Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[deliverable/linux.git] / drivers / md / raid1.c
1 /*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43
44 /*
45 * Number of guaranteed r1bios in case of extreme VM load:
46 */
47 #define NR_RAID1_BIOS 256
48
49 /* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53 */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
58 */
59 #define IO_MADE_GOOD ((struct bio *)2)
60
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
63 /* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
65 * for writeback.
66 */
67 static int max_queued_requests = 1024;
68
69 static void allow_barrier(struct r1conf *conf);
70 static void lower_barrier(struct r1conf *conf);
71
72 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
73 {
74 struct pool_info *pi = data;
75 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
76
77 /* allocate a r1bio with room for raid_disks entries in the bios array */
78 return kzalloc(size, gfp_flags);
79 }
80
81 static void r1bio_pool_free(void *r1_bio, void *data)
82 {
83 kfree(r1_bio);
84 }
85
86 #define RESYNC_BLOCK_SIZE (64*1024)
87 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
88 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
89 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
90 #define RESYNC_WINDOW (2048*1024)
91
92 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
93 {
94 struct pool_info *pi = data;
95 struct page *page;
96 struct r1bio *r1_bio;
97 struct bio *bio;
98 int i, j;
99
100 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
101 if (!r1_bio)
102 return NULL;
103
104 /*
105 * Allocate bios : 1 for reading, n-1 for writing
106 */
107 for (j = pi->raid_disks ; j-- ; ) {
108 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
109 if (!bio)
110 goto out_free_bio;
111 r1_bio->bios[j] = bio;
112 }
113 /*
114 * Allocate RESYNC_PAGES data pages and attach them to
115 * the first bio.
116 * If this is a user-requested check/repair, allocate
117 * RESYNC_PAGES for each bio.
118 */
119 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
120 j = pi->raid_disks;
121 else
122 j = 1;
123 while(j--) {
124 bio = r1_bio->bios[j];
125 for (i = 0; i < RESYNC_PAGES; i++) {
126 page = alloc_page(gfp_flags);
127 if (unlikely(!page))
128 goto out_free_pages;
129
130 bio->bi_io_vec[i].bv_page = page;
131 bio->bi_vcnt = i+1;
132 }
133 }
134 /* If not user-requests, copy the page pointers to all bios */
135 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
136 for (i=0; i<RESYNC_PAGES ; i++)
137 for (j=1; j<pi->raid_disks; j++)
138 r1_bio->bios[j]->bi_io_vec[i].bv_page =
139 r1_bio->bios[0]->bi_io_vec[i].bv_page;
140 }
141
142 r1_bio->master_bio = NULL;
143
144 return r1_bio;
145
146 out_free_pages:
147 for (j=0 ; j < pi->raid_disks; j++)
148 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
149 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
150 j = -1;
151 out_free_bio:
152 while (++j < pi->raid_disks)
153 bio_put(r1_bio->bios[j]);
154 r1bio_pool_free(r1_bio, data);
155 return NULL;
156 }
157
158 static void r1buf_pool_free(void *__r1_bio, void *data)
159 {
160 struct pool_info *pi = data;
161 int i,j;
162 struct r1bio *r1bio = __r1_bio;
163
164 for (i = 0; i < RESYNC_PAGES; i++)
165 for (j = pi->raid_disks; j-- ;) {
166 if (j == 0 ||
167 r1bio->bios[j]->bi_io_vec[i].bv_page !=
168 r1bio->bios[0]->bi_io_vec[i].bv_page)
169 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
170 }
171 for (i=0 ; i < pi->raid_disks; i++)
172 bio_put(r1bio->bios[i]);
173
174 r1bio_pool_free(r1bio, data);
175 }
176
177 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
178 {
179 int i;
180
181 for (i = 0; i < conf->raid_disks * 2; i++) {
182 struct bio **bio = r1_bio->bios + i;
183 if (!BIO_SPECIAL(*bio))
184 bio_put(*bio);
185 *bio = NULL;
186 }
187 }
188
189 static void free_r1bio(struct r1bio *r1_bio)
190 {
191 struct r1conf *conf = r1_bio->mddev->private;
192
193 put_all_bios(conf, r1_bio);
194 mempool_free(r1_bio, conf->r1bio_pool);
195 }
196
197 static void put_buf(struct r1bio *r1_bio)
198 {
199 struct r1conf *conf = r1_bio->mddev->private;
200 int i;
201
202 for (i = 0; i < conf->raid_disks * 2; i++) {
203 struct bio *bio = r1_bio->bios[i];
204 if (bio->bi_end_io)
205 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
206 }
207
208 mempool_free(r1_bio, conf->r1buf_pool);
209
210 lower_barrier(conf);
211 }
212
213 static void reschedule_retry(struct r1bio *r1_bio)
214 {
215 unsigned long flags;
216 struct mddev *mddev = r1_bio->mddev;
217 struct r1conf *conf = mddev->private;
218
219 spin_lock_irqsave(&conf->device_lock, flags);
220 list_add(&r1_bio->retry_list, &conf->retry_list);
221 conf->nr_queued ++;
222 spin_unlock_irqrestore(&conf->device_lock, flags);
223
224 wake_up(&conf->wait_barrier);
225 md_wakeup_thread(mddev->thread);
226 }
227
228 /*
229 * raid_end_bio_io() is called when we have finished servicing a mirrored
230 * operation and are ready to return a success/failure code to the buffer
231 * cache layer.
232 */
233 static void call_bio_endio(struct r1bio *r1_bio)
234 {
235 struct bio *bio = r1_bio->master_bio;
236 int done;
237 struct r1conf *conf = r1_bio->mddev->private;
238
239 if (bio->bi_phys_segments) {
240 unsigned long flags;
241 spin_lock_irqsave(&conf->device_lock, flags);
242 bio->bi_phys_segments--;
243 done = (bio->bi_phys_segments == 0);
244 spin_unlock_irqrestore(&conf->device_lock, flags);
245 } else
246 done = 1;
247
248 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
249 clear_bit(BIO_UPTODATE, &bio->bi_flags);
250 if (done) {
251 bio_endio(bio, 0);
252 /*
253 * Wake up any possible resync thread that waits for the device
254 * to go idle.
255 */
256 allow_barrier(conf);
257 }
258 }
259
260 static void raid_end_bio_io(struct r1bio *r1_bio)
261 {
262 struct bio *bio = r1_bio->master_bio;
263
264 /* if nobody has done the final endio yet, do it now */
265 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
266 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
267 (bio_data_dir(bio) == WRITE) ? "write" : "read",
268 (unsigned long long) bio->bi_sector,
269 (unsigned long long) bio->bi_sector +
270 (bio->bi_size >> 9) - 1);
271
272 call_bio_endio(r1_bio);
273 }
274 free_r1bio(r1_bio);
275 }
276
277 /*
278 * Update disk head position estimator based on IRQ completion info.
279 */
280 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
281 {
282 struct r1conf *conf = r1_bio->mddev->private;
283
284 conf->mirrors[disk].head_position =
285 r1_bio->sector + (r1_bio->sectors);
286 }
287
288 /*
289 * Find the disk number which triggered given bio
290 */
291 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
292 {
293 int mirror;
294 struct r1conf *conf = r1_bio->mddev->private;
295 int raid_disks = conf->raid_disks;
296
297 for (mirror = 0; mirror < raid_disks * 2; mirror++)
298 if (r1_bio->bios[mirror] == bio)
299 break;
300
301 BUG_ON(mirror == raid_disks * 2);
302 update_head_pos(mirror, r1_bio);
303
304 return mirror;
305 }
306
307 static void raid1_end_read_request(struct bio *bio, int error)
308 {
309 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
310 struct r1bio *r1_bio = bio->bi_private;
311 int mirror;
312 struct r1conf *conf = r1_bio->mddev->private;
313
314 mirror = r1_bio->read_disk;
315 /*
316 * this branch is our 'one mirror IO has finished' event handler:
317 */
318 update_head_pos(mirror, r1_bio);
319
320 if (uptodate)
321 set_bit(R1BIO_Uptodate, &r1_bio->state);
322 else {
323 /* If all other devices have failed, we want to return
324 * the error upwards rather than fail the last device.
325 * Here we redefine "uptodate" to mean "Don't want to retry"
326 */
327 unsigned long flags;
328 spin_lock_irqsave(&conf->device_lock, flags);
329 if (r1_bio->mddev->degraded == conf->raid_disks ||
330 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
331 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
332 uptodate = 1;
333 spin_unlock_irqrestore(&conf->device_lock, flags);
334 }
335
336 if (uptodate) {
337 raid_end_bio_io(r1_bio);
338 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
339 } else {
340 /*
341 * oops, read error:
342 */
343 char b[BDEVNAME_SIZE];
344 printk_ratelimited(
345 KERN_ERR "md/raid1:%s: %s: "
346 "rescheduling sector %llu\n",
347 mdname(conf->mddev),
348 bdevname(conf->mirrors[mirror].rdev->bdev,
349 b),
350 (unsigned long long)r1_bio->sector);
351 set_bit(R1BIO_ReadError, &r1_bio->state);
352 reschedule_retry(r1_bio);
353 /* don't drop the reference on read_disk yet */
354 }
355 }
356
357 static void close_write(struct r1bio *r1_bio)
358 {
359 /* it really is the end of this request */
360 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
361 /* free extra copy of the data pages */
362 int i = r1_bio->behind_page_count;
363 while (i--)
364 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
365 kfree(r1_bio->behind_bvecs);
366 r1_bio->behind_bvecs = NULL;
367 }
368 /* clear the bitmap if all writes complete successfully */
369 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
370 r1_bio->sectors,
371 !test_bit(R1BIO_Degraded, &r1_bio->state),
372 test_bit(R1BIO_BehindIO, &r1_bio->state));
373 md_write_end(r1_bio->mddev);
374 }
375
376 static void r1_bio_write_done(struct r1bio *r1_bio)
377 {
378 if (!atomic_dec_and_test(&r1_bio->remaining))
379 return;
380
381 if (test_bit(R1BIO_WriteError, &r1_bio->state))
382 reschedule_retry(r1_bio);
383 else {
384 close_write(r1_bio);
385 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
386 reschedule_retry(r1_bio);
387 else
388 raid_end_bio_io(r1_bio);
389 }
390 }
391
392 static void raid1_end_write_request(struct bio *bio, int error)
393 {
394 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
395 struct r1bio *r1_bio = bio->bi_private;
396 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
397 struct r1conf *conf = r1_bio->mddev->private;
398 struct bio *to_put = NULL;
399
400 mirror = find_bio_disk(r1_bio, bio);
401
402 /*
403 * 'one mirror IO has finished' event handler:
404 */
405 if (!uptodate) {
406 set_bit(WriteErrorSeen,
407 &conf->mirrors[mirror].rdev->flags);
408 if (!test_and_set_bit(WantReplacement,
409 &conf->mirrors[mirror].rdev->flags))
410 set_bit(MD_RECOVERY_NEEDED, &
411 conf->mddev->recovery);
412
413 set_bit(R1BIO_WriteError, &r1_bio->state);
414 } else {
415 /*
416 * Set R1BIO_Uptodate in our master bio, so that we
417 * will return a good error code for to the higher
418 * levels even if IO on some other mirrored buffer
419 * fails.
420 *
421 * The 'master' represents the composite IO operation
422 * to user-side. So if something waits for IO, then it
423 * will wait for the 'master' bio.
424 */
425 sector_t first_bad;
426 int bad_sectors;
427
428 r1_bio->bios[mirror] = NULL;
429 to_put = bio;
430 set_bit(R1BIO_Uptodate, &r1_bio->state);
431
432 /* Maybe we can clear some bad blocks. */
433 if (is_badblock(conf->mirrors[mirror].rdev,
434 r1_bio->sector, r1_bio->sectors,
435 &first_bad, &bad_sectors)) {
436 r1_bio->bios[mirror] = IO_MADE_GOOD;
437 set_bit(R1BIO_MadeGood, &r1_bio->state);
438 }
439 }
440
441 if (behind) {
442 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
443 atomic_dec(&r1_bio->behind_remaining);
444
445 /*
446 * In behind mode, we ACK the master bio once the I/O
447 * has safely reached all non-writemostly
448 * disks. Setting the Returned bit ensures that this
449 * gets done only once -- we don't ever want to return
450 * -EIO here, instead we'll wait
451 */
452 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
453 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
454 /* Maybe we can return now */
455 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
456 struct bio *mbio = r1_bio->master_bio;
457 pr_debug("raid1: behind end write sectors"
458 " %llu-%llu\n",
459 (unsigned long long) mbio->bi_sector,
460 (unsigned long long) mbio->bi_sector +
461 (mbio->bi_size >> 9) - 1);
462 call_bio_endio(r1_bio);
463 }
464 }
465 }
466 if (r1_bio->bios[mirror] == NULL)
467 rdev_dec_pending(conf->mirrors[mirror].rdev,
468 conf->mddev);
469
470 /*
471 * Let's see if all mirrored write operations have finished
472 * already.
