Merge tag 'armsoc-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm...
[deliverable/linux.git] / drivers / md / raid10.c
1 /*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
8 * Base on code in raid1.c. See raid1.c for further copyright information.
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include "md.h"
29 #include "raid10.h"
30 #include "raid0.h"
31 #include "bitmap.h"
32
33 /*
34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
35 * The layout of data is defined by
36 * chunk_size
37 * raid_disks
38 * near_copies (stored in low byte of layout)
39 * far_copies (stored in second byte of layout)
40 * far_offset (stored in bit 16 of layout )
41 * use_far_sets (stored in bit 17 of layout )
42 *
43 * The data to be stored is divided into chunks using chunksize. Each device
44 * is divided into far_copies sections. In each section, chunks are laid out
45 * in a style similar to raid0, but near_copies copies of each chunk is stored
46 * (each on a different drive). The starting device for each section is offset
47 * near_copies from the starting device of the previous section. Thus there
48 * are (near_copies * far_copies) of each chunk, and each is on a different
49 * drive. near_copies and far_copies must be at least one, and their product
50 * is at most raid_disks.
51 *
52 * If far_offset is true, then the far_copies are handled a bit differently.
53 * The copies are still in different stripes, but instead of being very far
54 * apart on disk, there are adjacent stripes.
55 *
56 * The far and offset algorithms are handled slightly differently if
57 * 'use_far_sets' is true. In this case, the array's devices are grouped into
58 * sets that are (near_copies * far_copies) in size. The far copied stripes
59 * are still shifted by 'near_copies' devices, but this shifting stays confined
60 * to the set rather than the entire array. This is done to improve the number
61 * of device combinations that can fail without causing the array to fail.
62 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
63 * on a device):
64 * A B C D A B C D E
65 * ... ...
66 * D A B C E A B C D
67 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
68 * [A B] [C D] [A B] [C D E]
69 * |...| |...| |...| | ... |
70 * [B A] [D C] [B A] [E C D]
71 */
72
73 /*
74 * Number of guaranteed r10bios in case of extreme VM load:
75 */
76 #define NR_RAID10_BIOS 256
77
78 /* when we get a read error on a read-only array, we redirect to another
79 * device without failing the first device, or trying to over-write to
80 * correct the read error. To keep track of bad blocks on a per-bio
81 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
82 */
83 #define IO_BLOCKED ((struct bio *)1)
84 /* When we successfully write to a known bad-block, we need to remove the
85 * bad-block marking which must be done from process context. So we record
86 * the success by setting devs[n].bio to IO_MADE_GOOD
87 */
88 #define IO_MADE_GOOD ((struct bio *)2)
89
90 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
91
92 /* When there are this many requests queued to be written by
93 * the raid10 thread, we become 'congested' to provide back-pressure
94 * for writeback.
95 */
96 static int max_queued_requests = 1024;
97
98 static void allow_barrier(struct r10conf *conf);
99 static void lower_barrier(struct r10conf *conf);
100 static int _enough(struct r10conf *conf, int previous, int ignore);
101 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
102 int *skipped);
103 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
104 static void end_reshape_write(struct bio *bio, int error);
105 static void end_reshape(struct r10conf *conf);
106
107 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
108 {
109 struct r10conf *conf = data;
110 int size = offsetof(struct r10bio, devs[conf->copies]);
111
112 /* allocate a r10bio with room for raid_disks entries in the
113 * bios array */
114 return kzalloc(size, gfp_flags);
115 }
116
117 static void r10bio_pool_free(void *r10_bio, void *data)
118 {
119 kfree(r10_bio);
120 }
121
122 /* Maximum size of each resync request */
123 #define RESYNC_BLOCK_SIZE (64*1024)
124 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
125 /* amount of memory to reserve for resync requests */
126 #define RESYNC_WINDOW (1024*1024)
127 /* maximum number of concurrent requests, memory permitting */
128 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
129
130 /*
131 * When performing a resync, we need to read and compare, so
132 * we need as many pages are there are copies.
133 * When performing a recovery, we need 2 bios, one for read,
134 * one for write (we recover only one drive per r10buf)
135 *
136 */
137 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
138 {
139 struct r10conf *conf = data;
140 struct page *page;
141 struct r10bio *r10_bio;
142 struct bio *bio;
143 int i, j;
144 int nalloc;
145
146 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
147 if (!r10_bio)
148 return NULL;
149
150 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
151 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
152 nalloc = conf->copies; /* resync */
153 else
154 nalloc = 2; /* recovery */
155
156 /*
157 * Allocate bios.
158 */
159 for (j = nalloc ; j-- ; ) {
160 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
161 if (!bio)
162 goto out_free_bio;
163 r10_bio->devs[j].bio = bio;
164 if (!conf->have_replacement)
165 continue;
166 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
167 if (!bio)
168 goto out_free_bio;
169 r10_bio->devs[j].repl_bio = bio;
170 }
171 /*
172 * Allocate RESYNC_PAGES data pages and attach them
173 * where needed.
174 */
175 for (j = 0 ; j < nalloc; j++) {
176 struct bio *rbio = r10_bio->devs[j].repl_bio;
177 bio = r10_bio->devs[j].bio;
178 for (i = 0; i < RESYNC_PAGES; i++) {
179 if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
180 &conf->mddev->recovery)) {
181 /* we can share bv_page's during recovery
182 * and reshape */
183 struct bio *rbio = r10_bio->devs[0].bio;
184 page = rbio->bi_io_vec[i].bv_page;
185 get_page(page);
186 } else
187 page = alloc_page(gfp_flags);
188 if (unlikely(!page))
189 goto out_free_pages;
190
191 bio->bi_io_vec[i].bv_page = page;
192 if (rbio)
193 rbio->bi_io_vec[i].bv_page = page;
194 }
195 }
196
197 return r10_bio;
198
199 out_free_pages:
200 for ( ; i > 0 ; i--)
201 safe_put_page(bio->bi_io_vec[i-1].bv_page);
202 while (j--)
203 for (i = 0; i < RESYNC_PAGES ; i++)
204 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
205 j = 0;
206 out_free_bio:
207 for ( ; j < nalloc; j++) {
208 if (r10_bio->devs[j].bio)
209 bio_put(r10_bio->devs[j].bio);
210 if (r10_bio->devs[j].repl_bio)
211 bio_put(r10_bio->devs[j].repl_bio);
212 }
213 r10bio_pool_free(r10_bio, conf);
214 return NULL;
215 }
216
217 static void r10buf_pool_free(void *__r10_bio, void *data)
218 {
219 int i;
220 struct r10conf *conf = data;
221 struct r10bio *r10bio = __r10_bio;
222 int j;
223
224 for (j=0; j < conf->copies; j++) {
225 struct bio *bio = r10bio->devs[j].bio;
226 if (bio) {
227 for (i = 0; i < RESYNC_PAGES; i++) {
228 safe_put_page(bio->bi_io_vec[i].bv_page);
229 bio->bi_io_vec[i].bv_page = NULL;
230 }
231 bio_put(bio);
232 }
233 bio = r10bio->devs[j].repl_bio;
234 if (bio)
235 bio_put(bio);
236 }
237 r10bio_pool_free(r10bio, conf);
238 }
239
240 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
241 {
242 int i;
243
244 for (i = 0; i < conf->copies; i++) {
245 struct bio **bio = & r10_bio->devs[i].bio;
246 if (!BIO_SPECIAL(*bio))
247 bio_put(*bio);
248 *bio = NULL;
249 bio = &r10_bio->devs[i].repl_bio;
250 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
251 bio_put(*bio);
252 *bio = NULL;
253 }
254 }
255
256 static void free_r10bio(struct r10bio *r10_bio)
257 {
258 struct r10conf *conf = r10_bio->mddev->private;
259
260 put_all_bios(conf, r10_bio);
261 mempool_free(r10_bio, conf->r10bio_pool);
262 }
263
264 static void put_buf(struct r10bio *r10_bio)
265 {
266 struct r10conf *conf = r10_bio->mddev->private;
267
268 mempool_free(r10_bio, conf->r10buf_pool);
269
270 lower_barrier(conf);
271 }
272
273 static void reschedule_retry(struct r10bio *r10_bio)
274 {
275 unsigned long flags;
276 struct mddev *mddev = r10_bio->mddev;
277 struct r10conf *conf = mddev->private;
278
279 spin_lock_irqsave(&conf->device_lock, flags);
280 list_add(&r10_bio->retry_list, &conf->retry_list);
281 conf->nr_queued ++;
282 spin_unlock_irqrestore(&conf->device_lock, flags);
283
284 /* wake up frozen array... */
285 wake_up(&conf->wait_barrier);
286
287 md_wakeup_thread(mddev->thread);
288 }
289
290 /*
291 * raid_end_bio_io() is called when we have finished servicing a mirrored
292 * operation and are ready to return a success/failure code to the buffer
293 * cache layer.
294 */
295 static void raid_end_bio_io(struct r10bio *r10_bio)
296 {
297 struct bio *bio = r10_bio->master_bio;
298 int done;
299 struct r10conf *conf = r10_bio->mddev->private;
300
301 if (bio->bi_phys_segments) {
302 unsigned long flags;
303 spin_lock_irqsave(&conf->device_lock, flags);
304 bio->bi_phys_segments--;
305 done = (bio->bi_phys_segments == 0);
306 spin_unlock_irqrestore(&conf->device_lock, flags);
307 } else
308 done = 1;
309 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
310 clear_bit(BIO_UPTODATE, &bio->bi_flags);
311 if (done) {
312 bio_endio(bio, 0);
313 /*
314 * Wake up any possible resync thread that waits for the device
315 * to go idle.
316 */
317 allow_barrier(conf);
318 }
319 free_r10bio(r10_bio);
320 }
321
322 /*
323 * Update disk head position estimator based on IRQ completion info.
324 */
325 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
326 {
327 struct r10conf *conf = r10_bio->mddev->private;
328
329 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
330 r10_bio->devs[slot].addr + (r10_bio->sectors);
331 }
332
333 /*
334 * Find the disk number which triggered given bio
335 */
336 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
337 struct bio *bio, int *slotp, int *replp)
338 {
339 int slot;
340 int repl = 0;
341
342 for (slot = 0; slot < conf->copies; slot++) {
343 if (r10_bio->devs[slot].bio == bio)
344 break;
345 if (r10_bio->devs[slot].repl_bio == bio) {
346 repl = 1;
347 break;
348 }
349 }
350
351 BUG_ON(slot == conf->copies);
352 update_head_pos(slot, r10_bio);
353
354 if (slotp)
355 *slotp = slot;
356 if (replp)
357 *replp = repl;
358 return r10_bio->devs[slot].devnum;
359 }
360
361 static void raid10_end_read_request(struct bio *bio, int error)
362 {
363 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
364 struct r10bio *r10_bio = bio->bi_private;
365 int slot, dev;
366 struct md_rdev *rdev;
367 struct r10conf *conf = r10_bio->mddev->private;
368
369 slot = r10_bio->read_slot;
370 dev = r10_bio->devs[slot].devnum;
371 rdev = r10_bio->devs[slot].rdev;
372 /*
373 * this branch is our 'one mirror IO has finished' event handler:
374 */
375 update_head_pos(slot, r10_bio);
376
377 if (uptodate) {
378 /*
379 * Set R10BIO_Uptodate in our master bio, so that
380 * we will return a good error code to the higher
381 * levels even if IO on some other mirrored buffer fails.
382 *
383 * The 'master' represents the composite IO operation to
384 * user-side. So if something waits for IO, then it will
385 * wait for the 'master' bio.
386 */
387 set_bit(R10BIO_Uptodate, &r10_bio->state);
388 } else {
389 /* If all other devices that store this block have
390 * failed, we want to return the error upwards rather
391 * than fail the last device. Here we redefine
392 * "uptodate" to mean "Don't want to retry"
393 */
394 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
395 rdev->raid_disk))
396 uptodate = 1;
397 }
398 if (uptodate) {
399 raid_end_bio_io(r10_bio);
400 rdev_dec_pending(rdev, conf->mddev);
401 } else {
402 /*
403 * oops, read error - keep the refcount on the rdev
404 */
405 char b[BDEVNAME_SIZE];
406 printk_ratelimited(KERN_ERR
407 "md/raid10:%s: %s: rescheduling sector %llu\n",
408 mdname(conf->mddev),
409 bdevname(rdev->bdev, b),
410 (unsigned long long)r10_bio->sector);
411 set_bit(R10BIO_ReadError, &r10_bio->state);
412 reschedule_retry(r10_bio);
413 }
414 }
415
416 static void close_write(struct r10bio *r10_bio)
417 {
418 /* clear the bitmap if all writes complete successfully */
419 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
420 r10_bio->sectors,
421 !test_bit(R10BIO_Degraded, &r10_bio->state),
422 0);
423 md_write_end(r10_bio->mddev);
424 }
425
426 static void one_write_done(struct r10bio *r10_bio)
427 {
428 if (atomic_dec_and_test(&r10_bio->remaining)) {
429 if (test_bit(R10BIO_WriteError, &r10_bio->state))
430 reschedule_retry(r10_bio);
431 else {
432 close_write(r10_bio);
433 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
434 reschedule_retry(r10_bio);
435 else
436 raid_end_bio_io(r10_bio);
437 }
438 }
439 }
440
441 static void raid10_end_write_request(struct bio *bio, int error)
442 {
443 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
444 struct r10bio *r10_bio = bio->bi_private;
445 int dev;
446 int dec_rdev = 1;
447 struct r10conf *conf = r10_bio->mddev->private;
448 int slot, repl;
449 struct md_rdev *rdev = NULL;
450
451 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
452
453 if (repl)
454 rdev = conf->mirrors[dev].replacement;
455 if (!rdev) {
456 smp_rmb();
457 repl = 0;
458 rdev = conf->mirrors[dev].rdev;
459 }
460 /*
461 * this branch is our 'one mirror IO has finished' event handler:
462 */
463 if (!uptodate) {
464 if (repl)
465 /* Never record new bad blocks to replacement,
466 * just fail it.
467 */
468 md_error(rdev->mddev, rdev);
469 else {
470 set_bit(WriteErrorSeen, &rdev->flags);
471 if (!test_and_set_bit(WantReplacement, &rdev->flags))
472 set_bit(MD_RECOVERY_NEEDED,
473 &rdev->mddev->recovery);
474 set_bit(R10BIO_WriteError, &r10_bio->state);
475 dec_rdev = 0;
476 }
477 } else {
478 /*
479 * Set R10BIO_Uptodate in our master bio, so that
480 * we will return a good error code for to the higher
481 * levels even if IO on some other mirrored buffer fails.
482 *
483 * The 'master' represents the composite IO operation to
484 * user-side. So if something waits for IO, then it will
485 * wait for the 'master' bio.
486 */
487 sector_t first_bad;
488 int bad_sectors;
489
490 /*
491 * Do not set R10BIO_Uptodate if the current device is
492 * rebuilding or Faulty. This is because we cannot use
493 * such device for properly reading the data back (we could
494 * potentially use it, if the current write would have felt
495 * before rdev->recovery_offset, but for simplicity we don't
496 * check this here.
497 */
498 if (test_bit(In_sync, &rdev->flags) &&
499 !test_bit(Faulty, &rdev->flags))
500 set_bit(R10BIO_Uptodate, &r10_bio->state);
501
502 /* Maybe we can clear some bad blocks. */
503 if (is_badblock(rdev,
504 r10_bio->devs[slot].addr,
505 r10_bio->sectors,
506 &first_bad, &bad_sectors)) {
507 bio_put(bio);
508 if (repl)
509 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
510 else
511 r10_bio->devs[slot].bio = IO_MADE_GOOD;
512 dec_rdev = 0;
513 set_bit(R10BIO_MadeGood, &r10_bio->state);
514 }
515 }
516
517 /*
518 *
519 * Let's see if all mirrored write operations have finished
520 * already.
521 */
522 one_write_done(r10_bio);
523 if (dec_rdev)
524 rdev_dec_pending(rdev, conf->mddev);
525 }
526
527 /*
528 * RAID10 layout manager
529 * As well as the chunksize and raid_disks count, there are two
530 * parameters: near_copies and far_copies.
531 * near_copies * far_copies must be <= raid_disks.
532 * Normally one of these will be 1.
533 * If both are 1, we get raid0.
534 * If near_copies == raid_disks, we get raid1.
535 *
536 * Chunks are laid out in raid0 style with near_copies copies of the
537 * first chunk, followed by near_copies copies of the next chunk and
538 * so on.
539 * If far_copies > 1, then after 1/far_copies of the array has been assigned
540 * as described above, we start again with a device offset of near_copies.
541 * So we effectively have another copy of the whole array further down all
542 * the drives, but with blocks on different drives.
543 * With this layout, and block is never stored twice on the one device.
544 *
545 * raid10_find_phys finds the sector offset of a given virtual sector
546 * on each device that it is on.
547 *
548 * raid10_find_virt does the reverse mapping, from a device and a
549 * sector offset to a virtual address
550 */
551
552 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
553 {
554 int n,f;
555 sector_t sector;
556 sector_t chunk;
557 sector_t stripe;
558 int dev;
559 int slot = 0;
560 int last_far_set_start, last_far_set_size;
561
562 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
563 last_far_set_start *= geo->far_set_size;
564
565 last_far_set_size = geo->far_set_size;
566 last_far_set_size += (geo->raid_disks % geo->far_set_size);
567
568 /* now calculate first sector/dev */
569 chunk = r10bio->sector >> geo->chunk_shift;
570 sector = r10bio->sector & geo->chunk_mask;
571
572 chunk *= geo->near_copies;
573 stripe = chunk;
574 dev = sector_div(stripe, geo->raid_disks);
575 if (geo->far_offset)
576 stripe *= geo->far_copies;
577
578 sector += stripe << geo->chunk_shift;
579
580 /* and calculate all the others */
581 for (n = 0; n < geo->near_copies; n++) {
582 int d = dev;
583 int set;
584 sector_t s = sector;
585 r10bio->devs[slot].devnum = d;
586 r10bio->devs[slot].addr = s;
587 slot++;
588
589 for (f = 1; f < geo->far_copies; f++) {
590 set = d / geo->far_set_size;
591 d += geo->near_copies;
592
593 if ((geo->raid_disks % geo->far_set_size) &&
594 (d > last_far_set_start)) {
595 d -= last_far_set_start;
596 d %= last_far_set_size;
597 d += last_far_set_start;
598 } else {
599 d %= geo->far_set_size;
600 d += geo->far_set_size * set;
601 }
602 s += geo->stride;
603 r10bio->devs[slot].devnum = d;
604 r10bio->devs[slot].addr = s;
605 slot++;
606 }
607 dev++;
608 if (dev >= geo->raid_disks) {
609 dev = 0;
610 sector += (geo->chunk_mask + 1);
611 }
612 }
613 }
614
615 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
616 {
617 struct geom *geo = &conf->geo;
618
619 if (conf->reshape_progress != MaxSector &&
620 ((r10bio->sector >= conf->reshape_progress) !=
621 conf->mddev->reshape_backwards)) {
622 set_bit(R10BIO_Previous, &r10bio->state);
623 geo = &conf->prev;
624 } else
625 clear_bit(R10BIO_Previous, &r10bio->state);
626
627 __raid10_find_phys(geo, r10bio);
628 }
629
630 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
631 {
632 sector_t offset, chunk, vchunk;
633 /* Never use conf->prev as this is only called during resync
634 * or recovery, so reshape isn't happening
635 */
636 struct geom *geo = &conf->geo;
637 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
638 int far_set_size = geo->far_set_size;
639 int last_far_set_start;
640
641 if (geo->raid_disks % geo->far_set_size) {
642 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
643 last_far_set_start *= geo->far_set_size;
644
645 if (dev >= last_far_set_start) {
646 far_set_size = geo->far_set_size;
647 far_set_size += (geo->raid_disks % geo->far_set_size);
648 far_set_start = last_far_set_start;
649 }
650 }
651
652 offset = sector & geo->chunk_mask;
653 if (geo->far_offset) {
654 int fc;
655 chunk = sector >> geo->chunk_shift;
656 fc = sector_div(chunk, geo->far_copies);
657 dev -= fc * geo->near_copies;
658 if (dev < far_set_start)
659 dev += far_set_size;
660 } else {
661 while (sector >= geo->stride) {
662 sector -= geo->stride;
663 if (dev < (geo->near_copies + far_set_start))
664 dev += far_set_size - geo->near_copies;
665 else
666 dev -= geo->near_copies;
667 }
668 chunk = sector >> geo->chunk_shift;
669 }
670 vchunk = chunk * geo->raid_disks + dev;
671 sector_div(vchunk, geo->near_copies);
672 return (vchunk << geo->chunk_shift) + offset;
673 }
674
675 /**
676 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
677 * @mddev: the md device
678 * @bvm: properties of new bio
679 * @biovec: the request that could be merged to it.
