Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/regulator
[deliverable/linux.git] / drivers / md / raid10.c
1 /*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
8 * Base on code in raid1.c. See raid1.c for further copyright information.
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include "md.h"
28 #include "raid10.h"
29 #include "raid0.h"
30 #include "bitmap.h"
31
32 /*
33 * RAID10 provides a combination of RAID0 and RAID1 functionality.
34 * The layout of data is defined by
35 * chunk_size
36 * raid_disks
37 * near_copies (stored in low byte of layout)
38 * far_copies (stored in second byte of layout)
39 * far_offset (stored in bit 16 of layout )
40 *
41 * The data to be stored is divided into chunks using chunksize.
42 * Each device is divided into far_copies sections.
43 * In each section, chunks are laid out in a style similar to raid0, but
44 * near_copies copies of each chunk is stored (each on a different drive).
45 * The starting device for each section is offset near_copies from the starting
46 * device of the previous section.
47 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
48 * drive.
49 * near_copies and far_copies must be at least one, and their product is at most
50 * raid_disks.
51 *
52 * If far_offset is true, then the far_copies are handled a bit differently.
53 * The copies are still in different stripes, but instead of be very far apart
54 * on disk, there are adjacent stripes.
55 */
56
57 /*
58 * Number of guaranteed r10bios in case of extreme VM load:
59 */
60 #define NR_RAID10_BIOS 256
61
62 /* When there are this many requests queue to be written by
63 * the raid10 thread, we become 'congested' to provide back-pressure
64 * for writeback.
65 */
66 static int max_queued_requests = 1024;
67
68 static void allow_barrier(struct r10conf *conf);
69 static void lower_barrier(struct r10conf *conf);
70 static int enough(struct r10conf *conf, int ignore);
71
72 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
73 {
74 struct r10conf *conf = data;
75 int size = offsetof(struct r10bio, devs[conf->copies]);
76
77 /* allocate a r10bio with room for raid_disks entries in the
78 * bios array */
79 return kzalloc(size, gfp_flags);
80 }
81
82 static void r10bio_pool_free(void *r10_bio, void *data)
83 {
84 kfree(r10_bio);
85 }
86
87 /* Maximum size of each resync request */
88 #define RESYNC_BLOCK_SIZE (64*1024)
89 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
90 /* amount of memory to reserve for resync requests */
91 #define RESYNC_WINDOW (1024*1024)
92 /* maximum number of concurrent requests, memory permitting */
93 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
94
95 /*
96 * When performing a resync, we need to read and compare, so
97 * we need as many pages are there are copies.
98 * When performing a recovery, we need 2 bios, one for read,
99 * one for write (we recover only one drive per r10buf)
100 *
101 */
102 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
103 {
104 struct r10conf *conf = data;
105 struct page *page;
106 struct r10bio *r10_bio;
107 struct bio *bio;
108 int i, j;
109 int nalloc;
110
111 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
112 if (!r10_bio)
113 return NULL;
114
115 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
116 nalloc = conf->copies; /* resync */
117 else
118 nalloc = 2; /* recovery */
119
120 /*
121 * Allocate bios.
122 */
123 for (j = nalloc ; j-- ; ) {
124 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
125 if (!bio)
126 goto out_free_bio;
127 r10_bio->devs[j].bio = bio;
128 if (!conf->have_replacement)
129 continue;
130 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
131 if (!bio)
132 goto out_free_bio;
133 r10_bio->devs[j].repl_bio = bio;
134 }
135 /*
136 * Allocate RESYNC_PAGES data pages and attach them
137 * where needed.
138 */
139 for (j = 0 ; j < nalloc; j++) {
140 struct bio *rbio = r10_bio->devs[j].repl_bio;
141 bio = r10_bio->devs[j].bio;
142 for (i = 0; i < RESYNC_PAGES; i++) {
143 if (j == 1 && !test_bit(MD_RECOVERY_SYNC,
144 &conf->mddev->recovery)) {
145 /* we can share bv_page's during recovery */
146 struct bio *rbio = r10_bio->devs[0].bio;
147 page = rbio->bi_io_vec[i].bv_page;
148 get_page(page);
149 } else
150 page = alloc_page(gfp_flags);
151 if (unlikely(!page))
152 goto out_free_pages;
153
154 bio->bi_io_vec[i].bv_page = page;
155 if (rbio)
156 rbio->bi_io_vec[i].bv_page = page;
157 }
158 }
159
160 return r10_bio;
161
162 out_free_pages:
163 for ( ; i > 0 ; i--)
164 safe_put_page(bio->bi_io_vec[i-1].bv_page);
165 while (j--)
166 for (i = 0; i < RESYNC_PAGES ; i++)
167 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
168 j = -1;
169 out_free_bio:
170 while (++j < nalloc) {
171 bio_put(r10_bio->devs[j].bio);
172 if (r10_bio->devs[j].repl_bio)
173 bio_put(r10_bio->devs[j].repl_bio);
174 }
175 r10bio_pool_free(r10_bio, conf);
176 return NULL;
177 }
178
179 static void r10buf_pool_free(void *__r10_bio, void *data)
180 {
181 int i;
182 struct r10conf *conf = data;
183 struct r10bio *r10bio = __r10_bio;
184 int j;
185
186 for (j=0; j < conf->copies; j++) {
187 struct bio *bio = r10bio->devs[j].bio;
188 if (bio) {
189 for (i = 0; i < RESYNC_PAGES; i++) {
190 safe_put_page(bio->bi_io_vec[i].bv_page);
191 bio->bi_io_vec[i].bv_page = NULL;
192 }
193 bio_put(bio);
194 }
195 bio = r10bio->devs[j].repl_bio;
196 if (bio)
197 bio_put(bio);
198 }
199 r10bio_pool_free(r10bio, conf);
200 }
201
202 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
203 {
204 int i;
205
206 for (i = 0; i < conf->copies; i++) {
207 struct bio **bio = & r10_bio->devs[i].bio;
208 if (!BIO_SPECIAL(*bio))
209 bio_put(*bio);
210 *bio = NULL;
211 bio = &r10_bio->devs[i].repl_bio;
212 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
213 bio_put(*bio);
214 *bio = NULL;
215 }
216 }
217
218 static void free_r10bio(struct r10bio *r10_bio)
219 {
220 struct r10conf *conf = r10_bio->mddev->private;
221
222 put_all_bios(conf, r10_bio);
223 mempool_free(r10_bio, conf->r10bio_pool);
224 }
225
226 static void put_buf(struct r10bio *r10_bio)
227 {
228 struct r10conf *conf = r10_bio->mddev->private;
229
230 mempool_free(r10_bio, conf->r10buf_pool);
231
232 lower_barrier(conf);
233 }
234
235 static void reschedule_retry(struct r10bio *r10_bio)
236 {
237 unsigned long flags;
238 struct mddev *mddev = r10_bio->mddev;
239 struct r10conf *conf = mddev->private;
240
241 spin_lock_irqsave(&conf->device_lock, flags);
242 list_add(&r10_bio->retry_list, &conf->retry_list);
243 conf->nr_queued ++;
244 spin_unlock_irqrestore(&conf->device_lock, flags);
245
246 /* wake up frozen array... */
247 wake_up(&conf->wait_barrier);
248
249 md_wakeup_thread(mddev->thread);
250 }
251
252 /*
253 * raid_end_bio_io() is called when we have finished servicing a mirrored
254 * operation and are ready to return a success/failure code to the buffer
255 * cache layer.
256 */
257 static void raid_end_bio_io(struct r10bio *r10_bio)
258 {
259 struct bio *bio = r10_bio->master_bio;
260 int done;
261 struct r10conf *conf = r10_bio->mddev->private;
262
263 if (bio->bi_phys_segments) {
264 unsigned long flags;
265 spin_lock_irqsave(&conf->device_lock, flags);
266 bio->bi_phys_segments--;
267 done = (bio->bi_phys_segments == 0);
268 spin_unlock_irqrestore(&conf->device_lock, flags);
269 } else
270 done = 1;
271 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
272 clear_bit(BIO_UPTODATE, &bio->bi_flags);
273 if (done) {
274 bio_endio(bio, 0);
275 /*
276 * Wake up any possible resync thread that waits for the device
277 * to go idle.
278 */
279 allow_barrier(conf);
280 }
281 free_r10bio(r10_bio);
282 }
283
284 /*
285 * Update disk head position estimator based on IRQ completion info.
286 */
287 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
288 {
289 struct r10conf *conf = r10_bio->mddev->private;
290
291 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
292 r10_bio->devs[slot].addr + (r10_bio->sectors);
293 }
294
295 /*
296 * Find the disk number which triggered given bio
297 */
298 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
299 struct bio *bio, int *slotp, int *replp)
300 {
301 int slot;
302 int repl = 0;
303
304 for (slot = 0; slot < conf->copies; slot++) {
305 if (r10_bio->devs[slot].bio == bio)
306 break;
307 if (r10_bio->devs[slot].repl_bio == bio) {
308 repl = 1;
309 break;
310 }
311 }
312
313 BUG_ON(slot == conf->copies);
314 update_head_pos(slot, r10_bio);
315
316 if (slotp)
317 *slotp = slot;
318 if (replp)
319 *replp = repl;
320 return r10_bio->devs[slot].devnum;
321 }
322
323 static void raid10_end_read_request(struct bio *bio, int error)
324 {
325 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
326 struct r10bio *r10_bio = bio->bi_private;
327 int slot, dev;
328 struct md_rdev *rdev;
329 struct r10conf *conf = r10_bio->mddev->private;
330
331
332 slot = r10_bio->read_slot;
333 dev = r10_bio->devs[slot].devnum;
334 rdev = r10_bio->devs[slot].rdev;
335 /*
336 * this branch is our 'one mirror IO has finished' event handler:
337 */
338 update_head_pos(slot, r10_bio);
339
340 if (uptodate) {
341 /*
342 * Set R10BIO_Uptodate in our master bio, so that
343 * we will return a good error code to the higher
344 * levels even if IO on some other mirrored buffer fails.
345 *
346 * The 'master' represents the composite IO operation to
347 * user-side. So if something waits for IO, then it will
348 * wait for the 'master' bio.
349 */
350 set_bit(R10BIO_Uptodate, &r10_bio->state);
351 } else {
352 /* If all other devices that store this block have
353 * failed, we want to return the error upwards rather
354 * than fail the last device. Here we redefine
355 * "uptodate" to mean "Don't want to retry"
356 */
357 unsigned long flags;
358 spin_lock_irqsave(&conf->device_lock, flags);
359 if (!enough(conf, rdev->raid_disk))
360 uptodate = 1;
361 spin_unlock_irqrestore(&conf->device_lock, flags);
362 }
363 if (uptodate) {
364 raid_end_bio_io(r10_bio);
365 rdev_dec_pending(rdev, conf->mddev);
366 } else {
367 /*
368 * oops, read error - keep the refcount on the rdev
369 */
370 char b[BDEVNAME_SIZE];
371 printk_ratelimited(KERN_ERR
372 "md/raid10:%s: %s: rescheduling sector %llu\n",
373 mdname(conf->mddev),
374 bdevname(rdev->bdev, b),
375 (unsigned long long)r10_bio->sector);
376 set_bit(R10BIO_ReadError, &r10_bio->state);
377 reschedule_retry(r10_bio);
378 }
379 }
380
381 static void close_write(struct r10bio *r10_bio)
382 {
383 /* clear the bitmap if all writes complete successfully */
384 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
385 r10_bio->sectors,
386 !test_bit(R10BIO_Degraded, &r10_bio->state),
387 0);
388 md_write_end(r10_bio->mddev);
389 }
390
391 static void one_write_done(struct r10bio *r10_bio)
392 {
393 if (atomic_dec_and_test(&r10_bio->remaining)) {
394 if (test_bit(R10BIO_WriteError, &r10_bio->state))
395 reschedule_retry(r10_bio);
396 else {
397 close_write(r10_bio);
398 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
399 reschedule_retry(r10_bio);
400 else
401 raid_end_bio_io(r10_bio);
402 }
403 }
404 }
405
406 static void raid10_end_write_request(struct bio *bio, int error)
407 {
408 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
409 struct r10bio *r10_bio = bio->bi_private;
410 int dev;
411 int dec_rdev = 1;
412 struct r10conf *conf = r10_bio->mddev->private;
413 int slot, repl;
414 struct md_rdev *rdev = NULL;
415
416 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
417
418 if (repl)
419 rdev = conf->mirrors[dev].replacement;
420 if (!rdev) {
421 smp_rmb();
422 repl = 0;
423 rdev = conf->mirrors[dev].rdev;
424 }
425 /*
426 * this branch is our 'one mirror IO has finished' event handler:
427 */
428 if (!uptodate) {
429 if (repl)
430 /* Never record new bad blocks to replacement,
431 * just fail it.
432 */
433 md_error(rdev->mddev, rdev);
434 else {
435 set_bit(WriteErrorSeen, &rdev->flags);
436 if (!test_and_set_bit(WantReplacement, &rdev->flags))
437 set_bit(MD_RECOVERY_NEEDED,
438 &rdev->mddev->recovery);
439 set_bit(R10BIO_WriteError, &r10_bio->state);
440 dec_rdev = 0;
441 }
442 } else {
443 /*
444 * Set R10BIO_Uptodate in our master bio, so that
445 * we will return a good error code for to the higher
446 * levels even if IO on some other mirrored buffer fails.
447 *
448 * The 'master' represents the composite IO operation to
449 * user-side. So if something waits for IO, then it will
450 * wait for the 'master' bio.
451 */
452 sector_t first_bad;
453 int bad_sectors;
454
455 set_bit(R10BIO_Uptodate, &r10_bio->state);
456
457 /* Maybe we can clear some bad blocks. */
458 if (is_badblock(rdev,
459 r10_bio->devs[slot].addr,
460 r10_bio->sectors,
461 &first_bad, &bad_sectors)) {
462 bio_put(bio);
463 if (repl)
464 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
465 else
466 r10_bio->devs[slot].bio = IO_MADE_GOOD;
467 dec_rdev = 0;
468 set_bit(R10BIO_MadeGood, &r10_bio->state);
469 }
470 }
471
472 /*
473 *
474 * Let's see if all mirrored write operations have finished
475 * already.
476 */
477 one_write_done(r10_bio);
478 if (dec_rdev)
479 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
480 }
481
482 /*
483 * RAID10 layout manager
484 * As well as the chunksize and raid_disks count, there are two
485 * parameters: near_copies and far_copies.