473 */
474 r1_bio_write_done(r1_bio);
475
476 if (to_put)
477 bio_put(to_put);
478 }
479
480
481 /*
482 * This routine returns the disk from which the requested read should
483 * be done. There is a per-array 'next expected sequential IO' sector
484 * number - if this matches on the next IO then we use the last disk.
485 * There is also a per-disk 'last know head position' sector that is
486 * maintained from IRQ contexts, both the normal and the resync IO
487 * completion handlers update this position correctly. If there is no
488 * perfect sequential match then we pick the disk whose head is closest.
489 *
490 * If there are 2 mirrors in the same 2 devices, performance degrades
491 * because position is mirror, not device based.
492 *
493 * The rdev for the device selected will have nr_pending incremented.
494 */
495 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
496 {
497 const sector_t this_sector = r1_bio->sector;
498 int sectors;
499 int best_good_sectors;
500 int best_disk, best_dist_disk, best_pending_disk;
501 int has_nonrot_disk;
502 int disk;
503 sector_t best_dist;
504 unsigned int min_pending;
505 struct md_rdev *rdev;
506 int choose_first;
507 int choose_next_idle;
508
509 rcu_read_lock();
510 /*
511 * Check if we can balance. We can balance on the whole
512 * device if no resync is going on, or below the resync window.
513 * We take the first readable disk when above the resync window.
514 */
515 retry:
516 sectors = r1_bio->sectors;
517 best_disk = -1;
518 best_dist_disk = -1;
519 best_dist = MaxSector;
520 best_pending_disk = -1;
521 min_pending = UINT_MAX;
522 best_good_sectors = 0;
523 has_nonrot_disk = 0;
524 choose_next_idle = 0;
525
526 if (conf->mddev->recovery_cp < MaxSector &&
527 (this_sector + sectors >= conf->next_resync))
528 choose_first = 1;
529 else
530 choose_first = 0;
531
532 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
533 sector_t dist;
534 sector_t first_bad;
535 int bad_sectors;
536 unsigned int pending;
537 bool nonrot;
538
539 rdev = rcu_dereference(conf->mirrors[disk].rdev);
540 if (r1_bio->bios[disk] == IO_BLOCKED
541 || rdev == NULL
542 || test_bit(Unmerged, &rdev->flags)
543 || test_bit(Faulty, &rdev->flags))
544 continue;
545 if (!test_bit(In_sync, &rdev->flags) &&
546 rdev->recovery_offset < this_sector + sectors)
547 continue;
548 if (test_bit(WriteMostly, &rdev->flags)) {
549 /* Don't balance among write-mostly, just
550 * use the first as a last resort */
551 if (best_disk < 0) {
552 if (is_badblock(rdev, this_sector, sectors,
553 &first_bad, &bad_sectors)) {
554 if (first_bad < this_sector)
555 /* Cannot use this */
556 continue;
557 best_good_sectors = first_bad - this_sector;
558 } else
559 best_good_sectors = sectors;
560 best_disk = disk;
561 }
562 continue;
563 }
564 /* This is a reasonable device to use. It might
565 * even be best.
566 */
567 if (is_badblock(rdev, this_sector, sectors,
568 &first_bad, &bad_sectors)) {
569 if (best_dist < MaxSector)
570 /* already have a better device */
571 continue;
572 if (first_bad <= this_sector) {
573 /* cannot read here. If this is the 'primary'
574 * device, then we must not read beyond
575 * bad_sectors from another device..
576 */
577 bad_sectors -= (this_sector - first_bad);
578 if (choose_first && sectors > bad_sectors)
579 sectors = bad_sectors;
580 if (best_good_sectors > sectors)
581 best_good_sectors = sectors;
582
583 } else {
584 sector_t good_sectors = first_bad - this_sector;
585 if (good_sectors > best_good_sectors) {
586 best_good_sectors = good_sectors;
587 best_disk = disk;
588 }
589 if (choose_first)
590 break;
591 }
592 continue;
593 } else
594 best_good_sectors = sectors;
595
596 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
597 has_nonrot_disk |= nonrot;
598 pending = atomic_read(&rdev->nr_pending);
599 dist = abs(this_sector - conf->mirrors[disk].head_position);
600 if (choose_first) {
601 best_disk = disk;
602 break;
603 }
604 /* Don't change to another disk for sequential reads */
605 if (conf->mirrors[disk].next_seq_sect == this_sector
606 || dist == 0) {
607 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
608 struct raid1_info *mirror = &conf->mirrors[disk];
609
610 best_disk = disk;
611 /*
612 * If buffered sequential IO size exceeds optimal
613 * iosize, check if there is idle disk. If yes, choose
614 * the idle disk. read_balance could already choose an
615 * idle disk before noticing it's a sequential IO in
616 * this disk. This doesn't matter because this disk
617 * will idle, next time it will be utilized after the
618 * first disk has IO size exceeds optimal iosize. In
619 * this way, iosize of the first disk will be optimal
620 * iosize at least. iosize of the second disk might be
621 * small, but not a big deal since when the second disk
622 * starts IO, the first disk is likely still busy.
623 */
624 if (nonrot && opt_iosize > 0 &&
625 mirror->seq_start != MaxSector &&
626 mirror->next_seq_sect > opt_iosize &&
627 mirror->next_seq_sect - opt_iosize >=
628 mirror->seq_start) {
629 choose_next_idle = 1;
630 continue;
631 }
632 break;
633 }
634 /* If device is idle, use it */
635 if (pending == 0) {
636 best_disk = disk;
637 break;
638 }
639
640 if (choose_next_idle)
641 continue;
642
643 if (min_pending > pending) {
644 min_pending = pending;
645 best_pending_disk = disk;
646 }
647
648 if (dist < best_dist) {
649 best_dist = dist;
650 best_dist_disk = disk;
651 }
652 }
653
654 /*
655 * If all disks are rotational, choose the closest disk. If any disk is
656 * non-rotational, choose the disk with less pending request even the
657 * disk is rotational, which might/might not be optimal for raids with
658 * mixed ratation/non-rotational disks depending on workload.
659 */
660 if (best_disk == -1) {
661 if (has_nonrot_disk)
662 best_disk = best_pending_disk;
663 else
664 best_disk = best_dist_disk;
665 }
666
667 if (best_disk >= 0) {
668 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
669 if (!rdev)
670 goto retry;
671 atomic_inc(&rdev->nr_pending);
672 if (test_bit(Faulty, &rdev->flags)) {
673 /* cannot risk returning a device that failed
674 * before we inc'ed nr_pending
675 */
676 rdev_dec_pending(rdev, conf->mddev);
677 goto retry;
678 }
679 sectors = best_good_sectors;
680
681 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
682 conf->mirrors[best_disk].seq_start = this_sector;
683
684 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
685 }
686 rcu_read_unlock();
687 *max_sectors = sectors;
688
689 return best_disk;
690 }
691
692 static int raid1_mergeable_bvec(struct request_queue *q,
693 struct bvec_merge_data *bvm,
694 struct bio_vec *biovec)
695 {
696 struct mddev *mddev = q->queuedata;
697 struct r1conf *conf = mddev->private;
698 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
699 int max = biovec->bv_len;
700
701 if (mddev->merge_check_needed) {
702 int disk;
703 rcu_read_lock();
704 for (disk = 0; disk < conf->raid_disks * 2; disk++) {
705 struct md_rdev *rdev = rcu_dereference(
706 conf->mirrors[disk].rdev);
707 if (rdev && !test_bit(Faulty, &rdev->flags)) {
708 struct request_queue *q =
709 bdev_get_queue(rdev->bdev);
710 if (q->merge_bvec_fn) {
711 bvm->bi_sector = sector +
712 rdev->data_offset;
713 bvm->bi_bdev = rdev->bdev;
714 max = min(max, q->merge_bvec_fn(
715 q, bvm, biovec));
716 }
717 }
718 }
719 rcu_read_unlock();
720 }
721 return max;
722
723 }
724
725 int md_raid1_congested(struct mddev *mddev, int bits)
726 {
727 struct r1conf *conf = mddev->private;
728 int i, ret = 0;
729
730 if ((bits & (1 << BDI_async_congested)) &&
731 conf->pending_count >= max_queued_requests)
732 return 1;
733
734 rcu_read_lock();
735 for (i = 0; i < conf->raid_disks * 2; i++) {
736 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
737 if (rdev && !test_bit(Faulty, &rdev->flags)) {
738 struct request_queue *q = bdev_get_queue(rdev->bdev);
739
740 BUG_ON(!q);
741
742 /* Note the '|| 1' - when read_balance prefers
743 * non-congested targets, it can be removed
744 */
745 if ((bits & (1<<BDI_async_congested)) || 1)
746 ret |= bdi_congested(&q->backing_dev_info, bits);
747 else
748 ret &= bdi_congested(&q->backing_dev_info, bits);
749 }
750 }
751 rcu_read_unlock();
752 return ret;
753 }
754 EXPORT_SYMBOL_GPL(md_raid1_congested);
755
756 static int raid1_congested(void *data, int bits)
757 {
758 struct mddev *mddev = data;
759
760 return mddev_congested(mddev, bits) ||
761 md_raid1_congested(mddev, bits);
762 }
763
764 static void flush_pending_writes(struct r1conf *conf)
765 {
766 /* Any writes that have been queued but are awaiting
767 * bitmap updates get flushed here.
768 */
769 spin_lock_irq(&conf->device_lock);
770
771 if (conf->pending_bio_list.head) {
772 struct bio *bio;
773 bio = bio_list_get(&conf->pending_bio_list);
774 conf->pending_count = 0;
775 spin_unlock_irq(&conf->device_lock);
776 /* flush any pending bitmap writes to
777 * disk before proceeding w/ I/O */
778 bitmap_unplug(conf->mddev->bitmap);
779 wake_up(&conf->wait_barrier);
780
781 while (bio) { /* submit pending writes */
782 struct bio *next = bio->bi_next;
783 bio->bi_next = NULL;
784 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
785 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
786 /* Just ignore it */
787 bio_endio(bio, 0);
788 else
789 generic_make_request(bio);
790 bio = next;
791 }
792 } else
793 spin_unlock_irq(&conf->device_lock);
794 }
795
796 /* Barriers....
797 * Sometimes we need to suspend IO while we do something else,
798 * either some resync/recovery, or reconfigure the array.
799 * To do this we raise a 'barrier'.
800 * The 'barrier' is a counter that can be raised multiple times
801 * to count how many activities are happening which preclude
802 * normal IO.
803 * We can only raise the barrier if there is no pending IO.
804 * i.e. if nr_pending == 0.
805 * We choose only to raise the barrier if no-one is waiting for the
806 * barrier to go down. This means that as soon as an IO request
807 * is ready, no other operations which require a barrier will start
808 * until the IO request has had a chance.
809 *
810 * So: regular IO calls 'wait_barrier'. When that returns there
811 * is no backgroup IO happening, It must arrange to call
812 * allow_barrier when it has finished its IO.
813 * backgroup IO calls must call raise_barrier. Once that returns
814 * there is no normal IO happeing. It must arrange to call
815 * lower_barrier when the particular background IO completes.
816 */
817 #define RESYNC_DEPTH 32
818
819 static void raise_barrier(struct r1conf *conf)
820 {
821 spin_lock_irq(&conf->resync_lock);
822
823 /* Wait until no block IO is waiting */
824 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
825 conf->resync_lock, );
826
827 /* block any new IO from starting */
828 conf->barrier++;
829
830 /* Now wait for all pending IO to complete */
831 wait_event_lock_irq(conf->wait_barrier,
832 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
833 conf->resync_lock, );
834
835 spin_unlock_irq(&conf->resync_lock);
836 }
837
838 static void lower_barrier(struct r1conf *conf)
839 {
840 unsigned long flags;
841 BUG_ON(conf->barrier <= 0);
842 spin_lock_irqsave(&conf->resync_lock, flags);
843 conf->barrier--;
844 spin_unlock_irqrestore(&conf->resync_lock, flags);
845 wake_up(&conf->wait_barrier);
846 }
847
848 static void wait_barrier(struct r1conf *conf)
849 {
850 spin_lock_irq(&conf->resync_lock);
851 if (conf->barrier) {
852 conf->nr_waiting++;
853 /* Wait for the barrier to drop.
