2ae7021320e178d0b40b93fcbd24842e11c2a713
[deliverable/linux.git] / drivers / md / raid10.c
1 /*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
8 * Base on code in raid1.c. See raid1.c for further copyright information.
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include "md.h"
28 #include "raid10.h"
29 #include "raid0.h"
30 #include "bitmap.h"
31
32 /*
33 * RAID10 provides a combination of RAID0 and RAID1 functionality.
34 * The layout of data is defined by
35 * chunk_size
36 * raid_disks
37 * near_copies (stored in low byte of layout)
38 * far_copies (stored in second byte of layout)
39 * far_offset (stored in bit 16 of layout )
40 *
41 * The data to be stored is divided into chunks using chunksize.
42 * Each device is divided into far_copies sections.
43 * In each section, chunks are laid out in a style similar to raid0, but
44 * near_copies copies of each chunk is stored (each on a different drive).
45 * The starting device for each section is offset near_copies from the starting
46 * device of the previous section.
47 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
48 * drive.
49 * near_copies and far_copies must be at least one, and their product is at most
50 * raid_disks.
51 *
52 * If far_offset is true, then the far_copies are handled a bit differently.
53 * The copies are still in different stripes, but instead of be very far apart
54 * on disk, there are adjacent stripes.
55 */
56
57 /*
58 * Number of guaranteed r10bios in case of extreme VM load:
59 */
60 #define NR_RAID10_BIOS 256
61
62 /* When there are this many requests queue to be written by
63 * the raid10 thread, we become 'congested' to provide back-pressure
64 * for writeback.
65 */
66 static int max_queued_requests = 1024;
67
68 static void allow_barrier(struct r10conf *conf);
69 static void lower_barrier(struct r10conf *conf);
70 static int enough(struct r10conf *conf, int ignore);
71
72 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
73 {
74 struct r10conf *conf = data;
75 int size = offsetof(struct r10bio, devs[conf->copies]);
76
77 /* allocate a r10bio with room for raid_disks entries in the
78 * bios array */
79 return kzalloc(size, gfp_flags);
80 }
81
82 static void r10bio_pool_free(void *r10_bio, void *data)
83 {
84 kfree(r10_bio);
85 }
86
87 /* Maximum size of each resync request */
88 #define RESYNC_BLOCK_SIZE (64*1024)
89 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
90 /* amount of memory to reserve for resync requests */
91 #define RESYNC_WINDOW (1024*1024)
92 /* maximum number of concurrent requests, memory permitting */
93 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
94
95 /*
96 * When performing a resync, we need to read and compare, so
97 * we need as many pages are there are copies.
98 * When performing a recovery, we need 2 bios, one for read,
99 * one for write (we recover only one drive per r10buf)
100 *
101 */
102 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
103 {
104 struct r10conf *conf = data;
105 struct page *page;
106 struct r10bio *r10_bio;
107 struct bio *bio;
108 int i, j;
109 int nalloc;
110
111 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
112 if (!r10_bio)
113 return NULL;
114
115 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
116 nalloc = conf->copies; /* resync */
117 else
118 nalloc = 2; /* recovery */
119
120 /*
121 * Allocate bios.
122 */
123 for (j = nalloc ; j-- ; ) {
124 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
125 if (!bio)
126 goto out_free_bio;
127 r10_bio->devs[j].bio = bio;
128 if (!conf->have_replacement)
129 continue;
130 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
131 if (!bio)
132 goto out_free_bio;
133 r10_bio->devs[j].repl_bio = bio;
134 }
135 /*
136 * Allocate RESYNC_PAGES data pages and attach them
137 * where needed.
138 */
139 for (j = 0 ; j < nalloc; j++) {
140 struct bio *rbio = r10_bio->devs[j].repl_bio;
141 bio = r10_bio->devs[j].bio;
142 for (i = 0; i < RESYNC_PAGES; i++) {
143 if (j == 1 && !test_bit(MD_RECOVERY_SYNC,
144 &conf->mddev->recovery)) {
145 /* we can share bv_page's during recovery */
146 struct bio *rbio = r10_bio->devs[0].bio;
147 page = rbio->bi_io_vec[i].bv_page;
148 get_page(page);
149 } else
150 page = alloc_page(gfp_flags);
151 if (unlikely(!page))
152 goto out_free_pages;
153
154 bio->bi_io_vec[i].bv_page = page;
155 if (rbio)
156 rbio->bi_io_vec[i].bv_page = page;
157 }
158 }
159
160 return r10_bio;
161
162 out_free_pages:
163 for ( ; i > 0 ; i--)
164 safe_put_page(bio->bi_io_vec[i-1].bv_page);
165 while (j--)
166 for (i = 0; i < RESYNC_PAGES ; i++)
167 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
168 j = -1;
169 out_free_bio:
170 while (++j < nalloc) {
171 bio_put(r10_bio->devs[j].bio);
172 if (r10_bio->devs[j].repl_bio)
173 bio_put(r10_bio->devs[j].repl_bio);
174 }
175 r10bio_pool_free(r10_bio, conf);
176 return NULL;
177 }
178
179 static void r10buf_pool_free(void *__r10_bio, void *data)
180 {
181 int i;
182 struct r10conf *conf = data;
183 struct r10bio *r10bio = __r10_bio;
184 int j;
185
186 for (j=0; j < conf->copies; j++) {
187 struct bio *bio = r10bio->devs[j].bio;
188 if (bio) {
189 for (i = 0; i < RESYNC_PAGES; i++) {
190 safe_put_page(bio->bi_io_vec[i].bv_page);
191 bio->bi_io_vec[i].bv_page = NULL;
192 }
193 bio_put(bio);
194 }
195 bio = r10bio->devs[j].repl_bio;
196 if (bio)
197 bio_put(bio);
198 }
199 r10bio_pool_free(r10bio, conf);
200 }
201
202 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
203 {
204 int i;
205
206 for (i = 0; i < conf->copies; i++) {
207 struct bio **bio = & r10_bio->devs[i].bio;
208 if (!BIO_SPECIAL(*bio))
209 bio_put(*bio);
210 *bio = NULL;
211 bio = &r10_bio->devs[i].repl_bio;
212 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
213 bio_put(*bio);
214 *bio = NULL;
215 }
216 }
217
218 static void free_r10bio(struct r10bio *r10_bio)
219 {
220 struct r10conf *conf = r10_bio->mddev->private;
221
222 put_all_bios(conf, r10_bio);
223 mempool_free(r10_bio, conf->r10bio_pool);
224 }
225
226 static void put_buf(struct r10bio *r10_bio)
227 {
228 struct r10conf *conf = r10_bio->mddev->private;
229
230 mempool_free(r10_bio, conf->r10buf_pool);
231
232 lower_barrier(conf);
233 }
234
235 static void reschedule_retry(struct r10bio *r10_bio)
236 {
237 unsigned long flags;
238 struct mddev *mddev = r10_bio->mddev;
239 struct r10conf *conf = mddev->private;
240
241 spin_lock_irqsave(&conf->device_lock, flags);
242 list_add(&r10_bio->retry_list, &conf->retry_list);
243 conf->nr_queued ++;
244 spin_unlock_irqrestore(&conf->device_lock, flags);
245
246 /* wake up frozen array... */
247 wake_up(&conf->wait_barrier);
248
249 md_wakeup_thread(mddev->thread);
250 }
251
252 /*
253 * raid_end_bio_io() is called when we have finished servicing a mirrored
254 * operation and are ready to return a success/failure code to the buffer
255 * cache layer.
256 */
257 static void raid_end_bio_io(struct r10bio *r10_bio)
258 {
259 struct bio *bio = r10_bio->master_bio;
260 int done;
261 struct r10conf *conf = r10_bio->mddev->private;
262
263 if (bio->bi_phys_segments) {
264 unsigned long flags;
265 spin_lock_irqsave(&conf->device_lock, flags);
266 bio->bi_phys_segments--;
267 done = (bio->bi_phys_segments == 0);
268 spin_unlock_irqrestore(&conf->device_lock, flags);
269 } else
270 done = 1;
271 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
272 clear_bit(BIO_UPTODATE, &bio->bi_flags);
273 if (done) {
274 bio_endio(bio, 0);
275 /*
276 * Wake up any possible resync thread that waits for the device
277 * to go idle.
278 */
279 allow_barrier(conf);
280 }
281 free_r10bio(r10_bio);
282 }
283
284 /*
285 * Update disk head position estimator based on IRQ completion info.
286 */
287 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
288 {
289 struct r10conf *conf = r10_bio->mddev->private;
290
291 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
292 r10_bio->devs[slot].addr + (r10_bio->sectors);
293 }
294
295 /*
296 * Find the disk number which triggered given bio
297 */
298 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
299 struct bio *bio, int *slotp, int *replp)
300 {
301 int slot;
302 int repl = 0;
303
304 for (slot = 0; slot < conf->copies; slot++) {
305 if (r10_bio->devs[slot].bio == bio)
306 break;
307 if (r10_bio->devs[slot].repl_bio == bio) {
308 repl = 1;
309 break;
310 }
311 }
312
313 BUG_ON(slot == conf->copies);
314 update_head_pos(slot, r10_bio);
315
316 if (slotp)
317 *slotp = slot;
318 if (replp)
319 *replp = repl;
320 return r10_bio->devs[slot].devnum;
321 }
322
323 static void raid10_end_read_request(struct bio *bio, int error)
324 {
325 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
326 struct r10bio *r10_bio = bio->bi_private;
327 int slot, dev;
328 struct md_rdev *rdev;
329 struct r10conf *conf = r10_bio->mddev->private;
330
331
332 slot = r10_bio->read_slot;
333 dev = r10_bio->devs[slot].devnum;
334 rdev = r10_bio->devs[slot].rdev;
335 /*
336 * this branch is our 'one mirror IO has finished' event handler:
337 */
338 update_head_pos(slot, r10_bio);
339
340 if (uptodate) {
341 /*
342 * Set R10BIO_Uptodate in our master bio, so that
343 * we will return a good error code to the higher
344 * levels even if IO on some other mirrored buffer fails.
345 *
346 * The 'master' represents the composite IO operation to
347 * user-side. So if something waits for IO, then it will
348 * wait for the 'master' bio.
349 */
350 set_bit(R10BIO_Uptodate, &r10_bio->state);
351 } else {
352 /* If all other devices that store this block have
353 * failed, we want to return the error upwards rather
354 * than fail the last device. Here we redefine
355 * "uptodate" to mean "Don't want to retry"
356 */
357 unsigned long flags;
358 spin_lock_irqsave(&conf->device_lock, flags);
359 if (!enough(conf, rdev->raid_disk))
360 uptodate = 1;
361 spin_unlock_irqrestore(&conf->device_lock, flags);
362 }
363 if (uptodate) {
364 raid_end_bio_io(r10_bio);
365 rdev_dec_pending(rdev, conf->mddev);
366 } else {
367 /*
368 * oops, read error - keep the refcount on the rdev
369 */
370 char b[BDEVNAME_SIZE];
371 printk_ratelimited(KERN_ERR
372 "md/raid10:%s: %s: rescheduling sector %llu\n",
373 mdname(conf->mddev),
374 bdevname(rdev->bdev, b),
375 (unsigned long long)r10_bio->sector);
376 set_bit(R10BIO_ReadError, &r10_bio->state);
377 reschedule_retry(r10_bio);
378 }
379 }
380
381 static void close_write(struct r10bio *r10_bio)
382 {
383 /* clear the bitmap if all writes complete successfully */
384 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
385 r10_bio->sectors,
386 !test_bit(R10BIO_Degraded, &r10_bio->state),
387 0);
388 md_write_end(r10_bio->mddev);
389 }
390
391 static void one_write_done(struct r10bio *r10_bio)
392 {
393 if (atomic_dec_and_test(&r10_bio->remaining)) {
394 if (test_bit(R10BIO_WriteError, &r10_bio->state))
395 reschedule_retry(r10_bio);
396 else {
397 close_write(r10_bio);
398 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
399 reschedule_retry(r10_bio);
400 else
401 raid_end_bio_io(r10_bio);
402 }
403 }
404 }
405
406 static void raid10_end_write_request(struct bio *bio, int error)
407 {
408 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
409 struct r10bio *r10_bio = bio->bi_private;
410 int dev;
411 int dec_rdev = 1;
412 struct r10conf *conf = r10_bio->mddev->private;
413 int slot, repl;
414 struct md_rdev *rdev = NULL;
415
416 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
417
418 if (repl)
419 rdev = conf->mirrors[dev].replacement;
420 if (!rdev) {
421 smp_rmb();
422 repl = 0;
423 rdev = conf->mirrors[dev].rdev;
424 }
425 /*
426 * this branch is our 'one mirror IO has finished' event handler:
427 */
428 if (!uptodate) {
429 if (repl)
430 /* Never record new bad blocks to replacement,
431 * just fail it.
432 */
433 md_error(rdev->mddev, rdev);
434 else {
435 set_bit(WriteErrorSeen, &rdev->flags);
436 if (!test_and_set_bit(WantReplacement, &rdev->flags))
437 set_bit(MD_RECOVERY_NEEDED,
438 &rdev->mddev->recovery);
439 set_bit(R10BIO_WriteError, &r10_bio->state);
440 dec_rdev = 0;
441 }
442 } else {
443 /*
444 * Set R10BIO_Uptodate in our master bio, so that
445 * we will return a good error code for to the higher
446 * levels even if IO on some other mirrored buffer fails.
447 *
448 * The 'master' represents the composite IO operation to
449 * user-side. So if something waits for IO, then it will
450 * wait for the 'master' bio.
451 */
452 sector_t first_bad;
453 int bad_sectors;
454
455 set_bit(R10BIO_Uptodate, &r10_bio->state);
456
457 /* Maybe we can clear some bad blocks. */
458 if (is_badblock(rdev,
459 r10_bio->devs[slot].addr,
460 r10_bio->sectors,
461 &first_bad, &bad_sectors)) {
462 bio_put(bio);
463 if (repl)
464 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
465 else
466 r10_bio->devs[slot].bio = IO_MADE_GOOD;
467 dec_rdev = 0;
468 set_bit(R10BIO_MadeGood, &r10_bio->state);
469 }
470 }
471
472 /*
473 *
474 * Let's see if all mirrored write operations have finished
475 * already.
476 */
477 one_write_done(r10_bio);
478 if (dec_rdev)
479 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
480 }
481
482 /*
483 * RAID10 layout manager
484 * As well as the chunksize and raid_disks count, there are two
485 * parameters: near_copies and far_copies.
