Pull dock into test branch
[deliverable/linux.git] / drivers / md / md.c
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5 completely rewritten, based on the MD driver code from Marc Zyngier
6
7 Changes:
8
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
19
20 Neil Brown <neilb@cse.unsw.edu.au>.
21
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
29
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/module.h>
36 #include <linux/kthread.h>
37 #include <linux/linkage.h>
38 #include <linux/raid/md.h>
39 #include <linux/raid/bitmap.h>
40 #include <linux/sysctl.h>
41 #include <linux/buffer_head.h> /* for invalidate_bdev */
42 #include <linux/poll.h>
43 #include <linux/mutex.h>
44 #include <linux/ctype.h>
45 #include <linux/freezer.h>
46
47 #include <linux/init.h>
48
49 #include <linux/file.h>
50
51 #ifdef CONFIG_KMOD
52 #include <linux/kmod.h>
53 #endif
54
55 #include <asm/unaligned.h>
56
57 #define MAJOR_NR MD_MAJOR
58 #define MD_DRIVER
59
60 /* 63 partitions with the alternate major number (mdp) */
61 #define MdpMinorShift 6
62
63 #define DEBUG 0
64 #define dprintk(x...) ((void)(DEBUG && printk(x)))
65
66
67 #ifndef MODULE
68 static void autostart_arrays (int part);
69 #endif
70
71 static LIST_HEAD(pers_list);
72 static DEFINE_SPINLOCK(pers_lock);
73
74 static void md_print_devices(void);
75
76 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
77
78 /*
79 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
80 * is 1000 KB/sec, so the extra system load does not show up that much.
81 * Increase it if you want to have more _guaranteed_ speed. Note that
82 * the RAID driver will use the maximum available bandwidth if the IO
83 * subsystem is idle. There is also an 'absolute maximum' reconstruction
84 * speed limit - in case reconstruction slows down your system despite
85 * idle IO detection.
86 *
87 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
88 * or /sys/block/mdX/md/sync_speed_{min,max}
89 */
90
91 static int sysctl_speed_limit_min = 1000;
92 static int sysctl_speed_limit_max = 200000;
93 static inline int speed_min(mddev_t *mddev)
94 {
95 return mddev->sync_speed_min ?
96 mddev->sync_speed_min : sysctl_speed_limit_min;
97 }
98
99 static inline int speed_max(mddev_t *mddev)
100 {
101 return mddev->sync_speed_max ?
102 mddev->sync_speed_max : sysctl_speed_limit_max;
103 }
104
105 static struct ctl_table_header *raid_table_header;
106
107 static ctl_table raid_table[] = {
108 {
109 .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
110 .procname = "speed_limit_min",
111 .data = &sysctl_speed_limit_min,
112 .maxlen = sizeof(int),
113 .mode = S_IRUGO|S_IWUSR,
114 .proc_handler = &proc_dointvec,
115 },
116 {
117 .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
118 .procname = "speed_limit_max",
119 .data = &sysctl_speed_limit_max,
120 .maxlen = sizeof(int),
121 .mode = S_IRUGO|S_IWUSR,
122 .proc_handler = &proc_dointvec,
123 },
124 { .ctl_name = 0 }
125 };
126
127 static ctl_table raid_dir_table[] = {
128 {
129 .ctl_name = DEV_RAID,
130 .procname = "raid",
131 .maxlen = 0,
132 .mode = S_IRUGO|S_IXUGO,
133 .child = raid_table,
134 },
135 { .ctl_name = 0 }
136 };
137
138 static ctl_table raid_root_table[] = {
139 {
140 .ctl_name = CTL_DEV,
141 .procname = "dev",
142 .maxlen = 0,
143 .mode = 0555,
144 .child = raid_dir_table,
145 },
146 { .ctl_name = 0 }
147 };
148
149 static struct block_device_operations md_fops;
150
151 static int start_readonly;
152
153 /*
154 * We have a system wide 'event count' that is incremented
155 * on any 'interesting' event, and readers of /proc/mdstat
156 * can use 'poll' or 'select' to find out when the event
157 * count increases.
158 *
159 * Events are:
160 * start array, stop array, error, add device, remove device,
161 * start build, activate spare
162 */
163 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
164 static atomic_t md_event_count;
165 void md_new_event(mddev_t *mddev)
166 {
167 atomic_inc(&md_event_count);
168 wake_up(&md_event_waiters);
169 sysfs_notify(&mddev->kobj, NULL, "sync_action");
170 }
171 EXPORT_SYMBOL_GPL(md_new_event);
172
173 /* Alternate version that can be called from interrupts
174 * when calling sysfs_notify isn't needed.
175 */
176 static void md_new_event_inintr(mddev_t *mddev)
177 {
178 atomic_inc(&md_event_count);
179 wake_up(&md_event_waiters);
180 }
181
182 /*
183 * Enables to iterate over all existing md arrays
184 * all_mddevs_lock protects this list.
185 */
186 static LIST_HEAD(all_mddevs);
187 static DEFINE_SPINLOCK(all_mddevs_lock);
188
189
190 /*
191 * iterates through all used mddevs in the system.
192 * We take care to grab the all_mddevs_lock whenever navigating
193 * the list, and to always hold a refcount when unlocked.
194 * Any code which breaks out of this loop while own
195 * a reference to the current mddev and must mddev_put it.
196 */
197 #define ITERATE_MDDEV(mddev,tmp) \
198 \
199 for (({ spin_lock(&all_mddevs_lock); \
200 tmp = all_mddevs.next; \
201 mddev = NULL;}); \
202 ({ if (tmp != &all_mddevs) \
203 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
204 spin_unlock(&all_mddevs_lock); \
205 if (mddev) mddev_put(mddev); \
206 mddev = list_entry(tmp, mddev_t, all_mddevs); \
207 tmp != &all_mddevs;}); \
208 ({ spin_lock(&all_mddevs_lock); \
209 tmp = tmp->next;}) \
210 )
211
212
213 static int md_fail_request (request_queue_t *q, struct bio *bio)
214 {
215 bio_io_error(bio, bio->bi_size);
216 return 0;
217 }
218
219 static inline mddev_t *mddev_get(mddev_t *mddev)
220 {
221 atomic_inc(&mddev->active);
222 return mddev;
223 }
224
225 static void mddev_put(mddev_t *mddev)
226 {
227 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
228 return;
229 if (!mddev->raid_disks && list_empty(&mddev->disks)) {
230 list_del(&mddev->all_mddevs);
231 spin_unlock(&all_mddevs_lock);
232 blk_cleanup_queue(mddev->queue);
233 kobject_unregister(&mddev->kobj);
234 } else
235 spin_unlock(&all_mddevs_lock);
236 }
237
238 static mddev_t * mddev_find(dev_t unit)
239 {
240 mddev_t *mddev, *new = NULL;
241
242 retry:
243 spin_lock(&all_mddevs_lock);
244 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
245 if (mddev->unit == unit) {
246 mddev_get(mddev);
247 spin_unlock(&all_mddevs_lock);
248 kfree(new);
249 return mddev;
250 }
251
252 if (new) {
253 list_add(&new->all_mddevs, &all_mddevs);
254 spin_unlock(&all_mddevs_lock);
255 return new;
256 }
257 spin_unlock(&all_mddevs_lock);
258
259 new = kzalloc(sizeof(*new), GFP_KERNEL);
260 if (!new)
261 return NULL;
262
263 new->unit = unit;
264 if (MAJOR(unit) == MD_MAJOR)
265 new->md_minor = MINOR(unit);
266 else
267 new->md_minor = MINOR(unit) >> MdpMinorShift;
268
269 mutex_init(&new->reconfig_mutex);
270 INIT_LIST_HEAD(&new->disks);
271 INIT_LIST_HEAD(&new->all_mddevs);
272 init_timer(&new->safemode_timer);
273 atomic_set(&new->active, 1);
274 spin_lock_init(&new->write_lock);
275 init_waitqueue_head(&new->sb_wait);
276
277 new->queue = blk_alloc_queue(GFP_KERNEL);
278 if (!new->queue) {
279 kfree(new);
280 return NULL;
281 }
282 set_bit(QUEUE_FLAG_CLUSTER, &new->queue->queue_flags);
283
284 blk_queue_make_request(new->queue, md_fail_request);
285
286 goto retry;
287 }
288
289 static inline int mddev_lock(mddev_t * mddev)
290 {
291 return mutex_lock_interruptible(&mddev->reconfig_mutex);
292 }
293
294 static inline int mddev_trylock(mddev_t * mddev)
295 {
296 return mutex_trylock(&mddev->reconfig_mutex);
297 }
298
299 static inline void mddev_unlock(mddev_t * mddev)
300 {
301 mutex_unlock(&mddev->reconfig_mutex);
302
303 md_wakeup_thread(mddev->thread);
304 }
305
306 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
307 {
308 mdk_rdev_t * rdev;
309 struct list_head *tmp;
310
311 ITERATE_RDEV(mddev,rdev,tmp) {
312 if (rdev->desc_nr == nr)
313 return rdev;
314 }
315 return NULL;
316 }
317
318 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
319 {
320 struct list_head *tmp;
321 mdk_rdev_t *rdev;
322
323 ITERATE_RDEV(mddev,rdev,tmp) {
324 if (rdev->bdev->bd_dev == dev)
325 return rdev;
326 }
327 return NULL;
328 }
329
330 static struct mdk_personality *find_pers(int level, char *clevel)
331 {
332 struct mdk_personality *pers;
333 list_for_each_entry(pers, &pers_list, list) {
334 if (level != LEVEL_NONE && pers->level == level)
335 return pers;
336 if (strcmp(pers->name, clevel)==0)
337 return pers;
338 }
339 return NULL;
340 }
341
342 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
343 {
344 sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
345 return MD_NEW_SIZE_BLOCKS(size);
346 }
347
348 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
349 {
350 sector_t size;
351
352 size = rdev->sb_offset;
353
354 if (chunk_size)
355 size &= ~((sector_t)chunk_size/1024 - 1);
356 return size;
357 }
358
359 static int alloc_disk_sb(mdk_rdev_t * rdev)
360 {
361 if (rdev->sb_page)
362 MD_BUG();
363
364 rdev->sb_page = alloc_page(GFP_KERNEL);
365 if (!rdev->sb_page) {
366 printk(KERN_ALERT "md: out of memory.\n");
367 return -EINVAL;
368 }
369
370 return 0;
371 }
372
373 static void free_disk_sb(mdk_rdev_t * rdev)
374 {
375 if (rdev->sb_page) {
376 put_page(rdev->sb_page);
377 rdev->sb_loaded = 0;
378 rdev->sb_page = NULL;
379 rdev->sb_offset = 0;
380 rdev->size = 0;
381 }
382 }
383
384
385 static int super_written(struct bio *bio, unsigned int bytes_done, int error)
386 {
387 mdk_rdev_t *rdev = bio->bi_private;
388 mddev_t *mddev = rdev->mddev;
389 if (bio->bi_size)
390 return 1;
391
392 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
393 printk("md: super_written gets error=%d, uptodate=%d\n",
394 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
395 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
396 md_error(mddev, rdev);
397 }
398
399 if (atomic_dec_and_test(&mddev->pending_writes))
400 wake_up(&mddev->sb_wait);
401 bio_put(bio);
402 return 0;
403 }
404
405 static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error)
406 {
407 struct bio *bio2 = bio->bi_private;
408 mdk_rdev_t *rdev = bio2->bi_private;
409 mddev_t *mddev = rdev->mddev;
410 if (bio->bi_size)
411 return 1;
412
413 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
414 error == -EOPNOTSUPP) {
415 unsigned long flags;
416 /* barriers don't appear to be supported :-( */
417 set_bit(BarriersNotsupp, &rdev->flags);
418 mddev->barriers_work = 0;
419 spin_lock_irqsave(&mddev->write_lock, flags);
420 bio2->bi_next = mddev->biolist;
421 mddev->biolist = bio2;
422 spin_unlock_irqrestore(&mddev->write_lock, flags);
423 wake_up(&mddev->sb_wait);
424 bio_put(bio);
425 return 0;
426 }
427 bio_put(bio2);
428 bio->bi_private = rdev;
429 return super_written(bio, bytes_done, error);
430 }
431
432 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
433 sector_t sector, int size, struct page *page)
434 {
435 /* write first size bytes of page to sector of rdev
436 * Increment mddev->pending_writes before returning
437 * and decrement it on completion, waking up sb_wait
438 * if zero is reached.
439 * If an error occurred, call md_error
440 *
441 * As we might need to resubmit the request if BIO_RW_BARRIER
442 * causes ENOTSUPP, we allocate a spare bio...
443 */
444 struct bio *bio = bio_alloc(GFP_NOIO, 1);
445 int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
446
447 bio->bi_bdev = rdev->bdev;
448 bio->bi_sector = sector;
449 bio_add_page(bio, page, size, 0);
450 bio->bi_private = rdev;
451 bio->bi_end_io = super_written;
452 bio->bi_rw = rw;
453
454 atomic_inc(&mddev->pending_writes);
455 if (!test_bit(BarriersNotsupp, &rdev->flags)) {
456 struct bio *rbio;
457 rw |= (1<<BIO_RW_BARRIER);
458 rbio = bio_clone(bio, GFP_NOIO);
459 rbio->bi_private = bio;
460 rbio->bi_end_io = super_written_barrier;
461 submit_bio(rw, rbio);
462 } else
463 submit_bio(rw, bio);
464 }
465
466 void md_super_wait(mddev_t *mddev)
467 {
468 /* wait for all superblock writes that were scheduled to complete.
469 * if any had to be retried (due to BARRIER problems), retry them
470 */
471 DEFINE_WAIT(wq);
472 for(;;) {
473 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
474 if (atomic_read(&mddev->pending_writes)==0)
475 break;
476 while (mddev->biolist) {
477 struct bio *bio;
478 spin_lock_irq(&mddev->write_lock);
479 bio = mddev->biolist;
480 mddev->biolist = bio->bi_next ;
481 bio->bi_next = NULL;
482 spin_unlock_irq(&mddev->write_lock);
483 submit_bio(bio->bi_rw, bio);
484 }
485 schedule();
486 }
487 finish_wait(&mddev->sb_wait, &wq);
488 }
489
490 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
491 {
492 if (bio->bi_size)
493 return 1;
494
495 complete((struct completion*)bio->bi_private);
496 return 0;
497 }
498
499 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
500 struct page *page, int rw)
501 {
502 struct bio *bio = bio_alloc(GFP_NOIO, 1);
503 struct completion event;
504 int ret;
505
506 rw |= (1 << BIO_RW_SYNC);
507
508 bio->bi_bdev = bdev;
509 bio->bi_sector = sector;
510 bio_add_page(bio, page, size, 0);
511 init_completion(&event);
512 bio->bi_private = &event;
513 bio->bi_end_io = bi_complete;
514 submit_bio(rw, bio);
515 wait_for_completion(&event);
516
517 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
518 bio_put(bio);
519 return ret;
520 }
521 EXPORT_SYMBOL_GPL(sync_page_io);
522
523 static int read_disk_sb(mdk_rdev_t * rdev, int size)
524 {
525 char b[BDEVNAME_SIZE];
526 if (!rdev->sb_page) {
527 MD_BUG();
528 return -EINVAL;
529 }
530 if (rdev->sb_loaded)
531 return 0;
532
533
534 if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
535 goto fail;
536 rdev->sb_loaded = 1;
537 return 0;
538
539 fail:
540 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
541 bdevname(rdev->bdev,b));
542 return -EINVAL;
543 }
544
545 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
546 {
547 if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
548 (sb1->set_uuid1 == sb2->set_uuid1) &&
549 (sb1->set_uuid2 == sb2->set_uuid2) &&
550 (sb1->set_uuid3 == sb2->set_uuid3))
551
552 return 1;
553
554 return 0;
555 }
556
557
558 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
559 {
560 int ret;
561 mdp_super_t *tmp1, *tmp2;
562
563 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
564 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
565
566 if (!tmp1 || !tmp2) {
567 ret = 0;
568 printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
569 goto abort;
570 }
571
572 *tmp1 = *sb1;
573 *tmp2 = *sb2;
574
575 /*
576 * nr_disks is not constant
577 */
578 tmp1->nr_disks = 0;
579 tmp2->nr_disks = 0;
580
581 if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
582 ret = 0;
583 else
584 ret = 1;
585
586 abort:
587 kfree(tmp1);
588 kfree(tmp2);
589 return ret;
590 }
591
592 static unsigned int calc_sb_csum(mdp_super_t * sb)
593 {
594 unsigned int disk_csum, csum;
595
596 disk_csum = sb->sb_csum;
597 sb->sb_csum = 0;
598 csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
599 sb->sb_csum = disk_csum;
600 return csum;
601 }
602
603
604 /*
605 * Handle superblock details.
606 * We want to be able to handle multiple superblock formats
607 * so we have a common interface to them all, and an array of
608 * different handlers.
609 * We rely on user-space to write the initial superblock, and support
610 * reading and updating of superblocks.
611 * Interface methods are:
612 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
613 * loads and validates a superblock on dev.
614 * if refdev != NULL, compare superblocks on both devices
615 * Return:
616 * 0 - dev has a superblock that is compatible with refdev
617 * 1 - dev has a superblock that is compatible and newer than refdev
618 * so dev should be used as the refdev in future
619 * -EINVAL superblock incompatible or invalid
620 * -othererror e.g. -EIO
621 *
622 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
623 * Verify that dev is acceptable into mddev.
624 * The first time, mddev->raid_disks will be 0, and data from
625 * dev should be merged in. Subsequent calls check that dev
626 * is new enough. Return 0 or -EINVAL
627 *
628 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
629 * Update the superblock for rdev with data in mddev
630 * This does not write to disc.
631 *
632 */
633
634 struct super_type {
635 char *name;
636 struct module *owner;
637 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
638 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
639 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
640 };
641
642 /*
643 * load_super for 0.90.0
644 */
645 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
646 {
647 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
648 mdp_super_t *sb;
649 int ret;
650 sector_t sb_offset;
651
652 /*
653 * Calculate the position of the superblock,
654 * it's at the end of the disk.
655 *
656 * It also happens to be a multiple of 4Kb.
657 */
658 sb_offset = calc_dev_sboffset(rdev->bdev);
659 rdev->sb_offset = sb_offset;
660
661 ret = read_disk_sb(rdev, MD_SB_BYTES);
662 if (ret) return ret;
663
664 ret = -EINVAL;
665
666 bdevname(rdev->bdev, b);
667 sb = (mdp_super_t*)page_address(rdev->sb_page);
668
669 if (sb->md_magic != MD_SB_MAGIC) {
670 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
671 b);
672 goto abort;
673 }
674
675 if (sb->major_version != 0 ||
676 sb->minor_version < 90 ||
677 sb->minor_version > 91) {
678 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
679 sb->major_version, sb->minor_version,
680 b);
681 goto abort;
682 }
683
684 if (sb->raid_disks <= 0)
685 goto abort;
686
687 if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
688 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
689 b);
690 goto abort;
691 }
692
693 rdev->preferred_minor = sb->md_minor;
694 rdev->data_offset = 0;
695 rdev->sb_size = MD_SB_BYTES;
696
697 if (sb->level == LEVEL_MULTIPATH)
698 rdev->desc_nr = -1;
699 else
700 rdev->desc_nr = sb->this_disk.number;
701
702 if (refdev == 0)
703 ret = 1;
704 else {
705 __u64 ev1, ev2;
706 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
707 if (!uuid_equal(refsb, sb)) {
708 printk(KERN_WARNING "md: %s has different UUID to %s\n",
709 b, bdevname(refdev->bdev,b2));
710 goto abort;
711 }
712 if (!sb_equal(refsb, sb)) {
713 printk(KERN_WARNING "md: %s has same UUID"
714 " but different superblock to %s\n",
715 b, bdevname(refdev->bdev, b2));
716 goto abort;
717 }
718 ev1 = md_event(sb);
719 ev2 = md_event(refsb);
720 if (ev1 > ev2)
721 ret = 1;
722 else
723 ret = 0;
724 }
725 rdev->size = calc_dev_size(rdev, sb->chunk_size);
726
727 if (rdev->size < sb->size && sb->level > 1)
728 /* "this cannot possibly happen" ... */
729 ret = -EINVAL;
730
731 abort:
732 return ret;
733 }
734
735 /*
736 * validate_super for 0.90.0
737 */
738 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
739 {
740 mdp_disk_t *desc;
741 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
742 __u64 ev1 = md_event(sb);
743
744 rdev->raid_disk = -1;
745 rdev->flags = 0;
746 if (mddev->raid_disks == 0) {
747 mddev->major_version = 0;
748 mddev->minor_version = sb->minor_version;
749 mddev->patch_version = sb->patch_version;
750 mddev->persistent = ! sb->not_persistent;
751 mddev->chunk_size = sb->chunk_size;
752 mddev->ctime = sb->ctime;
753 mddev->utime = sb->utime;
754 mddev->level = sb->level;
755 mddev->clevel[0] = 0;
756 mddev->layout = sb->layout;
757 mddev->raid_disks = sb->raid_disks;
758 mddev->size = sb->size;
759 mddev->events = ev1;
760 mddev->bitmap_offset = 0;
761 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
762
763 if (mddev->minor_version >= 91) {
764 mddev->reshape_position = sb->reshape_position;
765 mddev->delta_disks = sb->delta_disks;
766 mddev->new_level = sb->new_level;
767 mddev->new_layout = sb->new_layout;
768 mddev->new_chunk = sb->new_chunk;
769 } else {
770 mddev->reshape_position = MaxSector;
771 mddev->delta_disks = 0;
772 mddev->new_level = mddev->level;
773 mddev->new_layout = mddev->layout;
774 mddev->new_chunk = mddev->chunk_size;
775 }
776
777 if (sb->state & (1<<MD_SB_CLEAN))
778 mddev->recovery_cp = MaxSector;
779 else {
780 if (sb->events_hi == sb->cp_events_hi &&
781 sb->events_lo == sb->cp_events_lo) {
782 mddev->recovery_cp = sb->recovery_cp;
783 } else
784 mddev->recovery_cp = 0;
785 }
786
787 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
788 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
789 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
790 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
791
792 mddev->max_disks = MD_SB_DISKS;
793
794 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
795 mddev->bitmap_file == NULL) {
796 if (mddev->level != 1 && mddev->level != 4
797 && mddev->level != 5 && mddev->level != 6
798 && mddev->level != 10) {
799 /* FIXME use a better test */
800 printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
801 return -EINVAL;
802 }
803 mddev->bitmap_offset = mddev->default_bitmap_offset;
804 }
805
806 } else if (mddev->pers == NULL) {
807 /* Insist on good event counter while assembling */
808 ++ev1;
809 if (ev1 < mddev->events)
810 return -EINVAL;
811 } else if (mddev->bitmap) {
812 /* if adding to array with a bitmap, then we can accept an
813 * older device ... but not too old.