680 *
681 * Return amount of bytes we can accept at this offset
682 * This requires checking for end-of-chunk if near_copies != raid_disks,
683 * and for subordinate merge_bvec_fns if merge_check_needed.
684 */
685 static int raid10_mergeable_bvec(struct mddev *mddev,
686 struct bvec_merge_data *bvm,
687 struct bio_vec *biovec)
688 {
689 struct r10conf *conf = mddev->private;
690 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
691 int max;
692 unsigned int chunk_sectors;
693 unsigned int bio_sectors = bvm->bi_size >> 9;
694 struct geom *geo = &conf->geo;
695
696 chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
697 if (conf->reshape_progress != MaxSector &&
698 ((sector >= conf->reshape_progress) !=
699 conf->mddev->reshape_backwards))
700 geo = &conf->prev;
701
702 if (geo->near_copies < geo->raid_disks) {
703 max = (chunk_sectors - ((sector & (chunk_sectors - 1))
704 + bio_sectors)) << 9;
705 if (max < 0)
706 /* bio_add cannot handle a negative return */
707 max = 0;
708 if (max <= biovec->bv_len && bio_sectors == 0)
709 return biovec->bv_len;
710 } else
711 max = biovec->bv_len;
712
713 if (mddev->merge_check_needed) {
714 struct {
715 struct r10bio r10_bio;
716 struct r10dev devs[conf->copies];
717 } on_stack;
718 struct r10bio *r10_bio = &on_stack.r10_bio;
719 int s;
720 if (conf->reshape_progress != MaxSector) {
721 /* Cannot give any guidance during reshape */
722 if (max <= biovec->bv_len && bio_sectors == 0)
723 return biovec->bv_len;
724 return 0;
725 }
726 r10_bio->sector = sector;
727 raid10_find_phys(conf, r10_bio);
728 rcu_read_lock();
729 for (s = 0; s < conf->copies; s++) {
730 int disk = r10_bio->devs[s].devnum;
731 struct md_rdev *rdev = rcu_dereference(
732 conf->mirrors[disk].rdev);
733 if (rdev && !test_bit(Faulty, &rdev->flags)) {
734 struct request_queue *q =
735 bdev_get_queue(rdev->bdev);
736 if (q->merge_bvec_fn) {
737 bvm->bi_sector = r10_bio->devs[s].addr
738 + rdev->data_offset;
739 bvm->bi_bdev = rdev->bdev;
740 max = min(max, q->merge_bvec_fn(
741 q, bvm, biovec));
742 }
743 }
744 rdev = rcu_dereference(conf->mirrors[disk].replacement);
745 if (rdev && !test_bit(Faulty, &rdev->flags)) {
746 struct request_queue *q =
747 bdev_get_queue(rdev->bdev);
748 if (q->merge_bvec_fn) {
749 bvm->bi_sector = r10_bio->devs[s].addr
750 + rdev->data_offset;
751 bvm->bi_bdev = rdev->bdev;
752 max = min(max, q->merge_bvec_fn(
753 q, bvm, biovec));
754 }
755 }
756 }
757 rcu_read_unlock();
758 }
759 return max;
760 }
761
762 /*
763 * This routine returns the disk from which the requested read should
764 * be done. There is a per-array 'next expected sequential IO' sector
765 * number - if this matches on the next IO then we use the last disk.
766 * There is also a per-disk 'last know head position' sector that is
767 * maintained from IRQ contexts, both the normal and the resync IO
768 * completion handlers update this position correctly. If there is no
769 * perfect sequential match then we pick the disk whose head is closest.
770 *
771 * If there are 2 mirrors in the same 2 devices, performance degrades
772 * because position is mirror, not device based.
773 *
774 * The rdev for the device selected will have nr_pending incremented.
775 */
776
777 /*
778 * FIXME: possibly should rethink readbalancing and do it differently
779 * depending on near_copies / far_copies geometry.
780 */
781 static struct md_rdev *read_balance(struct r10conf *conf,
782 struct r10bio *r10_bio,
783 int *max_sectors)
784 {
785 const sector_t this_sector = r10_bio->sector;
786 int disk, slot;
787 int sectors = r10_bio->sectors;
788 int best_good_sectors;
789 sector_t new_distance, best_dist;
790 struct md_rdev *best_rdev, *rdev = NULL;
791 int do_balance;
792 int best_slot;
793 struct geom *geo = &conf->geo;
794
795 raid10_find_phys(conf, r10_bio);
796 rcu_read_lock();
797 retry:
798 sectors = r10_bio->sectors;
799 best_slot = -1;
800 best_rdev = NULL;
801 best_dist = MaxSector;
802 best_good_sectors = 0;
803 do_balance = 1;
804 /*
805 * Check if we can balance. We can balance on the whole
806 * device if no resync is going on (recovery is ok), or below
807 * the resync window. We take the first readable disk when
808 * above the resync window.
809 */
810 if (conf->mddev->recovery_cp < MaxSector
811 && (this_sector + sectors >= conf->next_resync))
812 do_balance = 0;
813
814 for (slot = 0; slot < conf->copies ; slot++) {
815 sector_t first_bad;
816 int bad_sectors;
817 sector_t dev_sector;
818
819 if (r10_bio->devs[slot].bio == IO_BLOCKED)
820 continue;
821 disk = r10_bio->devs[slot].devnum;
822 rdev = rcu_dereference(conf->mirrors[disk].replacement);
823 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
824 test_bit(Unmerged, &rdev->flags) ||
825 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
826 rdev = rcu_dereference(conf->mirrors[disk].rdev);
827 if (rdev == NULL ||
828 test_bit(Faulty, &rdev->flags) ||
829 test_bit(Unmerged, &rdev->flags))
830 continue;
831 if (!test_bit(In_sync, &rdev->flags) &&
832 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
833 continue;
834
835 dev_sector = r10_bio->devs[slot].addr;
836 if (is_badblock(rdev, dev_sector, sectors,
837 &first_bad, &bad_sectors)) {
838 if (best_dist < MaxSector)
839 /* Already have a better slot */
840 continue;
841 if (first_bad <= dev_sector) {
842 /* Cannot read here. If this is the
843 * 'primary' device, then we must not read
844 * beyond 'bad_sectors' from another device.
845 */
846 bad_sectors -= (dev_sector - first_bad);
847 if (!do_balance && sectors > bad_sectors)
848 sectors = bad_sectors;
849 if (best_good_sectors > sectors)
850 best_good_sectors = sectors;
851 } else {
852 sector_t good_sectors =
853 first_bad - dev_sector;
854 if (good_sectors > best_good_sectors) {
855 best_good_sectors = good_sectors;
856 best_slot = slot;
857 best_rdev = rdev;
858 }
859 if (!do_balance)
860 /* Must read from here */
861 break;
862 }
863 continue;
864 } else
865 best_good_sectors = sectors;
866
867 if (!do_balance)
868 break;
869
870 /* This optimisation is debatable, and completely destroys
871 * sequential read speed for 'far copies' arrays. So only
872 * keep it for 'near' arrays, and review those later.
873 */
874 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
875 break;
876
877 /* for far > 1 always use the lowest address */
878 if (geo->far_copies > 1)
879 new_distance = r10_bio->devs[slot].addr;
880 else
881 new_distance = abs(r10_bio->devs[slot].addr -
882 conf->mirrors[disk].head_position);
883 if (new_distance < best_dist) {
884 best_dist = new_distance;
885 best_slot = slot;
886 best_rdev = rdev;
887 }
888 }
889 if (slot >= conf->copies) {
890 slot = best_slot;
891 rdev = best_rdev;
892 }
893
894 if (slot >= 0) {
895 atomic_inc(&rdev->nr_pending);
896 if (test_bit(Faulty, &rdev->flags)) {
897 /* Cannot risk returning a device that failed
898 * before we inc'ed nr_pending
899 */
900 rdev_dec_pending(rdev, conf->mddev);
901 goto retry;
902 }
903 r10_bio->read_slot = slot;
904 } else
905 rdev = NULL;
906 rcu_read_unlock();
907 *max_sectors = best_good_sectors;
908
909 return rdev;
910 }
911
912 static int raid10_congested(struct mddev *mddev, int bits)
913 {
914 struct r10conf *conf = mddev->private;
915 int i, ret = 0;
916
917 if ((bits & (1 << WB_async_congested)) &&
918 conf->pending_count >= max_queued_requests)
919 return 1;
920
921 rcu_read_lock();
922 for (i = 0;
923 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
924 && ret == 0;
925 i++) {
926 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
927 if (rdev && !test_bit(Faulty, &rdev->flags)) {
928 struct request_queue *q = bdev_get_queue(rdev->bdev);
929
930 ret |= bdi_congested(&q->backing_dev_info, bits);
931 }
932 }
933 rcu_read_unlock();
934 return ret;
935 }
936
937 static void flush_pending_writes(struct r10conf *conf)
938 {
939 /* Any writes that have been queued but are awaiting
940 * bitmap updates get flushed here.
941 */
942 spin_lock_irq(&conf->device_lock);
943
944 if (conf->pending_bio_list.head) {
945 struct bio *bio;
946 bio = bio_list_get(&conf->pending_bio_list);
947 conf->pending_count = 0;
948 spin_unlock_irq(&conf->device_lock);
949 /* flush any pending bitmap writes to disk
950 * before proceeding w/ I/O */
951 bitmap_unplug(conf->mddev->bitmap);
952 wake_up(&conf->wait_barrier);
953
954 while (bio) { /* submit pending writes */
955 struct bio *next = bio->bi_next;
956 bio->bi_next = NULL;
957 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
958 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
959 /* Just ignore it */
960 bio_endio(bio, 0);
961 else
962 generic_make_request(bio);
963 bio = next;
964 }
965 } else
966 spin_unlock_irq(&conf->device_lock);
967 }
968
969 /* Barriers....
970 * Sometimes we need to suspend IO while we do something else,
971 * either some resync/recovery, or reconfigure the array.
972 * To do this we raise a 'barrier'.
973 * The 'barrier' is a counter that can be raised multiple times
974 * to count how many activities are happening which preclude
975 * normal IO.
976 * We can only raise the barrier if there is no pending IO.
977 * i.e. if nr_pending == 0.
978 * We choose only to raise the barrier if no-one is waiting for the
979 * barrier to go down. This means that as soon as an IO request
980 * is ready, no other operations which require a barrier will start
981 * until the IO request has had a chance.
982 *
983 * So: regular IO calls 'wait_barrier'. When that returns there
984 * is no backgroup IO happening, It must arrange to call
985 * allow_barrier when it has finished its IO.
986 * backgroup IO calls must call raise_barrier. Once that returns
987 * there is no normal IO happeing. It must arrange to call
988 * lower_barrier when the particular background IO completes.
989 */
990
991 static void raise_barrier(struct r10conf *conf, int force)
992 {
993 BUG_ON(force && !conf->barrier);
994 spin_lock_irq(&conf->resync_lock);
995
996 /* Wait until no block IO is waiting (unless 'force') */
997 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
998 conf->resync_lock);
999
1000 /* block any new IO from starting */
1001 conf->barrier++;
1002
1003 /* Now wait for all pending IO to complete */
1004 wait_event_lock_irq(conf->wait_barrier,
1005 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
1006 conf->resync_lock);
1007
1008 spin_unlock_irq(&conf->resync_lock);
1009 }
1010
1011 static void lower_barrier(struct r10conf *conf)
1012 {
1013 unsigned long flags;
1014 spin_lock_irqsave(&conf->resync_lock, flags);
1015 conf->barrier--;
1016 spin_unlock_irqrestore(&conf->resync_lock, flags);
1017 wake_up(&conf->wait_barrier);
1018 }
1019
1020 static void wait_barrier(struct r10conf *conf)
1021 {
1022 spin_lock_irq(&conf->resync_lock);
1023 if (conf->barrier) {
1024 conf->nr_waiting++;
1025 /* Wait for the barrier to drop.
1026 * However if there are already pending
1027 * requests (preventing the barrier from
1028 * rising completely), and the
1029 * pre-process bio queue isn't empty,
1030 * then don't wait, as we need to empty
1031 * that queue to get the nr_pending
1032 * count down.
1033 */
1034 wait_event_lock_irq(conf->wait_barrier,
1035 !conf->barrier ||
1036 (conf->nr_pending &&
1037 current->bio_list &&
1038 !bio_list_empty(current->bio_list)),
1039 conf->resync_lock);
1040 conf->nr_waiting--;
1041 }
1042 conf->nr_pending++;
1043 spin_unlock_irq(&conf->resync_lock);
1044 }
1045
1046 static void allow_barrier(struct r10conf *conf)
1047 {
1048 unsigned long flags;
1049 spin_lock_irqsave(&conf->resync_lock, flags);
1050 conf->nr_pending--;
1051 spin_unlock_irqrestore(&conf->resync_lock, flags);
1052 wake_up(&conf->wait_barrier);
1053 }
1054
1055 static void freeze_array(struct r10conf *conf, int extra)
1056 {
1057 /* stop syncio and normal IO and wait for everything to
1058 * go quiet.
1059 * We increment barrier and nr_waiting, and then
1060 * wait until nr_pending match nr_queued+extra
1061 * This is called in the context of one normal IO request
1062 * that has failed. Thus any sync request that might be pending
1063 * will be blocked by nr_pending, and we need to wait for
1064 * pending IO requests to complete or be queued for re-try.
1065 * Thus the number queued (nr_queued) plus this request (extra)
1066 * must match the number of pending IOs (nr_pending) before
1067 * we continue.
1068 */
1069 spin_lock_irq(&conf->resync_lock);
1070 conf->barrier++;
1071 conf->nr_waiting++;
1072 wait_event_lock_irq_cmd(conf->wait_barrier,
1073 conf->nr_pending == conf->nr_queued+extra,
1074 conf->resync_lock,
1075 flush_pending_writes(conf));
1076
1077 spin_unlock_irq(&conf->resync_lock);
1078 }
1079
1080 static void unfreeze_array(struct r10conf *conf)
1081 {
1082 /* reverse the effect of the freeze */
1083 spin_lock_irq(&conf->resync_lock);
1084 conf->barrier--;
1085 conf->nr_waiting--;
1086 wake_up(&conf->wait_barrier);
1087 spin_unlock_irq(&conf->resync_lock);
1088 }
1089
1090 static sector_t choose_data_offset(struct r10bio *r10_bio,
1091 struct md_rdev *rdev)
1092 {
1093 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1094 test_bit(R10BIO_Previous, &r10_bio->state))
1095 return rdev->data_offset;
1096 else
1097 return rdev->new_data_offset;
1098 }
1099
1100 struct raid10_plug_cb {
1101 struct blk_plug_cb cb;
1102 struct bio_list pending;
1103 int pending_cnt;
1104 };
1105
1106 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1107 {
1108 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1109 cb);
1110 struct mddev *mddev = plug->cb.data;
1111 struct r10conf *conf = mddev->private;
1112 struct bio *bio;
1113
1114 if (from_schedule || current->bio_list) {
1115 spin_lock_irq(&conf->device_lock);
1116 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1117 conf->pending_count += plug->pending_cnt;
1118 spin_unlock_irq(&conf->device_lock);
1119 wake_up(&conf->wait_barrier);
1120 md_wakeup_thread(mddev->thread);
1121 kfree(plug);
1122 return;
1123 }
1124
1125 /* we aren't scheduling, so we can do the write-out directly. */
1126 bio = bio_list_get(&plug->pending);
1127 bitmap_unplug(mddev->bitmap);
1128 wake_up(&conf->wait_barrier);
1129
1130 while (bio) { /* submit pending writes */
1131 struct bio *next = bio->bi_next;
1132 bio->bi_next = NULL;
1133 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1134 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1135 /* Just ignore it */
1136 bio_endio(bio, 0);
1137 else
1138 generic_make_request(bio);
1139 bio = next;
1140 }
1141 kfree(plug);
1142 }
1143
1144 static void __make_request(struct mddev *mddev, struct bio *bio)
1145 {
1146 struct r10conf *conf = mddev->private;
1147 struct r10bio *r10_bio;
1148 struct bio *read_bio;
1149 int i;
1150 const int rw = bio_data_dir(bio);
1151 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1152 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
1153 const unsigned long do_discard = (bio->bi_rw
1154 & (REQ_DISCARD | REQ_SECURE));
1155 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1156 unsigned long flags;
1157 struct md_rdev *blocked_rdev;
1158 struct blk_plug_cb *cb;
1159 struct raid10_plug_cb *plug = NULL;
1160 int sectors_handled;
1161 int max_sectors;
1162 int sectors;
1163
1164 /*
1165 * Register the new request and wait if the reconstruction
1166 * thread has put up a bar for new requests.
1167 * Continue immediately if no resync is active currently.
1168 */
1169 wait_barrier(conf);
1170
1171 sectors = bio_sectors(bio);
1172 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1173 bio->bi_iter.bi_sector < conf->reshape_progress &&
1174 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1175 /* IO spans the reshape position. Need to wait for
1176 * reshape to pass
1177 */
1178 allow_barrier(conf);
1179 wait_event(conf->wait_barrier,
1180 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1181 conf->reshape_progress >= bio->bi_iter.bi_sector +
1182 sectors);
1183 wait_barrier(conf);
1184 }
1185 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1186 bio_data_dir(bio) == WRITE &&
1187 (mddev->reshape_backwards
1188 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1189 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1190 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1191 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1192 /* Need to update reshape_position in metadata */
1193 mddev->reshape_position = conf->reshape_progress;
1194 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1195 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1196 md_wakeup_thread(mddev->thread);
1197 wait_event(mddev->sb_wait,
1198 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1199
1200 conf->reshape_safe = mddev->reshape_position;
1201 }
1202
1203 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1204
1205 r10_bio->master_bio = bio;
1206 r10_bio->sectors = sectors;
1207
1208 r10_bio->mddev = mddev;
1209 r10_bio->sector = bio->bi_iter.bi_sector;
1210 r10_bio->state = 0;
1211
1212 /* We might need to issue multiple reads to different
1213 * devices if there are bad blocks around, so we keep
1214 * track of the number of reads in bio->bi_phys_segments.
1215 * If this is 0, there is only one r10_bio and no locking
1216 * will be needed when the request completes. If it is
1217 * non-zero, then it is the number of not-completed requests.
