Merge tag 'mvebu-clk-fixes-3.14' of git://git.infradead.org/linux-mvebu into clk...
[deliverable/linux.git] / drivers / md / raid1.c
1 /*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
34 #include <linux/slab.h>
35 #include <linux/delay.h>
36 #include <linux/blkdev.h>
37 #include <linux/module.h>
38 #include <linux/seq_file.h>
39 #include <linux/ratelimit.h>
40 #include "md.h"
41 #include "raid1.h"
42 #include "bitmap.h"
43
44 /*
45 * Number of guaranteed r1bios in case of extreme VM load:
46 */
47 #define NR_RAID1_BIOS 256
48
49 /* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53 */
54 #define IO_BLOCKED ((struct bio *)1)
55 /* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
58 */
59 #define IO_MADE_GOOD ((struct bio *)2)
60
61 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
63 /* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
65 * for writeback.
66 */
67 static int max_queued_requests = 1024;
68
69 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70 sector_t bi_sector);
71 static void lower_barrier(struct r1conf *conf);
72
73 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
74 {
75 struct pool_info *pi = data;
76 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
77
78 /* allocate a r1bio with room for raid_disks entries in the bios array */
79 return kzalloc(size, gfp_flags);
80 }
81
82 static void r1bio_pool_free(void *r1_bio, void *data)
83 {
84 kfree(r1_bio);
85 }
86
87 #define RESYNC_BLOCK_SIZE (64*1024)
88 #define RESYNC_DEPTH 32
89 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
91 #define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92 #define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
93 #define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
94
95 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
96 {
97 struct pool_info *pi = data;
98 struct r1bio *r1_bio;
99 struct bio *bio;
100 int i, j;
101
102 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
103 if (!r1_bio)
104 return NULL;
105
106 /*
107 * Allocate bios : 1 for reading, n-1 for writing
108 */
109 for (j = pi->raid_disks ; j-- ; ) {
110 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
111 if (!bio)
112 goto out_free_bio;
113 r1_bio->bios[j] = bio;
114 }
115 /*
116 * Allocate RESYNC_PAGES data pages and attach them to
117 * the first bio.
118 * If this is a user-requested check/repair, allocate
119 * RESYNC_PAGES for each bio.
120 */
121 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
122 j = pi->raid_disks;
123 else
124 j = 1;
125 while(j--) {
126 bio = r1_bio->bios[j];
127 bio->bi_vcnt = RESYNC_PAGES;
128
129 if (bio_alloc_pages(bio, gfp_flags))
130 goto out_free_bio;
131 }
132 /* If not user-requests, copy the page pointers to all bios */
133 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
134 for (i=0; i<RESYNC_PAGES ; i++)
135 for (j=1; j<pi->raid_disks; j++)
136 r1_bio->bios[j]->bi_io_vec[i].bv_page =
137 r1_bio->bios[0]->bi_io_vec[i].bv_page;
138 }
139
140 r1_bio->master_bio = NULL;
141
142 return r1_bio;
143
144 out_free_bio:
145 while (++j < pi->raid_disks)
146 bio_put(r1_bio->bios[j]);
147 r1bio_pool_free(r1_bio, data);
148 return NULL;
149 }
150
151 static void r1buf_pool_free(void *__r1_bio, void *data)
152 {
153 struct pool_info *pi = data;
154 int i,j;
155 struct r1bio *r1bio = __r1_bio;
156
157 for (i = 0; i < RESYNC_PAGES; i++)
158 for (j = pi->raid_disks; j-- ;) {
159 if (j == 0 ||
160 r1bio->bios[j]->bi_io_vec[i].bv_page !=
161 r1bio->bios[0]->bi_io_vec[i].bv_page)
162 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
163 }
164 for (i=0 ; i < pi->raid_disks; i++)
165 bio_put(r1bio->bios[i]);
166
167 r1bio_pool_free(r1bio, data);
168 }
169
170 static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
171 {
172 int i;
173
174 for (i = 0; i < conf->raid_disks * 2; i++) {
175 struct bio **bio = r1_bio->bios + i;
176 if (!BIO_SPECIAL(*bio))
177 bio_put(*bio);
178 *bio = NULL;
179 }
180 }
181
182 static void free_r1bio(struct r1bio *r1_bio)
183 {
184 struct r1conf *conf = r1_bio->mddev->private;
185
186 put_all_bios(conf, r1_bio);
187 mempool_free(r1_bio, conf->r1bio_pool);
188 }
189
190 static void put_buf(struct r1bio *r1_bio)
191 {
192 struct r1conf *conf = r1_bio->mddev->private;
193 int i;
194
195 for (i = 0; i < conf->raid_disks * 2; i++) {
196 struct bio *bio = r1_bio->bios[i];
197 if (bio->bi_end_io)
198 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
199 }
200
201 mempool_free(r1_bio, conf->r1buf_pool);
202
203 lower_barrier(conf);
204 }
205
206 static void reschedule_retry(struct r1bio *r1_bio)
207 {
208 unsigned long flags;
209 struct mddev *mddev = r1_bio->mddev;
210 struct r1conf *conf = mddev->private;
211
212 spin_lock_irqsave(&conf->device_lock, flags);
213 list_add(&r1_bio->retry_list, &conf->retry_list);
214 conf->nr_queued ++;
215 spin_unlock_irqrestore(&conf->device_lock, flags);
216
217 wake_up(&conf->wait_barrier);
218 md_wakeup_thread(mddev->thread);
219 }
220
221 /*
222 * raid_end_bio_io() is called when we have finished servicing a mirrored
223 * operation and are ready to return a success/failure code to the buffer
224 * cache layer.
225 */
226 static void call_bio_endio(struct r1bio *r1_bio)
227 {
228 struct bio *bio = r1_bio->master_bio;
229 int done;
230 struct r1conf *conf = r1_bio->mddev->private;
231 sector_t start_next_window = r1_bio->start_next_window;
232 sector_t bi_sector = bio->bi_iter.bi_sector;
233
234 if (bio->bi_phys_segments) {
235 unsigned long flags;
236 spin_lock_irqsave(&conf->device_lock, flags);
237 bio->bi_phys_segments--;
238 done = (bio->bi_phys_segments == 0);
239 spin_unlock_irqrestore(&conf->device_lock, flags);
240 /*
241 * make_request() might be waiting for
242 * bi_phys_segments to decrease
243 */
244 wake_up(&conf->wait_barrier);
245 } else
246 done = 1;
247
248 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
249 clear_bit(BIO_UPTODATE, &bio->bi_flags);
250 if (done) {
251 bio_endio(bio, 0);
252 /*
253 * Wake up any possible resync thread that waits for the device
254 * to go idle.
255 */
256 allow_barrier(conf, start_next_window, bi_sector);
257 }
258 }
259
260 static void raid_end_bio_io(struct r1bio *r1_bio)
261 {
262 struct bio *bio = r1_bio->master_bio;
263
264 /* if nobody has done the final endio yet, do it now */
265 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
266 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
267 (bio_data_dir(bio) == WRITE) ? "write" : "read",
268 (unsigned long long) bio->bi_iter.bi_sector,
269 (unsigned long long) bio_end_sector(bio) - 1);
270
271 call_bio_endio(r1_bio);
272 }
273 free_r1bio(r1_bio);
274 }
275
276 /*
277 * Update disk head position estimator based on IRQ completion info.
278 */
279 static inline void update_head_pos(int disk, struct r1bio *r1_bio)
280 {
281 struct r1conf *conf = r1_bio->mddev->private;
282
283 conf->mirrors[disk].head_position =
284 r1_bio->sector + (r1_bio->sectors);
285 }
286
287 /*
288 * Find the disk number which triggered given bio
289 */
290 static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
291 {
292 int mirror;
293 struct r1conf *conf = r1_bio->mddev->private;
294 int raid_disks = conf->raid_disks;
295
296 for (mirror = 0; mirror < raid_disks * 2; mirror++)
297 if (r1_bio->bios[mirror] == bio)
298 break;
299
300 BUG_ON(mirror == raid_disks * 2);
301 update_head_pos(mirror, r1_bio);
302
303 return mirror;
304 }
305
306 static void raid1_end_read_request(struct bio *bio, int error)
307 {
308 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
309 struct r1bio *r1_bio = bio->bi_private;
310 int mirror;
311 struct r1conf *conf = r1_bio->mddev->private;
312
313 mirror = r1_bio->read_disk;
314 /*
315 * this branch is our 'one mirror IO has finished' event handler:
316 */
317 update_head_pos(mirror, r1_bio);
318
319 if (uptodate)
320 set_bit(R1BIO_Uptodate, &r1_bio->state);
321 else {
322 /* If all other devices have failed, we want to return
323 * the error upwards rather than fail the last device.
324 * Here we redefine "uptodate" to mean "Don't want to retry"
325 */
326 unsigned long flags;
327 spin_lock_irqsave(&conf->device_lock, flags);
328 if (r1_bio->mddev->degraded == conf->raid_disks ||
329 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
330 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
331 uptodate = 1;
332 spin_unlock_irqrestore(&conf->device_lock, flags);
333 }
334
335 if (uptodate) {
336 raid_end_bio_io(r1_bio);
337 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
338 } else {
339 /*
340 * oops, read error:
341 */
342 char b[BDEVNAME_SIZE];
343 printk_ratelimited(
344 KERN_ERR "md/raid1:%s: %s: "
345 "rescheduling sector %llu\n",
346 mdname(conf->mddev),
347 bdevname(conf->mirrors[mirror].rdev->bdev,
348 b),
349 (unsigned long long)r1_bio->sector);
350 set_bit(R1BIO_ReadError, &r1_bio->state);
351 reschedule_retry(r1_bio);
352 /* don't drop the reference on read_disk yet */
353 }
354 }
355
356 static void close_write(struct r1bio *r1_bio)
357 {
358 /* it really is the end of this request */
359 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
360 /* free extra copy of the data pages */
361 int i = r1_bio->behind_page_count;
362 while (i--)
363 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
364 kfree(r1_bio->behind_bvecs);
365 r1_bio->behind_bvecs = NULL;
366 }
367 /* clear the bitmap if all writes complete successfully */
368 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
369 r1_bio->sectors,
370 !test_bit(R1BIO_Degraded, &r1_bio->state),
371 test_bit(R1BIO_BehindIO, &r1_bio->state));
372 md_write_end(r1_bio->mddev);
373 }
374
375 static void r1_bio_write_done(struct r1bio *r1_bio)
376 {
377 if (!atomic_dec_and_test(&r1_bio->remaining))
378 return;
379
380 if (test_bit(R1BIO_WriteError, &r1_bio->state))
381 reschedule_retry(r1_bio);
382 else {
383 close_write(r1_bio);
384 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
385 reschedule_retry(r1_bio);
386 else
387 raid_end_bio_io(r1_bio);
388 }
389 }
390
391 static void raid1_end_write_request(struct bio *bio, int error)
392 {
393 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
394 struct r1bio *r1_bio = bio->bi_private;
395 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
396 struct r1conf *conf = r1_bio->mddev->private;
397 struct bio *to_put = NULL;
398
399 mirror = find_bio_disk(r1_bio, bio);
400
401 /*
402 * 'one mirror IO has finished' event handler:
403 */
404 if (!uptodate) {
405 set_bit(WriteErrorSeen,
406 &conf->mirrors[mirror].rdev->flags);
407 if (!test_and_set_bit(WantReplacement,
408 &conf->mirrors[mirror].rdev->flags))
409 set_bit(MD_RECOVERY_NEEDED, &
410 conf->mddev->recovery);
411
412 set_bit(R1BIO_WriteError, &r1_bio->state);
413 } else {
414 /*
415 * Set R1BIO_Uptodate in our master bio, so that we
416 * will return a good error code for to the higher
417 * levels even if IO on some other mirrored buffer
418 * fails.
419 *
420 * The 'master' represents the composite IO operation
421 * to user-side. So if something waits for IO, then it
422 * will wait for the 'master' bio.
423 */
424 sector_t first_bad;
425 int bad_sectors;
426
427 r1_bio->bios[mirror] = NULL;
428 to_put = bio;
429 /*
430 * Do not set R1BIO_Uptodate if the current device is
431 * rebuilding or Faulty. This is because we cannot use
432 * such device for properly reading the data back (we could
433 * potentially use it, if the current write would have felt
434 * before rdev->recovery_offset, but for simplicity we don't
435 * check this here.
