160 * might be left set
7161 */
7162 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7163 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7164
7165 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7166 goto unlock;
7167 /* no recovery is running.
7168 * remove any failed drives, then
7169 * add spares if possible.
7170 * Spare are also removed and re-added, to allow
7171 * the personality to fail the re-add.
7172 */
7173
7174 if (mddev->reshape_position != MaxSector) {
7175 if (mddev->pers->check_reshape == NULL ||
7176 mddev->pers->check_reshape(mddev) != 0)
7177 /* Cannot proceed */
7178 goto unlock;
7179 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7180 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7181 } else if ((spares = remove_and_add_spares(mddev))) {
7182 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7183 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7184 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7185 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7186 } else if (mddev->recovery_cp < MaxSector) {
7187 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7188 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7189 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7190 /* nothing to be done ... */
7191 goto unlock;
7192
7193 if (mddev->pers->sync_request) {
7194 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7195 /* We are adding a device or devices to an array
7196 * which has the bitmap stored on all devices.
7197 * So make sure all bitmap pages get written
7198 */
7199 bitmap_write_all(mddev->bitmap);
7200 }
7201 mddev->sync_thread = md_register_thread(md_do_sync,
7202 mddev,
7203 "resync");
7204 if (!mddev->sync_thread) {
7205 printk(KERN_ERR "%s: could not start resync"
7206 " thread...\n",
7207 mdname(mddev));
7208 /* leave the spares where they are, it shouldn't hurt */
7209 mddev->recovery = 0;
7210 } else
7211 md_wakeup_thread(mddev->sync_thread);
7212 sysfs_notify_dirent_safe(mddev->sysfs_action);
7213 md_new_event(mddev);
7214 }
7215 unlock:
7216 if (!mddev->sync_thread) {
7217 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7218 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7219 &mddev->recovery))
7220 if (mddev->sysfs_action)
7221 sysfs_notify_dirent_safe(mddev->sysfs_action);
7222 }
7223 mddev_unlock(mddev);
7224 }
7225 }
7226
7227 void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
7228 {
7229 sysfs_notify_dirent_safe(rdev->sysfs_state);
7230 wait_event_timeout(rdev->blocked_wait,
7231 !test_bit(Blocked, &rdev->flags),
7232 msecs_to_jiffies(5000));
7233 rdev_dec_pending(rdev, mddev);
7234 }
7235 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7236
7237 static int md_notify_reboot(struct notifier_block *this,
7238 unsigned long code, void *x)
7239 {
7240 struct list_head *tmp;
7241 mddev_t *mddev;
7242
7243 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
7244
7245 printk(KERN_INFO "md: stopping all md devices.\n");
7246
7247 for_each_mddev(mddev, tmp)
7248 if (mddev_trylock(mddev)) {
7249 /* Force a switch to readonly even array
7250 * appears to still be in use. Hence
7251 * the '100'.
7252 */
7253 md_set_readonly(mddev, 100);
7254 mddev_unlock(mddev);
7255 }
7256 /*
7257 * certain more exotic SCSI devices are known to be
7258 * volatile wrt too early system reboots. While the
7259 * right place to handle this issue is the given
7260 * driver, we do want to have a safe RAID driver ...
7261 */
7262 mdelay(1000*1);
7263 }
7264 return NOTIFY_DONE;
7265 }
7266
7267 static struct notifier_block md_notifier = {
7268 .notifier_call = md_notify_reboot,
7269 .next = NULL,
7270 .priority = INT_MAX, /* before any real devices */
7271 };
7272
7273 static void md_geninit(void)
7274 {
7275 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
7276
7277 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
7278 }
7279
7280 static int __init md_init(void)
7281 {
7282 if (register_blkdev(MD_MAJOR, "md"))
7283 return -1;
7284 if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
7285 unregister_blkdev(MD_MAJOR, "md");
7286 return -1;
7287 }
7288 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
7289 md_probe, NULL, NULL);
7290 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
7291 md_probe, NULL, NULL);
7292
7293 register_reboot_notifier(&md_notifier);
7294 raid_table_header = register_sysctl_table(raid_root_table);
7295
7296 md_geninit();
7297 return 0;
7298 }
7299
7300
7301 #ifndef MODULE
7302
7303 /*
7304 * Searches all registered partitions for autorun RAID arrays
7305 * at boot time.