1218 */
1219 bio->bi_phys_segments = 0;
1220 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1221
1222 if (rw == READ) {
1223 /*
1224 * read balancing logic:
1225 */
1226 struct md_rdev *rdev;
1227 int slot;
1228
1229 read_again:
1230 rdev = read_balance(conf, r10_bio, &max_sectors);
1231 if (!rdev) {
1232 raid_end_bio_io(r10_bio);
1233 return;
1234 }
1235 slot = r10_bio->read_slot;
1236
1237 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1238 bio_trim(read_bio, r10_bio->sector - bio->bi_iter.bi_sector,
1239 max_sectors);
1240
1241 r10_bio->devs[slot].bio = read_bio;
1242 r10_bio->devs[slot].rdev = rdev;
1243
1244 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1245 choose_data_offset(r10_bio, rdev);
1246 read_bio->bi_bdev = rdev->bdev;
1247 read_bio->bi_end_io = raid10_end_read_request;
1248 read_bio->bi_rw = READ | do_sync;
1249 read_bio->bi_private = r10_bio;
1250
1251 if (max_sectors < r10_bio->sectors) {
1252 /* Could not read all from this device, so we will
1253 * need another r10_bio.
1254 */
1255 sectors_handled = (r10_bio->sector + max_sectors
1256 - bio->bi_iter.bi_sector);
1257 r10_bio->sectors = max_sectors;
1258 spin_lock_irq(&conf->device_lock);
1259 if (bio->bi_phys_segments == 0)
1260 bio->bi_phys_segments = 2;
1261 else
1262 bio->bi_phys_segments++;
1263 spin_unlock_irq(&conf->device_lock);
1264 /* Cannot call generic_make_request directly
1265 * as that will be queued in __generic_make_request
1266 * and subsequent mempool_alloc might block
1267 * waiting for it. so hand bio over to raid10d.
1268 */
1269 reschedule_retry(r10_bio);
1270
1271 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1272
1273 r10_bio->master_bio = bio;
1274 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1275 r10_bio->state = 0;
1276 r10_bio->mddev = mddev;
1277 r10_bio->sector = bio->bi_iter.bi_sector +
1278 sectors_handled;
1279 goto read_again;
1280 } else
1281 generic_make_request(read_bio);
1282 return;
1283 }
1284
1285 /*
1286 * WRITE:
1287 */
1288 if (conf->pending_count >= max_queued_requests) {
1289 md_wakeup_thread(mddev->thread);
1290 wait_event(conf->wait_barrier,
1291 conf->pending_count < max_queued_requests);
1292 }
1293 /* first select target devices under rcu_lock and
1294 * inc refcount on their rdev. Record them by setting
1295 * bios[x] to bio
1296 * If there are known/acknowledged bad blocks on any device
1297 * on which we have seen a write error, we want to avoid
1298 * writing to those blocks. This potentially requires several
1299 * writes to write around the bad blocks. Each set of writes
1300 * gets its own r10_bio with a set of bios attached. The number
1301 * of r10_bios is recored in bio->bi_phys_segments just as with
1302 * the read case.
1303 */
1304
1305 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1306 raid10_find_phys(conf, r10_bio);
1307 retry_write:
1308 blocked_rdev = NULL;
1309 rcu_read_lock();
1310 max_sectors = r10_bio->sectors;
1311
1312 for (i = 0; i < conf->copies; i++) {
1313 int d = r10_bio->devs[i].devnum;
1314 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1315 struct md_rdev *rrdev = rcu_dereference(
1316 conf->mirrors[d].replacement);
1317 if (rdev == rrdev)
1318 rrdev = NULL;
1319 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1320 atomic_inc(&rdev->nr_pending);
1321 blocked_rdev = rdev;
1322 break;
1323 }
1324 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1325 atomic_inc(&rrdev->nr_pending);
1326 blocked_rdev = rrdev;
1327 break;
1328 }
1329 if (rdev && (test_bit(Faulty, &rdev->flags)
1330 || test_bit(Unmerged, &rdev->flags)))
1331 rdev = NULL;
1332 if (rrdev && (test_bit(Faulty, &rrdev->flags)
1333 || test_bit(Unmerged, &rrdev->flags)))
1334 rrdev = NULL;
1335
1336 r10_bio->devs[i].bio = NULL;
1337 r10_bio->devs[i].repl_bio = NULL;
1338
1339 if (!rdev && !rrdev) {
1340 set_bit(R10BIO_Degraded, &r10_bio->state);
1341 continue;
1342 }
1343 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1344 sector_t first_bad;
1345 sector_t dev_sector = r10_bio->devs[i].addr;
1346 int bad_sectors;
1347 int is_bad;
1348
1349 is_bad = is_badblock(rdev, dev_sector,
1350 max_sectors,
1351 &first_bad, &bad_sectors);
1352 if (is_bad < 0) {
1353 /* Mustn't write here until the bad block
1354 * is acknowledged
1355 */
1356 atomic_inc(&rdev->nr_pending);
1357 set_bit(BlockedBadBlocks, &rdev->flags);
1358 blocked_rdev = rdev;
1359 break;
1360 }
1361 if (is_bad && first_bad <= dev_sector) {
1362 /* Cannot write here at all */
1363 bad_sectors -= (dev_sector - first_bad);
1364 if (bad_sectors < max_sectors)
1365 /* Mustn't write more than bad_sectors
1366 * to other devices yet
1367 */
1368 max_sectors = bad_sectors;
1369 /* We don't set R10BIO_Degraded as that
1370 * only applies if the disk is missing,
1371 * so it might be re-added, and we want to
1372 * know to recover this chunk.
1373 * In this case the device is here, and the
1374 * fact that this chunk is not in-sync is
1375 * recorded in the bad block log.
1376 */
1377 continue;
1378 }
1379 if (is_bad) {
1380 int good_sectors = first_bad - dev_sector;
1381 if (good_sectors < max_sectors)
1382 max_sectors = good_sectors;
1383 }
1384 }
1385 if (rdev) {
1386 r10_bio->devs[i].bio = bio;
1387 atomic_inc(&rdev->nr_pending);
1388 }
1389 if (rrdev) {
1390 r10_bio->devs[i].repl_bio = bio;
1391 atomic_inc(&rrdev->nr_pending);
1392 }
1393 }
1394 rcu_read_unlock();
1395
1396 if (unlikely(blocked_rdev)) {
1397 /* Have to wait for this device to get unblocked, then retry */
1398 int j;
1399 int d;
1400
1401 for (j = 0; j < i; j++) {
1402 if (r10_bio->devs[j].bio) {
1403 d = r10_bio->devs[j].devnum;
1404 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1405 }
1406 if (r10_bio->devs[j].repl_bio) {
1407 struct md_rdev *rdev;
1408 d = r10_bio->devs[j].devnum;
1409 rdev = conf->mirrors[d].replacement;
1410 if (!rdev) {
1411 /* Race with remove_disk */
1412 smp_mb();
1413 rdev = conf->mirrors[d].rdev;
1414 }
1415 rdev_dec_pending(rdev, mddev);
1416 }
1417 }
1418 allow_barrier(conf);
1419 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1420 wait_barrier(conf);
1421 goto retry_write;
1422 }
1423
1424 if (max_sectors < r10_bio->sectors) {
1425 /* We are splitting this into multiple parts, so
1426 * we need to prepare for allocating another r10_bio.
1427 */
1428 r10_bio->sectors = max_sectors;
1429 spin_lock_irq(&conf->device_lock);
1430 if (bio->bi_phys_segments == 0)
1431 bio->bi_phys_segments = 2;
1432 else
1433 bio->bi_phys_segments++;
1434 spin_unlock_irq(&conf->device_lock);
1435 }
1436 sectors_handled = r10_bio->sector + max_sectors -
1437 bio->bi_iter.bi_sector;
1438
1439 atomic_set(&r10_bio->remaining, 1);
1440 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1441
1442 for (i = 0; i < conf->copies; i++) {
1443 struct bio *mbio;
1444 int d = r10_bio->devs[i].devnum;
1445 if (r10_bio->devs[i].bio) {
1446 struct md_rdev *rdev = conf->mirrors[d].rdev;
1447 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1448 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1449 max_sectors);
1450 r10_bio->devs[i].bio = mbio;
1451
1452 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
1453 choose_data_offset(r10_bio,
1454 rdev));
1455 mbio->bi_bdev = rdev->bdev;
1456 mbio->bi_end_io = raid10_end_write_request;
1457 mbio->bi_rw =
1458 WRITE | do_sync | do_fua | do_discard | do_same;
1459 mbio->bi_private = r10_bio;
1460
1461 atomic_inc(&r10_bio->remaining);
1462
1463 cb = blk_check_plugged(raid10_unplug, mddev,
1464 sizeof(*plug));
1465 if (cb)
1466 plug = container_of(cb, struct raid10_plug_cb,
1467 cb);
1468 else
1469 plug = NULL;
1470 spin_lock_irqsave(&conf->device_lock, flags);
1471 if (plug) {
1472 bio_list_add(&plug->pending, mbio);
1473 plug->pending_cnt++;
1474 } else {
1475 bio_list_add(&conf->pending_bio_list, mbio);
1476 conf->pending_count++;
1477 }
1478 spin_unlock_irqrestore(&conf->device_lock, flags);
1479 if (!plug)
1480 md_wakeup_thread(mddev->thread);
1481 }
1482
1483 if (r10_bio->devs[i].repl_bio) {
1484 struct md_rdev *rdev = conf->mirrors[d].replacement;
1485 if (rdev == NULL) {
1486 /* Replacement just got moved to main 'rdev' */
1487 smp_mb();
1488 rdev = conf->mirrors[d].rdev;
1489 }
1490 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1491 bio_trim(mbio, r10_bio->sector - bio->bi_iter.bi_sector,
1492 max_sectors);
1493 r10_bio->devs[i].repl_bio = mbio;
1494
1495 mbio->bi_iter.bi_sector = (r10_bio->devs[i].addr +
1496 choose_data_offset(
1497 r10_bio, rdev));
1498 mbio->bi_bdev = rdev->bdev;
1499 mbio->bi_end_io = raid10_end_write_request;
1500 mbio->bi_rw =
1501 WRITE | do_sync | do_fua | do_discard | do_same;
1502 mbio->bi_private = r10_bio;
1503
1504 atomic_inc(&r10_bio->remaining);
1505 spin_lock_irqsave(&conf->device_lock, flags);
1506 bio_list_add(&conf->pending_bio_list, mbio);
1507 conf->pending_count++;
1508 spin_unlock_irqrestore(&conf->device_lock, flags);
1509 if (!mddev_check_plugged(mddev))
1510 md_wakeup_thread(mddev->thread);
1511 }
1512 }
1513
1514 /* Don't remove the bias on 'remaining' (one_write_done) until
1515 * after checking if we need to go around again.
1516 */
1517
1518 if (sectors_handled < bio_sectors(bio)) {
1519 one_write_done(r10_bio);
1520 /* We need another r10_bio. It has already been counted
1521 * in bio->bi_phys_segments.
1522 */
1523 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1524
1525 r10_bio->master_bio = bio;
1526 r10_bio->sectors = bio_sectors(bio) - sectors_handled;
1527
1528 r10_bio->mddev = mddev;
1529 r10_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1530 r10_bio->state = 0;
1531 goto retry_write;
1532 }
1533 one_write_done(r10_bio);
1534 }
1535
1536 static void make_request(struct mddev *mddev, struct bio *bio)
1537 {
1538 struct r10conf *conf = mddev->private;
1539 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1540 int chunk_sects = chunk_mask + 1;
1541
1542 struct bio *split;
1543
1544 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1545 md_flush_request(mddev, bio);
1546 return;
1547 }
1548
1549 md_write_start(mddev, bio);
1550
1551 do {
1552
1553 /*
1554 * If this request crosses a chunk boundary, we need to split
1555 * it.
1556 */
1557 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1558 bio_sectors(bio) > chunk_sects
1559 && (conf->geo.near_copies < conf->geo.raid_disks
1560 || conf->prev.near_copies <
1561 conf->prev.raid_disks))) {
1562 split = bio_split(bio, chunk_sects -
1563 (bio->bi_iter.bi_sector &
1564 (chunk_sects - 1)),
1565 GFP_NOIO, fs_bio_set);
1566 bio_chain(split, bio);
1567 } else {
1568 split = bio;
1569 }
1570
1571 __make_request(mddev, split);
1572 } while (split != bio);
1573
1574 /* In case raid10d snuck in to freeze_array */
1575 wake_up(&conf->wait_barrier);
1576 }
1577
1578 static void status(struct seq_file *seq, struct mddev *mddev)
1579 {
1580 struct r10conf *conf = mddev->private;
1581 int i;
1582
1583 if (conf->geo.near_copies < conf->geo.raid_disks)
1584 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1585 if (conf->geo.near_copies > 1)
1586 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1587 if (conf->geo.far_copies > 1) {
1588 if (conf->geo.far_offset)
1589 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1590 else
1591 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1592 }
1593 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1594 conf->geo.raid_disks - mddev->degraded);
1595 for (i = 0; i < conf->geo.raid_disks; i++)
1596 seq_printf(seq, "%s",
1597 conf->mirrors[i].rdev &&
1598 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1599 seq_printf(seq, "]");
1600 }
1601
1602 /* check if there are enough drives for
1603 * every block to appear on atleast one.
1604 * Don't consider the device numbered 'ignore'
1605 * as we might be about to remove it.
1606 */
1607 static int _enough(struct r10conf *conf, int previous, int ignore)
1608 {
1609 int first = 0;
1610 int has_enough = 0;
1611 int disks, ncopies;
1612 if (previous) {
1613 disks = conf->prev.raid_disks;
1614 ncopies = conf->prev.near_copies;
1615 } else {
1616 disks = conf->geo.raid_disks;
1617 ncopies = conf->geo.near_copies;
1618 }
1619
1620 rcu_read_lock();
1621 do {
1622 int n = conf->copies;
1623 int cnt = 0;
1624 int this = first;
1625 while (n--) {
1626 struct md_rdev *rdev;
1627 if (this != ignore &&
1628 (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1629 test_bit(In_sync, &rdev->flags))
1630 cnt++;
1631 this = (this+1) % disks;
1632 }
1633 if (cnt == 0)
1634 goto out;
1635 first = (first + ncopies) % disks;
1636 } while (first != 0);
1637 has_enough = 1;
1638 out:
1639 rcu_read_unlock();
1640 return has_enough;
1641 }
1642
1643 static int enough(struct r10conf *conf, int ignore)
1644 {
1645 /* when calling 'enough', both 'prev' and 'geo' must
1646 * be stable.
1647 * This is ensured if ->reconfig_mutex or ->device_lock
1648 * is held.
1649 */
1650 return _enough(conf, 0, ignore) &&
1651 _enough(conf, 1, ignore);
1652 }
1653
1654 static void error(struct mddev *mddev, struct md_rdev *rdev)
1655 {
1656 char b[BDEVNAME_SIZE];
1657 struct r10conf *conf = mddev->private;
1658 unsigned long flags;
1659
1660 /*
1661 * If it is not operational, then we have already marked it as dead
1662 * else if it is the last working disks, ignore the error, let the
1663 * next level up know.
1664 * else mark the drive as failed
1665 */
1666 spin_lock_irqsave(&conf->device_lock, flags);
1667 if (test_bit(In_sync, &rdev->flags)
1668 && !enough(conf, rdev->raid_disk)) {
1669 /*
1670 * Don't fail the drive, just return an IO error.
1671 */
1672 spin_unlock_irqrestore(&conf->device_lock, flags);
1673 return;
1674 }
1675 if (test_and_clear_bit(In_sync, &rdev->flags))
1676 mddev->degraded++;
1677 /*
1678 * If recovery is running, make sure it aborts.
1679 */
1680 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1681 set_bit(Blocked, &rdev->flags);
1682 set_bit(Faulty, &rdev->flags);
1683 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1684 spin_unlock_irqrestore(&conf->device_lock, flags);
1685 printk(KERN_ALERT
1686 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1687 "md/raid10:%s: Operation continuing on %d devices.\n",
1688 mdname(mddev), bdevname(rdev->bdev, b),
1689 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1690 }
1691
1692 static void print_conf(struct r10conf *conf)
1693 {
1694 int i;
1695 struct raid10_info *tmp;
1696
1697 printk(KERN_DEBUG "RAID10 conf printout:\n");
1698 if (!conf) {
1699 printk(KERN_DEBUG "(!conf)\n");
1700 return;
1701 }
1702 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1703 conf->geo.raid_disks);
1704
1705 for (i = 0; i < conf->geo.raid_disks; i++) {
1706 char b[BDEVNAME_SIZE];
1707 tmp = conf->mirrors + i;
1708 if (tmp->rdev)
1709 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1710 i, !test_bit(In_sync, &tmp->rdev->flags),
1711 !test_bit(Faulty, &tmp->rdev->flags),
1712 bdevname(tmp->rdev->bdev,b));
1713 }
1714 }
1715
1716 static void close_sync(struct r10conf *conf)
1717 {
1718 wait_barrier(conf);
1719 allow_barrier(conf);
1720
1721 mempool_destroy(conf->r10buf_pool);
1722 conf->r10buf_pool = NULL;
1723 }
1724
1725 static int raid10_spare_active(struct mddev *mddev)
1726 {
1727 int i;
1728 struct r10conf *conf = mddev->private;
1729 struct raid10_info *tmp;
1730 int count = 0;
1731 unsigned long flags;
1732
1733 /*
1734 * Find all non-in_sync disks within the RAID10 configuration
1735 * and mark them in_sync
1736 */
1737 for (i = 0; i < conf->geo.raid_disks; i++) {
1738 tmp = conf->mirrors + i;
1739 if (tmp->replacement
1740 && tmp->replacement->recovery_offset == MaxSector
1741 && !test_bit(Faulty, &tmp->replacement->flags)
1742 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1743 /* Replacement has just become active */
1744 if (!tmp->rdev
1745 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1746 count++;
1747 if (tmp->rdev) {
1748 /* Replaced device not technically faulty,
1749 * but we need to be sure it gets removed
1750 * and never re-added.
1751 */
1752 set_bit(Faulty, &tmp->rdev->flags);
1753 sysfs_notify_dirent_safe(
1754 tmp->rdev->sysfs_state);
1755 }
1756 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1757 } else if (tmp->rdev
1758 && tmp->rdev->recovery_offset == MaxSector
1759 && !test_bit(Faulty, &tmp->rdev->flags)
1760 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1761 count++;
1762 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1763 }
1764 }
1765 spin_lock_irqsave(&conf->device_lock, flags);
1766 mddev->degraded -= count;
1767 spin_unlock_irqrestore(&conf->device_lock, flags);
1768
1769 print_conf(conf);
1770 return count;
1771 }
1772
1773 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1774 {
1775 struct r10conf *conf = mddev->private;
1776 int err = -EEXIST;
1777 int mirror;
1778 int first = 0;
1779 int last = conf->geo.raid_disks - 1;
1780 struct request_queue *q = bdev_get_queue(rdev->bdev);
1781
1782 if (mddev->recovery_cp < MaxSector)
1783 /* only hot-add to in-sync arrays, as recovery is
1784 * very different from resync
1785 */
1786 return -EBUSY;
1787 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1788 return -EINVAL;
1789
1790 if (rdev->raid_disk >= 0)
1791 first = last = rdev->raid_disk;
1792
1793 if (q->merge_bvec_fn) {
1794 set_bit(Unmerged, &rdev->flags);
1795 mddev->merge_check_needed = 1;
1796 }
1797
1798 if (rdev->saved_raid_disk >= first &&
1799 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1800 mirror = rdev->saved_raid_disk;
1801 else
1802 mirror = first;
1803 for ( ; mirror <= last ; mirror++) {
1804 struct raid10_info *p = &conf->mirrors[mirror];
1805 if (p->recovery_disabled == mddev->recovery_disabled)
1806 continue;
1807 if (p->rdev) {
1808 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1809 p->replacement != NULL)
1810 continue;
1811 clear_bit(In_sync, &rdev->flags);
1812 set_bit(Replacement, &rdev->flags);
1813 rdev->raid_disk = mirror;
1814 err = 0;
1815 if (mddev->gendisk)
1816 disk_stack_limits(mddev->gendisk, rdev->bdev,
1817 rdev->data_offset << 9);
1818 conf->fullsync = 1;
1819 rcu_assign_pointer(p->replacement, rdev);
1820 break;
1821 }
1822
1823 if (mddev->gendisk)
1824 disk_stack_limits(mddev->gendisk, rdev->bdev,
1825 rdev->data_offset << 9);
1826
1827 p->head_position = 0;
1828 p->recovery_disabled = mddev->recovery_disabled - 1;
1829 rdev->raid_disk = mirror;
1830 err = 0;
1831 if (rdev->saved_raid_disk != mirror)
1832 conf->fullsync = 1;
1833 rcu_assign_pointer(p->rdev, rdev);
1834 break;
1835 }
1836 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1837 /* Some requests might not have seen this new
1838 * merge_bvec_fn. We must wait for them to complete
1839 * before merging the device fully.
