Support adding a spare to a live md array with external metadata.
[deliverable/linux.git] / drivers / md / raid5.c
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 /*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46 #include <linux/module.h>
47 #include <linux/slab.h>
48 #include <linux/highmem.h>
49 #include <linux/bitops.h>
50 #include <linux/kthread.h>
51 #include <asm/atomic.h>
52 #include "raid6.h"
53
54 #include <linux/raid/bitmap.h>
55 #include <linux/async_tx.h>
56
57 /*
58 * Stripe cache
59 */
60
61 #define NR_STRIPES 256
62 #define STRIPE_SIZE PAGE_SIZE
63 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
64 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
65 #define IO_THRESHOLD 1
66 #define BYPASS_THRESHOLD 1
67 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
68 #define HASH_MASK (NR_HASH - 1)
69
70 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
71
72 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
73 * order without overlap. There may be several bio's per stripe+device, and
74 * a bio could span several devices.
75 * When walking this list for a particular stripe+device, we must never proceed
76 * beyond a bio that extends past this device, as the next bio might no longer
77 * be valid.
78 * This macro is used to determine the 'next' bio in the list, given the sector
79 * of the current stripe+device
80 */
81 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
82 /*
83 * The following can be used to debug the driver
84 */
85 #define RAID5_PARANOIA 1
86 #if RAID5_PARANOIA && defined(CONFIG_SMP)
87 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
88 #else
89 # define CHECK_DEVLOCK()
90 #endif
91
92 #ifdef DEBUG
93 #define inline
94 #define __inline__
95 #endif
96
97 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
98
99 #if !RAID6_USE_EMPTY_ZERO_PAGE
100 /* In .bss so it's zeroed */
101 const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
102 #endif
103
104 static inline int raid6_next_disk(int disk, int raid_disks)
105 {
106 disk++;
107 return (disk < raid_disks) ? disk : 0;
108 }
109
110 static void return_io(struct bio *return_bi)
111 {
112 struct bio *bi = return_bi;
113 while (bi) {
114
115 return_bi = bi->bi_next;
116 bi->bi_next = NULL;
117 bi->bi_size = 0;
118 bio_endio(bi, 0);
119 bi = return_bi;
120 }
121 }
122
123 static void print_raid5_conf (raid5_conf_t *conf);
124
125 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
126 {
127 if (atomic_dec_and_test(&sh->count)) {
128 BUG_ON(!list_empty(&sh->lru));
129 BUG_ON(atomic_read(&conf->active_stripes)==0);
130 if (test_bit(STRIPE_HANDLE, &sh->state)) {
131 if (test_bit(STRIPE_DELAYED, &sh->state)) {
132 list_add_tail(&sh->lru, &conf->delayed_list);
133 blk_plug_device(conf->mddev->queue);
134 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
135 sh->bm_seq - conf->seq_write > 0) {
136 list_add_tail(&sh->lru, &conf->bitmap_list);
137 blk_plug_device(conf->mddev->queue);
138 } else {
139 clear_bit(STRIPE_BIT_DELAY, &sh->state);
140 list_add_tail(&sh->lru, &conf->handle_list);
141 }
142 md_wakeup_thread(conf->mddev->thread);
143 } else {
144 BUG_ON(sh->ops.pending);
145 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
146 atomic_dec(&conf->preread_active_stripes);
147 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
148 md_wakeup_thread(conf->mddev->thread);
149 }
150 atomic_dec(&conf->active_stripes);
151 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
152 list_add_tail(&sh->lru, &conf->inactive_list);
153 wake_up(&conf->wait_for_stripe);
154 if (conf->retry_read_aligned)
155 md_wakeup_thread(conf->mddev->thread);
156 }
157 }
158 }
159 }
160 static void release_stripe(struct stripe_head *sh)
161 {
162 raid5_conf_t *conf = sh->raid_conf;
163 unsigned long flags;
164
165 spin_lock_irqsave(&conf->device_lock, flags);
166 __release_stripe(conf, sh);
167 spin_unlock_irqrestore(&conf->device_lock, flags);
168 }
169
170 static inline void remove_hash(struct stripe_head *sh)
171 {
172 pr_debug("remove_hash(), stripe %llu\n",
173 (unsigned long long)sh->sector);
174
175 hlist_del_init(&sh->hash);
176 }
177
178 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
179 {
180 struct hlist_head *hp = stripe_hash(conf, sh->sector);
181
182 pr_debug("insert_hash(), stripe %llu\n",
183 (unsigned long long)sh->sector);
184
185 CHECK_DEVLOCK();
186 hlist_add_head(&sh->hash, hp);
187 }
188
189
190 /* find an idle stripe, make sure it is unhashed, and return it. */
191 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
192 {
193 struct stripe_head *sh = NULL;
194 struct list_head *first;
195
196 CHECK_DEVLOCK();
197 if (list_empty(&conf->inactive_list))
198 goto out;
199 first = conf->inactive_list.next;
200 sh = list_entry(first, struct stripe_head, lru);
201 list_del_init(first);
202 remove_hash(sh);
203 atomic_inc(&conf->active_stripes);
204 out:
205 return sh;
206 }
207
208 static void shrink_buffers(struct stripe_head *sh, int num)
209 {
210 struct page *p;
211 int i;
212
213 for (i=0; i<num ; i++) {
214 p = sh->dev[i].page;
215 if (!p)
216 continue;
217 sh->dev[i].page = NULL;
218 put_page(p);
219 }
220 }
221
222 static int grow_buffers(struct stripe_head *sh, int num)
223 {
224 int i;
225
226 for (i=0; i<num; i++) {
227 struct page *page;
228
229 if (!(page = alloc_page(GFP_KERNEL))) {
230 return 1;
231 }
232 sh->dev[i].page = page;
233 }
234 return 0;
235 }
236
237 static void raid5_build_block (struct stripe_head *sh, int i);
238
239 static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
240 {
241 raid5_conf_t *conf = sh->raid_conf;
242 int i;
243
244 BUG_ON(atomic_read(&sh->count) != 0);
245 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
246 BUG_ON(sh->ops.pending || sh->ops.ack || sh->ops.complete);
247
248 CHECK_DEVLOCK();
249 pr_debug("init_stripe called, stripe %llu\n",
250 (unsigned long long)sh->sector);
251
252 remove_hash(sh);
253
254 sh->sector = sector;
255 sh->pd_idx = pd_idx;
256 sh->state = 0;
257
258 sh->disks = disks;
259
260 for (i = sh->disks; i--; ) {
261 struct r5dev *dev = &sh->dev[i];
262
263 if (dev->toread || dev->read || dev->towrite || dev->written ||
264 test_bit(R5_LOCKED, &dev->flags)) {
265 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
266 (unsigned long long)sh->sector, i, dev->toread,
267 dev->read, dev->towrite, dev->written,
268 test_bit(R5_LOCKED, &dev->flags));
269 BUG();
270 }
271 dev->flags = 0;
272 raid5_build_block(sh, i);
273 }
274 insert_hash(conf, sh);
275 }
276
277 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
278 {
279 struct stripe_head *sh;
280 struct hlist_node *hn;
281
282 CHECK_DEVLOCK();
283 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
284 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
285 if (sh->sector == sector && sh->disks == disks)
286 return sh;
287 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
288 return NULL;
289 }
290
291 static void unplug_slaves(mddev_t *mddev);
292 static void raid5_unplug_device(struct request_queue *q);
293
294 static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
295 int pd_idx, int noblock)
296 {
297 struct stripe_head *sh;
298
299 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
300
301 spin_lock_irq(&conf->device_lock);
302
303 do {
304 wait_event_lock_irq(conf->wait_for_stripe,
305 conf->quiesce == 0,
306 conf->device_lock, /* nothing */);
307 sh = __find_stripe(conf, sector, disks);
308 if (!sh) {
309 if (!conf->inactive_blocked)
310 sh = get_free_stripe(conf);
311 if (noblock && sh == NULL)
312 break;
313 if (!sh) {
314 conf->inactive_blocked = 1;
315 wait_event_lock_irq(conf->wait_for_stripe,
316 !list_empty(&conf->inactive_list) &&
317 (atomic_read(&conf->active_stripes)
318 < (conf->max_nr_stripes *3/4)
319 || !conf->inactive_blocked),
320 conf->device_lock,
321 raid5_unplug_device(conf->mddev->queue)
322 );
323 conf->inactive_blocked = 0;
324 } else
325 init_stripe(sh, sector, pd_idx, disks);
326 } else {
327 if (atomic_read(&sh->count)) {
328 BUG_ON(!list_empty(&sh->lru));
329 } else {
330 if (!test_bit(STRIPE_HANDLE, &sh->state))
331 atomic_inc(&conf->active_stripes);
332 if (list_empty(&sh->lru) &&
333 !test_bit(STRIPE_EXPANDING, &sh->state))
334 BUG();
335 list_del_init(&sh->lru);
336 }
337 }
338 } while (sh == NULL);
339
340 if (sh)
341 atomic_inc(&sh->count);
342
343 spin_unlock_irq(&conf->device_lock);
344 return sh;
345 }
346
347 /* test_and_ack_op() ensures that we only dequeue an operation once */
348 #define test_and_ack_op(op, pend) \
349 do { \
350 if (test_bit(op, &sh->ops.pending) && \
351 !test_bit(op, &sh->ops.complete)) { \
352 if (test_and_set_bit(op, &sh->ops.ack)) \
353 clear_bit(op, &pend); \
354 else \
355 ack++; \
356 } else \
357 clear_bit(op, &pend); \
358 } while (0)
359
360 /* find new work to run, do not resubmit work that is already
361 * in flight
362 */
363 static unsigned long get_stripe_work(struct stripe_head *sh)
364 {
365 unsigned long pending;
366 int ack = 0;
367
368 pending = sh->ops.pending;
369
370 test_and_ack_op(STRIPE_OP_BIOFILL, pending);
371 test_and_ack_op(STRIPE_OP_COMPUTE_BLK, pending);
372 test_and_ack_op(STRIPE_OP_PREXOR, pending);
373 test_and_ack_op(STRIPE_OP_BIODRAIN, pending);
374 test_and_ack_op(STRIPE_OP_POSTXOR, pending);
375 test_and_ack_op(STRIPE_OP_CHECK, pending);
376 if (test_and_clear_bit(STRIPE_OP_IO, &sh->ops.pending))
377 ack++;
378
379 sh->ops.count -= ack;
380 if (unlikely(sh->ops.count < 0)) {
381 printk(KERN_ERR "pending: %#lx ops.pending: %#lx ops.ack: %#lx "
382 "ops.complete: %#lx\n", pending, sh->ops.pending,
383 sh->ops.ack, sh->ops.complete);
384 BUG();
385 }
386
387 return pending;
388 }
389
390 static void
391 raid5_end_read_request(struct bio *bi, int error);
392 static void
393 raid5_end_write_request(struct bio *bi, int error);
394
395 static void ops_run_io(struct stripe_head *sh)
396 {
397 raid5_conf_t *conf = sh->raid_conf;
398 int i, disks = sh->disks;
399
400 might_sleep();
401
402 set_bit(STRIPE_IO_STARTED, &sh->state);
403 for (i = disks; i--; ) {
404 int rw;
405 struct bio *bi;
406 mdk_rdev_t *rdev;
407 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
408 rw = WRITE;
409 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
410 rw = READ;
411 else
412 continue;
413
414 bi = &sh->dev[i].req;
415
416 bi->bi_rw = rw;
417 if (rw == WRITE)
418 bi->bi_end_io = raid5_end_write_request;
419 else
420 bi->bi_end_io = raid5_end_read_request;
421
422 rcu_read_lock();
423 rdev = rcu_dereference(conf->disks[i].rdev);
424 if (rdev && test_bit(Faulty, &rdev->flags))
425 rdev = NULL;
426 if (rdev)
427 atomic_inc(&rdev->nr_pending);
428 rcu_read_unlock();
429
430 if (rdev) {
431 if (test_bit(STRIPE_SYNCING, &sh->state) ||
432 test_bit(STRIPE_EXPAND_SOURCE, &sh->state) ||
433 test_bit(STRIPE_EXPAND_READY, &sh->state))