854 * However if there are already pending
855 * requests (preventing the barrier from
856 * rising completely), and the
857 * pre-process bio queue isn't empty,
858 * then don't wait, as we need to empty
859 * that queue to get the nr_pending
860 * count down.
861 */
862 wait_event_lock_irq(conf->wait_barrier,
863 !conf->barrier ||
864 (conf->nr_pending &&
865 current->bio_list &&
866 !bio_list_empty(current->bio_list)),
867 conf->resync_lock,
868 );
869 conf->nr_waiting--;
870 }
871 conf->nr_pending++;
872 spin_unlock_irq(&conf->resync_lock);
873 }
874
875 static void allow_barrier(struct r1conf *conf)
876 {
877 unsigned long flags;
878 spin_lock_irqsave(&conf->resync_lock, flags);
879 conf->nr_pending--;
880 spin_unlock_irqrestore(&conf->resync_lock, flags);
881 wake_up(&conf->wait_barrier);
882 }
883
884 static void freeze_array(struct r1conf *conf)
885 {
886 /* stop syncio and normal IO and wait for everything to
887 * go quite.
888 * We increment barrier and nr_waiting, and then
889 * wait until nr_pending match nr_queued+1
890 * This is called in the context of one normal IO request
891 * that has failed. Thus any sync request that might be pending
892 * will be blocked by nr_pending, and we need to wait for
893 * pending IO requests to complete or be queued for re-try.
894 * Thus the number queued (nr_queued) plus this request (1)
895 * must match the number of pending IOs (nr_pending) before
896 * we continue.
897 */
898 spin_lock_irq(&conf->resync_lock);
899 conf->barrier++;
900 conf->nr_waiting++;
901 wait_event_lock_irq(conf->wait_barrier,
902 conf->nr_pending == conf->nr_queued+1,
903 conf->resync_lock,
904 flush_pending_writes(conf));
905 spin_unlock_irq(&conf->resync_lock);
906 }
907 static void unfreeze_array(struct r1conf *conf)
908 {
909 /* reverse the effect of the freeze */
910 spin_lock_irq(&conf->resync_lock);
911 conf->barrier--;
912 conf->nr_waiting--;
913 wake_up(&conf->wait_barrier);
914 spin_unlock_irq(&conf->resync_lock);
915 }
916
917
918 /* duplicate the data pages for behind I/O
919 */
920 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
921 {
922 int i;
923 struct bio_vec *bvec;
924 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
925 GFP_NOIO);
926 if (unlikely(!bvecs))
927 return;
928
929 bio_for_each_segment(bvec, bio, i) {
930 bvecs[i] = *bvec;
931 bvecs[i].bv_page = alloc_page(GFP_NOIO);
932 if (unlikely(!bvecs[i].bv_page))
933 goto do_sync_io;
934 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
935 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
936 kunmap(bvecs[i].bv_page);
937 kunmap(bvec->bv_page);
938 }
939 r1_bio->behind_bvecs = bvecs;
940 r1_bio->behind_page_count = bio->bi_vcnt;
941 set_bit(R1BIO_BehindIO, &r1_bio->state);
942 return;
943
944 do_sync_io:
945 for (i = 0; i < bio->bi_vcnt; i++)
946 if (bvecs[i].bv_page)
947 put_page(bvecs[i].bv_page);
948 kfree(bvecs);
949 pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
950 }
951
952 struct raid1_plug_cb {
953 struct blk_plug_cb cb;
954 struct bio_list pending;
955 int pending_cnt;
956 };
957
958 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
959 {
960 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
961 cb);
962 struct mddev *mddev = plug->cb.data;
963 struct r1conf *conf = mddev->private;
964 struct bio *bio;
965
966 if (from_schedule) {
967 spin_lock_irq(&conf->device_lock);
968 bio_list_merge(&conf->pending_bio_list, &plug->pending);
969 conf->pending_count += plug->pending_cnt;
970 spin_unlock_irq(&conf->device_lock);
971 md_wakeup_thread(mddev->thread);
972 kfree(plug);
973 return;
974 }
975
976 /* we aren't scheduling, so we can do the write-out directly. */
977 bio = bio_list_get(&plug->pending);
978 bitmap_unplug(mddev->bitmap);
979 wake_up(&conf->wait_barrier);
980
981 while (bio) { /* submit pending writes */
982 struct bio *next = bio->bi_next;
983 bio->bi_next = NULL;
984 generic_make_request(bio);
985 bio = next;
986 }
987 kfree(plug);
988 }
989
990 static void make_request(struct mddev *mddev, struct bio * bio)
991 {
992 struct r1conf *conf = mddev->private;
993 struct raid1_info *mirror;
994 struct r1bio *r1_bio;
995 struct bio *read_bio;
996 int i, disks;
997 struct bitmap *bitmap;
998 unsigned long flags;
999 const int rw = bio_data_dir(bio);
1000 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1001 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1002 const unsigned long do_discard = (bio->bi_rw
1003 & (REQ_DISCARD | REQ_SECURE));
1004 struct md_rdev *blocked_rdev;
1005 struct blk_plug_cb *cb;
1006 struct raid1_plug_cb *plug = NULL;
1007 int first_clone;
1008 int sectors_handled;
1009 int max_sectors;
1010
1011 /*
1012 * Register the new request and wait if the reconstruction
1013 * thread has put up a bar for new requests.
1014 * Continue immediately if no resync is active currently.
1015 */
1016
1017 md_write_start(mddev, bio); /* wait on superblock update early */
1018
1019 if (bio_data_dir(bio) == WRITE &&
1020 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
1021 bio->bi_sector < mddev->suspend_hi) {
1022 /* As the suspend_* range is controlled by
1023 * userspace, we want an interruptible
1024 * wait.
1025 */
1026 DEFINE_WAIT(w);
1027 for (;;) {
1028 flush_signals(current);
1029 prepare_to_wait(&conf->wait_barrier,
1030 &w, TASK_INTERRUPTIBLE);
1031 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
1032 bio->bi_sector >= mddev->suspend_hi)
1033 break;
1034 schedule();
1035 }
1036 finish_wait(&conf->wait_barrier, &w);
1037 }
1038
1039 wait_barrier(conf);
1040
1041 bitmap = mddev->bitmap;
1042
1043 /*
1044 * make_request() can abort the operation when READA is being
1045 * used and no empty request is available.
1046 *
1047 */
1048 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1049
1050 r1_bio->master_bio = bio;
1051 r1_bio->sectors = bio->bi_size >> 9;
1052 r1_bio->state = 0;
1053 r1_bio->mddev = mddev;
1054 r1_bio->sector = bio->bi_sector;
1055
1056 /* We might need to issue multiple reads to different
1057 * devices if there are bad blocks around, so we keep
1058 * track of the number of reads in bio->bi_phys_segments.
1059 * If this is 0, there is only one r1_bio and no locking
1060 * will be needed when requests complete. If it is
1061 * non-zero, then it is the number of not-completed requests.
1062 */
1063 bio->bi_phys_segments = 0;
1064 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1065
1066 if (rw == READ) {
1067 /*
1068 * read balancing logic:
1069 */
1070 int rdisk;
1071
1072 read_again:
1073 rdisk = read_balance(conf, r1_bio, &max_sectors);
1074
1075 if (rdisk < 0) {
1076 /* couldn't find anywhere to read from */
1077 raid_end_bio_io(r1_bio);
1078 return;
1079 }
1080 mirror = conf->mirrors + rdisk;
1081
1082 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1083 bitmap) {
1084 /* Reading from a write-mostly device must
1085 * take care not to over-take any writes
1086 * that are 'behind'
1087 */
1088 wait_event(bitmap->behind_wait,
1089 atomic_read(&bitmap->behind_writes) == 0);
1090 }
1091 r1_bio->read_disk = rdisk;
1092
1093 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1094 md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
1095 max_sectors);
1096
1097 r1_bio->bios[rdisk] = read_bio;
1098
1099 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
1100 read_bio->bi_bdev = mirror->rdev->bdev;
1101 read_bio->bi_end_io = raid1_end_read_request;
1102 read_bio->bi_rw = READ | do_sync;
1103 read_bio->bi_private = r1_bio;
1104
1105 if (max_sectors < r1_bio->sectors) {
1106 /* could not read all from this device, so we will
1107 * need another r1_bio.
1108 */
1109
1110 sectors_handled = (r1_bio->sector + max_sectors
1111 - bio->bi_sector);
1112 r1_bio->sectors = max_sectors;
1113 spin_lock_irq(&conf->device_lock);
1114 if (bio->bi_phys_segments == 0)
1115 bio->bi_phys_segments = 2;
1116 else
1117 bio->bi_phys_segments++;
1118 spin_unlock_irq(&conf->device_lock);
1119 /* Cannot call generic_make_request directly
1120 * as that will be queued in __make_request
1121 * and subsequent mempool_alloc might block waiting
1122 * for it. So hand bio over to raid1d.
1123 */
1124 reschedule_retry(r1_bio);
1125
1126 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1127
1128 r1_bio->master_bio = bio;
1129 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1130 r1_bio->state = 0;
1131 r1_bio->mddev = mddev;
1132 r1_bio->sector = bio->bi_sector + sectors_handled;
1133 goto read_again;
1134 } else
1135 generic_make_request(read_bio);
1136 return;
1137 }
1138
1139 /*
1140 * WRITE:
1141 */
1142 if (conf->pending_count >= max_queued_requests) {
1143 md_wakeup_thread(mddev->thread);
1144 wait_event(conf->wait_barrier,
1145 conf->pending_count < max_queued_requests);
1146 }
1147 /* first select target devices under rcu_lock and
1148 * inc refcount on their rdev. Record them by setting
1149 * bios[x] to bio
1150 * If there are known/acknowledged bad blocks on any device on
1151 * which we have seen a write error, we want to avoid writing those
1152 * blocks.
1153 * This potentially requires several writes to write around
1154 * the bad blocks. Each set of writes gets it's own r1bio
1155 * with a set of bios attached.
1156 */
1157
1158 disks = conf->raid_disks * 2;
1159 retry_write:
1160 blocked_rdev = NULL;
1161 rcu_read_lock();
1162 max_sectors = r1_bio->sectors;
1163 for (i = 0; i < disks; i++) {
1164 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1165 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1166 atomic_inc(&rdev->nr_pending);
1167 blocked_rdev = rdev;
1168 break;
1169 }
1170 r1_bio->bios[i] = NULL;
1171 if (!rdev || test_bit(Faulty, &rdev->flags)
1172 || test_bit(Unmerged, &rdev->flags)) {
1173 if (i < conf->raid_disks)
1174 set_bit(R1BIO_Degraded, &r1_bio->state);
1175 continue;
1176 }
1177
1178 atomic_inc(&rdev->nr_pending);
1179 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1180 sector_t first_bad;
1181 int bad_sectors;
1182 int is_bad;
1183
1184 is_bad = is_badblock(rdev, r1_bio->sector,
1185 max_sectors,
1186 &first_bad, &bad_sectors);
1187 if (is_bad < 0) {
1188 /* mustn't write here until the bad block is
1189 * acknowledged*/
1190 set_bit(BlockedBadBlocks, &rdev->flags);
1191 blocked_rdev = rdev;
1192 break;
1193 }
1194 if (is_bad && first_bad <= r1_bio->sector) {
1195 /* Cannot write here at all */
1196 bad_sectors -= (r1_bio->sector - first_bad);
1197 if (bad_sectors < max_sectors)
1198 /* mustn't write more than bad_sectors
1199 * to other devices yet
1200 */
1201 max_sectors = bad_sectors;
1202 rdev_dec_pending(rdev, mddev);
1203 /* We don't set R1BIO_Degraded as that
1204 * only applies if the disk is
1205 * missing, so it might be re-added,
1206 * and we want to know to recover this
1207 * chunk.
1208 * In this case the device is here,
1209 * and the fact that this chunk is not
1210 * in-sync is recorded in the bad
1211 * block log
1212 */
1213 continue;
1214 }
1215 if (is_bad) {
1216 int good_sectors = first_bad - r1_bio->sector;
1217 if (good_sectors < max_sectors)
1218 max_sectors = good_sectors;
1219 }
1220 }
1221 r1_bio->bios[i] = bio;
1222 }
1223 rcu_read_unlock();
1224
1225 if (unlikely(blocked_rdev)) {
1226 /* Wait for this device to become unblocked */
1227 int j;
1228
1229 for (j = 0; j < i; j++)
1230 if (r1_bio->bios[j])
1231 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1232 r1_bio->state = 0;
1233 allow_barrier(conf);
1234 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1235 wait_barrier(conf);
1236 goto retry_write;
1237 }
1238
1239 if (max_sectors < r1_bio->sectors) {
1240 /* We are splitting this write into multiple parts, so
1241 * we need to prepare for allocating another r1_bio.