1840 * First we make sure any code which has tested
1841 * our function has submitted the request, then
1842 * we wait for all outstanding requests to complete.
1843 */
1844 synchronize_sched();
1845 freeze_array(conf, 0);
1846 unfreeze_array(conf);
1847 clear_bit(Unmerged, &rdev->flags);
1848 }
1849 md_integrity_add_rdev(rdev, mddev);
1850 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1851 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1852
1853 print_conf(conf);
1854 return err;
1855 }
1856
1857 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1858 {
1859 struct r10conf *conf = mddev->private;
1860 int err = 0;
1861 int number = rdev->raid_disk;
1862 struct md_rdev **rdevp;
1863 struct raid10_info *p = conf->mirrors + number;
1864
1865 print_conf(conf);
1866 if (rdev == p->rdev)
1867 rdevp = &p->rdev;
1868 else if (rdev == p->replacement)
1869 rdevp = &p->replacement;
1870 else
1871 return 0;
1872
1873 if (test_bit(In_sync, &rdev->flags) ||
1874 atomic_read(&rdev->nr_pending)) {
1875 err = -EBUSY;
1876 goto abort;
1877 }
1878 /* Only remove faulty devices if recovery
1879 * is not possible.
1880 */
1881 if (!test_bit(Faulty, &rdev->flags) &&
1882 mddev->recovery_disabled != p->recovery_disabled &&
1883 (!p->replacement || p->replacement == rdev) &&
1884 number < conf->geo.raid_disks &&
1885 enough(conf, -1)) {
1886 err = -EBUSY;
1887 goto abort;
1888 }
1889 *rdevp = NULL;
1890 synchronize_rcu();
1891 if (atomic_read(&rdev->nr_pending)) {
1892 /* lost the race, try later */
1893 err = -EBUSY;
1894 *rdevp = rdev;
1895 goto abort;
1896 } else if (p->replacement) {
1897 /* We must have just cleared 'rdev' */
1898 p->rdev = p->replacement;
1899 clear_bit(Replacement, &p->replacement->flags);
1900 smp_mb(); /* Make sure other CPUs may see both as identical
1901 * but will never see neither -- if they are careful.
1902 */
1903 p->replacement = NULL;
1904 clear_bit(WantReplacement, &rdev->flags);
1905 } else
1906 /* We might have just remove the Replacement as faulty
1907 * Clear the flag just in case
1908 */
1909 clear_bit(WantReplacement, &rdev->flags);
1910
1911 err = md_integrity_register(mddev);
1912
1913 abort:
1914
1915 print_conf(conf);
1916 return err;
1917 }
1918
1919 static void end_sync_read(struct bio *bio, int error)
1920 {
1921 struct r10bio *r10_bio = bio->bi_private;
1922 struct r10conf *conf = r10_bio->mddev->private;
1923 int d;
1924
1925 if (bio == r10_bio->master_bio) {
1926 /* this is a reshape read */
1927 d = r10_bio->read_slot; /* really the read dev */
1928 } else
1929 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1930
1931 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1932 set_bit(R10BIO_Uptodate, &r10_bio->state);
1933 else
1934 /* The write handler will notice the lack of
1935 * R10BIO_Uptodate and record any errors etc
1936 */
1937 atomic_add(r10_bio->sectors,
1938 &conf->mirrors[d].rdev->corrected_errors);
1939
1940 /* for reconstruct, we always reschedule after a read.
1941 * for resync, only after all reads
1942 */
1943 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1944 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1945 atomic_dec_and_test(&r10_bio->remaining)) {
1946 /* we have read all the blocks,
1947 * do the comparison in process context in raid10d
1948 */
1949 reschedule_retry(r10_bio);
1950 }
1951 }
1952
1953 static void end_sync_request(struct r10bio *r10_bio)
1954 {
1955 struct mddev *mddev = r10_bio->mddev;
1956
1957 while (atomic_dec_and_test(&r10_bio->remaining)) {
1958 if (r10_bio->master_bio == NULL) {
1959 /* the primary of several recovery bios */
1960 sector_t s = r10_bio->sectors;
1961 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1962 test_bit(R10BIO_WriteError, &r10_bio->state))
1963 reschedule_retry(r10_bio);
1964 else
1965 put_buf(r10_bio);
1966 md_done_sync(mddev, s, 1);
1967 break;
1968 } else {
1969 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1970 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1971 test_bit(R10BIO_WriteError, &r10_bio->state))
1972 reschedule_retry(r10_bio);
1973 else
1974 put_buf(r10_bio);
1975 r10_bio = r10_bio2;
1976 }
1977 }
1978 }
1979
1980 static void end_sync_write(struct bio *bio, int error)
1981 {
1982 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1983 struct r10bio *r10_bio = bio->bi_private;
1984 struct mddev *mddev = r10_bio->mddev;
1985 struct r10conf *conf = mddev->private;
1986 int d;
1987 sector_t first_bad;
1988 int bad_sectors;
1989 int slot;
1990 int repl;
1991 struct md_rdev *rdev = NULL;
1992
1993 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1994 if (repl)
1995 rdev = conf->mirrors[d].replacement;
1996 else
1997 rdev = conf->mirrors[d].rdev;
1998
1999 if (!uptodate) {
2000 if (repl)
2001 md_error(mddev, rdev);
2002 else {
2003 set_bit(WriteErrorSeen, &rdev->flags);
2004 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2005 set_bit(MD_RECOVERY_NEEDED,
2006 &rdev->mddev->recovery);
2007 set_bit(R10BIO_WriteError, &r10_bio->state);
2008 }
2009 } else if (is_badblock(rdev,
2010 r10_bio->devs[slot].addr,
2011 r10_bio->sectors,
2012 &first_bad, &bad_sectors))
2013 set_bit(R10BIO_MadeGood, &r10_bio->state);
2014
2015 rdev_dec_pending(rdev, mddev);
2016
2017 end_sync_request(r10_bio);
2018 }
2019
2020 /*
2021 * Note: sync and recover and handled very differently for raid10
2022 * This code is for resync.
2023 * For resync, we read through virtual addresses and read all blocks.
2024 * If there is any error, we schedule a write. The lowest numbered
2025 * drive is authoritative.
2026 * However requests come for physical address, so we need to map.
2027 * For every physical address there are raid_disks/copies virtual addresses,
2028 * which is always are least one, but is not necessarly an integer.
2029 * This means that a physical address can span multiple chunks, so we may
2030 * have to submit multiple io requests for a single sync request.
2031 */
2032 /*
2033 * We check if all blocks are in-sync and only write to blocks that
2034 * aren't in sync
2035 */
2036 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2037 {
2038 struct r10conf *conf = mddev->private;
2039 int i, first;
2040 struct bio *tbio, *fbio;
2041 int vcnt;
2042
2043 atomic_set(&r10_bio->remaining, 1);
2044
2045 /* find the first device with a block */
2046 for (i=0; i<conf->copies; i++)
2047 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
2048 break;
2049
2050 if (i == conf->copies)
2051 goto done;
2052
2053 first = i;
2054 fbio = r10_bio->devs[i].bio;
2055
2056 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2057 /* now find blocks with errors */
2058 for (i=0 ; i < conf->copies ; i++) {
2059 int j, d;
2060
2061 tbio = r10_bio->devs[i].bio;
2062
2063 if (tbio->bi_end_io != end_sync_read)
2064 continue;
2065 if (i == first)
2066 continue;
2067 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
2068 /* We know that the bi_io_vec layout is the same for
2069 * both 'first' and 'i', so we just compare them.
2070 * All vec entries are PAGE_SIZE;
2071 */
2072 int sectors = r10_bio->sectors;
2073 for (j = 0; j < vcnt; j++) {
2074 int len = PAGE_SIZE;
2075 if (sectors < (len / 512))
2076 len = sectors * 512;
2077 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2078 page_address(tbio->bi_io_vec[j].bv_page),
2079 len))
2080 break;
2081 sectors -= len/512;
2082 }
2083 if (j == vcnt)
2084 continue;
2085 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2086 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2087 /* Don't fix anything. */
2088 continue;
2089 }
2090 /* Ok, we need to write this bio, either to correct an
2091 * inconsistency or to correct an unreadable block.
2092 * First we need to fixup bv_offset, bv_len and
2093 * bi_vecs, as the read request might have corrupted these
2094 */
2095 bio_reset(tbio);
2096
2097 tbio->bi_vcnt = vcnt;
2098 tbio->bi_iter.bi_size = r10_bio->sectors << 9;
2099 tbio->bi_rw = WRITE;
2100 tbio->bi_private = r10_bio;
2101 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2102 tbio->bi_end_io = end_sync_write;
2103
2104 bio_copy_data(tbio, fbio);
2105
2106 d = r10_bio->devs[i].devnum;
2107 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2108 atomic_inc(&r10_bio->remaining);
2109 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2110
2111 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2112 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2113 generic_make_request(tbio);
2114 }
2115
2116 /* Now write out to any replacement devices
2117 * that are active
2118 */
2119 for (i = 0; i < conf->copies; i++) {
2120 int d;
2121
2122 tbio = r10_bio->devs[i].repl_bio;
2123 if (!tbio || !tbio->bi_end_io)
2124 continue;
2125 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2126 && r10_bio->devs[i].bio != fbio)
2127 bio_copy_data(tbio, fbio);
2128 d = r10_bio->devs[i].devnum;
2129 atomic_inc(&r10_bio->remaining);
2130 md_sync_acct(conf->mirrors[d].replacement->bdev,
2131 bio_sectors(tbio));
2132 generic_make_request(tbio);
2133 }
2134
2135 done:
2136 if (atomic_dec_and_test(&r10_bio->remaining)) {
2137 md_done_sync(mddev, r10_bio->sectors, 1);
2138 put_buf(r10_bio);
2139 }
2140 }
2141
2142 /*
2143 * Now for the recovery code.
2144 * Recovery happens across physical sectors.
2145 * We recover all non-is_sync drives by finding the virtual address of
2146 * each, and then choose a working drive that also has that virt address.
2147 * There is a separate r10_bio for each non-in_sync drive.
2148 * Only the first two slots are in use. The first for reading,
2149 * The second for writing.
2150 *
2151 */
2152 static void fix_recovery_read_error(struct r10bio *r10_bio)
2153 {
2154 /* We got a read error during recovery.
2155 * We repeat the read in smaller page-sized sections.
2156 * If a read succeeds, write it to the new device or record
2157 * a bad block if we cannot.
2158 * If a read fails, record a bad block on both old and
2159 * new devices.
2160 */
2161 struct mddev *mddev = r10_bio->mddev;
2162 struct r10conf *conf = mddev->private;
2163 struct bio *bio = r10_bio->devs[0].bio;
2164 sector_t sect = 0;
2165 int sectors = r10_bio->sectors;
2166 int idx = 0;
2167 int dr = r10_bio->devs[0].devnum;
2168 int dw = r10_bio->devs[1].devnum;
2169
2170 while (sectors) {
2171 int s = sectors;
2172 struct md_rdev *rdev;
2173 sector_t addr;
2174 int ok;
2175
2176 if (s > (PAGE_SIZE>>9))
2177 s = PAGE_SIZE >> 9;
2178
2179 rdev = conf->mirrors[dr].rdev;
2180 addr = r10_bio->devs[0].addr + sect,
2181 ok = sync_page_io(rdev,
2182 addr,
2183 s << 9,
2184 bio->bi_io_vec[idx].bv_page,
2185 READ, false);
2186 if (ok) {
2187 rdev = conf->mirrors[dw].rdev;
2188 addr = r10_bio->devs[1].addr + sect;
2189 ok = sync_page_io(rdev,
2190 addr,
2191 s << 9,
2192 bio->bi_io_vec[idx].bv_page,
2193 WRITE, false);
2194 if (!ok) {
2195 set_bit(WriteErrorSeen, &rdev->flags);
2196 if (!test_and_set_bit(WantReplacement,
2197 &rdev->flags))
2198 set_bit(MD_RECOVERY_NEEDED,
2199 &rdev->mddev->recovery);
2200 }
2201 }
2202 if (!ok) {
2203 /* We don't worry if we cannot set a bad block -
2204 * it really is bad so there is no loss in not
2205 * recording it yet
2206 */
2207 rdev_set_badblocks(rdev, addr, s, 0);
2208
2209 if (rdev != conf->mirrors[dw].rdev) {
2210 /* need bad block on destination too */
2211 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2212 addr = r10_bio->devs[1].addr + sect;
2213 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2214 if (!ok) {
2215 /* just abort the recovery */
2216 printk(KERN_NOTICE
2217 "md/raid10:%s: recovery aborted"
2218 " due to read error\n",
2219 mdname(mddev));
2220
2221 conf->mirrors[dw].recovery_disabled
2222 = mddev->recovery_disabled;
2223 set_bit(MD_RECOVERY_INTR,
2224 &mddev->recovery);
2225 break;
2226 }
2227 }
2228 }
2229
2230 sectors -= s;
2231 sect += s;
2232 idx++;
2233 }
2234 }
2235
2236 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2237 {
2238 struct r10conf *conf = mddev->private;
2239 int d;
2240 struct bio *wbio, *wbio2;
2241
2242 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2243 fix_recovery_read_error(r10_bio);
2244 end_sync_request(r10_bio);
2245 return;
2246 }
2247
2248 /*
2249 * share the pages with the first bio
2250 * and submit the write request
2251 */
2252 d = r10_bio->devs[1].devnum;
2253 wbio = r10_bio->devs[1].bio;
2254 wbio2 = r10_bio->devs[1].repl_bio;
2255 /* Need to test wbio2->bi_end_io before we call
2256 * generic_make_request as if the former is NULL,
2257 * the latter is free to free wbio2.
2258 */
2259 if (wbio2 && !wbio2->bi_end_io)
2260 wbio2 = NULL;
2261 if (wbio->bi_end_io) {
2262 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2263 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2264 generic_make_request(wbio);
2265 }
2266 if (wbio2) {
2267 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2268 md_sync_acct(conf->mirrors[d].replacement->bdev,
2269 bio_sectors(wbio2));
2270 generic_make_request(wbio2);
2271 }
2272 }
2273
2274 /*
2275 * Used by fix_read_error() to decay the per rdev read_errors.
2276 * We halve the read error count for every hour that has elapsed
2277 * since the last recorded read error.
2278 *
2279 */
2280 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2281 {
2282 struct timespec cur_time_mon;
2283 unsigned long hours_since_last;
2284 unsigned int read_errors = atomic_read(&rdev->read_errors);
2285
2286 ktime_get_ts(&cur_time_mon);
2287
2288 if (rdev->last_read_error.tv_sec == 0 &&
2289 rdev->last_read_error.tv_nsec == 0) {
2290 /* first time we've seen a read error */
2291 rdev->last_read_error = cur_time_mon;
2292 return;
2293 }
2294
2295 hours_since_last = (cur_time_mon.tv_sec -
2296 rdev->last_read_error.tv_sec) / 3600;
2297
2298 rdev->last_read_error = cur_time_mon;
2299
2300 /*
2301 * if hours_since_last is > the number of bits in read_errors
2302 * just set read errors to 0. We do this to avoid
2303 * overflowing the shift of read_errors by hours_since_last.
2304 */
2305 if (hours_since_last >= 8 * sizeof(read_errors))
2306 atomic_set(&rdev->read_errors, 0);
2307 else
2308 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2309 }
2310
2311 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2312 int sectors, struct page *page, int rw)
2313 {
2314 sector_t first_bad;
2315 int bad_sectors;
2316
2317 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2318 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2319 return -1;
2320 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2321 /* success */
2322 return 1;
2323 if (rw == WRITE) {
2324 set_bit(WriteErrorSeen, &rdev->flags);
2325 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2326 set_bit(MD_RECOVERY_NEEDED,
2327 &rdev->mddev->recovery);
2328 }
2329 /* need to record an error - either for the block or the device */
2330 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2331 md_error(rdev->mddev, rdev);
2332 return 0;
2333 }
2334
2335 /*
2336 * This is a kernel thread which:
2337 *
2338 * 1. Retries failed read operations on working mirrors.
2339 * 2. Updates the raid superblock when problems encounter.
2340 * 3. Performs writes following reads for array synchronising.
2341 */
2342
2343 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2344 {
2345 int sect = 0; /* Offset from r10_bio->sector */
2346 int sectors = r10_bio->sectors;
2347 struct md_rdev*rdev;
2348 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2349 int d = r10_bio->devs[r10_bio->read_slot].devnum;
2350
2351 /* still own a reference to this rdev, so it cannot
2352 * have been cleared recently.
2353 */
2354 rdev = conf->mirrors[d].rdev;
2355
2356 if (test_bit(Faulty, &rdev->flags))
2357 /* drive has already been failed, just ignore any
2358 more fix_read_error() attempts */
2359 return;
2360
2361 check_decay_read_errors(mddev, rdev);
2362 atomic_inc(&rdev->read_errors);
2363 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2364 char b[BDEVNAME_SIZE];
2365 bdevname(rdev->bdev, b);
2366
2367 printk(KERN_NOTICE
2368 "md/raid10:%s: %s: Raid device exceeded "
2369 "read_error threshold [cur %d:max %d]\n",
2370 mdname(mddev), b,
2371 atomic_read(&rdev->read_errors), max_read_errors);
2372 printk(KERN_NOTICE
2373 "md/raid10:%s: %s: Failing raid device\n",
2374 mdname(mddev), b);
2375 md_error(mddev, conf->mirrors[d].rdev);
2376 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2377 return;
2378 }
2379
2380 while(sectors) {
2381 int s = sectors;
2382 int sl = r10_bio->read_slot;
2383 int success = 0;
2384 int start;
2385
2386 if (s > (PAGE_SIZE>>9))
2387 s = PAGE_SIZE >> 9;
2388
2389 rcu_read_lock();
2390 do {
2391 sector_t first_bad;
2392 int bad_sectors;
2393
2394 d = r10_bio->devs[sl].devnum;
2395 rdev = rcu_dereference(conf->mirrors[d].rdev);
2396 if (rdev &&
2397 !test_bit(Unmerged, &rdev->flags) &&
2398 test_bit(In_sync, &rdev->flags) &&
2399 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2400 &first_bad, &bad_sectors) == 0) {
2401 atomic_inc(&rdev->nr_pending);
2402 rcu_read_unlock();
2403 success = sync_page_io(rdev,
2404 r10_bio->devs[sl].addr +
2405 sect,
2406 s<<9,
2407 conf->tmppage, READ, false);
2408 rdev_dec_pending(rdev, mddev);
2409 rcu_read_lock();
2410 if (success)
2411 break;
2412 }
2413 sl++;
2414 if (sl == conf->copies)
2415 sl = 0;
2416 } while (!success && sl != r10_bio->read_slot);
2417 rcu_read_unlock();
2418
2419 if (!success) {
2420 /* Cannot read from anywhere, just mark the block
2421 * as bad on the first device to discourage future
2422 * reads.