814 */
815 if (ev1 < mddev->bitmap->events_cleared)
816 return 0;
817 } else {
818 if (ev1 < mddev->events)
819 /* just a hot-add of a new device, leave raid_disk at -1 */
820 return 0;
821 }
822
823 if (mddev->level != LEVEL_MULTIPATH) {
824 desc = sb->disks + rdev->desc_nr;
825
826 if (desc->state & (1<<MD_DISK_FAULTY))
827 set_bit(Faulty, &rdev->flags);
828 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
829 desc->raid_disk < mddev->raid_disks */) {
830 set_bit(In_sync, &rdev->flags);
831 rdev->raid_disk = desc->raid_disk;
832 }
833 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
834 set_bit(WriteMostly, &rdev->flags);
835 } else /* MULTIPATH are always insync */
836 set_bit(In_sync, &rdev->flags);
837 return 0;
838 }
839
840 /*
841 * sync_super for 0.90.0
842 */
843 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
844 {
845 mdp_super_t *sb;
846 struct list_head *tmp;
847 mdk_rdev_t *rdev2;
848 int next_spare = mddev->raid_disks;
849
850
851 /* make rdev->sb match mddev data..
852 *
853 * 1/ zero out disks
854 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
855 * 3/ any empty disks < next_spare become removed
856 *
857 * disks[0] gets initialised to REMOVED because
858 * we cannot be sure from other fields if it has
859 * been initialised or not.
860 */
861 int i;
862 int active=0, working=0,failed=0,spare=0,nr_disks=0;
863
864 rdev->sb_size = MD_SB_BYTES;
865
866 sb = (mdp_super_t*)page_address(rdev->sb_page);
867
868 memset(sb, 0, sizeof(*sb));
869
870 sb->md_magic = MD_SB_MAGIC;
871 sb->major_version = mddev->major_version;
872 sb->patch_version = mddev->patch_version;
873 sb->gvalid_words = 0; /* ignored */
874 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
875 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
876 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
877 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
878
879 sb->ctime = mddev->ctime;
880 sb->level = mddev->level;
881 sb->size = mddev->size;
882 sb->raid_disks = mddev->raid_disks;
883 sb->md_minor = mddev->md_minor;
884 sb->not_persistent = !mddev->persistent;
885 sb->utime = mddev->utime;
886 sb->state = 0;
887 sb->events_hi = (mddev->events>>32);
888 sb->events_lo = (u32)mddev->events;
889
890 if (mddev->reshape_position == MaxSector)
891 sb->minor_version = 90;
892 else {
893 sb->minor_version = 91;
894 sb->reshape_position = mddev->reshape_position;
895 sb->new_level = mddev->new_level;
896 sb->delta_disks = mddev->delta_disks;
897 sb->new_layout = mddev->new_layout;
898 sb->new_chunk = mddev->new_chunk;
899 }
900 mddev->minor_version = sb->minor_version;
901 if (mddev->in_sync)
902 {
903 sb->recovery_cp = mddev->recovery_cp;
904 sb->cp_events_hi = (mddev->events>>32);
905 sb->cp_events_lo = (u32)mddev->events;
906 if (mddev->recovery_cp == MaxSector)
907 sb->state = (1<< MD_SB_CLEAN);
908 } else
909 sb->recovery_cp = 0;
910
911 sb->layout = mddev->layout;
912 sb->chunk_size = mddev->chunk_size;
913
914 if (mddev->bitmap && mddev->bitmap_file == NULL)
915 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
916
917 sb->disks[0].state = (1<<MD_DISK_REMOVED);
918 ITERATE_RDEV(mddev,rdev2,tmp) {
919 mdp_disk_t *d;
920 int desc_nr;
921 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
922 && !test_bit(Faulty, &rdev2->flags))
923 desc_nr = rdev2->raid_disk;
924 else
925 desc_nr = next_spare++;
926 rdev2->desc_nr = desc_nr;
927 d = &sb->disks[rdev2->desc_nr];
928 nr_disks++;
929 d->number = rdev2->desc_nr;
930 d->major = MAJOR(rdev2->bdev->bd_dev);
931 d->minor = MINOR(rdev2->bdev->bd_dev);
932 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
933 && !test_bit(Faulty, &rdev2->flags))
934 d->raid_disk = rdev2->raid_disk;
935 else
936 d->raid_disk = rdev2->desc_nr; /* compatibility */
937 if (test_bit(Faulty, &rdev2->flags))
938 d->state = (1<<MD_DISK_FAULTY);
939 else if (test_bit(In_sync, &rdev2->flags)) {
940 d->state = (1<<MD_DISK_ACTIVE);
941 d->state |= (1<<MD_DISK_SYNC);
942 active++;
943 working++;
944 } else {
945 d->state = 0;
946 spare++;
947 working++;
948 }
949 if (test_bit(WriteMostly, &rdev2->flags))
950 d->state |= (1<<MD_DISK_WRITEMOSTLY);
951 }
952 /* now set the "removed" and "faulty" bits on any missing devices */
953 for (i=0 ; i < mddev->raid_disks ; i++) {
954 mdp_disk_t *d = &sb->disks[i];
955 if (d->state == 0 && d->number == 0) {
956 d->number = i;
957 d->raid_disk = i;
958 d->state = (1<<MD_DISK_REMOVED);
959 d->state |= (1<<MD_DISK_FAULTY);
960 failed++;
961 }
962 }
963 sb->nr_disks = nr_disks;
964 sb->active_disks = active;
965 sb->working_disks = working;
966 sb->failed_disks = failed;
967 sb->spare_disks = spare;
968
969 sb->this_disk = sb->disks[rdev->desc_nr];
970 sb->sb_csum = calc_sb_csum(sb);
971 }
972
973 /*
974 * version 1 superblock
975 */
976
977 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
978 {
979 __le32 disk_csum;
980 u32 csum;
981 unsigned long long newcsum;
982 int size = 256 + le32_to_cpu(sb->max_dev)*2;
983 __le32 *isuper = (__le32*)sb;
984 int i;
985
986 disk_csum = sb->sb_csum;
987 sb->sb_csum = 0;
988 newcsum = 0;
989 for (i=0; size>=4; size -= 4 )
990 newcsum += le32_to_cpu(*isuper++);
991
992 if (size == 2)
993 newcsum += le16_to_cpu(*(__le16*) isuper);
994
995 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
996 sb->sb_csum = disk_csum;
997 return cpu_to_le32(csum);
998 }
999
1000 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
1001 {
1002 struct mdp_superblock_1 *sb;
1003 int ret;
1004 sector_t sb_offset;
1005 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1006 int bmask;
1007
1008 /*
1009 * Calculate the position of the superblock.
1010 * It is always aligned to a 4K boundary and
1011 * depeding on minor_version, it can be:
1012 * 0: At least 8K, but less than 12K, from end of device
1013 * 1: At start of device
1014 * 2: 4K from start of device.
1015 */
1016 switch(minor_version) {
1017 case 0:
1018 sb_offset = rdev->bdev->bd_inode->i_size >> 9;
1019 sb_offset -= 8*2;
1020 sb_offset &= ~(sector_t)(4*2-1);
1021 /* convert from sectors to K */
1022 sb_offset /= 2;
1023 break;
1024 case 1:
1025 sb_offset = 0;
1026 break;
1027 case 2:
1028 sb_offset = 4;
1029 break;
1030 default:
1031 return -EINVAL;
1032 }
1033 rdev->sb_offset = sb_offset;
1034
1035 /* superblock is rarely larger than 1K, but it can be larger,
1036 * and it is safe to read 4k, so we do that
1037 */
1038 ret = read_disk_sb(rdev, 4096);
1039 if (ret) return ret;
1040
1041
1042 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1043
1044 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1045 sb->major_version != cpu_to_le32(1) ||
1046 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1047 le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
1048 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1049 return -EINVAL;
1050
1051 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1052 printk("md: invalid superblock checksum on %s\n",
1053 bdevname(rdev->bdev,b));
1054 return -EINVAL;
1055 }
1056 if (le64_to_cpu(sb->data_size) < 10) {
1057 printk("md: data_size too small on %s\n",
1058 bdevname(rdev->bdev,b));
1059 return -EINVAL;
1060 }
1061 rdev->preferred_minor = 0xffff;
1062 rdev->data_offset = le64_to_cpu(sb->data_offset);
1063 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1064
1065 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1066 bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
1067 if (rdev->sb_size & bmask)
1068 rdev-> sb_size = (rdev->sb_size | bmask)+1;
1069
1070 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1071 rdev->desc_nr = -1;
1072 else
1073 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1074
1075 if (refdev == 0)
1076 ret = 1;
1077 else {
1078 __u64 ev1, ev2;
1079 struct mdp_superblock_1 *refsb =
1080 (struct mdp_superblock_1*)page_address(refdev->sb_page);
1081
1082 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1083 sb->level != refsb->level ||
1084 sb->layout != refsb->layout ||
1085 sb->chunksize != refsb->chunksize) {
1086 printk(KERN_WARNING "md: %s has strangely different"
1087 " superblock to %s\n",
1088 bdevname(rdev->bdev,b),
1089 bdevname(refdev->bdev,b2));
1090 return -EINVAL;
1091 }
1092 ev1 = le64_to_cpu(sb->events);
1093 ev2 = le64_to_cpu(refsb->events);
1094
1095 if (ev1 > ev2)
1096 ret = 1;
1097 else
1098 ret = 0;
1099 }
1100 if (minor_version)
1101 rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
1102 else
1103 rdev->size = rdev->sb_offset;
1104 if (rdev->size < le64_to_cpu(sb->data_size)/2)
1105 return -EINVAL;
1106 rdev->size = le64_to_cpu(sb->data_size)/2;
1107 if (le32_to_cpu(sb->chunksize))
1108 rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
1109
1110 if (le64_to_cpu(sb->size) > rdev->size*2)
1111 return -EINVAL;
1112 return ret;
1113 }
1114
1115 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1116 {
1117 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1118 __u64 ev1 = le64_to_cpu(sb->events);
1119
1120 rdev->raid_disk = -1;
1121 rdev->flags = 0;
1122 if (mddev->raid_disks == 0) {
1123 mddev->major_version = 1;
1124 mddev->patch_version = 0;
1125 mddev->persistent = 1;
1126 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1127 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1128 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1129 mddev->level = le32_to_cpu(sb->level);
1130 mddev->clevel[0] = 0;
1131 mddev->layout = le32_to_cpu(sb->layout);
1132 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1133 mddev->size = le64_to_cpu(sb->size)/2;
1134 mddev->events = ev1;
1135 mddev->bitmap_offset = 0;
1136 mddev->default_bitmap_offset = 1024 >> 9;
1137
1138 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1139 memcpy(mddev->uuid, sb->set_uuid, 16);
1140
1141 mddev->max_disks = (4096-256)/2;
1142
1143 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1144 mddev->bitmap_file == NULL ) {
1145 if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6
1146 && mddev->level != 10) {
1147 printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
1148 return -EINVAL;
1149 }
1150 mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1151 }
1152 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1153 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1154 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1155 mddev->new_level = le32_to_cpu(sb->new_level);
1156 mddev->new_layout = le32_to_cpu(sb->new_layout);
1157 mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
1158 } else {
1159 mddev->reshape_position = MaxSector;
1160 mddev->delta_disks = 0;
1161 mddev->new_level = mddev->level;
1162 mddev->new_layout = mddev->layout;
1163 mddev->new_chunk = mddev->chunk_size;
1164 }
1165
1166 } else if (mddev->pers == NULL) {
1167 /* Insist of good event counter while assembling */
1168 ++ev1;
1169 if (ev1 < mddev->events)
1170 return -EINVAL;
1171 } else if (mddev->bitmap) {
1172 /* If adding to array with a bitmap, then we can accept an
1173 * older device, but not too old.
1174 */
1175 if (ev1 < mddev->bitmap->events_cleared)
1176 return 0;
1177 } else {
1178 if (ev1 < mddev->events)
1179 /* just a hot-add of a new device, leave raid_disk at -1 */
1180 return 0;
1181 }
1182 if (mddev->level != LEVEL_MULTIPATH) {
1183 int role;
1184 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1185 switch(role) {
1186 case 0xffff: /* spare */
1187 break;
1188 case 0xfffe: /* faulty */
1189 set_bit(Faulty, &rdev->flags);
1190 break;
1191 default:
1192 if ((le32_to_cpu(sb->feature_map) &
1193 MD_FEATURE_RECOVERY_OFFSET))
1194 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1195 else
1196 set_bit(In_sync, &rdev->flags);
1197 rdev->raid_disk = role;
1198 break;
1199 }
1200 if (sb->devflags & WriteMostly1)
1201 set_bit(WriteMostly, &rdev->flags);
1202 } else /* MULTIPATH are always insync */
1203 set_bit(In_sync, &rdev->flags);
1204
1205 return 0;
1206 }
1207
1208 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1209 {
1210 struct mdp_superblock_1 *sb;
1211 struct list_head *tmp;
1212 mdk_rdev_t *rdev2;
1213 int max_dev, i;
1214 /* make rdev->sb match mddev and rdev data. */
1215
1216 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1217
1218 sb->feature_map = 0;
1219 sb->pad0 = 0;
1220 sb->recovery_offset = cpu_to_le64(0);
1221 memset(sb->pad1, 0, sizeof(sb->pad1));
1222 memset(sb->pad2, 0, sizeof(sb->pad2));
1223 memset(sb->pad3, 0, sizeof(sb->pad3));
1224
1225 sb->utime = cpu_to_le64((__u64)mddev->utime);
1226 sb->events = cpu_to_le64(mddev->events);
1227 if (mddev->in_sync)
1228 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1229 else
1230 sb->resync_offset = cpu_to_le64(0);
1231
1232 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1233
1234 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1235 sb->size = cpu_to_le64(mddev->size<<1);
1236
1237 if (mddev->bitmap && mddev->bitmap_file == NULL) {
1238 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1239 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1240 }
1241
1242 if (rdev->raid_disk >= 0 &&
1243 !test_bit(In_sync, &rdev->flags) &&
1244 rdev->recovery_offset > 0) {
1245 sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1246 sb->recovery_offset = cpu_to_le64(rdev->recovery_offset);
1247 }
1248
1249 if (mddev->reshape_position != MaxSector) {
1250 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1251 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1252 sb->new_layout = cpu_to_le32(mddev->new_layout);
1253 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1254 sb->new_level = cpu_to_le32(mddev->new_level);
1255 sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
1256 }
1257
1258 max_dev = 0;
1259 ITERATE_RDEV(mddev,rdev2,tmp)
1260 if (rdev2->desc_nr+1 > max_dev)
1261 max_dev = rdev2->desc_nr+1;
1262
1263 sb->max_dev = cpu_to_le32(max_dev);
1264 for (i=0; i<max_dev;i++)
1265 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1266
1267 ITERATE_RDEV(mddev,rdev2,tmp) {
1268 i = rdev2->desc_nr;
1269 if (test_bit(Faulty, &rdev2->flags))
1270 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1271 else if (test_bit(In_sync, &rdev2->flags))
1272 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1273 else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
1274 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1275 else
1276 sb->dev_roles[i] = cpu_to_le16(0xffff);
1277 }
1278
1279 sb->sb_csum = calc_sb_1_csum(sb);
1280 }
1281
1282
1283 static struct super_type super_types[] = {
1284 [0] = {
1285 .name = "0.90.0",
1286 .owner = THIS_MODULE,
1287 .load_super = super_90_load,
1288 .validate_super = super_90_validate,
1289 .sync_super = super_90_sync,
1290 },
1291 [1] = {
1292 .name = "md-1",
1293 .owner = THIS_MODULE,
1294 .load_super = super_1_load,
1295 .validate_super = super_1_validate,
1296 .sync_super = super_1_sync,
1297 },
1298 };
1299
1300 static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
1301 {
1302 struct list_head *tmp;
1303 mdk_rdev_t *rdev;
1304
1305 ITERATE_RDEV(mddev,rdev,tmp)
1306 if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
1307 return rdev;
1308
1309 return NULL;
1310 }
1311
1312 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1313 {
1314 struct list_head *tmp;
1315 mdk_rdev_t *rdev;
1316
1317 ITERATE_RDEV(mddev1,rdev,tmp)
1318 if (match_dev_unit(mddev2, rdev))
1319 return 1;
1320
1321 return 0;
1322 }
1323
1324 static LIST_HEAD(pending_raid_disks);
1325
1326 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1327 {
1328 mdk_rdev_t *same_pdev;
1329 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1330 struct kobject *ko;
1331 char *s;
1332
1333 if (rdev->mddev) {
1334 MD_BUG();
1335 return -EINVAL;
1336 }
1337 /* make sure rdev->size exceeds mddev->size */
1338 if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
1339 if (mddev->pers)
1340 /* Cannot change size, so fail */
1341 return -ENOSPC;
1342 else
1343 mddev->size = rdev->size;
1344 }
1345 same_pdev = match_dev_unit(mddev, rdev);
1346 if (same_pdev)
1347 printk(KERN_WARNING
1348 "%s: WARNING: %s appears to be on the same physical"
1349 " disk as %s. True\n protection against single-disk"
1350 " failure might be compromised.\n",
1351 mdname(mddev), bdevname(rdev->bdev,b),
1352 bdevname(same_pdev->bdev,b2));
1353
1354 /* Verify rdev->desc_nr is unique.
1355 * If it is -1, assign a free number, else
1356 * check number is not in use
1357 */
1358 if (rdev->desc_nr < 0) {
1359 int choice = 0;
1360 if (mddev->pers) choice = mddev->raid_disks;
1361 while (find_rdev_nr(mddev, choice))
1362 choice++;
1363 rdev->desc_nr = choice;
1364 } else {
1365 if (find_rdev_nr(mddev, rdev->desc_nr))
1366 return -EBUSY;
1367 }
1368 bdevname(rdev->bdev,b);
1369 if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
1370 return -ENOMEM;
1371 while ( (s=strchr(rdev->kobj.k_name, '/')) != NULL)
1372 *s = '!';
1373
1374 list_add(&rdev->same_set, &mddev->disks);
1375 rdev->mddev = mddev;
1376 printk(KERN_INFO "md: bind<%s>\n", b);
1377
1378 rdev->kobj.parent = &mddev->kobj;
1379 kobject_add(&rdev->kobj);
1380
1381 if (rdev->bdev->bd_part)
1382 ko = &rdev->bdev->bd_part->kobj;
1383 else
1384 ko = &rdev->bdev->bd_disk->kobj;
1385 sysfs_create_link(&rdev->kobj, ko, "block");
1386 bd_claim_by_disk(rdev->bdev, rdev, mddev->gendisk);
1387 return 0;
1388 }
1389
1390 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1391 {
1392 char b[BDEVNAME_SIZE];
1393 if (!rdev->mddev) {
1394 MD_BUG();
1395 return;
1396 }
1397 bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1398 list_del_init(&rdev->same_set);
1399 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1400 rdev->mddev = NULL;
1401 sysfs_remove_link(&rdev->kobj, "block");
1402 kobject_del(&rdev->kobj);
1403 }
1404
1405 /*
1406 * prevent the device from being mounted, repartitioned or
1407 * otherwise reused by a RAID array (or any other kernel
1408 * subsystem), by bd_claiming the device.