434 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
435
436 bi->bi_bdev = rdev->bdev;
437 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
438 __func__, (unsigned long long)sh->sector,
439 bi->bi_rw, i);
440 atomic_inc(&sh->count);
441 bi->bi_sector = sh->sector + rdev->data_offset;
442 bi->bi_flags = 1 << BIO_UPTODATE;
443 bi->bi_vcnt = 1;
444 bi->bi_max_vecs = 1;
445 bi->bi_idx = 0;
446 bi->bi_io_vec = &sh->dev[i].vec;
447 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
448 bi->bi_io_vec[0].bv_offset = 0;
449 bi->bi_size = STRIPE_SIZE;
450 bi->bi_next = NULL;
451 if (rw == WRITE &&
452 test_bit(R5_ReWrite, &sh->dev[i].flags))
453 atomic_add(STRIPE_SECTORS,
454 &rdev->corrected_errors);
455 generic_make_request(bi);
456 } else {
457 if (rw == WRITE)
458 set_bit(STRIPE_DEGRADED, &sh->state);
459 pr_debug("skip op %ld on disc %d for sector %llu\n",
460 bi->bi_rw, i, (unsigned long long)sh->sector);
461 clear_bit(R5_LOCKED, &sh->dev[i].flags);
462 set_bit(STRIPE_HANDLE, &sh->state);
463 }
464 }
465 }
466
467 static struct dma_async_tx_descriptor *
468 async_copy_data(int frombio, struct bio *bio, struct page *page,
469 sector_t sector, struct dma_async_tx_descriptor *tx)
470 {
471 struct bio_vec *bvl;
472 struct page *bio_page;
473 int i;
474 int page_offset;
475
476 if (bio->bi_sector >= sector)
477 page_offset = (signed)(bio->bi_sector - sector) * 512;
478 else
479 page_offset = (signed)(sector - bio->bi_sector) * -512;
480 bio_for_each_segment(bvl, bio, i) {
481 int len = bio_iovec_idx(bio, i)->bv_len;
482 int clen;
483 int b_offset = 0;
484
485 if (page_offset < 0) {
486 b_offset = -page_offset;
487 page_offset += b_offset;
488 len -= b_offset;
489 }
490
491 if (len > 0 && page_offset + len > STRIPE_SIZE)
492 clen = STRIPE_SIZE - page_offset;
493 else
494 clen = len;
495
496 if (clen > 0) {
497 b_offset += bio_iovec_idx(bio, i)->bv_offset;
498 bio_page = bio_iovec_idx(bio, i)->bv_page;
499 if (frombio)
500 tx = async_memcpy(page, bio_page, page_offset,
501 b_offset, clen,
502 ASYNC_TX_DEP_ACK,
503 tx, NULL, NULL);
504 else
505 tx = async_memcpy(bio_page, page, b_offset,
506 page_offset, clen,
507 ASYNC_TX_DEP_ACK,
508 tx, NULL, NULL);
509 }
510 if (clen < len) /* hit end of page */
511 break;
512 page_offset += len;
513 }
514
515 return tx;
516 }
517
518 static void ops_complete_biofill(void *stripe_head_ref)
519 {
520 struct stripe_head *sh = stripe_head_ref;
521 struct bio *return_bi = NULL;
522 raid5_conf_t *conf = sh->raid_conf;
523 int i;
524
525 pr_debug("%s: stripe %llu\n", __func__,
526 (unsigned long long)sh->sector);
527
528 /* clear completed biofills */
529 for (i = sh->disks; i--; ) {
530 struct r5dev *dev = &sh->dev[i];
531
532 /* acknowledge completion of a biofill operation */
533 /* and check if we need to reply to a read request,
534 * new R5_Wantfill requests are held off until
535 * !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending)
536 */
537 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
538 struct bio *rbi, *rbi2;
539
540 /* The access to dev->read is outside of the
541 * spin_lock_irq(&conf->device_lock), but is protected
542 * by the STRIPE_OP_BIOFILL pending bit
543 */
544 BUG_ON(!dev->read);
545 rbi = dev->read;
546 dev->read = NULL;
547 while (rbi && rbi->bi_sector <
548 dev->sector + STRIPE_SECTORS) {
549 rbi2 = r5_next_bio(rbi, dev->sector);
550 spin_lock_irq(&conf->device_lock);
551 if (--rbi->bi_phys_segments == 0) {
552 rbi->bi_next = return_bi;
553 return_bi = rbi;
554 }
555 spin_unlock_irq(&conf->device_lock);
556 rbi = rbi2;
557 }
558 }
559 }
560 set_bit(STRIPE_OP_BIOFILL, &sh->ops.complete);
561
562 return_io(return_bi);
563
564 set_bit(STRIPE_HANDLE, &sh->state);
565 release_stripe(sh);
566 }
567
568 static void ops_run_biofill(struct stripe_head *sh)
569 {
570 struct dma_async_tx_descriptor *tx = NULL;
571 raid5_conf_t *conf = sh->raid_conf;
572 int i;
573
574 pr_debug("%s: stripe %llu\n", __func__,
575 (unsigned long long)sh->sector);
576
577 for (i = sh->disks; i--; ) {
578 struct r5dev *dev = &sh->dev[i];
579 if (test_bit(R5_Wantfill, &dev->flags)) {
580 struct bio *rbi;
581 spin_lock_irq(&conf->device_lock);
582 dev->read = rbi = dev->toread;
583 dev->toread = NULL;
584 spin_unlock_irq(&conf->device_lock);
585 while (rbi && rbi->bi_sector <
586 dev->sector + STRIPE_SECTORS) {
587 tx = async_copy_data(0, rbi, dev->page,
588 dev->sector, tx);
589 rbi = r5_next_bio(rbi, dev->sector);
590 }
591 }
592 }
593
594 atomic_inc(&sh->count);
595 async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
596 ops_complete_biofill, sh);
597 }
598
599 static void ops_complete_compute5(void *stripe_head_ref)
600 {
601 struct stripe_head *sh = stripe_head_ref;
602 int target = sh->ops.target;
603 struct r5dev *tgt = &sh->dev[target];
604
605 pr_debug("%s: stripe %llu\n", __func__,
606 (unsigned long long)sh->sector);
607
608 set_bit(R5_UPTODATE, &tgt->flags);
609 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
610 clear_bit(R5_Wantcompute, &tgt->flags);
611 set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
612 set_bit(STRIPE_HANDLE, &sh->state);
613 release_stripe(sh);
614 }
615
616 static struct dma_async_tx_descriptor *
617 ops_run_compute5(struct stripe_head *sh, unsigned long pending)
618 {
619 /* kernel stack size limits the total number of disks */
620 int disks = sh->disks;
621 struct page *xor_srcs[disks];
622 int target = sh->ops.target;
623 struct r5dev *tgt = &sh->dev[target];
624 struct page *xor_dest = tgt->page;
625 int count = 0;
626 struct dma_async_tx_descriptor *tx;
627 int i;
628
629 pr_debug("%s: stripe %llu block: %d\n",
630 __func__, (unsigned long long)sh->sector, target);
631 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
632
633 for (i = disks; i--; )
634 if (i != target)
635 xor_srcs[count++] = sh->dev[i].page;
636
637 atomic_inc(&sh->count);
638
639 if (unlikely(count == 1))
640 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
641 0, NULL, ops_complete_compute5, sh);
642 else
643 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
644 ASYNC_TX_XOR_ZERO_DST, NULL,
645 ops_complete_compute5, sh);
646
647 /* ack now if postxor is not set to be run */
648 if (tx && !test_bit(STRIPE_OP_POSTXOR, &pending))
649 async_tx_ack(tx);
650
651 return tx;
652 }
653
654 static void ops_complete_prexor(void *stripe_head_ref)
655 {
656 struct stripe_head *sh = stripe_head_ref;
657
658 pr_debug("%s: stripe %llu\n", __func__,
659 (unsigned long long)sh->sector);
660
661 set_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
662 }
663
664 static struct dma_async_tx_descriptor *
665 ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
666 {
667 /* kernel stack size limits the total number of disks */
668 int disks = sh->disks;
669 struct page *xor_srcs[disks];
670 int count = 0, pd_idx = sh->pd_idx, i;
671
672 /* existing parity data subtracted */
673 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
674
675 pr_debug("%s: stripe %llu\n", __func__,
676 (unsigned long long)sh->sector);
677
678 for (i = disks; i--; ) {
679 struct r5dev *dev = &sh->dev[i];
680 /* Only process blocks that are known to be uptodate */
681 if (dev->towrite && test_bit(R5_Wantprexor, &dev->flags))
682 xor_srcs[count++] = dev->page;
683 }
684
685 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
686 ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
687 ops_complete_prexor, sh);
688
689 return tx;
690 }
691
692 static struct dma_async_tx_descriptor *
693 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx,
694 unsigned long pending)
695 {
696 int disks = sh->disks;
697 int pd_idx = sh->pd_idx, i;
698
699 /* check if prexor is active which means only process blocks
700 * that are part of a read-modify-write (Wantprexor)
701 */
702 int prexor = test_bit(STRIPE_OP_PREXOR, &pending);
703
704 pr_debug("%s: stripe %llu\n", __func__,
705 (unsigned long long)sh->sector);
706
707 for (i = disks; i--; ) {
708 struct r5dev *dev = &sh->dev[i];
709 struct bio *chosen;
710 int towrite;
711
712 towrite = 0;
713 if (prexor) { /* rmw */
714 if (dev->towrite &&
715 test_bit(R5_Wantprexor, &dev->flags))
716 towrite = 1;
717 } else { /* rcw */
718 if (i != pd_idx && dev->towrite &&
719 test_bit(R5_LOCKED, &dev->flags))
720 towrite = 1;
721 }
722
723 if (towrite) {
724 struct bio *wbi;
725
726 spin_lock(&sh->lock);
727 chosen = dev->towrite;
728 dev->towrite = NULL;
729 BUG_ON(dev->written);
730 wbi = dev->written = chosen;
731 spin_unlock(&sh->lock);
732
733 while (wbi && wbi->bi_sector <
734 dev->sector + STRIPE_SECTORS) {
735 tx = async_copy_data(1, wbi, dev->page,
736 dev->sector, tx);
737 wbi = r5_next_bio(wbi, dev->sector);
738 }
739 }
740 }
741
742 return tx;
743 }
744
745 static void ops_complete_postxor(void *stripe_head_ref)
746 {
747 struct stripe_head *sh = stripe_head_ref;
748
749 pr_debug("%s: stripe %llu\n", __func__,
750 (unsigned long long)sh->sector);
751
752 set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
753 set_bit(STRIPE_HANDLE, &sh->state);
754 release_stripe(sh);
755 }
756
757 static void ops_complete_write(void *stripe_head_ref)
758 {
759 struct stripe_head *sh = stripe_head_ref;
760 int disks = sh->disks, i, pd_idx = sh->pd_idx;
761
762 pr_debug("%s: stripe %llu\n", __func__,
763 (unsigned long long)sh->sector);
764
765 for (i = disks; i--; ) {
766 struct r5dev *dev = &sh->dev[i];
767 if (dev->written || i == pd_idx)
768 set_bit(R5_UPTODATE, &dev->flags);
769 }
770
771 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
772 set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
773
774 set_bit(STRIPE_HANDLE, &sh->state);
775 release_stripe(sh);
776 }
777
778 static void
779 ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx,
780 unsigned long pending)
781 {
782 /* kernel stack size limits the total number of disks */
783 int disks = sh->disks;
784 struct page *xor_srcs[disks];
785
786 int count = 0, pd_idx = sh->pd_idx, i;
787 struct page *xor_dest;
788 int prexor = test_bit(STRIPE_OP_PREXOR, &pending);
789 unsigned long flags;
790 dma_async_tx_callback callback;
791
792 pr_debug("%s: stripe %llu\n", __func__,
793 (unsigned long long)sh->sector);
794
795 /* check if prexor is active which means only process blocks
796 * that are part of a read-modify-write (written)
797 */
798 if (prexor) {
799 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
800 for (i = disks; i--; ) {
801 struct r5dev *dev = &sh->dev[i];
802 if (dev->written)
803 xor_srcs[count++] = dev->page;
804 }
805 } else {
806 xor_dest = sh->dev[pd_idx].page;
807 for (i = disks; i--; ) {
808 struct r5dev *dev = &sh->dev[i];
809 if (i != pd_idx)
810 xor_srcs[count++] = dev->page;
811 }
812 }
813
814 /* check whether this postxor is part of a write */
815 callback = test_bit(STRIPE_OP_BIODRAIN, &pending) ?