486 * near_copies * far_copies must be <= raid_disks.
487 * Normally one of these will be 1.
488 * If both are 1, we get raid0.
489 * If near_copies == raid_disks, we get raid1.
490 *
491 * Chunks are laid out in raid0 style with near_copies copies of the
492 * first chunk, followed by near_copies copies of the next chunk and
493 * so on.
494 * If far_copies > 1, then after 1/far_copies of the array has been assigned
495 * as described above, we start again with a device offset of near_copies.
496 * So we effectively have another copy of the whole array further down all
497 * the drives, but with blocks on different drives.
498 * With this layout, and block is never stored twice on the one device.
499 *
500 * raid10_find_phys finds the sector offset of a given virtual sector
501 * on each device that it is on.
502 *
503 * raid10_find_virt does the reverse mapping, from a device and a
504 * sector offset to a virtual address
505 */
506
507 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
508 {
509 int n,f;
510 sector_t sector;
511 sector_t chunk;
512 sector_t stripe;
513 int dev;
514
515 int slot = 0;
516
517 /* now calculate first sector/dev */
518 chunk = r10bio->sector >> conf->chunk_shift;
519 sector = r10bio->sector & conf->chunk_mask;
520
521 chunk *= conf->near_copies;
522 stripe = chunk;
523 dev = sector_div(stripe, conf->raid_disks);
524 if (conf->far_offset)
525 stripe *= conf->far_copies;
526
527 sector += stripe << conf->chunk_shift;
528
529 /* and calculate all the others */
530 for (n=0; n < conf->near_copies; n++) {
531 int d = dev;
532 sector_t s = sector;
533 r10bio->devs[slot].addr = sector;
534 r10bio->devs[slot].devnum = d;
535 slot++;
536
537 for (f = 1; f < conf->far_copies; f++) {
538 d += conf->near_copies;
539 if (d >= conf->raid_disks)
540 d -= conf->raid_disks;
541 s += conf->stride;
542 r10bio->devs[slot].devnum = d;
543 r10bio->devs[slot].addr = s;
544 slot++;
545 }
546 dev++;
547 if (dev >= conf->raid_disks) {
548 dev = 0;
549 sector += (conf->chunk_mask + 1);
550 }
551 }
552 BUG_ON(slot != conf->copies);
553 }
554
555 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
556 {
557 sector_t offset, chunk, vchunk;
558
559 offset = sector & conf->chunk_mask;
560 if (conf->far_offset) {
561 int fc;
562 chunk = sector >> conf->chunk_shift;
563 fc = sector_div(chunk, conf->far_copies);
564 dev -= fc * conf->near_copies;
565 if (dev < 0)
566 dev += conf->raid_disks;
567 } else {
568 while (sector >= conf->stride) {
569 sector -= conf->stride;
570 if (dev < conf->near_copies)
571 dev += conf->raid_disks - conf->near_copies;
572 else
573 dev -= conf->near_copies;
574 }
575 chunk = sector >> conf->chunk_shift;
576 }
577 vchunk = chunk * conf->raid_disks + dev;
578 sector_div(vchunk, conf->near_copies);
579 return (vchunk << conf->chunk_shift) + offset;
580 }
581
582 /**
583 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
584 * @q: request queue
585 * @bvm: properties of new bio
586 * @biovec: the request that could be merged to it.
587 *
588 * Return amount of bytes we can accept at this offset
589 * If near_copies == raid_disk, there are no striping issues,
590 * but in that case, the function isn't called at all.
591 */
592 static int raid10_mergeable_bvec(struct request_queue *q,
593 struct bvec_merge_data *bvm,
594 struct bio_vec *biovec)
595 {
596 struct mddev *mddev = q->queuedata;
597 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
598 int max;
599 unsigned int chunk_sectors = mddev->chunk_sectors;
600 unsigned int bio_sectors = bvm->bi_size >> 9;
601
602 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
603 if (max < 0) max = 0; /* bio_add cannot handle a negative return */
604 if (max <= biovec->bv_len && bio_sectors == 0)
605 return biovec->bv_len;
606 else
607 return max;
608 }
609
610 /*
611 * This routine returns the disk from which the requested read should
612 * be done. There is a per-array 'next expected sequential IO' sector
613 * number - if this matches on the next IO then we use the last disk.
614 * There is also a per-disk 'last know head position' sector that is
615 * maintained from IRQ contexts, both the normal and the resync IO
616 * completion handlers update this position correctly. If there is no
617 * perfect sequential match then we pick the disk whose head is closest.
618 *
619 * If there are 2 mirrors in the same 2 devices, performance degrades
620 * because position is mirror, not device based.
621 *
622 * The rdev for the device selected will have nr_pending incremented.
623 */
624
625 /*
626 * FIXME: possibly should rethink readbalancing and do it differently
627 * depending on near_copies / far_copies geometry.
628 */
629 static struct md_rdev *read_balance(struct r10conf *conf,
630 struct r10bio *r10_bio,
631 int *max_sectors)
632 {
633 const sector_t this_sector = r10_bio->sector;
634 int disk, slot;
635 int sectors = r10_bio->sectors;
636 int best_good_sectors;
637 sector_t new_distance, best_dist;
638 struct md_rdev *rdev, *best_rdev;
639 int do_balance;
640 int best_slot;
641
642 raid10_find_phys(conf, r10_bio);
643 rcu_read_lock();
644 retry:
645 sectors = r10_bio->sectors;
646 best_slot = -1;
647 best_rdev = NULL;
648 best_dist = MaxSector;
649 best_good_sectors = 0;
650 do_balance = 1;
651 /*
652 * Check if we can balance. We can balance on the whole
653 * device if no resync is going on (recovery is ok), or below
654 * the resync window. We take the first readable disk when
655 * above the resync window.
656 */
657 if (conf->mddev->recovery_cp < MaxSector
658 && (this_sector + sectors >= conf->next_resync))
659 do_balance = 0;
660
661 for (slot = 0; slot < conf->copies ; slot++) {
662 sector_t first_bad;
663 int bad_sectors;
664 sector_t dev_sector;
665
666 if (r10_bio->devs[slot].bio == IO_BLOCKED)
667 continue;
668 disk = r10_bio->devs[slot].devnum;
669 rdev = rcu_dereference(conf->mirrors[disk].replacement);
670 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
671 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
672 rdev = rcu_dereference(conf->mirrors[disk].rdev);
673 if (rdev == NULL)
674 continue;
675 if (test_bit(Faulty, &rdev->flags))
676 continue;
677 if (!test_bit(In_sync, &rdev->flags) &&
678 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
679 continue;
680
681 dev_sector = r10_bio->devs[slot].addr;
682 if (is_badblock(rdev, dev_sector, sectors,
683 &first_bad, &bad_sectors)) {
684 if (best_dist < MaxSector)
685 /* Already have a better slot */
686 continue;
687 if (first_bad <= dev_sector) {
688 /* Cannot read here. If this is the
689 * 'primary' device, then we must not read
690 * beyond 'bad_sectors' from another device.
691 */
692 bad_sectors -= (dev_sector - first_bad);
693 if (!do_balance && sectors > bad_sectors)
694 sectors = bad_sectors;
695 if (best_good_sectors > sectors)
696 best_good_sectors = sectors;
697 } else {
698 sector_t good_sectors =
699 first_bad - dev_sector;
700 if (good_sectors > best_good_sectors) {
701 best_good_sectors = good_sectors;
702 best_slot = slot;
703 best_rdev = rdev;
704 }
705 if (!do_balance)
706 /* Must read from here */
707 break;
708 }
709 continue;
710 } else
711 best_good_sectors = sectors;
712
713 if (!do_balance)
714 break;
715
716 /* This optimisation is debatable, and completely destroys
717 * sequential read speed for 'far copies' arrays. So only
718 * keep it for 'near' arrays, and review those later.
719 */
720 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending))
721 break;
722
723 /* for far > 1 always use the lowest address */
724 if (conf->far_copies > 1)
725 new_distance = r10_bio->devs[slot].addr;
726 else
727 new_distance = abs(r10_bio->devs[slot].addr -
728 conf->mirrors[disk].head_position);
729 if (new_distance < best_dist) {
730 best_dist = new_distance;
731 best_slot = slot;
732 best_rdev = rdev;
733 }
734 }
735 if (slot >= conf->copies) {
736 slot = best_slot;
737 rdev = best_rdev;
738 }
739
740 if (slot >= 0) {
741 atomic_inc(&rdev->nr_pending);
742 if (test_bit(Faulty, &rdev->flags)) {
743 /* Cannot risk returning a device that failed
744 * before we inc'ed nr_pending
745 */
746 rdev_dec_pending(rdev, conf->mddev);
747 goto retry;
748 }
749 r10_bio->read_slot = slot;
750 } else
751 rdev = NULL;
752 rcu_read_unlock();
753 *max_sectors = best_good_sectors;
754
755 return rdev;
756 }
757
758 static int raid10_congested(void *data, int bits)
759 {
760 struct mddev *mddev = data;
761 struct r10conf *conf = mddev->private;
762 int i, ret = 0;
763
764 if ((bits & (1 << BDI_async_congested)) &&
765 conf->pending_count >= max_queued_requests)
766 return 1;
767
768 if (mddev_congested(mddev, bits))
769 return 1;
770 rcu_read_lock();
771 for (i = 0; i < conf->raid_disks && ret == 0; i++) {
772 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
773 if (rdev && !test_bit(Faulty, &rdev->flags)) {
774 struct request_queue *q = bdev_get_queue(rdev->bdev);
775
776 ret |= bdi_congested(&q->backing_dev_info, bits);
777 }
778 }
779 rcu_read_unlock();
780 return ret;
781 }
782
783 static void flush_pending_writes(struct r10conf *conf)
784 {
785 /* Any writes that have been queued but are awaiting
786 * bitmap updates get flushed here.
787 */
788 spin_lock_irq(&conf->device_lock);
789
790 if (conf->pending_bio_list.head) {
791 struct bio *bio;
792 bio = bio_list_get(&conf->pending_bio_list);
793 conf->pending_count = 0;
794 spin_unlock_irq(&conf->device_lock);
795 /* flush any pending bitmap writes to disk
796 * before proceeding w/ I/O */
797 bitmap_unplug(conf->mddev->bitmap);
798 wake_up(&conf->wait_barrier);
799
800 while (bio) { /* submit pending writes */
801 struct bio *next = bio->bi_next;
802 bio->bi_next = NULL;
803 generic_make_request(bio);
804 bio = next;
805 }
806 } else
807 spin_unlock_irq(&conf->device_lock);
808 }
809
810 /* Barriers....
811 * Sometimes we need to suspend IO while we do something else,
812 * either some resync/recovery, or reconfigure the array.
813 * To do this we raise a 'barrier'.
814 * The 'barrier' is a counter that can be raised multiple times
815 * to count how many activities are happening which preclude
816 * normal IO.
817 * We can only raise the barrier if there is no pending IO.
818 * i.e. if nr_pending == 0.
819 * We choose only to raise the barrier if no-one is waiting for the
820 * barrier to go down. This means that as soon as an IO request
821 * is ready, no other operations which require a barrier will start
822 * until the IO request has had a chance.
823 *
824 * So: regular IO calls 'wait_barrier'. When that returns there
825 * is no backgroup IO happening, It must arrange to call
826 * allow_barrier when it has finished its IO.
827 * backgroup IO calls must call raise_barrier. Once that returns
828 * there is no normal IO happeing. It must arrange to call
829 * lower_barrier when the particular background IO completes.
830 */
831
832 static void raise_barrier(struct r10conf *conf, int force)
833 {
834 BUG_ON(force && !conf->barrier);
835 spin_lock_irq(&conf->resync_lock);
836
837 /* Wait until no block IO is waiting (unless 'force') */
838 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
839 conf->resync_lock, );
840
841 /* block any new IO from starting */
842 conf->barrier++;
843
844 /* Now wait for all pending IO to complete */
845 wait_event_lock_irq(conf->wait_barrier,
846 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
847 conf->resync_lock, );
848
849 spin_unlock_irq(&conf->resync_lock);
850 }
851
852 static void lower_barrier(struct r10conf *conf)
853 {
854 unsigned long flags;
855 spin_lock_irqsave(&conf->resync_lock, flags);
856 conf->barrier--;
857 spin_unlock_irqrestore(&conf->resync_lock, flags);
858 wake_up(&conf->wait_barrier);
859 }
860
861 static void wait_barrier(struct r10conf *conf)
862 {
863 spin_lock_irq(&conf->resync_lock);
864 if (conf->barrier) {
865 conf->nr_waiting++;
866 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
867 conf->resync_lock,
868 );
869 conf->nr_waiting--;
870 }
871 conf->nr_pending++;
872 spin_unlock_irq(&conf->resync_lock);
873 }
874
875 static void allow_barrier(struct r10conf *conf)
876 {
877 unsigned long flags;
878 spin_lock_irqsave(&conf->resync_lock, flags);
879 conf->nr_pending--;
880 spin_unlock_irqrestore(&conf->resync_lock, flags);
881 wake_up(&conf->wait_barrier);
882 }
883
884 static void freeze_array(struct r10conf *conf)
885 {
886 /* stop syncio and normal IO and wait for everything to
887 * go quiet.
888 * We increment barrier and nr_waiting, and then
889 * wait until nr_pending match nr_queued+1
890 * This is called in the context of one normal IO request
891 * that has failed. Thus any sync request that might be pending
892 * will be blocked by nr_pending, and we need to wait for
893 * pending IO requests to complete or be queued for re-try.
894 * Thus the number queued (nr_queued) plus this request (1)
895 * must match the number of pending IOs (nr_pending) before
896 * we continue.