1242 */
1243 r1_bio->sectors = max_sectors;
1244 spin_lock_irq(&conf->device_lock);
1245 if (bio->bi_phys_segments == 0)
1246 bio->bi_phys_segments = 2;
1247 else
1248 bio->bi_phys_segments++;
1249 spin_unlock_irq(&conf->device_lock);
1250 }
1251 sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
1252
1253 atomic_set(&r1_bio->remaining, 1);
1254 atomic_set(&r1_bio->behind_remaining, 0);
1255
1256 first_clone = 1;
1257 for (i = 0; i < disks; i++) {
1258 struct bio *mbio;
1259 if (!r1_bio->bios[i])
1260 continue;
1261
1262 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1263 md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
1264
1265 if (first_clone) {
1266 /* do behind I/O ?
1267 * Not if there are too many, or cannot
1268 * allocate memory, or a reader on WriteMostly
1269 * is waiting for behind writes to flush */
1270 if (bitmap &&
1271 (atomic_read(&bitmap->behind_writes)
1272 < mddev->bitmap_info.max_write_behind) &&
1273 !waitqueue_active(&bitmap->behind_wait))
1274 alloc_behind_pages(mbio, r1_bio);
1275
1276 bitmap_startwrite(bitmap, r1_bio->sector,
1277 r1_bio->sectors,
1278 test_bit(R1BIO_BehindIO,
1279 &r1_bio->state));
1280 first_clone = 0;
1281 }
1282 if (r1_bio->behind_bvecs) {
1283 struct bio_vec *bvec;
1284 int j;
1285
1286 /* Yes, I really want the '__' version so that
1287 * we clear any unused pointer in the io_vec, rather
1288 * than leave them unchanged. This is important
1289 * because when we come to free the pages, we won't
1290 * know the original bi_idx, so we just free
1291 * them all
1292 */
1293 __bio_for_each_segment(bvec, mbio, j, 0)
1294 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1295 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1296 atomic_inc(&r1_bio->behind_remaining);
1297 }
1298
1299 r1_bio->bios[i] = mbio;
1300
1301 mbio->bi_sector = (r1_bio->sector +
1302 conf->mirrors[i].rdev->data_offset);
1303 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1304 mbio->bi_end_io = raid1_end_write_request;
1305 mbio->bi_rw = WRITE | do_flush_fua | do_sync | do_discard;
1306 mbio->bi_private = r1_bio;
1307
1308 atomic_inc(&r1_bio->remaining);
1309
1310 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1311 if (cb)
1312 plug = container_of(cb, struct raid1_plug_cb, cb);
1313 else
1314 plug = NULL;
1315 spin_lock_irqsave(&conf->device_lock, flags);
1316 if (plug) {
1317 bio_list_add(&plug->pending, mbio);
1318 plug->pending_cnt++;
1319 } else {
1320 bio_list_add(&conf->pending_bio_list, mbio);
1321 conf->pending_count++;
1322 }
1323 spin_unlock_irqrestore(&conf->device_lock, flags);
1324 if (!plug)
1325 md_wakeup_thread(mddev->thread);
1326 }
1327 /* Mustn't call r1_bio_write_done before this next test,
1328 * as it could result in the bio being freed.
1329 */
1330 if (sectors_handled < (bio->bi_size >> 9)) {
1331 r1_bio_write_done(r1_bio);
1332 /* We need another r1_bio. It has already been counted
1333 * in bio->bi_phys_segments
1334 */
1335 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1336 r1_bio->master_bio = bio;
1337 r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1338 r1_bio->state = 0;
1339 r1_bio->mddev = mddev;
1340 r1_bio->sector = bio->bi_sector + sectors_handled;
1341 goto retry_write;
1342 }
1343
1344 r1_bio_write_done(r1_bio);
1345
1346 /* In case raid1d snuck in to freeze_array */
1347 wake_up(&conf->wait_barrier);
1348 }
1349
1350 static void status(struct seq_file *seq, struct mddev *mddev)
1351 {
1352 struct r1conf *conf = mddev->private;
1353 int i;
1354
1355 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1356 conf->raid_disks - mddev->degraded);
1357 rcu_read_lock();
1358 for (i = 0; i < conf->raid_disks; i++) {
1359 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1360 seq_printf(seq, "%s",
1361 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1362 }
1363 rcu_read_unlock();
1364 seq_printf(seq, "]");
1365 }
1366
1367
1368 static void error(struct mddev *mddev, struct md_rdev *rdev)
1369 {
1370 char b[BDEVNAME_SIZE];
1371 struct r1conf *conf = mddev->private;
1372
1373 /*
1374 * If it is not operational, then we have already marked it as dead
1375 * else if it is the last working disks, ignore the error, let the
1376 * next level up know.
1377 * else mark the drive as failed
1378 */
1379 if (test_bit(In_sync, &rdev->flags)
1380 && (conf->raid_disks - mddev->degraded) == 1) {
1381 /*
1382 * Don't fail the drive, act as though we were just a
1383 * normal single drive.
1384 * However don't try a recovery from this drive as
1385 * it is very likely to fail.
1386 */
1387 conf->recovery_disabled = mddev->recovery_disabled;
1388 return;
1389 }
1390 set_bit(Blocked, &rdev->flags);
1391 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1392 unsigned long flags;
1393 spin_lock_irqsave(&conf->device_lock, flags);
1394 mddev->degraded++;
1395 set_bit(Faulty, &rdev->flags);
1396 spin_unlock_irqrestore(&conf->device_lock, flags);
1397 /*
1398 * if recovery is running, make sure it aborts.
1399 */
1400 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1401 } else
1402 set_bit(Faulty, &rdev->flags);
1403 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1404 printk(KERN_ALERT
1405 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1406 "md/raid1:%s: Operation continuing on %d devices.\n",
1407 mdname(mddev), bdevname(rdev->bdev, b),
1408 mdname(mddev), conf->raid_disks - mddev->degraded);
1409 }
1410
1411 static void print_conf(struct r1conf *conf)
1412 {
1413 int i;
1414
1415 printk(KERN_DEBUG "RAID1 conf printout:\n");
1416 if (!conf) {
1417 printk(KERN_DEBUG "(!conf)\n");
1418 return;
1419 }
1420 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1421 conf->raid_disks);
1422
1423 rcu_read_lock();
1424 for (i = 0; i < conf->raid_disks; i++) {
1425 char b[BDEVNAME_SIZE];
1426 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1427 if (rdev)
1428 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1429 i, !test_bit(In_sync, &rdev->flags),
1430 !test_bit(Faulty, &rdev->flags),
1431 bdevname(rdev->bdev,b));
1432 }
1433 rcu_read_unlock();
1434 }
1435
1436 static void close_sync(struct r1conf *conf)
1437 {
1438 wait_barrier(conf);
1439 allow_barrier(conf);
1440
1441 mempool_destroy(conf->r1buf_pool);
1442 conf->r1buf_pool = NULL;
1443 }
1444
1445 static int raid1_spare_active(struct mddev *mddev)
1446 {
1447 int i;
1448 struct r1conf *conf = mddev->private;
1449 int count = 0;
1450 unsigned long flags;
1451
1452 /*
1453 * Find all failed disks within the RAID1 configuration
1454 * and mark them readable.
1455 * Called under mddev lock, so rcu protection not needed.
1456 */
1457 for (i = 0; i < conf->raid_disks; i++) {
1458 struct md_rdev *rdev = conf->mirrors[i].rdev;
1459 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1460 if (repl
1461 && repl->recovery_offset == MaxSector
1462 && !test_bit(Faulty, &repl->flags)
1463 && !test_and_set_bit(In_sync, &repl->flags)) {
1464 /* replacement has just become active */
1465 if (!rdev ||
1466 !test_and_clear_bit(In_sync, &rdev->flags))
1467 count++;
1468 if (rdev) {
1469 /* Replaced device not technically
1470 * faulty, but we need to be sure
1471 * it gets removed and never re-added
1472 */
1473 set_bit(Faulty, &rdev->flags);
1474 sysfs_notify_dirent_safe(
1475 rdev->sysfs_state);
1476 }
1477 }
1478 if (rdev
1479 && !test_bit(Faulty, &rdev->flags)
1480 && !test_and_set_bit(In_sync, &rdev->flags)) {
1481 count++;
1482 sysfs_notify_dirent_safe(rdev->sysfs_state);
1483 }
1484 }
1485 spin_lock_irqsave(&conf->device_lock, flags);
1486 mddev->degraded -= count;
1487 spin_unlock_irqrestore(&conf->device_lock, flags);
1488
1489 print_conf(conf);
1490 return count;
1491 }
1492
1493
1494 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1495 {
1496 struct r1conf *conf = mddev->private;
1497 int err = -EEXIST;
1498 int mirror = 0;
1499 struct raid1_info *p;
1500 int first = 0;
1501 int last = conf->raid_disks - 1;
1502 struct request_queue *q = bdev_get_queue(rdev->bdev);
1503
1504 if (mddev->recovery_disabled == conf->recovery_disabled)
1505 return -EBUSY;
1506
1507 if (rdev->raid_disk >= 0)
1508 first = last = rdev->raid_disk;
1509
1510 if (q->merge_bvec_fn) {
1511 set_bit(Unmerged, &rdev->flags);
1512 mddev->merge_check_needed = 1;
1513 }
1514
1515 for (mirror = first; mirror <= last; mirror++) {
1516 p = conf->mirrors+mirror;
1517 if (!p->rdev) {
1518
1519 disk_stack_limits(mddev->gendisk, rdev->bdev,
1520 rdev->data_offset << 9);
1521
1522 p->head_position = 0;
1523 rdev->raid_disk = mirror;
1524 err = 0;
1525 /* As all devices are equivalent, we don't need a full recovery
1526 * if this was recently any drive of the array
1527 */
1528 if (rdev->saved_raid_disk < 0)
1529 conf->fullsync = 1;
1530 rcu_assign_pointer(p->rdev, rdev);
1531 break;
1532 }
1533 if (test_bit(WantReplacement, &p->rdev->flags) &&
1534 p[conf->raid_disks].rdev == NULL) {
1535 /* Add this device as a replacement */
1536 clear_bit(In_sync, &rdev->flags);
1537 set_bit(Replacement, &rdev->flags);
1538 rdev->raid_disk = mirror;
1539 err = 0;
1540 conf->fullsync = 1;
1541 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1542 break;
1543 }
1544 }
1545 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1546 /* Some requests might not have seen this new
1547 * merge_bvec_fn. We must wait for them to complete
1548 * before merging the device fully.
1549 * First we make sure any code which has tested
1550 * our function has submitted the request, then
1551 * we wait for all outstanding requests to complete.
1552 */
1553 synchronize_sched();
1554 raise_barrier(conf);
1555 lower_barrier(conf);
1556 clear_bit(Unmerged, &rdev->flags);
1557 }
1558 md_integrity_add_rdev(rdev, mddev);
1559 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
1560 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1561 print_conf(conf);
1562 return err;
1563 }
1564
1565 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1566 {
1567 struct r1conf *conf = mddev->private;
1568 int err = 0;
1569 int number = rdev->raid_disk;
1570 struct raid1_info *p = conf->mirrors + number;
1571
1572 if (rdev != p->rdev)
1573 p = conf->mirrors + conf->raid_disks + number;
1574
1575 print_conf(conf);
1576 if (rdev == p->rdev) {
1577 if (test_bit(In_sync, &rdev->flags) ||
1578 atomic_read(&rdev->nr_pending)) {
1579 err = -EBUSY;
1580 goto abort;
1581 }
1582 /* Only remove non-faulty devices if recovery
1583 * is not possible.
1584 */
1585 if (!test_bit(Faulty, &rdev->flags) &&
1586 mddev->recovery_disabled != conf->recovery_disabled &&
1587 mddev->degraded < conf->raid_disks) {
1588 err = -EBUSY;
1589 goto abort;
1590 }
1591 p->rdev = NULL;
1592 synchronize_rcu();
1593 if (atomic_read(&rdev->nr_pending)) {
1594 /* lost the race, try later */
1595 err = -EBUSY;
1596 p->rdev = rdev;
1597 goto abort;
1598 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1599 /* We just removed a device that is being replaced.
1600 * Move down the replacement. We drain all IO before
1601 * doing this to avoid confusion.