816 ops_complete_write : ops_complete_postxor;
817
818 /* 1/ if we prexor'd then the dest is reused as a source
819 * 2/ if we did not prexor then we are redoing the parity
820 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
821 * for the synchronous xor case
822 */
823 flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
824 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
825
826 atomic_inc(&sh->count);
827
828 if (unlikely(count == 1)) {
829 flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
830 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
831 flags, tx, callback, sh);
832 } else
833 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
834 flags, tx, callback, sh);
835 }
836
837 static void ops_complete_check(void *stripe_head_ref)
838 {
839 struct stripe_head *sh = stripe_head_ref;
840 int pd_idx = sh->pd_idx;
841
842 pr_debug("%s: stripe %llu\n", __func__,
843 (unsigned long long)sh->sector);
844
845 if (test_and_clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending) &&
846 sh->ops.zero_sum_result == 0)
847 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
848
849 set_bit(STRIPE_OP_CHECK, &sh->ops.complete);
850 set_bit(STRIPE_HANDLE, &sh->state);
851 release_stripe(sh);
852 }
853
854 static void ops_run_check(struct stripe_head *sh)
855 {
856 /* kernel stack size limits the total number of disks */
857 int disks = sh->disks;
858 struct page *xor_srcs[disks];
859 struct dma_async_tx_descriptor *tx;
860
861 int count = 0, pd_idx = sh->pd_idx, i;
862 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
863
864 pr_debug("%s: stripe %llu\n", __func__,
865 (unsigned long long)sh->sector);
866
867 for (i = disks; i--; ) {
868 struct r5dev *dev = &sh->dev[i];
869 if (i != pd_idx)
870 xor_srcs[count++] = dev->page;
871 }
872
873 tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
874 &sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
875
876 if (tx)
877 set_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);
878 else
879 clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);
880
881 atomic_inc(&sh->count);
882 tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
883 ops_complete_check, sh);
884 }
885
886 static void raid5_run_ops(struct stripe_head *sh, unsigned long pending)
887 {
888 int overlap_clear = 0, i, disks = sh->disks;
889 struct dma_async_tx_descriptor *tx = NULL;
890
891 if (test_bit(STRIPE_OP_BIOFILL, &pending)) {
892 ops_run_biofill(sh);
893 overlap_clear++;
894 }
895
896 if (test_bit(STRIPE_OP_COMPUTE_BLK, &pending))
897 tx = ops_run_compute5(sh, pending);
898
899 if (test_bit(STRIPE_OP_PREXOR, &pending))
900 tx = ops_run_prexor(sh, tx);
901
902 if (test_bit(STRIPE_OP_BIODRAIN, &pending)) {
903 tx = ops_run_biodrain(sh, tx, pending);
904 overlap_clear++;
905 }
906
907 if (test_bit(STRIPE_OP_POSTXOR, &pending))
908 ops_run_postxor(sh, tx, pending);
909
910 if (test_bit(STRIPE_OP_CHECK, &pending))
911 ops_run_check(sh);
912
913 if (test_bit(STRIPE_OP_IO, &pending))
914 ops_run_io(sh);
915
916 if (overlap_clear)
917 for (i = disks; i--; ) {
918 struct r5dev *dev = &sh->dev[i];
919 if (test_and_clear_bit(R5_Overlap, &dev->flags))
920 wake_up(&sh->raid_conf->wait_for_overlap);
921 }
922 }
923
924 static int grow_one_stripe(raid5_conf_t *conf)
925 {
926 struct stripe_head *sh;
927 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
928 if (!sh)
929 return 0;
930 memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
931 sh->raid_conf = conf;
932 spin_lock_init(&sh->lock);
933
934 if (grow_buffers(sh, conf->raid_disks)) {
935 shrink_buffers(sh, conf->raid_disks);
936 kmem_cache_free(conf->slab_cache, sh);
937 return 0;
938 }
939 sh->disks = conf->raid_disks;
940 /* we just created an active stripe so... */
941 atomic_set(&sh->count, 1);
942 atomic_inc(&conf->active_stripes);
943 INIT_LIST_HEAD(&sh->lru);
944 release_stripe(sh);
945 return 1;
946 }
947
948 static int grow_stripes(raid5_conf_t *conf, int num)
949 {
950 struct kmem_cache *sc;
951 int devs = conf->raid_disks;
952
953 sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev));
954 sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev));
955 conf->active_name = 0;
956 sc = kmem_cache_create(conf->cache_name[conf->active_name],
957 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
958 0, 0, NULL);
959 if (!sc)
960 return 1;
961 conf->slab_cache = sc;
962 conf->pool_size = devs;
963 while (num--)
964 if (!grow_one_stripe(conf))
965 return 1;
966 return 0;
967 }
968
969 #ifdef CONFIG_MD_RAID5_RESHAPE
970 static int resize_stripes(raid5_conf_t *conf, int newsize)
971 {
972 /* Make all the stripes able to hold 'newsize' devices.
973 * New slots in each stripe get 'page' set to a new page.
974 *
975 * This happens in stages:
976 * 1/ create a new kmem_cache and allocate the required number of
977 * stripe_heads.
978 * 2/ gather all the old stripe_heads and tranfer the pages across
979 * to the new stripe_heads. This will have the side effect of
980 * freezing the array as once all stripe_heads have been collected,
981 * no IO will be possible. Old stripe heads are freed once their
982 * pages have been transferred over, and the old kmem_cache is
983 * freed when all stripes are done.
984 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
985 * we simple return a failre status - no need to clean anything up.
986 * 4/ allocate new pages for the new slots in the new stripe_heads.
987 * If this fails, we don't bother trying the shrink the
988 * stripe_heads down again, we just leave them as they are.
989 * As each stripe_head is processed the new one is released into
990 * active service.
991 *
992 * Once step2 is started, we cannot afford to wait for a write,
993 * so we use GFP_NOIO allocations.
994 */
995 struct stripe_head *osh, *nsh;
996 LIST_HEAD(newstripes);
997 struct disk_info *ndisks;
998 int err = 0;
999 struct kmem_cache *sc;
1000 int i;
1001
1002 if (newsize <= conf->pool_size)
1003 return 0; /* never bother to shrink */
1004
1005 md_allow_write(conf->mddev);
1006
1007 /* Step 1 */
1008 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1009 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1010 0, 0, NULL);
1011 if (!sc)
1012 return -ENOMEM;
1013
1014 for (i = conf->max_nr_stripes; i; i--) {
1015 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1016 if (!nsh)
1017 break;
1018
1019 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1020
1021 nsh->raid_conf = conf;
1022 spin_lock_init(&nsh->lock);
1023
1024 list_add(&nsh->lru, &newstripes);
1025 }
1026 if (i) {
1027 /* didn't get enough, give up */
1028 while (!list_empty(&newstripes)) {
1029 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1030 list_del(&nsh->lru);
1031 kmem_cache_free(sc, nsh);
1032 }
1033 kmem_cache_destroy(sc);
1034 return -ENOMEM;
1035 }
1036 /* Step 2 - Must use GFP_NOIO now.
1037 * OK, we have enough stripes, start collecting inactive
1038 * stripes and copying them over
1039 */
1040 list_for_each_entry(nsh, &newstripes, lru) {
1041 spin_lock_irq(&conf->device_lock);
1042 wait_event_lock_irq(conf->wait_for_stripe,
1043 !list_empty(&conf->inactive_list),
1044 conf->device_lock,
1045 unplug_slaves(conf->mddev)
1046 );
1047 osh = get_free_stripe(conf);
1048 spin_unlock_irq(&conf->device_lock);
1049 atomic_set(&nsh->count, 1);
1050 for(i=0; i<conf->pool_size; i++)
1051 nsh->dev[i].page = osh->dev[i].page;
1052 for( ; i<newsize; i++)
1053 nsh->dev[i].page = NULL;
1054 kmem_cache_free(conf->slab_cache, osh);
1055 }
1056 kmem_cache_destroy(conf->slab_cache);
1057
1058 /* Step 3.
1059 * At this point, we are holding all the stripes so the array
1060 * is completely stalled, so now is a good time to resize
1061 * conf->disks.