436 */
437 if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
438 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
439 set_bit(R1BIO_Uptodate, &r1_bio->state);
440
441 /* Maybe we can clear some bad blocks. */
442 if (is_badblock(conf->mirrors[mirror].rdev,
443 r1_bio->sector, r1_bio->sectors,
444 &first_bad, &bad_sectors)) {
445 r1_bio->bios[mirror] = IO_MADE_GOOD;
446 set_bit(R1BIO_MadeGood, &r1_bio->state);
447 }
448 }
449
450 if (behind) {
451 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
452 atomic_dec(&r1_bio->behind_remaining);
453
454 /*
455 * In behind mode, we ACK the master bio once the I/O
456 * has safely reached all non-writemostly
457 * disks. Setting the Returned bit ensures that this
458 * gets done only once -- we don't ever want to return
459 * -EIO here, instead we'll wait
460 */
461 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
462 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
463 /* Maybe we can return now */
464 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
465 struct bio *mbio = r1_bio->master_bio;
466 pr_debug("raid1: behind end write sectors"
467 " %llu-%llu\n",
468 (unsigned long long) mbio->bi_iter.bi_sector,
469 (unsigned long long) bio_end_sector(mbio) - 1);
470 call_bio_endio(r1_bio);
471 }
472 }
473 }
474 if (r1_bio->bios[mirror] == NULL)
475 rdev_dec_pending(conf->mirrors[mirror].rdev,
476 conf->mddev);
477
478 /*
479 * Let's see if all mirrored write operations have finished
480 * already.
481 */
482 r1_bio_write_done(r1_bio);
483
484 if (to_put)
485 bio_put(to_put);
486 }
487
488
489 /*
490 * This routine returns the disk from which the requested read should
491 * be done. There is a per-array 'next expected sequential IO' sector
492 * number - if this matches on the next IO then we use the last disk.
493 * There is also a per-disk 'last know head position' sector that is
494 * maintained from IRQ contexts, both the normal and the resync IO
495 * completion handlers update this position correctly. If there is no
496 * perfect sequential match then we pick the disk whose head is closest.
497 *
498 * If there are 2 mirrors in the same 2 devices, performance degrades
499 * because position is mirror, not device based.
500 *
501 * The rdev for the device selected will have nr_pending incremented.
502 */
503 static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
504 {
505 const sector_t this_sector = r1_bio->sector;
506 int sectors;
507 int best_good_sectors;
508 int best_disk, best_dist_disk, best_pending_disk;
509 int has_nonrot_disk;
510 int disk;
511 sector_t best_dist;
512 unsigned int min_pending;
513 struct md_rdev *rdev;
514 int choose_first;
515 int choose_next_idle;
516
517 rcu_read_lock();
518 /*
519 * Check if we can balance. We can balance on the whole
520 * device if no resync is going on, or below the resync window.
521 * We take the first readable disk when above the resync window.
522 */
523 retry:
524 sectors = r1_bio->sectors;
525 best_disk = -1;
526 best_dist_disk = -1;
527 best_dist = MaxSector;
528 best_pending_disk = -1;
529 min_pending = UINT_MAX;
530 best_good_sectors = 0;
531 has_nonrot_disk = 0;
532 choose_next_idle = 0;
533
534 if (conf->mddev->recovery_cp < MaxSector &&
535 (this_sector + sectors >= conf->next_resync))
536 choose_first = 1;
537 else
538 choose_first = 0;
539
540 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
541 sector_t dist;
542 sector_t first_bad;
543 int bad_sectors;
544 unsigned int pending;
545 bool nonrot;
546
547 rdev = rcu_dereference(conf->mirrors[disk].rdev);
548 if (r1_bio->bios[disk] == IO_BLOCKED
549 || rdev == NULL
550 || test_bit(Unmerged, &rdev->flags)
551 || test_bit(Faulty, &rdev->flags))
552 continue;
553 if (!test_bit(In_sync, &rdev->flags) &&
554 rdev->recovery_offset < this_sector + sectors)
555 continue;
556 if (test_bit(WriteMostly, &rdev->flags)) {
557 /* Don't balance among write-mostly, just
558 * use the first as a last resort */
559 if (best_disk < 0) {
560 if (is_badblock(rdev, this_sector, sectors,
561 &first_bad, &bad_sectors)) {
562 if (first_bad < this_sector)
563 /* Cannot use this */
564 continue;
565 best_good_sectors = first_bad - this_sector;
566 } else
567 best_good_sectors = sectors;
568 best_disk = disk;
569 }
570 continue;
571 }
572 /* This is a reasonable device to use. It might
573 * even be best.
574 */
575 if (is_badblock(rdev, this_sector, sectors,
576 &first_bad, &bad_sectors)) {
577 if (best_dist < MaxSector)
578 /* already have a better device */
579 continue;
580 if (first_bad <= this_sector) {
581 /* cannot read here. If this is the 'primary'
582 * device, then we must not read beyond
583 * bad_sectors from another device..
584 */
585 bad_sectors -= (this_sector - first_bad);
586 if (choose_first && sectors > bad_sectors)
587 sectors = bad_sectors;
588 if (best_good_sectors > sectors)
589 best_good_sectors = sectors;
590
591 } else {
592 sector_t good_sectors = first_bad - this_sector;
593 if (good_sectors > best_good_sectors) {
594 best_good_sectors = good_sectors;
595 best_disk = disk;
596 }
597 if (choose_first)
598 break;
599 }
600 continue;
601 } else
602 best_good_sectors = sectors;
603
604 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
605 has_nonrot_disk |= nonrot;
606 pending = atomic_read(&rdev->nr_pending);
607 dist = abs(this_sector - conf->mirrors[disk].head_position);
608 if (choose_first) {
609 best_disk = disk;
610 break;
611 }
612 /* Don't change to another disk for sequential reads */
613 if (conf->mirrors[disk].next_seq_sect == this_sector
614 || dist == 0) {
615 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
616 struct raid1_info *mirror = &conf->mirrors[disk];
617
618 best_disk = disk;
619 /*
620 * If buffered sequential IO size exceeds optimal
621 * iosize, check if there is idle disk. If yes, choose
622 * the idle disk. read_balance could already choose an
623 * idle disk before noticing it's a sequential IO in
624 * this disk. This doesn't matter because this disk
625 * will idle, next time it will be utilized after the
626 * first disk has IO size exceeds optimal iosize. In
627 * this way, iosize of the first disk will be optimal
628 * iosize at least. iosize of the second disk might be
629 * small, but not a big deal since when the second disk
630 * starts IO, the first disk is likely still busy.
631 */
632 if (nonrot && opt_iosize > 0 &&
633 mirror->seq_start != MaxSector &&
634 mirror->next_seq_sect > opt_iosize &&
635 mirror->next_seq_sect - opt_iosize >=
636 mirror->seq_start) {
637 choose_next_idle = 1;
638 continue;
639 }
640 break;
641 }
642 /* If device is idle, use it */
643 if (pending == 0) {
644 best_disk = disk;
645 break;
646 }
647
648 if (choose_next_idle)
649 continue;
650
651 if (min_pending > pending) {
652 min_pending = pending;
653 best_pending_disk = disk;
654 }
655
656 if (dist < best_dist) {
657 best_dist = dist;
658 best_dist_disk = disk;
659 }
660 }
661
662 /*
663 * If all disks are rotational, choose the closest disk. If any disk is
664 * non-rotational, choose the disk with less pending request even the
665 * disk is rotational, which might/might not be optimal for raids with
666 * mixed ratation/non-rotational disks depending on workload.
667 */
668 if (best_disk == -1) {
669 if (has_nonrot_disk)
670 best_disk = best_pending_disk;
671 else
672 best_disk = best_dist_disk;
673 }
674
675 if (best_disk >= 0) {
676 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
677 if (!rdev)
678 goto retry;
679 atomic_inc(&rdev->nr_pending);
680 if (test_bit(Faulty, &rdev->flags)) {
681 /* cannot risk returning a device that failed
682 * before we inc'ed nr_pending
683 */
684 rdev_dec_pending(rdev, conf->mddev);
685 goto retry;
686 }
687 sectors = best_good_sectors;
688
689 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
690 conf->mirrors[best_disk].seq_start = this_sector;
691
692 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
693 }
694 rcu_read_unlock();
695 *max_sectors = sectors;
696
697 return best_disk;
698 }
699
700 static int raid1_mergeable_bvec(struct request_queue *q,
701 struct bvec_merge_data *bvm,
702 struct bio_vec *biovec)
703 {
704 struct mddev *mddev = q->queuedata;
705 struct r1conf *conf = mddev->private;
706 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
707 int max = biovec->bv_len;
708
709 if (mddev->merge_check_needed) {
710 int disk;
711 rcu_read_lock();
712 for (disk = 0; disk < conf->raid_disks * 2; disk++) {
713 struct md_rdev *rdev = rcu_dereference(
714 conf->mirrors[disk].rdev);
715 if (rdev && !test_bit(Faulty, &rdev->flags)) {
716 struct request_queue *q =
717 bdev_get_queue(rdev->bdev);
718 if (q->merge_bvec_fn) {
719 bvm->bi_sector = sector +
720 rdev->data_offset;
721 bvm->bi_bdev = rdev->bdev;
722 max = min(max, q->merge_bvec_fn(
723 q, bvm, biovec));
724 }
725 }
726 }
727 rcu_read_unlock();
728 }
729 return max;
730
731 }
732
733 int md_raid1_congested(struct mddev *mddev, int bits)
734 {
735 struct r1conf *conf = mddev->private;
736 int i, ret = 0;
737
738 if ((bits & (1 << BDI_async_congested)) &&
739 conf->pending_count >= max_queued_requests)
740 return 1;
741
742 rcu_read_lock();
743 for (i = 0; i < conf->raid_disks * 2; i++) {
744 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
745 if (rdev && !test_bit(Faulty, &rdev->flags)) {
746 struct request_queue *q = bdev_get_queue(rdev->bdev);
747
748 BUG_ON(!q);
749
750 /* Note the '|| 1' - when read_balance prefers
751 * non-congested targets, it can be removed
752 */
753 if ((bits & (1<<BDI_async_congested)) || 1)
754 ret |= bdi_congested(&q->backing_dev_info, bits);
755 else
756 ret &= bdi_congested(&q->backing_dev_info, bits);
757 }
758 }
759 rcu_read_unlock();
760 return ret;
761 }
762 EXPORT_SYMBOL_GPL(md_raid1_congested);
763
764 static int raid1_congested(void *data, int bits)
765 {
766 struct mddev *mddev = data;
767
768 return mddev_congested(mddev, bits) ||
769 md_raid1_congested(mddev, bits);
770 }
771
772 static void flush_pending_writes(struct r1conf *conf)
773 {
774 /* Any writes that have been queued but are awaiting
775 * bitmap updates get flushed here.
776 */
777 spin_lock_irq(&conf->device_lock);
778
779 if (conf->pending_bio_list.head) {
780 struct bio *bio;
781 bio = bio_list_get(&conf->pending_bio_list);
782 conf->pending_count = 0;
783 spin_unlock_irq(&conf->device_lock);
784 /* flush any pending bitmap writes to
785 * disk before proceeding w/ I/O */
786 bitmap_unplug(conf->mddev->bitmap);
787 wake_up(&conf->wait_barrier);
788
789 while (bio) { /* submit pending writes */
790 struct bio *next = bio->bi_next;
791 bio->bi_next = NULL;
792 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
793 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
794 /* Just ignore it */
795 bio_endio(bio, 0);
796 else
797 generic_make_request(bio);
798 bio = next;
799 }
800 } else
801 spin_unlock_irq(&conf->device_lock);
802 }
803
804 /* Barriers....
805 * Sometimes we need to suspend IO while we do something else,
806 * either some resync/recovery, or reconfigure the array.
807 * To do this we raise a 'barrier'.
808 * The 'barrier' is a counter that can be raised multiple times
809 * to count how many activities are happening which preclude
810 * normal IO.
811 * We can only raise the barrier if there is no pending IO.
812 * i.e. if nr_pending == 0.
813 * We choose only to raise the barrier if no-one is waiting for the
814 * barrier to go down. This means that as soon as an IO request
815 * is ready, no other operations which require a barrier will start
816 * until the IO request has had a chance.
817 *
818 * So: regular IO calls 'wait_barrier'. When that returns there
819 * is no backgroup IO happening, It must arrange to call
820 * allow_barrier when it has finished its IO.
821 * backgroup IO calls must call raise_barrier. Once that returns
822 * there is no normal IO happeing. It must arrange to call
823 * lower_barrier when the particular background IO completes.
824 */
825 static void raise_barrier(struct r1conf *conf)
826 {
827 spin_lock_irq(&conf->resync_lock);
828
829 /* Wait until no block IO is waiting */
830 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
831 conf->resync_lock);
832
833 /* block any new IO from starting */
834 conf->barrier++;
835
836 /* For these conditions we must wait:
837 * A: while the array is in frozen state
838 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
839 * the max count which allowed.
840 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
841 * next resync will reach to the window which normal bios are
842 * handling.