486 * near_copies * far_copies must be <= raid_disks.
487 * Normally one of these will be 1.
488 * If both are 1, we get raid0.
489 * If near_copies == raid_disks, we get raid1.
490 *
491 * Chunks are laid out in raid0 style with near_copies copies of the
492 * first chunk, followed by near_copies copies of the next chunk and
493 * so on.
494 * If far_copies > 1, then after 1/far_copies of the array has been assigned
495 * as described above, we start again with a device offset of near_copies.
496 * So we effectively have another copy of the whole array further down all
497 * the drives, but with blocks on different drives.
498 * With this layout, and block is never stored twice on the one device.
499 *
500 * raid10_find_phys finds the sector offset of a given virtual sector
501 * on each device that it is on.
502 *
503 * raid10_find_virt does the reverse mapping, from a device and a
504 * sector offset to a virtual address
505 */
506
507 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
508 {
509 int n,f;
510 sector_t sector;
511 sector_t chunk;
512 sector_t stripe;
513 int dev;
514
515 int slot = 0;
516
517 /* now calculate first sector/dev */
518 chunk = r10bio->sector >> conf->chunk_shift;
519 sector = r10bio->sector & conf->chunk_mask;
520
521 chunk *= conf->near_copies;
522 stripe = chunk;
523 dev = sector_div(stripe, conf->raid_disks);
524 if (conf->far_offset)
525 stripe *= conf->far_copies;
526
527 sector += stripe << conf->chunk_shift;
528
529 /* and calculate all the others */
530 for (n=0; n < conf->near_copies; n++) {
531 int d = dev;
532 sector_t s = sector;
533 r10bio->devs[slot].addr = sector;
534 r10bio->devs[slot].devnum = d;
535 slot++;
536
537 for (f = 1; f < conf->far_copies; f++) {
538 d += conf->near_copies;
539 if (d >= conf->raid_disks)
540 d -= conf->raid_disks;
541 s += conf->stride;
542 r10bio->devs[slot].devnum = d;
543 r10bio->devs[slot].addr = s;
544 slot++;
545 }
546 dev++;
547 if (dev >= conf->raid_disks) {
548 dev = 0;
549 sector += (conf->chunk_mask + 1);
550 }
551 }
552 BUG_ON(slot != conf->copies);
553 }
554
555 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
556 {
557 sector_t offset, chunk, vchunk;
558
559 offset = sector & conf->chunk_mask;
560 if (conf->far_offset) {
561 int fc;
562 chunk = sector >> conf->chunk_shift;
563 fc = sector_div(chunk, conf->far_copies);
564 dev -= fc * conf->near_copies;
565 if (dev < 0)
566 dev += conf->raid_disks;
567 } else {
568 while (sector >= conf->stride) {
569 sector -= conf->stride;
570 if (dev < conf->near_copies)
571 dev += conf->raid_disks - conf->near_copies;
572 else
573 dev -= conf->near_copies;
574 }
575 chunk = sector >> conf->chunk_shift;
576 }
577 vchunk = chunk * conf->raid_disks + dev;
578 sector_div(vchunk, conf->near_copies);
579 return (vchunk << conf->chunk_shift) + offset;
580 }
581
582 /**
583 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
584 * @q: request queue
585 * @bvm: properties of new bio
586 * @biovec: the request that could be merged to it.
587 *
588 * Return amount of bytes we can accept at this offset
589 * If near_copies == raid_disk, there are no striping issues,
590 * but in that case, the function isn't called at all.
591 */
592 static int raid10_mergeable_bvec(struct request_queue *q,
593 struct bvec_merge_data *bvm,
594 struct bio_vec *biovec)
595 {
596 struct mddev *mddev = q->queuedata;
597 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
598 int max;
599 unsigned int chunk_sectors = mddev->chunk_sectors;
600 unsigned int bio_sectors = bvm->bi_size >> 9;
601
602 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
603 if (max < 0) max = 0; /* bio_add cannot handle a negative return */
604 if (max <= biovec->bv_len && bio_sectors == 0)
605 return biovec->bv_len;
606 else
607 return max;
608 }
609
610 /*
611 * This routine returns the disk from which the requested read should
612 * be done. There is a per-array 'next expected sequential IO' sector
613 * number - if this matches on the next IO then we use the last disk.
614 * There is also a per-disk 'last know head position' sector that is
615 * maintained from IRQ contexts, both the normal and the resync IO
616 * completion handlers update this position correctly. If there is no
617 * perfect sequential match then we pick the disk whose head is closest.
618 *
619 * If there are 2 mirrors in the same 2 devices, performance degrades
620 * because position is mirror, not device based.
621 *
622 * The rdev for the device selected will have nr_pending incremented.
623 */
624
625 /*
626 * FIXME: possibly should rethink readbalancing and do it differently
627 * depending on near_copies / far_copies geometry.
628 */
629 static struct md_rdev *read_balance(struct r10conf *conf,
630 struct r10bio *r10_bio,
631 int *max_sectors)
632 {
633 const sector_t this_sector = r10_bio->sector;
634 int disk, slot;
635 int sectors = r10_bio->sectors;
636 int best_good_sectors;
637 sector_t new_distance, best_dist;
638 struct md_rdev *rdev, *best_rdev;
639 int do_balance;
640 int best_slot;
641
642 raid10_find_phys(conf, r10_bio);
643 rcu_read_lock();
644 retry:
645 sectors = r10_bio->sectors;
646 best_slot = -1;
647 best_rdev = NULL;
648 best_dist = MaxSector;
649 best_good_sectors = 0;
650 do_balance = 1;
651 /*
652 * Check if we can balance. We can balance on the whole
653 * device if no resync is going on (recovery is ok), or below
654 * the resync window. We take the first readable disk when
655 * above the resync window.
656 */
657 if (conf->mddev->recovery_cp < MaxSector
658 && (this_sector + sectors >= conf->next_resync))
659 do_balance = 0;
660
661 for (slot = 0; slot < conf->copies ; slot++) {
662 sector_t first_bad;
663 int bad_sectors;
664 sector_t dev_sector;
665
666 if (r10_bio->devs[slot].bio == IO_BLOCKED)
667 continue;
668 disk = r10_bio->devs[slot].devnum;
669 rdev = rcu_dereference(conf->mirrors[disk].replacement);
670 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
671 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
672 rdev = rcu_dereference(conf->mirrors[disk].rdev);
673 if (rdev == NULL)
674 continue;
675 if (test_bit(Faulty, &rdev->flags))
676 continue;
677 if (!test_bit(In_sync, &rdev->flags) &&
678 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
679 continue;
680
681 dev_sector = r10_bio->devs[slot].addr;
682 if (is_badblock(rdev, dev_sector, sectors,
683 &first_bad, &bad_sectors)) {
684 if (best_dist < MaxSector)
685 /* Already have a better slot */
686 continue;
687 if (first_bad <= dev_sector) {
688 /* Cannot read here. If this is the
689 * 'primary' device, then we must not read
690 * beyond 'bad_sectors' from another device.
691 */
692 bad_sectors -= (dev_sector - first_bad);
693 if (!do_balance && sectors > bad_sectors)
694 sectors = bad_sectors;
695 if (best_good_sectors > sectors)
696 best_good_sectors = sectors;
697 } else {
698 sector_t good_sectors =
699 first_bad - dev_sector;
700 if (good_sectors > best_good_sectors) {
701 best_good_sectors = good_sectors;
702 best_slot = slot;
703 best_rdev = rdev;
704 }
705 if (!do_balance)
706 /* Must read from here */
707 break;
708 }
709 continue;
710 } else
711 best_good_sectors = sectors;
712
713 if (!do_balance)
714 break;
715
716 /* This optimisation is debatable, and completely destroys
717 * sequential read speed for 'far copies' arrays. So only
718 * keep it for 'near' arrays, and review those later.
719 */
720 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending))
721 break;
722
723 /* for far > 1 always use the lowest address */
724 if (conf->far_copies > 1)
725 new_distance = r10_bio->devs[slot].addr;
726 else
727 new_distance = abs(r10_bio->devs[slot].addr -
728 conf->mirrors[disk].head_position);
729 if (new_distance < best_dist) {
730 best_dist = new_distance;
731 best_slot = slot;
732 best_rdev = rdev;
733 }
734 }
735 if (slot >= conf->copies) {
736 slot = best_slot;
737 rdev = best_rdev;
738 }
739
740 if (slot >= 0) {
741 atomic_inc(&rdev->nr_pending);
742 if (test_bit(Faulty, &rdev->flags)) {
743 /* Cannot risk returning a device that failed
744 * before we inc'ed nr_pending
745 */
746 rdev_dec_pending(rdev, conf->mddev);
747 goto retry;
748 }
749 r10_bio->read_slot = slot;
750 } else
751 rdev = NULL;
752 rcu_read_unlock();
753 *max_sectors = best_good_sectors;
754
755 return rdev;
756 }
757
758 static int raid10_congested(void *data, int bits)
759 {
760 struct mddev *mddev = data;
761 struct r10conf *conf = mddev->private;
762 int i, ret = 0;
763
764 if ((bits & (1 << BDI_async_congested)) &&
765 conf->pending_count >= max_queued_requests)
766 return 1;
767
768 if (mddev_congested(mddev, bits))
769 return 1;
770 rcu_read_lock();
771 for (i = 0; i < conf->raid_disks && ret == 0; i++) {
772 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
773 if (rdev && !test_bit(Faulty, &rdev->flags)) {
774 struct request_queue *q = bdev_get_queue(rdev->bdev);
775
776 ret |= bdi_congested(&q->backing_dev_info, bits);
777 }
778 }
779 rcu_read_unlock();
780 return ret;
781 }
782
783 static void flush_pending_writes(struct r10conf *conf)
784 {
785 /* Any writes that have been queued but are awaiting
786 * bitmap updates get flushed here.
787 */
788 spin_lock_irq(&conf->device_lock);
789
790 if (conf->pending_bio_list.head) {
791 struct bio *bio;
792 bio = bio_list_get(&conf->pending_bio_list);
793 conf->pending_count = 0;
794 spin_unlock_irq(&conf->device_lock);
795 /* flush any pending bitmap writes to disk
796 * before proceeding w/ I/O */
797 bitmap_unplug(conf->mddev->bitmap);
798 wake_up(&conf->wait_barrier);
799
800 while (bio) { /* submit pending writes */
801 struct bio *next = bio->bi_next;
802 bio->bi_next = NULL;
803 generic_make_request(bio);
804 bio = next;
805 }
806 } else
807 spin_unlock_irq(&conf->device_lock);
808 }
809
810 /* Barriers....
811 * Sometimes we need to suspend IO while we do something else,
812 * either some resync/recovery, or reconfigure the array.
813 * To do this we raise a 'barrier'.
814 * The 'barrier' is a counter that can be raised multiple times
815 * to count how many activities are happening which preclude
816 * normal IO.
817 * We can only raise the barrier if there is no pending IO.
818 * i.e. if nr_pending == 0.
819 * We choose only to raise the barrier if no-one is waiting for the
820 * barrier to go down. This means that as soon as an IO request
821 * is ready, no other operations which require a barrier will start
822 * until the IO request has had a chance.
823 *
824 * So: regular IO calls 'wait_barrier'. When that returns there
825 * is no backgroup IO happening, It must arrange to call
826 * allow_barrier when it has finished its IO.
827 * backgroup IO calls must call raise_barrier. Once that returns
828 * there is no normal IO happeing. It must arrange to call
829 * lower_barrier when the particular background IO completes.
830 */
831
832 static void raise_barrier(struct r10conf *conf, int force)
833 {
834 BUG_ON(force && !conf->barrier);
835 spin_lock_irq(&conf->resync_lock);
836
837 /* Wait until no block IO is waiting (unless 'force') */
838 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
839 conf->resync_lock, );
840
841 /* block any new IO from starting */
842 conf->barrier++;
843
844 /* Now wait for all pending IO to complete */
845 wait_event_lock_irq(conf->wait_barrier,
846 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
847 conf->resync_lock, );
848
849 spin_unlock_irq(&conf->resync_lock);
850 }
851
852 static void lower_barrier(struct r10conf *conf)
853 {
854 unsigned long flags;
855 spin_lock_irqsave(&conf->resync_lock, flags);
856 conf->barrier--;
857 spin_unlock_irqrestore(&conf->resync_lock, flags);
858 wake_up(&conf->wait_barrier);
859 }
860
861 static void wait_barrier(struct r10conf *conf)
862 {
863 spin_lock_irq(&conf->resync_lock);
864 if (conf->barrier) {
865 conf->nr_waiting++;
866 /* Wait for the barrier to drop.
867 * However if there are already pending
868 * requests (preventing the barrier from
869 * rising completely), and the
870 * pre-process bio queue isn't empty,
871 * then don't wait, as we need to empty
872 * that queue to get the nr_pending
873 * count down.
874 */
875 wait_event_lock_irq(conf->wait_barrier,
876 !conf->barrier ||
877 (conf->nr_pending &&
878 current->bio_list &&
879 !bio_list_empty(current->bio_list)),
880 conf->resync_lock,
881 );
882 conf->nr_waiting--;
883 }
884 conf->nr_pending++;
885 spin_unlock_irq(&conf->resync_lock);
886 }
887
888 static void allow_barrier(struct r10conf *conf)
889 {
890 unsigned long flags;
891 spin_lock_irqsave(&conf->resync_lock, flags);
892 conf->nr_pending--;
893 spin_unlock_irqrestore(&conf->resync_lock, flags);
894 wake_up(&conf->wait_barrier);
895 }
896
897 static void freeze_array(struct r10conf *conf)
898 {
899 /* stop syncio and normal IO and wait for everything to
900 * go quiet.
901 * We increment barrier and nr_waiting, and then
902 * wait until nr_pending match nr_queued+1
903 * This is called in the context of one normal IO request
904 * that has failed. Thus any sync request that might be pending
905 * will be blocked by nr_pending, and we need to wait for
906 * pending IO requests to complete or be queued for re-try.
907 * Thus the number queued (nr_queued) plus this request (1)
908 * must match the number of pending IOs (nr_pending) before
909 * we continue.