1062 */
1063 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1064 if (ndisks) {
1065 for (i=0; i<conf->raid_disks; i++)
1066 ndisks[i] = conf->disks[i];
1067 kfree(conf->disks);
1068 conf->disks = ndisks;
1069 } else
1070 err = -ENOMEM;
1071
1072 /* Step 4, return new stripes to service */
1073 while(!list_empty(&newstripes)) {
1074 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1075 list_del_init(&nsh->lru);
1076 for (i=conf->raid_disks; i < newsize; i++)
1077 if (nsh->dev[i].page == NULL) {
1078 struct page *p = alloc_page(GFP_NOIO);
1079 nsh->dev[i].page = p;
1080 if (!p)
1081 err = -ENOMEM;
1082 }
1083 release_stripe(nsh);
1084 }
1085 /* critical section pass, GFP_NOIO no longer needed */
1086
1087 conf->slab_cache = sc;
1088 conf->active_name = 1-conf->active_name;
1089 conf->pool_size = newsize;
1090 return err;
1091 }
1092 #endif
1093
1094 static int drop_one_stripe(raid5_conf_t *conf)
1095 {
1096 struct stripe_head *sh;
1097
1098 spin_lock_irq(&conf->device_lock);
1099 sh = get_free_stripe(conf);
1100 spin_unlock_irq(&conf->device_lock);
1101 if (!sh)
1102 return 0;
1103 BUG_ON(atomic_read(&sh->count));
1104 shrink_buffers(sh, conf->pool_size);
1105 kmem_cache_free(conf->slab_cache, sh);
1106 atomic_dec(&conf->active_stripes);
1107 return 1;
1108 }
1109
1110 static void shrink_stripes(raid5_conf_t *conf)
1111 {
1112 while (drop_one_stripe(conf))
1113 ;
1114
1115 if (conf->slab_cache)
1116 kmem_cache_destroy(conf->slab_cache);
1117 conf->slab_cache = NULL;
1118 }
1119
1120 static void raid5_end_read_request(struct bio * bi, int error)
1121 {
1122 struct stripe_head *sh = bi->bi_private;
1123 raid5_conf_t *conf = sh->raid_conf;
1124 int disks = sh->disks, i;
1125 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1126 char b[BDEVNAME_SIZE];
1127 mdk_rdev_t *rdev;
1128
1129
1130 for (i=0 ; i<disks; i++)
1131 if (bi == &sh->dev[i].req)
1132 break;
1133
1134 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1135 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1136 uptodate);
1137 if (i == disks) {
1138 BUG();
1139 return;
1140 }
1141
1142 if (uptodate) {
1143 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1144 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1145 rdev = conf->disks[i].rdev;
1146 printk_rl(KERN_INFO "raid5:%s: read error corrected"
1147 " (%lu sectors at %llu on %s)\n",
1148 mdname(conf->mddev), STRIPE_SECTORS,
1149 (unsigned long long)(sh->sector
1150 + rdev->data_offset),
1151 bdevname(rdev->bdev, b));
1152 clear_bit(R5_ReadError, &sh->dev[i].flags);
1153 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1154 }
1155 if (atomic_read(&conf->disks[i].rdev->read_errors))
1156 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1157 } else {
1158 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1159 int retry = 0;
1160 rdev = conf->disks[i].rdev;
1161
1162 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1163 atomic_inc(&rdev->read_errors);
1164 if (conf->mddev->degraded)
1165 printk_rl(KERN_WARNING
1166 "raid5:%s: read error not correctable "
1167 "(sector %llu on %s).\n",
1168 mdname(conf->mddev),
1169 (unsigned long long)(sh->sector
1170 + rdev->data_offset),
1171 bdn);
1172 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1173 /* Oh, no!!! */
1174 printk_rl(KERN_WARNING
1175 "raid5:%s: read error NOT corrected!! "
1176 "(sector %llu on %s).\n",
1177 mdname(conf->mddev),
1178 (unsigned long long)(sh->sector
1179 + rdev->data_offset),
1180 bdn);
1181 else if (atomic_read(&rdev->read_errors)
1182 > conf->max_nr_stripes)
1183 printk(KERN_WARNING
1184 "raid5:%s: Too many read errors, failing device %s.\n",
1185 mdname(conf->mddev), bdn);
1186 else
1187 retry = 1;
1188 if (retry)
1189 set_bit(R5_ReadError, &sh->dev[i].flags);
1190 else {
1191 clear_bit(R5_ReadError, &sh->dev[i].flags);
1192 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1193 md_error(conf->mddev, rdev);
1194 }
1195 }
1196 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1197 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1198 set_bit(STRIPE_HANDLE, &sh->state);
1199 release_stripe(sh);
1200 }
1201
1202 static void raid5_end_write_request (struct bio *bi, int error)
1203 {
1204 struct stripe_head *sh = bi->bi_private;
1205 raid5_conf_t *conf = sh->raid_conf;
1206 int disks = sh->disks, i;
1207 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1208
1209 for (i=0 ; i<disks; i++)
1210 if (bi == &sh->dev[i].req)
1211 break;
1212
1213 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1214 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1215 uptodate);
1216 if (i == disks) {
1217 BUG();
1218 return;
1219 }
1220
1221 if (!uptodate)
1222 md_error(conf->mddev, conf->disks[i].rdev);
1223
1224 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1225
1226 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1227 set_bit(STRIPE_HANDLE, &sh->state);
1228 release_stripe(sh);
1229 }
1230
1231
1232 static sector_t compute_blocknr(struct stripe_head *sh, int i);
1233
1234 static void raid5_build_block (struct stripe_head *sh, int i)
1235 {
1236 struct r5dev *dev = &sh->dev[i];
1237
1238 bio_init(&dev->req);
1239 dev->req.bi_io_vec = &dev->vec;
1240 dev->req.bi_vcnt++;
1241 dev->req.bi_max_vecs++;
1242 dev->vec.bv_page = dev->page;
1243 dev->vec.bv_len = STRIPE_SIZE;
1244 dev->vec.bv_offset = 0;
1245
1246 dev->req.bi_sector = sh->sector;
1247 dev->req.bi_private = sh;
1248
1249 dev->flags = 0;
1250 dev->sector = compute_blocknr(sh, i);
1251 }
1252
1253 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1254 {
1255 char b[BDEVNAME_SIZE];
1256 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1257 pr_debug("raid5: error called\n");
1258
1259 if (!test_bit(Faulty, &rdev->flags)) {
1260 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1261 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1262 unsigned long flags;
1263 spin_lock_irqsave(&conf->device_lock, flags);
1264 mddev->degraded++;
1265 spin_unlock_irqrestore(&conf->device_lock, flags);
1266 /*
1267 * if recovery was running, make sure it aborts.
1268 */
1269 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1270 }
1271 set_bit(Faulty, &rdev->flags);
1272 printk (KERN_ALERT
1273 "raid5: Disk failure on %s, disabling device.\n"
1274 "raid5: Operation continuing on %d devices.\n",
1275 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1276 }
1277 }
1278
1279 /*
1280 * Input: a 'big' sector number,
1281 * Output: index of the data and parity disk, and the sector # in them.
1282 */
1283 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
1284 unsigned int data_disks, unsigned int * dd_idx,
1285 unsigned int * pd_idx, raid5_conf_t *conf)
1286 {
1287 long stripe;
1288 unsigned long chunk_number;
1289 unsigned int chunk_offset;
1290 sector_t new_sector;
1291 int sectors_per_chunk = conf->chunk_size >> 9;
1292
1293 /* First compute the information on this sector */
1294
1295 /*
1296 * Compute the chunk number and the sector offset inside the chunk
1297 */
1298 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1299 chunk_number = r_sector;
1300 BUG_ON(r_sector != chunk_number);
1301
1302 /*
1303 * Compute the stripe number
1304 */
1305 stripe = chunk_number / data_disks;
1306
1307 /*
1308 * Compute the data disk and parity disk indexes inside the stripe
1309 */
1310 *dd_idx = chunk_number % data_disks;
1311
1312 /*
1313 * Select the parity disk based on the user selected algorithm.
1314 */
1315 switch(conf->level) {
1316 case 4:
1317 *pd_idx = data_disks;
1318 break;
1319 case 5:
1320 switch (conf->algorithm) {
1321 case ALGORITHM_LEFT_ASYMMETRIC:
1322 *pd_idx = data_disks - stripe % raid_disks;
1323 if (*dd_idx >= *pd_idx)
1324 (*dd_idx)++;
1325 break;
1326 case ALGORITHM_RIGHT_ASYMMETRIC:
1327 *pd_idx = stripe % raid_disks;
1328 if (*dd_idx >= *pd_idx)
1329 (*dd_idx)++;
1330 break;
1331 case ALGORITHM_LEFT_SYMMETRIC:
1332 *pd_idx = data_disks - stripe % raid_disks;
1333 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1334 break;
1335 case ALGORITHM_RIGHT_SYMMETRIC:
1336 *pd_idx = stripe % raid_disks;
1337 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1338 break;
1339 default:
1340 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1341 conf->algorithm);
1342 }
1343 break;
1344 case 6:
1345
1346 /**** FIX THIS ****/
1347 switch (conf->algorithm) {
1348 case ALGORITHM_LEFT_ASYMMETRIC:
1349 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1350 if (*pd_idx == raid_disks-1)
1351 (*dd_idx)++; /* Q D D D P */
1352 else if (*dd_idx >= *pd_idx)
1353 (*dd_idx) += 2; /* D D P Q D */
1354 break;
1355 case ALGORITHM_RIGHT_ASYMMETRIC:
1356 *pd_idx = stripe % raid_disks;
1357 if (*pd_idx == raid_disks-1)
1358 (*dd_idx)++; /* Q D D D P */
1359 else if (*dd_idx >= *pd_idx)
1360 (*dd_idx) += 2; /* D D P Q D */
1361 break;
1362 case ALGORITHM_LEFT_SYMMETRIC:
1363 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1364 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1365 break;
1366 case ALGORITHM_RIGHT_SYMMETRIC:
1367 *pd_idx = stripe % raid_disks;
1368 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1369 break;
1370 default:
1371 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1372 conf->algorithm);
1373 }
1374 break;
1375 }
1376
1377 /*
1378 * Finally, compute the new sector number
1379 */
1380 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1381 return new_sector;
1382 }
1383
1384
1385 static sector_t compute_blocknr(struct stripe_head *sh, int i)
1386 {
1387 raid5_conf_t *conf = sh->raid_conf;
1388 int raid_disks = sh->disks;
1389 int data_disks = raid_disks - conf->max_degraded;
1390 sector_t new_sector = sh->sector, check;
1391 int sectors_per_chunk = conf->chunk_size >> 9;
1392 sector_t stripe;
1393 int chunk_offset;
1394 int chunk_number, dummy1, dummy2, dd_idx = i;
1395 sector_t r_sector;
1396
1397
1398 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1399 stripe = new_sector;
1400 BUG_ON(new_sector != stripe);
1401
1402 if (i == sh->pd_idx)
1403 return 0;
1404 switch(conf->level) {
1405 case 4: break;
1406 case 5:
1407 switch (conf->algorithm) {
1408 case ALGORITHM_LEFT_ASYMMETRIC:
1409 case ALGORITHM_RIGHT_ASYMMETRIC:
1410 if (i > sh->pd_idx)
1411 i--;
1412 break;
1413 case ALGORITHM_LEFT_SYMMETRIC:
1414 case ALGORITHM_RIGHT_SYMMETRIC:
1415 if (i < sh->pd_idx)
1416 i += raid_disks;
1417 i -= (sh->pd_idx + 1);
1418 break;
1419 default:
1420 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1421 conf->algorithm);
1422 }
1423 break;
1424 case 6:
1425 if (i == raid6_next_disk(sh->pd_idx, raid_disks))
1426 return 0; /* It is the Q disk */
1427 switch (conf->algorithm) {
1428 case ALGORITHM_LEFT_ASYMMETRIC:
1429 case ALGORITHM_RIGHT_ASYMMETRIC:
1430 if (sh->pd_idx == raid_disks-1)
1431 i--; /* Q D D D P */
1432 else if (i > sh->pd_idx)
1433 i -= 2; /* D D P Q D */
1434 break;
1435 case ALGORITHM_LEFT_SYMMETRIC:
1436 case ALGORITHM_RIGHT_SYMMETRIC:
1437 if (sh->pd_idx == raid_disks-1)
1438 i--; /* Q D D D P */
1439 else {
1440 /* D D P Q D */
1441 if (i < sh->pd_idx)
1442 i += raid_disks;
1443 i -= (sh->pd_idx + 2);
1444 }
1445 break;
1446 default:
1447 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1448 conf->algorithm);
1449 }
1450 break;
1451 }
1452
1453 chunk_number = stripe * data_disks + i;
1454 r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1455
1456 check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
1457 if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
1458 printk(KERN_ERR "compute_blocknr: map not correct\n");
1459 return 0;
1460 }
1461 return r_sector;
1462 }
1463
1464
1465
1466 /*
1467 * Copy data between a page in the stripe cache, and one or more bion
1468 * The page could align with the middle of the bio, or there could be
1469 * several bion, each with several bio_vecs, which cover part of the page
1470 * Multiple bion are linked together on bi_next. There may be extras
1471 * at the end of this list. We ignore them.