1602 */
1603 struct md_rdev *repl =
1604 conf->mirrors[conf->raid_disks + number].rdev;
1605 raise_barrier(conf);
1606 clear_bit(Replacement, &repl->flags);
1607 p->rdev = repl;
1608 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1609 lower_barrier(conf);
1610 clear_bit(WantReplacement, &rdev->flags);
1611 } else
1612 clear_bit(WantReplacement, &rdev->flags);
1613 err = md_integrity_register(mddev);
1614 }
1615 abort:
1616
1617 print_conf(conf);
1618 return err;
1619 }
1620
1621
1622 static void end_sync_read(struct bio *bio, int error)
1623 {
1624 struct r1bio *r1_bio = bio->bi_private;
1625
1626 update_head_pos(r1_bio->read_disk, r1_bio);
1627
1628 /*
1629 * we have read a block, now it needs to be re-written,
1630 * or re-read if the read failed.
1631 * We don't do much here, just schedule handling by raid1d
1632 */
1633 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1634 set_bit(R1BIO_Uptodate, &r1_bio->state);
1635
1636 if (atomic_dec_and_test(&r1_bio->remaining))
1637 reschedule_retry(r1_bio);
1638 }
1639
1640 static void end_sync_write(struct bio *bio, int error)
1641 {
1642 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1643 struct r1bio *r1_bio = bio->bi_private;
1644 struct mddev *mddev = r1_bio->mddev;
1645 struct r1conf *conf = mddev->private;
1646 int mirror=0;
1647 sector_t first_bad;
1648 int bad_sectors;
1649
1650 mirror = find_bio_disk(r1_bio, bio);
1651
1652 if (!uptodate) {
1653 sector_t sync_blocks = 0;
1654 sector_t s = r1_bio->sector;
1655 long sectors_to_go = r1_bio->sectors;
1656 /* make sure these bits doesn't get cleared. */
1657 do {
1658 bitmap_end_sync(mddev->bitmap, s,
1659 &sync_blocks, 1);
1660 s += sync_blocks;
1661 sectors_to_go -= sync_blocks;
1662 } while (sectors_to_go > 0);
1663 set_bit(WriteErrorSeen,
1664 &conf->mirrors[mirror].rdev->flags);
1665 if (!test_and_set_bit(WantReplacement,
1666 &conf->mirrors[mirror].rdev->flags))
1667 set_bit(MD_RECOVERY_NEEDED, &
1668 mddev->recovery);
1669 set_bit(R1BIO_WriteError, &r1_bio->state);
1670 } else if (is_badblock(conf->mirrors[mirror].rdev,
1671 r1_bio->sector,
1672 r1_bio->sectors,
1673 &first_bad, &bad_sectors) &&
1674 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1675 r1_bio->sector,
1676 r1_bio->sectors,
1677 &first_bad, &bad_sectors)
1678 )
1679 set_bit(R1BIO_MadeGood, &r1_bio->state);
1680
1681 if (atomic_dec_and_test(&r1_bio->remaining)) {
1682 int s = r1_bio->sectors;
1683 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1684 test_bit(R1BIO_WriteError, &r1_bio->state))
1685 reschedule_retry(r1_bio);
1686 else {
1687 put_buf(r1_bio);
1688 md_done_sync(mddev, s, uptodate);
1689 }
1690 }
1691 }
1692
1693 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1694 int sectors, struct page *page, int rw)
1695 {
1696 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1697 /* success */
1698 return 1;
1699 if (rw == WRITE) {
1700 set_bit(WriteErrorSeen, &rdev->flags);
1701 if (!test_and_set_bit(WantReplacement,
1702 &rdev->flags))
1703 set_bit(MD_RECOVERY_NEEDED, &
1704 rdev->mddev->recovery);
1705 }
1706 /* need to record an error - either for the block or the device */
1707 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1708 md_error(rdev->mddev, rdev);
1709 return 0;
1710 }
1711
1712 static int fix_sync_read_error(struct r1bio *r1_bio)
1713 {
1714 /* Try some synchronous reads of other devices to get
1715 * good data, much like with normal read errors. Only
1716 * read into the pages we already have so we don't
1717 * need to re-issue the read request.
1718 * We don't need to freeze the array, because being in an
1719 * active sync request, there is no normal IO, and
1720 * no overlapping syncs.
1721 * We don't need to check is_badblock() again as we
1722 * made sure that anything with a bad block in range
1723 * will have bi_end_io clear.
1724 */
1725 struct mddev *mddev = r1_bio->mddev;
1726 struct r1conf *conf = mddev->private;
1727 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1728 sector_t sect = r1_bio->sector;
1729 int sectors = r1_bio->sectors;
1730 int idx = 0;
1731
1732 while(sectors) {
1733 int s = sectors;
1734 int d = r1_bio->read_disk;
1735 int success = 0;
1736 struct md_rdev *rdev;
1737 int start;
1738
1739 if (s > (PAGE_SIZE>>9))
1740 s = PAGE_SIZE >> 9;
1741 do {
1742 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1743 /* No rcu protection needed here devices
1744 * can only be removed when no resync is
1745 * active, and resync is currently active
1746 */
1747 rdev = conf->mirrors[d].rdev;
1748 if (sync_page_io(rdev, sect, s<<9,
1749 bio->bi_io_vec[idx].bv_page,
1750 READ, false)) {
1751 success = 1;
1752 break;
1753 }
1754 }
1755 d++;
1756 if (d == conf->raid_disks * 2)
1757 d = 0;
1758 } while (!success && d != r1_bio->read_disk);
1759
1760 if (!success) {
1761 char b[BDEVNAME_SIZE];
1762 int abort = 0;
1763 /* Cannot read from anywhere, this block is lost.
1764 * Record a bad block on each device. If that doesn't
1765 * work just disable and interrupt the recovery.
1766 * Don't fail devices as that won't really help.
1767 */
1768 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1769 " for block %llu\n",
1770 mdname(mddev),
1771 bdevname(bio->bi_bdev, b),
1772 (unsigned long long)r1_bio->sector);
1773 for (d = 0; d < conf->raid_disks * 2; d++) {
1774 rdev = conf->mirrors[d].rdev;
1775 if (!rdev || test_bit(Faulty, &rdev->flags))
1776 continue;
1777 if (!rdev_set_badblocks(rdev, sect, s, 0))
1778 abort = 1;
1779 }
1780 if (abort) {
1781 conf->recovery_disabled =
1782 mddev->recovery_disabled;
1783 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1784 md_done_sync(mddev, r1_bio->sectors, 0);
1785 put_buf(r1_bio);
1786 return 0;
1787 }
1788 /* Try next page */
1789 sectors -= s;
1790 sect += s;
1791 idx++;
1792 continue;
1793 }
1794
1795 start = d;
1796 /* write it back and re-read */
1797 while (d != r1_bio->read_disk) {
1798 if (d == 0)
1799 d = conf->raid_disks * 2;
1800 d--;
1801 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1802 continue;
1803 rdev = conf->mirrors[d].rdev;
1804 if (r1_sync_page_io(rdev, sect, s,
1805 bio->bi_io_vec[idx].bv_page,
1806 WRITE) == 0) {
1807 r1_bio->bios[d]->bi_end_io = NULL;
1808 rdev_dec_pending(rdev, mddev);
1809 }
1810 }
1811 d = start;
1812 while (d != r1_bio->read_disk) {
1813 if (d == 0)
1814 d = conf->raid_disks * 2;
1815 d--;
1816 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1817 continue;
1818 rdev = conf->mirrors[d].rdev;
1819 if (r1_sync_page_io(rdev, sect, s,
1820 bio->bi_io_vec[idx].bv_page,
1821 READ) != 0)
1822 atomic_add(s, &rdev->corrected_errors);
1823 }
1824 sectors -= s;
1825 sect += s;
1826 idx ++;
1827 }
1828 set_bit(R1BIO_Uptodate, &r1_bio->state);
1829 set_bit(BIO_UPTODATE, &bio->bi_flags);
1830 return 1;
1831 }
1832
1833 static int process_checks(struct r1bio *r1_bio)
1834 {
1835 /* We have read all readable devices. If we haven't
1836 * got the block, then there is no hope left.
1837 * If we have, then we want to do a comparison
1838 * and skip the write if everything is the same.
1839 * If any blocks failed to read, then we need to
1840 * attempt an over-write
1841 */
1842 struct mddev *mddev = r1_bio->mddev;
1843 struct r1conf *conf = mddev->private;
1844 int primary;
1845 int i;
1846 int vcnt;
1847
1848 for (primary = 0; primary < conf->raid_disks * 2; primary++)
1849 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1850 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1851 r1_bio->bios[primary]->bi_end_io = NULL;
1852 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1853 break;
1854 }
1855 r1_bio->read_disk = primary;
1856 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1857 for (i = 0; i < conf->raid_disks * 2; i++) {
1858 int j;
1859 struct bio *pbio = r1_bio->bios[primary];
1860 struct bio *sbio = r1_bio->bios[i];
1861 int size;
1862
1863 if (r1_bio->bios[i]->bi_end_io != end_sync_read)
1864 continue;
1865
1866 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1867 for (j = vcnt; j-- ; ) {
1868 struct page *p, *s;
1869 p = pbio->bi_io_vec[j].bv_page;
1870 s = sbio->bi_io_vec[j].bv_page;
1871 if (memcmp(page_address(p),
1872 page_address(s),
1873 sbio->bi_io_vec[j].bv_len))
1874 break;
1875 }
1876 } else
1877 j = 0;
1878 if (j >= 0)
1879 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
1880 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1881 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1882 /* No need to write to this device. */
1883 sbio->bi_end_io = NULL;
1884 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1885 continue;
1886 }
1887 /* fixup the bio for reuse */
1888 sbio->bi_vcnt = vcnt;
1889 sbio->bi_size = r1_bio->sectors << 9;
1890 sbio->bi_idx = 0;
1891 sbio->bi_phys_segments = 0;
1892 sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1893 sbio->bi_flags |= 1 << BIO_UPTODATE;
1894 sbio->bi_next = NULL;
1895 sbio->bi_sector = r1_bio->sector +
1896 conf->mirrors[i].rdev->data_offset;
1897 sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1898 size = sbio->bi_size;
1899 for (j = 0; j < vcnt ; j++) {
1900 struct bio_vec *bi;
1901 bi = &sbio->bi_io_vec[j];
1902 bi->bv_offset = 0;
1903 if (size > PAGE_SIZE)
1904 bi->bv_len = PAGE_SIZE;
1905 else
1906 bi->bv_len = size;
1907 size -= PAGE_SIZE;
1908 memcpy(page_address(bi->bv_page),
1909 page_address(pbio->bi_io_vec[j].bv_page),
1910 PAGE_SIZE);
1911 }
1912 }
1913 return 0;
1914 }
1915
1916 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
1917 {
1918 struct r1conf *conf = mddev->private;
1919 int i;
1920 int disks = conf->raid_disks * 2;
1921 struct bio *bio, *wbio;
1922
1923 bio = r1_bio->bios[r1_bio->read_disk];
1924
1925 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
1926 /* ouch - failed to read all of that. */
1927 if (!fix_sync_read_error(r1_bio))
1928 return;
1929
1930 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1931 if (process_checks(r1_bio) < 0)
1932 return;
1933 /*
1934 * schedule writes
1935 */
1936 atomic_set(&r1_bio->remaining, 1);
1937 for (i = 0; i < disks ; i++) {
1938 wbio = r1_bio->bios[i];
1939 if (wbio->bi_end_io == NULL ||
1940 (wbio->bi_end_io == end_sync_read &&
1941 (i == r1_bio->read_disk ||
1942 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1943 continue;
1944
1945 wbio->bi_rw = WRITE;
1946 wbio->bi_end_io = end_sync_write;
1947 atomic_inc(&r1_bio->remaining);
1948 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1949
1950 generic_make_request(wbio);
1951 }
1952
1953 if (atomic_dec_and_test(&r1_bio->remaining)) {
1954 /* if we're here, all write(s) have completed, so clean up */
1955 int s = r1_bio->sectors;
1956 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1957 test_bit(R1BIO_WriteError, &r1_bio->state))
1958 reschedule_retry(r1_bio);
1959 else {
1960 put_buf(r1_bio);
1961 md_done_sync(mddev, s, 1);
1962 }
1963 }
1964 }
1965
1966 /*
1967 * This is a kernel thread which:
1968 *
1969 * 1. Retries failed read operations on working mirrors.
1970 * 2. Updates the raid superblock when problems encounter.
1971 * 3. Performs writes following reads for array synchronising.