843 */
844 wait_event_lock_irq(conf->wait_barrier,
845 !conf->array_frozen &&
846 conf->barrier < RESYNC_DEPTH &&
847 (conf->start_next_window >=
848 conf->next_resync + RESYNC_SECTORS),
849 conf->resync_lock);
850
851 spin_unlock_irq(&conf->resync_lock);
852 }
853
854 static void lower_barrier(struct r1conf *conf)
855 {
856 unsigned long flags;
857 BUG_ON(conf->barrier <= 0);
858 spin_lock_irqsave(&conf->resync_lock, flags);
859 conf->barrier--;
860 spin_unlock_irqrestore(&conf->resync_lock, flags);
861 wake_up(&conf->wait_barrier);
862 }
863
864 static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
865 {
866 bool wait = false;
867
868 if (conf->array_frozen || !bio)
869 wait = true;
870 else if (conf->barrier && bio_data_dir(bio) == WRITE) {
871 if (conf->next_resync < RESYNC_WINDOW_SECTORS)
872 wait = true;
873 else if ((conf->next_resync - RESYNC_WINDOW_SECTORS
874 >= bio_end_sector(bio)) ||
875 (conf->next_resync + NEXT_NORMALIO_DISTANCE
876 <= bio->bi_iter.bi_sector))
877 wait = false;
878 else
879 wait = true;
880 }
881
882 return wait;
883 }
884
885 static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
886 {
887 sector_t sector = 0;
888
889 spin_lock_irq(&conf->resync_lock);
890 if (need_to_wait_for_sync(conf, bio)) {
891 conf->nr_waiting++;
892 /* Wait for the barrier to drop.
893 * However if there are already pending
894 * requests (preventing the barrier from
895 * rising completely), and the
896 * pre-process bio queue isn't empty,
897 * then don't wait, as we need to empty
898 * that queue to get the nr_pending
899 * count down.
900 */
901 wait_event_lock_irq(conf->wait_barrier,
902 !conf->array_frozen &&
903 (!conf->barrier ||
904 ((conf->start_next_window <
905 conf->next_resync + RESYNC_SECTORS) &&
906 current->bio_list &&
907 !bio_list_empty(current->bio_list))),
908 conf->resync_lock);
909 conf->nr_waiting--;
910 }
911
912 if (bio && bio_data_dir(bio) == WRITE) {
913 if (conf->next_resync + NEXT_NORMALIO_DISTANCE
914 <= bio->bi_iter.bi_sector) {
915 if (conf->start_next_window == MaxSector)
916 conf->start_next_window =
917 conf->next_resync +
918 NEXT_NORMALIO_DISTANCE;
919
920 if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
921 <= bio->bi_iter.bi_sector)
922 conf->next_window_requests++;
923 else
924 conf->current_window_requests++;
925 sector = conf->start_next_window;
926 }
927 }
928
929 conf->nr_pending++;
930 spin_unlock_irq(&conf->resync_lock);
931 return sector;
932 }
933
934 static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
935 sector_t bi_sector)
936 {
937 unsigned long flags;
938
939 spin_lock_irqsave(&conf->resync_lock, flags);
940 conf->nr_pending--;
941 if (start_next_window) {
942 if (start_next_window == conf->start_next_window) {
943 if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
944 <= bi_sector)
945 conf->next_window_requests--;
946 else
947 conf->current_window_requests--;
948 } else
949 conf->current_window_requests--;
950
951 if (!conf->current_window_requests) {
952 if (conf->next_window_requests) {
953 conf->current_window_requests =
954 conf->next_window_requests;
955 conf->next_window_requests = 0;
956 conf->start_next_window +=
957 NEXT_NORMALIO_DISTANCE;
958 } else
959 conf->start_next_window = MaxSector;
960 }
961 }
962 spin_unlock_irqrestore(&conf->resync_lock, flags);
963 wake_up(&conf->wait_barrier);
964 }
965
966 static void freeze_array(struct r1conf *conf, int extra)
967 {
968 /* stop syncio and normal IO and wait for everything to
969 * go quite.
970 * We wait until nr_pending match nr_queued+extra
971 * This is called in the context of one normal IO request
972 * that has failed. Thus any sync request that might be pending
973 * will be blocked by nr_pending, and we need to wait for
974 * pending IO requests to complete or be queued for re-try.
975 * Thus the number queued (nr_queued) plus this request (extra)
976 * must match the number of pending IOs (nr_pending) before
977 * we continue.
978 */
979 spin_lock_irq(&conf->resync_lock);
980 conf->array_frozen = 1;
981 wait_event_lock_irq_cmd(conf->wait_barrier,
982 conf->nr_pending == conf->nr_queued+extra,
983 conf->resync_lock,
984 flush_pending_writes(conf));
985 spin_unlock_irq(&conf->resync_lock);
986 }
987 static void unfreeze_array(struct r1conf *conf)
988 {
989 /* reverse the effect of the freeze */
990 spin_lock_irq(&conf->resync_lock);
991 conf->array_frozen = 0;
992 wake_up(&conf->wait_barrier);
993 spin_unlock_irq(&conf->resync_lock);
994 }
995
996
997 /* duplicate the data pages for behind I/O
998 */
999 static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
1000 {
1001 int i;
1002 struct bio_vec *bvec;
1003 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
1004 GFP_NOIO);
1005 if (unlikely(!bvecs))
1006 return;
1007
1008 bio_for_each_segment_all(bvec, bio, i) {
1009 bvecs[i] = *bvec;
1010 bvecs[i].bv_page = alloc_page(GFP_NOIO);
1011 if (unlikely(!bvecs[i].bv_page))
1012 goto do_sync_io;
1013 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1014 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1015 kunmap(bvecs[i].bv_page);
1016 kunmap(bvec->bv_page);
1017 }
1018 r1_bio->behind_bvecs = bvecs;
1019 r1_bio->behind_page_count = bio->bi_vcnt;
1020 set_bit(R1BIO_BehindIO, &r1_bio->state);
1021 return;
1022
1023 do_sync_io:
1024 for (i = 0; i < bio->bi_vcnt; i++)
1025 if (bvecs[i].bv_page)
1026 put_page(bvecs[i].bv_page);
1027 kfree(bvecs);
1028 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1029 bio->bi_iter.bi_size);
1030 }
1031
1032 struct raid1_plug_cb {
1033 struct blk_plug_cb cb;
1034 struct bio_list pending;
1035 int pending_cnt;
1036 };
1037
1038 static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1039 {
1040 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1041 cb);
1042 struct mddev *mddev = plug->cb.data;
1043 struct r1conf *conf = mddev->private;
1044 struct bio *bio;
1045
1046 if (from_schedule || current->bio_list) {
1047 spin_lock_irq(&conf->device_lock);
1048 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1049 conf->pending_count += plug->pending_cnt;
1050 spin_unlock_irq(&conf->device_lock);
1051 wake_up(&conf->wait_barrier);
1052 md_wakeup_thread(mddev->thread);
1053 kfree(plug);
1054 return;
1055 }
1056
1057 /* we aren't scheduling, so we can do the write-out directly. */
1058 bio = bio_list_get(&plug->pending);
1059 bitmap_unplug(mddev->bitmap);
1060 wake_up(&conf->wait_barrier);
1061
1062 while (bio) { /* submit pending writes */
1063 struct bio *next = bio->bi_next;
1064 bio->bi_next = NULL;
1065 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1066 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1067 /* Just ignore it */
1068 bio_endio(bio, 0);
1069 else
1070 generic_make_request(bio);
1071 bio = next;
1072 }
1073 kfree(plug);
1074 }
1075
1076 static void make_request(struct mddev *mddev, struct bio * bio)
1077 {
1078 struct r1conf *conf = mddev->private;
1079 struct raid1_info *mirror;
1080 struct r1bio *r1_bio;
1081 struct bio *read_bio;
1082 int i, disks;
1083 struct bitmap *bitmap;
1084 unsigned long flags;
1085 const int rw = bio_data_dir(bio);
1086 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1087 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1088 const unsigned long do_discard = (bio->bi_rw
1089 & (REQ_DISCARD | REQ_SECURE));
1090 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1091 struct md_rdev *blocked_rdev;
1092 struct blk_plug_cb *cb;
1093 struct raid1_plug_cb *plug = NULL;
1094 int first_clone;
1095 int sectors_handled;
1096 int max_sectors;
1097 sector_t start_next_window;
1098
1099 /*
1100 * Register the new request and wait if the reconstruction
1101 * thread has put up a bar for new requests.
1102 * Continue immediately if no resync is active currently.
1103 */
1104
1105 md_write_start(mddev, bio); /* wait on superblock update early */
1106
1107 if (bio_data_dir(bio) == WRITE &&
1108 bio_end_sector(bio) > mddev->suspend_lo &&
1109 bio->bi_iter.bi_sector < mddev->suspend_hi) {
1110 /* As the suspend_* range is controlled by
1111 * userspace, we want an interruptible
1112 * wait.
1113 */
1114 DEFINE_WAIT(w);
1115 for (;;) {
1116 flush_signals(current);
1117 prepare_to_wait(&conf->wait_barrier,
1118 &w, TASK_INTERRUPTIBLE);
1119 if (bio_end_sector(bio) <= mddev->suspend_lo ||
1120 bio->bi_iter.bi_sector >= mddev->suspend_hi)
1121 break;
1122 schedule();
1123 }
1124 finish_wait(&conf->wait_barrier, &w);
1125 }
1126
1127 start_next_window = wait_barrier(conf, bio);
1128
1129 bitmap = mddev->bitmap;
1130
1131 /*
1132 * make_request() can abort the operation when READA is being
1133 * used and no empty request is available.
1134 *
1135 */
1136 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1137
1138 r1_bio->master_bio = bio;
1139 r1_bio->sectors = bio_sectors(bio);
1140 r1_bio->state = 0;
1141 r1_bio->mddev = mddev;
1142 r1_bio->sector = bio->bi_iter.bi_sector;
1143
1144 /* We might need to issue multiple reads to different
1145 * devices if there are bad blocks around, so we keep
1146 * track of the number of reads in bio->bi_phys_segments.
1147 * If this is 0, there is only one r1_bio and no locking
1148 * will be needed when requests complete. If it is
1149 * non-zero, then it is the number of not-completed requests.
1150 */
1151 bio->bi_phys_segments = 0;
1152 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1153
1154 if (rw == READ) {
1155 /*
1156 * read balancing logic:
1157 */
1158 int rdisk;
1159
1160 read_again:
1161 rdisk = read_balance(conf, r1_bio, &max_sectors);
1162
1163 if (rdisk < 0) {
1164 /* couldn't find anywhere to read from */
1165 raid_end_bio_io(r1_bio);
1166 return;
1167 }
1168 mirror = conf->mirrors + rdisk;
1169
1170 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1171 bitmap) {
1172 /* Reading from a write-mostly device must
1173 * take care not to over-take any writes
1174 * that are 'behind'
1175 */
1176 wait_event(bitmap->behind_wait,
1177 atomic_read(&bitmap->behind_writes) == 0);
1178 }
1179 r1_bio->read_disk = rdisk;
1180
1181 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1182 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1183 max_sectors);
1184
1185 r1_bio->bios[rdisk] = read_bio;
1186
1187 read_bio->bi_iter.bi_sector = r1_bio->sector +
1188 mirror->rdev->data_offset;
1189 read_bio->bi_bdev = mirror->rdev->bdev;
1190 read_bio->bi_end_io = raid1_end_read_request;
1191 read_bio->bi_rw = READ | do_sync;
1192 read_bio->bi_private = r1_bio;
1193
1194 if (max_sectors < r1_bio->sectors) {
1195 /* could not read all from this device, so we will
1196 * need another r1_bio.
1197 */
1198
1199 sectors_handled = (r1_bio->sector + max_sectors
1200 - bio->bi_iter.bi_sector);
1201 r1_bio->sectors = max_sectors;
1202 spin_lock_irq(&conf->device_lock);
1203 if (bio->bi_phys_segments == 0)
1204 bio->bi_phys_segments = 2;
1205 else
1206 bio->bi_phys_segments++;
1207 spin_unlock_irq(&conf->device_lock);
1208 /* Cannot call generic_make_request directly
1209 * as that will be queued in __make_request
1210 * and subsequent mempool_alloc might block waiting
1211 * for it. So hand bio over to raid1d.
1212 */
1213 reschedule_retry(r1_bio);
1214
1215 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1216
1217 r1_bio->master_bio = bio;
1218 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1219 r1_bio->state = 0;
1220 r1_bio->mddev = mddev;
1221 r1_bio->sector = bio->bi_iter.bi_sector +
1222 sectors_handled;
1223 goto read_again;
1224 } else
1225 generic_make_request(read_bio);
1226 return;
1227 }
1228
1229 /*
1230 * WRITE:
1231 */
1232 if (conf->pending_count >= max_queued_requests) {
1233 md_wakeup_thread(mddev->thread);
1234 wait_event(conf->wait_barrier,
1235 conf->pending_count < max_queued_requests);
1236 }
1237 /* first select target devices under rcu_lock and
1238 * inc refcount on their rdev. Record them by setting
1239 * bios[x] to bio
1240 * If there are known/acknowledged bad blocks on any device on
1241 * which we have seen a write error, we want to avoid writing those
1242 * blocks.
1243 * This potentially requires several writes to write around
1244 * the bad blocks. Each set of writes gets it's own r1bio
1245 * with a set of bios attached.