910 */
911 spin_lock_irq(&conf->resync_lock);
912 conf->barrier++;
913 conf->nr_waiting++;
914 wait_event_lock_irq(conf->wait_barrier,
915 conf->nr_pending == conf->nr_queued+1,
916 conf->resync_lock,
917 flush_pending_writes(conf));
918
919 spin_unlock_irq(&conf->resync_lock);
920 }
921
922 static void unfreeze_array(struct r10conf *conf)
923 {
924 /* reverse the effect of the freeze */
925 spin_lock_irq(&conf->resync_lock);
926 conf->barrier--;
927 conf->nr_waiting--;
928 wake_up(&conf->wait_barrier);
929 spin_unlock_irq(&conf->resync_lock);
930 }
931
932 static void make_request(struct mddev *mddev, struct bio * bio)
933 {
934 struct r10conf *conf = mddev->private;
935 struct r10bio *r10_bio;
936 struct bio *read_bio;
937 int i;
938 int chunk_sects = conf->chunk_mask + 1;
939 const int rw = bio_data_dir(bio);
940 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
941 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
942 unsigned long flags;
943 struct md_rdev *blocked_rdev;
944 int plugged;
945 int sectors_handled;
946 int max_sectors;
947
948 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
949 md_flush_request(mddev, bio);
950 return;
951 }
952
953 /* If this request crosses a chunk boundary, we need to
954 * split it. This will only happen for 1 PAGE (or less) requests.
955 */
956 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
957 > chunk_sects &&
958 conf->near_copies < conf->raid_disks)) {
959 struct bio_pair *bp;
960 /* Sanity check -- queue functions should prevent this happening */
961 if (bio->bi_vcnt != 1 ||
962 bio->bi_idx != 0)
963 goto bad_map;
964 /* This is a one page bio that upper layers
965 * refuse to split for us, so we need to split it.
966 */
967 bp = bio_split(bio,
968 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
969
970 /* Each of these 'make_request' calls will call 'wait_barrier'.
971 * If the first succeeds but the second blocks due to the resync
972 * thread raising the barrier, we will deadlock because the
973 * IO to the underlying device will be queued in generic_make_request
974 * and will never complete, so will never reduce nr_pending.
975 * So increment nr_waiting here so no new raise_barriers will
976 * succeed, and so the second wait_barrier cannot block.
977 */
978 spin_lock_irq(&conf->resync_lock);
979 conf->nr_waiting++;
980 spin_unlock_irq(&conf->resync_lock);
981
982 make_request(mddev, &bp->bio1);
983 make_request(mddev, &bp->bio2);
984
985 spin_lock_irq(&conf->resync_lock);
986 conf->nr_waiting--;
987 wake_up(&conf->wait_barrier);
988 spin_unlock_irq(&conf->resync_lock);
989
990 bio_pair_release(bp);
991 return;
992 bad_map:
993 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
994 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
995 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
996
997 bio_io_error(bio);
998 return;
999 }
1000
1001 md_write_start(mddev, bio);
1002
1003 /*
1004 * Register the new request and wait if the reconstruction
1005 * thread has put up a bar for new requests.
1006 * Continue immediately if no resync is active currently.
1007 */
1008 wait_barrier(conf);
1009
1010 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1011
1012 r10_bio->master_bio = bio;
1013 r10_bio->sectors = bio->bi_size >> 9;
1014
1015 r10_bio->mddev = mddev;
1016 r10_bio->sector = bio->bi_sector;
1017 r10_bio->state = 0;
1018
1019 /* We might need to issue multiple reads to different
1020 * devices if there are bad blocks around, so we keep
1021 * track of the number of reads in bio->bi_phys_segments.
1022 * If this is 0, there is only one r10_bio and no locking
1023 * will be needed when the request completes. If it is
1024 * non-zero, then it is the number of not-completed requests.
1025 */
1026 bio->bi_phys_segments = 0;
1027 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1028
1029 if (rw == READ) {
1030 /*
1031 * read balancing logic:
1032 */
1033 struct md_rdev *rdev;
1034 int slot;
1035
1036 read_again:
1037 rdev = read_balance(conf, r10_bio, &max_sectors);
1038 if (!rdev) {
1039 raid_end_bio_io(r10_bio);
1040 return;
1041 }
1042 slot = r10_bio->read_slot;
1043
1044 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1045 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1046 max_sectors);
1047
1048 r10_bio->devs[slot].bio = read_bio;
1049 r10_bio->devs[slot].rdev = rdev;
1050
1051 read_bio->bi_sector = r10_bio->devs[slot].addr +
1052 rdev->data_offset;
1053 read_bio->bi_bdev = rdev->bdev;
1054 read_bio->bi_end_io = raid10_end_read_request;
1055 read_bio->bi_rw = READ | do_sync;
1056 read_bio->bi_private = r10_bio;
1057
1058 if (max_sectors < r10_bio->sectors) {
1059 /* Could not read all from this device, so we will
1060 * need another r10_bio.
1061 */
1062 sectors_handled = (r10_bio->sectors + max_sectors
1063 - bio->bi_sector);
1064 r10_bio->sectors = max_sectors;
1065 spin_lock_irq(&conf->device_lock);
1066 if (bio->bi_phys_segments == 0)
1067 bio->bi_phys_segments = 2;
1068 else
1069 bio->bi_phys_segments++;
1070 spin_unlock(&conf->device_lock);
1071 /* Cannot call generic_make_request directly
1072 * as that will be queued in __generic_make_request
1073 * and subsequent mempool_alloc might block
1074 * waiting for it. so hand bio over to raid10d.
1075 */
1076 reschedule_retry(r10_bio);
1077
1078 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1079
1080 r10_bio->master_bio = bio;
1081 r10_bio->sectors = ((bio->bi_size >> 9)
1082 - sectors_handled);
1083 r10_bio->state = 0;
1084 r10_bio->mddev = mddev;
1085 r10_bio->sector = bio->bi_sector + sectors_handled;
1086 goto read_again;
1087 } else
1088 generic_make_request(read_bio);
1089 return;
1090 }
1091
1092 /*
1093 * WRITE:
1094 */
1095 if (conf->pending_count >= max_queued_requests) {
1096 md_wakeup_thread(mddev->thread);
1097 wait_event(conf->wait_barrier,
1098 conf->pending_count < max_queued_requests);
1099 }
1100 /* first select target devices under rcu_lock and
1101 * inc refcount on their rdev. Record them by setting
1102 * bios[x] to bio
1103 * If there are known/acknowledged bad blocks on any device
1104 * on which we have seen a write error, we want to avoid
1105 * writing to those blocks. This potentially requires several
1106 * writes to write around the bad blocks. Each set of writes
1107 * gets its own r10_bio with a set of bios attached. The number
1108 * of r10_bios is recored in bio->bi_phys_segments just as with
1109 * the read case.
1110 */
1111 plugged = mddev_check_plugged(mddev);
1112
1113 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1114 raid10_find_phys(conf, r10_bio);
1115 retry_write:
1116 blocked_rdev = NULL;
1117 rcu_read_lock();
1118 max_sectors = r10_bio->sectors;
1119
1120 for (i = 0; i < conf->copies; i++) {
1121 int d = r10_bio->devs[i].devnum;
1122 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1123 struct md_rdev *rrdev = rcu_dereference(
1124 conf->mirrors[d].replacement);
1125 if (rdev == rrdev)
1126 rrdev = NULL;
1127 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1128 atomic_inc(&rdev->nr_pending);
1129 blocked_rdev = rdev;
1130 break;
1131 }
1132 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1133 atomic_inc(&rrdev->nr_pending);
1134 blocked_rdev = rrdev;
1135 break;
1136 }
1137 if (rrdev && test_bit(Faulty, &rrdev->flags))
1138 rrdev = NULL;
1139
1140 r10_bio->devs[i].bio = NULL;
1141 r10_bio->devs[i].repl_bio = NULL;
1142 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1143 set_bit(R10BIO_Degraded, &r10_bio->state);
1144 continue;
1145 }
1146 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1147 sector_t first_bad;
1148 sector_t dev_sector = r10_bio->devs[i].addr;
1149 int bad_sectors;
1150 int is_bad;
1151
1152 is_bad = is_badblock(rdev, dev_sector,
1153 max_sectors,
1154 &first_bad, &bad_sectors);
1155 if (is_bad < 0) {
1156 /* Mustn't write here until the bad block
1157 * is acknowledged
1158 */
1159 atomic_inc(&rdev->nr_pending);
1160 set_bit(BlockedBadBlocks, &rdev->flags);
1161 blocked_rdev = rdev;
1162 break;
1163 }
1164 if (is_bad && first_bad <= dev_sector) {
1165 /* Cannot write here at all */
1166 bad_sectors -= (dev_sector - first_bad);
1167 if (bad_sectors < max_sectors)
1168 /* Mustn't write more than bad_sectors
1169 * to other devices yet
1170 */
1171 max_sectors = bad_sectors;
1172 /* We don't set R10BIO_Degraded as that
1173 * only applies if the disk is missing,
1174 * so it might be re-added, and we want to
1175 * know to recover this chunk.
1176 * In this case the device is here, and the
1177 * fact that this chunk is not in-sync is
1178 * recorded in the bad block log.
1179 */
1180 continue;
1181 }
1182 if (is_bad) {
1183 int good_sectors = first_bad - dev_sector;
1184 if (good_sectors < max_sectors)
1185 max_sectors = good_sectors;
1186 }
1187 }
1188 r10_bio->devs[i].bio = bio;
1189 atomic_inc(&rdev->nr_pending);
1190 if (rrdev) {
1191 r10_bio->devs[i].repl_bio = bio;
1192 atomic_inc(&rrdev->nr_pending);
1193 }
1194 }
1195 rcu_read_unlock();
1196
1197 if (unlikely(blocked_rdev)) {
1198 /* Have to wait for this device to get unblocked, then retry */
1199 int j;
1200 int d;
1201
1202 for (j = 0; j < i; j++) {
1203 if (r10_bio->devs[j].bio) {
1204 d = r10_bio->devs[j].devnum;
1205 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1206 }
1207 if (r10_bio->devs[j].repl_bio) {
1208 struct md_rdev *rdev;
1209 d = r10_bio->devs[j].devnum;
1210 rdev = conf->mirrors[d].replacement;
1211 if (!rdev) {
1212 /* Race with remove_disk */
1213 smp_mb();
1214 rdev = conf->mirrors[d].rdev;
1215 }
1216 rdev_dec_pending(rdev, mddev);
1217 }
1218 }
1219 allow_barrier(conf);
1220 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1221 wait_barrier(conf);
1222 goto retry_write;
1223 }
1224
1225 if (max_sectors < r10_bio->sectors) {
1226 /* We are splitting this into multiple parts, so
1227 * we need to prepare for allocating another r10_bio.
1228 */
1229 r10_bio->sectors = max_sectors;
1230 spin_lock_irq(&conf->device_lock);
1231 if (bio->bi_phys_segments == 0)
1232 bio->bi_phys_segments = 2;
1233 else
1234 bio->bi_phys_segments++;
1235 spin_unlock_irq(&conf->device_lock);
1236 }
1237 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1238
1239 atomic_set(&r10_bio->remaining, 1);
1240 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1241
1242 for (i = 0; i < conf->copies; i++) {
1243 struct bio *mbio;
1244 int d = r10_bio->devs[i].devnum;
1245 if (!r10_bio->devs[i].bio)
1246 continue;
1247
1248 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1249 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1250 max_sectors);
1251 r10_bio->devs[i].bio = mbio;
1252
1253 mbio->bi_sector = (r10_bio->devs[i].addr+
1254 conf->mirrors[d].rdev->data_offset);
1255 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1256 mbio->bi_end_io = raid10_end_write_request;
1257 mbio->bi_rw = WRITE | do_sync | do_fua;
1258 mbio->bi_private = r10_bio;
1259
1260 atomic_inc(&r10_bio->remaining);
1261 spin_lock_irqsave(&conf->device_lock, flags);
1262 bio_list_add(&conf->pending_bio_list, mbio);
1263 conf->pending_count++;
1264 spin_unlock_irqrestore(&conf->device_lock, flags);
1265
1266 if (!r10_bio->devs[i].repl_bio)
1267 continue;
1268
1269 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1270 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1271 max_sectors);
1272 r10_bio->devs[i].repl_bio = mbio;
1273
1274 /* We are actively writing to the original device
1275 * so it cannot disappear, so the replacement cannot
1276 * become NULL here
1277 */
1278 mbio->bi_sector = (r10_bio->devs[i].addr+
1279 conf->mirrors[d].replacement->data_offset);
1280 mbio->bi_bdev = conf->mirrors[d].replacement->bdev;
1281 mbio->bi_end_io = raid10_end_write_request;
1282 mbio->bi_rw = WRITE | do_sync | do_fua;
1283 mbio->bi_private = r10_bio;
1284
1285 atomic_inc(&r10_bio->remaining);
1286 spin_lock_irqsave(&conf->device_lock, flags);
1287 bio_list_add(&conf->pending_bio_list, mbio);
1288 conf->pending_count++;
1289 spin_unlock_irqrestore(&conf->device_lock, flags);
1290 }
1291
1292 /* Don't remove the bias on 'remaining' (one_write_done) until
1293 * after checking if we need to go around again.
1294 */
1295
1296 if (sectors_handled < (bio->bi_size >> 9)) {
1297 one_write_done(r10_bio);
1298 /* We need another r10_bio. It has already been counted
1299 * in bio->bi_phys_segments.
1300 */
1301 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1302
1303 r10_bio->master_bio = bio;
1304 r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1305
1306 r10_bio->mddev = mddev;
1307 r10_bio->sector = bio->bi_sector + sectors_handled;
1308 r10_bio->state = 0;
1309 goto retry_write;
1310 }
1311 one_write_done(r10_bio);
1312
1313 /* In case raid10d snuck in to freeze_array */
1314 wake_up(&conf->wait_barrier);
1315
1316 if (do_sync || !mddev->bitmap || !plugged)
1317 md_wakeup_thread(mddev->thread);
1318 }
1319
1320 static void status(struct seq_file *seq, struct mddev *mddev)
1321 {
1322 struct r10conf *conf = mddev->private;
1323 int i;
1324
1325 if (conf->near_copies < conf->raid_disks)
1326 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1327 if (conf->near_copies > 1)
1328 seq_printf(seq, " %d near-copies", conf->near_copies);
1329 if (conf->far_copies > 1) {
1330 if (conf->far_offset)
1331 seq_printf(seq, " %d offset-copies", conf->far_copies);
1332 else
1333 seq_printf(seq, " %d far-copies", conf->far_copies);
1334 }
1335 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1336 conf->raid_disks - mddev->degraded);
1337 for (i = 0; i < conf->raid_disks; i++)
1338 seq_printf(seq, "%s",
1339 conf->mirrors[i].rdev &&
1340 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1341 seq_printf(seq, "]");
1342 }
1343
1344 /* check if there are enough drives for
1345 * every block to appear on atleast one.