2423 */
2424 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2425 rdev = conf->mirrors[dn].rdev;
2426
2427 if (!rdev_set_badblocks(
2428 rdev,
2429 r10_bio->devs[r10_bio->read_slot].addr
2430 + sect,
2431 s, 0)) {
2432 md_error(mddev, rdev);
2433 r10_bio->devs[r10_bio->read_slot].bio
2434 = IO_BLOCKED;
2435 }
2436 break;
2437 }
2438
2439 start = sl;
2440 /* write it back and re-read */
2441 rcu_read_lock();
2442 while (sl != r10_bio->read_slot) {
2443 char b[BDEVNAME_SIZE];
2444
2445 if (sl==0)
2446 sl = conf->copies;
2447 sl--;
2448 d = r10_bio->devs[sl].devnum;
2449 rdev = rcu_dereference(conf->mirrors[d].rdev);
2450 if (!rdev ||
2451 test_bit(Unmerged, &rdev->flags) ||
2452 !test_bit(In_sync, &rdev->flags))
2453 continue;
2454
2455 atomic_inc(&rdev->nr_pending);
2456 rcu_read_unlock();
2457 if (r10_sync_page_io(rdev,
2458 r10_bio->devs[sl].addr +
2459 sect,
2460 s, conf->tmppage, WRITE)
2461 == 0) {
2462 /* Well, this device is dead */
2463 printk(KERN_NOTICE
2464 "md/raid10:%s: read correction "
2465 "write failed"
2466 " (%d sectors at %llu on %s)\n",
2467 mdname(mddev), s,
2468 (unsigned long long)(
2469 sect +
2470 choose_data_offset(r10_bio,
2471 rdev)),
2472 bdevname(rdev->bdev, b));
2473 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2474 "drive\n",
2475 mdname(mddev),
2476 bdevname(rdev->bdev, b));
2477 }
2478 rdev_dec_pending(rdev, mddev);
2479 rcu_read_lock();
2480 }
2481 sl = start;
2482 while (sl != r10_bio->read_slot) {
2483 char b[BDEVNAME_SIZE];
2484
2485 if (sl==0)
2486 sl = conf->copies;
2487 sl--;
2488 d = r10_bio->devs[sl].devnum;
2489 rdev = rcu_dereference(conf->mirrors[d].rdev);
2490 if (!rdev ||
2491 !test_bit(In_sync, &rdev->flags))
2492 continue;
2493
2494 atomic_inc(&rdev->nr_pending);
2495 rcu_read_unlock();
2496 switch (r10_sync_page_io(rdev,
2497 r10_bio->devs[sl].addr +
2498 sect,
2499 s, conf->tmppage,
2500 READ)) {
2501 case 0:
2502 /* Well, this device is dead */
2503 printk(KERN_NOTICE
2504 "md/raid10:%s: unable to read back "
2505 "corrected sectors"
2506 " (%d sectors at %llu on %s)\n",
2507 mdname(mddev), s,
2508 (unsigned long long)(
2509 sect +
2510 choose_data_offset(r10_bio, rdev)),
2511 bdevname(rdev->bdev, b));
2512 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2513 "drive\n",
2514 mdname(mddev),
2515 bdevname(rdev->bdev, b));
2516 break;
2517 case 1:
2518 printk(KERN_INFO
2519 "md/raid10:%s: read error corrected"
2520 " (%d sectors at %llu on %s)\n",
2521 mdname(mddev), s,
2522 (unsigned long long)(
2523 sect +
2524 choose_data_offset(r10_bio, rdev)),
2525 bdevname(rdev->bdev, b));
2526 atomic_add(s, &rdev->corrected_errors);
2527 }
2528
2529 rdev_dec_pending(rdev, mddev);
2530 rcu_read_lock();
2531 }
2532 rcu_read_unlock();
2533
2534 sectors -= s;
2535 sect += s;
2536 }
2537 }
2538
2539 static int narrow_write_error(struct r10bio *r10_bio, int i)
2540 {
2541 struct bio *bio = r10_bio->master_bio;
2542 struct mddev *mddev = r10_bio->mddev;
2543 struct r10conf *conf = mddev->private;
2544 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2545 /* bio has the data to be written to slot 'i' where
2546 * we just recently had a write error.
2547 * We repeatedly clone the bio and trim down to one block,
2548 * then try the write. Where the write fails we record
2549 * a bad block.
2550 * It is conceivable that the bio doesn't exactly align with
2551 * blocks. We must handle this.
2552 *
2553 * We currently own a reference to the rdev.
2554 */
2555
2556 int block_sectors;
2557 sector_t sector;
2558 int sectors;
2559 int sect_to_write = r10_bio->sectors;
2560 int ok = 1;
2561
2562 if (rdev->badblocks.shift < 0)
2563 return 0;
2564
2565 block_sectors = roundup(1 << rdev->badblocks.shift,
2566 bdev_logical_block_size(rdev->bdev) >> 9);
2567 sector = r10_bio->sector;
2568 sectors = ((r10_bio->sector + block_sectors)
2569 & ~(sector_t)(block_sectors - 1))
2570 - sector;
2571
2572 while (sect_to_write) {
2573 struct bio *wbio;
2574 if (sectors > sect_to_write)
2575 sectors = sect_to_write;
2576 /* Write at 'sector' for 'sectors' */
2577 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2578 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2579 wbio->bi_iter.bi_sector = (r10_bio->devs[i].addr+
2580 choose_data_offset(r10_bio, rdev) +
2581 (sector - r10_bio->sector));
2582 wbio->bi_bdev = rdev->bdev;
2583 if (submit_bio_wait(WRITE, wbio) == 0)
2584 /* Failure! */
2585 ok = rdev_set_badblocks(rdev, sector,
2586 sectors, 0)
2587 && ok;
2588
2589 bio_put(wbio);
2590 sect_to_write -= sectors;
2591 sector += sectors;
2592 sectors = block_sectors;
2593 }
2594 return ok;
2595 }
2596
2597 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2598 {
2599 int slot = r10_bio->read_slot;
2600 struct bio *bio;
2601 struct r10conf *conf = mddev->private;
2602 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2603 char b[BDEVNAME_SIZE];
2604 unsigned long do_sync;
2605 int max_sectors;
2606
2607 /* we got a read error. Maybe the drive is bad. Maybe just
2608 * the block and we can fix it.
2609 * We freeze all other IO, and try reading the block from
2610 * other devices. When we find one, we re-write
2611 * and check it that fixes the read error.
2612 * This is all done synchronously while the array is
2613 * frozen.
2614 */
2615 bio = r10_bio->devs[slot].bio;
2616 bdevname(bio->bi_bdev, b);
2617 bio_put(bio);
2618 r10_bio->devs[slot].bio = NULL;
2619
2620 if (mddev->ro == 0) {
2621 freeze_array(conf, 1);
2622 fix_read_error(conf, mddev, r10_bio);
2623 unfreeze_array(conf);
2624 } else
2625 r10_bio->devs[slot].bio = IO_BLOCKED;
2626
2627 rdev_dec_pending(rdev, mddev);
2628
2629 read_more:
2630 rdev = read_balance(conf, r10_bio, &max_sectors);
2631 if (rdev == NULL) {
2632 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2633 " read error for block %llu\n",
2634 mdname(mddev), b,
2635 (unsigned long long)r10_bio->sector);
2636 raid_end_bio_io(r10_bio);
2637 return;
2638 }
2639
2640 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2641 slot = r10_bio->read_slot;
2642 printk_ratelimited(
2643 KERN_ERR
2644 "md/raid10:%s: %s: redirecting "
2645 "sector %llu to another mirror\n",
2646 mdname(mddev),
2647 bdevname(rdev->bdev, b),
2648 (unsigned long long)r10_bio->sector);
2649 bio = bio_clone_mddev(r10_bio->master_bio,
2650 GFP_NOIO, mddev);
2651 bio_trim(bio, r10_bio->sector - bio->bi_iter.bi_sector, max_sectors);
2652 r10_bio->devs[slot].bio = bio;
2653 r10_bio->devs[slot].rdev = rdev;
2654 bio->bi_iter.bi_sector = r10_bio->devs[slot].addr
2655 + choose_data_offset(r10_bio, rdev);
2656 bio->bi_bdev = rdev->bdev;
2657 bio->bi_rw = READ | do_sync;
2658 bio->bi_private = r10_bio;
2659 bio->bi_end_io = raid10_end_read_request;
2660 if (max_sectors < r10_bio->sectors) {
2661 /* Drat - have to split this up more */
2662 struct bio *mbio = r10_bio->master_bio;
2663 int sectors_handled =
2664 r10_bio->sector + max_sectors
2665 - mbio->bi_iter.bi_sector;
2666 r10_bio->sectors = max_sectors;
2667 spin_lock_irq(&conf->device_lock);
2668 if (mbio->bi_phys_segments == 0)
2669 mbio->bi_phys_segments = 2;
2670 else
2671 mbio->bi_phys_segments++;
2672 spin_unlock_irq(&conf->device_lock);
2673 generic_make_request(bio);
2674
2675 r10_bio = mempool_alloc(conf->r10bio_pool,
2676 GFP_NOIO);
2677 r10_bio->master_bio = mbio;
2678 r10_bio->sectors = bio_sectors(mbio) - sectors_handled;
2679 r10_bio->state = 0;
2680 set_bit(R10BIO_ReadError,
2681 &r10_bio->state);
2682 r10_bio->mddev = mddev;
2683 r10_bio->sector = mbio->bi_iter.bi_sector
2684 + sectors_handled;
2685
2686 goto read_more;
2687 } else
2688 generic_make_request(bio);
2689 }
2690
2691 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2692 {
2693 /* Some sort of write request has finished and it
2694 * succeeded in writing where we thought there was a
2695 * bad block. So forget the bad block.
2696 * Or possibly if failed and we need to record
2697 * a bad block.
2698 */
2699 int m;
2700 struct md_rdev *rdev;
2701
2702 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2703 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2704 for (m = 0; m < conf->copies; m++) {
2705 int dev = r10_bio->devs[m].devnum;
2706 rdev = conf->mirrors[dev].rdev;
2707 if (r10_bio->devs[m].bio == NULL)
2708 continue;
2709 if (test_bit(BIO_UPTODATE,
2710 &r10_bio->devs[m].bio->bi_flags)) {
2711 rdev_clear_badblocks(
2712 rdev,
2713 r10_bio->devs[m].addr,
2714 r10_bio->sectors, 0);
2715 } else {
2716 if (!rdev_set_badblocks(
2717 rdev,
2718 r10_bio->devs[m].addr,
2719 r10_bio->sectors, 0))
2720 md_error(conf->mddev, rdev);
2721 }
2722 rdev = conf->mirrors[dev].replacement;
2723 if (r10_bio->devs[m].repl_bio == NULL)
2724 continue;
2725 if (test_bit(BIO_UPTODATE,
2726 &r10_bio->devs[m].repl_bio->bi_flags)) {
2727 rdev_clear_badblocks(
2728 rdev,
2729 r10_bio->devs[m].addr,
2730 r10_bio->sectors, 0);
2731 } else {
2732 if (!rdev_set_badblocks(
2733 rdev,
2734 r10_bio->devs[m].addr,
2735 r10_bio->sectors, 0))
2736 md_error(conf->mddev, rdev);
2737 }
2738 }
2739 put_buf(r10_bio);
2740 } else {
2741 for (m = 0; m < conf->copies; m++) {
2742 int dev = r10_bio->devs[m].devnum;
2743 struct bio *bio = r10_bio->devs[m].bio;
2744 rdev = conf->mirrors[dev].rdev;
2745 if (bio == IO_MADE_GOOD) {
2746 rdev_clear_badblocks(
2747 rdev,
2748 r10_bio->devs[m].addr,
2749 r10_bio->sectors, 0);
2750 rdev_dec_pending(rdev, conf->mddev);
2751 } else if (bio != NULL &&
2752 !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2753 if (!narrow_write_error(r10_bio, m)) {
2754 md_error(conf->mddev, rdev);
2755 set_bit(R10BIO_Degraded,
2756 &r10_bio->state);
2757 }
2758 rdev_dec_pending(rdev, conf->mddev);
2759 }
2760 bio = r10_bio->devs[m].repl_bio;
2761 rdev = conf->mirrors[dev].replacement;
2762 if (rdev && bio == IO_MADE_GOOD) {
2763 rdev_clear_badblocks(
2764 rdev,
2765 r10_bio->devs[m].addr,
2766 r10_bio->sectors, 0);
2767 rdev_dec_pending(rdev, conf->mddev);
2768 }
2769 }
2770 if (test_bit(R10BIO_WriteError,
2771 &r10_bio->state))
2772 close_write(r10_bio);
2773 raid_end_bio_io(r10_bio);
2774 }
2775 }
2776
2777 static void raid10d(struct md_thread *thread)
2778 {
2779 struct mddev *mddev = thread->mddev;
2780 struct r10bio *r10_bio;
2781 unsigned long flags;
2782 struct r10conf *conf = mddev->private;
2783 struct list_head *head = &conf->retry_list;
2784 struct blk_plug plug;
2785
2786 md_check_recovery(mddev);
2787
2788 blk_start_plug(&plug);
2789 for (;;) {
2790
2791 flush_pending_writes(conf);
2792
2793 spin_lock_irqsave(&conf->device_lock, flags);
2794 if (list_empty(head)) {
2795 spin_unlock_irqrestore(&conf->device_lock, flags);
2796 break;
2797 }
2798 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2799 list_del(head->prev);
2800 conf->nr_queued--;
2801 spin_unlock_irqrestore(&conf->device_lock, flags);
2802
2803 mddev = r10_bio->mddev;
2804 conf = mddev->private;
2805 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2806 test_bit(R10BIO_WriteError, &r10_bio->state))
2807 handle_write_completed(conf, r10_bio);
2808 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2809 reshape_request_write(mddev, r10_bio);
2810 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2811 sync_request_write(mddev, r10_bio);
2812 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2813 recovery_request_write(mddev, r10_bio);
2814 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2815 handle_read_error(mddev, r10_bio);
2816 else {
2817 /* just a partial read to be scheduled from a
2818 * separate context
2819 */
2820 int slot = r10_bio->read_slot;
2821 generic_make_request(r10_bio->devs[slot].bio);
2822 }
2823
2824 cond_resched();
2825 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2826 md_check_recovery(mddev);
2827 }
2828 blk_finish_plug(&plug);
2829 }
2830
2831 static int init_resync(struct r10conf *conf)
2832 {
2833 int buffs;
2834 int i;
2835
2836 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2837 BUG_ON(conf->r10buf_pool);
2838 conf->have_replacement = 0;
2839 for (i = 0; i < conf->geo.raid_disks; i++)
2840 if (conf->mirrors[i].replacement)
2841 conf->have_replacement = 1;
2842 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2843 if (!conf->r10buf_pool)
2844 return -ENOMEM;
2845 conf->next_resync = 0;
2846 return 0;
2847 }
2848
2849 /*
2850 * perform a "sync" on one "block"
2851 *
2852 * We need to make sure that no normal I/O request - particularly write
2853 * requests - conflict with active sync requests.
2854 *
2855 * This is achieved by tracking pending requests and a 'barrier' concept
2856 * that can be installed to exclude normal IO requests.
2857 *
2858 * Resync and recovery are handled very differently.
2859 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2860 *
2861 * For resync, we iterate over virtual addresses, read all copies,
2862 * and update if there are differences. If only one copy is live,
2863 * skip it.
2864 * For recovery, we iterate over physical addresses, read a good
2865 * value for each non-in_sync drive, and over-write.
2866 *
2867 * So, for recovery we may have several outstanding complex requests for a
2868 * given address, one for each out-of-sync device. We model this by allocating
2869 * a number of r10_bio structures, one for each out-of-sync device.
2870 * As we setup these structures, we collect all bio's together into a list
2871 * which we then process collectively to add pages, and then process again
2872 * to pass to generic_make_request.
2873 *
2874 * The r10_bio structures are linked using a borrowed master_bio pointer.
2875 * This link is counted in ->remaining. When the r10_bio that points to NULL
2876 * has its remaining count decremented to 0, the whole complex operation
2877 * is complete.
2878 *
2879 */
2880
2881 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2882 int *skipped)
2883 {
2884 struct r10conf *conf = mddev->private;
2885 struct r10bio *r10_bio;
2886 struct bio *biolist = NULL, *bio;
2887 sector_t max_sector, nr_sectors;
2888 int i;
2889 int max_sync;
2890 sector_t sync_blocks;
2891 sector_t sectors_skipped = 0;
2892 int chunks_skipped = 0;
2893 sector_t chunk_mask = conf->geo.chunk_mask;
2894
2895 if (!conf->r10buf_pool)
2896 if (init_resync(conf))
2897 return 0;
2898
2899 /*
2900 * Allow skipping a full rebuild for incremental assembly
2901 * of a clean array, like RAID1 does.
2902 */
2903 if (mddev->bitmap == NULL &&
2904 mddev->recovery_cp == MaxSector &&
2905 mddev->reshape_position == MaxSector &&
2906 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2907 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2908 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2909 conf->fullsync == 0) {
2910 *skipped = 1;
2911 return mddev->dev_sectors - sector_nr;
2912 }
2913
2914 skipped:
2915 max_sector = mddev->dev_sectors;
2916 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2917 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2918 max_sector = mddev->resync_max_sectors;
2919 if (sector_nr >= max_sector) {
2920 /* If we aborted, we need to abort the
2921 * sync on the 'current' bitmap chucks (there can
2922 * be several when recovering multiple devices).
2923 * as we may have started syncing it but not finished.
2924 * We can find the current address in
2925 * mddev->curr_resync, but for recovery,
2926 * we need to convert that to several
2927 * virtual addresses.
2928 */
2929 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2930 end_reshape(conf);
2931 close_sync(conf);
2932 return 0;
2933 }
2934
2935 if (mddev->curr_resync < max_sector) { /* aborted */
2936 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2937 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2938 &sync_blocks, 1);
2939 else for (i = 0; i < conf->geo.raid_disks; i++) {
2940 sector_t sect =
2941 raid10_find_virt(conf, mddev->curr_resync, i);
2942 bitmap_end_sync(mddev->bitmap, sect,
2943 &sync_blocks, 1);
2944 }
2945 } else {
2946 /* completed sync */
2947 if ((!mddev->bitmap || conf->fullsync)
2948 && conf->have_replacement
2949 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2950 /* Completed a full sync so the replacements
2951 * are now fully recovered.
2952 */
2953 for (i = 0; i < conf->geo.raid_disks; i++)
2954 if (conf->mirrors[i].replacement)
2955 conf->mirrors[i].replacement
2956 ->recovery_offset
2957 = MaxSector;
2958 }
2959 conf->fullsync = 0;
2960 }
2961 bitmap_close_sync(mddev->bitmap);
2962 close_sync(conf);
2963 *skipped = 1;
2964 return sectors_skipped;
2965 }
2966
2967 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2968 return reshape_request(mddev, sector_nr, skipped);
2969
2970 if (chunks_skipped >= conf->geo.raid_disks) {
2971 /* if there has been nothing to do on any drive,
2972 * then there is nothing to do at all..