1409 */
1410 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1411 {
1412 int err = 0;
1413 struct block_device *bdev;
1414 char b[BDEVNAME_SIZE];
1415
1416 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1417 if (IS_ERR(bdev)) {
1418 printk(KERN_ERR "md: could not open %s.\n",
1419 __bdevname(dev, b));
1420 return PTR_ERR(bdev);
1421 }
1422 err = bd_claim(bdev, rdev);
1423 if (err) {
1424 printk(KERN_ERR "md: could not bd_claim %s.\n",
1425 bdevname(bdev, b));
1426 blkdev_put(bdev);
1427 return err;
1428 }
1429 rdev->bdev = bdev;
1430 return err;
1431 }
1432
1433 static void unlock_rdev(mdk_rdev_t *rdev)
1434 {
1435 struct block_device *bdev = rdev->bdev;
1436 rdev->bdev = NULL;
1437 if (!bdev)
1438 MD_BUG();
1439 bd_release(bdev);
1440 blkdev_put(bdev);
1441 }
1442
1443 void md_autodetect_dev(dev_t dev);
1444
1445 static void export_rdev(mdk_rdev_t * rdev)
1446 {
1447 char b[BDEVNAME_SIZE];
1448 printk(KERN_INFO "md: export_rdev(%s)\n",
1449 bdevname(rdev->bdev,b));
1450 if (rdev->mddev)
1451 MD_BUG();
1452 free_disk_sb(rdev);
1453 list_del_init(&rdev->same_set);
1454 #ifndef MODULE
1455 md_autodetect_dev(rdev->bdev->bd_dev);
1456 #endif
1457 unlock_rdev(rdev);
1458 kobject_put(&rdev->kobj);
1459 }
1460
1461 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1462 {
1463 unbind_rdev_from_array(rdev);
1464 export_rdev(rdev);
1465 }
1466
1467 static void export_array(mddev_t *mddev)
1468 {
1469 struct list_head *tmp;
1470 mdk_rdev_t *rdev;
1471
1472 ITERATE_RDEV(mddev,rdev,tmp) {
1473 if (!rdev->mddev) {
1474 MD_BUG();
1475 continue;
1476 }
1477 kick_rdev_from_array(rdev);
1478 }
1479 if (!list_empty(&mddev->disks))
1480 MD_BUG();
1481 mddev->raid_disks = 0;
1482 mddev->major_version = 0;
1483 }
1484
1485 static void print_desc(mdp_disk_t *desc)
1486 {
1487 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1488 desc->major,desc->minor,desc->raid_disk,desc->state);
1489 }
1490
1491 static void print_sb(mdp_super_t *sb)
1492 {
1493 int i;
1494
1495 printk(KERN_INFO
1496 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1497 sb->major_version, sb->minor_version, sb->patch_version,
1498 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1499 sb->ctime);
1500 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1501 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1502 sb->md_minor, sb->layout, sb->chunk_size);
1503 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
1504 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
1505 sb->utime, sb->state, sb->active_disks, sb->working_disks,
1506 sb->failed_disks, sb->spare_disks,
1507 sb->sb_csum, (unsigned long)sb->events_lo);
1508
1509 printk(KERN_INFO);
1510 for (i = 0; i < MD_SB_DISKS; i++) {
1511 mdp_disk_t *desc;
1512
1513 desc = sb->disks + i;
1514 if (desc->number || desc->major || desc->minor ||
1515 desc->raid_disk || (desc->state && (desc->state != 4))) {
1516 printk(" D %2d: ", i);
1517 print_desc(desc);
1518 }
1519 }
1520 printk(KERN_INFO "md: THIS: ");
1521 print_desc(&sb->this_disk);
1522
1523 }
1524
1525 static void print_rdev(mdk_rdev_t *rdev)
1526 {
1527 char b[BDEVNAME_SIZE];
1528 printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1529 bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1530 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1531 rdev->desc_nr);
1532 if (rdev->sb_loaded) {
1533 printk(KERN_INFO "md: rdev superblock:\n");
1534 print_sb((mdp_super_t*)page_address(rdev->sb_page));
1535 } else
1536 printk(KERN_INFO "md: no rdev superblock!\n");
1537 }
1538
1539 static void md_print_devices(void)
1540 {
1541 struct list_head *tmp, *tmp2;
1542 mdk_rdev_t *rdev;
1543 mddev_t *mddev;
1544 char b[BDEVNAME_SIZE];
1545
1546 printk("\n");
1547 printk("md: **********************************\n");
1548 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
1549 printk("md: **********************************\n");
1550 ITERATE_MDDEV(mddev,tmp) {
1551
1552 if (mddev->bitmap)
1553 bitmap_print_sb(mddev->bitmap);
1554 else
1555 printk("%s: ", mdname(mddev));
1556 ITERATE_RDEV(mddev,rdev,tmp2)
1557 printk("<%s>", bdevname(rdev->bdev,b));
1558 printk("\n");
1559
1560 ITERATE_RDEV(mddev,rdev,tmp2)
1561 print_rdev(rdev);
1562 }
1563 printk("md: **********************************\n");
1564 printk("\n");
1565 }
1566
1567
1568 static void sync_sbs(mddev_t * mddev, int nospares)
1569 {
1570 /* Update each superblock (in-memory image), but
1571 * if we are allowed to, skip spares which already
1572 * have the right event counter, or have one earlier
1573 * (which would mean they aren't being marked as dirty
1574 * with the rest of the array)
1575 */
1576 mdk_rdev_t *rdev;
1577 struct list_head *tmp;
1578
1579 ITERATE_RDEV(mddev,rdev,tmp) {
1580 if (rdev->sb_events == mddev->events ||
1581 (nospares &&
1582 rdev->raid_disk < 0 &&
1583 (rdev->sb_events&1)==0 &&
1584 rdev->sb_events+1 == mddev->events)) {
1585 /* Don't update this superblock */
1586 rdev->sb_loaded = 2;
1587 } else {
1588 super_types[mddev->major_version].
1589 sync_super(mddev, rdev);
1590 rdev->sb_loaded = 1;
1591 }
1592 }
1593 }
1594
1595 static void md_update_sb(mddev_t * mddev, int force_change)
1596 {
1597 int err;
1598 struct list_head *tmp;
1599 mdk_rdev_t *rdev;
1600 int sync_req;
1601 int nospares = 0;
1602
1603 repeat:
1604 spin_lock_irq(&mddev->write_lock);
1605
1606 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1607 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
1608 force_change = 1;
1609 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
1610 /* just a clean<-> dirty transition, possibly leave spares alone,
1611 * though if events isn't the right even/odd, we will have to do
1612 * spares after all
1613 */
1614 nospares = 1;
1615 if (force_change)
1616 nospares = 0;
1617 if (mddev->degraded)
1618 /* If the array is degraded, then skipping spares is both
1619 * dangerous and fairly pointless.
1620 * Dangerous because a device that was removed from the array
1621 * might have a event_count that still looks up-to-date,
1622 * so it can be re-added without a resync.
1623 * Pointless because if there are any spares to skip,
1624 * then a recovery will happen and soon that array won't
1625 * be degraded any more and the spare can go back to sleep then.
1626 */
1627 nospares = 0;
1628
1629 sync_req = mddev->in_sync;
1630 mddev->utime = get_seconds();
1631
1632 /* If this is just a dirty<->clean transition, and the array is clean
1633 * and 'events' is odd, we can roll back to the previous clean state */
1634 if (nospares
1635 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
1636 && (mddev->events & 1))
1637 mddev->events--;
1638 else {
1639 /* otherwise we have to go forward and ... */
1640 mddev->events ++;
1641 if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
1642 /* .. if the array isn't clean, insist on an odd 'events' */
1643 if ((mddev->events&1)==0) {
1644 mddev->events++;
1645 nospares = 0;
1646 }
1647 } else {
1648 /* otherwise insist on an even 'events' (for clean states) */
1649 if ((mddev->events&1)) {
1650 mddev->events++;
1651 nospares = 0;
1652 }
1653 }
1654 }
1655
1656 if (!mddev->events) {
1657 /*
1658 * oops, this 64-bit counter should never wrap.
1659 * Either we are in around ~1 trillion A.C., assuming
1660 * 1 reboot per second, or we have a bug:
1661 */
1662 MD_BUG();
1663 mddev->events --;
1664 }
1665 sync_sbs(mddev, nospares);
1666
1667 /*
1668 * do not write anything to disk if using
1669 * nonpersistent superblocks
1670 */
1671 if (!mddev->persistent) {
1672 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1673 spin_unlock_irq(&mddev->write_lock);
1674 wake_up(&mddev->sb_wait);
1675 return;
1676 }
1677 spin_unlock_irq(&mddev->write_lock);
1678
1679 dprintk(KERN_INFO
1680 "md: updating %s RAID superblock on device (in sync %d)\n",
1681 mdname(mddev),mddev->in_sync);
1682
1683 err = bitmap_update_sb(mddev->bitmap);
1684 ITERATE_RDEV(mddev,rdev,tmp) {
1685 char b[BDEVNAME_SIZE];
1686 dprintk(KERN_INFO "md: ");
1687 if (rdev->sb_loaded != 1)
1688 continue; /* no noise on spare devices */
1689 if (test_bit(Faulty, &rdev->flags))
1690 dprintk("(skipping faulty ");
1691
1692 dprintk("%s ", bdevname(rdev->bdev,b));
1693 if (!test_bit(Faulty, &rdev->flags)) {
1694 md_super_write(mddev,rdev,
1695 rdev->sb_offset<<1, rdev->sb_size,
1696 rdev->sb_page);
1697 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1698 bdevname(rdev->bdev,b),
1699 (unsigned long long)rdev->sb_offset);
1700 rdev->sb_events = mddev->events;
1701
1702 } else
1703 dprintk(")\n");
1704 if (mddev->level == LEVEL_MULTIPATH)
1705 /* only need to write one superblock... */
1706 break;
1707 }
1708 md_super_wait(mddev);
1709 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
1710
1711 spin_lock_irq(&mddev->write_lock);
1712 if (mddev->in_sync != sync_req ||
1713 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
1714 /* have to write it out again */
1715 spin_unlock_irq(&mddev->write_lock);
1716 goto repeat;
1717 }
1718 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
1719 spin_unlock_irq(&mddev->write_lock);
1720 wake_up(&mddev->sb_wait);
1721
1722 }
1723
1724 /* words written to sysfs files may, or my not, be \n terminated.
1725 * We want to accept with case. For this we use cmd_match.
1726 */
1727 static int cmd_match(const char *cmd, const char *str)
1728 {
1729 /* See if cmd, written into a sysfs file, matches
1730 * str. They must either be the same, or cmd can
1731 * have a trailing newline
1732 */
1733 while (*cmd && *str && *cmd == *str) {
1734 cmd++;
1735 str++;
1736 }
1737 if (*cmd == '\n')
1738 cmd++;
1739 if (*str || *cmd)
1740 return 0;
1741 return 1;
1742 }
1743
1744 struct rdev_sysfs_entry {
1745 struct attribute attr;
1746 ssize_t (*show)(mdk_rdev_t *, char *);
1747 ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1748 };
1749
1750 static ssize_t
1751 state_show(mdk_rdev_t *rdev, char *page)
1752 {
1753 char *sep = "";
1754 int len=0;
1755
1756 if (test_bit(Faulty, &rdev->flags)) {
1757 len+= sprintf(page+len, "%sfaulty",sep);
1758 sep = ",";
1759 }
1760 if (test_bit(In_sync, &rdev->flags)) {
1761 len += sprintf(page+len, "%sin_sync",sep);
1762 sep = ",";
1763 }
1764 if (test_bit(WriteMostly, &rdev->flags)) {
1765 len += sprintf(page+len, "%swrite_mostly",sep);
1766 sep = ",";
1767 }
1768 if (!test_bit(Faulty, &rdev->flags) &&
1769 !test_bit(In_sync, &rdev->flags)) {
1770 len += sprintf(page+len, "%sspare", sep);
1771 sep = ",";
1772 }
1773 return len+sprintf(page+len, "\n");
1774 }
1775
1776 static ssize_t
1777 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1778 {
1779 /* can write
1780 * faulty - simulates and error
1781 * remove - disconnects the device
1782 * writemostly - sets write_mostly
1783 * -writemostly - clears write_mostly
1784 */
1785 int err = -EINVAL;
1786 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
1787 md_error(rdev->mddev, rdev);
1788 err = 0;
1789 } else if (cmd_match(buf, "remove")) {
1790 if (rdev->raid_disk >= 0)
1791 err = -EBUSY;
1792 else {
1793 mddev_t *mddev = rdev->mddev;
1794 kick_rdev_from_array(rdev);
1795 md_update_sb(mddev, 1);
1796 md_new_event(mddev);
1797 err = 0;
1798 }
1799 } else if (cmd_match(buf, "writemostly")) {
1800 set_bit(WriteMostly, &rdev->flags);
1801 err = 0;
1802 } else if (cmd_match(buf, "-writemostly")) {
1803 clear_bit(WriteMostly, &rdev->flags);
1804 err = 0;
1805 }
1806 return err ? err : len;
1807 }
1808 static struct rdev_sysfs_entry rdev_state =
1809 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
1810
1811 static ssize_t
1812 super_show(mdk_rdev_t *rdev, char *page)
1813 {
1814 if (rdev->sb_loaded && rdev->sb_size) {
1815 memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
1816 return rdev->sb_size;
1817 } else
1818 return 0;
1819 }
1820 static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
1821
1822 static ssize_t
1823 errors_show(mdk_rdev_t *rdev, char *page)
1824 {
1825 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
1826 }
1827
1828 static ssize_t
1829 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1830 {
1831 char *e;
1832 unsigned long n = simple_strtoul(buf, &e, 10);
1833 if (*buf && (*e == 0 || *e == '\n')) {
1834 atomic_set(&rdev->corrected_errors, n);
1835 return len;
1836 }
1837 return -EINVAL;
1838 }
1839 static struct rdev_sysfs_entry rdev_errors =
1840 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
1841
1842 static ssize_t
1843 slot_show(mdk_rdev_t *rdev, char *page)
1844 {
1845 if (rdev->raid_disk < 0)
1846 return sprintf(page, "none\n");
1847 else
1848 return sprintf(page, "%d\n", rdev->raid_disk);
1849 }
1850
1851 static ssize_t
1852 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1853 {
1854 char *e;
1855 int slot = simple_strtoul(buf, &e, 10);
1856 if (strncmp(buf, "none", 4)==0)
1857 slot = -1;
1858 else if (e==buf || (*e && *e!= '\n'))
1859 return -EINVAL;
1860 if (rdev->mddev->pers)
1861 /* Cannot set slot in active array (yet) */
1862 return -EBUSY;
1863 if (slot >= rdev->mddev->raid_disks)
1864 return -ENOSPC;
1865 rdev->raid_disk = slot;
1866 /* assume it is working */
1867 rdev->flags = 0;
1868 set_bit(In_sync, &rdev->flags);
1869 return len;
1870 }
1871
1872
1873 static struct rdev_sysfs_entry rdev_slot =
1874 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
1875
1876 static ssize_t
1877 offset_show(mdk_rdev_t *rdev, char *page)
1878 {
1879 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
1880 }
1881
1882 static ssize_t
1883 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1884 {
1885 char *e;
1886 unsigned long long offset = simple_strtoull(buf, &e, 10);
1887 if (e==buf || (*e && *e != '\n'))
1888 return -EINVAL;
1889 if (rdev->mddev->pers)
1890 return -EBUSY;
1891 rdev->data_offset = offset;
1892 return len;
1893 }
1894
1895 static struct rdev_sysfs_entry rdev_offset =
1896 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
1897
1898 static ssize_t
1899 rdev_size_show(mdk_rdev_t *rdev, char *page)
1900 {
1901 return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
1902 }
1903
1904 static ssize_t
1905 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1906 {
1907 char *e;
1908 unsigned long long size = simple_strtoull(buf, &e, 10);
1909 if (e==buf || (*e && *e != '\n'))
1910 return -EINVAL;
1911 if (rdev->mddev->pers)
1912 return -EBUSY;
1913 rdev->size = size;
1914 if (size < rdev->mddev->size || rdev->mddev->size == 0)
1915 rdev->mddev->size = size;
1916 return len;
1917 }
1918
1919 static struct rdev_sysfs_entry rdev_size =
1920 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
1921
1922 static struct attribute *rdev_default_attrs[] = {
1923 &rdev_state.attr,
1924 &rdev_super.attr,
1925 &rdev_errors.attr,
1926 &rdev_slot.attr,
1927 &rdev_offset.attr,
1928 &rdev_size.attr,
1929 NULL,
1930 };
1931 static ssize_t
1932 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1933 {
1934 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1935 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1936
1937 if (!entry->show)
1938 return -EIO;
1939 return entry->show(rdev, page);
1940 }
1941
1942 static ssize_t
1943 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
1944 const char *page, size_t length)
1945 {
1946 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1947 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1948
1949 if (!entry->store)
1950 return -EIO;
1951 if (!capable(CAP_SYS_ADMIN))
1952 return -EACCES;
1953 return entry->store(rdev, page, length);
1954 }
1955
1956 static void rdev_free(struct kobject *ko)
1957 {
1958 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
1959 kfree(rdev);
1960 }
1961 static struct sysfs_ops rdev_sysfs_ops = {
1962 .show = rdev_attr_show,
1963 .store = rdev_attr_store,
1964 };
1965 static struct kobj_type rdev_ktype = {
1966 .release = rdev_free,
1967 .sysfs_ops = &rdev_sysfs_ops,
1968 .default_attrs = rdev_default_attrs,
1969 };
1970
1971 /*
1972 * Import a device. If 'super_format' >= 0, then sanity check the superblock
1973 *
1974 * mark the device faulty if:
1975 *
1976 * - the device is nonexistent (zero size)
1977 * - the device has no valid superblock
1978 *
1979 * a faulty rdev _never_ has rdev->sb set.
1980 */
1981 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1982 {
1983 char b[BDEVNAME_SIZE];
1984 int err;
1985 mdk_rdev_t *rdev;
1986 sector_t size;
1987
1988 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
1989 if (!rdev) {
1990 printk(KERN_ERR "md: could not alloc mem for new device!\n");
1991 return ERR_PTR(-ENOMEM);
1992 }
1993
1994 if ((err = alloc_disk_sb(rdev)))
1995 goto abort_free;
1996
1997 err = lock_rdev(rdev, newdev);
1998 if (err)
1999 goto abort_free;
2000
2001 rdev->kobj.parent = NULL;
2002 rdev->kobj.ktype = &rdev_ktype;
2003 kobject_init(&rdev->kobj);
2004
2005 rdev->desc_nr = -1;
2006 rdev->saved_raid_disk = -1;
2007 rdev->flags = 0;
2008 rdev->data_offset = 0;
2009 rdev->sb_events = 0;
2010 atomic_set(&rdev->nr_pending, 0);
2011 atomic_set(&rdev->read_errors, 0);
2012 atomic_set(&rdev->corrected_errors, 0);
2013
2014 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
2015 if (!size) {
2016 printk(KERN_WARNING
2017 "md: %s has zero or unknown size, marking faulty!\n",
2018 bdevname(rdev->bdev,b));
2019 err = -EINVAL;
2020 goto abort_free;
2021 }
2022
2023 if (super_format >= 0) {
2024 err = super_types[super_format].
2025 load_super(rdev, NULL, super_minor);
2026 if (err == -EINVAL) {
2027 printk(KERN_WARNING
2028 "md: %s has invalid sb, not importing!\n",
2029 bdevname(rdev->bdev,b));
2030 goto abort_free;
2031 }
2032 if (err < 0) {
2033 printk(KERN_WARNING
2034 "md: could not read %s's sb, not importing!\n",
2035 bdevname(rdev->bdev,b));
2036 goto abort_free;
2037 }
2038 }
2039 INIT_LIST_HEAD(&rdev->same_set);
2040
2041 return rdev;
2042
2043 abort_free:
2044 if (rdev->sb_page) {
2045 if (rdev->bdev)
2046 unlock_rdev(rdev);
2047 free_disk_sb(rdev);
2048 }
2049 kfree(rdev);
2050 return ERR_PTR(err);
2051 }
2052
2053 /*
2054 * Check a full RAID array for plausibility
2055 */
2056
2057
2058 static void analyze_sbs(mddev_t * mddev)
2059 {
2060 int i;
2061 struct list_head *tmp;
2062 mdk_rdev_t *rdev, *freshest;
2063 char b[BDEVNAME_SIZE];
2064
2065 freshest = NULL;
2066 ITERATE_RDEV(mddev,rdev,tmp)
2067 switch (super_types[mddev->major_version].
2068 load_super(rdev, freshest, mddev->minor_version)) {
2069 case 1:
2070 freshest = rdev;
2071 break;
2072 case 0:
2073 break;
2074 default:
2075 printk( KERN_ERR \
2076 "md: fatal superblock inconsistency in %s"
2077 " -- removing from array\n",
2078 bdevname(rdev->bdev,b));
2079 kick_rdev_from_array(rdev);
2080 }
2081
2082
2083 super_types[mddev->major_version].
2084 validate_super(mddev, freshest);
2085
2086 i = 0;
2087 ITERATE_RDEV(mddev,rdev,tmp) {
2088 if (rdev != freshest)
2089 if (super_types[mddev->major_version].