7306 */
7307
7308 static LIST_HEAD(all_detected_devices);
7309 struct detected_devices_node {
7310 struct list_head list;
7311 dev_t dev;
7312 };
7313
7314 void md_autodetect_dev(dev_t dev)
7315 {
7316 struct detected_devices_node *node_detected_dev;
7317
7318 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
7319 if (node_detected_dev) {
7320 node_detected_dev->dev = dev;
7321 list_add_tail(&node_detected_dev->list, &all_detected_devices);
7322 } else {
7323 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
7324 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
7325 }
7326 }
7327
7328
7329 static void autostart_arrays(int part)
7330 {
7331 mdk_rdev_t *rdev;
7332 struct detected_devices_node *node_detected_dev;
7333 dev_t dev;
7334 int i_scanned, i_passed;
7335
7336 i_scanned = 0;
7337 i_passed = 0;
7338
7339 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
7340
7341 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
7342 i_scanned++;
7343 node_detected_dev = list_entry(all_detected_devices.next,
7344 struct detected_devices_node, list);
7345 list_del(&node_detected_dev->list);
7346 dev = node_detected_dev->dev;
7347 kfree(node_detected_dev);
7348 rdev = md_import_device(dev,0, 90);
7349 if (IS_ERR(rdev))
7350 continue;
7351
7352 if (test_bit(Faulty, &rdev->flags)) {
7353 MD_BUG();
7354 continue;
7355 }
7356 set_bit(AutoDetected, &rdev->flags);
7357 list_add(&rdev->same_set, &pending_raid_disks);
7358 i_passed++;
7359 }
7360
7361 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
7362 i_scanned, i_passed);
7363
7364 autorun_devices(part);
7365 }
7366
7367 #endif /* !MODULE */
7368
7369 static __exit void md_exit(void)
7370 {
7371 mddev_t *mddev;
7372 struct list_head *tmp;
7373
7374 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
7375 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
7376
7377 unregister_blkdev(MD_MAJOR,"md");
7378 unregister_blkdev(mdp_major, "mdp");
7379 unregister_reboot_notifier(&md_notifier);
7380 unregister_sysctl_table(raid_table_header);
7381 remove_proc_entry("mdstat", NULL);
7382 for_each_mddev(mddev, tmp) {
7383 export_array(mddev);
7384 mddev->hold_active = 0;
7385 }
7386 }
7387
7388 subsys_initcall(md_init);
7389 module_exit(md_exit)
7390
7391 static int get_ro(char *buffer, struct kernel_param *kp)
7392 {
7393 return sprintf(buffer, "%d", start_readonly);
7394 }
7395 static int set_ro(const char *val, struct kernel_param *kp)
7396 {
7397 char *e;
7398 int num = simple_strtoul(val, &e, 10);
7399 if (*val && (*e == '\0' || *e == '\n')) {
7400 start_readonly = num;
7401 return 0;
7402 }
7403 return -EINVAL;
7404 }
7405
7406 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
7407 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
7408
7409 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
7410
7411 EXPORT_SYMBOL(register_md_personality);
7412 EXPORT_SYMBOL(unregister_md_personality);
7413 EXPORT_SYMBOL(md_error);
7414 EXPORT_SYMBOL(md_done_sync);
7415 EXPORT_SYMBOL(md_write_start);
7416 EXPORT_SYMBOL(md_write_end);
7417 EXPORT_SYMBOL(md_register_thread);
7418 EXPORT_SYMBOL(md_unregister_thread);
7419 EXPORT_SYMBOL(md_wakeup_thread);
7420 EXPORT_SYMBOL(md_check_recovery);
7421 MODULE_LICENSE("GPL");
7422 MODULE_DESCRIPTION("MD RAID framework");
7423 MODULE_ALIAS("md");
7424 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
This page took 0.176312 seconds and 6 git commands to generate.