1972 */
1973
1974 static void fix_read_error(struct r1conf *conf, int read_disk,
1975 sector_t sect, int sectors)
1976 {
1977 struct mddev *mddev = conf->mddev;
1978 while(sectors) {
1979 int s = sectors;
1980 int d = read_disk;
1981 int success = 0;
1982 int start;
1983 struct md_rdev *rdev;
1984
1985 if (s > (PAGE_SIZE>>9))
1986 s = PAGE_SIZE >> 9;
1987
1988 do {
1989 /* Note: no rcu protection needed here
1990 * as this is synchronous in the raid1d thread
1991 * which is the thread that might remove
1992 * a device. If raid1d ever becomes multi-threaded....
1993 */
1994 sector_t first_bad;
1995 int bad_sectors;
1996
1997 rdev = conf->mirrors[d].rdev;
1998 if (rdev &&
1999 (test_bit(In_sync, &rdev->flags) ||
2000 (!test_bit(Faulty, &rdev->flags) &&
2001 rdev->recovery_offset >= sect + s)) &&
2002 is_badblock(rdev, sect, s,
2003 &first_bad, &bad_sectors) == 0 &&
2004 sync_page_io(rdev, sect, s<<9,
2005 conf->tmppage, READ, false))
2006 success = 1;
2007 else {
2008 d++;
2009 if (d == conf->raid_disks * 2)
2010 d = 0;
2011 }
2012 } while (!success && d != read_disk);
2013
2014 if (!success) {
2015 /* Cannot read from anywhere - mark it bad */
2016 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2017 if (!rdev_set_badblocks(rdev, sect, s, 0))
2018 md_error(mddev, rdev);
2019 break;
2020 }
2021 /* write it back and re-read */
2022 start = d;
2023 while (d != read_disk) {
2024 if (d==0)
2025 d = conf->raid_disks * 2;
2026 d--;
2027 rdev = conf->mirrors[d].rdev;
2028 if (rdev &&
2029 test_bit(In_sync, &rdev->flags))
2030 r1_sync_page_io(rdev, sect, s,
2031 conf->tmppage, WRITE);
2032 }
2033 d = start;
2034 while (d != read_disk) {
2035 char b[BDEVNAME_SIZE];
2036 if (d==0)
2037 d = conf->raid_disks * 2;
2038 d--;
2039 rdev = conf->mirrors[d].rdev;
2040 if (rdev &&
2041 test_bit(In_sync, &rdev->flags)) {
2042 if (r1_sync_page_io(rdev, sect, s,
2043 conf->tmppage, READ)) {
2044 atomic_add(s, &rdev->corrected_errors);
2045 printk(KERN_INFO
2046 "md/raid1:%s: read error corrected "
2047 "(%d sectors at %llu on %s)\n",
2048 mdname(mddev), s,
2049 (unsigned long long)(sect +
2050 rdev->data_offset),
2051 bdevname(rdev->bdev, b));
2052 }
2053 }
2054 }
2055 sectors -= s;
2056 sect += s;
2057 }
2058 }
2059
2060 static void bi_complete(struct bio *bio, int error)
2061 {
2062 complete((struct completion *)bio->bi_private);
2063 }
2064
2065 static int submit_bio_wait(int rw, struct bio *bio)
2066 {
2067 struct completion event;
2068 rw |= REQ_SYNC;
2069
2070 init_completion(&event);
2071 bio->bi_private = &event;
2072 bio->bi_end_io = bi_complete;
2073 submit_bio(rw, bio);
2074 wait_for_completion(&event);
2075
2076 return test_bit(BIO_UPTODATE, &bio->bi_flags);
2077 }
2078
2079 static int narrow_write_error(struct r1bio *r1_bio, int i)
2080 {
2081 struct mddev *mddev = r1_bio->mddev;
2082 struct r1conf *conf = mddev->private;
2083 struct md_rdev *rdev = conf->mirrors[i].rdev;
2084 int vcnt, idx;
2085 struct bio_vec *vec;
2086
2087 /* bio has the data to be written to device 'i' where
2088 * we just recently had a write error.
2089 * We repeatedly clone the bio and trim down to one block,
2090 * then try the write. Where the write fails we record
2091 * a bad block.
2092 * It is conceivable that the bio doesn't exactly align with
2093 * blocks. We must handle this somehow.
2094 *
2095 * We currently own a reference on the rdev.
2096 */
2097
2098 int block_sectors;
2099 sector_t sector;
2100 int sectors;
2101 int sect_to_write = r1_bio->sectors;
2102 int ok = 1;
2103
2104 if (rdev->badblocks.shift < 0)
2105 return 0;
2106
2107 block_sectors = 1 << rdev->badblocks.shift;
2108 sector = r1_bio->sector;
2109 sectors = ((sector + block_sectors)
2110 & ~(sector_t)(block_sectors - 1))
2111 - sector;
2112
2113 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2114 vcnt = r1_bio->behind_page_count;
2115 vec = r1_bio->behind_bvecs;
2116 idx = 0;
2117 while (vec[idx].bv_page == NULL)
2118 idx++;
2119 } else {
2120 vcnt = r1_bio->master_bio->bi_vcnt;
2121 vec = r1_bio->master_bio->bi_io_vec;
2122 idx = r1_bio->master_bio->bi_idx;
2123 }
2124 while (sect_to_write) {
2125 struct bio *wbio;
2126 if (sectors > sect_to_write)
2127 sectors = sect_to_write;
2128 /* Write at 'sector' for 'sectors'*/
2129
2130 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2131 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2132 wbio->bi_sector = r1_bio->sector;
2133 wbio->bi_rw = WRITE;
2134 wbio->bi_vcnt = vcnt;
2135 wbio->bi_size = r1_bio->sectors << 9;
2136 wbio->bi_idx = idx;
2137
2138 md_trim_bio(wbio, sector - r1_bio->sector, sectors);
2139 wbio->bi_sector += rdev->data_offset;
2140 wbio->bi_bdev = rdev->bdev;
2141 if (submit_bio_wait(WRITE, wbio) == 0)
2142 /* failure! */
2143 ok = rdev_set_badblocks(rdev, sector,
2144 sectors, 0)
2145 && ok;
2146
2147 bio_put(wbio);
2148 sect_to_write -= sectors;
2149 sector += sectors;
2150 sectors = block_sectors;
2151 }
2152 return ok;
2153 }
2154
2155 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2156 {
2157 int m;
2158 int s = r1_bio->sectors;
2159 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2160 struct md_rdev *rdev = conf->mirrors[m].rdev;
2161 struct bio *bio = r1_bio->bios[m];
2162 if (bio->bi_end_io == NULL)
2163 continue;
2164 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2165 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2166 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2167 }
2168 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2169 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2170 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2171 md_error(conf->mddev, rdev);
2172 }
2173 }
2174 put_buf(r1_bio);
2175 md_done_sync(conf->mddev, s, 1);
2176 }
2177
2178 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2179 {
2180 int m;
2181 for (m = 0; m < conf->raid_disks * 2 ; m++)
2182 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2183 struct md_rdev *rdev = conf->mirrors[m].rdev;
2184 rdev_clear_badblocks(rdev,
2185 r1_bio->sector,
2186 r1_bio->sectors, 0);
2187 rdev_dec_pending(rdev, conf->mddev);
2188 } else if (r1_bio->bios[m] != NULL) {
2189 /* This drive got a write error. We need to
2190 * narrow down and record precise write
2191 * errors.
2192 */
2193 if (!narrow_write_error(r1_bio, m)) {
2194 md_error(conf->mddev,
2195 conf->mirrors[m].rdev);
2196 /* an I/O failed, we can't clear the bitmap */
2197 set_bit(R1BIO_Degraded, &r1_bio->state);
2198 }
2199 rdev_dec_pending(conf->mirrors[m].rdev,
2200 conf->mddev);
2201 }
2202 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2203 close_write(r1_bio);
2204 raid_end_bio_io(r1_bio);
2205 }
2206
2207 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2208 {
2209 int disk;
2210 int max_sectors;
2211 struct mddev *mddev = conf->mddev;
2212 struct bio *bio;
2213 char b[BDEVNAME_SIZE];
2214 struct md_rdev *rdev;
2215
2216 clear_bit(R1BIO_ReadError, &r1_bio->state);
2217 /* we got a read error. Maybe the drive is bad. Maybe just
2218 * the block and we can fix it.
2219 * We freeze all other IO, and try reading the block from
2220 * other devices. When we find one, we re-write
2221 * and check it that fixes the read error.
2222 * This is all done synchronously while the array is
2223 * frozen
2224 */
2225 if (mddev->ro == 0) {
2226 freeze_array(conf);
2227 fix_read_error(conf, r1_bio->read_disk,
2228 r1_bio->sector, r1_bio->sectors);
2229 unfreeze_array(conf);
2230 } else
2231 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2232 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2233
2234 bio = r1_bio->bios[r1_bio->read_disk];
2235 bdevname(bio->bi_bdev, b);
2236 read_more:
2237 disk = read_balance(conf, r1_bio, &max_sectors);
2238 if (disk == -1) {
2239 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2240 " read error for block %llu\n",
2241 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2242 raid_end_bio_io(r1_bio);
2243 } else {
2244 const unsigned long do_sync
2245 = r1_bio->master_bio->bi_rw & REQ_SYNC;
2246 if (bio) {
2247 r1_bio->bios[r1_bio->read_disk] =
2248 mddev->ro ? IO_BLOCKED : NULL;
2249 bio_put(bio);
2250 }
2251 r1_bio->read_disk = disk;
2252 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2253 md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
2254 r1_bio->bios[r1_bio->read_disk] = bio;
2255 rdev = conf->mirrors[disk].rdev;
2256 printk_ratelimited(KERN_ERR
2257 "md/raid1:%s: redirecting sector %llu"
2258 " to other mirror: %s\n",
2259 mdname(mddev),
2260 (unsigned long long)r1_bio->sector,
2261 bdevname(rdev->bdev, b));
2262 bio->bi_sector = r1_bio->sector + rdev->data_offset;
2263 bio->bi_bdev = rdev->bdev;
2264 bio->bi_end_io = raid1_end_read_request;
2265 bio->bi_rw = READ | do_sync;
2266 bio->bi_private = r1_bio;
2267 if (max_sectors < r1_bio->sectors) {
2268 /* Drat - have to split this up more */
2269 struct bio *mbio = r1_bio->master_bio;
2270 int sectors_handled = (r1_bio->sector + max_sectors
2271 - mbio->bi_sector);
2272 r1_bio->sectors = max_sectors;
2273 spin_lock_irq(&conf->device_lock);
2274 if (mbio->bi_phys_segments == 0)
2275 mbio->bi_phys_segments = 2;
2276 else
2277 mbio->bi_phys_segments++;
2278 spin_unlock_irq(&conf->device_lock);
2279 generic_make_request(bio);
2280 bio = NULL;
2281
2282 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2283
2284 r1_bio->master_bio = mbio;
2285 r1_bio->sectors = (mbio->bi_size >> 9)
2286 - sectors_handled;
2287 r1_bio->state = 0;
2288 set_bit(R1BIO_ReadError, &r1_bio->state);
2289 r1_bio->mddev = mddev;
2290 r1_bio->sector = mbio->bi_sector + sectors_handled;
2291
2292 goto read_more;
2293 } else
2294 generic_make_request(bio);
2295 }
2296 }
2297
2298 static void raid1d(struct md_thread *thread)
2299 {
2300 struct mddev *mddev = thread->mddev;
2301 struct r1bio *r1_bio;
2302 unsigned long flags;
2303 struct r1conf *conf = mddev->private;
2304 struct list_head *head = &conf->retry_list;
2305 struct blk_plug plug;
2306
2307 md_check_recovery(mddev);
2308
2309 blk_start_plug(&plug);
2310 for (;;) {
2311
2312 flush_pending_writes(conf);
2313
2314 spin_lock_irqsave(&conf->device_lock, flags);
2315 if (list_empty(head)) {
2316 spin_unlock_irqrestore(&conf->device_lock, flags);
2317 break;
2318 }
2319 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2320 list_del(head->prev);
2321 conf->nr_queued--;
2322 spin_unlock_irqrestore(&conf->device_lock, flags);
2323
2324 mddev = r1_bio->mddev;
2325 conf = mddev->private;
2326 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2327 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2328 test_bit(R1BIO_WriteError, &r1_bio->state))
2329 handle_sync_write_finished(conf, r1_bio);
2330 else
2331 sync_request_write(mddev, r1_bio);
2332 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2333 test_bit(R1BIO_WriteError, &r1_bio->state))
2334 handle_write_finished(conf, r1_bio);
2335 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2336 handle_read_error(conf, r1_bio);
2337 else
2338 /* just a partial read to be scheduled from separate
2339 * context
2340 */
2341 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2342
2343 cond_resched();
2344 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2345 md_check_recovery(mddev);
2346 }
2347 blk_finish_plug(&plug);
2348 }
2349
2350
2351 static int init_resync(struct r1conf *conf)
2352 {
2353 int buffs;
2354
2355 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2356 BUG_ON(conf->r1buf_pool);
2357 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2358 conf->poolinfo);
2359 if (!conf->r1buf_pool)
2360 return -ENOMEM;
2361 conf->next_resync = 0;
2362 return 0;
2363 }
2364
2365 /*
2366 * perform a "sync" on one "block"
2367 *
2368 * We need to make sure that no normal I/O request - particularly write
2369 * requests - conflict with active sync requests.