2090 validate_super(mddev, rdev)) {
2091 printk(KERN_WARNING "md: kicking non-fresh %s"
2092 " from array!\n",
2093 bdevname(rdev->bdev,b));
2094 kick_rdev_from_array(rdev);
2095 continue;
2096 }
2097 if (mddev->level == LEVEL_MULTIPATH) {
2098 rdev->desc_nr = i++;
2099 rdev->raid_disk = rdev->desc_nr;
2100 set_bit(In_sync, &rdev->flags);
2101 }
2102 }
2103
2104
2105
2106 if (mddev->recovery_cp != MaxSector &&
2107 mddev->level >= 1)
2108 printk(KERN_ERR "md: %s: raid array is not clean"
2109 " -- starting background reconstruction\n",
2110 mdname(mddev));
2111
2112 }
2113
2114 static ssize_t
2115 safe_delay_show(mddev_t *mddev, char *page)
2116 {
2117 int msec = (mddev->safemode_delay*1000)/HZ;
2118 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2119 }
2120 static ssize_t
2121 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2122 {
2123 int scale=1;
2124 int dot=0;
2125 int i;
2126 unsigned long msec;
2127 char buf[30];
2128 char *e;
2129 /* remove a period, and count digits after it */
2130 if (len >= sizeof(buf))
2131 return -EINVAL;
2132 strlcpy(buf, cbuf, len);
2133 buf[len] = 0;
2134 for (i=0; i<len; i++) {
2135 if (dot) {
2136 if (isdigit(buf[i])) {
2137 buf[i-1] = buf[i];
2138 scale *= 10;
2139 }
2140 buf[i] = 0;
2141 } else if (buf[i] == '.') {
2142 dot=1;
2143 buf[i] = 0;
2144 }
2145 }
2146 msec = simple_strtoul(buf, &e, 10);
2147 if (e == buf || (*e && *e != '\n'))
2148 return -EINVAL;
2149 msec = (msec * 1000) / scale;
2150 if (msec == 0)
2151 mddev->safemode_delay = 0;
2152 else {
2153 mddev->safemode_delay = (msec*HZ)/1000;
2154 if (mddev->safemode_delay == 0)
2155 mddev->safemode_delay = 1;
2156 }
2157 return len;
2158 }
2159 static struct md_sysfs_entry md_safe_delay =
2160 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
2161
2162 static ssize_t
2163 level_show(mddev_t *mddev, char *page)
2164 {
2165 struct mdk_personality *p = mddev->pers;
2166 if (p)
2167 return sprintf(page, "%s\n", p->name);
2168 else if (mddev->clevel[0])
2169 return sprintf(page, "%s\n", mddev->clevel);
2170 else if (mddev->level != LEVEL_NONE)
2171 return sprintf(page, "%d\n", mddev->level);
2172 else
2173 return 0;
2174 }
2175
2176 static ssize_t
2177 level_store(mddev_t *mddev, const char *buf, size_t len)
2178 {
2179 int rv = len;
2180 if (mddev->pers)
2181 return -EBUSY;
2182 if (len == 0)
2183 return 0;
2184 if (len >= sizeof(mddev->clevel))
2185 return -ENOSPC;
2186 strncpy(mddev->clevel, buf, len);
2187 if (mddev->clevel[len-1] == '\n')
2188 len--;
2189 mddev->clevel[len] = 0;
2190 mddev->level = LEVEL_NONE;
2191 return rv;
2192 }
2193
2194 static struct md_sysfs_entry md_level =
2195 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
2196
2197
2198 static ssize_t
2199 layout_show(mddev_t *mddev, char *page)
2200 {
2201 /* just a number, not meaningful for all levels */
2202 return sprintf(page, "%d\n", mddev->layout);
2203 }
2204
2205 static ssize_t
2206 layout_store(mddev_t *mddev, const char *buf, size_t len)
2207 {
2208 char *e;
2209 unsigned long n = simple_strtoul(buf, &e, 10);
2210 if (mddev->pers)
2211 return -EBUSY;
2212
2213 if (!*buf || (*e && *e != '\n'))
2214 return -EINVAL;
2215
2216 mddev->layout = n;
2217 return len;
2218 }
2219 static struct md_sysfs_entry md_layout =
2220 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
2221
2222
2223 static ssize_t
2224 raid_disks_show(mddev_t *mddev, char *page)
2225 {
2226 if (mddev->raid_disks == 0)
2227 return 0;
2228 return sprintf(page, "%d\n", mddev->raid_disks);
2229 }
2230
2231 static int update_raid_disks(mddev_t *mddev, int raid_disks);
2232
2233 static ssize_t
2234 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
2235 {
2236 /* can only set raid_disks if array is not yet active */
2237 char *e;
2238 int rv = 0;
2239 unsigned long n = simple_strtoul(buf, &e, 10);
2240
2241 if (!*buf || (*e && *e != '\n'))
2242 return -EINVAL;
2243
2244 if (mddev->pers)
2245 rv = update_raid_disks(mddev, n);
2246 else
2247 mddev->raid_disks = n;
2248 return rv ? rv : len;
2249 }
2250 static struct md_sysfs_entry md_raid_disks =
2251 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
2252
2253 static ssize_t
2254 chunk_size_show(mddev_t *mddev, char *page)
2255 {
2256 return sprintf(page, "%d\n", mddev->chunk_size);
2257 }
2258
2259 static ssize_t
2260 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
2261 {
2262 /* can only set chunk_size if array is not yet active */
2263 char *e;
2264 unsigned long n = simple_strtoul(buf, &e, 10);
2265
2266 if (mddev->pers)
2267 return -EBUSY;
2268 if (!*buf || (*e && *e != '\n'))
2269 return -EINVAL;
2270
2271 mddev->chunk_size = n;
2272 return len;
2273 }
2274 static struct md_sysfs_entry md_chunk_size =
2275 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
2276
2277 static ssize_t
2278 resync_start_show(mddev_t *mddev, char *page)
2279 {
2280 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
2281 }
2282
2283 static ssize_t
2284 resync_start_store(mddev_t *mddev, const char *buf, size_t len)
2285 {
2286 /* can only set chunk_size if array is not yet active */
2287 char *e;
2288 unsigned long long n = simple_strtoull(buf, &e, 10);
2289
2290 if (mddev->pers)
2291 return -EBUSY;
2292 if (!*buf || (*e && *e != '\n'))
2293 return -EINVAL;
2294
2295 mddev->recovery_cp = n;
2296 return len;
2297 }
2298 static struct md_sysfs_entry md_resync_start =
2299 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
2300
2301 /*
2302 * The array state can be:
2303 *
2304 * clear
2305 * No devices, no size, no level
2306 * Equivalent to STOP_ARRAY ioctl
2307 * inactive
2308 * May have some settings, but array is not active
2309 * all IO results in error
2310 * When written, doesn't tear down array, but just stops it
2311 * suspended (not supported yet)
2312 * All IO requests will block. The array can be reconfigured.
2313 * Writing this, if accepted, will block until array is quiessent
2314 * readonly
2315 * no resync can happen. no superblocks get written.
2316 * write requests fail
2317 * read-auto
2318 * like readonly, but behaves like 'clean' on a write request.
2319 *
2320 * clean - no pending writes, but otherwise active.
2321 * When written to inactive array, starts without resync
2322 * If a write request arrives then
2323 * if metadata is known, mark 'dirty' and switch to 'active'.
2324 * if not known, block and switch to write-pending
2325 * If written to an active array that has pending writes, then fails.
2326 * active
2327 * fully active: IO and resync can be happening.
2328 * When written to inactive array, starts with resync
2329 *
2330 * write-pending
2331 * clean, but writes are blocked waiting for 'active' to be written.
2332 *
2333 * active-idle
2334 * like active, but no writes have been seen for a while (100msec).
2335 *
2336 */
2337 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
2338 write_pending, active_idle, bad_word};
2339 static char *array_states[] = {
2340 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
2341 "write-pending", "active-idle", NULL };
2342
2343 static int match_word(const char *word, char **list)
2344 {
2345 int n;
2346 for (n=0; list[n]; n++)
2347 if (cmd_match(word, list[n]))
2348 break;
2349 return n;
2350 }
2351
2352 static ssize_t
2353 array_state_show(mddev_t *mddev, char *page)
2354 {
2355 enum array_state st = inactive;
2356
2357 if (mddev->pers)
2358 switch(mddev->ro) {
2359 case 1:
2360 st = readonly;
2361 break;
2362 case 2:
2363 st = read_auto;
2364 break;
2365 case 0:
2366 if (mddev->in_sync)
2367 st = clean;
2368 else if (mddev->safemode)
2369 st = active_idle;
2370 else
2371 st = active;
2372 }
2373 else {
2374 if (list_empty(&mddev->disks) &&
2375 mddev->raid_disks == 0 &&
2376 mddev->size == 0)
2377 st = clear;
2378 else
2379 st = inactive;
2380 }
2381 return sprintf(page, "%s\n", array_states[st]);
2382 }
2383
2384 static int do_md_stop(mddev_t * mddev, int ro);
2385 static int do_md_run(mddev_t * mddev);
2386 static int restart_array(mddev_t *mddev);
2387
2388 static ssize_t
2389 array_state_store(mddev_t *mddev, const char *buf, size_t len)
2390 {
2391 int err = -EINVAL;
2392 enum array_state st = match_word(buf, array_states);
2393 switch(st) {
2394 case bad_word:
2395 break;
2396 case clear:
2397 /* stopping an active array */
2398 if (mddev->pers) {
2399 if (atomic_read(&mddev->active) > 1)
2400 return -EBUSY;
2401 err = do_md_stop(mddev, 0);
2402 }
2403 break;
2404 case inactive:
2405 /* stopping an active array */
2406 if (mddev->pers) {
2407 if (atomic_read(&mddev->active) > 1)
2408 return -EBUSY;
2409 err = do_md_stop(mddev, 2);
2410 }
2411 break;
2412 case suspended:
2413 break; /* not supported yet */
2414 case readonly:
2415 if (mddev->pers)
2416 err = do_md_stop(mddev, 1);
2417 else {
2418 mddev->ro = 1;
2419 err = do_md_run(mddev);
2420 }
2421 break;
2422 case read_auto:
2423 /* stopping an active array */
2424 if (mddev->pers) {
2425 err = do_md_stop(mddev, 1);
2426 if (err == 0)
2427 mddev->ro = 2; /* FIXME mark devices writable */
2428 } else {
2429 mddev->ro = 2;
2430 err = do_md_run(mddev);
2431 }
2432 break;
2433 case clean:
2434 if (mddev->pers) {
2435 restart_array(mddev);
2436 spin_lock_irq(&mddev->write_lock);
2437 if (atomic_read(&mddev->writes_pending) == 0) {
2438 mddev->in_sync = 1;
2439 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
2440 }
2441 spin_unlock_irq(&mddev->write_lock);
2442 } else {
2443 mddev->ro = 0;
2444 mddev->recovery_cp = MaxSector;
2445 err = do_md_run(mddev);
2446 }
2447 break;
2448 case active:
2449 if (mddev->pers) {
2450 restart_array(mddev);
2451 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2452 wake_up(&mddev->sb_wait);
2453 err = 0;
2454 } else {
2455 mddev->ro = 0;
2456 err = do_md_run(mddev);
2457 }
2458 break;
2459 case write_pending:
2460 case active_idle:
2461 /* these cannot be set */
2462 break;
2463 }
2464 if (err)
2465 return err;
2466 else
2467 return len;
2468 }
2469 static struct md_sysfs_entry md_array_state =
2470 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
2471
2472 static ssize_t
2473 null_show(mddev_t *mddev, char *page)
2474 {
2475 return -EINVAL;
2476 }
2477
2478 static ssize_t
2479 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
2480 {
2481 /* buf must be %d:%d\n? giving major and minor numbers */
2482 /* The new device is added to the array.
2483 * If the array has a persistent superblock, we read the
2484 * superblock to initialise info and check validity.
2485 * Otherwise, only checking done is that in bind_rdev_to_array,
2486 * which mainly checks size.
2487 */
2488 char *e;
2489 int major = simple_strtoul(buf, &e, 10);
2490 int minor;
2491 dev_t dev;
2492 mdk_rdev_t *rdev;
2493 int err;
2494
2495 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
2496 return -EINVAL;
2497 minor = simple_strtoul(e+1, &e, 10);
2498 if (*e && *e != '\n')
2499 return -EINVAL;
2500 dev = MKDEV(major, minor);
2501 if (major != MAJOR(dev) ||
2502 minor != MINOR(dev))
2503 return -EOVERFLOW;
2504
2505
2506 if (mddev->persistent) {
2507 rdev = md_import_device(dev, mddev->major_version,
2508 mddev->minor_version);
2509 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
2510 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2511 mdk_rdev_t, same_set);
2512 err = super_types[mddev->major_version]
2513 .load_super(rdev, rdev0, mddev->minor_version);
2514 if (err < 0)
2515 goto out;
2516 }
2517 } else
2518 rdev = md_import_device(dev, -1, -1);
2519
2520 if (IS_ERR(rdev))
2521 return PTR_ERR(rdev);
2522 err = bind_rdev_to_array(rdev, mddev);
2523 out:
2524 if (err)
2525 export_rdev(rdev);
2526 return err ? err : len;
2527 }
2528
2529 static struct md_sysfs_entry md_new_device =
2530 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
2531
2532 static ssize_t
2533 bitmap_store(mddev_t *mddev, const char *buf, size_t len)
2534 {
2535 char *end;
2536 unsigned long chunk, end_chunk;
2537
2538 if (!mddev->bitmap)
2539 goto out;
2540 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
2541 while (*buf) {
2542 chunk = end_chunk = simple_strtoul(buf, &end, 0);
2543 if (buf == end) break;
2544 if (*end == '-') { /* range */
2545 buf = end + 1;
2546 end_chunk = simple_strtoul(buf, &end, 0);
2547 if (buf == end) break;
2548 }
2549 if (*end && !isspace(*end)) break;
2550 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
2551 buf = end;
2552 while (isspace(*buf)) buf++;
2553 }
2554 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
2555 out:
2556 return len;
2557 }
2558
2559 static struct md_sysfs_entry md_bitmap =
2560 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
2561
2562 static ssize_t
2563 size_show(mddev_t *mddev, char *page)
2564 {
2565 return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
2566 }
2567
2568 static int update_size(mddev_t *mddev, unsigned long size);
2569
2570 static ssize_t
2571 size_store(mddev_t *mddev, const char *buf, size_t len)
2572 {
2573 /* If array is inactive, we can reduce the component size, but
2574 * not increase it (except from 0).
2575 * If array is active, we can try an on-line resize
2576 */
2577 char *e;
2578 int err = 0;
2579 unsigned long long size = simple_strtoull(buf, &e, 10);
2580 if (!*buf || *buf == '\n' ||
2581 (*e && *e != '\n'))
2582 return -EINVAL;
2583
2584 if (mddev->pers) {
2585 err = update_size(mddev, size);
2586 md_update_sb(mddev, 1);
2587 } else {
2588 if (mddev->size == 0 ||
2589 mddev->size > size)
2590 mddev->size = size;
2591 else
2592 err = -ENOSPC;
2593 }
2594 return err ? err : len;
2595 }
2596
2597 static struct md_sysfs_entry md_size =
2598 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
2599
2600
2601 /* Metdata version.
2602 * This is either 'none' for arrays with externally managed metadata,
2603 * or N.M for internally known formats
2604 */
2605 static ssize_t
2606 metadata_show(mddev_t *mddev, char *page)
2607 {
2608 if (mddev->persistent)
2609 return sprintf(page, "%d.%d\n",
2610 mddev->major_version, mddev->minor_version);
2611 else
2612 return sprintf(page, "none\n");
2613 }
2614
2615 static ssize_t
2616 metadata_store(mddev_t *mddev, const char *buf, size_t len)
2617 {
2618 int major, minor;
2619 char *e;
2620 if (!list_empty(&mddev->disks))
2621 return -EBUSY;
2622
2623 if (cmd_match(buf, "none")) {
2624 mddev->persistent = 0;
2625 mddev->major_version = 0;
2626 mddev->minor_version = 90;
2627 return len;
2628 }
2629 major = simple_strtoul(buf, &e, 10);
2630 if (e==buf || *e != '.')
2631 return -EINVAL;
2632 buf = e+1;
2633 minor = simple_strtoul(buf, &e, 10);
2634 if (e==buf || *e != '\n')
2635 return -EINVAL;
2636 if (major >= sizeof(super_types)/sizeof(super_types[0]) ||
2637 super_types[major].name == NULL)
2638 return -ENOENT;
2639 mddev->major_version = major;
2640 mddev->minor_version = minor;
2641 mddev->persistent = 1;
2642 return len;
2643 }
2644
2645 static struct md_sysfs_entry md_metadata =
2646 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
2647
2648 static ssize_t
2649 action_show(mddev_t *mddev, char *page)
2650 {
2651 char *type = "idle";
2652 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2653 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
2654 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2655 type = "reshape";
2656 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2657 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2658 type = "resync";
2659 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2660 type = "check";
2661 else
2662 type = "repair";
2663 } else
2664 type = "recover";
2665 }
2666 return sprintf(page, "%s\n", type);
2667 }
2668
2669 static ssize_t
2670 action_store(mddev_t *mddev, const char *page, size_t len)
2671 {
2672 if (!mddev->pers || !mddev->pers->sync_request)
2673 return -EINVAL;
2674
2675 if (cmd_match(page, "idle")) {
2676 if (mddev->sync_thread) {
2677 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2678 md_unregister_thread(mddev->sync_thread);
2679 mddev->sync_thread = NULL;
2680 mddev->recovery = 0;
2681 }
2682 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2683 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
2684 return -EBUSY;
2685 else if (cmd_match(page, "resync") || cmd_match(page, "recover"))
2686 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2687 else if (cmd_match(page, "reshape")) {
2688 int err;
2689 if (mddev->pers->start_reshape == NULL)
2690 return -EINVAL;
2691 err = mddev->pers->start_reshape(mddev);
2692 if (err)
2693 return err;
2694 } else {
2695 if (cmd_match(page, "check"))
2696 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
2697 else if (!cmd_match(page, "repair"))
2698 return -EINVAL;
2699 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
2700 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
2701 }
2702 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2703 md_wakeup_thread(mddev->thread);
2704 return len;
2705 }
2706
2707 static ssize_t
2708 mismatch_cnt_show(mddev_t *mddev, char *page)
2709 {
2710 return sprintf(page, "%llu\n",
2711 (unsigned long long) mddev->resync_mismatches);
2712 }
2713
2714 static struct md_sysfs_entry md_scan_mode =
2715 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
2716
2717
2718 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
2719
2720 static ssize_t
2721 sync_min_show(mddev_t *mddev, char *page)
2722 {
2723 return sprintf(page, "%d (%s)\n", speed_min(mddev),
2724 mddev->sync_speed_min ? "local": "system");
2725 }
2726
2727 static ssize_t
2728 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
2729 {
2730 int min;
2731 char *e;
2732 if (strncmp(buf, "system", 6)==0) {
2733 mddev->sync_speed_min = 0;
2734 return len;
2735 }
2736 min = simple_strtoul(buf, &e, 10);
2737 if (buf == e || (*e && *e != '\n') || min <= 0)
2738 return -EINVAL;
2739 mddev->sync_speed_min = min;
2740 return len;
2741 }
2742
2743 static struct md_sysfs_entry md_sync_min =
2744 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
2745
2746 static ssize_t
2747 sync_max_show(mddev_t *mddev, char *page)
2748 {
2749 return sprintf(page, "%d (%s)\n", speed_max(mddev),
2750 mddev->sync_speed_max ? "local": "system");
2751 }
2752
2753 static ssize_t
2754 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
2755 {
2756 int max;
2757 char *e;
2758 if (strncmp(buf, "system", 6)==0) {
2759 mddev->sync_speed_max = 0;
2760 return len;
2761 }
2762 max = simple_strtoul(buf, &e, 10);
2763 if (buf == e || (*e && *e != '\n') || max <= 0)
2764 return -EINVAL;
2765 mddev->sync_speed_max = max;
2766 return len;
2767 }
2768
2769 static struct md_sysfs_entry md_sync_max =
2770 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
2771
2772
2773 static ssize_t
2774 sync_speed_show(mddev_t *mddev, char *page)
2775 {
2776 unsigned long resync, dt, db;
2777 resync = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active));
2778 dt = ((jiffies - mddev->resync_mark) / HZ);
2779 if (!dt) dt++;
2780 db = resync - (mddev->resync_mark_cnt);
2781 return sprintf(page, "%ld\n", db/dt/2); /* K/sec */
2782 }
2783
2784 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
2785
2786 static ssize_t
2787 sync_completed_show(mddev_t *mddev, char *page)
2788 {
2789 unsigned long max_blocks, resync;
2790
2791 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2792 max_blocks = mddev->resync_max_sectors;
2793 else
2794 max_blocks = mddev->size << 1;
2795
2796 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
2797 return sprintf(page, "%lu / %lu\n", resync, max_blocks);
2798 }
2799
2800 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
2801
2802 static ssize_t
2803 suspend_lo_show(mddev_t *mddev, char *page)
2804 {
2805 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
2806 }
2807
2808 static ssize_t
2809 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
2810 {
2811 char *e;
2812 unsigned long long new = simple_strtoull(buf, &e, 10);
2813
2814 if (mddev->pers->quiesce == NULL)
2815 return -EINVAL;
2816 if (buf == e || (*e && *e != '\n'))
2817 return -EINVAL;
2818 if (new >= mddev->suspend_hi ||
2819 (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
2820 mddev->suspend_lo = new;
2821 mddev->pers->quiesce(mddev, 2);
2822 return len;
2823 } else
2824 return -EINVAL;
2825 }
2826 static struct md_sysfs_entry md_suspend_lo =
2827 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
2828
2829
2830 static ssize_t
2831 suspend_hi_show(mddev_t *mddev, char *page)
2832 {
2833 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
2834 }
2835
2836 static ssize_t
2837 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
2838 {
2839 char *e;
2840 unsigned long long new = simple_strtoull(buf, &e, 10);
2841
2842 if (mddev->pers->quiesce == NULL)
2843 return -EINVAL;
2844 if (buf == e || (*e && *e != '\n'))
2845 return -EINVAL;
2846 if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
2847 (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
2848 mddev->suspend_hi = new;
2849 mddev->pers->quiesce(mddev, 1);
2850 mddev->pers->quiesce(mddev, 0);
2851 return len;
2852 } else
2853 return -EINVAL;
2854 }
2855 static struct md_sysfs_entry md_suspend_hi =
2856 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
2857
2858
2859 static struct attribute *md_default_attrs[] = {
2860 &md_level.attr,
2861 &md_layout.attr,
2862 &md_raid_disks.attr,
2863 &md_chunk_size.attr,
2864 &md_size.attr,
2865 &md_resync_start.attr,
2866 &md_metadata.attr,
2867 &md_new_device.attr,
2868 &md_safe_delay.attr,
2869 &md_array_state.attr,
2870 NULL,
2871 };
2872
2873 static struct attribute *md_redundancy_attrs[] = {
2874 &md_scan_mode.attr,
2875 &md_mismatches.attr,
2876 &md_sync_min.attr,
2877 &md_sync_max.attr,
2878 &md_sync_speed.attr,
2879 &md_sync_completed.attr,
2880 &md_suspend_lo.attr,
2881 &md_suspend_hi.attr,
2882 &md_bitmap.attr,
2883 NULL,
2884 };
2885 static struct attribute_group md_redundancy_group = {
2886 .name = NULL,
2887 .attrs = md_redundancy_attrs,
2888 };
2889
2890
2891 static ssize_t
2892 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2893 {
2894 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
2895 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
2896 ssize_t rv;
2897
2898 if (!entry->show)
2899 return -EIO;
2900 rv = mddev_lock(mddev);
2901 if (!rv) {
2902 rv = entry->show(mddev, page);
2903 mddev_unlock(mddev);
2904 }
2905 return rv;
2906 }
2907
2908 static ssize_t
2909 md_attr_store(struct kobject *kobj, struct attribute *attr,
2910 const char *page, size_t length)
2911 {
2912 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
2913 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
2914 ssize_t rv;
2915
2916 if (!entry->store)
2917 return -EIO;
2918 if (!capable(CAP_SYS_ADMIN))
2919 return -EACCES;
2920 rv = mddev_lock(mddev);
2921 if (!rv) {
2922 rv = entry->store(mddev, page, length);
2923 mddev_unlock(mddev);
2924 }
2925 return rv;
2926 }
2927
2928 static void md_free(struct kobject *ko)
2929 {
2930 mddev_t *mddev = container_of(ko, mddev_t, kobj);
2931 kfree(mddev);
2932 }
2933
2934 static struct sysfs_ops md_sysfs_ops = {
2935 .show = md_attr_show,
2936 .store = md_attr_store,
2937 };
2938 static struct kobj_type md_ktype = {
2939 .release = md_free,
2940 .sysfs_ops = &md_sysfs_ops,
2941 .default_attrs = md_default_attrs,
2942 };
2943
2944 int mdp_major = 0;
2945
2946 static struct kobject *md_probe(dev_t dev, int *part, void *data)
2947 {
2948 static DEFINE_MUTEX(disks_mutex);
2949 mddev_t *mddev = mddev_find(dev);
2950 struct gendisk *disk;
2951 int partitioned = (MAJOR(dev) != MD_MAJOR);
2952 int shift = partitioned ? MdpMinorShift : 0;
2953 int unit = MINOR(dev) >> shift;
2954
2955 if (!mddev)
2956 return NULL;
2957
2958 mutex_lock(&disks_mutex);
2959 if (mddev->gendisk) {
2960 mutex_unlock(&disks_mutex);
2961 mddev_put(mddev);
2962 return NULL;
2963 }
2964 disk = alloc_disk(1 << shift);
2965 if (!disk) {
2966 mutex_unlock(&disks_mutex);
2967 mddev_put(mddev);
2968 return NULL;
2969 }
2970 disk->major = MAJOR(dev);
2971 disk->first_minor = unit << shift;
2972 if (partitioned)
2973 sprintf(disk->disk_name, "md_d%d", unit);
2974 else
2975 sprintf(disk->disk_name, "md%d", unit);
2976 disk->fops = &md_fops;
2977 disk->private_data = mddev;
2978 disk->queue = mddev->queue;
2979 add_disk(disk);
2980 mddev->gendisk = disk;
2981 mutex_unlock(&disks_mutex);
2982 mddev->kobj.parent = &disk->kobj;
2983 mddev->kobj.k_name = NULL;
2984 snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
2985 mddev->kobj.ktype = &md_ktype;
2986 kobject_register(&mddev->kobj);
2987 return NULL;
2988 }
2989
2990 static void md_safemode_timeout(unsigned long data)
2991 {
2992 mddev_t *mddev = (mddev_t *) data;
2993
2994 mddev->safemode = 1;
2995 md_wakeup_thread(mddev->thread);
2996 }
2997
2998 static int start_dirty_degraded;
2999
3000 static int do_md_run(mddev_t * mddev)
3001 {
3002 int err;
3003 int chunk_size;
3004 struct list_head *tmp;
3005 mdk_rdev_t *rdev;
3006 struct gendisk *disk;
3007 struct mdk_personality *pers;
3008 char b[BDEVNAME_SIZE];
3009
3010 if (list_empty(&mddev->disks))
3011 /* cannot run an array with no devices.. */
3012 return -EINVAL;
3013
3014 if (mddev->pers)
3015 return -EBUSY;
3016
3017 /*
3018 * Analyze all RAID superblock(s)
3019 */
3020 if (!mddev->raid_disks)
3021 analyze_sbs(mddev);
3022
3023 chunk_size = mddev->chunk_size;
3024
3025 if (chunk_size) {
3026 if (chunk_size > MAX_CHUNK_SIZE) {
3027 printk(KERN_ERR "too big chunk_size: %d > %d\n",
3028 chunk_size, MAX_CHUNK_SIZE);
3029 return -EINVAL;
3030 }
3031 /*
3032 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
3033 */
3034 if ( (1 << ffz(~chunk_size)) != chunk_size) {
3035 printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
3036 return -EINVAL;
3037 }
3038 if (chunk_size < PAGE_SIZE) {
3039 printk(KERN_ERR "too small chunk_size: %d < %ld\n",
3040 chunk_size, PAGE_SIZE);
3041 return -EINVAL;
3042 }
3043
3044 /* devices must have minimum size of one chunk */
3045 ITERATE_RDEV(mddev,rdev,tmp) {
3046 if (test_bit(Faulty, &rdev->flags))
3047 continue;
3048 if (rdev->size < chunk_size / 1024) {
3049 printk(KERN_WARNING
3050 "md: Dev %s smaller than chunk_size:"
3051 " %lluk < %dk\n",
3052 bdevname(rdev->bdev,b),
3053 (unsigned long long)rdev->size,
3054 chunk_size / 1024);
3055 return -EINVAL;
3056 }
3057 }
3058 }
3059
3060 #ifdef CONFIG_KMOD
3061 if (mddev->level != LEVEL_NONE)
3062 request_module("md-level-%d", mddev->level);
3063 else if (mddev->clevel[0])
3064 request_module("md-%s", mddev->clevel);
3065 #endif
3066
3067 /*
3068 * Drop all container device buffers, from now on
3069 * the only valid external interface is through the md
3070 * device.