897 */
898 spin_lock_irq(&conf->resync_lock);
899 conf->barrier++;
900 conf->nr_waiting++;
901 wait_event_lock_irq(conf->wait_barrier,
902 conf->nr_pending == conf->nr_queued+1,
903 conf->resync_lock,
904 flush_pending_writes(conf));
905
906 spin_unlock_irq(&conf->resync_lock);
907 }
908
909 static void unfreeze_array(struct r10conf *conf)
910 {
911 /* reverse the effect of the freeze */
912 spin_lock_irq(&conf->resync_lock);
913 conf->barrier--;
914 conf->nr_waiting--;
915 wake_up(&conf->wait_barrier);
916 spin_unlock_irq(&conf->resync_lock);
917 }
918
919 static void make_request(struct mddev *mddev, struct bio * bio)
920 {
921 struct r10conf *conf = mddev->private;
922 struct r10bio *r10_bio;
923 struct bio *read_bio;
924 int i;
925 int chunk_sects = conf->chunk_mask + 1;
926 const int rw = bio_data_dir(bio);
927 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
928 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
929 unsigned long flags;
930 struct md_rdev *blocked_rdev;
931 int plugged;
932 int sectors_handled;
933 int max_sectors;
934
935 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
936 md_flush_request(mddev, bio);
937 return;
938 }
939
940 /* If this request crosses a chunk boundary, we need to
941 * split it. This will only happen for 1 PAGE (or less) requests.
942 */
943 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
944 > chunk_sects &&
945 conf->near_copies < conf->raid_disks)) {
946 struct bio_pair *bp;
947 /* Sanity check -- queue functions should prevent this happening */
948 if (bio->bi_vcnt != 1 ||
949 bio->bi_idx != 0)
950 goto bad_map;
951 /* This is a one page bio that upper layers
952 * refuse to split for us, so we need to split it.
953 */
954 bp = bio_split(bio,
955 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
956
957 /* Each of these 'make_request' calls will call 'wait_barrier'.
958 * If the first succeeds but the second blocks due to the resync
959 * thread raising the barrier, we will deadlock because the
960 * IO to the underlying device will be queued in generic_make_request
961 * and will never complete, so will never reduce nr_pending.
962 * So increment nr_waiting here so no new raise_barriers will
963 * succeed, and so the second wait_barrier cannot block.
964 */
965 spin_lock_irq(&conf->resync_lock);
966 conf->nr_waiting++;
967 spin_unlock_irq(&conf->resync_lock);
968
969 make_request(mddev, &bp->bio1);
970 make_request(mddev, &bp->bio2);
971
972 spin_lock_irq(&conf->resync_lock);
973 conf->nr_waiting--;
974 wake_up(&conf->wait_barrier);
975 spin_unlock_irq(&conf->resync_lock);
976
977 bio_pair_release(bp);
978 return;
979 bad_map:
980 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
981 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
982 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
983
984 bio_io_error(bio);
985 return;
986 }
987
988 md_write_start(mddev, bio);
989
990 /*
991 * Register the new request and wait if the reconstruction
992 * thread has put up a bar for new requests.
993 * Continue immediately if no resync is active currently.
994 */
995 wait_barrier(conf);
996
997 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
998
999 r10_bio->master_bio = bio;
1000 r10_bio->sectors = bio->bi_size >> 9;
1001
1002 r10_bio->mddev = mddev;
1003 r10_bio->sector = bio->bi_sector;
1004 r10_bio->state = 0;
1005
1006 /* We might need to issue multiple reads to different
1007 * devices if there are bad blocks around, so we keep
1008 * track of the number of reads in bio->bi_phys_segments.
1009 * If this is 0, there is only one r10_bio and no locking
1010 * will be needed when the request completes. If it is
1011 * non-zero, then it is the number of not-completed requests.
1012 */
1013 bio->bi_phys_segments = 0;
1014 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1015
1016 if (rw == READ) {
1017 /*
1018 * read balancing logic:
1019 */
1020 struct md_rdev *rdev;
1021 int slot;
1022
1023 read_again:
1024 rdev = read_balance(conf, r10_bio, &max_sectors);
1025 if (!rdev) {
1026 raid_end_bio_io(r10_bio);
1027 return;
1028 }
1029 slot = r10_bio->read_slot;
1030
1031 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1032 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1033 max_sectors);
1034
1035 r10_bio->devs[slot].bio = read_bio;
1036 r10_bio->devs[slot].rdev = rdev;
1037
1038 read_bio->bi_sector = r10_bio->devs[slot].addr +
1039 rdev->data_offset;
1040 read_bio->bi_bdev = rdev->bdev;
1041 read_bio->bi_end_io = raid10_end_read_request;
1042 read_bio->bi_rw = READ | do_sync;
1043 read_bio->bi_private = r10_bio;
1044
1045 if (max_sectors < r10_bio->sectors) {
1046 /* Could not read all from this device, so we will
1047 * need another r10_bio.
1048 */
1049 sectors_handled = (r10_bio->sectors + max_sectors
1050 - bio->bi_sector);
1051 r10_bio->sectors = max_sectors;
1052 spin_lock_irq(&conf->device_lock);
1053 if (bio->bi_phys_segments == 0)
1054 bio->bi_phys_segments = 2;
1055 else
1056 bio->bi_phys_segments++;
1057 spin_unlock(&conf->device_lock);
1058 /* Cannot call generic_make_request directly
1059 * as that will be queued in __generic_make_request
1060 * and subsequent mempool_alloc might block
1061 * waiting for it. so hand bio over to raid10d.
1062 */
1063 reschedule_retry(r10_bio);
1064
1065 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1066
1067 r10_bio->master_bio = bio;
1068 r10_bio->sectors = ((bio->bi_size >> 9)
1069 - sectors_handled);
1070 r10_bio->state = 0;
1071 r10_bio->mddev = mddev;
1072 r10_bio->sector = bio->bi_sector + sectors_handled;
1073 goto read_again;
1074 } else
1075 generic_make_request(read_bio);
1076 return;
1077 }
1078
1079 /*
1080 * WRITE:
1081 */
1082 if (conf->pending_count >= max_queued_requests) {
1083 md_wakeup_thread(mddev->thread);
1084 wait_event(conf->wait_barrier,
1085 conf->pending_count < max_queued_requests);
1086 }
1087 /* first select target devices under rcu_lock and
1088 * inc refcount on their rdev. Record them by setting
1089 * bios[x] to bio
1090 * If there are known/acknowledged bad blocks on any device
1091 * on which we have seen a write error, we want to avoid
1092 * writing to those blocks. This potentially requires several
1093 * writes to write around the bad blocks. Each set of writes
1094 * gets its own r10_bio with a set of bios attached. The number
1095 * of r10_bios is recored in bio->bi_phys_segments just as with
1096 * the read case.
1097 */
1098 plugged = mddev_check_plugged(mddev);
1099
1100 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1101 raid10_find_phys(conf, r10_bio);
1102 retry_write:
1103 blocked_rdev = NULL;
1104 rcu_read_lock();
1105 max_sectors = r10_bio->sectors;
1106
1107 for (i = 0; i < conf->copies; i++) {
1108 int d = r10_bio->devs[i].devnum;
1109 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1110 struct md_rdev *rrdev = rcu_dereference(
1111 conf->mirrors[d].replacement);
1112 if (rdev == rrdev)
1113 rrdev = NULL;
1114 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1115 atomic_inc(&rdev->nr_pending);
1116 blocked_rdev = rdev;
1117 break;
1118 }
1119 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1120 atomic_inc(&rrdev->nr_pending);
1121 blocked_rdev = rrdev;
1122 break;
1123 }
1124 if (rrdev && test_bit(Faulty, &rrdev->flags))
1125 rrdev = NULL;
1126
1127 r10_bio->devs[i].bio = NULL;
1128 r10_bio->devs[i].repl_bio = NULL;
1129 if (!rdev || test_bit(Faulty, &rdev->flags)) {
1130 set_bit(R10BIO_Degraded, &r10_bio->state);
1131 continue;
1132 }
1133 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1134 sector_t first_bad;
1135 sector_t dev_sector = r10_bio->devs[i].addr;
1136 int bad_sectors;
1137 int is_bad;
1138
1139 is_bad = is_badblock(rdev, dev_sector,
1140 max_sectors,
1141 &first_bad, &bad_sectors);
1142 if (is_bad < 0) {
1143 /* Mustn't write here until the bad block
1144 * is acknowledged
1145 */
1146 atomic_inc(&rdev->nr_pending);
1147 set_bit(BlockedBadBlocks, &rdev->flags);
1148 blocked_rdev = rdev;
1149 break;
1150 }
1151 if (is_bad && first_bad <= dev_sector) {
1152 /* Cannot write here at all */
1153 bad_sectors -= (dev_sector - first_bad);
1154 if (bad_sectors < max_sectors)
1155 /* Mustn't write more than bad_sectors
1156 * to other devices yet
1157 */
1158 max_sectors = bad_sectors;
1159 /* We don't set R10BIO_Degraded as that
1160 * only applies if the disk is missing,
1161 * so it might be re-added, and we want to
1162 * know to recover this chunk.
1163 * In this case the device is here, and the
1164 * fact that this chunk is not in-sync is
1165 * recorded in the bad block log.
1166 */
1167 continue;
1168 }
1169 if (is_bad) {
1170 int good_sectors = first_bad - dev_sector;
1171 if (good_sectors < max_sectors)
1172 max_sectors = good_sectors;
1173 }
1174 }
1175 r10_bio->devs[i].bio = bio;
1176 atomic_inc(&rdev->nr_pending);
1177 if (rrdev) {
1178 r10_bio->devs[i].repl_bio = bio;
1179 atomic_inc(&rrdev->nr_pending);
1180 }
1181 }
1182 rcu_read_unlock();
1183
1184 if (unlikely(blocked_rdev)) {
1185 /* Have to wait for this device to get unblocked, then retry */
1186 int j;
1187 int d;
1188
1189 for (j = 0; j < i; j++) {
1190 if (r10_bio->devs[j].bio) {
1191 d = r10_bio->devs[j].devnum;
1192 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1193 }
1194 if (r10_bio->devs[j].repl_bio) {
1195 struct md_rdev *rdev;
1196 d = r10_bio->devs[j].devnum;
1197 rdev = conf->mirrors[d].replacement;
1198 if (!rdev) {
1199 /* Race with remove_disk */
1200 smp_mb();
1201 rdev = conf->mirrors[d].rdev;
1202 }
1203 rdev_dec_pending(rdev, mddev);
1204 }
1205 }
1206 allow_barrier(conf);
1207 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1208 wait_barrier(conf);
1209 goto retry_write;
1210 }
1211
1212 if (max_sectors < r10_bio->sectors) {
1213 /* We are splitting this into multiple parts, so
1214 * we need to prepare for allocating another r10_bio.
1215 */
1216 r10_bio->sectors = max_sectors;
1217 spin_lock_irq(&conf->device_lock);
1218 if (bio->bi_phys_segments == 0)
1219 bio->bi_phys_segments = 2;
1220 else
1221 bio->bi_phys_segments++;
1222 spin_unlock_irq(&conf->device_lock);
1223 }
1224 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1225
1226 atomic_set(&r10_bio->remaining, 1);
1227 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1228
1229 for (i = 0; i < conf->copies; i++) {
1230 struct bio *mbio;
1231 int d = r10_bio->devs[i].devnum;
1232 if (!r10_bio->devs[i].bio)
1233 continue;
1234
1235 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1236 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1237 max_sectors);
1238 r10_bio->devs[i].bio = mbio;
1239
1240 mbio->bi_sector = (r10_bio->devs[i].addr+
1241 conf->mirrors[d].rdev->data_offset);
1242 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1243 mbio->bi_end_io = raid10_end_write_request;
1244 mbio->bi_rw = WRITE | do_sync | do_fua;
1245 mbio->bi_private = r10_bio;
1246
1247 atomic_inc(&r10_bio->remaining);
1248 spin_lock_irqsave(&conf->device_lock, flags);
1249 bio_list_add(&conf->pending_bio_list, mbio);
1250 conf->pending_count++;
1251 spin_unlock_irqrestore(&conf->device_lock, flags);
1252
1253 if (!r10_bio->devs[i].repl_bio)
1254 continue;
1255
1256 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1257 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1258 max_sectors);
1259 r10_bio->devs[i].repl_bio = mbio;
1260
1261 /* We are actively writing to the original device
1262 * so it cannot disappear, so the replacement cannot
1263 * become NULL here
1264 */
1265 mbio->bi_sector = (r10_bio->devs[i].addr+
1266 conf->mirrors[d].replacement->data_offset);
1267 mbio->bi_bdev = conf->mirrors[d].replacement->bdev;
1268 mbio->bi_end_io = raid10_end_write_request;
1269 mbio->bi_rw = WRITE | do_sync | do_fua;
1270 mbio->bi_private = r10_bio;
1271
1272 atomic_inc(&r10_bio->remaining);
1273 spin_lock_irqsave(&conf->device_lock, flags);
1274 bio_list_add(&conf->pending_bio_list, mbio);
1275 conf->pending_count++;
1276 spin_unlock_irqrestore(&conf->device_lock, flags);
1277 }
1278
1279 /* Don't remove the bias on 'remaining' (one_write_done) until
1280 * after checking if we need to go around again.
1281 */
1282
1283 if (sectors_handled < (bio->bi_size >> 9)) {
1284 one_write_done(r10_bio);
1285 /* We need another r10_bio. It has already been counted
1286 * in bio->bi_phys_segments.
1287 */
1288 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1289
1290 r10_bio->master_bio = bio;
1291 r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1292
1293 r10_bio->mddev = mddev;
1294 r10_bio->sector = bio->bi_sector + sectors_handled;
1295 r10_bio->state = 0;
1296 goto retry_write;
1297 }
1298 one_write_done(r10_bio);
1299
1300 /* In case raid10d snuck in to freeze_array */
1301 wake_up(&conf->wait_barrier);
1302
1303 if (do_sync || !mddev->bitmap || !plugged)
1304 md_wakeup_thread(mddev->thread);
1305 }
1306
1307 static void status(struct seq_file *seq, struct mddev *mddev)
1308 {
1309 struct r10conf *conf = mddev->private;
1310 int i;
1311
1312 if (conf->near_copies < conf->raid_disks)
1313 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1314 if (conf->near_copies > 1)
1315 seq_printf(seq, " %d near-copies", conf->near_copies);
1316 if (conf->far_copies > 1) {
1317 if (conf->far_offset)
1318 seq_printf(seq, " %d offset-copies", conf->far_copies);
1319 else
1320 seq_printf(seq, " %d far-copies", conf->far_copies);
1321 }
1322 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1323 conf->raid_disks - mddev->degraded);
1324 for (i = 0; i < conf->raid_disks; i++)
1325 seq_printf(seq, "%s",
1326 conf->mirrors[i].rdev &&
1327 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1328 seq_printf(seq, "]");
1329 }
1330
1331 /* check if there are enough drives for
1332 * every block to appear on atleast one.
1333 * Don't consider the device numbered 'ignore'
1334 * as we might be about to remove it.