2370 *
2371 * This is achieved by tracking pending requests and a 'barrier' concept
2372 * that can be installed to exclude normal IO requests.
2373 */
2374
2375 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2376 {
2377 struct r1conf *conf = mddev->private;
2378 struct r1bio *r1_bio;
2379 struct bio *bio;
2380 sector_t max_sector, nr_sectors;
2381 int disk = -1;
2382 int i;
2383 int wonly = -1;
2384 int write_targets = 0, read_targets = 0;
2385 sector_t sync_blocks;
2386 int still_degraded = 0;
2387 int good_sectors = RESYNC_SECTORS;
2388 int min_bad = 0; /* number of sectors that are bad in all devices */
2389
2390 if (!conf->r1buf_pool)
2391 if (init_resync(conf))
2392 return 0;
2393
2394 max_sector = mddev->dev_sectors;
2395 if (sector_nr >= max_sector) {
2396 /* If we aborted, we need to abort the
2397 * sync on the 'current' bitmap chunk (there will
2398 * only be one in raid1 resync.
2399 * We can find the current addess in mddev->curr_resync
2400 */
2401 if (mddev->curr_resync < max_sector) /* aborted */
2402 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2403 &sync_blocks, 1);
2404 else /* completed sync */
2405 conf->fullsync = 0;
2406
2407 bitmap_close_sync(mddev->bitmap);
2408 close_sync(conf);
2409 return 0;
2410 }
2411
2412 if (mddev->bitmap == NULL &&
2413 mddev->recovery_cp == MaxSector &&
2414 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2415 conf->fullsync == 0) {
2416 *skipped = 1;
2417 return max_sector - sector_nr;
2418 }
2419 /* before building a request, check if we can skip these blocks..
2420 * This call the bitmap_start_sync doesn't actually record anything
2421 */
2422 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2423 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2424 /* We can skip this block, and probably several more */
2425 *skipped = 1;
2426 return sync_blocks;
2427 }
2428 /*
2429 * If there is non-resync activity waiting for a turn,
2430 * and resync is going fast enough,
2431 * then let it though before starting on this new sync request.
2432 */
2433 if (!go_faster && conf->nr_waiting)
2434 msleep_interruptible(1000);
2435
2436 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2437 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2438 raise_barrier(conf);
2439
2440 conf->next_resync = sector_nr;
2441
2442 rcu_read_lock();
2443 /*
2444 * If we get a correctably read error during resync or recovery,
2445 * we might want to read from a different device. So we
2446 * flag all drives that could conceivably be read from for READ,
2447 * and any others (which will be non-In_sync devices) for WRITE.
2448 * If a read fails, we try reading from something else for which READ
2449 * is OK.
2450 */
2451
2452 r1_bio->mddev = mddev;
2453 r1_bio->sector = sector_nr;
2454 r1_bio->state = 0;
2455 set_bit(R1BIO_IsSync, &r1_bio->state);
2456
2457 for (i = 0; i < conf->raid_disks * 2; i++) {
2458 struct md_rdev *rdev;
2459 bio = r1_bio->bios[i];
2460
2461 /* take from bio_init */
2462 bio->bi_next = NULL;
2463 bio->bi_flags &= ~(BIO_POOL_MASK-1);
2464 bio->bi_flags |= 1 << BIO_UPTODATE;
2465 bio->bi_rw = READ;
2466 bio->bi_vcnt = 0;
2467 bio->bi_idx = 0;
2468 bio->bi_phys_segments = 0;
2469 bio->bi_size = 0;
2470 bio->bi_end_io = NULL;
2471 bio->bi_private = NULL;
2472
2473 rdev = rcu_dereference(conf->mirrors[i].rdev);
2474 if (rdev == NULL ||
2475 test_bit(Faulty, &rdev->flags)) {
2476 if (i < conf->raid_disks)
2477 still_degraded = 1;
2478 } else if (!test_bit(In_sync, &rdev->flags)) {
2479 bio->bi_rw = WRITE;
2480 bio->bi_end_io = end_sync_write;
2481 write_targets ++;
2482 } else {
2483 /* may need to read from here */
2484 sector_t first_bad = MaxSector;
2485 int bad_sectors;
2486
2487 if (is_badblock(rdev, sector_nr, good_sectors,
2488 &first_bad, &bad_sectors)) {
2489 if (first_bad > sector_nr)
2490 good_sectors = first_bad - sector_nr;
2491 else {
2492 bad_sectors -= (sector_nr - first_bad);
2493 if (min_bad == 0 ||
2494 min_bad > bad_sectors)
2495 min_bad = bad_sectors;
2496 }
2497 }
2498 if (sector_nr < first_bad) {
2499 if (test_bit(WriteMostly, &rdev->flags)) {
2500 if (wonly < 0)
2501 wonly = i;
2502 } else {
2503 if (disk < 0)
2504 disk = i;
2505 }
2506 bio->bi_rw = READ;
2507 bio->bi_end_io = end_sync_read;
2508 read_targets++;
2509 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2510 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2511 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2512 /*
2513 * The device is suitable for reading (InSync),
2514 * but has bad block(s) here. Let's try to correct them,
2515 * if we are doing resync or repair. Otherwise, leave
2516 * this device alone for this sync request.
2517 */
2518 bio->bi_rw = WRITE;
2519 bio->bi_end_io = end_sync_write;
2520 write_targets++;
2521 }
2522 }
2523 if (bio->bi_end_io) {
2524 atomic_inc(&rdev->nr_pending);
2525 bio->bi_sector = sector_nr + rdev->data_offset;
2526 bio->bi_bdev = rdev->bdev;
2527 bio->bi_private = r1_bio;
2528 }
2529 }
2530 rcu_read_unlock();
2531 if (disk < 0)
2532 disk = wonly;
2533 r1_bio->read_disk = disk;
2534
2535 if (read_targets == 0 && min_bad > 0) {
2536 /* These sectors are bad on all InSync devices, so we
2537 * need to mark them bad on all write targets
2538 */
2539 int ok = 1;
2540 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2541 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2542 struct md_rdev *rdev = conf->mirrors[i].rdev;
2543 ok = rdev_set_badblocks(rdev, sector_nr,
2544 min_bad, 0
2545 ) && ok;
2546 }
2547 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2548 *skipped = 1;
2549 put_buf(r1_bio);
2550
2551 if (!ok) {
2552 /* Cannot record the badblocks, so need to
2553 * abort the resync.
2554 * If there are multiple read targets, could just
2555 * fail the really bad ones ???
2556 */
2557 conf->recovery_disabled = mddev->recovery_disabled;
2558 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2559 return 0;
2560 } else
2561 return min_bad;
2562
2563 }
2564 if (min_bad > 0 && min_bad < good_sectors) {
2565 /* only resync enough to reach the next bad->good
2566 * transition */
2567 good_sectors = min_bad;
2568 }
2569
2570 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2571 /* extra read targets are also write targets */
2572 write_targets += read_targets-1;
2573
2574 if (write_targets == 0 || read_targets == 0) {
2575 /* There is nowhere to write, so all non-sync
2576 * drives must be failed - so we are finished
2577 */
2578 sector_t rv;
2579 if (min_bad > 0)
2580 max_sector = sector_nr + min_bad;
2581 rv = max_sector - sector_nr;
2582 *skipped = 1;
2583 put_buf(r1_bio);
2584 return rv;
2585 }
2586
2587 if (max_sector > mddev->resync_max)
2588 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2589 if (max_sector > sector_nr + good_sectors)
2590 max_sector = sector_nr + good_sectors;
2591 nr_sectors = 0;
2592 sync_blocks = 0;
2593 do {
2594 struct page *page;
2595 int len = PAGE_SIZE;
2596 if (sector_nr + (len>>9) > max_sector)
2597 len = (max_sector - sector_nr) << 9;
2598 if (len == 0)
2599 break;
2600 if (sync_blocks == 0) {
2601 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2602 &sync_blocks, still_degraded) &&
2603 !conf->fullsync &&
2604 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2605 break;
2606 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2607 if ((len >> 9) > sync_blocks)
2608 len = sync_blocks<<9;
2609 }
2610
2611 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2612 bio = r1_bio->bios[i];
2613 if (bio->bi_end_io) {
2614 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2615 if (bio_add_page(bio, page, len, 0) == 0) {
2616 /* stop here */
2617 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2618 while (i > 0) {
2619 i--;
2620 bio = r1_bio->bios[i];
2621 if (bio->bi_end_io==NULL)
2622 continue;
2623 /* remove last page from this bio */
2624 bio->bi_vcnt--;
2625 bio->bi_size -= len;
2626 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2627 }
2628 goto bio_full;
2629 }
2630 }
2631 }
2632 nr_sectors += len>>9;
2633 sector_nr += len>>9;
2634 sync_blocks -= (len>>9);
2635 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2636 bio_full:
2637 r1_bio->sectors = nr_sectors;
2638
2639 /* For a user-requested sync, we read all readable devices and do a
2640 * compare
2641 */
2642 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2643 atomic_set(&r1_bio->remaining, read_targets);
2644 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2645 bio = r1_bio->bios[i];
2646 if (bio->bi_end_io == end_sync_read) {
2647 read_targets--;
2648 md_sync_acct(bio->bi_bdev, nr_sectors);
2649 generic_make_request(bio);
2650 }
2651 }
2652 } else {
2653 atomic_set(&r1_bio->remaining, 1);
2654 bio = r1_bio->bios[r1_bio->read_disk];
2655 md_sync_acct(bio->bi_bdev, nr_sectors);
2656 generic_make_request(bio);
2657
2658 }
2659 return nr_sectors;
2660 }
2661
2662 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2663 {
2664 if (sectors)
2665 return sectors;
2666
2667 return mddev->dev_sectors;
2668 }
2669
2670 static struct r1conf *setup_conf(struct mddev *mddev)
2671 {
2672 struct r1conf *conf;
2673 int i;
2674 struct raid1_info *disk;
2675 struct md_rdev *rdev;
2676 int err = -ENOMEM;
2677
2678 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2679 if (!conf)
2680 goto abort;
2681
2682 conf->mirrors = kzalloc(sizeof(struct raid1_info)
2683 * mddev->raid_disks * 2,
2684 GFP_KERNEL);
2685 if (!conf->mirrors)
2686 goto abort;
2687
2688 conf->tmppage = alloc_page(GFP_KERNEL);
2689 if (!conf->tmppage)
2690 goto abort;
2691
2692 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2693 if (!conf->poolinfo)
2694 goto abort;
2695 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2696 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2697 r1bio_pool_free,
2698 conf->poolinfo);
2699 if (!conf->r1bio_pool)
2700 goto abort;
2701
2702 conf->poolinfo->mddev = mddev;
2703
2704 err = -EINVAL;
2705 spin_lock_init(&conf->device_lock);
2706 rdev_for_each(rdev, mddev) {
2707 struct request_queue *q;
2708 int disk_idx = rdev->raid_disk;
2709 if (disk_idx >= mddev->raid_disks
2710 || disk_idx < 0)
2711 continue;
2712 if (test_bit(Replacement, &rdev->flags))
2713 disk = conf->mirrors + mddev->raid_disks + disk_idx;
2714 else
2715 disk = conf->mirrors + disk_idx;
2716
2717 if (disk->rdev)
2718 goto abort;
2719 disk->rdev = rdev;
2720 q = bdev_get_queue(rdev->bdev);
2721 if (q->merge_bvec_fn)
2722 mddev->merge_check_needed = 1;
2723
2724 disk->head_position = 0;
2725 disk->seq_start = MaxSector;
2726 }
2727 conf->raid_disks = mddev->raid_disks;
2728 conf->mddev = mddev;
2729 INIT_LIST_HEAD(&conf->retry_list);
2730
2731 spin_lock_init(&conf->resync_lock);
2732 init_waitqueue_head(&conf->wait_barrier);
2733
2734 bio_list_init(&conf->pending_bio_list);