1472 */
1473 static void copy_data(int frombio, struct bio *bio,
1474 struct page *page,
1475 sector_t sector)
1476 {
1477 char *pa = page_address(page);
1478 struct bio_vec *bvl;
1479 int i;
1480 int page_offset;
1481
1482 if (bio->bi_sector >= sector)
1483 page_offset = (signed)(bio->bi_sector - sector) * 512;
1484 else
1485 page_offset = (signed)(sector - bio->bi_sector) * -512;
1486 bio_for_each_segment(bvl, bio, i) {
1487 int len = bio_iovec_idx(bio,i)->bv_len;
1488 int clen;
1489 int b_offset = 0;
1490
1491 if (page_offset < 0) {
1492 b_offset = -page_offset;
1493 page_offset += b_offset;
1494 len -= b_offset;
1495 }
1496
1497 if (len > 0 && page_offset + len > STRIPE_SIZE)
1498 clen = STRIPE_SIZE - page_offset;
1499 else clen = len;
1500
1501 if (clen > 0) {
1502 char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1503 if (frombio)
1504 memcpy(pa+page_offset, ba+b_offset, clen);
1505 else
1506 memcpy(ba+b_offset, pa+page_offset, clen);
1507 __bio_kunmap_atomic(ba, KM_USER0);
1508 }
1509 if (clen < len) /* hit end of page */
1510 break;
1511 page_offset += len;
1512 }
1513 }
1514
1515 #define check_xor() do { \
1516 if (count == MAX_XOR_BLOCKS) { \
1517 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1518 count = 0; \
1519 } \
1520 } while(0)
1521
1522 static void compute_parity6(struct stripe_head *sh, int method)
1523 {
1524 raid6_conf_t *conf = sh->raid_conf;
1525 int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1526 struct bio *chosen;
1527 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1528 void *ptrs[disks];
1529
1530 qd_idx = raid6_next_disk(pd_idx, disks);
1531 d0_idx = raid6_next_disk(qd_idx, disks);
1532
1533 pr_debug("compute_parity, stripe %llu, method %d\n",
1534 (unsigned long long)sh->sector, method);
1535
1536 switch(method) {
1537 case READ_MODIFY_WRITE:
1538 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
1539 case RECONSTRUCT_WRITE:
1540 for (i= disks; i-- ;)
1541 if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1542 chosen = sh->dev[i].towrite;
1543 sh->dev[i].towrite = NULL;
1544
1545 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1546 wake_up(&conf->wait_for_overlap);
1547
1548 BUG_ON(sh->dev[i].written);
1549 sh->dev[i].written = chosen;
1550 }
1551 break;
1552 case CHECK_PARITY:
1553 BUG(); /* Not implemented yet */
1554 }
1555
1556 for (i = disks; i--;)
1557 if (sh->dev[i].written) {
1558 sector_t sector = sh->dev[i].sector;
1559 struct bio *wbi = sh->dev[i].written;
1560 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1561 copy_data(1, wbi, sh->dev[i].page, sector);
1562 wbi = r5_next_bio(wbi, sector);
1563 }
1564
1565 set_bit(R5_LOCKED, &sh->dev[i].flags);
1566 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1567 }
1568
1569 // switch(method) {
1570 // case RECONSTRUCT_WRITE:
1571 // case CHECK_PARITY:
1572 // case UPDATE_PARITY:
1573 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1574 /* FIX: Is this ordering of drives even remotely optimal? */
1575 count = 0;
1576 i = d0_idx;
1577 do {
1578 ptrs[count++] = page_address(sh->dev[i].page);
1579 if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1580 printk("block %d/%d not uptodate on parity calc\n", i,count);
1581 i = raid6_next_disk(i, disks);
1582 } while ( i != d0_idx );
1583 // break;
1584 // }
1585
1586 raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1587
1588 switch(method) {
1589 case RECONSTRUCT_WRITE:
1590 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1591 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1592 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1593 set_bit(R5_LOCKED, &sh->dev[qd_idx].flags);
1594 break;
1595 case UPDATE_PARITY:
1596 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1597 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1598 break;
1599 }
1600 }
1601
1602
1603 /* Compute one missing block */
1604 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1605 {
1606 int i, count, disks = sh->disks;
1607 void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1608 int pd_idx = sh->pd_idx;
1609 int qd_idx = raid6_next_disk(pd_idx, disks);
1610
1611 pr_debug("compute_block_1, stripe %llu, idx %d\n",
1612 (unsigned long long)sh->sector, dd_idx);
1613
1614 if ( dd_idx == qd_idx ) {
1615 /* We're actually computing the Q drive */
1616 compute_parity6(sh, UPDATE_PARITY);
1617 } else {
1618 dest = page_address(sh->dev[dd_idx].page);
1619 if (!nozero) memset(dest, 0, STRIPE_SIZE);
1620 count = 0;
1621 for (i = disks ; i--; ) {
1622 if (i == dd_idx || i == qd_idx)
1623 continue;
1624 p = page_address(sh->dev[i].page);
1625 if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1626 ptr[count++] = p;
1627 else
1628 printk("compute_block() %d, stripe %llu, %d"
1629 " not present\n", dd_idx,
1630 (unsigned long long)sh->sector, i);
1631
1632 check_xor();
1633 }
1634 if (count)
1635 xor_blocks(count, STRIPE_SIZE, dest, ptr);
1636 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1637 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1638 }
1639 }
1640
1641 /* Compute two missing blocks */
1642 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1643 {
1644 int i, count, disks = sh->disks;
1645 int pd_idx = sh->pd_idx;
1646 int qd_idx = raid6_next_disk(pd_idx, disks);
1647 int d0_idx = raid6_next_disk(qd_idx, disks);
1648 int faila, failb;
1649
1650 /* faila and failb are disk numbers relative to d0_idx */
1651 /* pd_idx become disks-2 and qd_idx become disks-1 */
1652 faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1653 failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1654
1655 BUG_ON(faila == failb);
1656 if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1657
1658 pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1659 (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1660
1661 if ( failb == disks-1 ) {
1662 /* Q disk is one of the missing disks */
1663 if ( faila == disks-2 ) {
1664 /* Missing P+Q, just recompute */
1665 compute_parity6(sh, UPDATE_PARITY);
1666 return;
1667 } else {
1668 /* We're missing D+Q; recompute D from P */
1669 compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1670 compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1671 return;
1672 }
1673 }
1674
1675 /* We're missing D+P or D+D; build pointer table */
1676 {
1677 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1678 void *ptrs[disks];
1679
1680 count = 0;
1681 i = d0_idx;
1682 do {
1683 ptrs[count++] = page_address(sh->dev[i].page);
1684 i = raid6_next_disk(i, disks);
1685 if (i != dd_idx1 && i != dd_idx2 &&
1686 !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1687 printk("compute_2 with missing block %d/%d\n", count, i);
1688 } while ( i != d0_idx );
1689
1690 if ( failb == disks-2 ) {
1691 /* We're missing D+P. */
1692 raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1693 } else {
1694 /* We're missing D+D. */
1695 raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1696 }
1697
1698 /* Both the above update both missing blocks */
1699 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1700 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1701 }
1702 }
1703
1704 static int
1705 handle_write_operations5(struct stripe_head *sh, int rcw, int expand)
1706 {
1707 int i, pd_idx = sh->pd_idx, disks = sh->disks;
1708 int locked = 0;
1709
1710 if (rcw) {
1711 /* if we are not expanding this is a proper write request, and
1712 * there will be bios with new data to be drained into the
1713 * stripe cache
1714 */
1715 if (!expand) {
1716 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1717 sh->ops.count++;
1718 }
1719
1720 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1721 sh->ops.count++;
1722
1723 for (i = disks; i--; ) {
1724 struct r5dev *dev = &sh->dev[i];
1725
1726 if (dev->towrite) {
1727 set_bit(R5_LOCKED, &dev->flags);
1728 if (!expand)
1729 clear_bit(R5_UPTODATE, &dev->flags);
1730 locked++;
1731 }
1732 }
1733 if (locked + 1 == disks)
1734 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1735 atomic_inc(&sh->raid_conf->pending_full_writes);
1736 } else {
1737 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1738 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1739
1740 set_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
1741 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1742 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1743
1744 sh->ops.count += 3;
1745
1746 for (i = disks; i--; ) {
1747 struct r5dev *dev = &sh->dev[i];
1748 if (i == pd_idx)
1749 continue;
1750
1751 /* For a read-modify write there may be blocks that are
1752 * locked for reading while others are ready to be
1753 * written so we distinguish these blocks by the
1754 * R5_Wantprexor bit
1755 */
1756 if (dev->towrite &&
1757 (test_bit(R5_UPTODATE, &dev->flags) ||
1758 test_bit(R5_Wantcompute, &dev->flags))) {
1759 set_bit(R5_Wantprexor, &dev->flags);
1760 set_bit(R5_LOCKED, &dev->flags);
1761 clear_bit(R5_UPTODATE, &dev->flags);
1762 locked++;
1763 }
1764 }
1765 }
1766
1767 /* keep the parity disk locked while asynchronous operations
1768 * are in flight
1769 */
1770 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1771 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1772 locked++;
1773
1774 pr_debug("%s: stripe %llu locked: %d pending: %lx\n",
1775 __func__, (unsigned long long)sh->sector,
1776 locked, sh->ops.pending);
1777
1778 return locked;
1779 }
1780
1781 /*
1782 * Each stripe/dev can have one or more bion attached.
1783 * toread/towrite point to the first in a chain.
1784 * The bi_next chain must be in order.