1335 */
1336 static int enough(struct r10conf *conf, int ignore)
1337 {
1338 int first = 0;
1339
1340 do {
1341 int n = conf->copies;
1342 int cnt = 0;
1343 while (n--) {
1344 if (conf->mirrors[first].rdev &&
1345 first != ignore)
1346 cnt++;
1347 first = (first+1) % conf->raid_disks;
1348 }
1349 if (cnt == 0)
1350 return 0;
1351 } while (first != 0);
1352 return 1;
1353 }
1354
1355 static void error(struct mddev *mddev, struct md_rdev *rdev)
1356 {
1357 char b[BDEVNAME_SIZE];
1358 struct r10conf *conf = mddev->private;
1359
1360 /*
1361 * If it is not operational, then we have already marked it as dead
1362 * else if it is the last working disks, ignore the error, let the
1363 * next level up know.
1364 * else mark the drive as failed
1365 */
1366 if (test_bit(In_sync, &rdev->flags)
1367 && !enough(conf, rdev->raid_disk))
1368 /*
1369 * Don't fail the drive, just return an IO error.
1370 */
1371 return;
1372 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1373 unsigned long flags;
1374 spin_lock_irqsave(&conf->device_lock, flags);
1375 mddev->degraded++;
1376 spin_unlock_irqrestore(&conf->device_lock, flags);
1377 /*
1378 * if recovery is running, make sure it aborts.
1379 */
1380 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1381 }
1382 set_bit(Blocked, &rdev->flags);
1383 set_bit(Faulty, &rdev->flags);
1384 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1385 printk(KERN_ALERT
1386 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1387 "md/raid10:%s: Operation continuing on %d devices.\n",
1388 mdname(mddev), bdevname(rdev->bdev, b),
1389 mdname(mddev), conf->raid_disks - mddev->degraded);
1390 }
1391
1392 static void print_conf(struct r10conf *conf)
1393 {
1394 int i;
1395 struct mirror_info *tmp;
1396
1397 printk(KERN_DEBUG "RAID10 conf printout:\n");
1398 if (!conf) {
1399 printk(KERN_DEBUG "(!conf)\n");
1400 return;
1401 }
1402 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1403 conf->raid_disks);
1404
1405 for (i = 0; i < conf->raid_disks; i++) {
1406 char b[BDEVNAME_SIZE];
1407 tmp = conf->mirrors + i;
1408 if (tmp->rdev)
1409 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1410 i, !test_bit(In_sync, &tmp->rdev->flags),
1411 !test_bit(Faulty, &tmp->rdev->flags),
1412 bdevname(tmp->rdev->bdev,b));
1413 }
1414 }
1415
1416 static void close_sync(struct r10conf *conf)
1417 {
1418 wait_barrier(conf);
1419 allow_barrier(conf);
1420
1421 mempool_destroy(conf->r10buf_pool);
1422 conf->r10buf_pool = NULL;
1423 }
1424
1425 static int raid10_spare_active(struct mddev *mddev)
1426 {
1427 int i;
1428 struct r10conf *conf = mddev->private;
1429 struct mirror_info *tmp;
1430 int count = 0;
1431 unsigned long flags;
1432
1433 /*
1434 * Find all non-in_sync disks within the RAID10 configuration
1435 * and mark them in_sync
1436 */
1437 for (i = 0; i < conf->raid_disks; i++) {
1438 tmp = conf->mirrors + i;
1439 if (tmp->replacement
1440 && tmp->replacement->recovery_offset == MaxSector
1441 && !test_bit(Faulty, &tmp->replacement->flags)
1442 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1443 /* Replacement has just become active */
1444 if (!tmp->rdev
1445 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1446 count++;
1447 if (tmp->rdev) {
1448 /* Replaced device not technically faulty,
1449 * but we need to be sure it gets removed
1450 * and never re-added.
1451 */
1452 set_bit(Faulty, &tmp->rdev->flags);
1453 sysfs_notify_dirent_safe(
1454 tmp->rdev->sysfs_state);
1455 }
1456 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1457 } else if (tmp->rdev
1458 && !test_bit(Faulty, &tmp->rdev->flags)
1459 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1460 count++;
1461 sysfs_notify_dirent(tmp->rdev->sysfs_state);
1462 }
1463 }
1464 spin_lock_irqsave(&conf->device_lock, flags);
1465 mddev->degraded -= count;
1466 spin_unlock_irqrestore(&conf->device_lock, flags);
1467
1468 print_conf(conf);
1469 return count;
1470 }
1471
1472
1473 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1474 {
1475 struct r10conf *conf = mddev->private;
1476 int err = -EEXIST;
1477 int mirror;
1478 int first = 0;
1479 int last = conf->raid_disks - 1;
1480
1481 if (mddev->recovery_cp < MaxSector)
1482 /* only hot-add to in-sync arrays, as recovery is
1483 * very different from resync
1484 */
1485 return -EBUSY;
1486 if (!enough(conf, -1))
1487 return -EINVAL;
1488
1489 if (rdev->raid_disk >= 0)
1490 first = last = rdev->raid_disk;
1491
1492 if (rdev->saved_raid_disk >= first &&
1493 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1494 mirror = rdev->saved_raid_disk;
1495 else
1496 mirror = first;
1497 for ( ; mirror <= last ; mirror++) {
1498 struct mirror_info *p = &conf->mirrors[mirror];
1499 if (p->recovery_disabled == mddev->recovery_disabled)
1500 continue;
1501 if (p->rdev) {
1502 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1503 p->replacement != NULL)
1504 continue;
1505 clear_bit(In_sync, &rdev->flags);
1506 set_bit(Replacement, &rdev->flags);
1507 rdev->raid_disk = mirror;
1508 err = 0;
1509 disk_stack_limits(mddev->gendisk, rdev->bdev,
1510 rdev->data_offset << 9);
1511 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1512 blk_queue_max_segments(mddev->queue, 1);
1513 blk_queue_segment_boundary(mddev->queue,
1514 PAGE_CACHE_SIZE - 1);
1515 }
1516 conf->fullsync = 1;
1517 rcu_assign_pointer(p->replacement, rdev);
1518 break;
1519 }
1520
1521 disk_stack_limits(mddev->gendisk, rdev->bdev,
1522 rdev->data_offset << 9);
1523 /* as we don't honour merge_bvec_fn, we must
1524 * never risk violating it, so limit
1525 * ->max_segments to one lying with a single
1526 * page, as a one page request is never in
1527 * violation.
1528 */
1529 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1530 blk_queue_max_segments(mddev->queue, 1);
1531 blk_queue_segment_boundary(mddev->queue,
1532 PAGE_CACHE_SIZE - 1);
1533 }
1534
1535 p->head_position = 0;
1536 p->recovery_disabled = mddev->recovery_disabled - 1;
1537 rdev->raid_disk = mirror;
1538 err = 0;
1539 if (rdev->saved_raid_disk != mirror)
1540 conf->fullsync = 1;
1541 rcu_assign_pointer(p->rdev, rdev);
1542 break;
1543 }
1544
1545 md_integrity_add_rdev(rdev, mddev);
1546 print_conf(conf);
1547 return err;
1548 }
1549
1550 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1551 {
1552 struct r10conf *conf = mddev->private;
1553 int err = 0;
1554 int number = rdev->raid_disk;
1555 struct md_rdev **rdevp;
1556 struct mirror_info *p = conf->mirrors + number;
1557
1558 print_conf(conf);
1559 if (rdev == p->rdev)
1560 rdevp = &p->rdev;
1561 else if (rdev == p->replacement)
1562 rdevp = &p->replacement;
1563 else
1564 return 0;
1565
1566 if (test_bit(In_sync, &rdev->flags) ||
1567 atomic_read(&rdev->nr_pending)) {
1568 err = -EBUSY;
1569 goto abort;
1570 }
1571 /* Only remove faulty devices if recovery
1572 * is not possible.
1573 */
1574 if (!test_bit(Faulty, &rdev->flags) &&
1575 mddev->recovery_disabled != p->recovery_disabled &&
1576 (!p->replacement || p->replacement == rdev) &&
1577 enough(conf, -1)) {
1578 err = -EBUSY;
1579 goto abort;
1580 }
1581 *rdevp = NULL;
1582 synchronize_rcu();
1583 if (atomic_read(&rdev->nr_pending)) {
1584 /* lost the race, try later */
1585 err = -EBUSY;
1586 *rdevp = rdev;
1587 goto abort;
1588 } else if (p->replacement) {
1589 /* We must have just cleared 'rdev' */
1590 p->rdev = p->replacement;
1591 clear_bit(Replacement, &p->replacement->flags);
1592 smp_mb(); /* Make sure other CPUs may see both as identical
1593 * but will never see neither -- if they are careful.
1594 */
1595 p->replacement = NULL;
1596 clear_bit(WantReplacement, &rdev->flags);
1597 } else
1598 /* We might have just remove the Replacement as faulty
1599 * Clear the flag just in case
1600 */
1601 clear_bit(WantReplacement, &rdev->flags);
1602
1603 err = md_integrity_register(mddev);
1604
1605 abort:
1606
1607 print_conf(conf);
1608 return err;
1609 }
1610
1611
1612 static void end_sync_read(struct bio *bio, int error)
1613 {
1614 struct r10bio *r10_bio = bio->bi_private;
1615 struct r10conf *conf = r10_bio->mddev->private;
1616 int d;
1617
1618 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1619
1620 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1621 set_bit(R10BIO_Uptodate, &r10_bio->state);
1622 else
1623 /* The write handler will notice the lack of
1624 * R10BIO_Uptodate and record any errors etc
1625 */
1626 atomic_add(r10_bio->sectors,
1627 &conf->mirrors[d].rdev->corrected_errors);
1628
1629 /* for reconstruct, we always reschedule after a read.
1630 * for resync, only after all reads
1631 */
1632 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1633 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1634 atomic_dec_and_test(&r10_bio->remaining)) {
1635 /* we have read all the blocks,
1636 * do the comparison in process context in raid10d
1637 */
1638 reschedule_retry(r10_bio);
1639 }
1640 }
1641
1642 static void end_sync_request(struct r10bio *r10_bio)
1643 {
1644 struct mddev *mddev = r10_bio->mddev;
1645
1646 while (atomic_dec_and_test(&r10_bio->remaining)) {
1647 if (r10_bio->master_bio == NULL) {
1648 /* the primary of several recovery bios */
1649 sector_t s = r10_bio->sectors;
1650 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1651 test_bit(R10BIO_WriteError, &r10_bio->state))
1652 reschedule_retry(r10_bio);
1653 else
1654 put_buf(r10_bio);
1655 md_done_sync(mddev, s, 1);
1656 break;
1657 } else {
1658 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1659 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1660 test_bit(R10BIO_WriteError, &r10_bio->state))
1661 reschedule_retry(r10_bio);
1662 else
1663 put_buf(r10_bio);
1664 r10_bio = r10_bio2;
1665 }
1666 }
1667 }
1668
1669 static void end_sync_write(struct bio *bio, int error)
1670 {
1671 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1672 struct r10bio *r10_bio = bio->bi_private;
1673 struct mddev *mddev = r10_bio->mddev;
1674 struct r10conf *conf = mddev->private;
1675 int d;
1676 sector_t first_bad;
1677 int bad_sectors;
1678 int slot;
1679 int repl;
1680 struct md_rdev *rdev = NULL;
1681
1682 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1683 if (repl)
1684 rdev = conf->mirrors[d].replacement;
1685 if (!rdev) {
1686 smp_mb();
1687 rdev = conf->mirrors[d].rdev;
1688 }
1689
1690 if (!uptodate) {
1691 if (repl)
1692 md_error(mddev, rdev);
1693 else {
1694 set_bit(WriteErrorSeen, &rdev->flags);
1695 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1696 set_bit(MD_RECOVERY_NEEDED,
1697 &rdev->mddev->recovery);
1698 set_bit(R10BIO_WriteError, &r10_bio->state);
1699 }
1700 } else if (is_badblock(rdev,
1701 r10_bio->devs[slot].addr,
1702 r10_bio->sectors,
1703 &first_bad, &bad_sectors))
1704 set_bit(R10BIO_MadeGood, &r10_bio->state);
1705
1706 rdev_dec_pending(rdev, mddev);
1707
1708 end_sync_request(r10_bio);
1709 }
1710
1711 /*
1712 * Note: sync and recover and handled very differently for raid10
1713 * This code is for resync.
1714 * For resync, we read through virtual addresses and read all blocks.
1715 * If there is any error, we schedule a write. The lowest numbered
1716 * drive is authoritative.
1717 * However requests come for physical address, so we need to map.
1718 * For every physical address there are raid_disks/copies virtual addresses,
1719 * which is always are least one, but is not necessarly an integer.
1720 * This means that a physical address can span multiple chunks, so we may
1721 * have to submit multiple io requests for a single sync request.
1722 */
1723 /*
1724 * We check if all blocks are in-sync and only write to blocks that
1725 * aren't in sync
1726 */
1727 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1728 {
1729 struct r10conf *conf = mddev->private;
1730 int i, first;
1731 struct bio *tbio, *fbio;
1732
1733 atomic_set(&r10_bio->remaining, 1);
1734
1735 /* find the first device with a block */
1736 for (i=0; i<conf->copies; i++)
1737 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1738 break;
1739
1740 if (i == conf->copies)
1741 goto done;
1742
1743 first = i;
1744 fbio = r10_bio->devs[i].bio;
1745
1746 /* now find blocks with errors */
1747 for (i=0 ; i < conf->copies ; i++) {
1748 int j, d;
1749 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1750
1751 tbio = r10_bio->devs[i].bio;
1752
1753 if (tbio->bi_end_io != end_sync_read)
1754 continue;
1755 if (i == first)
1756 continue;
1757 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1758 /* We know that the bi_io_vec layout is the same for
1759 * both 'first' and 'i', so we just compare them.
1760 * All vec entries are PAGE_SIZE;
1761 */
1762 for (j = 0; j < vcnt; j++)
1763 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1764 page_address(tbio->bi_io_vec[j].bv_page),
1765 PAGE_SIZE))
1766 break;
1767 if (j == vcnt)
1768 continue;
1769 mddev->resync_mismatches += r10_bio->sectors;
1770 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1771 /* Don't fix anything. */
1772 continue;
1773 }
1774 /* Ok, we need to write this bio, either to correct an
1775 * inconsistency or to correct an unreadable block.