3071 * Also find largest hardsector size
3072 */
3073 ITERATE_RDEV(mddev,rdev,tmp) {
3074 if (test_bit(Faulty, &rdev->flags))
3075 continue;
3076 sync_blockdev(rdev->bdev);
3077 invalidate_bdev(rdev->bdev, 0);
3078 }
3079
3080 md_probe(mddev->unit, NULL, NULL);
3081 disk = mddev->gendisk;
3082 if (!disk)
3083 return -ENOMEM;
3084
3085 spin_lock(&pers_lock);
3086 pers = find_pers(mddev->level, mddev->clevel);
3087 if (!pers || !try_module_get(pers->owner)) {
3088 spin_unlock(&pers_lock);
3089 if (mddev->level != LEVEL_NONE)
3090 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
3091 mddev->level);
3092 else
3093 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
3094 mddev->clevel);
3095 return -EINVAL;
3096 }
3097 mddev->pers = pers;
3098 spin_unlock(&pers_lock);
3099 mddev->level = pers->level;
3100 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3101
3102 if (mddev->reshape_position != MaxSector &&
3103 pers->start_reshape == NULL) {
3104 /* This personality cannot handle reshaping... */
3105 mddev->pers = NULL;
3106 module_put(pers->owner);
3107 return -EINVAL;
3108 }
3109
3110 mddev->recovery = 0;
3111 mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
3112 mddev->barriers_work = 1;
3113 mddev->ok_start_degraded = start_dirty_degraded;
3114
3115 if (start_readonly)
3116 mddev->ro = 2; /* read-only, but switch on first write */
3117
3118 err = mddev->pers->run(mddev);
3119 if (!err && mddev->pers->sync_request) {
3120 err = bitmap_create(mddev);
3121 if (err) {
3122 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
3123 mdname(mddev), err);
3124 mddev->pers->stop(mddev);
3125 }
3126 }
3127 if (err) {
3128 printk(KERN_ERR "md: pers->run() failed ...\n");
3129 module_put(mddev->pers->owner);
3130 mddev->pers = NULL;
3131 bitmap_destroy(mddev);
3132 return err;
3133 }
3134 if (mddev->pers->sync_request)
3135 sysfs_create_group(&mddev->kobj, &md_redundancy_group);
3136 else if (mddev->ro == 2) /* auto-readonly not meaningful */
3137 mddev->ro = 0;
3138
3139 atomic_set(&mddev->writes_pending,0);
3140 mddev->safemode = 0;
3141 mddev->safemode_timer.function = md_safemode_timeout;
3142 mddev->safemode_timer.data = (unsigned long) mddev;
3143 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
3144 mddev->in_sync = 1;
3145
3146 ITERATE_RDEV(mddev,rdev,tmp)
3147 if (rdev->raid_disk >= 0) {
3148 char nm[20];
3149 sprintf(nm, "rd%d", rdev->raid_disk);
3150 sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
3151 }
3152
3153 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3154
3155 if (mddev->flags)
3156 md_update_sb(mddev, 0);
3157
3158 set_capacity(disk, mddev->array_size<<1);
3159
3160 /* If we call blk_queue_make_request here, it will
3161 * re-initialise max_sectors etc which may have been
3162 * refined inside -> run. So just set the bits we need to set.
3163 * Most initialisation happended when we called
3164 * blk_queue_make_request(..., md_fail_request)
3165 * earlier.
3166 */
3167 mddev->queue->queuedata = mddev;
3168 mddev->queue->make_request_fn = mddev->pers->make_request;
3169
3170 /* If there is a partially-recovered drive we need to
3171 * start recovery here. If we leave it to md_check_recovery,
3172 * it will remove the drives and not do the right thing
3173 */
3174 if (mddev->degraded && !mddev->sync_thread) {
3175 struct list_head *rtmp;
3176 int spares = 0;
3177 ITERATE_RDEV(mddev,rdev,rtmp)
3178 if (rdev->raid_disk >= 0 &&
3179 !test_bit(In_sync, &rdev->flags) &&
3180 !test_bit(Faulty, &rdev->flags))
3181 /* complete an interrupted recovery */
3182 spares++;
3183 if (spares && mddev->pers->sync_request) {
3184 mddev->recovery = 0;
3185 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3186 mddev->sync_thread = md_register_thread(md_do_sync,
3187 mddev,
3188 "%s_resync");
3189 if (!mddev->sync_thread) {
3190 printk(KERN_ERR "%s: could not start resync"
3191 " thread...\n",
3192 mdname(mddev));
3193 /* leave the spares where they are, it shouldn't hurt */
3194 mddev->recovery = 0;
3195 }
3196 }
3197 }
3198 md_wakeup_thread(mddev->thread);
3199 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
3200
3201 mddev->changed = 1;
3202 md_new_event(mddev);
3203 kobject_uevent(&mddev->gendisk->kobj, KOBJ_CHANGE);
3204 return 0;
3205 }
3206
3207 static int restart_array(mddev_t *mddev)
3208 {
3209 struct gendisk *disk = mddev->gendisk;
3210 int err;
3211
3212 /*
3213 * Complain if it has no devices
3214 */
3215 err = -ENXIO;
3216 if (list_empty(&mddev->disks))
3217 goto out;
3218
3219 if (mddev->pers) {
3220 err = -EBUSY;
3221 if (!mddev->ro)
3222 goto out;
3223
3224 mddev->safemode = 0;
3225 mddev->ro = 0;
3226 set_disk_ro(disk, 0);
3227
3228 printk(KERN_INFO "md: %s switched to read-write mode.\n",
3229 mdname(mddev));
3230 /*
3231 * Kick recovery or resync if necessary
3232 */
3233 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3234 md_wakeup_thread(mddev->thread);
3235 md_wakeup_thread(mddev->sync_thread);
3236 err = 0;
3237 } else
3238 err = -EINVAL;
3239
3240 out:
3241 return err;
3242 }
3243
3244 /* similar to deny_write_access, but accounts for our holding a reference
3245 * to the file ourselves */
3246 static int deny_bitmap_write_access(struct file * file)
3247 {
3248 struct inode *inode = file->f_mapping->host;
3249
3250 spin_lock(&inode->i_lock);
3251 if (atomic_read(&inode->i_writecount) > 1) {
3252 spin_unlock(&inode->i_lock);
3253 return -ETXTBSY;
3254 }
3255 atomic_set(&inode->i_writecount, -1);
3256 spin_unlock(&inode->i_lock);
3257
3258 return 0;
3259 }
3260
3261 static void restore_bitmap_write_access(struct file *file)
3262 {
3263 struct inode *inode = file->f_mapping->host;
3264
3265 spin_lock(&inode->i_lock);
3266 atomic_set(&inode->i_writecount, 1);
3267 spin_unlock(&inode->i_lock);
3268 }
3269
3270 /* mode:
3271 * 0 - completely stop and dis-assemble array
3272 * 1 - switch to readonly
3273 * 2 - stop but do not disassemble array
3274 */
3275 static int do_md_stop(mddev_t * mddev, int mode)
3276 {
3277 int err = 0;
3278 struct gendisk *disk = mddev->gendisk;
3279
3280 if (mddev->pers) {
3281 if (atomic_read(&mddev->active)>2) {
3282 printk("md: %s still in use.\n",mdname(mddev));
3283 return -EBUSY;
3284 }
3285
3286 if (mddev->sync_thread) {
3287 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3288 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3289 md_unregister_thread(mddev->sync_thread);
3290 mddev->sync_thread = NULL;
3291 }
3292
3293 del_timer_sync(&mddev->safemode_timer);
3294
3295 invalidate_partition(disk, 0);
3296
3297 switch(mode) {
3298 case 1: /* readonly */
3299 err = -ENXIO;
3300 if (mddev->ro==1)
3301 goto out;
3302 mddev->ro = 1;
3303 break;
3304 case 0: /* disassemble */
3305 case 2: /* stop */
3306 bitmap_flush(mddev);
3307 md_super_wait(mddev);
3308 if (mddev->ro)
3309 set_disk_ro(disk, 0);
3310 blk_queue_make_request(mddev->queue, md_fail_request);
3311 mddev->pers->stop(mddev);
3312 if (mddev->pers->sync_request)
3313 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
3314
3315 module_put(mddev->pers->owner);
3316 mddev->pers = NULL;
3317
3318 set_capacity(disk, 0);
3319 mddev->changed = 1;
3320
3321 if (mddev->ro)
3322 mddev->ro = 0;
3323 }
3324 if (!mddev->in_sync || mddev->flags) {
3325 /* mark array as shutdown cleanly */
3326 mddev->in_sync = 1;
3327 md_update_sb(mddev, 1);
3328 }
3329 if (mode == 1)
3330 set_disk_ro(disk, 1);
3331 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3332 }
3333
3334 /*
3335 * Free resources if final stop
3336 */
3337 if (mode == 0) {
3338 mdk_rdev_t *rdev;
3339 struct list_head *tmp;
3340
3341 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
3342
3343 bitmap_destroy(mddev);
3344 if (mddev->bitmap_file) {
3345 restore_bitmap_write_access(mddev->bitmap_file);
3346 fput(mddev->bitmap_file);
3347 mddev->bitmap_file = NULL;
3348 }
3349 mddev->bitmap_offset = 0;
3350
3351 ITERATE_RDEV(mddev,rdev,tmp)
3352 if (rdev->raid_disk >= 0) {
3353 char nm[20];
3354 sprintf(nm, "rd%d", rdev->raid_disk);
3355 sysfs_remove_link(&mddev->kobj, nm);
3356 }
3357
3358 export_array(mddev);
3359
3360 mddev->array_size = 0;
3361 mddev->size = 0;
3362 mddev->raid_disks = 0;
3363 mddev->recovery_cp = 0;
3364
3365 } else if (mddev->pers)
3366 printk(KERN_INFO "md: %s switched to read-only mode.\n",
3367 mdname(mddev));
3368 err = 0;
3369 md_new_event(mddev);
3370 out:
3371 return err;
3372 }
3373
3374 #ifndef MODULE
3375 static void autorun_array(mddev_t *mddev)
3376 {
3377 mdk_rdev_t *rdev;
3378 struct list_head *tmp;
3379 int err;
3380
3381 if (list_empty(&mddev->disks))
3382 return;
3383
3384 printk(KERN_INFO "md: running: ");
3385
3386 ITERATE_RDEV(mddev,rdev,tmp) {
3387 char b[BDEVNAME_SIZE];
3388 printk("<%s>", bdevname(rdev->bdev,b));
3389 }
3390 printk("\n");
3391
3392 err = do_md_run (mddev);
3393 if (err) {
3394 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
3395 do_md_stop (mddev, 0);
3396 }
3397 }
3398
3399 /*
3400 * lets try to run arrays based on all disks that have arrived
3401 * until now. (those are in pending_raid_disks)
3402 *
3403 * the method: pick the first pending disk, collect all disks with
3404 * the same UUID, remove all from the pending list and put them into
3405 * the 'same_array' list. Then order this list based on superblock
3406 * update time (freshest comes first), kick out 'old' disks and
3407 * compare superblocks. If everything's fine then run it.
3408 *
3409 * If "unit" is allocated, then bump its reference count
3410 */
3411 static void autorun_devices(int part)
3412 {
3413 struct list_head *tmp;
3414 mdk_rdev_t *rdev0, *rdev;
3415 mddev_t *mddev;
3416 char b[BDEVNAME_SIZE];
3417
3418 printk(KERN_INFO "md: autorun ...\n");
3419 while (!list_empty(&pending_raid_disks)) {
3420 int unit;
3421 dev_t dev;
3422 LIST_HEAD(candidates);
3423 rdev0 = list_entry(pending_raid_disks.next,
3424 mdk_rdev_t, same_set);
3425
3426 printk(KERN_INFO "md: considering %s ...\n",
3427 bdevname(rdev0->bdev,b));
3428 INIT_LIST_HEAD(&candidates);
3429 ITERATE_RDEV_PENDING(rdev,tmp)
3430 if (super_90_load(rdev, rdev0, 0) >= 0) {
3431 printk(KERN_INFO "md: adding %s ...\n",
3432 bdevname(rdev->bdev,b));
3433 list_move(&rdev->same_set, &candidates);
3434 }
3435 /*
3436 * now we have a set of devices, with all of them having
3437 * mostly sane superblocks. It's time to allocate the
3438 * mddev.
3439 */
3440 if (part) {
3441 dev = MKDEV(mdp_major,
3442 rdev0->preferred_minor << MdpMinorShift);
3443 unit = MINOR(dev) >> MdpMinorShift;
3444 } else {
3445 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
3446 unit = MINOR(dev);
3447 }
3448 if (rdev0->preferred_minor != unit) {
3449 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
3450 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
3451 break;
3452 }
3453
3454 md_probe(dev, NULL, NULL);
3455 mddev = mddev_find(dev);
3456 if (!mddev) {
3457 printk(KERN_ERR
3458 "md: cannot allocate memory for md drive.\n");
3459 break;
3460 }
3461 if (mddev_lock(mddev))
3462 printk(KERN_WARNING "md: %s locked, cannot run\n",
3463 mdname(mddev));
3464 else if (mddev->raid_disks || mddev->major_version
3465 || !list_empty(&mddev->disks)) {
3466 printk(KERN_WARNING
3467 "md: %s already running, cannot run %s\n",
3468 mdname(mddev), bdevname(rdev0->bdev,b));
3469 mddev_unlock(mddev);
3470 } else {
3471 printk(KERN_INFO "md: created %s\n", mdname(mddev));
3472 ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
3473 list_del_init(&rdev->same_set);
3474 if (bind_rdev_to_array(rdev, mddev))
3475 export_rdev(rdev);
3476 }
3477 autorun_array(mddev);
3478 mddev_unlock(mddev);
3479 }
3480 /* on success, candidates will be empty, on error
3481 * it won't...