1246 */
1247
1248 disks = conf->raid_disks * 2;
1249 retry_write:
1250 r1_bio->start_next_window = start_next_window;
1251 blocked_rdev = NULL;
1252 rcu_read_lock();
1253 max_sectors = r1_bio->sectors;
1254 for (i = 0; i < disks; i++) {
1255 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1256 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1257 atomic_inc(&rdev->nr_pending);
1258 blocked_rdev = rdev;
1259 break;
1260 }
1261 r1_bio->bios[i] = NULL;
1262 if (!rdev || test_bit(Faulty, &rdev->flags)
1263 || test_bit(Unmerged, &rdev->flags)) {
1264 if (i < conf->raid_disks)
1265 set_bit(R1BIO_Degraded, &r1_bio->state);
1266 continue;
1267 }
1268
1269 atomic_inc(&rdev->nr_pending);
1270 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1271 sector_t first_bad;
1272 int bad_sectors;
1273 int is_bad;
1274
1275 is_bad = is_badblock(rdev, r1_bio->sector,
1276 max_sectors,
1277 &first_bad, &bad_sectors);
1278 if (is_bad < 0) {
1279 /* mustn't write here until the bad block is
1280 * acknowledged*/
1281 set_bit(BlockedBadBlocks, &rdev->flags);
1282 blocked_rdev = rdev;
1283 break;
1284 }
1285 if (is_bad && first_bad <= r1_bio->sector) {
1286 /* Cannot write here at all */
1287 bad_sectors -= (r1_bio->sector - first_bad);
1288 if (bad_sectors < max_sectors)
1289 /* mustn't write more than bad_sectors
1290 * to other devices yet
1291 */
1292 max_sectors = bad_sectors;
1293 rdev_dec_pending(rdev, mddev);
1294 /* We don't set R1BIO_Degraded as that
1295 * only applies if the disk is
1296 * missing, so it might be re-added,
1297 * and we want to know to recover this
1298 * chunk.
1299 * In this case the device is here,
1300 * and the fact that this chunk is not
1301 * in-sync is recorded in the bad
1302 * block log
1303 */
1304 continue;
1305 }
1306 if (is_bad) {
1307 int good_sectors = first_bad - r1_bio->sector;
1308 if (good_sectors < max_sectors)
1309 max_sectors = good_sectors;
1310 }
1311 }
1312 r1_bio->bios[i] = bio;
1313 }
1314 rcu_read_unlock();
1315
1316 if (unlikely(blocked_rdev)) {
1317 /* Wait for this device to become unblocked */
1318 int j;
1319 sector_t old = start_next_window;
1320
1321 for (j = 0; j < i; j++)
1322 if (r1_bio->bios[j])
1323 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1324 r1_bio->state = 0;
1325 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1326 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1327 start_next_window = wait_barrier(conf, bio);
1328 /*
1329 * We must make sure the multi r1bios of bio have
1330 * the same value of bi_phys_segments
1331 */
1332 if (bio->bi_phys_segments && old &&
1333 old != start_next_window)
1334 /* Wait for the former r1bio(s) to complete */
1335 wait_event(conf->wait_barrier,
1336 bio->bi_phys_segments == 1);
1337 goto retry_write;
1338 }
1339
1340 if (max_sectors < r1_bio->sectors) {
1341 /* We are splitting this write into multiple parts, so
1342 * we need to prepare for allocating another r1_bio.
1343 */
1344 r1_bio->sectors = max_sectors;
1345 spin_lock_irq(&conf->device_lock);
1346 if (bio->bi_phys_segments == 0)
1347 bio->bi_phys_segments = 2;
1348 else
1349 bio->bi_phys_segments++;
1350 spin_unlock_irq(&conf->device_lock);
1351 }
1352 sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1353
1354 atomic_set(&r1_bio->remaining, 1);
1355 atomic_set(&r1_bio->behind_remaining, 0);
1356
1357 first_clone = 1;
1358 for (i = 0; i < disks; i++) {
1359 struct bio *mbio;
1360 if (!r1_bio->bios[i])
1361 continue;
1362
1363 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1364 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1365
1366 if (first_clone) {
1367 /* do behind I/O ?
1368 * Not if there are too many, or cannot
1369 * allocate memory, or a reader on WriteMostly
1370 * is waiting for behind writes to flush */
1371 if (bitmap &&
1372 (atomic_read(&bitmap->behind_writes)
1373 < mddev->bitmap_info.max_write_behind) &&
1374 !waitqueue_active(&bitmap->behind_wait))
1375 alloc_behind_pages(mbio, r1_bio);
1376
1377 bitmap_startwrite(bitmap, r1_bio->sector,
1378 r1_bio->sectors,
1379 test_bit(R1BIO_BehindIO,
1380 &r1_bio->state));
1381 first_clone = 0;
1382 }
1383 if (r1_bio->behind_bvecs) {
1384 struct bio_vec *bvec;
1385 int j;
1386
1387 /*
1388 * We trimmed the bio, so _all is legit
1389 */
1390 bio_for_each_segment_all(bvec, mbio, j)
1391 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1392 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1393 atomic_inc(&r1_bio->behind_remaining);
1394 }
1395
1396 r1_bio->bios[i] = mbio;
1397
1398 mbio->bi_iter.bi_sector = (r1_bio->sector +
1399 conf->mirrors[i].rdev->data_offset);
1400 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1401 mbio->bi_end_io = raid1_end_write_request;
1402 mbio->bi_rw =
1403 WRITE | do_flush_fua | do_sync | do_discard | do_same;
1404 mbio->bi_private = r1_bio;
1405
1406 atomic_inc(&r1_bio->remaining);
1407
1408 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1409 if (cb)
1410 plug = container_of(cb, struct raid1_plug_cb, cb);
1411 else
1412 plug = NULL;
1413 spin_lock_irqsave(&conf->device_lock, flags);
1414 if (plug) {
1415 bio_list_add(&plug->pending, mbio);
1416 plug->pending_cnt++;
1417 } else {
1418 bio_list_add(&conf->pending_bio_list, mbio);
1419 conf->pending_count++;
1420 }
1421 spin_unlock_irqrestore(&conf->device_lock, flags);
1422 if (!plug)
1423 md_wakeup_thread(mddev->thread);
1424 }
1425 /* Mustn't call r1_bio_write_done before this next test,
1426 * as it could result in the bio being freed.
1427 */
1428 if (sectors_handled < bio_sectors(bio)) {
1429 r1_bio_write_done(r1_bio);
1430 /* We need another r1_bio. It has already been counted
1431 * in bio->bi_phys_segments
1432 */
1433 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1434 r1_bio->master_bio = bio;
1435 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1436 r1_bio->state = 0;
1437 r1_bio->mddev = mddev;
1438 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1439 goto retry_write;
1440 }
1441
1442 r1_bio_write_done(r1_bio);
1443
1444 /* In case raid1d snuck in to freeze_array */
1445 wake_up(&conf->wait_barrier);
1446 }
1447
1448 static void status(struct seq_file *seq, struct mddev *mddev)
1449 {
1450 struct r1conf *conf = mddev->private;
1451 int i;
1452
1453 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1454 conf->raid_disks - mddev->degraded);
1455 rcu_read_lock();
1456 for (i = 0; i < conf->raid_disks; i++) {
1457 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1458 seq_printf(seq, "%s",
1459 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1460 }
1461 rcu_read_unlock();
1462 seq_printf(seq, "]");
1463 }
1464
1465
1466 static void error(struct mddev *mddev, struct md_rdev *rdev)
1467 {
1468 char b[BDEVNAME_SIZE];
1469 struct r1conf *conf = mddev->private;
1470
1471 /*
1472 * If it is not operational, then we have already marked it as dead
1473 * else if it is the last working disks, ignore the error, let the
1474 * next level up know.
1475 * else mark the drive as failed
1476 */
1477 if (test_bit(In_sync, &rdev->flags)
1478 && (conf->raid_disks - mddev->degraded) == 1) {
1479 /*
1480 * Don't fail the drive, act as though we were just a
1481 * normal single drive.
1482 * However don't try a recovery from this drive as
1483 * it is very likely to fail.
1484 */
1485 conf->recovery_disabled = mddev->recovery_disabled;
1486 return;
1487 }
1488 set_bit(Blocked, &rdev->flags);
1489 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1490 unsigned long flags;
1491 spin_lock_irqsave(&conf->device_lock, flags);
1492 mddev->degraded++;
1493 set_bit(Faulty, &rdev->flags);
1494 spin_unlock_irqrestore(&conf->device_lock, flags);
1495 /*
1496 * if recovery is running, make sure it aborts.
1497 */
1498 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1499 } else
1500 set_bit(Faulty, &rdev->flags);
1501 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1502 printk(KERN_ALERT
1503 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1504 "md/raid1:%s: Operation continuing on %d devices.\n",
1505 mdname(mddev), bdevname(rdev->bdev, b),
1506 mdname(mddev), conf->raid_disks - mddev->degraded);
1507 }
1508
1509 static void print_conf(struct r1conf *conf)
1510 {
1511 int i;
1512
1513 printk(KERN_DEBUG "RAID1 conf printout:\n");
1514 if (!conf) {
1515 printk(KERN_DEBUG "(!conf)\n");
1516 return;
1517 }
1518 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1519 conf->raid_disks);
1520
1521 rcu_read_lock();
1522 for (i = 0; i < conf->raid_disks; i++) {
1523 char b[BDEVNAME_SIZE];
1524 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1525 if (rdev)
1526 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1527 i, !test_bit(In_sync, &rdev->flags),
1528 !test_bit(Faulty, &rdev->flags),
1529 bdevname(rdev->bdev,b));
1530 }
1531 rcu_read_unlock();
1532 }
1533
1534 static void close_sync(struct r1conf *conf)
1535 {
1536 wait_barrier(conf, NULL);
1537 allow_barrier(conf, 0, 0);
1538
1539 mempool_destroy(conf->r1buf_pool);
1540 conf->r1buf_pool = NULL;
1541
1542 conf->next_resync = 0;
1543 conf->start_next_window = MaxSector;
1544 }
1545
1546 static int raid1_spare_active(struct mddev *mddev)
1547 {
1548 int i;
1549 struct r1conf *conf = mddev->private;
1550 int count = 0;
1551 unsigned long flags;
1552
1553 /*
1554 * Find all failed disks within the RAID1 configuration
1555 * and mark them readable.
1556 * Called under mddev lock, so rcu protection not needed.
1557 */
1558 for (i = 0; i < conf->raid_disks; i++) {
1559 struct md_rdev *rdev = conf->mirrors[i].rdev;
1560 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1561 if (repl
1562 && repl->recovery_offset == MaxSector
1563 && !test_bit(Faulty, &repl->flags)
1564 && !test_and_set_bit(In_sync, &repl->flags)) {
1565 /* replacement has just become active */
1566 if (!rdev ||
1567 !test_and_clear_bit(In_sync, &rdev->flags))
1568 count++;
1569 if (rdev) {
1570 /* Replaced device not technically
1571 * faulty, but we need to be sure
1572 * it gets removed and never re-added
1573 */
1574 set_bit(Faulty, &rdev->flags);
1575 sysfs_notify_dirent_safe(
1576 rdev->sysfs_state);
1577 }
1578 }
1579 if (rdev
1580 && rdev->recovery_offset == MaxSector
1581 && !test_bit(Faulty, &rdev->flags)
1582 && !test_and_set_bit(In_sync, &rdev->flags)) {
1583 count++;
1584 sysfs_notify_dirent_safe(rdev->sysfs_state);
1585 }
1586 }
1587 spin_lock_irqsave(&conf->device_lock, flags);
1588 mddev->degraded -= count;
1589 spin_unlock_irqrestore(&conf->device_lock, flags);
1590
1591 print_conf(conf);
1592 return count;
1593 }
1594
1595
1596 static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1597 {
1598 struct r1conf *conf = mddev->private;
1599 int err = -EEXIST;
1600 int mirror = 0;
1601 struct raid1_info *p;
1602 int first = 0;
1603 int last = conf->raid_disks - 1;
1604 struct request_queue *q = bdev_get_queue(rdev->bdev);
1605
1606 if (mddev->recovery_disabled == conf->recovery_disabled)
1607 return -EBUSY;
1608
1609 if (rdev->raid_disk >= 0)
1610 first = last = rdev->raid_disk;
1611
1612 if (q->merge_bvec_fn) {
1613 set_bit(Unmerged, &rdev->flags);
1614 mddev->merge_check_needed = 1;
1615 }
1616
1617 for (mirror = first; mirror <= last; mirror++) {
1618 p = conf->mirrors+mirror;
1619 if (!p->rdev) {
1620
1621 if (mddev->gendisk)
1622 disk_stack_limits(mddev->gendisk, rdev->bdev,
1623 rdev->data_offset << 9);
1624
1625 p->head_position = 0;
1626 rdev->raid_disk = mirror;
1627 err = 0;
1628 /* As all devices are equivalent, we don't need a full recovery
1629 * if this was recently any drive of the array
1630 */
1631 if (rdev->saved_raid_disk < 0)
1632 conf->fullsync = 1;
1633 rcu_assign_pointer(p->rdev, rdev);
1634 break;
1635 }
1636 if (test_bit(WantReplacement, &p->rdev->flags) &&
1637 p[conf->raid_disks].rdev == NULL) {
1638 /* Add this device as a replacement */
1639 clear_bit(In_sync, &rdev->flags);
1640 set_bit(Replacement, &rdev->flags);
1641 rdev->raid_disk = mirror;
1642 err = 0;
1643 conf->fullsync = 1;
1644 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1645 break;
1646 }
1647 }
1648 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1649 /* Some requests might not have seen this new
1650 * merge_bvec_fn. We must wait for them to complete
1651 * before merging the device fully.