1776 * First we need to fixup bv_offset, bv_len and
1777 * bi_vecs, as the read request might have corrupted these
1778 */
1779 tbio->bi_vcnt = vcnt;
1780 tbio->bi_size = r10_bio->sectors << 9;
1781 tbio->bi_idx = 0;
1782 tbio->bi_phys_segments = 0;
1783 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1784 tbio->bi_flags |= 1 << BIO_UPTODATE;
1785 tbio->bi_next = NULL;
1786 tbio->bi_rw = WRITE;
1787 tbio->bi_private = r10_bio;
1788 tbio->bi_sector = r10_bio->devs[i].addr;
1789
1790 for (j=0; j < vcnt ; j++) {
1791 tbio->bi_io_vec[j].bv_offset = 0;
1792 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1793
1794 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1795 page_address(fbio->bi_io_vec[j].bv_page),
1796 PAGE_SIZE);
1797 }
1798 tbio->bi_end_io = end_sync_write;
1799
1800 d = r10_bio->devs[i].devnum;
1801 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1802 atomic_inc(&r10_bio->remaining);
1803 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1804
1805 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1806 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1807 generic_make_request(tbio);
1808 }
1809
1810 /* Now write out to any replacement devices
1811 * that are active
1812 */
1813 for (i = 0; i < conf->copies; i++) {
1814 int j, d;
1815 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1816
1817 tbio = r10_bio->devs[i].repl_bio;
1818 if (!tbio || !tbio->bi_end_io)
1819 continue;
1820 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
1821 && r10_bio->devs[i].bio != fbio)
1822 for (j = 0; j < vcnt; j++)
1823 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1824 page_address(fbio->bi_io_vec[j].bv_page),
1825 PAGE_SIZE);
1826 d = r10_bio->devs[i].devnum;
1827 atomic_inc(&r10_bio->remaining);
1828 md_sync_acct(conf->mirrors[d].replacement->bdev,
1829 tbio->bi_size >> 9);
1830 generic_make_request(tbio);
1831 }
1832
1833 done:
1834 if (atomic_dec_and_test(&r10_bio->remaining)) {
1835 md_done_sync(mddev, r10_bio->sectors, 1);
1836 put_buf(r10_bio);
1837 }
1838 }
1839
1840 /*
1841 * Now for the recovery code.
1842 * Recovery happens across physical sectors.
1843 * We recover all non-is_sync drives by finding the virtual address of
1844 * each, and then choose a working drive that also has that virt address.
1845 * There is a separate r10_bio for each non-in_sync drive.
1846 * Only the first two slots are in use. The first for reading,
1847 * The second for writing.
1848 *
1849 */
1850 static void fix_recovery_read_error(struct r10bio *r10_bio)
1851 {
1852 /* We got a read error during recovery.
1853 * We repeat the read in smaller page-sized sections.
1854 * If a read succeeds, write it to the new device or record
1855 * a bad block if we cannot.
1856 * If a read fails, record a bad block on both old and
1857 * new devices.
1858 */
1859 struct mddev *mddev = r10_bio->mddev;
1860 struct r10conf *conf = mddev->private;
1861 struct bio *bio = r10_bio->devs[0].bio;
1862 sector_t sect = 0;
1863 int sectors = r10_bio->sectors;
1864 int idx = 0;
1865 int dr = r10_bio->devs[0].devnum;
1866 int dw = r10_bio->devs[1].devnum;
1867
1868 while (sectors) {
1869 int s = sectors;
1870 struct md_rdev *rdev;
1871 sector_t addr;
1872 int ok;
1873
1874 if (s > (PAGE_SIZE>>9))
1875 s = PAGE_SIZE >> 9;
1876
1877 rdev = conf->mirrors[dr].rdev;
1878 addr = r10_bio->devs[0].addr + sect,
1879 ok = sync_page_io(rdev,
1880 addr,
1881 s << 9,
1882 bio->bi_io_vec[idx].bv_page,
1883 READ, false);
1884 if (ok) {
1885 rdev = conf->mirrors[dw].rdev;
1886 addr = r10_bio->devs[1].addr + sect;
1887 ok = sync_page_io(rdev,
1888 addr,
1889 s << 9,
1890 bio->bi_io_vec[idx].bv_page,
1891 WRITE, false);
1892 if (!ok) {
1893 set_bit(WriteErrorSeen, &rdev->flags);
1894 if (!test_and_set_bit(WantReplacement,
1895 &rdev->flags))
1896 set_bit(MD_RECOVERY_NEEDED,
1897 &rdev->mddev->recovery);
1898 }
1899 }
1900 if (!ok) {
1901 /* We don't worry if we cannot set a bad block -
1902 * it really is bad so there is no loss in not
1903 * recording it yet
1904 */
1905 rdev_set_badblocks(rdev, addr, s, 0);
1906
1907 if (rdev != conf->mirrors[dw].rdev) {
1908 /* need bad block on destination too */
1909 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
1910 addr = r10_bio->devs[1].addr + sect;
1911 ok = rdev_set_badblocks(rdev2, addr, s, 0);
1912 if (!ok) {
1913 /* just abort the recovery */
1914 printk(KERN_NOTICE
1915 "md/raid10:%s: recovery aborted"
1916 " due to read error\n",
1917 mdname(mddev));
1918
1919 conf->mirrors[dw].recovery_disabled
1920 = mddev->recovery_disabled;
1921 set_bit(MD_RECOVERY_INTR,
1922 &mddev->recovery);
1923 break;
1924 }
1925 }
1926 }
1927
1928 sectors -= s;
1929 sect += s;
1930 idx++;
1931 }
1932 }
1933
1934 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1935 {
1936 struct r10conf *conf = mddev->private;
1937 int d;
1938 struct bio *wbio, *wbio2;
1939
1940 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
1941 fix_recovery_read_error(r10_bio);
1942 end_sync_request(r10_bio);
1943 return;
1944 }
1945
1946 /*
1947 * share the pages with the first bio
1948 * and submit the write request
1949 */
1950 d = r10_bio->devs[1].devnum;
1951 wbio = r10_bio->devs[1].bio;
1952 wbio2 = r10_bio->devs[1].repl_bio;
1953 if (wbio->bi_end_io) {
1954 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1955 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1956 generic_make_request(wbio);
1957 }
1958 if (wbio2 && wbio2->bi_end_io) {
1959 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
1960 md_sync_acct(conf->mirrors[d].replacement->bdev,
1961 wbio2->bi_size >> 9);
1962 generic_make_request(wbio2);
1963 }
1964 }
1965
1966
1967 /*
1968 * Used by fix_read_error() to decay the per rdev read_errors.
1969 * We halve the read error count for every hour that has elapsed
1970 * since the last recorded read error.
1971 *
1972 */
1973 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
1974 {
1975 struct timespec cur_time_mon;
1976 unsigned long hours_since_last;
1977 unsigned int read_errors = atomic_read(&rdev->read_errors);
1978
1979 ktime_get_ts(&cur_time_mon);
1980
1981 if (rdev->last_read_error.tv_sec == 0 &&
1982 rdev->last_read_error.tv_nsec == 0) {
1983 /* first time we've seen a read error */
1984 rdev->last_read_error = cur_time_mon;
1985 return;
1986 }
1987
1988 hours_since_last = (cur_time_mon.tv_sec -
1989 rdev->last_read_error.tv_sec) / 3600;
1990
1991 rdev->last_read_error = cur_time_mon;
1992
1993 /*
1994 * if hours_since_last is > the number of bits in read_errors
1995 * just set read errors to 0. We do this to avoid
1996 * overflowing the shift of read_errors by hours_since_last.
1997 */
1998 if (hours_since_last >= 8 * sizeof(read_errors))
1999 atomic_set(&rdev->read_errors, 0);
2000 else
2001 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2002 }
2003
2004 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2005 int sectors, struct page *page, int rw)
2006 {
2007 sector_t first_bad;
2008 int bad_sectors;
2009
2010 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2011 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2012 return -1;
2013 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2014 /* success */
2015 return 1;
2016 if (rw == WRITE) {
2017 set_bit(WriteErrorSeen, &rdev->flags);
2018 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2019 set_bit(MD_RECOVERY_NEEDED,
2020 &rdev->mddev->recovery);
2021 }
2022 /* need to record an error - either for the block or the device */
2023 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2024 md_error(rdev->mddev, rdev);
2025 return 0;
2026 }
2027
2028 /*
2029 * This is a kernel thread which:
2030 *
2031 * 1. Retries failed read operations on working mirrors.
2032 * 2. Updates the raid superblock when problems encounter.
2033 * 3. Performs writes following reads for array synchronising.
2034 */
2035
2036 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2037 {
2038 int sect = 0; /* Offset from r10_bio->sector */
2039 int sectors = r10_bio->sectors;
2040 struct md_rdev*rdev;
2041 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2042 int d = r10_bio->devs[r10_bio->read_slot].devnum;
2043
2044 /* still own a reference to this rdev, so it cannot
2045 * have been cleared recently.
2046 */
2047 rdev = conf->mirrors[d].rdev;
2048
2049 if (test_bit(Faulty, &rdev->flags))
2050 /* drive has already been failed, just ignore any
2051 more fix_read_error() attempts */
2052 return;
2053
2054 check_decay_read_errors(mddev, rdev);
2055 atomic_inc(&rdev->read_errors);
2056 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2057 char b[BDEVNAME_SIZE];
2058 bdevname(rdev->bdev, b);
2059
2060 printk(KERN_NOTICE
2061 "md/raid10:%s: %s: Raid device exceeded "
2062 "read_error threshold [cur %d:max %d]\n",
2063 mdname(mddev), b,
2064 atomic_read(&rdev->read_errors), max_read_errors);
2065 printk(KERN_NOTICE
2066 "md/raid10:%s: %s: Failing raid device\n",
2067 mdname(mddev), b);
2068 md_error(mddev, conf->mirrors[d].rdev);
2069 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2070 return;
2071 }
2072
2073 while(sectors) {
2074 int s = sectors;
2075 int sl = r10_bio->read_slot;
2076 int success = 0;
2077 int start;
2078
2079 if (s > (PAGE_SIZE>>9))
2080 s = PAGE_SIZE >> 9;
2081
2082 rcu_read_lock();
2083 do {
2084 sector_t first_bad;
2085 int bad_sectors;
2086
2087 d = r10_bio->devs[sl].devnum;
2088 rdev = rcu_dereference(conf->mirrors[d].rdev);
2089 if (rdev &&
2090 test_bit(In_sync, &rdev->flags) &&
2091 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2092 &first_bad, &bad_sectors) == 0) {
2093 atomic_inc(&rdev->nr_pending);
2094 rcu_read_unlock();
2095 success = sync_page_io(rdev,
2096 r10_bio->devs[sl].addr +
2097 sect,
2098 s<<9,
2099 conf->tmppage, READ, false);
2100 rdev_dec_pending(rdev, mddev);
2101 rcu_read_lock();
2102 if (success)
2103 break;
2104 }
2105 sl++;
2106 if (sl == conf->copies)
2107 sl = 0;
2108 } while (!success && sl != r10_bio->read_slot);
2109 rcu_read_unlock();
2110
2111 if (!success) {
2112 /* Cannot read from anywhere, just mark the block
2113 * as bad on the first device to discourage future
2114 * reads.
2115 */
2116 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2117 rdev = conf->mirrors[dn].rdev;
2118
2119 if (!rdev_set_badblocks(
2120 rdev,
2121 r10_bio->devs[r10_bio->read_slot].addr
2122 + sect,
2123 s, 0)) {
2124 md_error(mddev, rdev);
2125 r10_bio->devs[r10_bio->read_slot].bio
2126 = IO_BLOCKED;
2127 }
2128 break;
2129 }
2130
2131 start = sl;
2132 /* write it back and re-read */
2133 rcu_read_lock();
2134 while (sl != r10_bio->read_slot) {
2135 char b[BDEVNAME_SIZE];
2136
2137 if (sl==0)
2138 sl = conf->copies;
2139 sl--;
2140 d = r10_bio->devs[sl].devnum;
2141 rdev = rcu_dereference(conf->mirrors[d].rdev);
2142 if (!rdev ||
2143 !test_bit(In_sync, &rdev->flags))
2144 continue;
2145
2146 atomic_inc(&rdev->nr_pending);
2147 rcu_read_unlock();
2148 if (r10_sync_page_io(rdev,
2149 r10_bio->devs[sl].addr +
2150 sect,
2151 s<<9, conf->tmppage, WRITE)
2152 == 0) {
2153 /* Well, this device is dead */
2154 printk(KERN_NOTICE
2155 "md/raid10:%s: read correction "
2156 "write failed"
2157 " (%d sectors at %llu on %s)\n",
2158 mdname(mddev), s,
2159 (unsigned long long)(
2160 sect + rdev->data_offset),
2161 bdevname(rdev->bdev, b));
2162 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2163 "drive\n",
2164 mdname(mddev),
2165 bdevname(rdev->bdev, b));
2166 }
2167 rdev_dec_pending(rdev, mddev);
2168 rcu_read_lock();
2169 }
2170 sl = start;
2171 while (sl != r10_bio->read_slot) {
2172 char b[BDEVNAME_SIZE];
2173
2174 if (sl==0)
2175 sl = conf->copies;
2176 sl--;
2177 d = r10_bio->devs[sl].devnum;
2178 rdev = rcu_dereference(conf->mirrors[d].rdev);
2179 if (!rdev ||
2180 !test_bit(In_sync, &rdev->flags))
2181 continue;
2182
2183 atomic_inc(&rdev->nr_pending);
2184 rcu_read_unlock();
2185 switch (r10_sync_page_io(rdev,
2186 r10_bio->devs[sl].addr +
2187 sect,
2188 s<<9, conf->tmppage,
2189 READ)) {
2190 case 0:
2191 /* Well, this device is dead */
2192 printk(KERN_NOTICE
2193 "md/raid10:%s: unable to read back "
2194 "corrected sectors"
2195 " (%d sectors at %llu on %s)\n",
2196 mdname(mddev), s,
2197 (unsigned long long)(
2198 sect + rdev->data_offset),
2199 bdevname(rdev->bdev, b));
2200 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2201 "drive\n",
2202 mdname(mddev),
2203 bdevname(rdev->bdev, b));
2204 break;
2205 case 1:
2206 printk(KERN_INFO
2207 "md/raid10:%s: read error corrected"
2208 " (%d sectors at %llu on %s)\n",
2209 mdname(mddev), s,
2210 (unsigned long long)(
2211 sect + rdev->data_offset),
2212 bdevname(rdev->bdev, b));
2213 atomic_add(s, &rdev->corrected_errors);
2214 }
2215
2216 rdev_dec_pending(rdev, mddev);
2217 rcu_read_lock();
2218 }
2219 rcu_read_unlock();
2220
2221 sectors -= s;
2222 sect += s;
2223 }
2224 }
2225
2226 static void bi_complete(struct bio *bio, int error)
2227 {
2228 complete((struct completion *)bio->bi_private);
2229 }
2230
2231 static int submit_bio_wait(int rw, struct bio *bio)
2232 {
2233 struct completion event;
2234 rw |= REQ_SYNC;
2235
2236 init_completion(&event);
2237 bio->bi_private = &event;
2238 bio->bi_end_io = bi_complete;
2239 submit_bio(rw, bio);
2240 wait_for_completion(&event);
2241
2242 return test_bit(BIO_UPTODATE, &bio->bi_flags);
2243 }
2244
2245 static int narrow_write_error(struct r10bio *r10_bio, int i)
2246 {
2247 struct bio *bio = r10_bio->master_bio;
2248 struct mddev *mddev = r10_bio->mddev;
2249 struct r10conf *conf = mddev->private;
2250 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2251 /* bio has the data to be written to slot 'i' where
2252 * we just recently had a write error.