3482 */
3483 ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
3484 export_rdev(rdev);
3485 mddev_put(mddev);
3486 }
3487 printk(KERN_INFO "md: ... autorun DONE.\n");
3488 }
3489 #endif /* !MODULE */
3490
3491 static int get_version(void __user * arg)
3492 {
3493 mdu_version_t ver;
3494
3495 ver.major = MD_MAJOR_VERSION;
3496 ver.minor = MD_MINOR_VERSION;
3497 ver.patchlevel = MD_PATCHLEVEL_VERSION;
3498
3499 if (copy_to_user(arg, &ver, sizeof(ver)))
3500 return -EFAULT;
3501
3502 return 0;
3503 }
3504
3505 static int get_array_info(mddev_t * mddev, void __user * arg)
3506 {
3507 mdu_array_info_t info;
3508 int nr,working,active,failed,spare;
3509 mdk_rdev_t *rdev;
3510 struct list_head *tmp;
3511
3512 nr=working=active=failed=spare=0;
3513 ITERATE_RDEV(mddev,rdev,tmp) {
3514 nr++;
3515 if (test_bit(Faulty, &rdev->flags))
3516 failed++;
3517 else {
3518 working++;
3519 if (test_bit(In_sync, &rdev->flags))
3520 active++;
3521 else
3522 spare++;
3523 }
3524 }
3525
3526 info.major_version = mddev->major_version;
3527 info.minor_version = mddev->minor_version;
3528 info.patch_version = MD_PATCHLEVEL_VERSION;
3529 info.ctime = mddev->ctime;
3530 info.level = mddev->level;
3531 info.size = mddev->size;
3532 if (info.size != mddev->size) /* overflow */
3533 info.size = -1;
3534 info.nr_disks = nr;
3535 info.raid_disks = mddev->raid_disks;
3536 info.md_minor = mddev->md_minor;
3537 info.not_persistent= !mddev->persistent;
3538
3539 info.utime = mddev->utime;
3540 info.state = 0;
3541 if (mddev->in_sync)
3542 info.state = (1<<MD_SB_CLEAN);
3543 if (mddev->bitmap && mddev->bitmap_offset)
3544 info.state = (1<<MD_SB_BITMAP_PRESENT);
3545 info.active_disks = active;
3546 info.working_disks = working;
3547 info.failed_disks = failed;
3548 info.spare_disks = spare;
3549
3550 info.layout = mddev->layout;
3551 info.chunk_size = mddev->chunk_size;
3552
3553 if (copy_to_user(arg, &info, sizeof(info)))
3554 return -EFAULT;
3555
3556 return 0;
3557 }
3558
3559 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
3560 {
3561 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
3562 char *ptr, *buf = NULL;
3563 int err = -ENOMEM;
3564
3565 file = kmalloc(sizeof(*file), GFP_KERNEL);
3566 if (!file)
3567 goto out;
3568
3569 /* bitmap disabled, zero the first byte and copy out */
3570 if (!mddev->bitmap || !mddev->bitmap->file) {
3571 file->pathname[0] = '\0';
3572 goto copy_out;
3573 }
3574
3575 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
3576 if (!buf)
3577 goto out;
3578
3579 ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
3580 if (!ptr)
3581 goto out;
3582
3583 strcpy(file->pathname, ptr);
3584
3585 copy_out:
3586 err = 0;
3587 if (copy_to_user(arg, file, sizeof(*file)))
3588 err = -EFAULT;
3589 out:
3590 kfree(buf);
3591 kfree(file);
3592 return err;
3593 }
3594
3595 static int get_disk_info(mddev_t * mddev, void __user * arg)
3596 {
3597 mdu_disk_info_t info;
3598 unsigned int nr;
3599 mdk_rdev_t *rdev;
3600
3601 if (copy_from_user(&info, arg, sizeof(info)))
3602 return -EFAULT;
3603
3604 nr = info.number;
3605
3606 rdev = find_rdev_nr(mddev, nr);
3607 if (rdev) {
3608 info.major = MAJOR(rdev->bdev->bd_dev);
3609 info.minor = MINOR(rdev->bdev->bd_dev);
3610 info.raid_disk = rdev->raid_disk;
3611 info.state = 0;
3612 if (test_bit(Faulty, &rdev->flags))
3613 info.state |= (1<<MD_DISK_FAULTY);
3614 else if (test_bit(In_sync, &rdev->flags)) {
3615 info.state |= (1<<MD_DISK_ACTIVE);
3616 info.state |= (1<<MD_DISK_SYNC);
3617 }
3618 if (test_bit(WriteMostly, &rdev->flags))
3619 info.state |= (1<<MD_DISK_WRITEMOSTLY);
3620 } else {
3621 info.major = info.minor = 0;
3622 info.raid_disk = -1;
3623 info.state = (1<<MD_DISK_REMOVED);
3624 }
3625
3626 if (copy_to_user(arg, &info, sizeof(info)))
3627 return -EFAULT;
3628
3629 return 0;
3630 }
3631
3632 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
3633 {
3634 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
3635 mdk_rdev_t *rdev;
3636 dev_t dev = MKDEV(info->major,info->minor);
3637
3638 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
3639 return -EOVERFLOW;
3640
3641 if (!mddev->raid_disks) {
3642 int err;
3643 /* expecting a device which has a superblock */
3644 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
3645 if (IS_ERR(rdev)) {
3646 printk(KERN_WARNING
3647 "md: md_import_device returned %ld\n",
3648 PTR_ERR(rdev));
3649 return PTR_ERR(rdev);
3650 }
3651 if (!list_empty(&mddev->disks)) {
3652 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3653 mdk_rdev_t, same_set);
3654 int err = super_types[mddev->major_version]
3655 .load_super(rdev, rdev0, mddev->minor_version);
3656 if (err < 0) {
3657 printk(KERN_WARNING
3658 "md: %s has different UUID to %s\n",
3659 bdevname(rdev->bdev,b),
3660 bdevname(rdev0->bdev,b2));
3661 export_rdev(rdev);
3662 return -EINVAL;
3663 }
3664 }
3665 err = bind_rdev_to_array(rdev, mddev);
3666 if (err)
3667 export_rdev(rdev);
3668 return err;
3669 }
3670
3671 /*
3672 * add_new_disk can be used once the array is assembled
3673 * to add "hot spares". They must already have a superblock
3674 * written
3675 */
3676 if (mddev->pers) {
3677 int err;
3678 if (!mddev->pers->hot_add_disk) {
3679 printk(KERN_WARNING
3680 "%s: personality does not support diskops!\n",
3681 mdname(mddev));
3682 return -EINVAL;
3683 }
3684 if (mddev->persistent)
3685 rdev = md_import_device(dev, mddev->major_version,
3686 mddev->minor_version);
3687 else
3688 rdev = md_import_device(dev, -1, -1);
3689 if (IS_ERR(rdev)) {
3690 printk(KERN_WARNING
3691 "md: md_import_device returned %ld\n",
3692 PTR_ERR(rdev));
3693 return PTR_ERR(rdev);
3694 }
3695 /* set save_raid_disk if appropriate */
3696 if (!mddev->persistent) {
3697 if (info->state & (1<<MD_DISK_SYNC) &&
3698 info->raid_disk < mddev->raid_disks)
3699 rdev->raid_disk = info->raid_disk;
3700 else
3701 rdev->raid_disk = -1;
3702 } else
3703 super_types[mddev->major_version].
3704 validate_super(mddev, rdev);
3705 rdev->saved_raid_disk = rdev->raid_disk;
3706
3707 clear_bit(In_sync, &rdev->flags); /* just to be sure */
3708 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3709 set_bit(WriteMostly, &rdev->flags);
3710
3711 rdev->raid_disk = -1;
3712 err = bind_rdev_to_array(rdev, mddev);
3713 if (!err && !mddev->pers->hot_remove_disk) {
3714 /* If there is hot_add_disk but no hot_remove_disk
3715 * then added disks for geometry changes,
3716 * and should be added immediately.
3717 */
3718 super_types[mddev->major_version].
3719 validate_super(mddev, rdev);
3720 err = mddev->pers->hot_add_disk(mddev, rdev);
3721 if (err)
3722 unbind_rdev_from_array(rdev);
3723 }
3724 if (err)
3725 export_rdev(rdev);
3726
3727 md_update_sb(mddev, 1);
3728 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3729 md_wakeup_thread(mddev->thread);
3730 return err;
3731 }
3732
3733 /* otherwise, add_new_disk is only allowed
3734 * for major_version==0 superblocks
3735 */
3736 if (mddev->major_version != 0) {
3737 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
3738 mdname(mddev));
3739 return -EINVAL;
3740 }
3741
3742 if (!(info->state & (1<<MD_DISK_FAULTY))) {
3743 int err;
3744 rdev = md_import_device (dev, -1, 0);
3745 if (IS_ERR(rdev)) {
3746 printk(KERN_WARNING
3747 "md: error, md_import_device() returned %ld\n",
3748 PTR_ERR(rdev));
3749 return PTR_ERR(rdev);
3750 }
3751 rdev->desc_nr = info->number;
3752 if (info->raid_disk < mddev->raid_disks)
3753 rdev->raid_disk = info->raid_disk;
3754 else
3755 rdev->raid_disk = -1;
3756
3757 rdev->flags = 0;
3758
3759 if (rdev->raid_disk < mddev->raid_disks)
3760 if (info->state & (1<<MD_DISK_SYNC))
3761 set_bit(In_sync, &rdev->flags);
3762
3763 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3764 set_bit(WriteMostly, &rdev->flags);
3765
3766 if (!mddev->persistent) {
3767 printk(KERN_INFO "md: nonpersistent superblock ...\n");
3768 rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
3769 } else
3770 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
3771 rdev->size = calc_dev_size(rdev, mddev->chunk_size);
3772
3773 err = bind_rdev_to_array(rdev, mddev);
3774 if (err) {
3775 export_rdev(rdev);
3776 return err;
3777 }
3778 }
3779
3780 return 0;
3781 }
3782
3783 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
3784 {
3785 char b[BDEVNAME_SIZE];
3786 mdk_rdev_t *rdev;
3787
3788 if (!mddev->pers)
3789 return -ENODEV;
3790
3791 rdev = find_rdev(mddev, dev);
3792 if (!rdev)
3793 return -ENXIO;
3794
3795 if (rdev->raid_disk >= 0)
3796 goto busy;
3797
3798 kick_rdev_from_array(rdev);
3799 md_update_sb(mddev, 1);
3800 md_new_event(mddev);
3801
3802 return 0;
3803 busy:
3804 printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
3805 bdevname(rdev->bdev,b), mdname(mddev));
3806 return -EBUSY;
3807 }
3808
3809 static int hot_add_disk(mddev_t * mddev, dev_t dev)
3810 {
3811 char b[BDEVNAME_SIZE];
3812 int err;
3813 unsigned int size;
3814 mdk_rdev_t *rdev;
3815
3816 if (!mddev->pers)
3817 return -ENODEV;
3818
3819 if (mddev->major_version != 0) {
3820 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
3821 " version-0 superblocks.\n",
3822 mdname(mddev));
3823 return -EINVAL;
3824 }
3825 if (!mddev->pers->hot_add_disk) {
3826 printk(KERN_WARNING
3827 "%s: personality does not support diskops!\n",
3828 mdname(mddev));
3829 return -EINVAL;
3830 }
3831
3832 rdev = md_import_device (dev, -1, 0);
3833 if (IS_ERR(rdev)) {
3834 printk(KERN_WARNING
3835 "md: error, md_import_device() returned %ld\n",
3836 PTR_ERR(rdev));
3837 return -EINVAL;
3838 }
3839
3840 if (mddev->persistent)
3841 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
3842 else
3843 rdev->sb_offset =
3844 rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
3845
3846 size = calc_dev_size(rdev, mddev->chunk_size);
3847 rdev->size = size;
3848
3849 if (test_bit(Faulty, &rdev->flags)) {
3850 printk(KERN_WARNING
3851 "md: can not hot-add faulty %s disk to %s!\n",
3852 bdevname(rdev->bdev,b), mdname(mddev));
3853 err = -EINVAL;
3854 goto abort_export;
3855 }
3856 clear_bit(In_sync, &rdev->flags);
3857 rdev->desc_nr = -1;
3858 rdev->saved_raid_disk = -1;
3859 err = bind_rdev_to_array(rdev, mddev);
3860 if (err)
3861 goto abort_export;
3862
3863 /*
3864 * The rest should better be atomic, we can have disk failures
3865 * noticed in interrupt contexts ...
3866 */
3867
3868 if (rdev->desc_nr == mddev->max_disks) {
3869 printk(KERN_WARNING "%s: can not hot-add to full array!\n",
3870 mdname(mddev));
3871 err = -EBUSY;
3872 goto abort_unbind_export;
3873 }
3874
3875 rdev->raid_disk = -1;
3876
3877 md_update_sb(mddev, 1);
3878
3879 /*
3880 * Kick recovery, maybe this spare has to be added to the
3881 * array immediately.
3882 */
3883 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3884 md_wakeup_thread(mddev->thread);
3885 md_new_event(mddev);
3886 return 0;
3887
3888 abort_unbind_export:
3889 unbind_rdev_from_array(rdev);
3890
3891 abort_export:
3892 export_rdev(rdev);
3893 return err;
3894 }
3895
3896 static int set_bitmap_file(mddev_t *mddev, int fd)
3897 {
3898 int err;
3899
3900 if (mddev->pers) {
3901 if (!mddev->pers->quiesce)
3902 return -EBUSY;
3903 if (mddev->recovery || mddev->sync_thread)
3904 return -EBUSY;
3905 /* we should be able to change the bitmap.. */
3906 }
3907
3908
3909 if (fd >= 0) {
3910 if (mddev->bitmap)
3911 return -EEXIST; /* cannot add when bitmap is present */
3912 mddev->bitmap_file = fget(fd);
3913
3914 if (mddev->bitmap_file == NULL) {
3915 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
3916 mdname(mddev));
3917 return -EBADF;
3918 }
3919
3920 err = deny_bitmap_write_access(mddev->bitmap_file);
3921 if (err) {
3922 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
3923 mdname(mddev));
3924 fput(mddev->bitmap_file);
3925 mddev->bitmap_file = NULL;
3926 return err;
3927 }
3928 mddev->bitmap_offset = 0; /* file overrides offset */
3929 } else if (mddev->bitmap == NULL)
3930 return -ENOENT; /* cannot remove what isn't there */
3931 err = 0;
3932 if (mddev->pers) {
3933 mddev->pers->quiesce(mddev, 1);
3934 if (fd >= 0)
3935 err = bitmap_create(mddev);
3936 if (fd < 0 || err) {
3937 bitmap_destroy(mddev);
3938 fd = -1; /* make sure to put the file */
3939 }
3940 mddev->pers->quiesce(mddev, 0);
3941 }
3942 if (fd < 0) {
3943 if (mddev->bitmap_file) {
3944 restore_bitmap_write_access(mddev->bitmap_file);
3945 fput(mddev->bitmap_file);
3946 }
3947 mddev->bitmap_file = NULL;
3948 }
3949
3950 return err;
3951 }
3952
3953 /*
3954 * set_array_info is used two different ways
3955 * The original usage is when creating a new array.
3956 * In this usage, raid_disks is > 0 and it together with
3957 * level, size, not_persistent,layout,chunksize determine the
3958 * shape of the array.
3959 * This will always create an array with a type-0.90.0 superblock.
3960 * The newer usage is when assembling an array.
3961 * In this case raid_disks will be 0, and the major_version field is
3962 * use to determine which style super-blocks are to be found on the devices.
3963 * The minor and patch _version numbers are also kept incase the
3964 * super_block handler wishes to interpret them.
3965 */
3966 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
3967 {
3968
3969 if (info->raid_disks == 0) {
3970 /* just setting version number for superblock loading */
3971 if (info->major_version < 0 ||
3972 info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
3973 super_types[info->major_version].name == NULL) {
3974 /* maybe try to auto-load a module? */
3975 printk(KERN_INFO
3976 "md: superblock version %d not known\n",
3977 info->major_version);
3978 return -EINVAL;
3979 }
3980 mddev->major_version = info->major_version;
3981 mddev->minor_version = info->minor_version;
3982 mddev->patch_version = info->patch_version;
3983 return 0;
3984 }
3985 mddev->major_version = MD_MAJOR_VERSION;
3986 mddev->minor_version = MD_MINOR_VERSION;
3987 mddev->patch_version = MD_PATCHLEVEL_VERSION;
3988 mddev->ctime = get_seconds();
3989
3990 mddev->level = info->level;
3991 mddev->clevel[0] = 0;
3992 mddev->size = info->size;
3993 mddev->raid_disks = info->raid_disks;
3994 /* don't set md_minor, it is determined by which /dev/md* was
3995 * openned
3996 */
3997 if (info->state & (1<<MD_SB_CLEAN))
3998 mddev->recovery_cp = MaxSector;
3999 else
4000 mddev->recovery_cp = 0;
4001 mddev->persistent = ! info->not_persistent;
4002
4003 mddev->layout = info->layout;
4004 mddev->chunk_size = info->chunk_size;
4005
4006 mddev->max_disks = MD_SB_DISKS;
4007
4008 mddev->flags = 0;
4009 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4010
4011 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
4012 mddev->bitmap_offset = 0;
4013
4014 mddev->reshape_position = MaxSector;
4015
4016 /*
4017 * Generate a 128 bit UUID
4018 */
4019 get_random_bytes(mddev->uuid, 16);
4020
4021 mddev->new_level = mddev->level;
4022 mddev->new_chunk = mddev->chunk_size;
4023 mddev->new_layout = mddev->layout;
4024 mddev->delta_disks = 0;
4025
4026 return 0;
4027 }
4028
4029 static int update_size(mddev_t *mddev, unsigned long size)
4030 {
4031 mdk_rdev_t * rdev;
4032 int rv;
4033 struct list_head *tmp;
4034 int fit = (size == 0);
4035
4036 if (mddev->pers->resize == NULL)
4037 return -EINVAL;
4038 /* The "size" is the amount of each device that is used.
4039 * This can only make sense for arrays with redundancy.
4040 * linear and raid0 always use whatever space is available
4041 * We can only consider changing the size if no resync
4042 * or reconstruction is happening, and if the new size
4043 * is acceptable. It must fit before the sb_offset or,
4044 * if that is <data_offset, it must fit before the
4045 * size of each device.
4046 * If size is zero, we find the largest size that fits.
4047 */
4048 if (mddev->sync_thread)
4049 return -EBUSY;
4050 ITERATE_RDEV(mddev,rdev,tmp) {
4051 sector_t avail;
4052 avail = rdev->size * 2;
4053
4054 if (fit && (size == 0 || size > avail/2))
4055 size = avail/2;
4056 if (avail < ((sector_t)size << 1))
4057 return -ENOSPC;
4058 }
4059 rv = mddev->pers->resize(mddev, (sector_t)size *2);
4060 if (!rv) {
4061 struct block_device *bdev;
4062
4063 bdev = bdget_disk(mddev->gendisk, 0);
4064 if (bdev) {
4065 mutex_lock(&bdev->bd_inode->i_mutex);
4066 i_size_write(bdev->bd_inode, (loff_t)mddev->array_size << 10);
4067 mutex_unlock(&bdev->bd_inode->i_mutex);
4068 bdput(bdev);
4069 }
4070 }
4071 return rv;
4072 }
4073
4074 static int update_raid_disks(mddev_t *mddev, int raid_disks)
4075 {
4076 int rv;
4077 /* change the number of raid disks */
4078 if (mddev->pers->check_reshape == NULL)
4079 return -EINVAL;
4080 if (raid_disks <= 0 ||
4081 raid_disks >= mddev->max_disks)
4082 return -EINVAL;
4083 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
4084 return -EBUSY;
4085 mddev->delta_disks = raid_disks - mddev->raid_disks;
4086
4087 rv = mddev->pers->check_reshape(mddev);
4088 return rv;
4089 }
4090
4091
4092 /*
4093 * update_array_info is used to change the configuration of an
4094 * on-line array.
4095 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
4096 * fields in the info are checked against the array.
4097 * Any differences that cannot be handled will cause an error.
4098 * Normally, only one change can be managed at a time.
4099 */
4100 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
4101 {
4102 int rv = 0;
4103 int cnt = 0;
4104 int state = 0;
4105
4106 /* calculate expected state,ignoring low bits */
4107 if (mddev->bitmap && mddev->bitmap_offset)
4108 state |= (1 << MD_SB_BITMAP_PRESENT);
4109
4110 if (mddev->major_version != info->major_version ||
4111 mddev->minor_version != info->minor_version ||
4112 /* mddev->patch_version != info->patch_version || */
4113 mddev->ctime != info->ctime ||
4114 mddev->level != info->level ||
4115 /* mddev->layout != info->layout || */
4116 !mddev->persistent != info->not_persistent||
4117 mddev->chunk_size != info->chunk_size ||
4118 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
4119 ((state^info->state) & 0xfffffe00)
4120 )
4121 return -EINVAL;
4122 /* Check there is only one change */
4123 if (info->size >= 0 && mddev->size != info->size) cnt++;
4124 if (mddev->raid_disks != info->raid_disks) cnt++;
4125 if (mddev->layout != info->layout) cnt++;
4126 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
4127 if (cnt == 0) return 0;
4128 if (cnt > 1) return -EINVAL;
4129
4130 if (mddev->layout != info->layout) {
4131 /* Change layout
4132 * we don't need to do anything at the md level, the
4133 * personality will take care of it all.
4134 */
4135 if (mddev->pers->reconfig == NULL)
4136 return -EINVAL;
4137 else
4138 return mddev->pers->reconfig(mddev, info->layout, -1);
4139 }
4140 if (info->size >= 0 && mddev->size != info->size)
4141 rv = update_size(mddev, info->size);
4142
4143 if (mddev->raid_disks != info->raid_disks)
4144 rv = update_raid_disks(mddev, info->raid_disks);
4145
4146 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
4147 if (mddev->pers->quiesce == NULL)
4148 return -EINVAL;
4149 if (mddev->recovery || mddev->sync_thread)
4150 return -EBUSY;
4151 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
4152 /* add the bitmap */
4153 if (mddev->bitmap)
4154 return -EEXIST;
4155 if (mddev->default_bitmap_offset == 0)
4156 return -EINVAL;
4157 mddev->bitmap_offset = mddev->default_bitmap_offset;
4158 mddev->pers->quiesce(mddev, 1);
4159 rv = bitmap_create(mddev);
4160 if (rv)
4161 bitmap_destroy(mddev);
4162 mddev->pers->quiesce(mddev, 0);
4163 } else {
4164 /* remove the bitmap */
4165 if (!mddev->bitmap)
4166 return -ENOENT;
4167 if (mddev->bitmap->file)
4168 return -EINVAL;
4169 mddev->pers->quiesce(mddev, 1);
4170 bitmap_destroy(mddev);
4171 mddev->pers->quiesce(mddev, 0);
4172 mddev->bitmap_offset = 0;
4173 }
4174 }
4175 md_update_sb(mddev, 1);
4176 return rv;
4177 }
4178
4179 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
4180 {
4181 mdk_rdev_t *rdev;
4182
4183 if (mddev->pers == NULL)
4184 return -ENODEV;
4185
4186 rdev = find_rdev(mddev, dev);
4187 if (!rdev)
4188 return -ENODEV;
4189
4190 md_error(mddev, rdev);
4191 return 0;
4192 }
4193
4194 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
4195 {
4196 mddev_t *mddev = bdev->bd_disk->private_data;
4197
4198 geo->heads = 2;
4199 geo->sectors = 4;
4200 geo->cylinders = get_capacity(mddev->gendisk) / 8;
4201 return 0;
4202 }
4203
4204 static int md_ioctl(struct inode *inode, struct file *file,
4205 unsigned int cmd, unsigned long arg)
4206 {
4207 int err = 0;
4208 void __user *argp = (void __user *)arg;
4209 mddev_t *mddev = NULL;
4210
4211 if (!capable(CAP_SYS_ADMIN))
4212 return -EACCES;
4213
4214 /*
4215 * Commands dealing with the RAID driver but not any
4216 * particular array:
4217 */
4218 switch (cmd)
4219 {
4220 case RAID_VERSION:
4221 err = get_version(argp);
4222 goto done;
4223
4224 case PRINT_RAID_DEBUG:
4225 err = 0;
4226 md_print_devices();
4227 goto done;
4228
4229 #ifndef MODULE
4230 case RAID_AUTORUN:
4231 err = 0;
4232 autostart_arrays(arg);
4233 goto done;
4234 #endif
4235 default:;
4236 }
4237
4238 /*
4239 * Commands creating/starting a new array:
4240 */
4241
4242 mddev = inode->i_bdev->bd_disk->private_data;
4243
4244 if (!mddev) {
4245 BUG();
4246 goto abort;
4247 }
4248
4249 err = mddev_lock(mddev);
4250 if (err) {
4251 printk(KERN_INFO
4252 "md: ioctl lock interrupted, reason %d, cmd %d\n",
4253 err, cmd);
4254 goto abort;
4255 }
4256
4257 switch (cmd)
4258 {
4259 case SET_ARRAY_INFO:
4260 {
4261 mdu_array_info_t info;
4262 if (!arg)
4263 memset(&info, 0, sizeof(info));
4264 else if (copy_from_user(&info, argp, sizeof(info))) {
4265 err = -EFAULT;
4266 goto abort_unlock;
4267 }
4268 if (mddev->pers) {
4269 err = update_array_info(mddev, &info);
4270 if (err) {
4271 printk(KERN_WARNING "md: couldn't update"
4272 " array info. %d\n", err);
4273 goto abort_unlock;
4274 }
4275 goto done_unlock;
4276 }
4277 if (!list_empty(&mddev->disks)) {
4278 printk(KERN_WARNING
4279 "md: array %s already has disks!\n",
4280 mdname(mddev));
4281 err = -EBUSY;
4282 goto abort_unlock;
4283 }
4284 if (mddev->raid_disks) {
4285 printk(KERN_WARNING
4286 "md: array %s already initialised!\n",
4287 mdname(mddev));
4288 err = -EBUSY;
4289 goto abort_unlock;
4290 }
4291 err = set_array_info(mddev, &info);
4292 if (err) {
4293 printk(KERN_WARNING "md: couldn't set"
4294 " array info. %d\n", err);
4295 goto abort_unlock;
4296 }
4297 }
4298 goto done_unlock;
4299
4300 default:;
4301 }
4302
4303 /*
4304 * Commands querying/configuring an existing array:
4305 */
4306 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
4307 * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
4308 if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
4309 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
4310 err = -ENODEV;
4311 goto abort_unlock;
4312 }
4313
4314 /*
4315 * Commands even a read-only array can execute:
4316 */
4317 switch (cmd)
4318 {
4319 case GET_ARRAY_INFO:
4320 err = get_array_info(mddev, argp);
4321 goto done_unlock;
4322
4323 case GET_BITMAP_FILE:
4324 err = get_bitmap_file(mddev, argp);
4325 goto done_unlock;
4326
4327 case GET_DISK_INFO:
4328 err = get_disk_info(mddev, argp);
4329 goto done_unlock;
4330
4331 case RESTART_ARRAY_RW:
4332 err = restart_array(mddev);
4333 goto done_unlock;
4334
4335 case STOP_ARRAY:
4336 err = do_md_stop (mddev, 0);
4337 goto done_unlock;
4338
4339 case STOP_ARRAY_RO:
4340 err = do_md_stop (mddev, 1);
4341 goto done_unlock;
4342
4343 /*
4344 * We have a problem here : there is no easy way to give a CHS
4345 * virtual geometry. We currently pretend that we have a 2 heads
4346 * 4 sectors (with a BIG number of cylinders...). This drives
4347 * dosfs just mad... ;-)
4348 */
4349 }
4350
4351 /*
4352 * The remaining ioctls are changing the state of the
4353 * superblock, so we do not allow them on read-only arrays.