1785 */
1786 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1787 {
1788 struct bio **bip;
1789 raid5_conf_t *conf = sh->raid_conf;
1790 int firstwrite=0;
1791
1792 pr_debug("adding bh b#%llu to stripe s#%llu\n",
1793 (unsigned long long)bi->bi_sector,
1794 (unsigned long long)sh->sector);
1795
1796
1797 spin_lock(&sh->lock);
1798 spin_lock_irq(&conf->device_lock);
1799 if (forwrite) {
1800 bip = &sh->dev[dd_idx].towrite;
1801 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1802 firstwrite = 1;
1803 } else
1804 bip = &sh->dev[dd_idx].toread;
1805 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1806 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1807 goto overlap;
1808 bip = & (*bip)->bi_next;
1809 }
1810 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1811 goto overlap;
1812
1813 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1814 if (*bip)
1815 bi->bi_next = *bip;
1816 *bip = bi;
1817 bi->bi_phys_segments ++;
1818 spin_unlock_irq(&conf->device_lock);
1819 spin_unlock(&sh->lock);
1820
1821 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1822 (unsigned long long)bi->bi_sector,
1823 (unsigned long long)sh->sector, dd_idx);
1824
1825 if (conf->mddev->bitmap && firstwrite) {
1826 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1827 STRIPE_SECTORS, 0);
1828 sh->bm_seq = conf->seq_flush+1;
1829 set_bit(STRIPE_BIT_DELAY, &sh->state);
1830 }
1831
1832 if (forwrite) {
1833 /* check if page is covered */
1834 sector_t sector = sh->dev[dd_idx].sector;
1835 for (bi=sh->dev[dd_idx].towrite;
1836 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1837 bi && bi->bi_sector <= sector;
1838 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1839 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1840 sector = bi->bi_sector + (bi->bi_size>>9);
1841 }
1842 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1843 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1844 }
1845 return 1;
1846
1847 overlap:
1848 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1849 spin_unlock_irq(&conf->device_lock);
1850 spin_unlock(&sh->lock);
1851 return 0;
1852 }
1853
1854 static void end_reshape(raid5_conf_t *conf);
1855
1856 static int page_is_zero(struct page *p)
1857 {
1858 char *a = page_address(p);
1859 return ((*(u32*)a) == 0 &&
1860 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1861 }
1862
1863 static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1864 {
1865 int sectors_per_chunk = conf->chunk_size >> 9;
1866 int pd_idx, dd_idx;
1867 int chunk_offset = sector_div(stripe, sectors_per_chunk);
1868
1869 raid5_compute_sector(stripe * (disks - conf->max_degraded)
1870 *sectors_per_chunk + chunk_offset,
1871 disks, disks - conf->max_degraded,
1872 &dd_idx, &pd_idx, conf);
1873 return pd_idx;
1874 }
1875
1876 static void
1877 handle_requests_to_failed_array(raid5_conf_t *conf, struct stripe_head *sh,
1878 struct stripe_head_state *s, int disks,
1879 struct bio **return_bi)
1880 {
1881 int i;
1882 for (i = disks; i--; ) {
1883 struct bio *bi;
1884 int bitmap_end = 0;
1885
1886 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1887 mdk_rdev_t *rdev;
1888 rcu_read_lock();
1889 rdev = rcu_dereference(conf->disks[i].rdev);
1890 if (rdev && test_bit(In_sync, &rdev->flags))
1891 /* multiple read failures in one stripe */
1892 md_error(conf->mddev, rdev);
1893 rcu_read_unlock();
1894 }
1895 spin_lock_irq(&conf->device_lock);
1896 /* fail all writes first */
1897 bi = sh->dev[i].towrite;
1898 sh->dev[i].towrite = NULL;
1899 if (bi) {
1900 s->to_write--;
1901 bitmap_end = 1;
1902 }
1903
1904 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1905 wake_up(&conf->wait_for_overlap);
1906
1907 while (bi && bi->bi_sector <
1908 sh->dev[i].sector + STRIPE_SECTORS) {
1909 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1910 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1911 if (--bi->bi_phys_segments == 0) {
1912 md_write_end(conf->mddev);
1913 bi->bi_next = *return_bi;
1914 *return_bi = bi;
1915 }
1916 bi = nextbi;
1917 }
1918 /* and fail all 'written' */
1919 bi = sh->dev[i].written;
1920 sh->dev[i].written = NULL;
1921 if (bi) bitmap_end = 1;
1922 while (bi && bi->bi_sector <
1923 sh->dev[i].sector + STRIPE_SECTORS) {
1924 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1925 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1926 if (--bi->bi_phys_segments == 0) {
1927 md_write_end(conf->mddev);
1928 bi->bi_next = *return_bi;
1929 *return_bi = bi;
1930 }
1931 bi = bi2;
1932 }
1933
1934 /* fail any reads if this device is non-operational and
1935 * the data has not reached the cache yet.
1936 */
1937 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
1938 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1939 test_bit(R5_ReadError, &sh->dev[i].flags))) {
1940 bi = sh->dev[i].toread;
1941 sh->dev[i].toread = NULL;
1942 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1943 wake_up(&conf->wait_for_overlap);
1944 if (bi) s->to_read--;
1945 while (bi && bi->bi_sector <
1946 sh->dev[i].sector + STRIPE_SECTORS) {
1947 struct bio *nextbi =
1948 r5_next_bio(bi, sh->dev[i].sector);
1949 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1950 if (--bi->bi_phys_segments == 0) {
1951 bi->bi_next = *return_bi;
1952 *return_bi = bi;
1953 }
1954 bi = nextbi;
1955 }
1956 }
1957 spin_unlock_irq(&conf->device_lock);
1958 if (bitmap_end)
1959 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1960 STRIPE_SECTORS, 0, 0);
1961 }
1962
1963 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
1964 if (atomic_dec_and_test(&conf->pending_full_writes))
1965 md_wakeup_thread(conf->mddev->thread);
1966 }
1967
1968 /* __handle_issuing_new_read_requests5 - returns 0 if there are no more disks
1969 * to process
1970 */
1971 static int __handle_issuing_new_read_requests5(struct stripe_head *sh,
1972 struct stripe_head_state *s, int disk_idx, int disks)
1973 {
1974 struct r5dev *dev = &sh->dev[disk_idx];
1975 struct r5dev *failed_dev = &sh->dev[s->failed_num];
1976
1977 /* don't schedule compute operations or reads on the parity block while
1978 * a check is in flight
1979 */
1980 if ((disk_idx == sh->pd_idx) &&
1981 test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
1982 return ~0;
1983
1984 /* is the data in this block needed, and can we get it? */
1985 if (!test_bit(R5_LOCKED, &dev->flags) &&
1986 !test_bit(R5_UPTODATE, &dev->flags) && (dev->toread ||
1987 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1988 s->syncing || s->expanding || (s->failed &&
1989 (failed_dev->toread || (failed_dev->towrite &&
1990 !test_bit(R5_OVERWRITE, &failed_dev->flags)
1991 ))))) {
1992 /* 1/ We would like to get this block, possibly by computing it,
1993 * but we might not be able to.
1994 *
1995 * 2/ Since parity check operations potentially make the parity
1996 * block !uptodate it will need to be refreshed before any
1997 * compute operations on data disks are scheduled.
1998 *
1999 * 3/ We hold off parity block re-reads until check operations
2000 * have quiesced.
2001 */
2002 if ((s->uptodate == disks - 1) &&
2003 (s->failed && disk_idx == s->failed_num) &&
2004 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
2005 set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2006 set_bit(R5_Wantcompute, &dev->flags);
2007 sh->ops.target = disk_idx;
2008 s->req_compute = 1;
2009 sh->ops.count++;
2010 /* Careful: from this point on 'uptodate' is in the eye
2011 * of raid5_run_ops which services 'compute' operations
2012 * before writes. R5_Wantcompute flags a block that will
2013 * be R5_UPTODATE by the time it is needed for a
2014 * subsequent operation.
2015 */
2016 s->uptodate++;
2017 return 0; /* uptodate + compute == disks */
2018 } else if ((s->uptodate < disks - 1) &&
2019 test_bit(R5_Insync, &dev->flags)) {
2020 /* Note: we hold off compute operations while checks are
2021 * in flight, but we still prefer 'compute' over 'read'
2022 * hence we only read if (uptodate < * disks-1)
2023 */
2024 set_bit(R5_LOCKED, &dev->flags);
2025 set_bit(R5_Wantread, &dev->flags);
2026 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2027 sh->ops.count++;
2028 s->locked++;
2029 pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2030 s->syncing);
2031 }
2032 }
2033
2034 return ~0;
2035 }
2036
2037 static void handle_issuing_new_read_requests5(struct stripe_head *sh,
2038 struct stripe_head_state *s, int disks)
2039 {
2040 int i;
2041
2042 /* Clear completed compute operations. Parity recovery
2043 * (STRIPE_OP_MOD_REPAIR_PD) implies a write-back which is handled
2044 * later on in this routine
2045 */
2046 if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2047 !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2048 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2049 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2050 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2051 }
2052
2053 /* look for blocks to read/compute, skip this if a compute
2054 * is already in flight, or if the stripe contents are in the
2055 * midst of changing due to a write
2056 */
2057 if (!test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2058 !test_bit(STRIPE_OP_PREXOR, &sh->ops.pending) &&
2059 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2060 for (i = disks; i--; )
2061 if (__handle_issuing_new_read_requests5(
2062 sh, s, i, disks) == 0)
2063 break;
2064 }
2065 set_bit(STRIPE_HANDLE, &sh->state);
2066 }
2067
2068 static void handle_issuing_new_read_requests6(struct stripe_head *sh,
2069 struct stripe_head_state *s, struct r6_state *r6s,
2070 int disks)
2071 {
2072 int i;
2073 for (i = disks; i--; ) {
2074 struct r5dev *dev = &sh->dev[i];
2075 if (!test_bit(R5_LOCKED, &dev->flags) &&
2076 !test_bit(R5_UPTODATE, &dev->flags) &&
2077 (dev->toread || (dev->towrite &&
2078 !test_bit(R5_OVERWRITE, &dev->flags)) ||
2079 s->syncing || s->expanding ||
2080 (s->failed >= 1 &&
2081 (sh->dev[r6s->failed_num[0]].toread ||
2082 s->to_write)) ||
2083 (s->failed >= 2 &&
2084 (sh->dev[r6s->failed_num[1]].toread ||
2085 s->to_write)))) {
2086 /* we would like to get this block, possibly
2087 * by computing it, but we might not be able to
2088 */
2089 if ((s->uptodate == disks - 1) &&
2090 (s->failed && (i == r6s->failed_num[0] ||
2091 i == r6s->failed_num[1]))) {
2092 pr_debug("Computing stripe %llu block %d\n",
2093 (unsigned long long)sh->sector, i);
2094 compute_block_1(sh, i, 0);
2095 s->uptodate++;
2096 } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2097 /* Computing 2-failure is *very* expensive; only
2098 * do it if failed >= 2
2099 */
2100 int other;
2101 for (other = disks; other--; ) {
2102 if (other == i)
2103 continue;
2104 if (!test_bit(R5_UPTODATE,
2105 &sh->dev[other].flags))
2106 break;
2107 }
2108 BUG_ON(other < 0);
2109 pr_debug("Computing stripe %llu blocks %d,%d\n",
2110 (unsigned long long)sh->sector,
2111 i, other);
2112 compute_block_2(sh, i, other);
2113 s->uptodate += 2;
2114 } else if (test_bit(R5_Insync, &dev->flags)) {
2115 set_bit(R5_LOCKED, &dev->flags);
2116 set_bit(R5_Wantread, &dev->flags);
2117 s->locked++;
2118 pr_debug("Reading block %d (sync=%d)\n",
2119 i, s->syncing);
2120 }
2121 }
2122 }
2123 set_bit(STRIPE_HANDLE, &sh->state);
2124 }
2125
2126
2127 /* handle_completed_write_requests
2128 * any written block on an uptodate or failed drive can be returned.