2253 * We repeatedly clone the bio and trim down to one block,
2254 * then try the write. Where the write fails we record
2255 * a bad block.
2256 * It is conceivable that the bio doesn't exactly align with
2257 * blocks. We must handle this.
2258 *
2259 * We currently own a reference to the rdev.
2260 */
2261
2262 int block_sectors;
2263 sector_t sector;
2264 int sectors;
2265 int sect_to_write = r10_bio->sectors;
2266 int ok = 1;
2267
2268 if (rdev->badblocks.shift < 0)
2269 return 0;
2270
2271 block_sectors = 1 << rdev->badblocks.shift;
2272 sector = r10_bio->sector;
2273 sectors = ((r10_bio->sector + block_sectors)
2274 & ~(sector_t)(block_sectors - 1))
2275 - sector;
2276
2277 while (sect_to_write) {
2278 struct bio *wbio;
2279 if (sectors > sect_to_write)
2280 sectors = sect_to_write;
2281 /* Write at 'sector' for 'sectors' */
2282 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2283 md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2284 wbio->bi_sector = (r10_bio->devs[i].addr+
2285 rdev->data_offset+
2286 (sector - r10_bio->sector));
2287 wbio->bi_bdev = rdev->bdev;
2288 if (submit_bio_wait(WRITE, wbio) == 0)
2289 /* Failure! */
2290 ok = rdev_set_badblocks(rdev, sector,
2291 sectors, 0)
2292 && ok;
2293
2294 bio_put(wbio);
2295 sect_to_write -= sectors;
2296 sector += sectors;
2297 sectors = block_sectors;
2298 }
2299 return ok;
2300 }
2301
2302 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2303 {
2304 int slot = r10_bio->read_slot;
2305 struct bio *bio;
2306 struct r10conf *conf = mddev->private;
2307 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2308 char b[BDEVNAME_SIZE];
2309 unsigned long do_sync;
2310 int max_sectors;
2311
2312 /* we got a read error. Maybe the drive is bad. Maybe just
2313 * the block and we can fix it.
2314 * We freeze all other IO, and try reading the block from
2315 * other devices. When we find one, we re-write
2316 * and check it that fixes the read error.
2317 * This is all done synchronously while the array is
2318 * frozen.
2319 */
2320 bio = r10_bio->devs[slot].bio;
2321 bdevname(bio->bi_bdev, b);
2322 bio_put(bio);
2323 r10_bio->devs[slot].bio = NULL;
2324
2325 if (mddev->ro == 0) {
2326 freeze_array(conf);
2327 fix_read_error(conf, mddev, r10_bio);
2328 unfreeze_array(conf);
2329 } else
2330 r10_bio->devs[slot].bio = IO_BLOCKED;
2331
2332 rdev_dec_pending(rdev, mddev);
2333
2334 read_more:
2335 rdev = read_balance(conf, r10_bio, &max_sectors);
2336 if (rdev == NULL) {
2337 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2338 " read error for block %llu\n",
2339 mdname(mddev), b,
2340 (unsigned long long)r10_bio->sector);
2341 raid_end_bio_io(r10_bio);
2342 return;
2343 }
2344
2345 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
2346 slot = r10_bio->read_slot;
2347 printk_ratelimited(
2348 KERN_ERR
2349 "md/raid10:%s: %s: redirecting"
2350 "sector %llu to another mirror\n",
2351 mdname(mddev),
2352 bdevname(rdev->bdev, b),
2353 (unsigned long long)r10_bio->sector);
2354 bio = bio_clone_mddev(r10_bio->master_bio,
2355 GFP_NOIO, mddev);
2356 md_trim_bio(bio,
2357 r10_bio->sector - bio->bi_sector,
2358 max_sectors);
2359 r10_bio->devs[slot].bio = bio;
2360 r10_bio->devs[slot].rdev = rdev;
2361 bio->bi_sector = r10_bio->devs[slot].addr
2362 + rdev->data_offset;
2363 bio->bi_bdev = rdev->bdev;
2364 bio->bi_rw = READ | do_sync;
2365 bio->bi_private = r10_bio;
2366 bio->bi_end_io = raid10_end_read_request;
2367 if (max_sectors < r10_bio->sectors) {
2368 /* Drat - have to split this up more */
2369 struct bio *mbio = r10_bio->master_bio;
2370 int sectors_handled =
2371 r10_bio->sector + max_sectors
2372 - mbio->bi_sector;
2373 r10_bio->sectors = max_sectors;
2374 spin_lock_irq(&conf->device_lock);
2375 if (mbio->bi_phys_segments == 0)
2376 mbio->bi_phys_segments = 2;
2377 else
2378 mbio->bi_phys_segments++;
2379 spin_unlock_irq(&conf->device_lock);
2380 generic_make_request(bio);
2381
2382 r10_bio = mempool_alloc(conf->r10bio_pool,
2383 GFP_NOIO);
2384 r10_bio->master_bio = mbio;
2385 r10_bio->sectors = (mbio->bi_size >> 9)
2386 - sectors_handled;
2387 r10_bio->state = 0;
2388 set_bit(R10BIO_ReadError,
2389 &r10_bio->state);
2390 r10_bio->mddev = mddev;
2391 r10_bio->sector = mbio->bi_sector
2392 + sectors_handled;
2393
2394 goto read_more;
2395 } else
2396 generic_make_request(bio);
2397 }
2398
2399 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2400 {
2401 /* Some sort of write request has finished and it
2402 * succeeded in writing where we thought there was a
2403 * bad block. So forget the bad block.
2404 * Or possibly if failed and we need to record
2405 * a bad block.
2406 */
2407 int m;
2408 struct md_rdev *rdev;
2409
2410 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2411 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2412 for (m = 0; m < conf->copies; m++) {
2413 int dev = r10_bio->devs[m].devnum;
2414 rdev = conf->mirrors[dev].rdev;
2415 if (r10_bio->devs[m].bio == NULL)
2416 continue;
2417 if (test_bit(BIO_UPTODATE,
2418 &r10_bio->devs[m].bio->bi_flags)) {
2419 rdev_clear_badblocks(
2420 rdev,
2421 r10_bio->devs[m].addr,
2422 r10_bio->sectors);
2423 } else {
2424 if (!rdev_set_badblocks(
2425 rdev,
2426 r10_bio->devs[m].addr,
2427 r10_bio->sectors, 0))
2428 md_error(conf->mddev, rdev);
2429 }
2430 rdev = conf->mirrors[dev].replacement;
2431 if (r10_bio->devs[m].repl_bio == NULL)
2432 continue;
2433 if (test_bit(BIO_UPTODATE,
2434 &r10_bio->devs[m].repl_bio->bi_flags)) {
2435 rdev_clear_badblocks(
2436 rdev,
2437 r10_bio->devs[m].addr,
2438 r10_bio->sectors);
2439 } else {
2440 if (!rdev_set_badblocks(
2441 rdev,
2442 r10_bio->devs[m].addr,
2443 r10_bio->sectors, 0))
2444 md_error(conf->mddev, rdev);
2445 }
2446 }
2447 put_buf(r10_bio);
2448 } else {
2449 for (m = 0; m < conf->copies; m++) {
2450 int dev = r10_bio->devs[m].devnum;
2451 struct bio *bio = r10_bio->devs[m].bio;
2452 rdev = conf->mirrors[dev].rdev;
2453 if (bio == IO_MADE_GOOD) {
2454 rdev_clear_badblocks(
2455 rdev,
2456 r10_bio->devs[m].addr,
2457 r10_bio->sectors);
2458 rdev_dec_pending(rdev, conf->mddev);
2459 } else if (bio != NULL &&
2460 !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2461 if (!narrow_write_error(r10_bio, m)) {
2462 md_error(conf->mddev, rdev);
2463 set_bit(R10BIO_Degraded,
2464 &r10_bio->state);
2465 }
2466 rdev_dec_pending(rdev, conf->mddev);
2467 }
2468 bio = r10_bio->devs[m].repl_bio;
2469 rdev = conf->mirrors[dev].replacement;
2470 if (rdev && bio == IO_MADE_GOOD) {
2471 rdev_clear_badblocks(
2472 rdev,
2473 r10_bio->devs[m].addr,
2474 r10_bio->sectors);
2475 rdev_dec_pending(rdev, conf->mddev);
2476 }
2477 }
2478 if (test_bit(R10BIO_WriteError,
2479 &r10_bio->state))
2480 close_write(r10_bio);
2481 raid_end_bio_io(r10_bio);
2482 }
2483 }
2484
2485 static void raid10d(struct mddev *mddev)
2486 {
2487 struct r10bio *r10_bio;
2488 unsigned long flags;
2489 struct r10conf *conf = mddev->private;
2490 struct list_head *head = &conf->retry_list;
2491 struct blk_plug plug;
2492
2493 md_check_recovery(mddev);
2494
2495 blk_start_plug(&plug);
2496 for (;;) {
2497
2498 flush_pending_writes(conf);
2499
2500 spin_lock_irqsave(&conf->device_lock, flags);
2501 if (list_empty(head)) {
2502 spin_unlock_irqrestore(&conf->device_lock, flags);
2503 break;
2504 }
2505 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2506 list_del(head->prev);
2507 conf->nr_queued--;
2508 spin_unlock_irqrestore(&conf->device_lock, flags);
2509
2510 mddev = r10_bio->mddev;
2511 conf = mddev->private;
2512 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2513 test_bit(R10BIO_WriteError, &r10_bio->state))
2514 handle_write_completed(conf, r10_bio);
2515 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2516 sync_request_write(mddev, r10_bio);
2517 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2518 recovery_request_write(mddev, r10_bio);
2519 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2520 handle_read_error(mddev, r10_bio);
2521 else {
2522 /* just a partial read to be scheduled from a
2523 * separate context
2524 */
2525 int slot = r10_bio->read_slot;
2526 generic_make_request(r10_bio->devs[slot].bio);
2527 }
2528
2529 cond_resched();
2530 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2531 md_check_recovery(mddev);
2532 }
2533 blk_finish_plug(&plug);
2534 }
2535
2536
2537 static int init_resync(struct r10conf *conf)
2538 {
2539 int buffs;
2540 int i;
2541
2542 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2543 BUG_ON(conf->r10buf_pool);
2544 conf->have_replacement = 0;
2545 for (i = 0; i < conf->raid_disks; i++)
2546 if (conf->mirrors[i].replacement)
2547 conf->have_replacement = 1;
2548 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2549 if (!conf->r10buf_pool)
2550 return -ENOMEM;
2551 conf->next_resync = 0;
2552 return 0;
2553 }
2554
2555 /*
2556 * perform a "sync" on one "block"
2557 *
2558 * We need to make sure that no normal I/O request - particularly write
2559 * requests - conflict with active sync requests.
2560 *
2561 * This is achieved by tracking pending requests and a 'barrier' concept
2562 * that can be installed to exclude normal IO requests.
2563 *
2564 * Resync and recovery are handled very differently.
2565 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2566 *
2567 * For resync, we iterate over virtual addresses, read all copies,
2568 * and update if there are differences. If only one copy is live,
2569 * skip it.
2570 * For recovery, we iterate over physical addresses, read a good
2571 * value for each non-in_sync drive, and over-write.
2572 *
2573 * So, for recovery we may have several outstanding complex requests for a
2574 * given address, one for each out-of-sync device. We model this by allocating
2575 * a number of r10_bio structures, one for each out-of-sync device.
2576 * As we setup these structures, we collect all bio's together into a list
2577 * which we then process collectively to add pages, and then process again
2578 * to pass to generic_make_request.
2579 *
2580 * The r10_bio structures are linked using a borrowed master_bio pointer.
2581 * This link is counted in ->remaining. When the r10_bio that points to NULL
2582 * has its remaining count decremented to 0, the whole complex operation
2583 * is complete.
2584 *
2585 */
2586
2587 static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
2588 int *skipped, int go_faster)
2589 {
2590 struct r10conf *conf = mddev->private;
2591 struct r10bio *r10_bio;
2592 struct bio *biolist = NULL, *bio;
2593 sector_t max_sector, nr_sectors;
2594 int i;
2595 int max_sync;
2596 sector_t sync_blocks;
2597 sector_t sectors_skipped = 0;
2598 int chunks_skipped = 0;
2599
2600 if (!conf->r10buf_pool)
2601 if (init_resync(conf))
2602 return 0;
2603
2604 skipped:
2605 max_sector = mddev->dev_sectors;
2606 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2607 max_sector = mddev->resync_max_sectors;
2608 if (sector_nr >= max_sector) {
2609 /* If we aborted, we need to abort the
2610 * sync on the 'current' bitmap chucks (there can
2611 * be several when recovering multiple devices).
2612 * as we may have started syncing it but not finished.
2613 * We can find the current address in
2614 * mddev->curr_resync, but for recovery,
2615 * we need to convert that to several
2616 * virtual addresses.