4354 * However non-MD ioctls (e.g. get-size) will still come through
4355 * here and hit the 'default' below, so only disallow
4356 * 'md' ioctls, and switch to rw mode if started auto-readonly.
4357 */
4358 if (_IOC_TYPE(cmd) == MD_MAJOR &&
4359 mddev->ro && mddev->pers) {
4360 if (mddev->ro == 2) {
4361 mddev->ro = 0;
4362 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4363 md_wakeup_thread(mddev->thread);
4364
4365 } else {
4366 err = -EROFS;
4367 goto abort_unlock;
4368 }
4369 }
4370
4371 switch (cmd)
4372 {
4373 case ADD_NEW_DISK:
4374 {
4375 mdu_disk_info_t info;
4376 if (copy_from_user(&info, argp, sizeof(info)))
4377 err = -EFAULT;
4378 else
4379 err = add_new_disk(mddev, &info);
4380 goto done_unlock;
4381 }
4382
4383 case HOT_REMOVE_DISK:
4384 err = hot_remove_disk(mddev, new_decode_dev(arg));
4385 goto done_unlock;
4386
4387 case HOT_ADD_DISK:
4388 err = hot_add_disk(mddev, new_decode_dev(arg));
4389 goto done_unlock;
4390
4391 case SET_DISK_FAULTY:
4392 err = set_disk_faulty(mddev, new_decode_dev(arg));
4393 goto done_unlock;
4394
4395 case RUN_ARRAY:
4396 err = do_md_run (mddev);
4397 goto done_unlock;
4398
4399 case SET_BITMAP_FILE:
4400 err = set_bitmap_file(mddev, (int)arg);
4401 goto done_unlock;
4402
4403 default:
4404 err = -EINVAL;
4405 goto abort_unlock;
4406 }
4407
4408 done_unlock:
4409 abort_unlock:
4410 mddev_unlock(mddev);
4411
4412 return err;
4413 done:
4414 if (err)
4415 MD_BUG();
4416 abort:
4417 return err;
4418 }
4419
4420 static int md_open(struct inode *inode, struct file *file)
4421 {
4422 /*
4423 * Succeed if we can lock the mddev, which confirms that
4424 * it isn't being stopped right now.
4425 */
4426 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4427 int err;
4428
4429 if ((err = mutex_lock_interruptible_nested(&mddev->reconfig_mutex, 1)))
4430 goto out;
4431
4432 err = 0;
4433 mddev_get(mddev);
4434 mddev_unlock(mddev);
4435
4436 check_disk_change(inode->i_bdev);
4437 out:
4438 return err;
4439 }
4440
4441 static int md_release(struct inode *inode, struct file * file)
4442 {
4443 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4444
4445 BUG_ON(!mddev);
4446 mddev_put(mddev);
4447
4448 return 0;
4449 }
4450
4451 static int md_media_changed(struct gendisk *disk)
4452 {
4453 mddev_t *mddev = disk->private_data;
4454
4455 return mddev->changed;
4456 }
4457
4458 static int md_revalidate(struct gendisk *disk)
4459 {
4460 mddev_t *mddev = disk->private_data;
4461
4462 mddev->changed = 0;
4463 return 0;
4464 }
4465 static struct block_device_operations md_fops =
4466 {
4467 .owner = THIS_MODULE,
4468 .open = md_open,
4469 .release = md_release,
4470 .ioctl = md_ioctl,
4471 .getgeo = md_getgeo,
4472 .media_changed = md_media_changed,
4473 .revalidate_disk= md_revalidate,
4474 };
4475
4476 static int md_thread(void * arg)
4477 {
4478 mdk_thread_t *thread = arg;
4479
4480 /*
4481 * md_thread is a 'system-thread', it's priority should be very
4482 * high. We avoid resource deadlocks individually in each
4483 * raid personality. (RAID5 does preallocation) We also use RR and
4484 * the very same RT priority as kswapd, thus we will never get
4485 * into a priority inversion deadlock.
4486 *
4487 * we definitely have to have equal or higher priority than
4488 * bdflush, otherwise bdflush will deadlock if there are too
4489 * many dirty RAID5 blocks.
4490 */
4491
4492 current->flags |= PF_NOFREEZE;
4493 allow_signal(SIGKILL);
4494 while (!kthread_should_stop()) {
4495
4496 /* We need to wait INTERRUPTIBLE so that
4497 * we don't add to the load-average.
4498 * That means we need to be sure no signals are
4499 * pending
4500 */
4501 if (signal_pending(current))
4502 flush_signals(current);
4503
4504 wait_event_interruptible_timeout
4505 (thread->wqueue,
4506 test_bit(THREAD_WAKEUP, &thread->flags)
4507 || kthread_should_stop(),
4508 thread->timeout);
4509
4510 clear_bit(THREAD_WAKEUP, &thread->flags);
4511
4512 thread->run(thread->mddev);
4513 }
4514
4515 return 0;
4516 }
4517
4518 void md_wakeup_thread(mdk_thread_t *thread)
4519 {
4520 if (thread) {
4521 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
4522 set_bit(THREAD_WAKEUP, &thread->flags);
4523 wake_up(&thread->wqueue);
4524 }
4525 }
4526
4527 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
4528 const char *name)
4529 {
4530 mdk_thread_t *thread;
4531
4532 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
4533 if (!thread)
4534 return NULL;
4535
4536 init_waitqueue_head(&thread->wqueue);
4537
4538 thread->run = run;
4539 thread->mddev = mddev;
4540 thread->timeout = MAX_SCHEDULE_TIMEOUT;
4541 thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
4542 if (IS_ERR(thread->tsk)) {
4543 kfree(thread);
4544 return NULL;
4545 }
4546 return thread;
4547 }
4548
4549 void md_unregister_thread(mdk_thread_t *thread)
4550 {
4551 dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
4552
4553 kthread_stop(thread->tsk);
4554 kfree(thread);
4555 }
4556
4557 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
4558 {
4559 if (!mddev) {
4560 MD_BUG();
4561 return;
4562 }
4563
4564 if (!rdev || test_bit(Faulty, &rdev->flags))
4565 return;
4566 /*
4567 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
4568 mdname(mddev),
4569 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
4570 __builtin_return_address(0),__builtin_return_address(1),
4571 __builtin_return_address(2),__builtin_return_address(3));
4572 */
4573 if (!mddev->pers)
4574 return;
4575 if (!mddev->pers->error_handler)
4576 return;
4577 mddev->pers->error_handler(mddev,rdev);
4578 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4579 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4580 md_wakeup_thread(mddev->thread);
4581 md_new_event_inintr(mddev);
4582 }
4583
4584 /* seq_file implementation /proc/mdstat */
4585
4586 static void status_unused(struct seq_file *seq)
4587 {
4588 int i = 0;
4589 mdk_rdev_t *rdev;
4590 struct list_head *tmp;
4591
4592 seq_printf(seq, "unused devices: ");
4593
4594 ITERATE_RDEV_PENDING(rdev,tmp) {
4595 char b[BDEVNAME_SIZE];
4596 i++;
4597 seq_printf(seq, "%s ",
4598 bdevname(rdev->bdev,b));
4599 }
4600 if (!i)
4601 seq_printf(seq, "<none>");
4602
4603 seq_printf(seq, "\n");
4604 }
4605
4606
4607 static void status_resync(struct seq_file *seq, mddev_t * mddev)
4608 {
4609 sector_t max_blocks, resync, res;
4610 unsigned long dt, db, rt;
4611 int scale;
4612 unsigned int per_milli;
4613
4614 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
4615
4616 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4617 max_blocks = mddev->resync_max_sectors >> 1;
4618 else
4619 max_blocks = mddev->size;
4620
4621 /*
4622 * Should not happen.
4623 */
4624 if (!max_blocks) {
4625 MD_BUG();
4626 return;
4627 }
4628 /* Pick 'scale' such that (resync>>scale)*1000 will fit
4629 * in a sector_t, and (max_blocks>>scale) will fit in a
4630 * u32, as those are the requirements for sector_div.
4631 * Thus 'scale' must be at least 10
4632 */
4633 scale = 10;
4634 if (sizeof(sector_t) > sizeof(unsigned long)) {
4635 while ( max_blocks/2 > (1ULL<<(scale+32)))
4636 scale++;
4637 }
4638 res = (resync>>scale)*1000;
4639 sector_div(res, (u32)((max_blocks>>scale)+1));
4640
4641 per_milli = res;
4642 {
4643 int i, x = per_milli/50, y = 20-x;
4644 seq_printf(seq, "[");
4645 for (i = 0; i < x; i++)
4646 seq_printf(seq, "=");
4647 seq_printf(seq, ">");
4648 for (i = 0; i < y; i++)
4649 seq_printf(seq, ".");
4650 seq_printf(seq, "] ");
4651 }
4652 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
4653 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
4654 "reshape" :
4655 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
4656 "check" :
4657 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
4658 "resync" : "recovery"))),
4659 per_milli/10, per_milli % 10,
4660 (unsigned long long) resync,
4661 (unsigned long long) max_blocks);
4662
4663 /*
4664 * We do not want to overflow, so the order of operands and
4665 * the * 100 / 100 trick are important. We do a +1 to be
4666 * safe against division by zero. We only estimate anyway.
4667 *
4668 * dt: time from mark until now
4669 * db: blocks written from mark until now
4670 * rt: remaining time
4671 */
4672 dt = ((jiffies - mddev->resync_mark) / HZ);
4673 if (!dt) dt++;
4674 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
4675 - mddev->resync_mark_cnt;
4676 rt = (dt * ((unsigned long)(max_blocks-resync) / (db/2/100+1)))/100;
4677
4678 seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
4679
4680 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
4681 }
4682
4683 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
4684 {
4685 struct list_head *tmp;
4686 loff_t l = *pos;
4687 mddev_t *mddev;
4688
4689 if (l >= 0x10000)
4690 return NULL;
4691 if (!l--)
4692 /* header */
4693 return (void*)1;
4694
4695 spin_lock(&all_mddevs_lock);
4696 list_for_each(tmp,&all_mddevs)
4697 if (!l--) {
4698 mddev = list_entry(tmp, mddev_t, all_mddevs);
4699 mddev_get(mddev);
4700 spin_unlock(&all_mddevs_lock);
4701 return mddev;
4702 }
4703 spin_unlock(&all_mddevs_lock);
4704 if (!l--)
4705 return (void*)2;/* tail */
4706 return NULL;
4707 }
4708
4709 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4710 {
4711 struct list_head *tmp;
4712 mddev_t *next_mddev, *mddev = v;
4713
4714 ++*pos;
4715 if (v == (void*)2)
4716 return NULL;
4717
4718 spin_lock(&all_mddevs_lock);
4719 if (v == (void*)1)
4720 tmp = all_mddevs.next;
4721 else
4722 tmp = mddev->all_mddevs.next;
4723 if (tmp != &all_mddevs)
4724 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
4725 else {
4726 next_mddev = (void*)2;
4727 *pos = 0x10000;
4728 }
4729 spin_unlock(&all_mddevs_lock);
4730
4731 if (v != (void*)1)
4732 mddev_put(mddev);
4733 return next_mddev;
4734
4735 }
4736
4737 static void md_seq_stop(struct seq_file *seq, void *v)
4738 {
4739 mddev_t *mddev = v;
4740
4741 if (mddev && v != (void*)1 && v != (void*)2)
4742 mddev_put(mddev);
4743 }
4744
4745 struct mdstat_info {
4746 int event;
4747 };
4748
4749 static int md_seq_show(struct seq_file *seq, void *v)
4750 {
4751 mddev_t *mddev = v;
4752 sector_t size;
4753 struct list_head *tmp2;
4754 mdk_rdev_t *rdev;
4755 struct mdstat_info *mi = seq->private;
4756 struct bitmap *bitmap;
4757
4758 if (v == (void*)1) {
4759 struct mdk_personality *pers;
4760 seq_printf(seq, "Personalities : ");
4761 spin_lock(&pers_lock);
4762 list_for_each_entry(pers, &pers_list, list)
4763 seq_printf(seq, "[%s] ", pers->name);
4764
4765 spin_unlock(&pers_lock);
4766 seq_printf(seq, "\n");
4767 mi->event = atomic_read(&md_event_count);
4768 return 0;
4769 }
4770 if (v == (void*)2) {
4771 status_unused(seq);
4772 return 0;
4773 }
4774
4775 if (mddev_lock(mddev) < 0)
4776 return -EINTR;
4777
4778 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
4779 seq_printf(seq, "%s : %sactive", mdname(mddev),
4780 mddev->pers ? "" : "in");
4781 if (mddev->pers) {
4782 if (mddev->ro==1)
4783 seq_printf(seq, " (read-only)");
4784 if (mddev->ro==2)
4785 seq_printf(seq, "(auto-read-only)");
4786 seq_printf(seq, " %s", mddev->pers->name);
4787 }
4788
4789 size = 0;
4790 ITERATE_RDEV(mddev,rdev,tmp2) {
4791 char b[BDEVNAME_SIZE];
4792 seq_printf(seq, " %s[%d]",
4793 bdevname(rdev->bdev,b), rdev->desc_nr);
4794 if (test_bit(WriteMostly, &rdev->flags))
4795 seq_printf(seq, "(W)");
4796 if (test_bit(Faulty, &rdev->flags)) {
4797 seq_printf(seq, "(F)");
4798 continue;
4799 } else if (rdev->raid_disk < 0)
4800 seq_printf(seq, "(S)"); /* spare */
4801 size += rdev->size;
4802 }
4803
4804 if (!list_empty(&mddev->disks)) {
4805 if (mddev->pers)
4806 seq_printf(seq, "\n %llu blocks",
4807 (unsigned long long)mddev->array_size);
4808 else
4809 seq_printf(seq, "\n %llu blocks",
4810 (unsigned long long)size);
4811 }
4812 if (mddev->persistent) {
4813 if (mddev->major_version != 0 ||
4814 mddev->minor_version != 90) {
4815 seq_printf(seq," super %d.%d",
4816 mddev->major_version,
4817 mddev->minor_version);
4818 }
4819 } else
4820 seq_printf(seq, " super non-persistent");
4821
4822 if (mddev->pers) {
4823 mddev->pers->status (seq, mddev);
4824 seq_printf(seq, "\n ");
4825 if (mddev->pers->sync_request) {
4826 if (mddev->curr_resync > 2) {
4827 status_resync (seq, mddev);
4828 seq_printf(seq, "\n ");
4829 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
4830 seq_printf(seq, "\tresync=DELAYED\n ");
4831 else if (mddev->recovery_cp < MaxSector)
4832 seq_printf(seq, "\tresync=PENDING\n ");
4833 }
4834 } else
4835 seq_printf(seq, "\n ");
4836
4837 if ((bitmap = mddev->bitmap)) {
4838 unsigned long chunk_kb;
4839 unsigned long flags;
4840 spin_lock_irqsave(&bitmap->lock, flags);
4841 chunk_kb = bitmap->chunksize >> 10;
4842 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
4843 "%lu%s chunk",
4844 bitmap->pages - bitmap->missing_pages,
4845 bitmap->pages,
4846 (bitmap->pages - bitmap->missing_pages)
4847 << (PAGE_SHIFT - 10),
4848 chunk_kb ? chunk_kb : bitmap->chunksize,
4849 chunk_kb ? "KB" : "B");
4850 if (bitmap->file) {
4851 seq_printf(seq, ", file: ");
4852 seq_path(seq, bitmap->file->f_path.mnt,
4853 bitmap->file->f_path.dentry," \t\n");
4854 }
4855
4856 seq_printf(seq, "\n");
4857 spin_unlock_irqrestore(&bitmap->lock, flags);
4858 }
4859
4860 seq_printf(seq, "\n");
4861 }
4862 mddev_unlock(mddev);
4863
4864 return 0;
4865 }
4866
4867 static struct seq_operations md_seq_ops = {
4868 .start = md_seq_start,
4869 .next = md_seq_next,
4870 .stop = md_seq_stop,
4871 .show = md_seq_show,
4872 };
4873
4874 static int md_seq_open(struct inode *inode, struct file *file)
4875 {
4876 int error;
4877 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
4878 if (mi == NULL)
4879 return -ENOMEM;
4880
4881 error = seq_open(file, &md_seq_ops);
4882 if (error)
4883 kfree(mi);
4884 else {
4885 struct seq_file *p = file->private_data;
4886 p->private = mi;
4887 mi->event = atomic_read(&md_event_count);
4888 }
4889 return error;
4890 }
4891
4892 static int md_seq_release(struct inode *inode, struct file *file)
4893 {
4894 struct seq_file *m = file->private_data;
4895 struct mdstat_info *mi = m->private;
4896 m->private = NULL;
4897 kfree(mi);
4898 return seq_release(inode, file);
4899 }
4900
4901 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
4902 {
4903 struct seq_file *m = filp->private_data;
4904 struct mdstat_info *mi = m->private;
4905 int mask;
4906
4907 poll_wait(filp, &md_event_waiters, wait);
4908
4909 /* always allow read */
4910 mask = POLLIN | POLLRDNORM;
4911
4912 if (mi->event != atomic_read(&md_event_count))
4913 mask |= POLLERR | POLLPRI;
4914 return mask;
4915 }
4916
4917 static struct file_operations md_seq_fops = {
4918 .owner = THIS_MODULE,
4919 .open = md_seq_open,
4920 .read = seq_read,
4921 .llseek = seq_lseek,
4922 .release = md_seq_release,
4923 .poll = mdstat_poll,
4924 };
4925
4926 int register_md_personality(struct mdk_personality *p)
4927 {
4928 spin_lock(&pers_lock);
4929 list_add_tail(&p->list, &pers_list);
4930 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
4931 spin_unlock(&pers_lock);
4932 return 0;
4933 }
4934
4935 int unregister_md_personality(struct mdk_personality *p)
4936 {
4937 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
4938 spin_lock(&pers_lock);
4939 list_del_init(&p->list);
4940 spin_unlock(&pers_lock);
4941 return 0;
4942 }
4943
4944 static int is_mddev_idle(mddev_t *mddev)
4945 {
4946 mdk_rdev_t * rdev;
4947 struct list_head *tmp;
4948 int idle;
4949 unsigned long curr_events;
4950
4951 idle = 1;
4952 ITERATE_RDEV(mddev,rdev,tmp) {
4953 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
4954 curr_events = disk_stat_read(disk, sectors[0]) +
4955 disk_stat_read(disk, sectors[1]) -
4956 atomic_read(&disk->sync_io);
4957 /* The difference between curr_events and last_events
4958 * will be affected by any new non-sync IO (making
4959 * curr_events bigger) and any difference in the amount of
4960 * in-flight syncio (making current_events bigger or smaller)
4961 * The amount in-flight is currently limited to
4962 * 32*64K in raid1/10 and 256*PAGE_SIZE in raid5/6
4963 * which is at most 4096 sectors.
4964 * These numbers are fairly fragile and should be made
4965 * more robust, probably by enforcing the
4966 * 'window size' that md_do_sync sort-of uses.
4967 *
4968 * Note: the following is an unsigned comparison.