1346 * Don't consider the device numbered 'ignore'
1347 * as we might be about to remove it.
1348 */
1349 static int enough(struct r10conf *conf, int ignore)
1350 {
1351 int first = 0;
1352
1353 do {
1354 int n = conf->copies;
1355 int cnt = 0;
1356 while (n--) {
1357 if (conf->mirrors[first].rdev &&
1358 first != ignore)
1359 cnt++;
1360 first = (first+1) % conf->raid_disks;
1361 }
1362 if (cnt == 0)
1363 return 0;
1364 } while (first != 0);
1365 return 1;
1366 }
1367
1368 static void error(struct mddev *mddev, struct md_rdev *rdev)
1369 {
1370 char b[BDEVNAME_SIZE];
1371 struct r10conf *conf = mddev->private;
1372
1373 /*
1374 * If it is not operational, then we have already marked it as dead
1375 * else if it is the last working disks, ignore the error, let the
1376 * next level up know.
1377 * else mark the drive as failed
1378 */
1379 if (test_bit(In_sync, &rdev->flags)
1380 && !enough(conf, rdev->raid_disk))
1381 /*
1382 * Don't fail the drive, just return an IO error.
1383 */
1384 return;
1385 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1386 unsigned long flags;
1387 spin_lock_irqsave(&conf->device_lock, flags);
1388 mddev->degraded++;
1389 spin_unlock_irqrestore(&conf->device_lock, flags);
1390 /*
1391 * if recovery is running, make sure it aborts.
1392 */
1393 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1394 }
1395 set_bit(Blocked, &rdev->flags);
1396 set_bit(Faulty, &rdev->flags);
1397 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1398 printk(KERN_ALERT
1399 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1400 "md/raid10:%s: Operation continuing on %d devices.\n",
1401 mdname(mddev), bdevname(rdev->bdev, b),
1402 mdname(mddev), conf->raid_disks - mddev->degraded);
1403 }
1404
1405 static void print_conf(struct r10conf *conf)
1406 {
1407 int i;
1408 struct mirror_info *tmp;
1409
1410 printk(KERN_DEBUG "RAID10 conf printout:\n");
1411 if (!conf) {
1412 printk(KERN_DEBUG "(!conf)\n");
1413 return;
1414 }
1415 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1416 conf->raid_disks);
1417
1418 for (i = 0; i < conf->raid_disks; i++) {
1419 char b[BDEVNAME_SIZE];
1420 tmp = conf->mirrors + i;
1421 if (tmp->rdev)
1422 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1423 i, !test_bit(In_sync, &tmp->rdev->flags),
1424 !test_bit(Faulty, &tmp->rdev->flags),
1425 bdevname(tmp->rdev->bdev,b));
1426 }
1427 }
1428
1429 static void close_sync(struct r10conf *conf)
1430 {
1431 wait_barrier(conf);
1432 allow_barrier(conf);
1433
1434 mempool_destroy(conf->r10buf_pool);
1435 conf->r10buf_pool = NULL;
1436 }
1437
1438 static int raid10_spare_active(struct mddev *mddev)
1439 {
1440 int i;
1441 struct r10conf *conf = mddev->private;
1442 struct mirror_info *tmp;
1443 int count = 0;
1444 unsigned long flags;
1445
1446 /*
1447 * Find all non-in_sync disks within the RAID10 configuration
1448 * and mark them in_sync
1449 */
1450 for (i = 0; i < conf->raid_disks; i++) {
1451 tmp = conf->mirrors + i;
1452 if (tmp->replacement
1453 && tmp->replacement->recovery_offset == MaxSector
1454 && !test_bit(Faulty, &tmp->replacement->flags)
1455 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1456 /* Replacement has just become active */
1457 if (!tmp->rdev
1458 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1459 count++;
1460 if (tmp->rdev) {
1461 /* Replaced device not technically faulty,
1462 * but we need to be sure it gets removed
1463 * and never re-added.
1464 */
1465 set_bit(Faulty, &tmp->rdev->flags);
1466 sysfs_notify_dirent_safe(
1467 tmp->rdev->sysfs_state);
1468 }
1469 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1470 } else if (tmp->rdev
1471 && !test_bit(Faulty, &tmp->rdev->flags)
1472 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1473 count++;
1474 sysfs_notify_dirent(tmp->rdev->sysfs_state);
1475 }
1476 }
1477 spin_lock_irqsave(&conf->device_lock, flags);
1478 mddev->degraded -= count;
1479 spin_unlock_irqrestore(&conf->device_lock, flags);
1480
1481 print_conf(conf);
1482 return count;
1483 }
1484
1485
1486 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1487 {
1488 struct r10conf *conf = mddev->private;
1489 int err = -EEXIST;
1490 int mirror;
1491 int first = 0;
1492 int last = conf->raid_disks - 1;
1493
1494 if (mddev->recovery_cp < MaxSector)
1495 /* only hot-add to in-sync arrays, as recovery is
1496 * very different from resync
1497 */
1498 return -EBUSY;
1499 if (rdev->saved_raid_disk < 0 && !enough(conf, -1))
1500 return -EINVAL;
1501
1502 if (rdev->raid_disk >= 0)
1503 first = last = rdev->raid_disk;
1504
1505 if (rdev->saved_raid_disk >= first &&
1506 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1507 mirror = rdev->saved_raid_disk;
1508 else
1509 mirror = first;
1510 for ( ; mirror <= last ; mirror++) {
1511 struct mirror_info *p = &conf->mirrors[mirror];
1512 if (p->recovery_disabled == mddev->recovery_disabled)
1513 continue;
1514 if (p->rdev) {
1515 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1516 p->replacement != NULL)
1517 continue;
1518 clear_bit(In_sync, &rdev->flags);
1519 set_bit(Replacement, &rdev->flags);
1520 rdev->raid_disk = mirror;
1521 err = 0;
1522 disk_stack_limits(mddev->gendisk, rdev->bdev,
1523 rdev->data_offset << 9);
1524 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1525 blk_queue_max_segments(mddev->queue, 1);
1526 blk_queue_segment_boundary(mddev->queue,
1527 PAGE_CACHE_SIZE - 1);
1528 }
1529 conf->fullsync = 1;
1530 rcu_assign_pointer(p->replacement, rdev);
1531 break;
1532 }
1533
1534 disk_stack_limits(mddev->gendisk, rdev->bdev,
1535 rdev->data_offset << 9);
1536 /* as we don't honour merge_bvec_fn, we must
1537 * never risk violating it, so limit
1538 * ->max_segments to one lying with a single
1539 * page, as a one page request is never in
1540 * violation.
1541 */
1542 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1543 blk_queue_max_segments(mddev->queue, 1);
1544 blk_queue_segment_boundary(mddev->queue,
1545 PAGE_CACHE_SIZE - 1);
1546 }
1547
1548 p->head_position = 0;
1549 p->recovery_disabled = mddev->recovery_disabled - 1;
1550 rdev->raid_disk = mirror;
1551 err = 0;
1552 if (rdev->saved_raid_disk != mirror)
1553 conf->fullsync = 1;
1554 rcu_assign_pointer(p->rdev, rdev);
1555 break;
1556 }
1557
1558 md_integrity_add_rdev(rdev, mddev);
1559 print_conf(conf);
1560 return err;
1561 }
1562
1563 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1564 {
1565 struct r10conf *conf = mddev->private;
1566 int err = 0;
1567 int number = rdev->raid_disk;
1568 struct md_rdev **rdevp;
1569 struct mirror_info *p = conf->mirrors + number;
1570
1571 print_conf(conf);
1572 if (rdev == p->rdev)
1573 rdevp = &p->rdev;
1574 else if (rdev == p->replacement)
1575 rdevp = &p->replacement;
1576 else
1577 return 0;
1578
1579 if (test_bit(In_sync, &rdev->flags) ||
1580 atomic_read(&rdev->nr_pending)) {
1581 err = -EBUSY;
1582 goto abort;
1583 }
1584 /* Only remove faulty devices if recovery
1585 * is not possible.
1586 */
1587 if (!test_bit(Faulty, &rdev->flags) &&
1588 mddev->recovery_disabled != p->recovery_disabled &&
1589 (!p->replacement || p->replacement == rdev) &&
1590 enough(conf, -1)) {
1591 err = -EBUSY;
1592 goto abort;
1593 }
1594 *rdevp = NULL;
1595 synchronize_rcu();
1596 if (atomic_read(&rdev->nr_pending)) {
1597 /* lost the race, try later */
1598 err = -EBUSY;
1599 *rdevp = rdev;
1600 goto abort;
1601 } else if (p->replacement) {
1602 /* We must have just cleared 'rdev' */
1603 p->rdev = p->replacement;
1604 clear_bit(Replacement, &p->replacement->flags);
1605 smp_mb(); /* Make sure other CPUs may see both as identical
1606 * but will never see neither -- if they are careful.
1607 */
1608 p->replacement = NULL;
1609 clear_bit(WantReplacement, &rdev->flags);
1610 } else
1611 /* We might have just remove the Replacement as faulty
1612 * Clear the flag just in case
1613 */
1614 clear_bit(WantReplacement, &rdev->flags);
1615
1616 err = md_integrity_register(mddev);
1617
1618 abort:
1619
1620 print_conf(conf);
1621 return err;
1622 }
1623
1624
1625 static void end_sync_read(struct bio *bio, int error)
1626 {
1627 struct r10bio *r10_bio = bio->bi_private;
1628 struct r10conf *conf = r10_bio->mddev->private;
1629 int d;
1630
1631 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1632
1633 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1634 set_bit(R10BIO_Uptodate, &r10_bio->state);
1635 else
1636 /* The write handler will notice the lack of
1637 * R10BIO_Uptodate and record any errors etc
1638 */
1639 atomic_add(r10_bio->sectors,
1640 &conf->mirrors[d].rdev->corrected_errors);
1641
1642 /* for reconstruct, we always reschedule after a read.
1643 * for resync, only after all reads
1644 */
1645 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1646 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1647 atomic_dec_and_test(&r10_bio->remaining)) {
1648 /* we have read all the blocks,
1649 * do the comparison in process context in raid10d
1650 */
1651 reschedule_retry(r10_bio);
1652 }
1653 }
1654
1655 static void end_sync_request(struct r10bio *r10_bio)
1656 {
1657 struct mddev *mddev = r10_bio->mddev;
1658
1659 while (atomic_dec_and_test(&r10_bio->remaining)) {
1660 if (r10_bio->master_bio == NULL) {
1661 /* the primary of several recovery bios */
1662 sector_t s = r10_bio->sectors;
1663 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1664 test_bit(R10BIO_WriteError, &r10_bio->state))
1665 reschedule_retry(r10_bio);
1666 else
1667 put_buf(r10_bio);
1668 md_done_sync(mddev, s, 1);
1669 break;
1670 } else {
1671 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1672 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1673 test_bit(R10BIO_WriteError, &r10_bio->state))
1674 reschedule_retry(r10_bio);
1675 else
1676 put_buf(r10_bio);
1677 r10_bio = r10_bio2;
1678 }
1679 }
1680 }
1681
1682 static void end_sync_write(struct bio *bio, int error)
1683 {
1684 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1685 struct r10bio *r10_bio = bio->bi_private;
1686 struct mddev *mddev = r10_bio->mddev;
1687 struct r10conf *conf = mddev->private;
1688 int d;
1689 sector_t first_bad;
1690 int bad_sectors;
1691 int slot;
1692 int repl;
1693 struct md_rdev *rdev = NULL;
1694
1695 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1696 if (repl)
1697 rdev = conf->mirrors[d].replacement;
1698 else
1699 rdev = conf->mirrors[d].rdev;
1700
1701 if (!uptodate) {
1702 if (repl)
1703 md_error(mddev, rdev);
1704 else {
1705 set_bit(WriteErrorSeen, &rdev->flags);
1706 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1707 set_bit(MD_RECOVERY_NEEDED,
1708 &rdev->mddev->recovery);
1709 set_bit(R10BIO_WriteError, &r10_bio->state);
1710 }
1711 } else if (is_badblock(rdev,
1712 r10_bio->devs[slot].addr,
1713 r10_bio->sectors,
1714 &first_bad, &bad_sectors))
1715 set_bit(R10BIO_MadeGood, &r10_bio->state);
1716
1717 rdev_dec_pending(rdev, mddev);
1718
1719 end_sync_request(r10_bio);
1720 }
1721
1722 /*
1723 * Note: sync and recover and handled very differently for raid10
1724 * This code is for resync.
1725 * For resync, we read through virtual addresses and read all blocks.
1726 * If there is any error, we schedule a write. The lowest numbered
1727 * drive is authoritative.
1728 * However requests come for physical address, so we need to map.
1729 * For every physical address there are raid_disks/copies virtual addresses,
1730 * which is always are least one, but is not necessarly an integer.
1731 * This means that a physical address can span multiple chunks, so we may
1732 * have to submit multiple io requests for a single sync request.
1733 */
1734 /*
1735 * We check if all blocks are in-sync and only write to blocks that
1736 * aren't in sync
1737 */
1738 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1739 {
1740 struct r10conf *conf = mddev->private;
1741 int i, first;
1742 struct bio *tbio, *fbio;
1743
1744 atomic_set(&r10_bio->remaining, 1);
1745
1746 /* find the first device with a block */
1747 for (i=0; i<conf->copies; i++)
1748 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1749 break;
1750
1751 if (i == conf->copies)
1752 goto done;
1753
1754 first = i;
1755 fbio = r10_bio->devs[i].bio;
1756
1757 /* now find blocks with errors */
1758 for (i=0 ; i < conf->copies ; i++) {
1759 int j, d;
1760 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1761
1762 tbio = r10_bio->devs[i].bio;
1763
1764 if (tbio->bi_end_io != end_sync_read)
1765 continue;
1766 if (i == first)
1767 continue;
1768 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1769 /* We know that the bi_io_vec layout is the same for
1770 * both 'first' and 'i', so we just compare them.
1771 * All vec entries are PAGE_SIZE;
1772 */
1773 for (j = 0; j < vcnt; j++)
1774 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1775 page_address(tbio->bi_io_vec[j].bv_page),
1776 PAGE_SIZE))
1777 break;
1778 if (j == vcnt)
1779 continue;
1780 mddev->resync_mismatches += r10_bio->sectors;
1781 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1782 /* Don't fix anything. */
1783 continue;
1784 }
1785 /* Ok, we need to write this bio, either to correct an
1786 * inconsistency or to correct an unreadable block.