2129 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2130 * never LOCKED, so we don't need to test 'failed' directly.
2131 */
2132 static void handle_completed_write_requests(raid5_conf_t *conf,
2133 struct stripe_head *sh, int disks, struct bio **return_bi)
2134 {
2135 int i;
2136 struct r5dev *dev;
2137
2138 for (i = disks; i--; )
2139 if (sh->dev[i].written) {
2140 dev = &sh->dev[i];
2141 if (!test_bit(R5_LOCKED, &dev->flags) &&
2142 test_bit(R5_UPTODATE, &dev->flags)) {
2143 /* We can return any write requests */
2144 struct bio *wbi, *wbi2;
2145 int bitmap_end = 0;
2146 pr_debug("Return write for disc %d\n", i);
2147 spin_lock_irq(&conf->device_lock);
2148 wbi = dev->written;
2149 dev->written = NULL;
2150 while (wbi && wbi->bi_sector <
2151 dev->sector + STRIPE_SECTORS) {
2152 wbi2 = r5_next_bio(wbi, dev->sector);
2153 if (--wbi->bi_phys_segments == 0) {
2154 md_write_end(conf->mddev);
2155 wbi->bi_next = *return_bi;
2156 *return_bi = wbi;
2157 }
2158 wbi = wbi2;
2159 }
2160 if (dev->towrite == NULL)
2161 bitmap_end = 1;
2162 spin_unlock_irq(&conf->device_lock);
2163 if (bitmap_end)
2164 bitmap_endwrite(conf->mddev->bitmap,
2165 sh->sector,
2166 STRIPE_SECTORS,
2167 !test_bit(STRIPE_DEGRADED, &sh->state),
2168 0);
2169 }
2170 }
2171
2172 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2173 if (atomic_dec_and_test(&conf->pending_full_writes))
2174 md_wakeup_thread(conf->mddev->thread);
2175 }
2176
2177 static void handle_issuing_new_write_requests5(raid5_conf_t *conf,
2178 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2179 {
2180 int rmw = 0, rcw = 0, i;
2181 for (i = disks; i--; ) {
2182 /* would I have to read this buffer for read_modify_write */
2183 struct r5dev *dev = &sh->dev[i];
2184 if ((dev->towrite || i == sh->pd_idx) &&
2185 !test_bit(R5_LOCKED, &dev->flags) &&
2186 !(test_bit(R5_UPTODATE, &dev->flags) ||
2187 test_bit(R5_Wantcompute, &dev->flags))) {
2188 if (test_bit(R5_Insync, &dev->flags))
2189 rmw++;
2190 else
2191 rmw += 2*disks; /* cannot read it */
2192 }
2193 /* Would I have to read this buffer for reconstruct_write */
2194 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2195 !test_bit(R5_LOCKED, &dev->flags) &&
2196 !(test_bit(R5_UPTODATE, &dev->flags) ||
2197 test_bit(R5_Wantcompute, &dev->flags))) {
2198 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2199 else
2200 rcw += 2*disks;
2201 }
2202 }
2203 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2204 (unsigned long long)sh->sector, rmw, rcw);
2205 set_bit(STRIPE_HANDLE, &sh->state);
2206 if (rmw < rcw && rmw > 0)
2207 /* prefer read-modify-write, but need to get some data */
2208 for (i = disks; i--; ) {
2209 struct r5dev *dev = &sh->dev[i];
2210 if ((dev->towrite || i == sh->pd_idx) &&
2211 !test_bit(R5_LOCKED, &dev->flags) &&
2212 !(test_bit(R5_UPTODATE, &dev->flags) ||
2213 test_bit(R5_Wantcompute, &dev->flags)) &&
2214 test_bit(R5_Insync, &dev->flags)) {
2215 if (
2216 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2217 pr_debug("Read_old block "
2218 "%d for r-m-w\n", i);
2219 set_bit(R5_LOCKED, &dev->flags);
2220 set_bit(R5_Wantread, &dev->flags);
2221 if (!test_and_set_bit(
2222 STRIPE_OP_IO, &sh->ops.pending))
2223 sh->ops.count++;
2224 s->locked++;
2225 } else {
2226 set_bit(STRIPE_DELAYED, &sh->state);
2227 set_bit(STRIPE_HANDLE, &sh->state);
2228 }
2229 }
2230 }
2231 if (rcw <= rmw && rcw > 0)
2232 /* want reconstruct write, but need to get some data */
2233 for (i = disks; i--; ) {
2234 struct r5dev *dev = &sh->dev[i];
2235 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2236 i != sh->pd_idx &&
2237 !test_bit(R5_LOCKED, &dev->flags) &&
2238 !(test_bit(R5_UPTODATE, &dev->flags) ||
2239 test_bit(R5_Wantcompute, &dev->flags)) &&
2240 test_bit(R5_Insync, &dev->flags)) {
2241 if (
2242 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2243 pr_debug("Read_old block "
2244 "%d for Reconstruct\n", i);
2245 set_bit(R5_LOCKED, &dev->flags);
2246 set_bit(R5_Wantread, &dev->flags);
2247 if (!test_and_set_bit(
2248 STRIPE_OP_IO, &sh->ops.pending))
2249 sh->ops.count++;
2250 s->locked++;
2251 } else {
2252 set_bit(STRIPE_DELAYED, &sh->state);
2253 set_bit(STRIPE_HANDLE, &sh->state);
2254 }
2255 }
2256 }
2257 /* now if nothing is locked, and if we have enough data,
2258 * we can start a write request
2259 */
2260 /* since handle_stripe can be called at any time we need to handle the
2261 * case where a compute block operation has been submitted and then a
2262 * subsequent call wants to start a write request. raid5_run_ops only
2263 * handles the case where compute block and postxor are requested
2264 * simultaneously. If this is not the case then new writes need to be
2265 * held off until the compute completes.
2266 */
2267 if ((s->req_compute ||
2268 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) &&
2269 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2270 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2271 s->locked += handle_write_operations5(sh, rcw == 0, 0);
2272 }
2273
2274 static void handle_issuing_new_write_requests6(raid5_conf_t *conf,
2275 struct stripe_head *sh, struct stripe_head_state *s,
2276 struct r6_state *r6s, int disks)
2277 {
2278 int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2279 int qd_idx = r6s->qd_idx;
2280 for (i = disks; i--; ) {
2281 struct r5dev *dev = &sh->dev[i];
2282 /* Would I have to read this buffer for reconstruct_write */
2283 if (!test_bit(R5_OVERWRITE, &dev->flags)
2284 && i != pd_idx && i != qd_idx
2285 && (!test_bit(R5_LOCKED, &dev->flags)
2286 ) &&
2287 !test_bit(R5_UPTODATE, &dev->flags)) {
2288 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2289 else {
2290 pr_debug("raid6: must_compute: "
2291 "disk %d flags=%#lx\n", i, dev->flags);
2292 must_compute++;
2293 }
2294 }
2295 }
2296 pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2297 (unsigned long long)sh->sector, rcw, must_compute);
2298 set_bit(STRIPE_HANDLE, &sh->state);
2299
2300 if (rcw > 0)
2301 /* want reconstruct write, but need to get some data */
2302 for (i = disks; i--; ) {
2303 struct r5dev *dev = &sh->dev[i];
2304 if (!test_bit(R5_OVERWRITE, &dev->flags)
2305 && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2306 && !test_bit(R5_LOCKED, &dev->flags) &&
2307 !test_bit(R5_UPTODATE, &dev->flags) &&
2308 test_bit(R5_Insync, &dev->flags)) {
2309 if (
2310 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2311 pr_debug("Read_old stripe %llu "
2312 "block %d for Reconstruct\n",
2313 (unsigned long long)sh->sector, i);
2314 set_bit(R5_LOCKED, &dev->flags);
2315 set_bit(R5_Wantread, &dev->flags);
2316 s->locked++;
2317 } else {
2318 pr_debug("Request delayed stripe %llu "
2319 "block %d for Reconstruct\n",
2320 (unsigned long long)sh->sector, i);
2321 set_bit(STRIPE_DELAYED, &sh->state);
2322 set_bit(STRIPE_HANDLE, &sh->state);
2323 }
2324 }
2325 }
2326 /* now if nothing is locked, and if we have enough data, we can start a
2327 * write request
2328 */
2329 if (s->locked == 0 && rcw == 0 &&
2330 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2331 if (must_compute > 0) {
2332 /* We have failed blocks and need to compute them */
2333 switch (s->failed) {
2334 case 0:
2335 BUG();
2336 case 1:
2337 compute_block_1(sh, r6s->failed_num[0], 0);
2338 break;
2339 case 2:
2340 compute_block_2(sh, r6s->failed_num[0],
2341 r6s->failed_num[1]);
2342 break;
2343 default: /* This request should have been failed? */
2344 BUG();
2345 }
2346 }
2347
2348 pr_debug("Computing parity for stripe %llu\n",
2349 (unsigned long long)sh->sector);
2350 compute_parity6(sh, RECONSTRUCT_WRITE);
2351 /* now every locked buffer is ready to be written */
2352 for (i = disks; i--; )
2353 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2354 pr_debug("Writing stripe %llu block %d\n",
2355 (unsigned long long)sh->sector, i);
2356 s->locked++;
2357 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2358 }
2359 if (s->locked == disks)
2360 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2361 atomic_inc(&conf->pending_full_writes);
2362 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2363 set_bit(STRIPE_INSYNC, &sh->state);
2364
2365 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2366 atomic_dec(&conf->preread_active_stripes);
2367 if (atomic_read(&conf->preread_active_stripes) <
2368 IO_THRESHOLD)
2369 md_wakeup_thread(conf->mddev->thread);
2370 }
2371 }
2372 }
2373
2374 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2375 struct stripe_head_state *s, int disks)
2376 {
2377 int canceled_check = 0;
2378
2379 set_bit(STRIPE_HANDLE, &sh->state);
2380
2381 /* complete a check operation */
2382 if (test_and_clear_bit(STRIPE_OP_CHECK, &sh->ops.complete)) {
2383 clear_bit(STRIPE_OP_CHECK, &sh->ops.ack);
2384 clear_bit(STRIPE_OP_CHECK, &sh->ops.pending);
2385 if (s->failed == 0) {
2386 if (sh->ops.zero_sum_result == 0)
2387 /* parity is correct (on disc,
2388 * not in buffer any more)
2389 */
2390 set_bit(STRIPE_INSYNC, &sh->state);
2391 else {
2392 conf->mddev->resync_mismatches +=
2393 STRIPE_SECTORS;
2394 if (test_bit(
2395 MD_RECOVERY_CHECK, &conf->mddev->recovery))
2396 /* don't try to repair!! */
2397 set_bit(STRIPE_INSYNC, &sh->state);
2398 else {
2399 set_bit(STRIPE_OP_COMPUTE_BLK,
2400 &sh->ops.pending);
2401 set_bit(STRIPE_OP_MOD_REPAIR_PD,
2402 &sh->ops.pending);
2403 set_bit(R5_Wantcompute,
2404 &sh->dev[sh->pd_idx].flags);
2405 sh->ops.target = sh->pd_idx;
2406 sh->ops.count++;
2407 s->uptodate++;
2408 }
2409 }
2410 } else
2411 canceled_check = 1; /* STRIPE_INSYNC is not set */
2412 }
2413
2414 /* start a new check operation if there are no failures, the stripe is
2415 * not insync, and a repair is not in flight
2416 */
2417 if (s->failed == 0 &&
2418 !test_bit(STRIPE_INSYNC, &sh->state) &&
2419 !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2420 if (!test_and_set_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
2421 BUG_ON(s->uptodate != disks);
2422 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2423 sh->ops.count++;
2424 s->uptodate--;
2425 }
2426 }
2427
2428 /* check if we can clear a parity disk reconstruct */
2429 if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2430 test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2431
2432 clear_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending);
2433 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2434 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2435 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2436 }
2437
2438
2439 /* Wait for check parity and compute block operations to complete
2440 * before write-back. If a failure occurred while the check operation
2441 * was in flight we need to cycle this stripe through handle_stripe
2442 * since the parity block may not be uptodate
2443 */
2444 if (!canceled_check && !test_bit(STRIPE_INSYNC, &sh->state) &&
2445 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending) &&
2446 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) {
2447 struct r5dev *dev;
2448 /* either failed parity check, or recovery is happening */
2449 if (s->failed == 0)
2450 s->failed_num = sh->pd_idx;
2451 dev = &sh->dev[s->failed_num];
2452 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2453 BUG_ON(s->uptodate != disks);
2454
2455 set_bit(R5_LOCKED, &dev->flags);
2456 set_bit(R5_Wantwrite, &dev->flags);
2457 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2458 sh->ops.count++;
2459
2460 clear_bit(STRIPE_DEGRADED, &sh->state);
2461 s->locked++;
2462 set_bit(STRIPE_INSYNC, &sh->state);
2463 }
2464 }
2465
2466
2467 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2468 struct stripe_head_state *s,
2469 struct r6_state *r6s, struct page *tmp_page,
2470 int disks)
2471 {
2472 int update_p = 0, update_q = 0;
2473 struct r5dev *dev;
2474 int pd_idx = sh->pd_idx;
2475 int qd_idx = r6s->qd_idx;
2476
2477 set_bit(STRIPE_HANDLE, &sh->state);
2478
2479 BUG_ON(s->failed > 2);
2480 BUG_ON(s->uptodate < disks);
2481 /* Want to check and possibly repair P and Q.