4969 */
4970 if ((curr_events - rdev->last_events + 4096) > 8192) {
4971 rdev->last_events = curr_events;
4972 idle = 0;
4973 }
4974 }
4975 return idle;
4976 }
4977
4978 void md_done_sync(mddev_t *mddev, int blocks, int ok)
4979 {
4980 /* another "blocks" (512byte) blocks have been synced */
4981 atomic_sub(blocks, &mddev->recovery_active);
4982 wake_up(&mddev->recovery_wait);
4983 if (!ok) {
4984 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
4985 md_wakeup_thread(mddev->thread);
4986 // stop recovery, signal do_sync ....
4987 }
4988 }
4989
4990
4991 /* md_write_start(mddev, bi)
4992 * If we need to update some array metadata (e.g. 'active' flag
4993 * in superblock) before writing, schedule a superblock update
4994 * and wait for it to complete.
4995 */
4996 void md_write_start(mddev_t *mddev, struct bio *bi)
4997 {
4998 if (bio_data_dir(bi) != WRITE)
4999 return;
5000
5001 BUG_ON(mddev->ro == 1);
5002 if (mddev->ro == 2) {
5003 /* need to switch to read/write */
5004 mddev->ro = 0;
5005 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5006 md_wakeup_thread(mddev->thread);
5007 }
5008 atomic_inc(&mddev->writes_pending);
5009 if (mddev->in_sync) {
5010 spin_lock_irq(&mddev->write_lock);
5011 if (mddev->in_sync) {
5012 mddev->in_sync = 0;
5013 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5014 md_wakeup_thread(mddev->thread);
5015 }
5016 spin_unlock_irq(&mddev->write_lock);
5017 }
5018 wait_event(mddev->sb_wait, mddev->flags==0);
5019 }
5020
5021 void md_write_end(mddev_t *mddev)
5022 {
5023 if (atomic_dec_and_test(&mddev->writes_pending)) {
5024 if (mddev->safemode == 2)
5025 md_wakeup_thread(mddev->thread);
5026 else if (mddev->safemode_delay)
5027 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
5028 }
5029 }
5030
5031 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
5032
5033 #define SYNC_MARKS 10
5034 #define SYNC_MARK_STEP (3*HZ)
5035 void md_do_sync(mddev_t *mddev)
5036 {
5037 mddev_t *mddev2;
5038 unsigned int currspeed = 0,
5039 window;
5040 sector_t max_sectors,j, io_sectors;
5041 unsigned long mark[SYNC_MARKS];
5042 sector_t mark_cnt[SYNC_MARKS];
5043 int last_mark,m;
5044 struct list_head *tmp;
5045 sector_t last_check;
5046 int skipped = 0;
5047 struct list_head *rtmp;
5048 mdk_rdev_t *rdev;
5049 char *desc;
5050
5051 /* just incase thread restarts... */
5052 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
5053 return;
5054 if (mddev->ro) /* never try to sync a read-only array */
5055 return;
5056
5057 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5058 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
5059 desc = "data-check";
5060 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5061 desc = "requested-resync";
5062 else
5063 desc = "resync";
5064 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5065 desc = "reshape";
5066 else
5067 desc = "recovery";
5068
5069 /* we overload curr_resync somewhat here.
5070 * 0 == not engaged in resync at all
5071 * 2 == checking that there is no conflict with another sync
5072 * 1 == like 2, but have yielded to allow conflicting resync to
5073 * commense
5074 * other == active in resync - this many blocks
5075 *
5076 * Before starting a resync we must have set curr_resync to
5077 * 2, and then checked that every "conflicting" array has curr_resync
5078 * less than ours. When we find one that is the same or higher
5079 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
5080 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
5081 * This will mean we have to start checking from the beginning again.
5082 *
5083 */
5084
5085 do {
5086 mddev->curr_resync = 2;
5087
5088 try_again:
5089 if (kthread_should_stop()) {
5090 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5091 goto skip;
5092 }
5093 ITERATE_MDDEV(mddev2,tmp) {
5094 if (mddev2 == mddev)
5095 continue;
5096 if (mddev2->curr_resync &&
5097 match_mddev_units(mddev,mddev2)) {
5098 DEFINE_WAIT(wq);
5099 if (mddev < mddev2 && mddev->curr_resync == 2) {
5100 /* arbitrarily yield */
5101 mddev->curr_resync = 1;
5102 wake_up(&resync_wait);
5103 }
5104 if (mddev > mddev2 && mddev->curr_resync == 1)
5105 /* no need to wait here, we can wait the next
5106 * time 'round when curr_resync == 2
5107 */
5108 continue;
5109 prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
5110 if (!kthread_should_stop() &&
5111 mddev2->curr_resync >= mddev->curr_resync) {
5112 printk(KERN_INFO "md: delaying %s of %s"
5113 " until %s has finished (they"
5114 " share one or more physical units)\n",
5115 desc, mdname(mddev), mdname(mddev2));
5116 mddev_put(mddev2);
5117 schedule();
5118 finish_wait(&resync_wait, &wq);
5119 goto try_again;
5120 }
5121 finish_wait(&resync_wait, &wq);
5122 }
5123 }
5124 } while (mddev->curr_resync < 2);
5125
5126 j = 0;
5127 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5128 /* resync follows the size requested by the personality,
5129 * which defaults to physical size, but can be virtual size
5130 */
5131 max_sectors = mddev->resync_max_sectors;
5132 mddev->resync_mismatches = 0;
5133 /* we don't use the checkpoint if there's a bitmap */
5134 if (!mddev->bitmap &&
5135 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5136 j = mddev->recovery_cp;
5137 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5138 max_sectors = mddev->size << 1;
5139 else {
5140 /* recovery follows the physical size of devices */
5141 max_sectors = mddev->size << 1;
5142 j = MaxSector;
5143 ITERATE_RDEV(mddev,rdev,rtmp)
5144 if (rdev->raid_disk >= 0 &&
5145 !test_bit(Faulty, &rdev->flags) &&
5146 !test_bit(In_sync, &rdev->flags) &&
5147 rdev->recovery_offset < j)
5148 j = rdev->recovery_offset;
5149 }
5150
5151 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
5152 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
5153 " %d KB/sec/disk.\n", speed_min(mddev));
5154 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
5155 "(but not more than %d KB/sec) for %s.\n",
5156 speed_max(mddev), desc);
5157
5158 is_mddev_idle(mddev); /* this also initializes IO event counters */
5159
5160 io_sectors = 0;
5161 for (m = 0; m < SYNC_MARKS; m++) {
5162 mark[m] = jiffies;
5163 mark_cnt[m] = io_sectors;
5164 }
5165 last_mark = 0;
5166 mddev->resync_mark = mark[last_mark];
5167 mddev->resync_mark_cnt = mark_cnt[last_mark];
5168
5169 /*
5170 * Tune reconstruction:
5171 */
5172 window = 32*(PAGE_SIZE/512);
5173 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
5174 window/2,(unsigned long long) max_sectors/2);
5175
5176 atomic_set(&mddev->recovery_active, 0);
5177 init_waitqueue_head(&mddev->recovery_wait);
5178 last_check = 0;
5179
5180 if (j>2) {
5181 printk(KERN_INFO
5182 "md: resuming %s of %s from checkpoint.\n",
5183 desc, mdname(mddev));
5184 mddev->curr_resync = j;
5185 }
5186
5187 while (j < max_sectors) {
5188 sector_t sectors;
5189
5190 skipped = 0;
5191 sectors = mddev->pers->sync_request(mddev, j, &skipped,
5192 currspeed < speed_min(mddev));
5193 if (sectors == 0) {
5194 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
5195 goto out;
5196 }
5197
5198 if (!skipped) { /* actual IO requested */
5199 io_sectors += sectors;
5200 atomic_add(sectors, &mddev->recovery_active);
5201 }
5202
5203 j += sectors;
5204 if (j>1) mddev->curr_resync = j;
5205 mddev->curr_mark_cnt = io_sectors;
5206 if (last_check == 0)
5207 /* this is the earliers that rebuilt will be
5208 * visible in /proc/mdstat
5209 */
5210 md_new_event(mddev);
5211
5212 if (last_check + window > io_sectors || j == max_sectors)
5213 continue;
5214
5215 last_check = io_sectors;
5216
5217 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
5218 test_bit(MD_RECOVERY_ERR, &mddev->recovery))
5219 break;
5220
5221 repeat:
5222 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
5223 /* step marks */
5224 int next = (last_mark+1) % SYNC_MARKS;
5225
5226 mddev->resync_mark = mark[next];
5227 mddev->resync_mark_cnt = mark_cnt[next];
5228 mark[next] = jiffies;
5229 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
5230 last_mark = next;
5231 }
5232
5233
5234 if (kthread_should_stop()) {
5235 /*
5236 * got a signal, exit.
5237 */
5238 printk(KERN_INFO
5239 "md: md_do_sync() got signal ... exiting\n");
5240 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5241 goto out;
5242 }
5243
5244 /*
5245 * this loop exits only if either when we are slower than
5246 * the 'hard' speed limit, or the system was IO-idle for
5247 * a jiffy.
5248 * the system might be non-idle CPU-wise, but we only care
5249 * about not overloading the IO subsystem. (things like an
5250 * e2fsck being done on the RAID array should execute fast)
5251 */
5252 mddev->queue->unplug_fn(mddev->queue);
5253 cond_resched();
5254
5255 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
5256 /((jiffies-mddev->resync_mark)/HZ +1) +1;
5257
5258 if (currspeed > speed_min(mddev)) {
5259 if ((currspeed > speed_max(mddev)) ||
5260 !is_mddev_idle(mddev)) {
5261 msleep(500);
5262 goto repeat;
5263 }
5264 }
5265 }
5266 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
5267 /*
5268 * this also signals 'finished resyncing' to md_stop
5269 */
5270 out:
5271 mddev->queue->unplug_fn(mddev->queue);
5272
5273 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
5274
5275 /* tell personality that we are finished */
5276 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
5277
5278 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
5279 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
5280 mddev->curr_resync > 2) {
5281 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5282 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5283 if (mddev->curr_resync >= mddev->recovery_cp) {
5284 printk(KERN_INFO
5285 "md: checkpointing %s of %s.\n",
5286 desc, mdname(mddev));
5287 mddev->recovery_cp = mddev->curr_resync;
5288 }
5289 } else
5290 mddev->recovery_cp = MaxSector;
5291 } else {
5292 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5293 mddev->curr_resync = MaxSector;
5294 ITERATE_RDEV(mddev,rdev,rtmp)
5295 if (rdev->raid_disk >= 0 &&
5296 !test_bit(Faulty, &rdev->flags) &&
5297 !test_bit(In_sync, &rdev->flags) &&
5298 rdev->recovery_offset < mddev->curr_resync)
5299 rdev->recovery_offset = mddev->curr_resync;
5300 }
5301 }
5302 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5303
5304 skip:
5305 mddev->curr_resync = 0;
5306 wake_up(&resync_wait);
5307 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
5308 md_wakeup_thread(mddev->thread);
5309 }
5310 EXPORT_SYMBOL_GPL(md_do_sync);
5311
5312
5313 /*
5314 * This routine is regularly called by all per-raid-array threads to
5315 * deal with generic issues like resync and super-block update.
5316 * Raid personalities that don't have a thread (linear/raid0) do not
5317 * need this as they never do any recovery or update the superblock.
5318 *
5319 * It does not do any resync itself, but rather "forks" off other threads
5320 * to do that as needed.
5321 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
5322 * "->recovery" and create a thread at ->sync_thread.
5323 * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
5324 * and wakeups up this thread which will reap the thread and finish up.
5325 * This thread also removes any faulty devices (with nr_pending == 0).
5326 *
5327 * The overall approach is:
5328 * 1/ if the superblock needs updating, update it.
5329 * 2/ If a recovery thread is running, don't do anything else.
5330 * 3/ If recovery has finished, clean up, possibly marking spares active.
5331 * 4/ If there are any faulty devices, remove them.
5332 * 5/ If array is degraded, try to add spares devices
5333 * 6/ If array has spares or is not in-sync, start a resync thread.
5334 */
5335 void md_check_recovery(mddev_t *mddev)
5336 {
5337 mdk_rdev_t *rdev;
5338 struct list_head *rtmp;
5339
5340
5341 if (mddev->bitmap)
5342 bitmap_daemon_work(mddev->bitmap);
5343
5344 if (mddev->ro)
5345 return;
5346
5347 if (signal_pending(current)) {
5348 if (mddev->pers->sync_request) {
5349 printk(KERN_INFO "md: %s in immediate safe mode\n",
5350 mdname(mddev));
5351 mddev->safemode = 2;
5352 }
5353 flush_signals(current);
5354 }
5355
5356 if ( ! (
5357 mddev->flags ||
5358 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
5359 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
5360 (mddev->safemode == 1) ||
5361 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
5362 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
5363 ))
5364 return;
5365
5366 if (mddev_trylock(mddev)) {
5367 int spares =0;
5368
5369 spin_lock_irq(&mddev->write_lock);
5370 if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
5371 !mddev->in_sync && mddev->recovery_cp == MaxSector) {
5372 mddev->in_sync = 1;
5373 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
5374 }
5375 if (mddev->safemode == 1)
5376 mddev->safemode = 0;
5377 spin_unlock_irq(&mddev->write_lock);
5378
5379 if (mddev->flags)
5380 md_update_sb(mddev, 0);
5381
5382
5383 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
5384 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
5385 /* resync/recovery still happening */
5386 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5387 goto unlock;
5388 }
5389 if (mddev->sync_thread) {
5390 /* resync has finished, collect result */
5391 md_unregister_thread(mddev->sync_thread);
5392 mddev->sync_thread = NULL;
5393 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
5394 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5395 /* success...*/
5396 /* activate any spares */
5397 mddev->pers->spare_active(mddev);
5398 }
5399 md_update_sb(mddev, 1);
5400
5401 /* if array is no-longer degraded, then any saved_raid_disk
5402 * information must be scrapped
5403 */
5404 if (!mddev->degraded)
5405 ITERATE_RDEV(mddev,rdev,rtmp)
5406 rdev->saved_raid_disk = -1;
5407
5408 mddev->recovery = 0;
5409 /* flag recovery needed just to double check */
5410 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5411 md_new_event(mddev);
5412 goto unlock;
5413 }
5414 /* Clear some bits that don't mean anything, but
5415 * might be left set
5416 */
5417 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5418 clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
5419 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
5420 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
5421
5422 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
5423 goto unlock;
5424 /* no recovery is running.
5425 * remove any failed drives, then
5426 * add spares if possible.
5427 * Spare are also removed and re-added, to allow
5428 * the personality to fail the re-add.
5429 */
5430 ITERATE_RDEV(mddev,rdev,rtmp)
5431 if (rdev->raid_disk >= 0 &&
5432 (test_bit(Faulty, &rdev->flags) || ! test_bit(In_sync, &rdev->flags)) &&
5433 atomic_read(&rdev->nr_pending)==0) {
5434 if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0) {
5435 char nm[20];
5436 sprintf(nm,"rd%d", rdev->raid_disk);
5437 sysfs_remove_link(&mddev->kobj, nm);
5438 rdev->raid_disk = -1;
5439 }
5440 }
5441
5442 if (mddev->degraded) {
5443 ITERATE_RDEV(mddev,rdev,rtmp)
5444 if (rdev->raid_disk < 0
5445 && !test_bit(Faulty, &rdev->flags)) {
5446 rdev->recovery_offset = 0;
5447 if (mddev->pers->hot_add_disk(mddev,rdev)) {
5448 char nm[20];
5449 sprintf(nm, "rd%d", rdev->raid_disk);
5450 sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
5451 spares++;
5452 md_new_event(mddev);
5453 } else
5454 break;
5455 }
5456 }
5457
5458 if (spares) {
5459 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5460 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5461 } else if (mddev->recovery_cp < MaxSector) {
5462 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5463 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
5464 /* nothing to be done ... */
5465 goto unlock;
5466
5467 if (mddev->pers->sync_request) {
5468 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5469 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
5470 /* We are adding a device or devices to an array
5471 * which has the bitmap stored on all devices.
5472 * So make sure all bitmap pages get written
5473 */
5474 bitmap_write_all(mddev->bitmap);
5475 }
5476 mddev->sync_thread = md_register_thread(md_do_sync,
5477 mddev,
5478 "%s_resync");
5479 if (!mddev->sync_thread) {
5480 printk(KERN_ERR "%s: could not start resync"
5481 " thread...\n",
5482 mdname(mddev));
5483 /* leave the spares where they are, it shouldn't hurt */
5484 mddev->recovery = 0;
5485 } else
5486 md_wakeup_thread(mddev->sync_thread);
5487 md_new_event(mddev);
5488 }
5489 unlock:
5490 mddev_unlock(mddev);
5491 }
5492 }
5493
5494 static int md_notify_reboot(struct notifier_block *this,
5495 unsigned long code, void *x)
5496 {
5497 struct list_head *tmp;
5498 mddev_t *mddev;
5499
5500 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
5501
5502 printk(KERN_INFO "md: stopping all md devices.\n");
5503
5504 ITERATE_MDDEV(mddev,tmp)
5505 if (mddev_trylock(mddev)) {
5506 do_md_stop (mddev, 1);
5507 mddev_unlock(mddev);
5508 }
5509 /*
5510 * certain more exotic SCSI devices are known to be
5511 * volatile wrt too early system reboots. While the
5512 * right place to handle this issue is the given
5513 * driver, we do want to have a safe RAID driver ...
5514 */
5515 mdelay(1000*1);
5516 }
5517 return NOTIFY_DONE;
5518 }
5519
5520 static struct notifier_block md_notifier = {
5521 .notifier_call = md_notify_reboot,
5522 .next = NULL,
5523 .priority = INT_MAX, /* before any real devices */
5524 };
5525
5526 static void md_geninit(void)
5527 {
5528 struct proc_dir_entry *p;
5529
5530 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
5531
5532 p = create_proc_entry("mdstat", S_IRUGO, NULL);
5533 if (p)
5534 p->proc_fops = &md_seq_fops;
5535 }
5536
5537 static int __init md_init(void)
5538 {
5539 if (register_blkdev(MAJOR_NR, "md"))
5540 return -1;
5541 if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
5542 unregister_blkdev(MAJOR_NR, "md");
5543 return -1;
5544 }
5545 blk_register_region(MKDEV(MAJOR_NR, 0), 1UL<<MINORBITS, THIS_MODULE,
5546 md_probe, NULL, NULL);
5547 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
5548 md_probe, NULL, NULL);
5549
5550 register_reboot_notifier(&md_notifier);
5551 raid_table_header = register_sysctl_table(raid_root_table, 1);
5552
5553 md_geninit();
5554 return (0);
5555 }
5556
5557
5558 #ifndef MODULE
5559
5560 /*
5561 * Searches all registered partitions for autorun RAID arrays
5562 * at boot time.
5563 */
5564 static dev_t detected_devices[128];
5565 static int dev_cnt;
5566
5567 void md_autodetect_dev(dev_t dev)
5568 {
5569 if (dev_cnt >= 0 && dev_cnt < 127)
5570 detected_devices[dev_cnt++] = dev;
5571 }
5572
5573
5574 static void autostart_arrays(int part)
5575 {
5576 mdk_rdev_t *rdev;
5577 int i;
5578
5579 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
5580
5581 for (i = 0; i < dev_cnt; i++) {
5582 dev_t dev = detected_devices[i];
5583
5584 rdev = md_import_device(dev,0, 0);
5585 if (IS_ERR(rdev))
5586 continue;
5587
5588 if (test_bit(Faulty, &rdev->flags)) {
5589 MD_BUG();
5590 continue;
5591 }
5592 list_add(&rdev->same_set, &pending_raid_disks);
5593 }
5594 dev_cnt = 0;
5595
5596 autorun_devices(part);
5597 }
5598
5599 #endif /* !MODULE */
5600
5601 static __exit void md_exit(void)
5602 {
5603 mddev_t *mddev;
5604 struct list_head *tmp;
5605
5606 blk_unregister_region(MKDEV(MAJOR_NR,0), 1U << MINORBITS);
5607 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
5608
5609 unregister_blkdev(MAJOR_NR,"md");
5610 unregister_blkdev(mdp_major, "mdp");
5611 unregister_reboot_notifier(&md_notifier);
5612 unregister_sysctl_table(raid_table_header);
5613 remove_proc_entry("mdstat", NULL);
5614 ITERATE_MDDEV(mddev,tmp) {
5615 struct gendisk *disk = mddev->gendisk;
5616 if (!disk)
5617 continue;
5618 export_array(mddev);
5619 del_gendisk(disk);
5620 put_disk(disk);
5621 mddev->gendisk = NULL;
5622 mddev_put(mddev);
5623 }
5624 }
5625
5626 module_init(md_init)
5627 module_exit(md_exit)
5628
5629 static int get_ro(char *buffer, struct kernel_param *kp)
5630 {
5631 return sprintf(buffer, "%d", start_readonly);
5632 }
5633 static int set_ro(const char *val, struct kernel_param *kp)
5634 {
5635 char *e;
5636 int num = simple_strtoul(val, &e, 10);
5637 if (*val && (*e == '\0' || *e == '\n')) {
5638 start_readonly = num;
5639 return 0;
5640 }
5641 return -EINVAL;
5642 }
5643
5644 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
5645 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
5646
5647
5648 EXPORT_SYMBOL(register_md_personality);
5649 EXPORT_SYMBOL(unregister_md_personality);
5650 EXPORT_SYMBOL(md_error);
5651 EXPORT_SYMBOL(md_done_sync);
5652 EXPORT_SYMBOL(md_write_start);
5653 EXPORT_SYMBOL(md_write_end);
5654 EXPORT_SYMBOL(md_register_thread);
5655 EXPORT_SYMBOL(md_unregister_thread);
5656 EXPORT_SYMBOL(md_wakeup_thread);
5657 EXPORT_SYMBOL(md_check_recovery);
5658 MODULE_LICENSE("GPL");
5659 MODULE_ALIAS("md");
5660 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
This page took 0.140374 seconds and 6 git commands to generate.