1652 * First we make sure any code which has tested
1653 * our function has submitted the request, then
1654 * we wait for all outstanding requests to complete.
1655 */
1656 synchronize_sched();
1657 freeze_array(conf, 0);
1658 unfreeze_array(conf);
1659 clear_bit(Unmerged, &rdev->flags);
1660 }
1661 md_integrity_add_rdev(rdev, mddev);
1662 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1663 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1664 print_conf(conf);
1665 return err;
1666 }
1667
1668 static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1669 {
1670 struct r1conf *conf = mddev->private;
1671 int err = 0;
1672 int number = rdev->raid_disk;
1673 struct raid1_info *p = conf->mirrors + number;
1674
1675 if (rdev != p->rdev)
1676 p = conf->mirrors + conf->raid_disks + number;
1677
1678 print_conf(conf);
1679 if (rdev == p->rdev) {
1680 if (test_bit(In_sync, &rdev->flags) ||
1681 atomic_read(&rdev->nr_pending)) {
1682 err = -EBUSY;
1683 goto abort;
1684 }
1685 /* Only remove non-faulty devices if recovery
1686 * is not possible.
1687 */
1688 if (!test_bit(Faulty, &rdev->flags) &&
1689 mddev->recovery_disabled != conf->recovery_disabled &&
1690 mddev->degraded < conf->raid_disks) {
1691 err = -EBUSY;
1692 goto abort;
1693 }
1694 p->rdev = NULL;
1695 synchronize_rcu();
1696 if (atomic_read(&rdev->nr_pending)) {
1697 /* lost the race, try later */
1698 err = -EBUSY;
1699 p->rdev = rdev;
1700 goto abort;
1701 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1702 /* We just removed a device that is being replaced.
1703 * Move down the replacement. We drain all IO before
1704 * doing this to avoid confusion.
1705 */
1706 struct md_rdev *repl =
1707 conf->mirrors[conf->raid_disks + number].rdev;
1708 freeze_array(conf, 0);
1709 clear_bit(Replacement, &repl->flags);
1710 p->rdev = repl;
1711 conf->mirrors[conf->raid_disks + number].rdev = NULL;
1712 unfreeze_array(conf);
1713 clear_bit(WantReplacement, &rdev->flags);
1714 } else
1715 clear_bit(WantReplacement, &rdev->flags);
1716 err = md_integrity_register(mddev);
1717 }
1718 abort:
1719
1720 print_conf(conf);
1721 return err;
1722 }
1723
1724
1725 static void end_sync_read(struct bio *bio, int error)
1726 {
1727 struct r1bio *r1_bio = bio->bi_private;
1728
1729 update_head_pos(r1_bio->read_disk, r1_bio);
1730
1731 /*
1732 * we have read a block, now it needs to be re-written,
1733 * or re-read if the read failed.
1734 * We don't do much here, just schedule handling by raid1d
1735 */
1736 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1737 set_bit(R1BIO_Uptodate, &r1_bio->state);
1738
1739 if (atomic_dec_and_test(&r1_bio->remaining))
1740 reschedule_retry(r1_bio);
1741 }
1742
1743 static void end_sync_write(struct bio *bio, int error)
1744 {
1745 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1746 struct r1bio *r1_bio = bio->bi_private;
1747 struct mddev *mddev = r1_bio->mddev;
1748 struct r1conf *conf = mddev->private;
1749 int mirror=0;
1750 sector_t first_bad;
1751 int bad_sectors;
1752
1753 mirror = find_bio_disk(r1_bio, bio);
1754
1755 if (!uptodate) {
1756 sector_t sync_blocks = 0;
1757 sector_t s = r1_bio->sector;
1758 long sectors_to_go = r1_bio->sectors;
1759 /* make sure these bits doesn't get cleared. */
1760 do {
1761 bitmap_end_sync(mddev->bitmap, s,
1762 &sync_blocks, 1);
1763 s += sync_blocks;
1764 sectors_to_go -= sync_blocks;
1765 } while (sectors_to_go > 0);
1766 set_bit(WriteErrorSeen,
1767 &conf->mirrors[mirror].rdev->flags);
1768 if (!test_and_set_bit(WantReplacement,
1769 &conf->mirrors[mirror].rdev->flags))
1770 set_bit(MD_RECOVERY_NEEDED, &
1771 mddev->recovery);
1772 set_bit(R1BIO_WriteError, &r1_bio->state);
1773 } else if (is_badblock(conf->mirrors[mirror].rdev,
1774 r1_bio->sector,
1775 r1_bio->sectors,
1776 &first_bad, &bad_sectors) &&
1777 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1778 r1_bio->sector,
1779 r1_bio->sectors,
1780 &first_bad, &bad_sectors)
1781 )
1782 set_bit(R1BIO_MadeGood, &r1_bio->state);
1783
1784 if (atomic_dec_and_test(&r1_bio->remaining)) {
1785 int s = r1_bio->sectors;
1786 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1787 test_bit(R1BIO_WriteError, &r1_bio->state))
1788 reschedule_retry(r1_bio);
1789 else {
1790 put_buf(r1_bio);
1791 md_done_sync(mddev, s, uptodate);
1792 }
1793 }
1794 }
1795
1796 static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1797 int sectors, struct page *page, int rw)
1798 {
1799 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1800 /* success */
1801 return 1;
1802 if (rw == WRITE) {
1803 set_bit(WriteErrorSeen, &rdev->flags);
1804 if (!test_and_set_bit(WantReplacement,
1805 &rdev->flags))
1806 set_bit(MD_RECOVERY_NEEDED, &
1807 rdev->mddev->recovery);
1808 }
1809 /* need to record an error - either for the block or the device */
1810 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1811 md_error(rdev->mddev, rdev);
1812 return 0;
1813 }
1814
1815 static int fix_sync_read_error(struct r1bio *r1_bio)
1816 {
1817 /* Try some synchronous reads of other devices to get
1818 * good data, much like with normal read errors. Only
1819 * read into the pages we already have so we don't
1820 * need to re-issue the read request.
1821 * We don't need to freeze the array, because being in an
1822 * active sync request, there is no normal IO, and
1823 * no overlapping syncs.
1824 * We don't need to check is_badblock() again as we
1825 * made sure that anything with a bad block in range
1826 * will have bi_end_io clear.
1827 */
1828 struct mddev *mddev = r1_bio->mddev;
1829 struct r1conf *conf = mddev->private;
1830 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1831 sector_t sect = r1_bio->sector;
1832 int sectors = r1_bio->sectors;
1833 int idx = 0;
1834
1835 while(sectors) {
1836 int s = sectors;
1837 int d = r1_bio->read_disk;
1838 int success = 0;
1839 struct md_rdev *rdev;
1840 int start;
1841
1842 if (s > (PAGE_SIZE>>9))
1843 s = PAGE_SIZE >> 9;
1844 do {
1845 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1846 /* No rcu protection needed here devices
1847 * can only be removed when no resync is
1848 * active, and resync is currently active
1849 */
1850 rdev = conf->mirrors[d].rdev;
1851 if (sync_page_io(rdev, sect, s<<9,
1852 bio->bi_io_vec[idx].bv_page,
1853 READ, false)) {
1854 success = 1;
1855 break;
1856 }
1857 }
1858 d++;
1859 if (d == conf->raid_disks * 2)
1860 d = 0;
1861 } while (!success && d != r1_bio->read_disk);
1862
1863 if (!success) {
1864 char b[BDEVNAME_SIZE];
1865 int abort = 0;
1866 /* Cannot read from anywhere, this block is lost.
1867 * Record a bad block on each device. If that doesn't
1868 * work just disable and interrupt the recovery.
1869 * Don't fail devices as that won't really help.
1870 */
1871 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1872 " for block %llu\n",
1873 mdname(mddev),
1874 bdevname(bio->bi_bdev, b),
1875 (unsigned long long)r1_bio->sector);
1876 for (d = 0; d < conf->raid_disks * 2; d++) {
1877 rdev = conf->mirrors[d].rdev;
1878 if (!rdev || test_bit(Faulty, &rdev->flags))
1879 continue;
1880 if (!rdev_set_badblocks(rdev, sect, s, 0))
1881 abort = 1;
1882 }
1883 if (abort) {
1884 conf->recovery_disabled =
1885 mddev->recovery_disabled;
1886 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1887 md_done_sync(mddev, r1_bio->sectors, 0);
1888 put_buf(r1_bio);
1889 return 0;
1890 }
1891 /* Try next page */
1892 sectors -= s;
1893 sect += s;
1894 idx++;
1895 continue;
1896 }
1897
1898 start = d;
1899 /* write it back and re-read */
1900 while (d != r1_bio->read_disk) {
1901 if (d == 0)
1902 d = conf->raid_disks * 2;
1903 d--;
1904 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1905 continue;
1906 rdev = conf->mirrors[d].rdev;
1907 if (r1_sync_page_io(rdev, sect, s,
1908 bio->bi_io_vec[idx].bv_page,
1909 WRITE) == 0) {
1910 r1_bio->bios[d]->bi_end_io = NULL;
1911 rdev_dec_pending(rdev, mddev);
1912 }
1913 }
1914 d = start;
1915 while (d != r1_bio->read_disk) {
1916 if (d == 0)
1917 d = conf->raid_disks * 2;
1918 d--;
1919 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1920 continue;
1921 rdev = conf->mirrors[d].rdev;
1922 if (r1_sync_page_io(rdev, sect, s,
1923 bio->bi_io_vec[idx].bv_page,
1924 READ) != 0)
1925 atomic_add(s, &rdev->corrected_errors);
1926 }
1927 sectors -= s;
1928 sect += s;
1929 idx ++;
1930 }
1931 set_bit(R1BIO_Uptodate, &r1_bio->state);
1932 set_bit(BIO_UPTODATE, &bio->bi_flags);
1933 return 1;
1934 }
1935
1936 static int process_checks(struct r1bio *r1_bio)
1937 {
1938 /* We have read all readable devices. If we haven't
1939 * got the block, then there is no hope left.
1940 * If we have, then we want to do a comparison
1941 * and skip the write if everything is the same.
1942 * If any blocks failed to read, then we need to
1943 * attempt an over-write
1944 */
1945 struct mddev *mddev = r1_bio->mddev;
1946 struct r1conf *conf = mddev->private;
1947 int primary;
1948 int i;
1949 int vcnt;
1950
1951 /* Fix variable parts of all bios */
1952 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1953 for (i = 0; i < conf->raid_disks * 2; i++) {
1954 int j;
1955 int size;
1956 int uptodate;
1957 struct bio *b = r1_bio->bios[i];
1958 if (b->bi_end_io != end_sync_read)
1959 continue;
1960 /* fixup the bio for reuse, but preserve BIO_UPTODATE */
1961 uptodate = test_bit(BIO_UPTODATE, &b->bi_flags);
1962 bio_reset(b);
1963 if (!uptodate)
1964 clear_bit(BIO_UPTODATE, &b->bi_flags);
1965 b->bi_vcnt = vcnt;
1966 b->bi_iter.bi_size = r1_bio->sectors << 9;
1967 b->bi_iter.bi_sector = r1_bio->sector +
1968 conf->mirrors[i].rdev->data_offset;
1969 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1970 b->bi_end_io = end_sync_read;
1971 b->bi_private = r1_bio;
1972
1973 size = b->bi_iter.bi_size;
1974 for (j = 0; j < vcnt ; j++) {
1975 struct bio_vec *bi;
1976 bi = &b->bi_io_vec[j];
1977 bi->bv_offset = 0;
1978 if (size > PAGE_SIZE)
1979 bi->bv_len = PAGE_SIZE;
1980 else
1981 bi->bv_len = size;
1982 size -= PAGE_SIZE;
1983 }
1984 }
1985 for (primary = 0; primary < conf->raid_disks * 2; primary++)
1986 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1987 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1988 r1_bio->bios[primary]->bi_end_io = NULL;
1989 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1990 break;
1991 }
1992 r1_bio->read_disk = primary;
1993 for (i = 0; i < conf->raid_disks * 2; i++) {
1994 int j;
1995 struct bio *pbio = r1_bio->bios[primary];
1996 struct bio *sbio = r1_bio->bios[i];
1997 int uptodate = test_bit(BIO_UPTODATE, &sbio->bi_flags);
1998
1999 if (sbio->bi_end_io != end_sync_read)
2000 continue;
2001 /* Now we can 'fixup' the BIO_UPTODATE flag */
2002 set_bit(BIO_UPTODATE, &sbio->bi_flags);
2003
2004 if (uptodate) {
2005 for (j = vcnt; j-- ; ) {
2006 struct page *p, *s;
2007 p = pbio->bi_io_vec[j].bv_page;
2008 s = sbio->bi_io_vec[j].bv_page;
2009 if (memcmp(page_address(p),
2010 page_address(s),
2011 sbio->bi_io_vec[j].bv_len))
2012 break;
2013 }
2014 } else
2015 j = 0;
2016 if (j >= 0)
2017 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2018 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2019 && uptodate)) {
2020 /* No need to write to this device. */
2021 sbio->bi_end_io = NULL;
2022 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2023 continue;
2024 }
2025
2026 bio_copy_data(sbio, pbio);
2027 }
2028 return 0;
2029 }
2030
2031 static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2032 {
2033 struct r1conf *conf = mddev->private;
2034 int i;
2035 int disks = conf->raid_disks * 2;
2036 struct bio *bio, *wbio;
2037
2038 bio = r1_bio->bios[r1_bio->read_disk];
2039
2040 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2041 /* ouch - failed to read all of that. */
2042 if (!fix_sync_read_error(r1_bio))
2043 return;
2044
2045 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2046 if (process_checks(r1_bio) < 0)
2047 return;
2048 /*
2049 * schedule writes
2050 */
2051 atomic_set(&r1_bio->remaining, 1);
2052 for (i = 0; i < disks ; i++) {
2053 wbio = r1_bio->bios[i];
2054 if (wbio->bi_end_io == NULL ||
2055 (wbio->bi_end_io == end_sync_read &&
2056 (i == r1_bio->read_disk ||
2057 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2058 continue;
2059
2060 wbio->bi_rw = WRITE;
2061 wbio->bi_end_io = end_sync_write;
2062 atomic_inc(&r1_bio->remaining);
2063 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2064
2065 generic_make_request(wbio);
2066 }
2067
2068 if (atomic_dec_and_test(&r1_bio->remaining)) {
2069 /* if we're here, all write(s) have completed, so clean up */
2070 int s = r1_bio->sectors;
2071 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2072 test_bit(R1BIO_WriteError, &r1_bio->state))
2073 reschedule_retry(r1_bio);
2074 else {
2075 put_buf(r1_bio);
2076 md_done_sync(mddev, s, 1);
2077 }
2078 }
2079 }
2080
2081 /*
2082 * This is a kernel thread which:
2083 *
2084 * 1. Retries failed read operations on working mirrors.