2617 */
2618 if (mddev->curr_resync < max_sector) { /* aborted */
2619 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2620 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2621 &sync_blocks, 1);
2622 else for (i=0; i<conf->raid_disks; i++) {
2623 sector_t sect =
2624 raid10_find_virt(conf, mddev->curr_resync, i);
2625 bitmap_end_sync(mddev->bitmap, sect,
2626 &sync_blocks, 1);
2627 }
2628 } else {
2629 /* completed sync */
2630 if ((!mddev->bitmap || conf->fullsync)
2631 && conf->have_replacement
2632 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2633 /* Completed a full sync so the replacements
2634 * are now fully recovered.
2635 */
2636 for (i = 0; i < conf->raid_disks; i++)
2637 if (conf->mirrors[i].replacement)
2638 conf->mirrors[i].replacement
2639 ->recovery_offset
2640 = MaxSector;
2641 }
2642 conf->fullsync = 0;
2643 }
2644 bitmap_close_sync(mddev->bitmap);
2645 close_sync(conf);
2646 *skipped = 1;
2647 return sectors_skipped;
2648 }
2649 if (chunks_skipped >= conf->raid_disks) {
2650 /* if there has been nothing to do on any drive,
2651 * then there is nothing to do at all..
2652 */
2653 *skipped = 1;
2654 return (max_sector - sector_nr) + sectors_skipped;
2655 }
2656
2657 if (max_sector > mddev->resync_max)
2658 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2659
2660 /* make sure whole request will fit in a chunk - if chunks
2661 * are meaningful
2662 */
2663 if (conf->near_copies < conf->raid_disks &&
2664 max_sector > (sector_nr | conf->chunk_mask))
2665 max_sector = (sector_nr | conf->chunk_mask) + 1;
2666 /*
2667 * If there is non-resync activity waiting for us then
2668 * put in a delay to throttle resync.
2669 */
2670 if (!go_faster && conf->nr_waiting)
2671 msleep_interruptible(1000);
2672
2673 /* Again, very different code for resync and recovery.
2674 * Both must result in an r10bio with a list of bios that
2675 * have bi_end_io, bi_sector, bi_bdev set,
2676 * and bi_private set to the r10bio.
2677 * For recovery, we may actually create several r10bios
2678 * with 2 bios in each, that correspond to the bios in the main one.
2679 * In this case, the subordinate r10bios link back through a
2680 * borrowed master_bio pointer, and the counter in the master
2681 * includes a ref from each subordinate.
2682 */
2683 /* First, we decide what to do and set ->bi_end_io
2684 * To end_sync_read if we want to read, and
2685 * end_sync_write if we will want to write.
2686 */
2687
2688 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
2689 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2690 /* recovery... the complicated one */
2691 int j;
2692 r10_bio = NULL;
2693
2694 for (i=0 ; i<conf->raid_disks; i++) {
2695 int still_degraded;
2696 struct r10bio *rb2;
2697 sector_t sect;
2698 int must_sync;
2699 int any_working;
2700 struct mirror_info *mirror = &conf->mirrors[i];
2701
2702 if ((mirror->rdev == NULL ||
2703 test_bit(In_sync, &mirror->rdev->flags))
2704 &&
2705 (mirror->replacement == NULL ||
2706 test_bit(Faulty,
2707 &mirror->replacement->flags)))
2708 continue;
2709
2710 still_degraded = 0;
2711 /* want to reconstruct this device */
2712 rb2 = r10_bio;
2713 sect = raid10_find_virt(conf, sector_nr, i);
2714 /* Unless we are doing a full sync, or a replacement
2715 * we only need to recover the block if it is set in
2716 * the bitmap
2717 */
2718 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2719 &sync_blocks, 1);
2720 if (sync_blocks < max_sync)
2721 max_sync = sync_blocks;
2722 if (!must_sync &&
2723 mirror->replacement == NULL &&
2724 !conf->fullsync) {
2725 /* yep, skip the sync_blocks here, but don't assume
2726 * that there will never be anything to do here
2727 */
2728 chunks_skipped = -1;
2729 continue;
2730 }
2731
2732 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2733 raise_barrier(conf, rb2 != NULL);
2734 atomic_set(&r10_bio->remaining, 0);
2735
2736 r10_bio->master_bio = (struct bio*)rb2;
2737 if (rb2)
2738 atomic_inc(&rb2->remaining);
2739 r10_bio->mddev = mddev;
2740 set_bit(R10BIO_IsRecover, &r10_bio->state);
2741 r10_bio->sector = sect;
2742
2743 raid10_find_phys(conf, r10_bio);
2744
2745 /* Need to check if the array will still be
2746 * degraded
2747 */
2748 for (j=0; j<conf->raid_disks; j++)
2749 if (conf->mirrors[j].rdev == NULL ||
2750 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2751 still_degraded = 1;
2752 break;
2753 }
2754
2755 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2756 &sync_blocks, still_degraded);
2757
2758 any_working = 0;
2759 for (j=0; j<conf->copies;j++) {
2760 int k;
2761 int d = r10_bio->devs[j].devnum;
2762 sector_t from_addr, to_addr;
2763 struct md_rdev *rdev;
2764 sector_t sector, first_bad;
2765 int bad_sectors;
2766 if (!conf->mirrors[d].rdev ||
2767 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
2768 continue;
2769 /* This is where we read from */
2770 any_working = 1;
2771 rdev = conf->mirrors[d].rdev;
2772 sector = r10_bio->devs[j].addr;
2773
2774 if (is_badblock(rdev, sector, max_sync,
2775 &first_bad, &bad_sectors)) {
2776 if (first_bad > sector)
2777 max_sync = first_bad - sector;
2778 else {
2779 bad_sectors -= (sector
2780 - first_bad);
2781 if (max_sync > bad_sectors)
2782 max_sync = bad_sectors;
2783 continue;
2784 }
2785 }
2786 bio = r10_bio->devs[0].bio;
2787 bio->bi_next = biolist;
2788 biolist = bio;
2789 bio->bi_private = r10_bio;
2790 bio->bi_end_io = end_sync_read;
2791 bio->bi_rw = READ;
2792 from_addr = r10_bio->devs[j].addr;
2793 bio->bi_sector = from_addr + rdev->data_offset;
2794 bio->bi_bdev = rdev->bdev;
2795 atomic_inc(&rdev->nr_pending);
2796 /* and we write to 'i' (if not in_sync) */
2797
2798 for (k=0; k<conf->copies; k++)
2799 if (r10_bio->devs[k].devnum == i)
2800 break;
2801 BUG_ON(k == conf->copies);
2802 to_addr = r10_bio->devs[k].addr;
2803 r10_bio->devs[0].devnum = d;
2804 r10_bio->devs[0].addr = from_addr;
2805 r10_bio->devs[1].devnum = i;
2806 r10_bio->devs[1].addr = to_addr;
2807
2808 rdev = mirror->rdev;
2809 if (!test_bit(In_sync, &rdev->flags)) {
2810 bio = r10_bio->devs[1].bio;
2811 bio->bi_next = biolist;
2812 biolist = bio;
2813 bio->bi_private = r10_bio;
2814 bio->bi_end_io = end_sync_write;
2815 bio->bi_rw = WRITE;
2816 bio->bi_sector = to_addr
2817 + rdev->data_offset;
2818 bio->bi_bdev = rdev->bdev;
2819 atomic_inc(&r10_bio->remaining);
2820 } else
2821 r10_bio->devs[1].bio->bi_end_io = NULL;
2822
2823 /* and maybe write to replacement */
2824 bio = r10_bio->devs[1].repl_bio;
2825 if (bio)
2826 bio->bi_end_io = NULL;
2827 rdev = mirror->replacement;
2828 /* Note: if rdev != NULL, then bio
2829 * cannot be NULL as r10buf_pool_alloc will
2830 * have allocated it.
2831 * So the second test here is pointless.
2832 * But it keeps semantic-checkers happy, and
2833 * this comment keeps human reviewers
2834 * happy.
2835 */
2836 if (rdev == NULL || bio == NULL ||
2837 test_bit(Faulty, &rdev->flags))
2838 break;
2839 bio->bi_next = biolist;
2840 biolist = bio;
2841 bio->bi_private = r10_bio;
2842 bio->bi_end_io = end_sync_write;
2843 bio->bi_rw = WRITE;
2844 bio->bi_sector = to_addr + rdev->data_offset;
2845 bio->bi_bdev = rdev->bdev;
2846 atomic_inc(&r10_bio->remaining);
2847 break;
2848 }
2849 if (j == conf->copies) {
2850 /* Cannot recover, so abort the recovery or
2851 * record a bad block */
2852 put_buf(r10_bio);
2853 if (rb2)
2854 atomic_dec(&rb2->remaining);
2855 r10_bio = rb2;
2856 if (any_working) {
2857 /* problem is that there are bad blocks
2858 * on other device(s)
2859 */
2860 int k;
2861 for (k = 0; k < conf->copies; k++)
2862 if (r10_bio->devs[k].devnum == i)
2863 break;
2864 if (!test_bit(In_sync,
2865 &mirror->rdev->flags)
2866 && !rdev_set_badblocks(
2867 mirror->rdev,
2868 r10_bio->devs[k].addr,
2869 max_sync, 0))
2870 any_working = 0;
2871 if (mirror->replacement &&
2872 !rdev_set_badblocks(
2873 mirror->replacement,
2874 r10_bio->devs[k].addr,
2875 max_sync, 0))
2876 any_working = 0;
2877 }
2878 if (!any_working) {
2879 if (!test_and_set_bit(MD_RECOVERY_INTR,
2880 &mddev->recovery))
2881 printk(KERN_INFO "md/raid10:%s: insufficient "
2882 "working devices for recovery.\n",
2883 mdname(mddev));
2884 mirror->recovery_disabled
2885 = mddev->recovery_disabled;
2886 }
2887 break;
2888 }
2889 }
2890 if (biolist == NULL) {
2891 while (r10_bio) {
2892 struct r10bio *rb2 = r10_bio;
2893 r10_bio = (struct r10bio*) rb2->master_bio;
2894 rb2->master_bio = NULL;
2895 put_buf(rb2);
2896 }
2897 goto giveup;
2898 }
2899 } else {
2900 /* resync. Schedule a read for every block at this virt offset */
2901 int count = 0;
2902
2903 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2904
2905 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2906 &sync_blocks, mddev->degraded) &&
2907 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
2908 &mddev->recovery)) {
2909 /* We can skip this block */
2910 *skipped = 1;
2911 return sync_blocks + sectors_skipped;
2912 }
2913 if (sync_blocks < max_sync)
2914 max_sync = sync_blocks;
2915 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2916
2917 r10_bio->mddev = mddev;
2918 atomic_set(&r10_bio->remaining, 0);
2919 raise_barrier(conf, 0);
2920 conf->next_resync = sector_nr;
2921
2922 r10_bio->master_bio = NULL;
2923 r10_bio->sector = sector_nr;
2924 set_bit(R10BIO_IsSync, &r10_bio->state);
2925 raid10_find_phys(conf, r10_bio);
2926 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
2927
2928 for (i=0; i<conf->copies; i++) {
2929 int d = r10_bio->devs[i].devnum;
2930 sector_t first_bad, sector;
2931 int bad_sectors;
2932
2933 if (r10_bio->devs[i].repl_bio)
2934 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
2935
2936 bio = r10_bio->devs[i].bio;
2937 bio->bi_end_io = NULL;
2938 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2939 if (conf->mirrors[d].rdev == NULL ||
2940 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
2941 continue;
2942 sector = r10_bio->devs[i].addr;
2943 if (is_badblock(conf->mirrors[d].rdev,
2944 sector, max_sync,
2945 &first_bad, &bad_sectors)) {
2946 if (first_bad > sector)
2947 max_sync = first_bad - sector;
2948 else {
2949 bad_sectors -= (sector - first_bad);
2950 if (max_sync > bad_sectors)
2951 max_sync = max_sync;
2952 continue;
2953 }
2954 }
2955 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2956 atomic_inc(&r10_bio->remaining);
2957 bio->bi_next = biolist;
2958 biolist = bio;
2959 bio->bi_private = r10_bio;
2960 bio->bi_end_io = end_sync_read;
2961 bio->bi_rw = READ;
2962 bio->bi_sector = sector +
2963 conf->mirrors[d].rdev->data_offset;
2964 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2965 count++;
2966
2967 if (conf->mirrors[d].replacement == NULL ||
2968 test_bit(Faulty,
2969 &conf->mirrors[d].replacement->flags))
2970 continue;
2971
2972 /* Need to set up for writing to the replacement */
2973 bio = r10_bio->devs[i].repl_bio;
2974 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2975
2976 sector = r10_bio->devs[i].addr;
2977 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2978 bio->bi_next = biolist;
2979 biolist = bio;
2980 bio->bi_private = r10_bio;
2981 bio->bi_end_io = end_sync_write;
2982 bio->bi_rw = WRITE;
2983 bio->bi_sector = sector +
2984 conf->mirrors[d].replacement->data_offset;
2985 bio->bi_bdev = conf->mirrors[d].replacement->bdev;
2986 count++;
2987 }
2988
2989 if (count < 2) {
2990 for (i=0; i<conf->copies; i++) {
2991 int d = r10_bio->devs[i].devnum;
2992 if (r10_bio->devs[i].bio->bi_end_io)
2993 rdev_dec_pending(conf->mirrors[d].rdev,
2994 mddev);
2995 if (r10_bio->devs[i].repl_bio &&
2996 r10_bio->devs[i].repl_bio->bi_end_io)
2997 rdev_dec_pending(
2998 conf->mirrors[d].replacement,
2999 mddev);
3000 }
3001 put_buf(r10_bio);
3002 biolist = NULL;
3003 goto giveup;
3004 }
3005 }
3006
3007 for (bio = biolist; bio ; bio=bio->bi_next) {
3008
3009 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
3010 if (bio->bi_end_io)
3011 bio->bi_flags |= 1 << BIO_UPTODATE;
3012 bio->bi_vcnt = 0;
3013 bio->bi_idx = 0;
3014 bio->bi_phys_segments = 0;
3015 bio->bi_size = 0;
3016 }
3017
3018 nr_sectors = 0;
3019 if (sector_nr + max_sync < max_sector)
3020 max_sector = sector_nr + max_sync;
3021 do {
3022 struct page *page;
3023 int len = PAGE_SIZE;
3024 if (sector_nr + (len>>9) > max_sector)
3025 len = (max_sector - sector_nr) << 9;
3026 if (len == 0)
3027 break;
3028 for (bio= biolist ; bio ; bio=bio->bi_next) {
3029 struct bio *bio2;
3030 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
3031 if (bio_add_page(bio, page, len, 0))
3032 continue;
3033
3034 /* stop here */
3035 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3036 for (bio2 = biolist;
3037 bio2 && bio2 != bio;
3038 bio2 = bio2->bi_next) {
3039 /* remove last page from this bio */
3040 bio2->bi_vcnt--;
3041 bio2->bi_size -= len;
3042 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
3043 }
3044 goto bio_full;
3045 }
3046 nr_sectors += len>>9;
3047 sector_nr += len>>9;
3048 } while (biolist->bi_vcnt < RESYNC_PAGES);
3049 bio_full:
3050 r10_bio->sectors = nr_sectors;
3051
3052 while (biolist) {
3053 bio = biolist;
3054 biolist = biolist->bi_next;
3055
3056 bio->bi_next = NULL;
3057 r10_bio = bio->bi_private;
3058 r10_bio->sectors = nr_sectors;
3059
3060 if (bio->bi_end_io == end_sync_read) {
3061 md_sync_acct(bio->bi_bdev, nr_sectors);
3062 generic_make_request(bio);
3063 }
3064 }
3065
3066 if (sectors_skipped)
3067 /* pretend they weren't skipped, it makes
3068 * no important difference in this case
3069 */
3070 md_done_sync(mddev, sectors_skipped, 1);
3071
3072 return sectors_skipped + nr_sectors;
3073 giveup:
3074 /* There is nowhere to write, so all non-sync
3075 * drives must be failed or in resync, all drives
3076 * have a bad block, so try the next chunk...