1787 * First we need to fixup bv_offset, bv_len and
1788 * bi_vecs, as the read request might have corrupted these
1789 */
1790 tbio->bi_vcnt = vcnt;
1791 tbio->bi_size = r10_bio->sectors << 9;
1792 tbio->bi_idx = 0;
1793 tbio->bi_phys_segments = 0;
1794 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1795 tbio->bi_flags |= 1 << BIO_UPTODATE;
1796 tbio->bi_next = NULL;
1797 tbio->bi_rw = WRITE;
1798 tbio->bi_private = r10_bio;
1799 tbio->bi_sector = r10_bio->devs[i].addr;
1800
1801 for (j=0; j < vcnt ; j++) {
1802 tbio->bi_io_vec[j].bv_offset = 0;
1803 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1804
1805 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1806 page_address(fbio->bi_io_vec[j].bv_page),
1807 PAGE_SIZE);
1808 }
1809 tbio->bi_end_io = end_sync_write;
1810
1811 d = r10_bio->devs[i].devnum;
1812 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1813 atomic_inc(&r10_bio->remaining);
1814 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1815
1816 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1817 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1818 generic_make_request(tbio);
1819 }
1820
1821 /* Now write out to any replacement devices
1822 * that are active
1823 */
1824 for (i = 0; i < conf->copies; i++) {
1825 int j, d;
1826 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1827
1828 tbio = r10_bio->devs[i].repl_bio;
1829 if (!tbio || !tbio->bi_end_io)
1830 continue;
1831 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
1832 && r10_bio->devs[i].bio != fbio)
1833 for (j = 0; j < vcnt; j++)
1834 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1835 page_address(fbio->bi_io_vec[j].bv_page),
1836 PAGE_SIZE);
1837 d = r10_bio->devs[i].devnum;
1838 atomic_inc(&r10_bio->remaining);
1839 md_sync_acct(conf->mirrors[d].replacement->bdev,
1840 tbio->bi_size >> 9);
1841 generic_make_request(tbio);
1842 }
1843
1844 done:
1845 if (atomic_dec_and_test(&r10_bio->remaining)) {
1846 md_done_sync(mddev, r10_bio->sectors, 1);
1847 put_buf(r10_bio);
1848 }
1849 }
1850
1851 /*
1852 * Now for the recovery code.
1853 * Recovery happens across physical sectors.
1854 * We recover all non-is_sync drives by finding the virtual address of
1855 * each, and then choose a working drive that also has that virt address.
1856 * There is a separate r10_bio for each non-in_sync drive.
1857 * Only the first two slots are in use. The first for reading,
1858 * The second for writing.
1859 *
1860 */
1861 static void fix_recovery_read_error(struct r10bio *r10_bio)
1862 {
1863 /* We got a read error during recovery.
1864 * We repeat the read in smaller page-sized sections.
1865 * If a read succeeds, write it to the new device or record
1866 * a bad block if we cannot.
1867 * If a read fails, record a bad block on both old and
1868 * new devices.
1869 */
1870 struct mddev *mddev = r10_bio->mddev;
1871 struct r10conf *conf = mddev->private;
1872 struct bio *bio = r10_bio->devs[0].bio;
1873 sector_t sect = 0;
1874 int sectors = r10_bio->sectors;
1875 int idx = 0;
1876 int dr = r10_bio->devs[0].devnum;
1877 int dw = r10_bio->devs[1].devnum;
1878
1879 while (sectors) {
1880 int s = sectors;
1881 struct md_rdev *rdev;
1882 sector_t addr;
1883 int ok;
1884
1885 if (s > (PAGE_SIZE>>9))
1886 s = PAGE_SIZE >> 9;
1887
1888 rdev = conf->mirrors[dr].rdev;
1889 addr = r10_bio->devs[0].addr + sect,
1890 ok = sync_page_io(rdev,
1891 addr,
1892 s << 9,
1893 bio->bi_io_vec[idx].bv_page,
1894 READ, false);
1895 if (ok) {
1896 rdev = conf->mirrors[dw].rdev;
1897 addr = r10_bio->devs[1].addr + sect;
1898 ok = sync_page_io(rdev,
1899 addr,
1900 s << 9,
1901 bio->bi_io_vec[idx].bv_page,
1902 WRITE, false);
1903 if (!ok) {
1904 set_bit(WriteErrorSeen, &rdev->flags);
1905 if (!test_and_set_bit(WantReplacement,
1906 &rdev->flags))
1907 set_bit(MD_RECOVERY_NEEDED,
1908 &rdev->mddev->recovery);
1909 }
1910 }
1911 if (!ok) {
1912 /* We don't worry if we cannot set a bad block -
1913 * it really is bad so there is no loss in not
1914 * recording it yet
1915 */
1916 rdev_set_badblocks(rdev, addr, s, 0);
1917
1918 if (rdev != conf->mirrors[dw].rdev) {
1919 /* need bad block on destination too */
1920 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
1921 addr = r10_bio->devs[1].addr + sect;
1922 ok = rdev_set_badblocks(rdev2, addr, s, 0);
1923 if (!ok) {
1924 /* just abort the recovery */
1925 printk(KERN_NOTICE
1926 "md/raid10:%s: recovery aborted"
1927 " due to read error\n",
1928 mdname(mddev));
1929
1930 conf->mirrors[dw].recovery_disabled
1931 = mddev->recovery_disabled;
1932 set_bit(MD_RECOVERY_INTR,
1933 &mddev->recovery);
1934 break;
1935 }
1936 }
1937 }
1938
1939 sectors -= s;
1940 sect += s;
1941 idx++;
1942 }
1943 }
1944
1945 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1946 {
1947 struct r10conf *conf = mddev->private;
1948 int d;
1949 struct bio *wbio, *wbio2;
1950
1951 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
1952 fix_recovery_read_error(r10_bio);
1953 end_sync_request(r10_bio);
1954 return;
1955 }
1956
1957 /*
1958 * share the pages with the first bio
1959 * and submit the write request
1960 */
1961 d = r10_bio->devs[1].devnum;
1962 wbio = r10_bio->devs[1].bio;
1963 wbio2 = r10_bio->devs[1].repl_bio;
1964 if (wbio->bi_end_io) {
1965 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1966 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1967 generic_make_request(wbio);
1968 }
1969 if (wbio2 && wbio2->bi_end_io) {
1970 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
1971 md_sync_acct(conf->mirrors[d].replacement->bdev,
1972 wbio2->bi_size >> 9);
1973 generic_make_request(wbio2);
1974 }
1975 }
1976
1977
1978 /*
1979 * Used by fix_read_error() to decay the per rdev read_errors.
1980 * We halve the read error count for every hour that has elapsed
1981 * since the last recorded read error.
1982 *
1983 */
1984 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
1985 {
1986 struct timespec cur_time_mon;
1987 unsigned long hours_since_last;
1988 unsigned int read_errors = atomic_read(&rdev->read_errors);
1989
1990 ktime_get_ts(&cur_time_mon);
1991
1992 if (rdev->last_read_error.tv_sec == 0 &&
1993 rdev->last_read_error.tv_nsec == 0) {
1994 /* first time we've seen a read error */
1995 rdev->last_read_error = cur_time_mon;
1996 return;
1997 }
1998
1999 hours_since_last = (cur_time_mon.tv_sec -
2000 rdev->last_read_error.tv_sec) / 3600;
2001
2002 rdev->last_read_error = cur_time_mon;
2003
2004 /*
2005 * if hours_since_last is > the number of bits in read_errors
2006 * just set read errors to 0. We do this to avoid
2007 * overflowing the shift of read_errors by hours_since_last.
2008 */
2009 if (hours_since_last >= 8 * sizeof(read_errors))
2010 atomic_set(&rdev->read_errors, 0);
2011 else
2012 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2013 }
2014
2015 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2016 int sectors, struct page *page, int rw)
2017 {
2018 sector_t first_bad;
2019 int bad_sectors;
2020
2021 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2022 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2023 return -1;
2024 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2025 /* success */
2026 return 1;
2027 if (rw == WRITE) {
2028 set_bit(WriteErrorSeen, &rdev->flags);
2029 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2030 set_bit(MD_RECOVERY_NEEDED,
2031 &rdev->mddev->recovery);
2032 }
2033 /* need to record an error - either for the block or the device */
2034 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2035 md_error(rdev->mddev, rdev);
2036 return 0;
2037 }
2038
2039 /*
2040 * This is a kernel thread which:
2041 *
2042 * 1. Retries failed read operations on working mirrors.
2043 * 2. Updates the raid superblock when problems encounter.
2044 * 3. Performs writes following reads for array synchronising.
2045 */
2046
2047 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2048 {
2049 int sect = 0; /* Offset from r10_bio->sector */
2050 int sectors = r10_bio->sectors;
2051 struct md_rdev*rdev;
2052 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2053 int d = r10_bio->devs[r10_bio->read_slot].devnum;
2054
2055 /* still own a reference to this rdev, so it cannot
2056 * have been cleared recently.
2057 */
2058 rdev = conf->mirrors[d].rdev;
2059
2060 if (test_bit(Faulty, &rdev->flags))
2061 /* drive has already been failed, just ignore any
2062 more fix_read_error() attempts */
2063 return;
2064
2065 check_decay_read_errors(mddev, rdev);
2066 atomic_inc(&rdev->read_errors);
2067 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2068 char b[BDEVNAME_SIZE];
2069 bdevname(rdev->bdev, b);
2070
2071 printk(KERN_NOTICE
2072 "md/raid10:%s: %s: Raid device exceeded "
2073 "read_error threshold [cur %d:max %d]\n",
2074 mdname(mddev), b,
2075 atomic_read(&rdev->read_errors), max_read_errors);
2076 printk(KERN_NOTICE
2077 "md/raid10:%s: %s: Failing raid device\n",
2078 mdname(mddev), b);
2079 md_error(mddev, conf->mirrors[d].rdev);
2080 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2081 return;
2082 }
2083
2084 while(sectors) {
2085 int s = sectors;
2086 int sl = r10_bio->read_slot;
2087 int success = 0;
2088 int start;
2089
2090 if (s > (PAGE_SIZE>>9))
2091 s = PAGE_SIZE >> 9;
2092
2093 rcu_read_lock();
2094 do {
2095 sector_t first_bad;
2096 int bad_sectors;
2097
2098 d = r10_bio->devs[sl].devnum;
2099 rdev = rcu_dereference(conf->mirrors[d].rdev);
2100 if (rdev &&
2101 test_bit(In_sync, &rdev->flags) &&
2102 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2103 &first_bad, &bad_sectors) == 0) {
2104 atomic_inc(&rdev->nr_pending);
2105 rcu_read_unlock();
2106 success = sync_page_io(rdev,
2107 r10_bio->devs[sl].addr +
2108 sect,
2109 s<<9,
2110 conf->tmppage, READ, false);
2111 rdev_dec_pending(rdev, mddev);
2112 rcu_read_lock();
2113 if (success)
2114 break;
2115 }
2116 sl++;
2117 if (sl == conf->copies)
2118 sl = 0;
2119 } while (!success && sl != r10_bio->read_slot);
2120 rcu_read_unlock();
2121
2122 if (!success) {
2123 /* Cannot read from anywhere, just mark the block
2124 * as bad on the first device to discourage future
2125 * reads.
2126 */
2127 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2128 rdev = conf->mirrors[dn].rdev;
2129
2130 if (!rdev_set_badblocks(
2131 rdev,
2132 r10_bio->devs[r10_bio->read_slot].addr
2133 + sect,
2134 s, 0)) {
2135 md_error(mddev, rdev);
2136 r10_bio->devs[r10_bio->read_slot].bio
2137 = IO_BLOCKED;
2138 }
2139 break;
2140 }
2141
2142 start = sl;
2143 /* write it back and re-read */
2144 rcu_read_lock();
2145 while (sl != r10_bio->read_slot) {
2146 char b[BDEVNAME_SIZE];
2147
2148 if (sl==0)
2149 sl = conf->copies;
2150 sl--;
2151 d = r10_bio->devs[sl].devnum;
2152 rdev = rcu_dereference(conf->mirrors[d].rdev);
2153 if (!rdev ||
2154 !test_bit(In_sync, &rdev->flags))
2155 continue;
2156
2157 atomic_inc(&rdev->nr_pending);
2158 rcu_read_unlock();
2159 if (r10_sync_page_io(rdev,
2160 r10_bio->devs[sl].addr +
2161 sect,
2162 s<<9, conf->tmppage, WRITE)
2163 == 0) {
2164 /* Well, this device is dead */
2165 printk(KERN_NOTICE
2166 "md/raid10:%s: read correction "
2167 "write failed"
2168 " (%d sectors at %llu on %s)\n",
2169 mdname(mddev), s,
2170 (unsigned long long)(
2171 sect + rdev->data_offset),
2172 bdevname(rdev->bdev, b));
2173 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2174 "drive\n",
2175 mdname(mddev),
2176 bdevname(rdev->bdev, b));
2177 }
2178 rdev_dec_pending(rdev, mddev);
2179 rcu_read_lock();
2180 }
2181 sl = start;
2182 while (sl != r10_bio->read_slot) {
2183 char b[BDEVNAME_SIZE];
2184
2185 if (sl==0)
2186 sl = conf->copies;
2187 sl--;
2188 d = r10_bio->devs[sl].devnum;
2189 rdev = rcu_dereference(conf->mirrors[d].rdev);
2190 if (!rdev ||
2191 !test_bit(In_sync, &rdev->flags))
2192 continue;
2193
2194 atomic_inc(&rdev->nr_pending);
2195 rcu_read_unlock();
2196 switch (r10_sync_page_io(rdev,
2197 r10_bio->devs[sl].addr +
2198 sect,
2199 s<<9, conf->tmppage,
2200 READ)) {
2201 case 0:
2202 /* Well, this device is dead */
2203 printk(KERN_NOTICE
2204 "md/raid10:%s: unable to read back "
2205 "corrected sectors"
2206 " (%d sectors at %llu on %s)\n",
2207 mdname(mddev), s,
2208 (unsigned long long)(
2209 sect + rdev->data_offset),
2210 bdevname(rdev->bdev, b));
2211 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2212 "drive\n",
2213 mdname(mddev),
2214 bdevname(rdev->bdev, b));
2215 break;
2216 case 1:
2217 printk(KERN_INFO
2218 "md/raid10:%s: read error corrected"
2219 " (%d sectors at %llu on %s)\n",
2220 mdname(mddev), s,
2221 (unsigned long long)(
2222 sect + rdev->data_offset),
2223 bdevname(rdev->bdev, b));
2224 atomic_add(s, &rdev->corrected_errors);
2225 }
2226
2227 rdev_dec_pending(rdev, mddev);
2228 rcu_read_lock();
2229 }
2230 rcu_read_unlock();
2231
2232 sectors -= s;
2233 sect += s;
2234 }
2235 }
2236
2237 static void bi_complete(struct bio *bio, int error)
2238 {
2239 complete((struct completion *)bio->bi_private);
2240 }
2241
2242 static int submit_bio_wait(int rw, struct bio *bio)
2243 {
2244 struct completion event;
2245 rw |= REQ_SYNC;
2246
2247 init_completion(&event);
2248 bio->bi_private = &event;
2249 bio->bi_end_io = bi_complete;
2250 submit_bio(rw, bio);
2251 wait_for_completion(&event);
2252
2253 return test_bit(BIO_UPTODATE, &bio->bi_flags);
2254 }
2255
2256 static int narrow_write_error(struct r10bio *r10_bio, int i)
2257 {
2258 struct bio *bio = r10_bio->master_bio;
2259 struct mddev *mddev = r10_bio->mddev;
2260 struct r10conf *conf = mddev->private;
2261 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2262 /* bio has the data to be written to slot 'i' where
2263 * we just recently had a write error.