2085 * 2. Updates the raid superblock when problems encounter.
2086 * 3. Performs writes following reads for array synchronising.
2087 */
2088
2089 static void fix_read_error(struct r1conf *conf, int read_disk,
2090 sector_t sect, int sectors)
2091 {
2092 struct mddev *mddev = conf->mddev;
2093 while(sectors) {
2094 int s = sectors;
2095 int d = read_disk;
2096 int success = 0;
2097 int start;
2098 struct md_rdev *rdev;
2099
2100 if (s > (PAGE_SIZE>>9))
2101 s = PAGE_SIZE >> 9;
2102
2103 do {
2104 /* Note: no rcu protection needed here
2105 * as this is synchronous in the raid1d thread
2106 * which is the thread that might remove
2107 * a device. If raid1d ever becomes multi-threaded....
2108 */
2109 sector_t first_bad;
2110 int bad_sectors;
2111
2112 rdev = conf->mirrors[d].rdev;
2113 if (rdev &&
2114 (test_bit(In_sync, &rdev->flags) ||
2115 (!test_bit(Faulty, &rdev->flags) &&
2116 rdev->recovery_offset >= sect + s)) &&
2117 is_badblock(rdev, sect, s,
2118 &first_bad, &bad_sectors) == 0 &&
2119 sync_page_io(rdev, sect, s<<9,
2120 conf->tmppage, READ, false))
2121 success = 1;
2122 else {
2123 d++;
2124 if (d == conf->raid_disks * 2)
2125 d = 0;
2126 }
2127 } while (!success && d != read_disk);
2128
2129 if (!success) {
2130 /* Cannot read from anywhere - mark it bad */
2131 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2132 if (!rdev_set_badblocks(rdev, sect, s, 0))
2133 md_error(mddev, rdev);
2134 break;
2135 }
2136 /* write it back and re-read */
2137 start = d;
2138 while (d != read_disk) {
2139 if (d==0)
2140 d = conf->raid_disks * 2;
2141 d--;
2142 rdev = conf->mirrors[d].rdev;
2143 if (rdev &&
2144 test_bit(In_sync, &rdev->flags))
2145 r1_sync_page_io(rdev, sect, s,
2146 conf->tmppage, WRITE);
2147 }
2148 d = start;
2149 while (d != read_disk) {
2150 char b[BDEVNAME_SIZE];
2151 if (d==0)
2152 d = conf->raid_disks * 2;
2153 d--;
2154 rdev = conf->mirrors[d].rdev;
2155 if (rdev &&
2156 test_bit(In_sync, &rdev->flags)) {
2157 if (r1_sync_page_io(rdev, sect, s,
2158 conf->tmppage, READ)) {
2159 atomic_add(s, &rdev->corrected_errors);
2160 printk(KERN_INFO
2161 "md/raid1:%s: read error corrected "
2162 "(%d sectors at %llu on %s)\n",
2163 mdname(mddev), s,
2164 (unsigned long long)(sect +
2165 rdev->data_offset),
2166 bdevname(rdev->bdev, b));
2167 }
2168 }
2169 }
2170 sectors -= s;
2171 sect += s;
2172 }
2173 }
2174
2175 static int narrow_write_error(struct r1bio *r1_bio, int i)
2176 {
2177 struct mddev *mddev = r1_bio->mddev;
2178 struct r1conf *conf = mddev->private;
2179 struct md_rdev *rdev = conf->mirrors[i].rdev;
2180
2181 /* bio has the data to be written to device 'i' where
2182 * we just recently had a write error.
2183 * We repeatedly clone the bio and trim down to one block,
2184 * then try the write. Where the write fails we record
2185 * a bad block.
2186 * It is conceivable that the bio doesn't exactly align with
2187 * blocks. We must handle this somehow.
2188 *
2189 * We currently own a reference on the rdev.
2190 */
2191
2192 int block_sectors;
2193 sector_t sector;
2194 int sectors;
2195 int sect_to_write = r1_bio->sectors;
2196 int ok = 1;
2197
2198 if (rdev->badblocks.shift < 0)
2199 return 0;
2200
2201 block_sectors = 1 << rdev->badblocks.shift;
2202 sector = r1_bio->sector;
2203 sectors = ((sector + block_sectors)
2204 & ~(sector_t)(block_sectors - 1))
2205 - sector;
2206
2207 while (sect_to_write) {
2208 struct bio *wbio;
2209 if (sectors > sect_to_write)
2210 sectors = sect_to_write;
2211 /* Write at 'sector' for 'sectors'*/
2212
2213 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2214 unsigned vcnt = r1_bio->behind_page_count;
2215 struct bio_vec *vec = r1_bio->behind_bvecs;
2216
2217 while (!vec->bv_page) {
2218 vec++;
2219 vcnt--;
2220 }
2221
2222 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2223 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2224
2225 wbio->bi_vcnt = vcnt;
2226 } else {
2227 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2228 }
2229
2230 wbio->bi_rw = WRITE;
2231 wbio->bi_iter.bi_sector = r1_bio->sector;
2232 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2233
2234 bio_trim(wbio, sector - r1_bio->sector, sectors);
2235 wbio->bi_iter.bi_sector += rdev->data_offset;
2236 wbio->bi_bdev = rdev->bdev;
2237 if (submit_bio_wait(WRITE, wbio) == 0)
2238 /* failure! */
2239 ok = rdev_set_badblocks(rdev, sector,
2240 sectors, 0)
2241 && ok;
2242
2243 bio_put(wbio);
2244 sect_to_write -= sectors;
2245 sector += sectors;
2246 sectors = block_sectors;
2247 }
2248 return ok;
2249 }
2250
2251 static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2252 {
2253 int m;
2254 int s = r1_bio->sectors;
2255 for (m = 0; m < conf->raid_disks * 2 ; m++) {
2256 struct md_rdev *rdev = conf->mirrors[m].rdev;
2257 struct bio *bio = r1_bio->bios[m];
2258 if (bio->bi_end_io == NULL)
2259 continue;
2260 if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2261 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2262 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2263 }
2264 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
2265 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2266 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2267 md_error(conf->mddev, rdev);
2268 }
2269 }
2270 put_buf(r1_bio);
2271 md_done_sync(conf->mddev, s, 1);
2272 }
2273
2274 static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2275 {
2276 int m;
2277 for (m = 0; m < conf->raid_disks * 2 ; m++)
2278 if (r1_bio->bios[m] == IO_MADE_GOOD) {
2279 struct md_rdev *rdev = conf->mirrors[m].rdev;
2280 rdev_clear_badblocks(rdev,
2281 r1_bio->sector,
2282 r1_bio->sectors, 0);
2283 rdev_dec_pending(rdev, conf->mddev);
2284 } else if (r1_bio->bios[m] != NULL) {
2285 /* This drive got a write error. We need to
2286 * narrow down and record precise write
2287 * errors.
2288 */
2289 if (!narrow_write_error(r1_bio, m)) {
2290 md_error(conf->mddev,
2291 conf->mirrors[m].rdev);
2292 /* an I/O failed, we can't clear the bitmap */
2293 set_bit(R1BIO_Degraded, &r1_bio->state);
2294 }
2295 rdev_dec_pending(conf->mirrors[m].rdev,
2296 conf->mddev);
2297 }
2298 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2299 close_write(r1_bio);
2300 raid_end_bio_io(r1_bio);
2301 }
2302
2303 static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2304 {
2305 int disk;
2306 int max_sectors;
2307 struct mddev *mddev = conf->mddev;
2308 struct bio *bio;
2309 char b[BDEVNAME_SIZE];
2310 struct md_rdev *rdev;
2311
2312 clear_bit(R1BIO_ReadError, &r1_bio->state);
2313 /* we got a read error. Maybe the drive is bad. Maybe just
2314 * the block and we can fix it.
2315 * We freeze all other IO, and try reading the block from
2316 * other devices. When we find one, we re-write
2317 * and check it that fixes the read error.
2318 * This is all done synchronously while the array is
2319 * frozen
2320 */
2321 if (mddev->ro == 0) {
2322 freeze_array(conf, 1);
2323 fix_read_error(conf, r1_bio->read_disk,
2324 r1_bio->sector, r1_bio->sectors);
2325 unfreeze_array(conf);
2326 } else
2327 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2328 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
2329
2330 bio = r1_bio->bios[r1_bio->read_disk];
2331 bdevname(bio->bi_bdev, b);
2332 read_more:
2333 disk = read_balance(conf, r1_bio, &max_sectors);
2334 if (disk == -1) {
2335 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2336 " read error for block %llu\n",
2337 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2338 raid_end_bio_io(r1_bio);
2339 } else {
2340 const unsigned long do_sync
2341 = r1_bio->master_bio->bi_rw & REQ_SYNC;
2342 if (bio) {
2343 r1_bio->bios[r1_bio->read_disk] =
2344 mddev->ro ? IO_BLOCKED : NULL;
2345 bio_put(bio);
2346 }
2347 r1_bio->read_disk = disk;
2348 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2349 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2350 max_sectors);
2351 r1_bio->bios[r1_bio->read_disk] = bio;
2352 rdev = conf->mirrors[disk].rdev;
2353 printk_ratelimited(KERN_ERR
2354 "md/raid1:%s: redirecting sector %llu"
2355 " to other mirror: %s\n",
2356 mdname(mddev),
2357 (unsigned long long)r1_bio->sector,
2358 bdevname(rdev->bdev, b));
2359 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2360 bio->bi_bdev = rdev->bdev;
2361 bio->bi_end_io = raid1_end_read_request;
2362 bio->bi_rw = READ | do_sync;
2363 bio->bi_private = r1_bio;
2364 if (max_sectors < r1_bio->sectors) {
2365 /* Drat - have to split this up more */
2366 struct bio *mbio = r1_bio->master_bio;
2367 int sectors_handled = (r1_bio->sector + max_sectors
2368 - mbio->bi_iter.bi_sector);
2369 r1_bio->sectors = max_sectors;
2370 spin_lock_irq(&conf->device_lock);
2371 if (mbio->bi_phys_segments == 0)
2372 mbio->bi_phys_segments = 2;
2373 else
2374 mbio->bi_phys_segments++;
2375 spin_unlock_irq(&conf->device_lock);
2376 generic_make_request(bio);
2377 bio = NULL;
2378
2379 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2380
2381 r1_bio->master_bio = mbio;
2382 r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2383 r1_bio->state = 0;
2384 set_bit(R1BIO_ReadError, &r1_bio->state);
2385 r1_bio->mddev = mddev;
2386 r1_bio->sector = mbio->bi_iter.bi_sector +
2387 sectors_handled;
2388
2389 goto read_more;
2390 } else
2391 generic_make_request(bio);
2392 }
2393 }
2394
2395 static void raid1d(struct md_thread *thread)
2396 {
2397 struct mddev *mddev = thread->mddev;
2398 struct r1bio *r1_bio;
2399 unsigned long flags;
2400 struct r1conf *conf = mddev->private;
2401 struct list_head *head = &conf->retry_list;
2402 struct blk_plug plug;
2403
2404 md_check_recovery(mddev);
2405
2406 blk_start_plug(&plug);
2407 for (;;) {
2408
2409 flush_pending_writes(conf);
2410
2411 spin_lock_irqsave(&conf->device_lock, flags);
2412 if (list_empty(head)) {
2413 spin_unlock_irqrestore(&conf->device_lock, flags);
2414 break;
2415 }
2416 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2417 list_del(head->prev);
2418 conf->nr_queued--;
2419 spin_unlock_irqrestore(&conf->device_lock, flags);
2420
2421 mddev = r1_bio->mddev;
2422 conf = mddev->private;
2423 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2424 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2425 test_bit(R1BIO_WriteError, &r1_bio->state))
2426 handle_sync_write_finished(conf, r1_bio);
2427 else
2428 sync_request_write(mddev, r1_bio);
2429 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2430 test_bit(R1BIO_WriteError, &r1_bio->state))
2431 handle_write_finished(conf, r1_bio);
2432 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2433 handle_read_error(conf, r1_bio);
2434 else
2435 /* just a partial read to be scheduled from separate
2436 * context
2437 */
2438 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2439
2440 cond_resched();
2441 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2442 md_check_recovery(mddev);
2443 }
2444 blk_finish_plug(&plug);
2445 }
2446
2447
2448 static int init_resync(struct r1conf *conf)
2449 {
2450 int buffs;
2451
2452 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2453 BUG_ON(conf->r1buf_pool);
2454 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2455 conf->poolinfo);
2456 if (!conf->r1buf_pool)
2457 return -ENOMEM;
2458 conf->next_resync = 0;
2459 return 0;
2460 }
2461
2462 /*
2463 * perform a "sync" on one "block"
2464 *
2465 * We need to make sure that no normal I/O request - particularly write
2466 * requests - conflict with active sync requests.