2735 conf->pending_count = 0;
2736 conf->recovery_disabled = mddev->recovery_disabled - 1;
2737
2738 err = -EIO;
2739 for (i = 0; i < conf->raid_disks * 2; i++) {
2740
2741 disk = conf->mirrors + i;
2742
2743 if (i < conf->raid_disks &&
2744 disk[conf->raid_disks].rdev) {
2745 /* This slot has a replacement. */
2746 if (!disk->rdev) {
2747 /* No original, just make the replacement
2748 * a recovering spare
2749 */
2750 disk->rdev =
2751 disk[conf->raid_disks].rdev;
2752 disk[conf->raid_disks].rdev = NULL;
2753 } else if (!test_bit(In_sync, &disk->rdev->flags))
2754 /* Original is not in_sync - bad */
2755 goto abort;
2756 }
2757
2758 if (!disk->rdev ||
2759 !test_bit(In_sync, &disk->rdev->flags)) {
2760 disk->head_position = 0;
2761 if (disk->rdev &&
2762 (disk->rdev->saved_raid_disk < 0))
2763 conf->fullsync = 1;
2764 }
2765 }
2766
2767 err = -ENOMEM;
2768 conf->thread = md_register_thread(raid1d, mddev, "raid1");
2769 if (!conf->thread) {
2770 printk(KERN_ERR
2771 "md/raid1:%s: couldn't allocate thread\n",
2772 mdname(mddev));
2773 goto abort;
2774 }
2775
2776 return conf;
2777
2778 abort:
2779 if (conf) {
2780 if (conf->r1bio_pool)
2781 mempool_destroy(conf->r1bio_pool);
2782 kfree(conf->mirrors);
2783 safe_put_page(conf->tmppage);
2784 kfree(conf->poolinfo);
2785 kfree(conf);
2786 }
2787 return ERR_PTR(err);
2788 }
2789
2790 static int stop(struct mddev *mddev);
2791 static int run(struct mddev *mddev)
2792 {
2793 struct r1conf *conf;
2794 int i;
2795 struct md_rdev *rdev;
2796 int ret;
2797 bool discard_supported = false;
2798
2799 if (mddev->level != 1) {
2800 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2801 mdname(mddev), mddev->level);
2802 return -EIO;
2803 }
2804 if (mddev->reshape_position != MaxSector) {
2805 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2806 mdname(mddev));
2807 return -EIO;
2808 }
2809 /*
2810 * copy the already verified devices into our private RAID1
2811 * bookkeeping area. [whatever we allocate in run(),
2812 * should be freed in stop()]
2813 */
2814 if (mddev->private == NULL)
2815 conf = setup_conf(mddev);
2816 else
2817 conf = mddev->private;
2818
2819 if (IS_ERR(conf))
2820 return PTR_ERR(conf);
2821
2822 rdev_for_each(rdev, mddev) {
2823 if (!mddev->gendisk)
2824 continue;
2825 disk_stack_limits(mddev->gendisk, rdev->bdev,
2826 rdev->data_offset << 9);
2827 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2828 discard_supported = true;
2829 }
2830
2831 mddev->degraded = 0;
2832 for (i=0; i < conf->raid_disks; i++)
2833 if (conf->mirrors[i].rdev == NULL ||
2834 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2835 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2836 mddev->degraded++;
2837
2838 if (conf->raid_disks - mddev->degraded == 1)
2839 mddev->recovery_cp = MaxSector;
2840
2841 if (mddev->recovery_cp != MaxSector)
2842 printk(KERN_NOTICE "md/raid1:%s: not clean"
2843 " -- starting background reconstruction\n",
2844 mdname(mddev));
2845 printk(KERN_INFO
2846 "md/raid1:%s: active with %d out of %d mirrors\n",
2847 mdname(mddev), mddev->raid_disks - mddev->degraded,
2848 mddev->raid_disks);
2849
2850 /*
2851 * Ok, everything is just fine now
2852 */
2853 mddev->thread = conf->thread;
2854 conf->thread = NULL;
2855 mddev->private = conf;
2856
2857 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2858
2859 if (mddev->queue) {
2860 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2861 mddev->queue->backing_dev_info.congested_data = mddev;
2862 blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2863
2864 if (discard_supported)
2865 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2866 mddev->queue);
2867 else
2868 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2869 mddev->queue);
2870 }
2871
2872 ret = md_integrity_register(mddev);
2873 if (ret)
2874 stop(mddev);
2875 return ret;
2876 }
2877
2878 static int stop(struct mddev *mddev)
2879 {
2880 struct r1conf *conf = mddev->private;
2881 struct bitmap *bitmap = mddev->bitmap;
2882
2883 /* wait for behind writes to complete */
2884 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2885 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2886 mdname(mddev));
2887 /* need to kick something here to make sure I/O goes? */
2888 wait_event(bitmap->behind_wait,
2889 atomic_read(&bitmap->behind_writes) == 0);
2890 }
2891
2892 raise_barrier(conf);
2893 lower_barrier(conf);
2894
2895 md_unregister_thread(&mddev->thread);
2896 if (conf->r1bio_pool)
2897 mempool_destroy(conf->r1bio_pool);
2898 kfree(conf->mirrors);
2899 kfree(conf->poolinfo);
2900 kfree(conf);
2901 mddev->private = NULL;
2902 return 0;
2903 }
2904
2905 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2906 {
2907 /* no resync is happening, and there is enough space
2908 * on all devices, so we can resize.
2909 * We need to make sure resync covers any new space.
2910 * If the array is shrinking we should possibly wait until
2911 * any io in the removed space completes, but it hardly seems
2912 * worth it.
2913 */
2914 sector_t newsize = raid1_size(mddev, sectors, 0);
2915 if (mddev->external_size &&
2916 mddev->array_sectors > newsize)
2917 return -EINVAL;
2918 if (mddev->bitmap) {
2919 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
2920 if (ret)
2921 return ret;
2922 }
2923 md_set_array_sectors(mddev, newsize);
2924 set_capacity(mddev->gendisk, mddev->array_sectors);
2925 revalidate_disk(mddev->gendisk);
2926 if (sectors > mddev->dev_sectors &&
2927 mddev->recovery_cp > mddev->dev_sectors) {
2928 mddev->recovery_cp = mddev->dev_sectors;
2929 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2930 }
2931 mddev->dev_sectors = sectors;
2932 mddev->resync_max_sectors = sectors;
2933 return 0;
2934 }
2935
2936 static int raid1_reshape(struct mddev *mddev)
2937 {
2938 /* We need to:
2939 * 1/ resize the r1bio_pool
2940 * 2/ resize conf->mirrors
2941 *
2942 * We allocate a new r1bio_pool if we can.
2943 * Then raise a device barrier and wait until all IO stops.
2944 * Then resize conf->mirrors and swap in the new r1bio pool.
2945 *
2946 * At the same time, we "pack" the devices so that all the missing
2947 * devices have the higher raid_disk numbers.
2948 */
2949 mempool_t *newpool, *oldpool;
2950 struct pool_info *newpoolinfo;
2951 struct raid1_info *newmirrors;
2952 struct r1conf *conf = mddev->private;
2953 int cnt, raid_disks;
2954 unsigned long flags;
2955 int d, d2, err;
2956
2957 /* Cannot change chunk_size, layout, or level */
2958 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2959 mddev->layout != mddev->new_layout ||
2960 mddev->level != mddev->new_level) {
2961 mddev->new_chunk_sectors = mddev->chunk_sectors;
2962 mddev->new_layout = mddev->layout;
2963 mddev->new_level = mddev->level;
2964 return -EINVAL;
2965 }
2966
2967 err = md_allow_write(mddev);
2968 if (err)
2969 return err;
2970
2971 raid_disks = mddev->raid_disks + mddev->delta_disks;
2972
2973 if (raid_disks < conf->raid_disks) {
2974 cnt=0;
2975 for (d= 0; d < conf->raid_disks; d++)
2976 if (conf->mirrors[d].rdev)
2977 cnt++;
2978 if (cnt > raid_disks)
2979 return -EBUSY;
2980 }
2981
2982 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2983 if (!newpoolinfo)
2984 return -ENOMEM;
2985 newpoolinfo->mddev = mddev;
2986 newpoolinfo->raid_disks = raid_disks * 2;
2987
2988 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2989 r1bio_pool_free, newpoolinfo);
2990 if (!newpool) {
2991 kfree(newpoolinfo);
2992 return -ENOMEM;
2993 }
2994 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
2995 GFP_KERNEL);
2996 if (!newmirrors) {
2997 kfree(newpoolinfo);
2998 mempool_destroy(newpool);
2999 return -ENOMEM;
3000 }
3001
3002 raise_barrier(conf);
3003
3004 /* ok, everything is stopped */
3005 oldpool = conf->r1bio_pool;
3006 conf->r1bio_pool = newpool;
3007
3008 for (d = d2 = 0; d < conf->raid_disks; d++) {
3009 struct md_rdev *rdev = conf->mirrors[d].rdev;
3010 if (rdev && rdev->raid_disk != d2) {
3011 sysfs_unlink_rdev(mddev, rdev);
3012 rdev->raid_disk = d2;
3013 sysfs_unlink_rdev(mddev, rdev);
3014 if (sysfs_link_rdev(mddev, rdev))
3015 printk(KERN_WARNING
3016 "md/raid1:%s: cannot register rd%d\n",
3017 mdname(mddev), rdev->raid_disk);
3018 }
3019 if (rdev)
3020 newmirrors[d2++].rdev = rdev;
3021 }
3022 kfree(conf->mirrors);
3023 conf->mirrors = newmirrors;
3024 kfree(conf->poolinfo);
3025 conf->poolinfo = newpoolinfo;
3026
3027 spin_lock_irqsave(&conf->device_lock, flags);
3028 mddev->degraded += (raid_disks - conf->raid_disks);
3029 spin_unlock_irqrestore(&conf->device_lock, flags);
3030 conf->raid_disks = mddev->raid_disks = raid_disks;
3031 mddev->delta_disks = 0;
3032
3033 lower_barrier(conf);
3034
3035 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3036 md_wakeup_thread(mddev->thread);
3037
3038 mempool_destroy(oldpool);
3039 return 0;
3040 }
3041
3042 static void raid1_quiesce(struct mddev *mddev, int state)
3043 {
3044 struct r1conf *conf = mddev->private;
3045
3046 switch(state) {
3047 case 2: /* wake for suspend */
3048 wake_up(&conf->wait_barrier);
3049 break;
3050 case 1:
3051 raise_barrier(conf);
3052 break;
3053 case 0:
3054 lower_barrier(conf);
3055 break;
3056 }
3057 }
3058
3059 static void *raid1_takeover(struct mddev *mddev)
3060 {
3061 /* raid1 can take over:
3062 * raid5 with 2 devices, any layout or chunk size
3063 */
3064 if (mddev->level == 5 && mddev->raid_disks == 2) {
3065 struct r1conf *conf;
3066 mddev->new_level = 1;
3067 mddev->new_layout = 0;
3068 mddev->new_chunk_sectors = 0;
3069 conf = setup_conf(mddev);
3070 if (!IS_ERR(conf))
3071 conf->barrier = 1;
3072 return conf;
3073 }
3074 return ERR_PTR(-EINVAL);
3075 }
3076
3077 static struct md_personality raid1_personality =
3078 {
3079 .name = "raid1",
3080 .level = 1,
3081 .owner = THIS_MODULE,
3082 .make_request = make_request,
3083 .run = run,
3084 .stop = stop,
3085 .status = status,
3086 .error_handler = error,
3087 .hot_add_disk = raid1_add_disk,
3088 .hot_remove_disk= raid1_remove_disk,
3089 .spare_active = raid1_spare_active,
3090 .sync_request = sync_request,
3091 .resize = raid1_resize,
3092 .size = raid1_size,
3093 .check_reshape = raid1_reshape,
3094 .quiesce = raid1_quiesce,
3095 .takeover = raid1_takeover,
3096 };
3097
3098 static int __init raid_init(void)
3099 {
3100 return register_md_personality(&raid1_personality);
3101 }
3102
3103 static void raid_exit(void)
3104 {
3105 unregister_md_personality(&raid1_personality);
3106 }
3107
3108 module_init(raid_init);
3109 module_exit(raid_exit);
3110 MODULE_LICENSE("GPL");
3111 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3112 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3113 MODULE_ALIAS("md-raid1");
3114 MODULE_ALIAS("md-level-1");
3115
3116 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
This page took 0.094942 seconds and 5 git commands to generate.