2264 * We repeatedly clone the bio and trim down to one block,
2265 * then try the write. Where the write fails we record
2266 * a bad block.
2267 * It is conceivable that the bio doesn't exactly align with
2268 * blocks. We must handle this.
2269 *
2270 * We currently own a reference to the rdev.
2271 */
2272
2273 int block_sectors;
2274 sector_t sector;
2275 int sectors;
2276 int sect_to_write = r10_bio->sectors;
2277 int ok = 1;
2278
2279 if (rdev->badblocks.shift < 0)
2280 return 0;
2281
2282 block_sectors = 1 << rdev->badblocks.shift;
2283 sector = r10_bio->sector;
2284 sectors = ((r10_bio->sector + block_sectors)
2285 & ~(sector_t)(block_sectors - 1))
2286 - sector;
2287
2288 while (sect_to_write) {
2289 struct bio *wbio;
2290 if (sectors > sect_to_write)
2291 sectors = sect_to_write;
2292 /* Write at 'sector' for 'sectors' */
2293 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2294 md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2295 wbio->bi_sector = (r10_bio->devs[i].addr+
2296 rdev->data_offset+
2297 (sector - r10_bio->sector));
2298 wbio->bi_bdev = rdev->bdev;
2299 if (submit_bio_wait(WRITE, wbio) == 0)
2300 /* Failure! */
2301 ok = rdev_set_badblocks(rdev, sector,
2302 sectors, 0)
2303 && ok;
2304
2305 bio_put(wbio);
2306 sect_to_write -= sectors;
2307 sector += sectors;
2308 sectors = block_sectors;
2309 }
2310 return ok;
2311 }
2312
2313 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2314 {
2315 int slot = r10_bio->read_slot;
2316 struct bio *bio;
2317 struct r10conf *conf = mddev->private;
2318 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2319 char b[BDEVNAME_SIZE];
2320 unsigned long do_sync;
2321 int max_sectors;
2322
2323 /* we got a read error. Maybe the drive is bad. Maybe just
2324 * the block and we can fix it.
2325 * We freeze all other IO, and try reading the block from
2326 * other devices. When we find one, we re-write
2327 * and check it that fixes the read error.
2328 * This is all done synchronously while the array is
2329 * frozen.
2330 */
2331 bio = r10_bio->devs[slot].bio;
2332 bdevname(bio->bi_bdev, b);
2333 bio_put(bio);
2334 r10_bio->devs[slot].bio = NULL;
2335
2336 if (mddev->ro == 0) {
2337 freeze_array(conf);
2338 fix_read_error(conf, mddev, r10_bio);
2339 unfreeze_array(conf);
2340 } else
2341 r10_bio->devs[slot].bio = IO_BLOCKED;
2342
2343 rdev_dec_pending(rdev, mddev);
2344
2345 read_more:
2346 rdev = read_balance(conf, r10_bio, &max_sectors);
2347 if (rdev == NULL) {
2348 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2349 " read error for block %llu\n",
2350 mdname(mddev), b,
2351 (unsigned long long)r10_bio->sector);
2352 raid_end_bio_io(r10_bio);
2353 return;
2354 }
2355
2356 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2357 slot = r10_bio->read_slot;
2358 printk_ratelimited(
2359 KERN_ERR
2360 "md/raid10:%s: %s: redirecting"
2361 "sector %llu to another mirror\n",
2362 mdname(mddev),
2363 bdevname(rdev->bdev, b),
2364 (unsigned long long)r10_bio->sector);
2365 bio = bio_clone_mddev(r10_bio->master_bio,
2366 GFP_NOIO, mddev);
2367 md_trim_bio(bio,
2368 r10_bio->sector - bio->bi_sector,
2369 max_sectors);
2370 r10_bio->devs[slot].bio = bio;
2371 r10_bio->devs[slot].rdev = rdev;
2372 bio->bi_sector = r10_bio->devs[slot].addr
2373 + rdev->data_offset;
2374 bio->bi_bdev = rdev->bdev;
2375 bio->bi_rw = READ | do_sync;
2376 bio->bi_private = r10_bio;
2377 bio->bi_end_io = raid10_end_read_request;
2378 if (max_sectors < r10_bio->sectors) {
2379 /* Drat - have to split this up more */
2380 struct bio *mbio = r10_bio->master_bio;
2381 int sectors_handled =
2382 r10_bio->sector + max_sectors
2383 - mbio->bi_sector;
2384 r10_bio->sectors = max_sectors;
2385 spin_lock_irq(&conf->device_lock);
2386 if (mbio->bi_phys_segments == 0)
2387 mbio->bi_phys_segments = 2;
2388 else
2389 mbio->bi_phys_segments++;
2390 spin_unlock_irq(&conf->device_lock);
2391 generic_make_request(bio);
2392
2393 r10_bio = mempool_alloc(conf->r10bio_pool,
2394 GFP_NOIO);
2395 r10_bio->master_bio = mbio;
2396 r10_bio->sectors = (mbio->bi_size >> 9)
2397 - sectors_handled;
2398 r10_bio->state = 0;
2399 set_bit(R10BIO_ReadError,
2400 &r10_bio->state);
2401 r10_bio->mddev = mddev;
2402 r10_bio->sector = mbio->bi_sector
2403 + sectors_handled;
2404
2405 goto read_more;
2406 } else
2407 generic_make_request(bio);
2408 }
2409
2410 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2411 {
2412 /* Some sort of write request has finished and it
2413 * succeeded in writing where we thought there was a
2414 * bad block. So forget the bad block.
2415 * Or possibly if failed and we need to record
2416 * a bad block.
2417 */
2418 int m;
2419 struct md_rdev *rdev;
2420
2421 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2422 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2423 for (m = 0; m < conf->copies; m++) {
2424 int dev = r10_bio->devs[m].devnum;
2425 rdev = conf->mirrors[dev].rdev;
2426 if (r10_bio->devs[m].bio == NULL)
2427 continue;
2428 if (test_bit(BIO_UPTODATE,
2429 &r10_bio->devs[m].bio->bi_flags)) {
2430 rdev_clear_badblocks(
2431 rdev,
2432 r10_bio->devs[m].addr,
2433 r10_bio->sectors);
2434 } else {
2435 if (!rdev_set_badblocks(
2436 rdev,
2437 r10_bio->devs[m].addr,
2438 r10_bio->sectors, 0))
2439 md_error(conf->mddev, rdev);
2440 }
2441 rdev = conf->mirrors[dev].replacement;
2442 if (r10_bio->devs[m].repl_bio == NULL)
2443 continue;
2444 if (test_bit(BIO_UPTODATE,
2445 &r10_bio->devs[m].repl_bio->bi_flags)) {
2446 rdev_clear_badblocks(
2447 rdev,
2448 r10_bio->devs[m].addr,
2449 r10_bio->sectors);
2450 } else {
2451 if (!rdev_set_badblocks(
2452 rdev,
2453 r10_bio->devs[m].addr,
2454 r10_bio->sectors, 0))
2455 md_error(conf->mddev, rdev);
2456 }
2457 }
2458 put_buf(r10_bio);
2459 } else {
2460 for (m = 0; m < conf->copies; m++) {
2461 int dev = r10_bio->devs[m].devnum;
2462 struct bio *bio = r10_bio->devs[m].bio;
2463 rdev = conf->mirrors[dev].rdev;
2464 if (bio == IO_MADE_GOOD) {
2465 rdev_clear_badblocks(
2466 rdev,
2467 r10_bio->devs[m].addr,
2468 r10_bio->sectors);
2469 rdev_dec_pending(rdev, conf->mddev);
2470 } else if (bio != NULL &&
2471 !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2472 if (!narrow_write_error(r10_bio, m)) {
2473 md_error(conf->mddev, rdev);
2474 set_bit(R10BIO_Degraded,
2475 &r10_bio->state);
2476 }
2477 rdev_dec_pending(rdev, conf->mddev);
2478 }
2479 bio = r10_bio->devs[m].repl_bio;
2480 rdev = conf->mirrors[dev].replacement;
2481 if (rdev && bio == IO_MADE_GOOD) {
2482 rdev_clear_badblocks(
2483 rdev,
2484 r10_bio->devs[m].addr,
2485 r10_bio->sectors);
2486 rdev_dec_pending(rdev, conf->mddev);
2487 }
2488 }
2489 if (test_bit(R10BIO_WriteError,
2490 &r10_bio->state))
2491 close_write(r10_bio);
2492 raid_end_bio_io(r10_bio);
2493 }
2494 }
2495
2496 static void raid10d(struct mddev *mddev)
2497 {
2498 struct r10bio *r10_bio;
2499 unsigned long flags;
2500 struct r10conf *conf = mddev->private;
2501 struct list_head *head = &conf->retry_list;
2502 struct blk_plug plug;
2503
2504 md_check_recovery(mddev);
2505
2506 blk_start_plug(&plug);
2507 for (;;) {
2508
2509 flush_pending_writes(conf);
2510
2511 spin_lock_irqsave(&conf->device_lock, flags);
2512 if (list_empty(head)) {
2513 spin_unlock_irqrestore(&conf->device_lock, flags);
2514 break;
2515 }
2516 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2517 list_del(head->prev);
2518 conf->nr_queued--;
2519 spin_unlock_irqrestore(&conf->device_lock, flags);
2520
2521 mddev = r10_bio->mddev;
2522 conf = mddev->private;
2523 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2524 test_bit(R10BIO_WriteError, &r10_bio->state))
2525 handle_write_completed(conf, r10_bio);
2526 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2527 sync_request_write(mddev, r10_bio);
2528 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2529 recovery_request_write(mddev, r10_bio);
2530 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2531 handle_read_error(mddev, r10_bio);
2532 else {
2533 /* just a partial read to be scheduled from a
2534 * separate context
2535 */
2536 int slot = r10_bio->read_slot;
2537 generic_make_request(r10_bio->devs[slot].bio);
2538 }
2539
2540 cond_resched();
2541 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2542 md_check_recovery(mddev);
2543 }
2544 blk_finish_plug(&plug);
2545 }
2546
2547
2548 static int init_resync(struct r10conf *conf)
2549 {
2550 int buffs;
2551 int i;
2552
2553 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2554 BUG_ON(conf->r10buf_pool);
2555 conf->have_replacement = 0;
2556 for (i = 0; i < conf->raid_disks; i++)
2557 if (conf->mirrors[i].replacement)
2558 conf->have_replacement = 1;
2559 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2560 if (!conf->r10buf_pool)
2561 return -ENOMEM;
2562 conf->next_resync = 0;
2563 return 0;
2564 }
2565
2566 /*
2567 * perform a "sync" on one "block"
2568 *
2569 * We need to make sure that no normal I/O request - particularly write
2570 * requests - conflict with active sync requests.
2571 *
2572 * This is achieved by tracking pending requests and a 'barrier' concept
2573 * that can be installed to exclude normal IO requests.
2574 *
2575 * Resync and recovery are handled very differently.
2576 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2577 *
2578 * For resync, we iterate over virtual addresses, read all copies,
2579 * and update if there are differences. If only one copy is live,
2580 * skip it.
2581 * For recovery, we iterate over physical addresses, read a good
2582 * value for each non-in_sync drive, and over-write.
2583 *
2584 * So, for recovery we may have several outstanding complex requests for a
2585 * given address, one for each out-of-sync device. We model this by allocating
2586 * a number of r10_bio structures, one for each out-of-sync device.
2587 * As we setup these structures, we collect all bio's together into a list
2588 * which we then process collectively to add pages, and then process again
2589 * to pass to generic_make_request.
2590 *
2591 * The r10_bio structures are linked using a borrowed master_bio pointer.
2592 * This link is counted in ->remaining. When the r10_bio that points to NULL
2593 * has its remaining count decremented to 0, the whole complex operation
2594 * is complete.
2595 *
2596 */
2597
2598 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2599 int *skipped, int go_faster)
2600 {
2601 struct r10conf *conf = mddev->private;
2602 struct r10bio *r10_bio;
2603 struct bio *biolist = NULL, *bio;
2604 sector_t max_sector, nr_sectors;
2605 int i;
2606 int max_sync;
2607 sector_t sync_blocks;
2608 sector_t sectors_skipped = 0;
2609 int chunks_skipped = 0;
2610
2611 if (!conf->r10buf_pool)
2612 if (init_resync(conf))
2613 return 0;
2614
2615 skipped:
2616 max_sector = mddev->dev_sectors;
2617 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2618 max_sector = mddev->resync_max_sectors;
2619 if (sector_nr >= max_sector) {
2620 /* If we aborted, we need to abort the
2621 * sync on the 'current' bitmap chucks (there can
2622 * be several when recovering multiple devices).
2623 * as we may have started syncing it but not finished.
2624 * We can find the current address in
2625 * mddev->curr_resync, but for recovery,
2626 * we need to convert that to several
2627 * virtual addresses.