2467 *
2468 * This is achieved by tracking pending requests and a 'barrier' concept
2469 * that can be installed to exclude normal IO requests.
2470 */
2471
2472 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
2473 {
2474 struct r1conf *conf = mddev->private;
2475 struct r1bio *r1_bio;
2476 struct bio *bio;
2477 sector_t max_sector, nr_sectors;
2478 int disk = -1;
2479 int i;
2480 int wonly = -1;
2481 int write_targets = 0, read_targets = 0;
2482 sector_t sync_blocks;
2483 int still_degraded = 0;
2484 int good_sectors = RESYNC_SECTORS;
2485 int min_bad = 0; /* number of sectors that are bad in all devices */
2486
2487 if (!conf->r1buf_pool)
2488 if (init_resync(conf))
2489 return 0;
2490
2491 max_sector = mddev->dev_sectors;
2492 if (sector_nr >= max_sector) {
2493 /* If we aborted, we need to abort the
2494 * sync on the 'current' bitmap chunk (there will
2495 * only be one in raid1 resync.
2496 * We can find the current addess in mddev->curr_resync
2497 */
2498 if (mddev->curr_resync < max_sector) /* aborted */
2499 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2500 &sync_blocks, 1);
2501 else /* completed sync */
2502 conf->fullsync = 0;
2503
2504 bitmap_close_sync(mddev->bitmap);
2505 close_sync(conf);
2506 return 0;
2507 }
2508
2509 if (mddev->bitmap == NULL &&
2510 mddev->recovery_cp == MaxSector &&
2511 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2512 conf->fullsync == 0) {
2513 *skipped = 1;
2514 return max_sector - sector_nr;
2515 }
2516 /* before building a request, check if we can skip these blocks..
2517 * This call the bitmap_start_sync doesn't actually record anything
2518 */
2519 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2520 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2521 /* We can skip this block, and probably several more */
2522 *skipped = 1;
2523 return sync_blocks;
2524 }
2525 /*
2526 * If there is non-resync activity waiting for a turn,
2527 * and resync is going fast enough,
2528 * then let it though before starting on this new sync request.
2529 */
2530 if (!go_faster && conf->nr_waiting)
2531 msleep_interruptible(1000);
2532
2533 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2534 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2535 raise_barrier(conf);
2536
2537 conf->next_resync = sector_nr;
2538
2539 rcu_read_lock();
2540 /*
2541 * If we get a correctably read error during resync or recovery,
2542 * we might want to read from a different device. So we
2543 * flag all drives that could conceivably be read from for READ,
2544 * and any others (which will be non-In_sync devices) for WRITE.
2545 * If a read fails, we try reading from something else for which READ
2546 * is OK.
2547 */
2548
2549 r1_bio->mddev = mddev;
2550 r1_bio->sector = sector_nr;
2551 r1_bio->state = 0;
2552 set_bit(R1BIO_IsSync, &r1_bio->state);
2553
2554 for (i = 0; i < conf->raid_disks * 2; i++) {
2555 struct md_rdev *rdev;
2556 bio = r1_bio->bios[i];
2557 bio_reset(bio);
2558
2559 rdev = rcu_dereference(conf->mirrors[i].rdev);
2560 if (rdev == NULL ||
2561 test_bit(Faulty, &rdev->flags)) {
2562 if (i < conf->raid_disks)
2563 still_degraded = 1;
2564 } else if (!test_bit(In_sync, &rdev->flags)) {
2565 bio->bi_rw = WRITE;
2566 bio->bi_end_io = end_sync_write;
2567 write_targets ++;
2568 } else {
2569 /* may need to read from here */
2570 sector_t first_bad = MaxSector;
2571 int bad_sectors;
2572
2573 if (is_badblock(rdev, sector_nr, good_sectors,
2574 &first_bad, &bad_sectors)) {
2575 if (first_bad > sector_nr)
2576 good_sectors = first_bad - sector_nr;
2577 else {
2578 bad_sectors -= (sector_nr - first_bad);
2579 if (min_bad == 0 ||
2580 min_bad > bad_sectors)
2581 min_bad = bad_sectors;
2582 }
2583 }
2584 if (sector_nr < first_bad) {
2585 if (test_bit(WriteMostly, &rdev->flags)) {
2586 if (wonly < 0)
2587 wonly = i;
2588 } else {
2589 if (disk < 0)
2590 disk = i;
2591 }
2592 bio->bi_rw = READ;
2593 bio->bi_end_io = end_sync_read;
2594 read_targets++;
2595 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2596 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2597 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2598 /*
2599 * The device is suitable for reading (InSync),
2600 * but has bad block(s) here. Let's try to correct them,
2601 * if we are doing resync or repair. Otherwise, leave
2602 * this device alone for this sync request.
2603 */
2604 bio->bi_rw = WRITE;
2605 bio->bi_end_io = end_sync_write;
2606 write_targets++;
2607 }
2608 }
2609 if (bio->bi_end_io) {
2610 atomic_inc(&rdev->nr_pending);
2611 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2612 bio->bi_bdev = rdev->bdev;
2613 bio->bi_private = r1_bio;
2614 }
2615 }
2616 rcu_read_unlock();
2617 if (disk < 0)
2618 disk = wonly;
2619 r1_bio->read_disk = disk;
2620
2621 if (read_targets == 0 && min_bad > 0) {
2622 /* These sectors are bad on all InSync devices, so we
2623 * need to mark them bad on all write targets
2624 */
2625 int ok = 1;
2626 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2627 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2628 struct md_rdev *rdev = conf->mirrors[i].rdev;
2629 ok = rdev_set_badblocks(rdev, sector_nr,
2630 min_bad, 0
2631 ) && ok;
2632 }
2633 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2634 *skipped = 1;
2635 put_buf(r1_bio);
2636
2637 if (!ok) {
2638 /* Cannot record the badblocks, so need to
2639 * abort the resync.
2640 * If there are multiple read targets, could just
2641 * fail the really bad ones ???
2642 */
2643 conf->recovery_disabled = mddev->recovery_disabled;
2644 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2645 return 0;
2646 } else
2647 return min_bad;
2648
2649 }
2650 if (min_bad > 0 && min_bad < good_sectors) {
2651 /* only resync enough to reach the next bad->good
2652 * transition */
2653 good_sectors = min_bad;
2654 }
2655
2656 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2657 /* extra read targets are also write targets */
2658 write_targets += read_targets-1;
2659
2660 if (write_targets == 0 || read_targets == 0) {
2661 /* There is nowhere to write, so all non-sync
2662 * drives must be failed - so we are finished
2663 */
2664 sector_t rv;
2665 if (min_bad > 0)
2666 max_sector = sector_nr + min_bad;
2667 rv = max_sector - sector_nr;
2668 *skipped = 1;
2669 put_buf(r1_bio);
2670 return rv;
2671 }
2672
2673 if (max_sector > mddev->resync_max)
2674 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2675 if (max_sector > sector_nr + good_sectors)
2676 max_sector = sector_nr + good_sectors;
2677 nr_sectors = 0;
2678 sync_blocks = 0;
2679 do {
2680 struct page *page;
2681 int len = PAGE_SIZE;
2682 if (sector_nr + (len>>9) > max_sector)
2683 len = (max_sector - sector_nr) << 9;
2684 if (len == 0)
2685 break;
2686 if (sync_blocks == 0) {
2687 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2688 &sync_blocks, still_degraded) &&
2689 !conf->fullsync &&
2690 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2691 break;
2692 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
2693 if ((len >> 9) > sync_blocks)
2694 len = sync_blocks<<9;
2695 }
2696
2697 for (i = 0 ; i < conf->raid_disks * 2; i++) {
2698 bio = r1_bio->bios[i];
2699 if (bio->bi_end_io) {
2700 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2701 if (bio_add_page(bio, page, len, 0) == 0) {
2702 /* stop here */
2703 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2704 while (i > 0) {
2705 i--;
2706 bio = r1_bio->bios[i];
2707 if (bio->bi_end_io==NULL)
2708 continue;
2709 /* remove last page from this bio */
2710 bio->bi_vcnt--;
2711 bio->bi_iter.bi_size -= len;
2712 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
2713 }
2714 goto bio_full;
2715 }
2716 }
2717 }
2718 nr_sectors += len>>9;
2719 sector_nr += len>>9;
2720 sync_blocks -= (len>>9);
2721 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2722 bio_full:
2723 r1_bio->sectors = nr_sectors;
2724
2725 /* For a user-requested sync, we read all readable devices and do a
2726 * compare
2727 */
2728 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2729 atomic_set(&r1_bio->remaining, read_targets);
2730 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2731 bio = r1_bio->bios[i];
2732 if (bio->bi_end_io == end_sync_read) {
2733 read_targets--;
2734 md_sync_acct(bio->bi_bdev, nr_sectors);
2735 generic_make_request(bio);
2736 }
2737 }
2738 } else {
2739 atomic_set(&r1_bio->remaining, 1);
2740 bio = r1_bio->bios[r1_bio->read_disk];
2741 md_sync_acct(bio->bi_bdev, nr_sectors);
2742 generic_make_request(bio);
2743
2744 }
2745 return nr_sectors;
2746 }
2747
2748 static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2749 {
2750 if (sectors)
2751 return sectors;
2752
2753 return mddev->dev_sectors;
2754 }
2755
2756 static struct r1conf *setup_conf(struct mddev *mddev)
2757 {
2758 struct r1conf *conf;
2759 int i;
2760 struct raid1_info *disk;
2761 struct md_rdev *rdev;
2762 int err = -ENOMEM;
2763
2764 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2765 if (!conf)
2766 goto abort;
2767
2768 conf->mirrors = kzalloc(sizeof(struct raid1_info)
2769 * mddev->raid_disks * 2,
2770 GFP_KERNEL);
2771 if (!conf->mirrors)
2772 goto abort;
2773
2774 conf->tmppage = alloc_page(GFP_KERNEL);
2775 if (!conf->tmppage)
2776 goto abort;
2777
2778 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2779 if (!conf->poolinfo)
2780 goto abort;
2781 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2782 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2783 r1bio_pool_free,
2784 conf->poolinfo);
2785 if (!conf->r1bio_pool)
2786 goto abort;
2787
2788 conf->poolinfo->mddev = mddev;
2789
2790 err = -EINVAL;
2791 spin_lock_init(&conf->device_lock);
2792 rdev_for_each(rdev, mddev) {
2793 struct request_queue *q;
2794 int disk_idx = rdev->raid_disk;
2795 if (disk_idx >= mddev->raid_disks
2796 || disk_idx < 0)
2797 continue;
2798 if (test_bit(Replacement, &rdev->flags))
2799 disk = conf->mirrors + mddev->raid_disks + disk_idx;
2800 else
2801 disk = conf->mirrors + disk_idx;
2802
2803 if (disk->rdev)
2804 goto abort;
2805 disk->rdev = rdev;
2806 q = bdev_get_queue(rdev->bdev);
2807 if (q->merge_bvec_fn)
2808 mddev->merge_check_needed = 1;
2809
2810 disk->head_position = 0;
2811 disk->seq_start = MaxSector;
2812 }
2813 conf->raid_disks = mddev->raid_disks;
2814 conf->mddev = mddev;
2815 INIT_LIST_HEAD(&conf->retry_list);
2816
2817 spin_lock_init(&conf->resync_lock);
2818 init_waitqueue_head(&conf->wait_barrier);
2819
2820 bio_list_init(&conf->pending_bio_list);
2821 conf->pending_count = 0;
2822 conf->recovery_disabled = mddev->recovery_disabled - 1;
2823
2824 conf->start_next_window = MaxSector;
2825 conf->current_window_requests = conf->next_window_requests = 0;
2826
2827 err = -EIO;
2828 for (i = 0; i < conf->raid_disks * 2; i++) {
2829
2830 disk = conf->mirrors + i;