2973 */
2974 *skipped = 1;
2975 return (max_sector - sector_nr) + sectors_skipped;
2976 }
2977
2978 if (max_sector > mddev->resync_max)
2979 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2980
2981 /* make sure whole request will fit in a chunk - if chunks
2982 * are meaningful
2983 */
2984 if (conf->geo.near_copies < conf->geo.raid_disks &&
2985 max_sector > (sector_nr | chunk_mask))
2986 max_sector = (sector_nr | chunk_mask) + 1;
2987
2988 /* Again, very different code for resync and recovery.
2989 * Both must result in an r10bio with a list of bios that
2990 * have bi_end_io, bi_sector, bi_bdev set,
2991 * and bi_private set to the r10bio.
2992 * For recovery, we may actually create several r10bios
2993 * with 2 bios in each, that correspond to the bios in the main one.
2994 * In this case, the subordinate r10bios link back through a
2995 * borrowed master_bio pointer, and the counter in the master
2996 * includes a ref from each subordinate.
2997 */
2998 /* First, we decide what to do and set ->bi_end_io
2999 * To end_sync_read if we want to read, and
3000 * end_sync_write if we will want to write.
3001 */
3002
3003 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3004 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3005 /* recovery... the complicated one */
3006 int j;
3007 r10_bio = NULL;
3008
3009 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3010 int still_degraded;
3011 struct r10bio *rb2;
3012 sector_t sect;
3013 int must_sync;
3014 int any_working;
3015 struct raid10_info *mirror = &conf->mirrors[i];
3016
3017 if ((mirror->rdev == NULL ||
3018 test_bit(In_sync, &mirror->rdev->flags))
3019 &&
3020 (mirror->replacement == NULL ||
3021 test_bit(Faulty,
3022 &mirror->replacement->flags)))
3023 continue;
3024
3025 still_degraded = 0;
3026 /* want to reconstruct this device */
3027 rb2 = r10_bio;
3028 sect = raid10_find_virt(conf, sector_nr, i);
3029 if (sect >= mddev->resync_max_sectors) {
3030 /* last stripe is not complete - don't
3031 * try to recover this sector.
3032 */
3033 continue;
3034 }
3035 /* Unless we are doing a full sync, or a replacement
3036 * we only need to recover the block if it is set in
3037 * the bitmap
3038 */
3039 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3040 &sync_blocks, 1);
3041 if (sync_blocks < max_sync)
3042 max_sync = sync_blocks;
3043 if (!must_sync &&
3044 mirror->replacement == NULL &&
3045 !conf->fullsync) {
3046 /* yep, skip the sync_blocks here, but don't assume
3047 * that there will never be anything to do here
3048 */
3049 chunks_skipped = -1;
3050 continue;
3051 }
3052
3053 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3054 r10_bio->state = 0;
3055 raise_barrier(conf, rb2 != NULL);
3056 atomic_set(&r10_bio->remaining, 0);
3057
3058 r10_bio->master_bio = (struct bio*)rb2;
3059 if (rb2)
3060 atomic_inc(&rb2->remaining);
3061 r10_bio->mddev = mddev;
3062 set_bit(R10BIO_IsRecover, &r10_bio->state);
3063 r10_bio->sector = sect;
3064
3065 raid10_find_phys(conf, r10_bio);
3066
3067 /* Need to check if the array will still be
3068 * degraded
3069 */
3070 for (j = 0; j < conf->geo.raid_disks; j++)
3071 if (conf->mirrors[j].rdev == NULL ||
3072 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3073 still_degraded = 1;
3074 break;
3075 }
3076
3077 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3078 &sync_blocks, still_degraded);
3079
3080 any_working = 0;
3081 for (j=0; j<conf->copies;j++) {
3082 int k;
3083 int d = r10_bio->devs[j].devnum;
3084 sector_t from_addr, to_addr;
3085 struct md_rdev *rdev;
3086 sector_t sector, first_bad;
3087 int bad_sectors;
3088 if (!conf->mirrors[d].rdev ||
3089 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3090 continue;
3091 /* This is where we read from */
3092 any_working = 1;
3093 rdev = conf->mirrors[d].rdev;
3094 sector = r10_bio->devs[j].addr;
3095
3096 if (is_badblock(rdev, sector, max_sync,
3097 &first_bad, &bad_sectors)) {
3098 if (first_bad > sector)
3099 max_sync = first_bad - sector;
3100 else {
3101 bad_sectors -= (sector
3102 - first_bad);
3103 if (max_sync > bad_sectors)
3104 max_sync = bad_sectors;
3105 continue;
3106 }
3107 }
3108 bio = r10_bio->devs[0].bio;
3109 bio_reset(bio);
3110 bio->bi_next = biolist;
3111 biolist = bio;
3112 bio->bi_private = r10_bio;
3113 bio->bi_end_io = end_sync_read;
3114 bio->bi_rw = READ;
3115 from_addr = r10_bio->devs[j].addr;
3116 bio->bi_iter.bi_sector = from_addr +
3117 rdev->data_offset;
3118 bio->bi_bdev = rdev->bdev;
3119 atomic_inc(&rdev->nr_pending);
3120 /* and we write to 'i' (if not in_sync) */
3121
3122 for (k=0; k<conf->copies; k++)
3123 if (r10_bio->devs[k].devnum == i)
3124 break;
3125 BUG_ON(k == conf->copies);
3126 to_addr = r10_bio->devs[k].addr;
3127 r10_bio->devs[0].devnum = d;
3128 r10_bio->devs[0].addr = from_addr;
3129 r10_bio->devs[1].devnum = i;
3130 r10_bio->devs[1].addr = to_addr;
3131
3132 rdev = mirror->rdev;
3133 if (!test_bit(In_sync, &rdev->flags)) {
3134 bio = r10_bio->devs[1].bio;
3135 bio_reset(bio);
3136 bio->bi_next = biolist;
3137 biolist = bio;
3138 bio->bi_private = r10_bio;
3139 bio->bi_end_io = end_sync_write;
3140 bio->bi_rw = WRITE;
3141 bio->bi_iter.bi_sector = to_addr
3142 + rdev->data_offset;
3143 bio->bi_bdev = rdev->bdev;
3144 atomic_inc(&r10_bio->remaining);
3145 } else
3146 r10_bio->devs[1].bio->bi_end_io = NULL;
3147
3148 /* and maybe write to replacement */
3149 bio = r10_bio->devs[1].repl_bio;
3150 if (bio)
3151 bio->bi_end_io = NULL;
3152 rdev = mirror->replacement;
3153 /* Note: if rdev != NULL, then bio
3154 * cannot be NULL as r10buf_pool_alloc will
3155 * have allocated it.
3156 * So the second test here is pointless.
3157 * But it keeps semantic-checkers happy, and
3158 * this comment keeps human reviewers
3159 * happy.
3160 */
3161 if (rdev == NULL || bio == NULL ||
3162 test_bit(Faulty, &rdev->flags))
3163 break;
3164 bio_reset(bio);
3165 bio->bi_next = biolist;
3166 biolist = bio;
3167 bio->bi_private = r10_bio;
3168 bio->bi_end_io = end_sync_write;
3169 bio->bi_rw = WRITE;
3170 bio->bi_iter.bi_sector = to_addr +
3171 rdev->data_offset;
3172 bio->bi_bdev = rdev->bdev;
3173 atomic_inc(&r10_bio->remaining);
3174 break;
3175 }
3176 if (j == conf->copies) {
3177 /* Cannot recover, so abort the recovery or
3178 * record a bad block */
3179 if (any_working) {
3180 /* problem is that there are bad blocks
3181 * on other device(s)
3182 */
3183 int k;
3184 for (k = 0; k < conf->copies; k++)
3185 if (r10_bio->devs[k].devnum == i)
3186 break;
3187 if (!test_bit(In_sync,
3188 &mirror->rdev->flags)
3189 && !rdev_set_badblocks(
3190 mirror->rdev,
3191 r10_bio->devs[k].addr,
3192 max_sync, 0))
3193 any_working = 0;
3194 if (mirror->replacement &&
3195 !rdev_set_badblocks(
3196 mirror->replacement,
3197 r10_bio->devs[k].addr,
3198 max_sync, 0))
3199 any_working = 0;
3200 }
3201 if (!any_working) {
3202 if (!test_and_set_bit(MD_RECOVERY_INTR,
3203 &mddev->recovery))
3204 printk(KERN_INFO "md/raid10:%s: insufficient "
3205 "working devices for recovery.\n",
3206 mdname(mddev));
3207 mirror->recovery_disabled
3208 = mddev->recovery_disabled;
3209 }
3210 put_buf(r10_bio);
3211 if (rb2)
3212 atomic_dec(&rb2->remaining);
3213 r10_bio = rb2;
3214 break;
3215 }
3216 }
3217 if (biolist == NULL) {
3218 while (r10_bio) {
3219 struct r10bio *rb2 = r10_bio;
3220 r10_bio = (struct r10bio*) rb2->master_bio;
3221 rb2->master_bio = NULL;
3222 put_buf(rb2);
3223 }
3224 goto giveup;
3225 }
3226 } else {
3227 /* resync. Schedule a read for every block at this virt offset */
3228 int count = 0;
3229
3230 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3231
3232 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3233 &sync_blocks, mddev->degraded) &&
3234 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3235 &mddev->recovery)) {
3236 /* We can skip this block */
3237 *skipped = 1;
3238 return sync_blocks + sectors_skipped;
3239 }
3240 if (sync_blocks < max_sync)
3241 max_sync = sync_blocks;
3242 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3243 r10_bio->state = 0;
3244
3245 r10_bio->mddev = mddev;
3246 atomic_set(&r10_bio->remaining, 0);
3247 raise_barrier(conf, 0);
3248 conf->next_resync = sector_nr;
3249
3250 r10_bio->master_bio = NULL;
3251 r10_bio->sector = sector_nr;
3252 set_bit(R10BIO_IsSync, &r10_bio->state);
3253 raid10_find_phys(conf, r10_bio);
3254 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3255
3256 for (i = 0; i < conf->copies; i++) {
3257 int d = r10_bio->devs[i].devnum;
3258 sector_t first_bad, sector;
3259 int bad_sectors;
3260
3261 if (r10_bio->devs[i].repl_bio)
3262 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3263
3264 bio = r10_bio->devs[i].bio;
3265 bio_reset(bio);
3266 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3267 if (conf->mirrors[d].rdev == NULL ||
3268 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
3269 continue;
3270 sector = r10_bio->devs[i].addr;
3271 if (is_badblock(conf->mirrors[d].rdev,
3272 sector, max_sync,
3273 &first_bad, &bad_sectors)) {
3274 if (first_bad > sector)
3275 max_sync = first_bad - sector;
3276 else {
3277 bad_sectors -= (sector - first_bad);
3278 if (max_sync > bad_sectors)
3279 max_sync = bad_sectors;
3280 continue;
3281 }
3282 }
3283 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3284 atomic_inc(&r10_bio->remaining);
3285 bio->bi_next = biolist;
3286 biolist = bio;
3287 bio->bi_private = r10_bio;
3288 bio->bi_end_io = end_sync_read;
3289 bio->bi_rw = READ;
3290 bio->bi_iter.bi_sector = sector +
3291 conf->mirrors[d].rdev->data_offset;
3292 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3293 count++;
3294
3295 if (conf->mirrors[d].replacement == NULL ||
3296 test_bit(Faulty,
3297 &conf->mirrors[d].replacement->flags))
3298 continue;
3299
3300 /* Need to set up for writing to the replacement */
3301 bio = r10_bio->devs[i].repl_bio;
3302 bio_reset(bio);
3303 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3304
3305 sector = r10_bio->devs[i].addr;
3306 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3307 bio->bi_next = biolist;
3308 biolist = bio;
3309 bio->bi_private = r10_bio;
3310 bio->bi_end_io = end_sync_write;
3311 bio->bi_rw = WRITE;
3312 bio->bi_iter.bi_sector = sector +
3313 conf->mirrors[d].replacement->data_offset;
3314 bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3315 count++;
3316 }
3317
3318 if (count < 2) {
3319 for (i=0; i<conf->copies; i++) {
3320 int d = r10_bio->devs[i].devnum;
3321 if (r10_bio->devs[i].bio->bi_end_io)
3322 rdev_dec_pending(conf->mirrors[d].rdev,
3323 mddev);
3324 if (r10_bio->devs[i].repl_bio &&
3325 r10_bio->devs[i].repl_bio->bi_end_io)
3326 rdev_dec_pending(
3327 conf->mirrors[d].replacement,
3328 mddev);
3329 }
3330 put_buf(r10_bio);
3331 biolist = NULL;
3332 goto giveup;
3333 }
3334 }
3335
3336 nr_sectors = 0;
3337 if (sector_nr + max_sync < max_sector)
3338 max_sector = sector_nr + max_sync;
3339 do {
3340 struct page *page;
3341 int len = PAGE_SIZE;
3342 if (sector_nr + (len>>9) > max_sector)
3343 len = (max_sector - sector_nr) << 9;
3344 if (len == 0)
3345 break;
3346 for (bio= biolist ; bio ; bio=bio->bi_next) {
3347 struct bio *bio2;
3348 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3349 if (bio_add_page(bio, page, len, 0))
3350 continue;
3351
3352 /* stop here */
3353 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3354 for (bio2 = biolist;
3355 bio2 && bio2 != bio;
3356 bio2 = bio2->bi_next) {
3357 /* remove last page from this bio */
3358 bio2->bi_vcnt--;
3359 bio2->bi_iter.bi_size -= len;
3360 __clear_bit(BIO_SEG_VALID, &bio2->bi_flags);
3361 }
3362 goto bio_full;
3363 }
3364 nr_sectors += len>>9;
3365 sector_nr += len>>9;
3366 } while (biolist->bi_vcnt < RESYNC_PAGES);
3367 bio_full:
3368 r10_bio->sectors = nr_sectors;
3369
3370 while (biolist) {
3371 bio = biolist;
3372 biolist = biolist->bi_next;
3373
3374 bio->bi_next = NULL;
3375 r10_bio = bio->bi_private;
3376 r10_bio->sectors = nr_sectors;
3377
3378 if (bio->bi_end_io == end_sync_read) {
3379 md_sync_acct(bio->bi_bdev, nr_sectors);
3380 set_bit(BIO_UPTODATE, &bio->bi_flags);
3381 generic_make_request(bio);
3382 }
3383 }
3384
3385 if (sectors_skipped)
3386 /* pretend they weren't skipped, it makes
3387 * no important difference in this case
3388 */
3389 md_done_sync(mddev, sectors_skipped, 1);
3390
3391 return sectors_skipped + nr_sectors;
3392 giveup:
3393 /* There is nowhere to write, so all non-sync
3394 * drives must be failed or in resync, all drives
3395 * have a bad block, so try the next chunk...
3396 */
3397 if (sector_nr + max_sync < max_sector)
3398 max_sector = sector_nr + max_sync;
3399
3400 sectors_skipped += (max_sector - sector_nr);
3401 chunks_skipped ++;
3402 sector_nr = max_sector;
3403 goto skipped;
3404 }
3405
3406 static sector_t
3407 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3408 {
3409 sector_t size;
3410 struct r10conf *conf = mddev->private;
3411
3412 if (!raid_disks)
3413 raid_disks = min(conf->geo.raid_disks,
3414 conf->prev.raid_disks);
3415 if (!sectors)
3416 sectors = conf->dev_sectors;
3417
3418 size = sectors >> conf->geo.chunk_shift;
3419 sector_div(size, conf->geo.far_copies);
3420 size = size * raid_disks;
3421 sector_div(size, conf->geo.near_copies);
3422
3423 return size << conf->geo.chunk_shift;
3424 }
3425
3426 static void calc_sectors(struct r10conf *conf, sector_t size)
3427 {
3428 /* Calculate the number of sectors-per-device that will
3429 * actually be used, and set conf->dev_sectors and
3430 * conf->stride
3431 */
3432
3433 size = size >> conf->geo.chunk_shift;
3434 sector_div(size, conf->geo.far_copies);
3435 size = size * conf->geo.raid_disks;
3436 sector_div(size, conf->geo.near_copies);
3437 /* 'size' is now the number of chunks in the array */
3438 /* calculate "used chunks per device" */
3439 size = size * conf->copies;
3440
3441 /* We need to round up when dividing by raid_disks to
3442 * get the stride size.