2628 */
2629 if (mddev->curr_resync < max_sector) { /* aborted */
2630 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2631 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2632 &sync_blocks, 1);
2633 else for (i=0; i<conf->raid_disks; i++) {
2634 sector_t sect =
2635 raid10_find_virt(conf, mddev->curr_resync, i);
2636 bitmap_end_sync(mddev->bitmap, sect,
2637 &sync_blocks, 1);
2638 }
2639 } else {
2640 /* completed sync */
2641 if ((!mddev->bitmap || conf->fullsync)
2642 && conf->have_replacement
2643 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2644 /* Completed a full sync so the replacements
2645 * are now fully recovered.
2646 */
2647 for (i = 0; i < conf->raid_disks; i++)
2648 if (conf->mirrors[i].replacement)
2649 conf->mirrors[i].replacement
2650 ->recovery_offset
2651 = MaxSector;
2652 }
2653 conf->fullsync = 0;
2654 }
2655 bitmap_close_sync(mddev->bitmap);
2656 close_sync(conf);
2657 *skipped = 1;
2658 return sectors_skipped;
2659 }
2660 if (chunks_skipped >= conf->raid_disks) {
2661 /* if there has been nothing to do on any drive,
2662 * then there is nothing to do at all..
2663 */
2664 *skipped = 1;
2665 return (max_sector - sector_nr) + sectors_skipped;
2666 }
2667
2668 if (max_sector > mddev->resync_max)
2669 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2670
2671 /* make sure whole request will fit in a chunk - if chunks
2672 * are meaningful
2673 */
2674 if (conf->near_copies < conf->raid_disks &&
2675 max_sector > (sector_nr | conf->chunk_mask))
2676 max_sector = (sector_nr | conf->chunk_mask) + 1;
2677 /*
2678 * If there is non-resync activity waiting for us then
2679 * put in a delay to throttle resync.
2680 */
2681 if (!go_faster && conf->nr_waiting)
2682 msleep_interruptible(1000);
2683
2684 /* Again, very different code for resync and recovery.
2685 * Both must result in an r10bio with a list of bios that
2686 * have bi_end_io, bi_sector, bi_bdev set,
2687 * and bi_private set to the r10bio.
2688 * For recovery, we may actually create several r10bios
2689 * with 2 bios in each, that correspond to the bios in the main one.
2690 * In this case, the subordinate r10bios link back through a
2691 * borrowed master_bio pointer, and the counter in the master
2692 * includes a ref from each subordinate.
2693 */
2694 /* First, we decide what to do and set ->bi_end_io
2695 * To end_sync_read if we want to read, and
2696 * end_sync_write if we will want to write.
2697 */
2698
2699 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2700 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2701 /* recovery... the complicated one */
2702 int j;
2703 r10_bio = NULL;
2704
2705 for (i=0 ; i<conf->raid_disks; i++) {
2706 int still_degraded;
2707 struct r10bio *rb2;
2708 sector_t sect;
2709 int must_sync;
2710 int any_working;
2711 struct mirror_info *mirror = &conf->mirrors[i];
2712
2713 if ((mirror->rdev == NULL ||
2714 test_bit(In_sync, &mirror->rdev->flags))
2715 &&
2716 (mirror->replacement == NULL ||
2717 test_bit(Faulty,
2718 &mirror->replacement->flags)))
2719 continue;
2720
2721 still_degraded = 0;
2722 /* want to reconstruct this device */
2723 rb2 = r10_bio;
2724 sect = raid10_find_virt(conf, sector_nr, i);
2725 /* Unless we are doing a full sync, or a replacement
2726 * we only need to recover the block if it is set in
2727 * the bitmap
2728 */
2729 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2730 &sync_blocks, 1);
2731 if (sync_blocks < max_sync)
2732 max_sync = sync_blocks;
2733 if (!must_sync &&
2734 mirror->replacement == NULL &&
2735 !conf->fullsync) {
2736 /* yep, skip the sync_blocks here, but don't assume
2737 * that there will never be anything to do here
2738 */
2739 chunks_skipped = -1;
2740 continue;
2741 }
2742
2743 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2744 raise_barrier(conf, rb2 != NULL);
2745 atomic_set(&r10_bio->remaining, 0);
2746
2747 r10_bio->master_bio = (struct bio*)rb2;
2748 if (rb2)
2749 atomic_inc(&rb2->remaining);
2750 r10_bio->mddev = mddev;
2751 set_bit(R10BIO_IsRecover, &r10_bio->state);
2752 r10_bio->sector = sect;
2753
2754 raid10_find_phys(conf, r10_bio);
2755
2756 /* Need to check if the array will still be
2757 * degraded
2758 */
2759 for (j=0; j<conf->raid_disks; j++)
2760 if (conf->mirrors[j].rdev == NULL ||
2761 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2762 still_degraded = 1;
2763 break;
2764 }
2765
2766 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2767 &sync_blocks, still_degraded);
2768
2769 any_working = 0;
2770 for (j=0; j<conf->copies;j++) {
2771 int k;
2772 int d = r10_bio->devs[j].devnum;
2773 sector_t from_addr, to_addr;
2774 struct md_rdev *rdev;
2775 sector_t sector, first_bad;
2776 int bad_sectors;
2777 if (!conf->mirrors[d].rdev ||
2778 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
2779 continue;
2780 /* This is where we read from */
2781 any_working = 1;
2782 rdev = conf->mirrors[d].rdev;
2783 sector = r10_bio->devs[j].addr;
2784
2785 if (is_badblock(rdev, sector, max_sync,
2786 &first_bad, &bad_sectors)) {
2787 if (first_bad > sector)
2788 max_sync = first_bad - sector;
2789 else {
2790 bad_sectors -= (sector
2791 - first_bad);
2792 if (max_sync > bad_sectors)
2793 max_sync = bad_sectors;
2794 continue;
2795 }
2796 }
2797 bio = r10_bio->devs[0].bio;
2798 bio->bi_next = biolist;
2799 biolist = bio;
2800 bio->bi_private = r10_bio;
2801 bio->bi_end_io = end_sync_read;
2802 bio->bi_rw = READ;
2803 from_addr = r10_bio->devs[j].addr;
2804 bio->bi_sector = from_addr + rdev->data_offset;
2805 bio->bi_bdev = rdev->bdev;
2806 atomic_inc(&rdev->nr_pending);
2807 /* and we write to 'i' (if not in_sync) */
2808
2809 for (k=0; k<conf->copies; k++)
2810 if (r10_bio->devs[k].devnum == i)
2811 break;
2812 BUG_ON(k == conf->copies);
2813 to_addr = r10_bio->devs[k].addr;
2814 r10_bio->devs[0].devnum = d;
2815 r10_bio->devs[0].addr = from_addr;
2816 r10_bio->devs[1].devnum = i;
2817 r10_bio->devs[1].addr = to_addr;
2818
2819 rdev = mirror->rdev;
2820 if (!test_bit(In_sync, &rdev->flags)) {
2821 bio = r10_bio->devs[1].bio;
2822 bio->bi_next = biolist;
2823 biolist = bio;
2824 bio->bi_private = r10_bio;
2825 bio->bi_end_io = end_sync_write;
2826 bio->bi_rw = WRITE;
2827 bio->bi_sector = to_addr
2828 + rdev->data_offset;
2829 bio->bi_bdev = rdev->bdev;
2830 atomic_inc(&r10_bio->remaining);
2831 } else
2832 r10_bio->devs[1].bio->bi_end_io = NULL;
2833
2834 /* and maybe write to replacement */
2835 bio = r10_bio->devs[1].repl_bio;
2836 if (bio)
2837 bio->bi_end_io = NULL;
2838 rdev = mirror->replacement;
2839 /* Note: if rdev != NULL, then bio
2840 * cannot be NULL as r10buf_pool_alloc will
2841 * have allocated it.
2842 * So the second test here is pointless.
2843 * But it keeps semantic-checkers happy, and
2844 * this comment keeps human reviewers
2845 * happy.
2846 */
2847 if (rdev == NULL || bio == NULL ||
2848 test_bit(Faulty, &rdev->flags))
2849 break;
2850 bio->bi_next = biolist;
2851 biolist = bio;
2852 bio->bi_private = r10_bio;
2853 bio->bi_end_io = end_sync_write;
2854 bio->bi_rw = WRITE;
2855 bio->bi_sector = to_addr + rdev->data_offset;
2856 bio->bi_bdev = rdev->bdev;
2857 atomic_inc(&r10_bio->remaining);
2858 break;
2859 }
2860 if (j == conf->copies) {
2861 /* Cannot recover, so abort the recovery or
2862 * record a bad block */
2863 put_buf(r10_bio);
2864 if (rb2)
2865 atomic_dec(&rb2->remaining);
2866 r10_bio = rb2;
2867 if (any_working) {
2868 /* problem is that there are bad blocks
2869 * on other device(s)
2870 */
2871 int k;
2872 for (k = 0; k < conf->copies; k++)
2873 if (r10_bio->devs[k].devnum == i)
2874 break;
2875 if (!test_bit(In_sync,
2876 &mirror->rdev->flags)
2877 && !rdev_set_badblocks(
2878 mirror->rdev,
2879 r10_bio->devs[k].addr,
2880 max_sync, 0))
2881 any_working = 0;
2882 if (mirror->replacement &&
2883 !rdev_set_badblocks(
2884 mirror->replacement,
2885 r10_bio->devs[k].addr,
2886 max_sync, 0))
2887 any_working = 0;
2888 }
2889 if (!any_working) {
2890 if (!test_and_set_bit(MD_RECOVERY_INTR,
2891 &mddev->recovery))
2892 printk(KERN_INFO "md/raid10:%s: insufficient "
2893 "working devices for recovery.\n",
2894 mdname(mddev));
2895 mirror->recovery_disabled
2896 = mddev->recovery_disabled;
2897 }
2898 break;
2899 }
2900 }
2901 if (biolist == NULL) {
2902 while (r10_bio) {
2903 struct r10bio *rb2 = r10_bio;
2904 r10_bio = (struct r10bio*) rb2->master_bio;
2905 rb2->master_bio = NULL;
2906 put_buf(rb2);
2907 }
2908 goto giveup;
2909 }
2910 } else {
2911 /* resync. Schedule a read for every block at this virt offset */
2912 int count = 0;
2913
2914 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2915
2916 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2917 &sync_blocks, mddev->degraded) &&
2918 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
2919 &mddev->recovery)) {
2920 /* We can skip this block */
2921 *skipped = 1;
2922 return sync_blocks + sectors_skipped;
2923 }
2924 if (sync_blocks < max_sync)
2925 max_sync = sync_blocks;
2926 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2927
2928 r10_bio->mddev = mddev;
2929 atomic_set(&r10_bio->remaining, 0);
2930 raise_barrier(conf, 0);
2931 conf->next_resync = sector_nr;
2932
2933 r10_bio->master_bio = NULL;
2934 r10_bio->sector = sector_nr;
2935 set_bit(R10BIO_IsSync, &r10_bio->state);
2936 raid10_find_phys(conf, r10_bio);
2937 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
2938
2939 for (i=0; i<conf->copies; i++) {
2940 int d = r10_bio->devs[i].devnum;
2941 sector_t first_bad, sector;
2942 int bad_sectors;
2943
2944 if (r10_bio->devs[i].repl_bio)
2945 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
2946
2947 bio = r10_bio->devs[i].bio;
2948 bio->bi_end_io = NULL;
2949 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2950 if (conf->mirrors[d].rdev == NULL ||
2951 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
2952 continue;
2953 sector = r10_bio->devs[i].addr;
2954 if (is_badblock(conf->mirrors[d].rdev,
2955 sector, max_sync,
2956 &first_bad, &bad_sectors)) {
2957 if (first_bad > sector)
2958 max_sync = first_bad - sector;
2959 else {
2960 bad_sectors -= (sector - first_bad);
2961 if (max_sync > bad_sectors)
2962 max_sync = max_sync;
2963 continue;
2964 }
2965 }
2966 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2967 atomic_inc(&r10_bio->remaining);
2968 bio->bi_next = biolist;
2969 biolist = bio;
2970 bio->bi_private = r10_bio;
2971 bio->bi_end_io = end_sync_read;
2972 bio->bi_rw = READ;
2973 bio->bi_sector = sector +
2974 conf->mirrors[d].rdev->data_offset;
2975 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2976 count++;
2977
2978 if (conf->mirrors[d].replacement == NULL ||
2979 test_bit(Faulty,
2980 &conf->mirrors[d].replacement->flags))
2981 continue;
2982
2983 /* Need to set up for writing to the replacement */
2984 bio = r10_bio->devs[i].repl_bio;
2985 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2986
2987 sector = r10_bio->devs[i].addr;
2988 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2989 bio->bi_next = biolist;
2990 biolist = bio;
2991 bio->bi_private = r10_bio;
2992 bio->bi_end_io = end_sync_write;
2993 bio->bi_rw = WRITE;
2994 bio->bi_sector = sector +
2995 conf->mirrors[d].replacement->data_offset;
2996 bio->bi_bdev = conf->mirrors[d].replacement->bdev;
2997 count++;
2998 }
2999
3000 if (count < 2) {
3001 for (i=0; i<conf->copies; i++) {
3002 int d = r10_bio->devs[i].devnum;
3003 if (r10_bio->devs[i].bio->bi_end_io)
3004 rdev_dec_pending(conf->mirrors[d].rdev,
3005 mddev);
3006 if (r10_bio->devs[i].repl_bio &&
3007 r10_bio->devs[i].repl_bio->bi_end_io)
3008 rdev_dec_pending(
3009 conf->mirrors[d].replacement,
3010 mddev);
3011 }
3012 put_buf(r10_bio);
3013 biolist = NULL;
3014 goto giveup;
3015 }
3016 }
3017
3018 for (bio = biolist; bio ; bio=bio->bi_next) {
3019
3020 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
3021 if (bio->bi_end_io)
3022 bio->bi_flags |= 1 << BIO_UPTODATE;
3023 bio->bi_vcnt = 0;
3024 bio->bi_idx = 0;
3025 bio->bi_phys_segments = 0;
3026 bio->bi_size = 0;
3027 }
3028
3029 nr_sectors = 0;
3030 if (sector_nr + max_sync < max_sector)
3031 max_sector = sector_nr + max_sync;
3032 do {
3033 struct page *page;
3034 int len = PAGE_SIZE;
3035 if (sector_nr + (len>>9) > max_sector)
3036 len = (max_sector - sector_nr) << 9;
3037 if (len == 0)
3038 break;
3039 for (bio= biolist ; bio ; bio=bio->bi_next) {
3040 struct bio *bio2;
3041 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3042 if (bio_add_page(bio, page, len, 0))
3043 continue;
3044
3045 /* stop here */
3046 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3047 for (bio2 = biolist;
3048 bio2 && bio2 != bio;
3049 bio2 = bio2->bi_next) {
3050 /* remove last page from this bio */
3051 bio2->bi_vcnt--;
3052 bio2->bi_size -= len;
3053 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3054 }
3055 goto bio_full;
3056 }
3057 nr_sectors += len>>9;
3058 sector_nr += len>>9;
3059 } while (biolist->bi_vcnt < RESYNC_PAGES);
3060 bio_full:
3061 r10_bio->sectors = nr_sectors;
3062
3063 while (biolist) {
3064 bio = biolist;
3065 biolist = biolist->bi_next;
3066
3067 bio->bi_next = NULL;
3068 r10_bio = bio->bi_private;
3069 r10_bio->sectors = nr_sectors;
3070
3071 if (bio->bi_end_io == end_sync_read) {
3072 md_sync_acct(bio->bi_bdev, nr_sectors);
3073 generic_make_request(bio);
3074 }
3075 }
3076
3077 if (sectors_skipped)
3078 /* pretend they weren't skipped, it makes
3079 * no important difference in this case
3080 */
3081 md_done_sync(mddev, sectors_skipped, 1);
3082
3083 return sectors_skipped + nr_sectors;
3084 giveup:
3085 /* There is nowhere to write, so all non-sync
3086 * drives must be failed or in resync, all drives
3087 * have a bad block, so try the next chunk...