3077 */
3078 if (sector_nr + max_sync < max_sector)
3079 max_sector = sector_nr + max_sync;
3080
3081 sectors_skipped += (max_sector - sector_nr);
3082 chunks_skipped ++;
3083 sector_nr = max_sector;
3084 goto skipped;
3085 }
3086
3087 static sector_t
3088 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3089 {
3090 sector_t size;
3091 struct r10conf *conf = mddev->private;
3092
3093 if (!raid_disks)
3094 raid_disks = conf->raid_disks;
3095 if (!sectors)
3096 sectors = conf->dev_sectors;
3097
3098 size = sectors >> conf->chunk_shift;
3099 sector_div(size, conf->far_copies);
3100 size = size * raid_disks;
3101 sector_div(size, conf->near_copies);
3102
3103 return size << conf->chunk_shift;
3104 }
3105
3106
3107 static struct r10conf *setup_conf(struct mddev *mddev)
3108 {
3109 struct r10conf *conf = NULL;
3110 int nc, fc, fo;
3111 sector_t stride, size;
3112 int err = -EINVAL;
3113
3114 if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) ||
3115 !is_power_of_2(mddev->new_chunk_sectors)) {
3116 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3117 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3118 mdname(mddev), PAGE_SIZE);
3119 goto out;
3120 }
3121
3122 nc = mddev->new_layout & 255;
3123 fc = (mddev->new_layout >> 8) & 255;
3124 fo = mddev->new_layout & (1<<16);
3125
3126 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
3127 (mddev->new_layout >> 17)) {
3128 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3129 mdname(mddev), mddev->new_layout);
3130 goto out;
3131 }
3132
3133 err = -ENOMEM;
3134 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3135 if (!conf)
3136 goto out;
3137
3138 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
3139 GFP_KERNEL);
3140 if (!conf->mirrors)
3141 goto out;
3142
3143 conf->tmppage = alloc_page(GFP_KERNEL);
3144 if (!conf->tmppage)
3145 goto out;
3146
3147
3148 conf->raid_disks = mddev->raid_disks;
3149 conf->near_copies = nc;
3150 conf->far_copies = fc;
3151 conf->copies = nc*fc;
3152 conf->far_offset = fo;
3153 conf->chunk_mask = mddev->new_chunk_sectors - 1;
3154 conf->chunk_shift = ffz(~mddev->new_chunk_sectors);
3155
3156 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3157 r10bio_pool_free, conf);
3158 if (!conf->r10bio_pool)
3159 goto out;
3160
3161 size = mddev->dev_sectors >> conf->chunk_shift;
3162 sector_div(size, fc);
3163 size = size * conf->raid_disks;
3164 sector_div(size, nc);
3165 /* 'size' is now the number of chunks in the array */
3166 /* calculate "used chunks per device" in 'stride' */
3167 stride = size * conf->copies;
3168
3169 /* We need to round up when dividing by raid_disks to
3170 * get the stride size.
3171 */
3172 stride += conf->raid_disks - 1;
3173 sector_div(stride, conf->raid_disks);
3174
3175 conf->dev_sectors = stride << conf->chunk_shift;
3176
3177 if (fo)
3178 stride = 1;
3179 else
3180 sector_div(stride, fc);
3181 conf->stride = stride << conf->chunk_shift;
3182
3183
3184 spin_lock_init(&conf->device_lock);
3185 INIT_LIST_HEAD(&conf->retry_list);
3186
3187 spin_lock_init(&conf->resync_lock);
3188 init_waitqueue_head(&conf->wait_barrier);
3189
3190 conf->thread = md_register_thread(raid10d, mddev, NULL);
3191 if (!conf->thread)
3192 goto out;
3193
3194 conf->mddev = mddev;
3195 return conf;
3196
3197 out:
3198 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3199 mdname(mddev));
3200 if (conf) {
3201 if (conf->r10bio_pool)
3202 mempool_destroy(conf->r10bio_pool);
3203 kfree(conf->mirrors);
3204 safe_put_page(conf->tmppage);
3205 kfree(conf);
3206 }
3207 return ERR_PTR(err);
3208 }
3209
3210 static int run(struct mddev *mddev)
3211 {
3212 struct r10conf *conf;
3213 int i, disk_idx, chunk_size;
3214 struct mirror_info *disk;
3215 struct md_rdev *rdev;
3216 sector_t size;
3217
3218 /*
3219 * copy the already verified devices into our private RAID10
3220 * bookkeeping area. [whatever we allocate in run(),
3221 * should be freed in stop()]
3222 */
3223
3224 if (mddev->private == NULL) {
3225 conf = setup_conf(mddev);
3226 if (IS_ERR(conf))
3227 return PTR_ERR(conf);
3228 mddev->private = conf;
3229 }
3230 conf = mddev->private;
3231 if (!conf)
3232 goto out;
3233
3234 mddev->thread = conf->thread;
3235 conf->thread = NULL;
3236
3237 chunk_size = mddev->chunk_sectors << 9;
3238 blk_queue_io_min(mddev->queue, chunk_size);
3239 if (conf->raid_disks % conf->near_copies)
3240 blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks);
3241 else
3242 blk_queue_io_opt(mddev->queue, chunk_size *
3243 (conf->raid_disks / conf->near_copies));
3244
3245 list_for_each_entry(rdev, &mddev->disks, same_set) {
3246
3247 disk_idx = rdev->raid_disk;
3248 if (disk_idx >= conf->raid_disks
3249 || disk_idx < 0)
3250 continue;
3251 disk = conf->mirrors + disk_idx;
3252
3253 if (test_bit(Replacement, &rdev->flags)) {
3254 if (disk->replacement)
3255 goto out_free_conf;
3256 disk->replacement = rdev;
3257 } else {
3258 if (disk->rdev)
3259 goto out_free_conf;
3260 disk->rdev = rdev;
3261 }
3262
3263 disk_stack_limits(mddev->gendisk, rdev->bdev,
3264 rdev->data_offset << 9);
3265 /* as we don't honour merge_bvec_fn, we must never risk
3266 * violating it, so limit max_segments to 1 lying
3267 * within a single page.
3268 */
3269 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
3270 blk_queue_max_segments(mddev->queue, 1);
3271 blk_queue_segment_boundary(mddev->queue,
3272 PAGE_CACHE_SIZE - 1);
3273 }
3274
3275 disk->head_position = 0;
3276 }
3277 /* need to check that every block has at least one working mirror */
3278 if (!enough(conf, -1)) {
3279 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
3280 mdname(mddev));
3281 goto out_free_conf;
3282 }
3283
3284 mddev->degraded = 0;
3285 for (i = 0; i < conf->raid_disks; i++) {
3286
3287 disk = conf->mirrors + i;
3288
3289 if (!disk->rdev && disk->replacement) {
3290 /* The replacement is all we have - use it */
3291 disk->rdev = disk->replacement;
3292 disk->replacement = NULL;
3293 clear_bit(Replacement, &disk->rdev->flags);
3294 }
3295
3296 if (!disk->rdev ||
3297 !test_bit(In_sync, &disk->rdev->flags)) {
3298 disk->head_position = 0;
3299 mddev->degraded++;
3300 if (disk->rdev)
3301 conf->fullsync = 1;
3302 }
3303 disk->recovery_disabled = mddev->recovery_disabled - 1;
3304 }
3305
3306 if (mddev->recovery_cp != MaxSector)
3307 printk(KERN_NOTICE "md/raid10:%s: not clean"
3308 " -- starting background reconstruction\n",
3309 mdname(mddev));
3310 printk(KERN_INFO
3311 "md/raid10:%s: active with %d out of %d devices\n",
3312 mdname(mddev), conf->raid_disks - mddev->degraded,
3313 conf->raid_disks);
3314 /*
3315 * Ok, everything is just fine now
3316 */
3317 mddev->dev_sectors = conf->dev_sectors;
3318 size = raid10_size(mddev, 0, 0);
3319 md_set_array_sectors(mddev, size);
3320 mddev->resync_max_sectors = size;
3321
3322 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3323 mddev->queue->backing_dev_info.congested_data = mddev;
3324
3325 /* Calculate max read-ahead size.
3326 * We need to readahead at least twice a whole stripe....
3327 * maybe...
3328 */
3329 {
3330 int stripe = conf->raid_disks *
3331 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3332 stripe /= conf->near_copies;
3333 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
3334 mddev->queue->backing_dev_info.ra_pages = 2* stripe;
3335 }
3336
3337 if (conf->near_copies < conf->raid_disks)
3338 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
3339
3340 if (md_integrity_register(mddev))
3341 goto out_free_conf;
3342
3343 return 0;
3344
3345 out_free_conf:
3346 md_unregister_thread(&mddev->thread);
3347 if (conf->r10bio_pool)
3348 mempool_destroy(conf->r10bio_pool);
3349 safe_put_page(conf->tmppage);
3350 kfree(conf->mirrors);
3351 kfree(conf);
3352 mddev->private = NULL;
3353 out:
3354 return -EIO;
3355 }
3356
3357 static int stop(struct mddev *mddev)
3358 {
3359 struct r10conf *conf = mddev->private;
3360
3361 raise_barrier(conf, 0);
3362 lower_barrier(conf);
3363
3364 md_unregister_thread(&mddev->thread);
3365 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
3366 if (conf->r10bio_pool)
3367 mempool_destroy(conf->r10bio_pool);
3368 kfree(conf->mirrors);
3369 kfree(conf);
3370 mddev->private = NULL;
3371 return 0;
3372 }
3373
3374 static void raid10_quiesce(struct mddev *mddev, int state)
3375 {
3376 struct r10conf *conf = mddev->private;
3377
3378 switch(state) {
3379 case 1:
3380 raise_barrier(conf, 0);
3381 break;
3382 case 0:
3383 lower_barrier(conf);
3384 break;
3385 }
3386 }
3387
3388 static void *raid10_takeover_raid0(struct mddev *mddev)
3389 {
3390 struct md_rdev *rdev;
3391 struct r10conf *conf;
3392
3393 if (mddev->degraded > 0) {
3394 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3395 mdname(mddev));
3396 return ERR_PTR(-EINVAL);
3397 }
3398
3399 /* Set new parameters */
3400 mddev->new_level = 10;
3401 /* new layout: far_copies = 1, near_copies = 2 */
3402 mddev->new_layout = (1<<8) + 2;
3403 mddev->new_chunk_sectors = mddev->chunk_sectors;
3404 mddev->delta_disks = mddev->raid_disks;
3405 mddev->raid_disks *= 2;
3406 /* make sure it will be not marked as dirty */
3407 mddev->recovery_cp = MaxSector;
3408
3409 conf = setup_conf(mddev);
3410 if (!IS_ERR(conf)) {
3411 list_for_each_entry(rdev, &mddev->disks, same_set)
3412 if (rdev->raid_disk >= 0)
3413 rdev->new_raid_disk = rdev->raid_disk * 2;
3414 conf->barrier = 1;
3415 }
3416
3417 return conf;
3418 }
3419
3420 static void *raid10_takeover(struct mddev *mddev)
3421 {
3422 struct r0conf *raid0_conf;
3423
3424 /* raid10 can take over:
3425 * raid0 - providing it has only two drives
3426 */
3427 if (mddev->level == 0) {
3428 /* for raid0 takeover only one zone is supported */
3429 raid0_conf = mddev->private;
3430 if (raid0_conf->nr_strip_zones > 1) {
3431 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3432 " with more than one zone.\n",
3433 mdname(mddev));
3434 return ERR_PTR(-EINVAL);
3435 }
3436 return raid10_takeover_raid0(mddev);
3437 }
3438 return ERR_PTR(-EINVAL);
3439 }
3440
3441 static struct md_personality raid10_personality =
3442 {
3443 .name = "raid10",
3444 .level = 10,
3445 .owner = THIS_MODULE,
3446 .make_request = make_request,
3447 .run = run,
3448 .stop = stop,
3449 .status = status,
3450 .error_handler = error,
3451 .hot_add_disk = raid10_add_disk,
3452 .hot_remove_disk= raid10_remove_disk,
3453 .spare_active = raid10_spare_active,
3454 .sync_request = sync_request,
3455 .quiesce = raid10_quiesce,
3456 .size = raid10_size,
3457 .takeover = raid10_takeover,
3458 };
3459
3460 static int __init raid_init(void)
3461 {
3462 return register_md_personality(&raid10_personality);
3463 }
3464
3465 static void raid_exit(void)
3466 {
3467 unregister_md_personality(&raid10_personality);
3468 }
3469
3470 module_init(raid_init);
3471 module_exit(raid_exit);
3472 MODULE_LICENSE("GPL");
3473 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
3474 MODULE_ALIAS("md-personality-9"); /* RAID10 */
3475 MODULE_ALIAS("md-raid10");
3476 MODULE_ALIAS("md-level-10");
3477
3478 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
This page took 0.117776 seconds and 6 git commands to generate.