3443 */
3444 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3445
3446 conf->dev_sectors = size << conf->geo.chunk_shift;
3447
3448 if (conf->geo.far_offset)
3449 conf->geo.stride = 1 << conf->geo.chunk_shift;
3450 else {
3451 sector_div(size, conf->geo.far_copies);
3452 conf->geo.stride = size << conf->geo.chunk_shift;
3453 }
3454 }
3455
3456 enum geo_type {geo_new, geo_old, geo_start};
3457 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3458 {
3459 int nc, fc, fo;
3460 int layout, chunk, disks;
3461 switch (new) {
3462 case geo_old:
3463 layout = mddev->layout;
3464 chunk = mddev->chunk_sectors;
3465 disks = mddev->raid_disks - mddev->delta_disks;
3466 break;
3467 case geo_new:
3468 layout = mddev->new_layout;
3469 chunk = mddev->new_chunk_sectors;
3470 disks = mddev->raid_disks;
3471 break;
3472 default: /* avoid 'may be unused' warnings */
3473 case geo_start: /* new when starting reshape - raid_disks not
3474 * updated yet. */
3475 layout = mddev->new_layout;
3476 chunk = mddev->new_chunk_sectors;
3477 disks = mddev->raid_disks + mddev->delta_disks;
3478 break;
3479 }
3480 if (layout >> 18)
3481 return -1;
3482 if (chunk < (PAGE_SIZE >> 9) ||
3483 !is_power_of_2(chunk))
3484 return -2;
3485 nc = layout & 255;
3486 fc = (layout >> 8) & 255;
3487 fo = layout & (1<<16);
3488 geo->raid_disks = disks;
3489 geo->near_copies = nc;
3490 geo->far_copies = fc;
3491 geo->far_offset = fo;
3492 geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks;
3493 geo->chunk_mask = chunk - 1;
3494 geo->chunk_shift = ffz(~chunk);
3495 return nc*fc;
3496 }
3497
3498 static struct r10conf *setup_conf(struct mddev *mddev)
3499 {
3500 struct r10conf *conf = NULL;
3501 int err = -EINVAL;
3502 struct geom geo;
3503 int copies;
3504
3505 copies = setup_geo(&geo, mddev, geo_new);
3506
3507 if (copies == -2) {
3508 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3509 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3510 mdname(mddev), PAGE_SIZE);
3511 goto out;
3512 }
3513
3514 if (copies < 2 || copies > mddev->raid_disks) {
3515 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3516 mdname(mddev), mddev->new_layout);
3517 goto out;
3518 }
3519
3520 err = -ENOMEM;
3521 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3522 if (!conf)
3523 goto out;
3524
3525 /* FIXME calc properly */
3526 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3527 max(0,-mddev->delta_disks)),
3528 GFP_KERNEL);
3529 if (!conf->mirrors)
3530 goto out;
3531
3532 conf->tmppage = alloc_page(GFP_KERNEL);
3533 if (!conf->tmppage)
3534 goto out;
3535
3536 conf->geo = geo;
3537 conf->copies = copies;
3538 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3539 r10bio_pool_free, conf);
3540 if (!conf->r10bio_pool)
3541 goto out;
3542
3543 calc_sectors(conf, mddev->dev_sectors);
3544 if (mddev->reshape_position == MaxSector) {
3545 conf->prev = conf->geo;
3546 conf->reshape_progress = MaxSector;
3547 } else {
3548 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3549 err = -EINVAL;
3550 goto out;
3551 }
3552 conf->reshape_progress = mddev->reshape_position;
3553 if (conf->prev.far_offset)
3554 conf->prev.stride = 1 << conf->prev.chunk_shift;
3555 else
3556 /* far_copies must be 1 */
3557 conf->prev.stride = conf->dev_sectors;
3558 }
3559 conf->reshape_safe = conf->reshape_progress;
3560 spin_lock_init(&conf->device_lock);
3561 INIT_LIST_HEAD(&conf->retry_list);
3562
3563 spin_lock_init(&conf->resync_lock);
3564 init_waitqueue_head(&conf->wait_barrier);
3565
3566 conf->thread = md_register_thread(raid10d, mddev, "raid10");
3567 if (!conf->thread)
3568 goto out;
3569
3570 conf->mddev = mddev;
3571 return conf;
3572
3573 out:
3574 if (err == -ENOMEM)
3575 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3576 mdname(mddev));
3577 if (conf) {
3578 if (conf->r10bio_pool)
3579 mempool_destroy(conf->r10bio_pool);
3580 kfree(conf->mirrors);
3581 safe_put_page(conf->tmppage);
3582 kfree(conf);
3583 }
3584 return ERR_PTR(err);
3585 }
3586
3587 static int run(struct mddev *mddev)
3588 {
3589 struct r10conf *conf;
3590 int i, disk_idx, chunk_size;
3591 struct raid10_info *disk;
3592 struct md_rdev *rdev;
3593 sector_t size;
3594 sector_t min_offset_diff = 0;
3595 int first = 1;
3596 bool discard_supported = false;
3597
3598 if (mddev->private == NULL) {
3599 conf = setup_conf(mddev);
3600 if (IS_ERR(conf))
3601 return PTR_ERR(conf);
3602 mddev->private = conf;
3603 }
3604 conf = mddev->private;
3605 if (!conf)
3606 goto out;
3607
3608 mddev->thread = conf->thread;
3609 conf->thread = NULL;
3610
3611 chunk_size = mddev->chunk_sectors << 9;
3612 if (mddev->queue) {
3613 blk_queue_max_discard_sectors(mddev->queue,
3614 mddev->chunk_sectors);
3615 blk_queue_max_write_same_sectors(mddev->queue, 0);
3616 blk_queue_io_min(mddev->queue, chunk_size);
3617 if (conf->geo.raid_disks % conf->geo.near_copies)
3618 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3619 else
3620 blk_queue_io_opt(mddev->queue, chunk_size *
3621 (conf->geo.raid_disks / conf->geo.near_copies));
3622 }
3623
3624 rdev_for_each(rdev, mddev) {
3625 long long diff;
3626 struct request_queue *q;
3627
3628 disk_idx = rdev->raid_disk;
3629 if (disk_idx < 0)
3630 continue;
3631 if (disk_idx >= conf->geo.raid_disks &&
3632 disk_idx >= conf->prev.raid_disks)
3633 continue;
3634 disk = conf->mirrors + disk_idx;
3635
3636 if (test_bit(Replacement, &rdev->flags)) {
3637 if (disk->replacement)
3638 goto out_free_conf;
3639 disk->replacement = rdev;
3640 } else {
3641 if (disk->rdev)
3642 goto out_free_conf;
3643 disk->rdev = rdev;
3644 }
3645 q = bdev_get_queue(rdev->bdev);
3646 if (q->merge_bvec_fn)
3647 mddev->merge_check_needed = 1;
3648 diff = (rdev->new_data_offset - rdev->data_offset);
3649 if (!mddev->reshape_backwards)
3650 diff = -diff;
3651 if (diff < 0)
3652 diff = 0;
3653 if (first || diff < min_offset_diff)
3654 min_offset_diff = diff;
3655
3656 if (mddev->gendisk)
3657 disk_stack_limits(mddev->gendisk, rdev->bdev,
3658 rdev->data_offset << 9);
3659
3660 disk->head_position = 0;
3661
3662 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3663 discard_supported = true;
3664 }
3665
3666 if (mddev->queue) {
3667 if (discard_supported)
3668 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3669 mddev->queue);
3670 else
3671 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3672 mddev->queue);
3673 }
3674 /* need to check that every block has at least one working mirror */
3675 if (!enough(conf, -1)) {
3676 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3677 mdname(mddev));
3678 goto out_free_conf;
3679 }
3680
3681 if (conf->reshape_progress != MaxSector) {
3682 /* must ensure that shape change is supported */
3683 if (conf->geo.far_copies != 1 &&
3684 conf->geo.far_offset == 0)
3685 goto out_free_conf;
3686 if (conf->prev.far_copies != 1 &&
3687 conf->prev.far_offset == 0)
3688 goto out_free_conf;
3689 }
3690
3691 mddev->degraded = 0;
3692 for (i = 0;
3693 i < conf->geo.raid_disks
3694 || i < conf->prev.raid_disks;
3695 i++) {
3696
3697 disk = conf->mirrors + i;
3698
3699 if (!disk->rdev && disk->replacement) {
3700 /* The replacement is all we have - use it */
3701 disk->rdev = disk->replacement;
3702 disk->replacement = NULL;
3703 clear_bit(Replacement, &disk->rdev->flags);
3704 }
3705
3706 if (!disk->rdev ||
3707 !test_bit(In_sync, &disk->rdev->flags)) {
3708 disk->head_position = 0;
3709 mddev->degraded++;
3710 if (disk->rdev &&
3711 disk->rdev->saved_raid_disk < 0)
3712 conf->fullsync = 1;
3713 }
3714 disk->recovery_disabled = mddev->recovery_disabled - 1;
3715 }
3716
3717 if (mddev->recovery_cp != MaxSector)
3718 printk(KERN_NOTICE "md/raid10:%s: not clean"
3719 " -- starting background reconstruction\n",
3720 mdname(mddev));
3721 printk(KERN_INFO
3722 "md/raid10:%s: active with %d out of %d devices\n",
3723 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3724 conf->geo.raid_disks);
3725 /*
3726 * Ok, everything is just fine now
3727 */
3728 mddev->dev_sectors = conf->dev_sectors;
3729 size = raid10_size(mddev, 0, 0);
3730 md_set_array_sectors(mddev, size);
3731 mddev->resync_max_sectors = size;
3732
3733 if (mddev->queue) {
3734 int stripe = conf->geo.raid_disks *
3735 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3736
3737 /* Calculate max read-ahead size.
3738 * We need to readahead at least twice a whole stripe....
3739 * maybe...
3740 */
3741 stripe /= conf->geo.near_copies;
3742 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3743 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
3744 }
3745
3746 if (md_integrity_register(mddev))
3747 goto out_free_conf;
3748
3749 if (conf->reshape_progress != MaxSector) {
3750 unsigned long before_length, after_length;
3751
3752 before_length = ((1 << conf->prev.chunk_shift) *
3753 conf->prev.far_copies);
3754 after_length = ((1 << conf->geo.chunk_shift) *
3755 conf->geo.far_copies);
3756
3757 if (max(before_length, after_length) > min_offset_diff) {
3758 /* This cannot work */
3759 printk("md/raid10: offset difference not enough to continue reshape\n");
3760 goto out_free_conf;
3761 }
3762 conf->offset_diff = min_offset_diff;
3763
3764 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3765 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3766 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3767 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3768 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3769 "reshape");
3770 }
3771
3772 return 0;
3773
3774 out_free_conf:
3775 md_unregister_thread(&mddev->thread);
3776 if (conf->r10bio_pool)
3777 mempool_destroy(conf->r10bio_pool);
3778 safe_put_page(conf->tmppage);
3779 kfree(conf->mirrors);
3780 kfree(conf);
3781 mddev->private = NULL;
3782 out:
3783 return -EIO;
3784 }
3785
3786 static void raid10_free(struct mddev *mddev, void *priv)
3787 {
3788 struct r10conf *conf = priv;
3789
3790 if (conf->r10bio_pool)
3791 mempool_destroy(conf->r10bio_pool);
3792 safe_put_page(conf->tmppage);
3793 kfree(conf->mirrors);
3794 kfree(conf->mirrors_old);
3795 kfree(conf->mirrors_new);
3796 kfree(conf);
3797 }
3798
3799 static void raid10_quiesce(struct mddev *mddev, int state)
3800 {
3801 struct r10conf *conf = mddev->private;
3802
3803 switch(state) {
3804 case 1:
3805 raise_barrier(conf, 0);
3806 break;
3807 case 0:
3808 lower_barrier(conf);
3809 break;
3810 }
3811 }
3812
3813 static int raid10_resize(struct mddev *mddev, sector_t sectors)
3814 {
3815 /* Resize of 'far' arrays is not supported.
3816 * For 'near' and 'offset' arrays we can set the
3817 * number of sectors used to be an appropriate multiple
3818 * of the chunk size.
3819 * For 'offset', this is far_copies*chunksize.
3820 * For 'near' the multiplier is the LCM of
3821 * near_copies and raid_disks.
3822 * So if far_copies > 1 && !far_offset, fail.
3823 * Else find LCM(raid_disks, near_copy)*far_copies and
3824 * multiply by chunk_size. Then round to this number.
3825 * This is mostly done by raid10_size()
3826 */
3827 struct r10conf *conf = mddev->private;
3828 sector_t oldsize, size;
3829
3830 if (mddev->reshape_position != MaxSector)
3831 return -EBUSY;
3832
3833 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
3834 return -EINVAL;
3835
3836 oldsize = raid10_size(mddev, 0, 0);
3837 size = raid10_size(mddev, sectors, 0);
3838 if (mddev->external_size &&
3839 mddev->array_sectors > size)
3840 return -EINVAL;
3841 if (mddev->bitmap) {
3842 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3843 if (ret)
3844 return ret;
3845 }
3846 md_set_array_sectors(mddev, size);
3847 set_capacity(mddev->gendisk, mddev->array_sectors);
3848 revalidate_disk(mddev->gendisk);
3849 if (sectors > mddev->dev_sectors &&
3850 mddev->recovery_cp > oldsize) {
3851 mddev->recovery_cp = oldsize;
3852 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3853 }
3854 calc_sectors(conf, sectors);
3855 mddev->dev_sectors = conf->dev_sectors;
3856 mddev->resync_max_sectors = size;
3857 return 0;
3858 }
3859
3860 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
3861 {
3862 struct md_rdev *rdev;
3863 struct r10conf *conf;
3864
3865 if (mddev->degraded > 0) {
3866 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3867 mdname(mddev));
3868 return ERR_PTR(-EINVAL);
3869 }
3870 sector_div(size, devs);
3871
3872 /* Set new parameters */
3873 mddev->new_level = 10;
3874 /* new layout: far_copies = 1, near_copies = 2 */
3875 mddev->new_layout = (1<<8) + 2;
3876 mddev->new_chunk_sectors = mddev->chunk_sectors;
3877 mddev->delta_disks = mddev->raid_disks;
3878 mddev->raid_disks *= 2;
3879 /* make sure it will be not marked as dirty */
3880 mddev->recovery_cp = MaxSector;
3881 mddev->dev_sectors = size;
3882
3883 conf = setup_conf(mddev);
3884 if (!IS_ERR(conf)) {
3885 rdev_for_each(rdev, mddev)
3886 if (rdev->raid_disk >= 0) {
3887 rdev->new_raid_disk = rdev->raid_disk * 2;
3888 rdev->sectors = size;
3889 }
3890 conf->barrier = 1;
3891 }
3892
3893 return conf;
3894 }
3895
3896 static void *raid10_takeover(struct mddev *mddev)
3897 {
3898 struct r0conf *raid0_conf;
3899
3900 /* raid10 can take over:
3901 * raid0 - providing it has only two drives
3902 */
3903 if (mddev->level == 0) {
3904 /* for raid0 takeover only one zone is supported */
3905 raid0_conf = mddev->private;
3906 if (raid0_conf->nr_strip_zones > 1) {
3907 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3908 " with more than one zone.\n",
3909 mdname(mddev));
3910 return ERR_PTR(-EINVAL);
3911 }
3912 return raid10_takeover_raid0(mddev,
3913 raid0_conf->strip_zone->zone_end,
3914 raid0_conf->strip_zone->nb_dev);
3915 }
3916 return ERR_PTR(-EINVAL);
3917 }
3918
3919 static int raid10_check_reshape(struct mddev *mddev)
3920 {
3921 /* Called when there is a request to change
3922 * - layout (to ->new_layout)
3923 * - chunk size (to ->new_chunk_sectors)
3924 * - raid_disks (by delta_disks)
3925 * or when trying to restart a reshape that was ongoing.
3926 *
3927 * We need to validate the request and possibly allocate
3928 * space if that might be an issue later.
3929 *
3930 * Currently we reject any reshape of a 'far' mode array,
3931 * allow chunk size to change if new is generally acceptable,
3932 * allow raid_disks to increase, and allow
3933 * a switch between 'near' mode and 'offset' mode.
3934 */
3935 struct r10conf *conf = mddev->private;
3936 struct geom geo;
3937
3938 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3939 return -EINVAL;
3940
3941 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3942 /* mustn't change number of copies */
3943 return -EINVAL;
3944 if (geo.far_copies > 1 && !geo.far_offset)
3945 /* Cannot switch to 'far' mode */
3946 return -EINVAL;
3947
3948 if (mddev->array_sectors & geo.chunk_mask)
3949 /* not factor of array size */
3950 return -EINVAL;
3951
3952 if (!enough(conf, -1))
3953 return -EINVAL;
3954
3955 kfree(conf->mirrors_new);
3956 conf->mirrors_new = NULL;
3957 if (mddev->delta_disks > 0) {
3958 /* allocate new 'mirrors' list */
3959 conf->mirrors_new = kzalloc(
3960 sizeof(struct raid10_info)
3961 *(mddev->raid_disks +
3962 mddev->delta_disks),
3963 GFP_KERNEL);
3964 if (!conf->mirrors_new)
3965 return -ENOMEM;
3966 }
3967 return 0;
3968 }
3969
3970 /*
3971 * Need to check if array has failed when deciding whether to:
3972 * - start an array
3973 * - remove non-faulty devices
3974 * - add a spare
3975 * - allow a reshape
3976 * This determination is simple when no reshape is happening.
3977 * However if there is a reshape, we need to carefully check
3978 * both the before and after sections.
3979 * This is because some failed devices may only affect one
3980 * of the two sections, and some non-in_sync devices may
3981 * be insync in the section most affected by failed devices.
3982 */
3983 static int calc_degraded(struct r10conf *conf)
3984 {
3985 int degraded, degraded2;
3986 int i;
3987
3988 rcu_read_lock();
3989 degraded = 0;
3990 /* 'prev' section first */
3991 for (i = 0; i < conf->prev.raid_disks; i++) {
3992 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
3993 if (!rdev || test_bit(Faulty, &rdev->flags))
3994 degraded++;
3995 else if (!test_bit(In_sync, &rdev->flags))
3996 /* When we can reduce the number of devices in
3997 * an array, this might not contribute to
3998 * 'degraded'. It does now.
3999 */
4000 degraded++;
4001 }
4002 rcu_read_unlock();
4003 if (conf->geo.raid_disks == conf->prev.raid_disks)
4004 return degraded;
4005 rcu_read_lock();
4006 degraded2 = 0;
4007 for (i = 0; i < conf->geo.raid_disks; i++) {
4008 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4009 if (!rdev || test_bit(Faulty, &rdev->flags))
4010 degraded2++;
4011 else if (!test_bit(In_sync, &rdev->flags)) {
4012 /* If reshape is increasing the number of devices,
4013 * this section has already been recovered, so
4014 * it doesn't contribute to degraded.
4015 * else it does.
4016 */
4017 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4018 degraded2++;
4019 }
4020 }
4021 rcu_read_unlock();
4022 if (degraded2 > degraded)
4023 return degraded2;
4024 return degraded;
4025 }
4026
4027 static int raid10_start_reshape(struct mddev *mddev)
4028 {
4029 /* A 'reshape' has been requested. This commits
4030 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4031 * This also checks if there are enough spares and adds them
4032 * to the array.
4033 * We currently require enough spares to make the final
4034 * array non-degraded. We also require that the difference
4035 * between old and new data_offset - on each device - is
4036 * enough that we never risk over-writing.
4037 */
4038
4039 unsigned long before_length, after_length;
4040 sector_t min_offset_diff = 0;
4041 int first = 1;
4042 struct geom new;
4043 struct r10conf *conf = mddev->private;
4044 struct md_rdev *rdev;
4045 int spares = 0;
4046 int ret;
4047
4048 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4049 return -EBUSY;
4050
4051 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4052 return -EINVAL;
4053
4054 before_length = ((1 << conf->prev.chunk_shift) *
4055 conf->prev.far_copies);
4056 after_length = ((1 << conf->geo.chunk_shift) *
4057 conf->geo.far_copies);
4058
4059 rdev_for_each(rdev, mddev) {
4060 if (!test_bit(In_sync, &rdev->flags)
4061 && !test_bit(Faulty, &rdev->flags))
4062 spares++;
4063 if (rdev->raid_disk >= 0) {
4064 long long diff = (rdev->new_data_offset
4065 - rdev->data_offset);
4066 if (!mddev->reshape_backwards)
4067 diff = -diff;
4068 if (diff < 0)
4069 diff = 0;
4070 if (first || diff < min_offset_diff)
4071 min_offset_diff = diff;
4072 }
4073 }
4074
4075 if (max(before_length, after_length) > min_offset_diff)
4076 return -EINVAL;
4077
4078 if (spares < mddev->delta_disks)
4079 return -EINVAL;
4080
4081 conf->offset_diff = min_offset_diff;
4082 spin_lock_irq(&conf->device_lock);
4083 if (conf->mirrors_new) {
4084 memcpy(conf->mirrors_new, conf->mirrors,
4085 sizeof(struct raid10_info)*conf->prev.raid_disks);
4086 smp_mb();
4087 kfree(conf->mirrors_old);
4088 conf->mirrors_old = conf->mirrors;
4089 conf->mirrors = conf->mirrors_new;
4090 conf->mirrors_new = NULL;
4091 }
4092 setup_geo(&conf->geo, mddev, geo_start);
4093 smp_mb();
4094 if (mddev->reshape_backwards) {
4095 sector_t size = raid10_size(mddev, 0, 0);
4096 if (size < mddev->array_sectors) {
4097 spin_unlock_irq(&conf->device_lock);
4098 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4099 mdname(mddev));
4100 return -EINVAL;
4101 }
4102 mddev->resync_max_sectors = size;
4103 conf->reshape_progress = size;
4104 } else
4105 conf->reshape_progress = 0;
4106 conf->reshape_safe = conf->reshape_progress;
4107 spin_unlock_irq(&conf->device_lock);
4108
4109 if (mddev->delta_disks && mddev->bitmap) {
4110 ret = bitmap_resize(mddev->bitmap,
4111 raid10_size(mddev, 0,
4112 conf->geo.raid_disks),
4113 0, 0);
4114 if (ret)
4115 goto abort;
4116 }
4117 if (mddev->delta_disks > 0) {
4118 rdev_for_each(rdev, mddev)
4119 if (rdev->raid_disk < 0 &&
4120 !test_bit(Faulty, &rdev->flags)) {
4121 if (raid10_add_disk(mddev, rdev) == 0) {
4122 if (rdev->raid_disk >=
4123 conf->prev.raid_disks)
4124 set_bit(In_sync, &rdev->flags);
4125 else
4126 rdev->recovery_offset = 0;
4127
4128 if (sysfs_link_rdev(mddev, rdev))
4129 /* Failure here is OK */;
4130 }
4131 } else if (rdev->raid_disk >= conf->prev.raid_disks
4132 && !test_bit(Faulty, &rdev->flags)) {
4133 /* This is a spare that was manually added */
4134 set_bit(In_sync, &rdev->flags);
4135 }
4136 }
4137 /* When a reshape changes the number of devices,
4138 * ->degraded is measured against the larger of the
4139 * pre and post numbers.