3088 */
3089 if (sector_nr + max_sync < max_sector)
3090 max_sector = sector_nr + max_sync;
3091
3092 sectors_skipped += (max_sector - sector_nr);
3093 chunks_skipped ++;
3094 sector_nr = max_sector;
3095 goto skipped;
3096 }
3097
3098 static sector_t
3099 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3100 {
3101 sector_t size;
3102 struct r10conf *conf = mddev->private;
3103
3104 if (!raid_disks)
3105 raid_disks = conf->raid_disks;
3106 if (!sectors)
3107 sectors = conf->dev_sectors;
3108
3109 size = sectors >> conf->chunk_shift;
3110 sector_div(size, conf->far_copies);
3111 size = size * raid_disks;
3112 sector_div(size, conf->near_copies);
3113
3114 return size << conf->chunk_shift;
3115 }
3116
3117
3118 static struct r10conf *setup_conf(struct mddev *mddev)
3119 {
3120 struct r10conf *conf = NULL;
3121 int nc, fc, fo;
3122 sector_t stride, size;
3123 int err = -EINVAL;
3124
3125 if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) ||
3126 !is_power_of_2(mddev->new_chunk_sectors)) {
3127 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3128 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3129 mdname(mddev), PAGE_SIZE);
3130 goto out;
3131 }
3132
3133 nc = mddev->new_layout & 255;
3134 fc = (mddev->new_layout >> 8) & 255;
3135 fo = mddev->new_layout & (1<<16);
3136
3137 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
3138 (mddev->new_layout >> 17)) {
3139 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3140 mdname(mddev), mddev->new_layout);
3141 goto out;
3142 }
3143
3144 err = -ENOMEM;
3145 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3146 if (!conf)
3147 goto out;
3148
3149 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
3150 GFP_KERNEL);
3151 if (!conf->mirrors)
3152 goto out;
3153
3154 conf->tmppage = alloc_page(GFP_KERNEL);
3155 if (!conf->tmppage)
3156 goto out;
3157
3158
3159 conf->raid_disks = mddev->raid_disks;
3160 conf->near_copies = nc;
3161 conf->far_copies = fc;
3162 conf->copies = nc*fc;
3163 conf->far_offset = fo;
3164 conf->chunk_mask = mddev->new_chunk_sectors - 1;
3165 conf->chunk_shift = ffz(~mddev->new_chunk_sectors);
3166
3167 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3168 r10bio_pool_free, conf);
3169 if (!conf->r10bio_pool)
3170 goto out;
3171
3172 size = mddev->dev_sectors >> conf->chunk_shift;
3173 sector_div(size, fc);
3174 size = size * conf->raid_disks;
3175 sector_div(size, nc);
3176 /* 'size' is now the number of chunks in the array */
3177 /* calculate "used chunks per device" in 'stride' */
3178 stride = size * conf->copies;
3179
3180 /* We need to round up when dividing by raid_disks to
3181 * get the stride size.
3182 */
3183 stride += conf->raid_disks - 1;
3184 sector_div(stride, conf->raid_disks);
3185
3186 conf->dev_sectors = stride << conf->chunk_shift;
3187
3188 if (fo)
3189 stride = 1;
3190 else
3191 sector_div(stride, fc);
3192 conf->stride = stride << conf->chunk_shift;
3193
3194
3195 spin_lock_init(&conf->device_lock);
3196 INIT_LIST_HEAD(&conf->retry_list);
3197
3198 spin_lock_init(&conf->resync_lock);
3199 init_waitqueue_head(&conf->wait_barrier);
3200
3201 conf->thread = md_register_thread(raid10d, mddev, NULL);
3202 if (!conf->thread)
3203 goto out;
3204
3205 conf->mddev = mddev;
3206 return conf;
3207
3208 out:
3209 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3210 mdname(mddev));
3211 if (conf) {
3212 if (conf->r10bio_pool)
3213 mempool_destroy(conf->r10bio_pool);
3214 kfree(conf->mirrors);
3215 safe_put_page(conf->tmppage);
3216 kfree(conf);
3217 }
3218 return ERR_PTR(err);
3219 }
3220
3221 static int run(struct mddev *mddev)
3222 {
3223 struct r10conf *conf;
3224 int i, disk_idx, chunk_size;
3225 struct mirror_info *disk;
3226 struct md_rdev *rdev;
3227 sector_t size;
3228
3229 /*
3230 * copy the already verified devices into our private RAID10
3231 * bookkeeping area. [whatever we allocate in run(),
3232 * should be freed in stop()]
3233 */
3234
3235 if (mddev->private == NULL) {
3236 conf = setup_conf(mddev);
3237 if (IS_ERR(conf))
3238 return PTR_ERR(conf);
3239 mddev->private = conf;
3240 }
3241 conf = mddev->private;
3242 if (!conf)
3243 goto out;
3244
3245 mddev->thread = conf->thread;
3246 conf->thread = NULL;
3247
3248 chunk_size = mddev->chunk_sectors << 9;
3249 blk_queue_io_min(mddev->queue, chunk_size);
3250 if (conf->raid_disks % conf->near_copies)
3251 blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks);
3252 else
3253 blk_queue_io_opt(mddev->queue, chunk_size *
3254 (conf->raid_disks / conf->near_copies));
3255
3256 list_for_each_entry(rdev, &mddev->disks, same_set) {
3257
3258 disk_idx = rdev->raid_disk;
3259 if (disk_idx >= conf->raid_disks
3260 || disk_idx < 0)
3261 continue;
3262 disk = conf->mirrors + disk_idx;
3263
3264 if (test_bit(Replacement, &rdev->flags)) {
3265 if (disk->replacement)
3266 goto out_free_conf;
3267 disk->replacement = rdev;
3268 } else {
3269 if (disk->rdev)
3270 goto out_free_conf;
3271 disk->rdev = rdev;
3272 }
3273
3274 disk_stack_limits(mddev->gendisk, rdev->bdev,
3275 rdev->data_offset << 9);
3276 /* as we don't honour merge_bvec_fn, we must never risk
3277 * violating it, so limit max_segments to 1 lying
3278 * within a single page.
3279 */
3280 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
3281 blk_queue_max_segments(mddev->queue, 1);
3282 blk_queue_segment_boundary(mddev->queue,
3283 PAGE_CACHE_SIZE - 1);
3284 }
3285
3286 disk->head_position = 0;
3287 }
3288 /* need to check that every block has at least one working mirror */
3289 if (!enough(conf, -1)) {
3290 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3291 mdname(mddev));
3292 goto out_free_conf;
3293 }
3294
3295 mddev->degraded = 0;
3296 for (i = 0; i < conf->raid_disks; i++) {
3297
3298 disk = conf->mirrors + i;
3299
3300 if (!disk->rdev && disk->replacement) {
3301 /* The replacement is all we have - use it */
3302 disk->rdev = disk->replacement;
3303 disk->replacement = NULL;
3304 clear_bit(Replacement, &disk->rdev->flags);
3305 }
3306
3307 if (!disk->rdev ||
3308 !test_bit(In_sync, &disk->rdev->flags)) {
3309 disk->head_position = 0;
3310 mddev->degraded++;
3311 if (disk->rdev)
3312 conf->fullsync = 1;
3313 }
3314 disk->recovery_disabled = mddev->recovery_disabled - 1;
3315 }
3316
3317 if (mddev->recovery_cp != MaxSector)
3318 printk(KERN_NOTICE "md/raid10:%s: not clean"
3319 " -- starting background reconstruction\n",
3320 mdname(mddev));
3321 printk(KERN_INFO
3322 "md/raid10:%s: active with %d out of %d devices\n",
3323 mdname(mddev), conf->raid_disks - mddev->degraded,
3324 conf->raid_disks);
3325 /*
3326 * Ok, everything is just fine now
3327 */
3328 mddev->dev_sectors = conf->dev_sectors;
3329 size = raid10_size(mddev, 0, 0);
3330 md_set_array_sectors(mddev, size);
3331 mddev->resync_max_sectors = size;
3332
3333 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3334 mddev->queue->backing_dev_info.congested_data = mddev;
3335
3336 /* Calculate max read-ahead size.
3337 * We need to readahead at least twice a whole stripe....
3338 * maybe...
3339 */
3340 {
3341 int stripe = conf->raid_disks *
3342 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3343 stripe /= conf->near_copies;
3344 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
3345 mddev->queue->backing_dev_info.ra_pages = 2* stripe;
3346 }
3347
3348 if (conf->near_copies < conf->raid_disks)
3349 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3350
3351 if (md_integrity_register(mddev))
3352 goto out_free_conf;
3353
3354 return 0;
3355
3356 out_free_conf:
3357 md_unregister_thread(&mddev->thread);
3358 if (conf->r10bio_pool)
3359 mempool_destroy(conf->r10bio_pool);
3360 safe_put_page(conf->tmppage);
3361 kfree(conf->mirrors);
3362 kfree(conf);
3363 mddev->private = NULL;
3364 out:
3365 return -EIO;
3366 }
3367
3368 static int stop(struct mddev *mddev)
3369 {
3370 struct r10conf *conf = mddev->private;
3371
3372 raise_barrier(conf, 0);
3373 lower_barrier(conf);
3374
3375 md_unregister_thread(&mddev->thread);
3376 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
3377 if (conf->r10bio_pool)
3378 mempool_destroy(conf->r10bio_pool);
3379 kfree(conf->mirrors);
3380 kfree(conf);
3381 mddev->private = NULL;
3382 return 0;
3383 }
3384
3385 static void raid10_quiesce(struct mddev *mddev, int state)
3386 {
3387 struct r10conf *conf = mddev->private;
3388
3389 switch(state) {
3390 case 1:
3391 raise_barrier(conf, 0);
3392 break;
3393 case 0:
3394 lower_barrier(conf);
3395 break;
3396 }
3397 }
3398
3399 static void *raid10_takeover_raid0(struct mddev *mddev)
3400 {
3401 struct md_rdev *rdev;
3402 struct r10conf *conf;
3403
3404 if (mddev->degraded > 0) {
3405 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3406 mdname(mddev));
3407 return ERR_PTR(-EINVAL);
3408 }
3409
3410 /* Set new parameters */
3411 mddev->new_level = 10;
3412 /* new layout: far_copies = 1, near_copies = 2 */
3413 mddev->new_layout = (1<<8) + 2;
3414 mddev->new_chunk_sectors = mddev->chunk_sectors;
3415 mddev->delta_disks = mddev->raid_disks;
3416 mddev->raid_disks *= 2;
3417 /* make sure it will be not marked as dirty */
3418 mddev->recovery_cp = MaxSector;
3419
3420 conf = setup_conf(mddev);
3421 if (!IS_ERR(conf)) {
3422 list_for_each_entry(rdev, &mddev->disks, same_set)
3423 if (rdev->raid_disk >= 0)
3424 rdev->new_raid_disk = rdev->raid_disk * 2;
3425 conf->barrier = 1;
3426 }
3427
3428 return conf;
3429 }
3430
3431 static void *raid10_takeover(struct mddev *mddev)
3432 {
3433 struct r0conf *raid0_conf;
3434
3435 /* raid10 can take over:
3436 * raid0 - providing it has only two drives
3437 */
3438 if (mddev->level == 0) {
3439 /* for raid0 takeover only one zone is supported */
3440 raid0_conf = mddev->private;
3441 if (raid0_conf->nr_strip_zones > 1) {
3442 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3443 " with more than one zone.\n",
3444 mdname(mddev));
3445 return ERR_PTR(-EINVAL);
3446 }
3447 return raid10_takeover_raid0(mddev);
3448 }
3449 return ERR_PTR(-EINVAL);
3450 }
3451
3452 static struct md_personality raid10_personality =
3453 {
3454 .name = "raid10",
3455 .level = 10,
3456 .owner = THIS_MODULE,
3457 .make_request = make_request,
3458 .run = run,
3459 .stop = stop,
3460 .status = status,
3461 .error_handler = error,
3462 .hot_add_disk = raid10_add_disk,
3463 .hot_remove_disk= raid10_remove_disk,
3464 .spare_active = raid10_spare_active,
3465 .sync_request = sync_request,
3466 .quiesce = raid10_quiesce,
3467 .size = raid10_size,
3468 .takeover = raid10_takeover,
3469 };
3470
3471 static int __init raid_init(void)
3472 {
3473 return register_md_personality(&raid10_personality);
3474 }
3475
3476 static void raid_exit(void)
3477 {
3478 unregister_md_personality(&raid10_personality);
3479 }
3480
3481 module_init(raid_init);
3482 module_exit(raid_exit);
3483 MODULE_LICENSE("GPL");
3484 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
3485 MODULE_ALIAS("md-personality-9"); /* RAID10 */
3486 MODULE_ALIAS("md-raid10");
3487 MODULE_ALIAS("md-level-10");
3488
3489 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
This page took 0.113391 seconds and 5 git commands to generate.