2831
2832 if (i < conf->raid_disks &&
2833 disk[conf->raid_disks].rdev) {
2834 /* This slot has a replacement. */
2835 if (!disk->rdev) {
2836 /* No original, just make the replacement
2837 * a recovering spare
2838 */
2839 disk->rdev =
2840 disk[conf->raid_disks].rdev;
2841 disk[conf->raid_disks].rdev = NULL;
2842 } else if (!test_bit(In_sync, &disk->rdev->flags))
2843 /* Original is not in_sync - bad */
2844 goto abort;
2845 }
2846
2847 if (!disk->rdev ||
2848 !test_bit(In_sync, &disk->rdev->flags)) {
2849 disk->head_position = 0;
2850 if (disk->rdev &&
2851 (disk->rdev->saved_raid_disk < 0))
2852 conf->fullsync = 1;
2853 }
2854 }
2855
2856 err = -ENOMEM;
2857 conf->thread = md_register_thread(raid1d, mddev, "raid1");
2858 if (!conf->thread) {
2859 printk(KERN_ERR
2860 "md/raid1:%s: couldn't allocate thread\n",
2861 mdname(mddev));
2862 goto abort;
2863 }
2864
2865 return conf;
2866
2867 abort:
2868 if (conf) {
2869 if (conf->r1bio_pool)
2870 mempool_destroy(conf->r1bio_pool);
2871 kfree(conf->mirrors);
2872 safe_put_page(conf->tmppage);
2873 kfree(conf->poolinfo);
2874 kfree(conf);
2875 }
2876 return ERR_PTR(err);
2877 }
2878
2879 static int stop(struct mddev *mddev);
2880 static int run(struct mddev *mddev)
2881 {
2882 struct r1conf *conf;
2883 int i;
2884 struct md_rdev *rdev;
2885 int ret;
2886 bool discard_supported = false;
2887
2888 if (mddev->level != 1) {
2889 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2890 mdname(mddev), mddev->level);
2891 return -EIO;
2892 }
2893 if (mddev->reshape_position != MaxSector) {
2894 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2895 mdname(mddev));
2896 return -EIO;
2897 }
2898 /*
2899 * copy the already verified devices into our private RAID1
2900 * bookkeeping area. [whatever we allocate in run(),
2901 * should be freed in stop()]
2902 */
2903 if (mddev->private == NULL)
2904 conf = setup_conf(mddev);
2905 else
2906 conf = mddev->private;
2907
2908 if (IS_ERR(conf))
2909 return PTR_ERR(conf);
2910
2911 if (mddev->queue)
2912 blk_queue_max_write_same_sectors(mddev->queue, 0);
2913
2914 rdev_for_each(rdev, mddev) {
2915 if (!mddev->gendisk)
2916 continue;
2917 disk_stack_limits(mddev->gendisk, rdev->bdev,
2918 rdev->data_offset << 9);
2919 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2920 discard_supported = true;
2921 }
2922
2923 mddev->degraded = 0;
2924 for (i=0; i < conf->raid_disks; i++)
2925 if (conf->mirrors[i].rdev == NULL ||
2926 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2927 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2928 mddev->degraded++;
2929
2930 if (conf->raid_disks - mddev->degraded == 1)
2931 mddev->recovery_cp = MaxSector;
2932
2933 if (mddev->recovery_cp != MaxSector)
2934 printk(KERN_NOTICE "md/raid1:%s: not clean"
2935 " -- starting background reconstruction\n",
2936 mdname(mddev));
2937 printk(KERN_INFO
2938 "md/raid1:%s: active with %d out of %d mirrors\n",
2939 mdname(mddev), mddev->raid_disks - mddev->degraded,
2940 mddev->raid_disks);
2941
2942 /*
2943 * Ok, everything is just fine now
2944 */
2945 mddev->thread = conf->thread;
2946 conf->thread = NULL;
2947 mddev->private = conf;
2948
2949 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2950
2951 if (mddev->queue) {
2952 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2953 mddev->queue->backing_dev_info.congested_data = mddev;
2954 blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
2955
2956 if (discard_supported)
2957 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2958 mddev->queue);
2959 else
2960 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2961 mddev->queue);
2962 }
2963
2964 ret = md_integrity_register(mddev);
2965 if (ret)
2966 stop(mddev);
2967 return ret;
2968 }
2969
2970 static int stop(struct mddev *mddev)
2971 {
2972 struct r1conf *conf = mddev->private;
2973 struct bitmap *bitmap = mddev->bitmap;
2974
2975 /* wait for behind writes to complete */
2976 if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2977 printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
2978 mdname(mddev));
2979 /* need to kick something here to make sure I/O goes? */
2980 wait_event(bitmap->behind_wait,
2981 atomic_read(&bitmap->behind_writes) == 0);
2982 }
2983
2984 freeze_array(conf, 0);
2985 unfreeze_array(conf);
2986
2987 md_unregister_thread(&mddev->thread);
2988 if (conf->r1bio_pool)
2989 mempool_destroy(conf->r1bio_pool);
2990 kfree(conf->mirrors);
2991 safe_put_page(conf->tmppage);
2992 kfree(conf->poolinfo);
2993 kfree(conf);
2994 mddev->private = NULL;
2995 return 0;
2996 }
2997
2998 static int raid1_resize(struct mddev *mddev, sector_t sectors)
2999 {
3000 /* no resync is happening, and there is enough space
3001 * on all devices, so we can resize.
3002 * We need to make sure resync covers any new space.
3003 * If the array is shrinking we should possibly wait until
3004 * any io in the removed space completes, but it hardly seems
3005 * worth it.
3006 */
3007 sector_t newsize = raid1_size(mddev, sectors, 0);
3008 if (mddev->external_size &&
3009 mddev->array_sectors > newsize)
3010 return -EINVAL;
3011 if (mddev->bitmap) {
3012 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3013 if (ret)
3014 return ret;
3015 }
3016 md_set_array_sectors(mddev, newsize);
3017 set_capacity(mddev->gendisk, mddev->array_sectors);
3018 revalidate_disk(mddev->gendisk);
3019 if (sectors > mddev->dev_sectors &&
3020 mddev->recovery_cp > mddev->dev_sectors) {
3021 mddev->recovery_cp = mddev->dev_sectors;
3022 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3023 }
3024 mddev->dev_sectors = sectors;
3025 mddev->resync_max_sectors = sectors;
3026 return 0;
3027 }
3028
3029 static int raid1_reshape(struct mddev *mddev)
3030 {
3031 /* We need to:
3032 * 1/ resize the r1bio_pool
3033 * 2/ resize conf->mirrors
3034 *
3035 * We allocate a new r1bio_pool if we can.
3036 * Then raise a device barrier and wait until all IO stops.
3037 * Then resize conf->mirrors and swap in the new r1bio pool.
3038 *
3039 * At the same time, we "pack" the devices so that all the missing
3040 * devices have the higher raid_disk numbers.
3041 */
3042 mempool_t *newpool, *oldpool;
3043 struct pool_info *newpoolinfo;
3044 struct raid1_info *newmirrors;
3045 struct r1conf *conf = mddev->private;
3046 int cnt, raid_disks;
3047 unsigned long flags;
3048 int d, d2, err;
3049
3050 /* Cannot change chunk_size, layout, or level */
3051 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3052 mddev->layout != mddev->new_layout ||
3053 mddev->level != mddev->new_level) {
3054 mddev->new_chunk_sectors = mddev->chunk_sectors;
3055 mddev->new_layout = mddev->layout;
3056 mddev->new_level = mddev->level;
3057 return -EINVAL;
3058 }
3059
3060 err = md_allow_write(mddev);
3061 if (err)
3062 return err;
3063
3064 raid_disks = mddev->raid_disks + mddev->delta_disks;
3065
3066 if (raid_disks < conf->raid_disks) {
3067 cnt=0;
3068 for (d= 0; d < conf->raid_disks; d++)
3069 if (conf->mirrors[d].rdev)
3070 cnt++;
3071 if (cnt > raid_disks)
3072 return -EBUSY;
3073 }
3074
3075 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3076 if (!newpoolinfo)
3077 return -ENOMEM;
3078 newpoolinfo->mddev = mddev;
3079 newpoolinfo->raid_disks = raid_disks * 2;
3080
3081 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3082 r1bio_pool_free, newpoolinfo);
3083 if (!newpool) {
3084 kfree(newpoolinfo);
3085 return -ENOMEM;
3086 }
3087 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3088 GFP_KERNEL);
3089 if (!newmirrors) {
3090 kfree(newpoolinfo);
3091 mempool_destroy(newpool);
3092 return -ENOMEM;
3093 }
3094
3095 freeze_array(conf, 0);
3096
3097 /* ok, everything is stopped */
3098 oldpool = conf->r1bio_pool;
3099 conf->r1bio_pool = newpool;
3100
3101 for (d = d2 = 0; d < conf->raid_disks; d++) {
3102 struct md_rdev *rdev = conf->mirrors[d].rdev;
3103 if (rdev && rdev->raid_disk != d2) {
3104 sysfs_unlink_rdev(mddev, rdev);
3105 rdev->raid_disk = d2;
3106 sysfs_unlink_rdev(mddev, rdev);
3107 if (sysfs_link_rdev(mddev, rdev))
3108 printk(KERN_WARNING
3109 "md/raid1:%s: cannot register rd%d\n",
3110 mdname(mddev), rdev->raid_disk);
3111 }
3112 if (rdev)
3113 newmirrors[d2++].rdev = rdev;
3114 }
3115 kfree(conf->mirrors);
3116 conf->mirrors = newmirrors;
3117 kfree(conf->poolinfo);
3118 conf->poolinfo = newpoolinfo;
3119
3120 spin_lock_irqsave(&conf->device_lock, flags);
3121 mddev->degraded += (raid_disks - conf->raid_disks);
3122 spin_unlock_irqrestore(&conf->device_lock, flags);
3123 conf->raid_disks = mddev->raid_disks = raid_disks;
3124 mddev->delta_disks = 0;
3125
3126 unfreeze_array(conf);
3127
3128 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3129 md_wakeup_thread(mddev->thread);
3130
3131 mempool_destroy(oldpool);
3132 return 0;
3133 }
3134
3135 static void raid1_quiesce(struct mddev *mddev, int state)
3136 {
3137 struct r1conf *conf = mddev->private;
3138
3139 switch(state) {
3140 case 2: /* wake for suspend */
3141 wake_up(&conf->wait_barrier);
3142 break;
3143 case 1:
3144 freeze_array(conf, 0);
3145 break;
3146 case 0:
3147 unfreeze_array(conf);
3148 break;
3149 }
3150 }
3151
3152 static void *raid1_takeover(struct mddev *mddev)
3153 {
3154 /* raid1 can take over:
3155 * raid5 with 2 devices, any layout or chunk size
3156 */
3157 if (mddev->level == 5 && mddev->raid_disks == 2) {
3158 struct r1conf *conf;
3159 mddev->new_level = 1;
3160 mddev->new_layout = 0;
3161 mddev->new_chunk_sectors = 0;
3162 conf = setup_conf(mddev);
3163 if (!IS_ERR(conf))
3164 /* Array must appear to be quiesced */
3165 conf->array_frozen = 1;
3166 return conf;
3167 }
3168 return ERR_PTR(-EINVAL);
3169 }
3170
3171 static struct md_personality raid1_personality =
3172 {
3173 .name = "raid1",
3174 .level = 1,
3175 .owner = THIS_MODULE,
3176 .make_request = make_request,
3177 .run = run,
3178 .stop = stop,
3179 .status = status,
3180 .error_handler = error,
3181 .hot_add_disk = raid1_add_disk,
3182 .hot_remove_disk= raid1_remove_disk,
3183 .spare_active = raid1_spare_active,
3184 .sync_request = sync_request,
3185 .resize = raid1_resize,
3186 .size = raid1_size,
3187 .check_reshape = raid1_reshape,
3188 .quiesce = raid1_quiesce,
3189 .takeover = raid1_takeover,
3190 };
3191
3192 static int __init raid_init(void)
3193 {
3194 return register_md_personality(&raid1_personality);
3195 }
3196
3197 static void raid_exit(void)
3198 {
3199 unregister_md_personality(&raid1_personality);
3200 }
3201
3202 module_init(raid_init);
3203 module_exit(raid_exit);
3204 MODULE_LICENSE("GPL");
3205 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3206 MODULE_ALIAS("md-personality-3"); /* RAID1 */
3207 MODULE_ALIAS("md-raid1");
3208 MODULE_ALIAS("md-level-1");
3209
3210 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
This page took 0.106847 seconds and 6 git commands to generate.