4140 */
4141 spin_lock_irq(&conf->device_lock);
4142 mddev->degraded = calc_degraded(conf);
4143 spin_unlock_irq(&conf->device_lock);
4144 mddev->raid_disks = conf->geo.raid_disks;
4145 mddev->reshape_position = conf->reshape_progress;
4146 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4147
4148 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4149 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4150 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4151 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4152 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4153
4154 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4155 "reshape");
4156 if (!mddev->sync_thread) {
4157 ret = -EAGAIN;
4158 goto abort;
4159 }
4160 conf->reshape_checkpoint = jiffies;
4161 md_wakeup_thread(mddev->sync_thread);
4162 md_new_event(mddev);
4163 return 0;
4164
4165 abort:
4166 mddev->recovery = 0;
4167 spin_lock_irq(&conf->device_lock);
4168 conf->geo = conf->prev;
4169 mddev->raid_disks = conf->geo.raid_disks;
4170 rdev_for_each(rdev, mddev)
4171 rdev->new_data_offset = rdev->data_offset;
4172 smp_wmb();
4173 conf->reshape_progress = MaxSector;
4174 conf->reshape_safe = MaxSector;
4175 mddev->reshape_position = MaxSector;
4176 spin_unlock_irq(&conf->device_lock);
4177 return ret;
4178 }
4179
4180 /* Calculate the last device-address that could contain
4181 * any block from the chunk that includes the array-address 's'
4182 * and report the next address.
4183 * i.e. the address returned will be chunk-aligned and after
4184 * any data that is in the chunk containing 's'.
4185 */
4186 static sector_t last_dev_address(sector_t s, struct geom *geo)
4187 {
4188 s = (s | geo->chunk_mask) + 1;
4189 s >>= geo->chunk_shift;
4190 s *= geo->near_copies;
4191 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4192 s *= geo->far_copies;
4193 s <<= geo->chunk_shift;
4194 return s;
4195 }
4196
4197 /* Calculate the first device-address that could contain
4198 * any block from the chunk that includes the array-address 's'.
4199 * This too will be the start of a chunk
4200 */
4201 static sector_t first_dev_address(sector_t s, struct geom *geo)
4202 {
4203 s >>= geo->chunk_shift;
4204 s *= geo->near_copies;
4205 sector_div(s, geo->raid_disks);
4206 s *= geo->far_copies;
4207 s <<= geo->chunk_shift;
4208 return s;
4209 }
4210
4211 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4212 int *skipped)
4213 {
4214 /* We simply copy at most one chunk (smallest of old and new)
4215 * at a time, possibly less if that exceeds RESYNC_PAGES,
4216 * or we hit a bad block or something.
4217 * This might mean we pause for normal IO in the middle of
4218 * a chunk, but that is not a problem was mddev->reshape_position
4219 * can record any location.
4220 *
4221 * If we will want to write to a location that isn't
4222 * yet recorded as 'safe' (i.e. in metadata on disk) then
4223 * we need to flush all reshape requests and update the metadata.
4224 *
4225 * When reshaping forwards (e.g. to more devices), we interpret
4226 * 'safe' as the earliest block which might not have been copied
4227 * down yet. We divide this by previous stripe size and multiply
4228 * by previous stripe length to get lowest device offset that we
4229 * cannot write to yet.
4230 * We interpret 'sector_nr' as an address that we want to write to.
4231 * From this we use last_device_address() to find where we might
4232 * write to, and first_device_address on the 'safe' position.
4233 * If this 'next' write position is after the 'safe' position,
4234 * we must update the metadata to increase the 'safe' position.
4235 *
4236 * When reshaping backwards, we round in the opposite direction
4237 * and perform the reverse test: next write position must not be
4238 * less than current safe position.
4239 *
4240 * In all this the minimum difference in data offsets
4241 * (conf->offset_diff - always positive) allows a bit of slack,
4242 * so next can be after 'safe', but not by more than offset_disk
4243 *
4244 * We need to prepare all the bios here before we start any IO
4245 * to ensure the size we choose is acceptable to all devices.
4246 * The means one for each copy for write-out and an extra one for
4247 * read-in.
4248 * We store the read-in bio in ->master_bio and the others in
4249 * ->devs[x].bio and ->devs[x].repl_bio.
4250 */
4251 struct r10conf *conf = mddev->private;
4252 struct r10bio *r10_bio;
4253 sector_t next, safe, last;
4254 int max_sectors;
4255 int nr_sectors;
4256 int s;
4257 struct md_rdev *rdev;
4258 int need_flush = 0;
4259 struct bio *blist;
4260 struct bio *bio, *read_bio;
4261 int sectors_done = 0;
4262
4263 if (sector_nr == 0) {
4264 /* If restarting in the middle, skip the initial sectors */
4265 if (mddev->reshape_backwards &&
4266 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4267 sector_nr = (raid10_size(mddev, 0, 0)
4268 - conf->reshape_progress);
4269 } else if (!mddev->reshape_backwards &&
4270 conf->reshape_progress > 0)
4271 sector_nr = conf->reshape_progress;
4272 if (sector_nr) {
4273 mddev->curr_resync_completed = sector_nr;
4274 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4275 *skipped = 1;
4276 return sector_nr;
4277 }
4278 }
4279
4280 /* We don't use sector_nr to track where we are up to
4281 * as that doesn't work well for ->reshape_backwards.
4282 * So just use ->reshape_progress.
4283 */
4284 if (mddev->reshape_backwards) {
4285 /* 'next' is the earliest device address that we might
4286 * write to for this chunk in the new layout
4287 */
4288 next = first_dev_address(conf->reshape_progress - 1,
4289 &conf->geo);
4290
4291 /* 'safe' is the last device address that we might read from
4292 * in the old layout after a restart
4293 */
4294 safe = last_dev_address(conf->reshape_safe - 1,
4295 &conf->prev);
4296
4297 if (next + conf->offset_diff < safe)
4298 need_flush = 1;
4299
4300 last = conf->reshape_progress - 1;
4301 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4302 & conf->prev.chunk_mask);
4303 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4304 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4305 } else {
4306 /* 'next' is after the last device address that we
4307 * might write to for this chunk in the new layout
4308 */
4309 next = last_dev_address(conf->reshape_progress, &conf->geo);
4310
4311 /* 'safe' is the earliest device address that we might
4312 * read from in the old layout after a restart
4313 */
4314 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4315
4316 /* Need to update metadata if 'next' might be beyond 'safe'
4317 * as that would possibly corrupt data
4318 */
4319 if (next > safe + conf->offset_diff)
4320 need_flush = 1;
4321
4322 sector_nr = conf->reshape_progress;
4323 last = sector_nr | (conf->geo.chunk_mask
4324 & conf->prev.chunk_mask);
4325
4326 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4327 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4328 }
4329
4330 if (need_flush ||
4331 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4332 /* Need to update reshape_position in metadata */
4333 wait_barrier(conf);
4334 mddev->reshape_position = conf->reshape_progress;
4335 if (mddev->reshape_backwards)
4336 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4337 - conf->reshape_progress;
4338 else
4339 mddev->curr_resync_completed = conf->reshape_progress;
4340 conf->reshape_checkpoint = jiffies;
4341 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4342 md_wakeup_thread(mddev->thread);
4343 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4344 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4345 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4346 allow_barrier(conf);
4347 return sectors_done;
4348 }
4349 conf->reshape_safe = mddev->reshape_position;
4350 allow_barrier(conf);
4351 }
4352
4353 read_more:
4354 /* Now schedule reads for blocks from sector_nr to last */
4355 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4356 r10_bio->state = 0;
4357 raise_barrier(conf, sectors_done != 0);
4358 atomic_set(&r10_bio->remaining, 0);
4359 r10_bio->mddev = mddev;
4360 r10_bio->sector = sector_nr;
4361 set_bit(R10BIO_IsReshape, &r10_bio->state);
4362 r10_bio->sectors = last - sector_nr + 1;
4363 rdev = read_balance(conf, r10_bio, &max_sectors);
4364 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4365
4366 if (!rdev) {
4367 /* Cannot read from here, so need to record bad blocks
4368 * on all the target devices.
4369 */
4370 // FIXME
4371 mempool_free(r10_bio, conf->r10buf_pool);
4372 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4373 return sectors_done;
4374 }
4375
4376 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4377
4378 read_bio->bi_bdev = rdev->bdev;
4379 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4380 + rdev->data_offset);
4381 read_bio->bi_private = r10_bio;
4382 read_bio->bi_end_io = end_sync_read;
4383 read_bio->bi_rw = READ;
4384 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4385 __set_bit(BIO_UPTODATE, &read_bio->bi_flags);
4386 read_bio->bi_vcnt = 0;
4387 read_bio->bi_iter.bi_size = 0;
4388 r10_bio->master_bio = read_bio;
4389 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4390
4391 /* Now find the locations in the new layout */
4392 __raid10_find_phys(&conf->geo, r10_bio);
4393
4394 blist = read_bio;
4395 read_bio->bi_next = NULL;
4396
4397 for (s = 0; s < conf->copies*2; s++) {
4398 struct bio *b;
4399 int d = r10_bio->devs[s/2].devnum;
4400 struct md_rdev *rdev2;
4401 if (s&1) {
4402 rdev2 = conf->mirrors[d].replacement;
4403 b = r10_bio->devs[s/2].repl_bio;
4404 } else {
4405 rdev2 = conf->mirrors[d].rdev;
4406 b = r10_bio->devs[s/2].bio;
4407 }
4408 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4409 continue;
4410
4411 bio_reset(b);
4412 b->bi_bdev = rdev2->bdev;
4413 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4414 rdev2->new_data_offset;
4415 b->bi_private = r10_bio;
4416 b->bi_end_io = end_reshape_write;
4417 b->bi_rw = WRITE;
4418 b->bi_next = blist;
4419 blist = b;
4420 }
4421
4422 /* Now add as many pages as possible to all of these bios. */
4423
4424 nr_sectors = 0;
4425 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4426 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4427 int len = (max_sectors - s) << 9;
4428 if (len > PAGE_SIZE)
4429 len = PAGE_SIZE;
4430 for (bio = blist; bio ; bio = bio->bi_next) {
4431 struct bio *bio2;
4432 if (bio_add_page(bio, page, len, 0))
4433 continue;
4434
4435 /* Didn't fit, must stop */
4436 for (bio2 = blist;
4437 bio2 && bio2 != bio;
4438 bio2 = bio2->bi_next) {
4439 /* Remove last page from this bio */
4440 bio2->bi_vcnt--;
4441 bio2->bi_iter.bi_size -= len;
4442 __clear_bit(BIO_SEG_VALID, &bio2->bi_flags);
4443 }
4444 goto bio_full;
4445 }
4446 sector_nr += len >> 9;
4447 nr_sectors += len >> 9;
4448 }
4449 bio_full:
4450 r10_bio->sectors = nr_sectors;
4451
4452 /* Now submit the read */
4453 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4454 atomic_inc(&r10_bio->remaining);
4455 read_bio->bi_next = NULL;
4456 generic_make_request(read_bio);
4457 sector_nr += nr_sectors;
4458 sectors_done += nr_sectors;
4459 if (sector_nr <= last)
4460 goto read_more;
4461
4462 /* Now that we have done the whole section we can
4463 * update reshape_progress
4464 */
4465 if (mddev->reshape_backwards)
4466 conf->reshape_progress -= sectors_done;
4467 else
4468 conf->reshape_progress += sectors_done;
4469
4470 return sectors_done;
4471 }
4472
4473 static void end_reshape_request(struct r10bio *r10_bio);
4474 static int handle_reshape_read_error(struct mddev *mddev,
4475 struct r10bio *r10_bio);
4476 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4477 {
4478 /* Reshape read completed. Hopefully we have a block
4479 * to write out.
4480 * If we got a read error then we do sync 1-page reads from
4481 * elsewhere until we find the data - or give up.
4482 */
4483 struct r10conf *conf = mddev->private;
4484 int s;
4485
4486 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4487 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4488 /* Reshape has been aborted */
4489 md_done_sync(mddev, r10_bio->sectors, 0);
4490 return;
4491 }
4492
4493 /* We definitely have the data in the pages, schedule the
4494 * writes.
4495 */
4496 atomic_set(&r10_bio->remaining, 1);
4497 for (s = 0; s < conf->copies*2; s++) {
4498 struct bio *b;
4499 int d = r10_bio->devs[s/2].devnum;
4500 struct md_rdev *rdev;
4501 if (s&1) {
4502 rdev = conf->mirrors[d].replacement;
4503 b = r10_bio->devs[s/2].repl_bio;
4504 } else {
4505 rdev = conf->mirrors[d].rdev;
4506 b = r10_bio->devs[s/2].bio;
4507 }
4508 if (!rdev || test_bit(Faulty, &rdev->flags))
4509 continue;
4510 atomic_inc(&rdev->nr_pending);
4511 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4512 atomic_inc(&r10_bio->remaining);
4513 b->bi_next = NULL;
4514 generic_make_request(b);
4515 }
4516 end_reshape_request(r10_bio);
4517 }
4518
4519 static void end_reshape(struct r10conf *conf)
4520 {
4521 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4522 return;
4523
4524 spin_lock_irq(&conf->device_lock);
4525 conf->prev = conf->geo;
4526 md_finish_reshape(conf->mddev);
4527 smp_wmb();
4528 conf->reshape_progress = MaxSector;
4529 conf->reshape_safe = MaxSector;
4530 spin_unlock_irq(&conf->device_lock);
4531
4532 /* read-ahead size must cover two whole stripes, which is
4533 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4534 */
4535 if (conf->mddev->queue) {
4536 int stripe = conf->geo.raid_disks *
4537 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4538 stripe /= conf->geo.near_copies;
4539 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4540 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4541 }
4542 conf->fullsync = 0;
4543 }
4544
4545 static int handle_reshape_read_error(struct mddev *mddev,
4546 struct r10bio *r10_bio)
4547 {
4548 /* Use sync reads to get the blocks from somewhere else */
4549 int sectors = r10_bio->sectors;
4550 struct r10conf *conf = mddev->private;
4551 struct {
4552 struct r10bio r10_bio;
4553 struct r10dev devs[conf->copies];
4554 } on_stack;
4555 struct r10bio *r10b = &on_stack.r10_bio;
4556 int slot = 0;
4557 int idx = 0;
4558 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4559
4560 r10b->sector = r10_bio->sector;
4561 __raid10_find_phys(&conf->prev, r10b);
4562
4563 while (sectors) {
4564 int s = sectors;
4565 int success = 0;
4566 int first_slot = slot;
4567
4568 if (s > (PAGE_SIZE >> 9))
4569 s = PAGE_SIZE >> 9;
4570
4571 while (!success) {
4572 int d = r10b->devs[slot].devnum;
4573 struct md_rdev *rdev = conf->mirrors[d].rdev;
4574 sector_t addr;
4575 if (rdev == NULL ||
4576 test_bit(Faulty, &rdev->flags) ||
4577 !test_bit(In_sync, &rdev->flags))
4578 goto failed;
4579
4580 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4581 success = sync_page_io(rdev,
4582 addr,
4583 s << 9,
4584 bvec[idx].bv_page,
4585 READ, false);
4586 if (success)
4587 break;
4588 failed:
4589 slot++;
4590 if (slot >= conf->copies)
4591 slot = 0;
4592 if (slot == first_slot)
4593 break;
4594 }
4595 if (!success) {
4596 /* couldn't read this block, must give up */
4597 set_bit(MD_RECOVERY_INTR,
4598 &mddev->recovery);
4599 return -EIO;
4600 }
4601 sectors -= s;
4602 idx++;
4603 }
4604 return 0;
4605 }
4606
4607 static void end_reshape_write(struct bio *bio, int error)
4608 {
4609 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4610 struct r10bio *r10_bio = bio->bi_private;
4611 struct mddev *mddev = r10_bio->mddev;
4612 struct r10conf *conf = mddev->private;
4613 int d;
4614 int slot;
4615 int repl;
4616 struct md_rdev *rdev = NULL;
4617
4618 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4619 if (repl)
4620 rdev = conf->mirrors[d].replacement;
4621 if (!rdev) {
4622 smp_mb();
4623 rdev = conf->mirrors[d].rdev;
4624 }
4625
4626 if (!uptodate) {
4627 /* FIXME should record badblock */
4628 md_error(mddev, rdev);
4629 }
4630
4631 rdev_dec_pending(rdev, mddev);
4632 end_reshape_request(r10_bio);
4633 }
4634
4635 static void end_reshape_request(struct r10bio *r10_bio)
4636 {
4637 if (!atomic_dec_and_test(&r10_bio->remaining))
4638 return;
4639 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4640 bio_put(r10_bio->master_bio);
4641 put_buf(r10_bio);
4642 }
4643
4644 static void raid10_finish_reshape(struct mddev *mddev)
4645 {
4646 struct r10conf *conf = mddev->private;
4647
4648 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4649 return;
4650
4651 if (mddev->delta_disks > 0) {
4652 sector_t size = raid10_size(mddev, 0, 0);
4653 md_set_array_sectors(mddev, size);
4654 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4655 mddev->recovery_cp = mddev->resync_max_sectors;
4656 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4657 }
4658 mddev->resync_max_sectors = size;
4659 set_capacity(mddev->gendisk, mddev->array_sectors);
4660 revalidate_disk(mddev->gendisk);
4661 } else {
4662 int d;
4663 for (d = conf->geo.raid_disks ;
4664 d < conf->geo.raid_disks - mddev->delta_disks;
4665 d++) {
4666 struct md_rdev *rdev = conf->mirrors[d].rdev;
4667 if (rdev)
4668 clear_bit(In_sync, &rdev->flags);
4669 rdev = conf->mirrors[d].replacement;
4670 if (rdev)
4671 clear_bit(In_sync, &rdev->flags);
4672 }
4673 }
4674 mddev->layout = mddev->new_layout;
4675 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4676 mddev->reshape_position = MaxSector;
4677 mddev->delta_disks = 0;
4678 mddev->reshape_backwards = 0;
4679 }
4680
4681 static struct md_personality raid10_personality =
4682 {
4683 .name = "raid10",
4684 .level = 10,
4685 .owner = THIS_MODULE,
4686 .make_request = make_request,
4687 .run = run,
4688 .free = raid10_free,
4689 .status = status,
4690 .error_handler = error,
4691 .hot_add_disk = raid10_add_disk,
4692 .hot_remove_disk= raid10_remove_disk,
4693 .spare_active = raid10_spare_active,
4694 .sync_request = sync_request,
4695 .quiesce = raid10_quiesce,
4696 .size = raid10_size,
4697 .resize = raid10_resize,
4698 .takeover = raid10_takeover,
4699 .check_reshape = raid10_check_reshape,
4700 .start_reshape = raid10_start_reshape,
4701 .finish_reshape = raid10_finish_reshape,
4702 .congested = raid10_congested,
4703 .mergeable_bvec = raid10_mergeable_bvec,
4704 };
4705
4706 static int __init raid_init(void)
4707 {
4708 return register_md_personality(&raid10_personality);
4709 }
4710
4711 static void raid_exit(void)
4712 {
4713 unregister_md_personality(&raid10_personality);
4714 }
4715
4716 module_init(raid_init);
4717 module_exit(raid_exit);
4718 MODULE_LICENSE("GPL");
4719 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4720 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4721 MODULE_ALIAS("md-raid10");
4722 MODULE_ALIAS("md-level-10");
4723
4724 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
This page took 0.122826 seconds and 6 git commands to generate.