2482 * However there could be one 'failed' device, in which
2483 * case we can only check one of them, possibly using the
2484 * other to generate missing data
2485 */
2486
2487 /* If !tmp_page, we cannot do the calculations,
2488 * but as we have set STRIPE_HANDLE, we will soon be called
2489 * by stripe_handle with a tmp_page - just wait until then.
2490 */
2491 if (tmp_page) {
2492 if (s->failed == r6s->q_failed) {
2493 /* The only possible failed device holds 'Q', so it
2494 * makes sense to check P (If anything else were failed,
2495 * we would have used P to recreate it).
2496 */
2497 compute_block_1(sh, pd_idx, 1);
2498 if (!page_is_zero(sh->dev[pd_idx].page)) {
2499 compute_block_1(sh, pd_idx, 0);
2500 update_p = 1;
2501 }
2502 }
2503 if (!r6s->q_failed && s->failed < 2) {
2504 /* q is not failed, and we didn't use it to generate
2505 * anything, so it makes sense to check it
2506 */
2507 memcpy(page_address(tmp_page),
2508 page_address(sh->dev[qd_idx].page),
2509 STRIPE_SIZE);
2510 compute_parity6(sh, UPDATE_PARITY);
2511 if (memcmp(page_address(tmp_page),
2512 page_address(sh->dev[qd_idx].page),
2513 STRIPE_SIZE) != 0) {
2514 clear_bit(STRIPE_INSYNC, &sh->state);
2515 update_q = 1;
2516 }
2517 }
2518 if (update_p || update_q) {
2519 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2520 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2521 /* don't try to repair!! */
2522 update_p = update_q = 0;
2523 }
2524
2525 /* now write out any block on a failed drive,
2526 * or P or Q if they need it
2527 */
2528
2529 if (s->failed == 2) {
2530 dev = &sh->dev[r6s->failed_num[1]];
2531 s->locked++;
2532 set_bit(R5_LOCKED, &dev->flags);
2533 set_bit(R5_Wantwrite, &dev->flags);
2534 }
2535 if (s->failed >= 1) {
2536 dev = &sh->dev[r6s->failed_num[0]];
2537 s->locked++;
2538 set_bit(R5_LOCKED, &dev->flags);
2539 set_bit(R5_Wantwrite, &dev->flags);
2540 }
2541
2542 if (update_p) {
2543 dev = &sh->dev[pd_idx];
2544 s->locked++;
2545 set_bit(R5_LOCKED, &dev->flags);
2546 set_bit(R5_Wantwrite, &dev->flags);
2547 }
2548 if (update_q) {
2549 dev = &sh->dev[qd_idx];
2550 s->locked++;
2551 set_bit(R5_LOCKED, &dev->flags);
2552 set_bit(R5_Wantwrite, &dev->flags);
2553 }
2554 clear_bit(STRIPE_DEGRADED, &sh->state);
2555
2556 set_bit(STRIPE_INSYNC, &sh->state);
2557 }
2558 }
2559
2560 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2561 struct r6_state *r6s)
2562 {
2563 int i;
2564
2565 /* We have read all the blocks in this stripe and now we need to
2566 * copy some of them into a target stripe for expand.
2567 */
2568 struct dma_async_tx_descriptor *tx = NULL;
2569 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2570 for (i = 0; i < sh->disks; i++)
2571 if (i != sh->pd_idx && (!r6s || i != r6s->qd_idx)) {
2572 int dd_idx, pd_idx, j;
2573 struct stripe_head *sh2;
2574
2575 sector_t bn = compute_blocknr(sh, i);
2576 sector_t s = raid5_compute_sector(bn, conf->raid_disks,
2577 conf->raid_disks -
2578 conf->max_degraded, &dd_idx,
2579 &pd_idx, conf);
2580 sh2 = get_active_stripe(conf, s, conf->raid_disks,
2581 pd_idx, 1);
2582 if (sh2 == NULL)
2583 /* so far only the early blocks of this stripe
2584 * have been requested. When later blocks
2585 * get requested, we will try again
2586 */
2587 continue;
2588 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2589 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2590 /* must have already done this block */
2591 release_stripe(sh2);
2592 continue;
2593 }
2594
2595 /* place all the copies on one channel */
2596 tx = async_memcpy(sh2->dev[dd_idx].page,
2597 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2598 ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2599
2600 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2601 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2602 for (j = 0; j < conf->raid_disks; j++)
2603 if (j != sh2->pd_idx &&
2604 (!r6s || j != raid6_next_disk(sh2->pd_idx,
2605 sh2->disks)) &&
2606 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2607 break;
2608 if (j == conf->raid_disks) {
2609 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2610 set_bit(STRIPE_HANDLE, &sh2->state);
2611 }
2612 release_stripe(sh2);
2613
2614 }
2615 /* done submitting copies, wait for them to complete */
2616 if (tx) {
2617 async_tx_ack(tx);
2618 dma_wait_for_async_tx(tx);
2619 }
2620 }
2621
2622
2623 /*
2624 * handle_stripe - do things to a stripe.
2625 *
2626 * We lock the stripe and then examine the state of various bits
2627 * to see what needs to be done.
2628 * Possible results:
2629 * return some read request which now have data
2630 * return some write requests which are safely on disc
2631 * schedule a read on some buffers
2632 * schedule a write of some buffers
2633 * return confirmation of parity correctness
2634 *
2635 * buffers are taken off read_list or write_list, and bh_cache buffers
2636 * get BH_Lock set before the stripe lock is released.
2637 *
2638 */
2639
2640 static void handle_stripe5(struct stripe_head *sh)
2641 {
2642 raid5_conf_t *conf = sh->raid_conf;
2643 int disks = sh->disks, i;
2644 struct bio *return_bi = NULL;
2645 struct stripe_head_state s;
2646 struct r5dev *dev;
2647 unsigned long pending = 0;
2648 mdk_rdev_t *blocked_rdev = NULL;
2649 int prexor;
2650
2651 memset(&s, 0, sizeof(s));
2652 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d "
2653 "ops=%lx:%lx:%lx\n", (unsigned long long)sh->sector, sh->state,
2654 atomic_read(&sh->count), sh->pd_idx,
2655 sh->ops.pending, sh->ops.ack, sh->ops.complete);
2656
2657 spin_lock(&sh->lock);
2658 clear_bit(STRIPE_HANDLE, &sh->state);
2659 clear_bit(STRIPE_DELAYED, &sh->state);
2660
2661 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2662 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2663 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2664 /* Now to look around and see what can be done */
2665
2666 /* clean-up completed biofill operations */
2667 if (test_bit(STRIPE_OP_BIOFILL, &sh->ops.complete)) {
2668 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.pending);
2669 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.ack);
2670 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.complete);
2671 }
2672
2673 rcu_read_lock();
2674 for (i=disks; i--; ) {
2675 mdk_rdev_t *rdev;
2676 struct r5dev *dev = &sh->dev[i];
2677 clear_bit(R5_Insync, &dev->flags);
2678
2679 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2680 "written %p\n", i, dev->flags, dev->toread, dev->read,
2681 dev->towrite, dev->written);
2682
2683 /* maybe we can request a biofill operation
2684 *
2685 * new wantfill requests are only permitted while
2686 * STRIPE_OP_BIOFILL is clear
2687 */
2688 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2689 !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2690 set_bit(R5_Wantfill, &dev->flags);
2691
2692 /* now count some things */
2693 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2694 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2695 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2696
2697 if (test_bit(R5_Wantfill, &dev->flags))
2698 s.to_fill++;
2699 else if (dev->toread)
2700 s.to_read++;
2701 if (dev->towrite) {
2702 s.to_write++;
2703 if (!test_bit(R5_OVERWRITE, &dev->flags))
2704 s.non_overwrite++;
2705 }
2706 if (dev->written)
2707 s.written++;
2708 rdev = rcu_dereference(conf->disks[i].rdev);
2709 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2710 blocked_rdev = rdev;
2711 atomic_inc(&rdev->nr_pending);
2712 break;
2713 }
2714 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2715 /* The ReadError flag will just be confusing now */
2716 clear_bit(R5_ReadError, &dev->flags);
2717 clear_bit(R5_ReWrite, &dev->flags);
2718 }
2719 if (!rdev || !test_bit(In_sync, &rdev->flags)
2720 || test_bit(R5_ReadError, &dev->flags)) {
2721 s.failed++;
2722 s.failed_num = i;
2723 } else
2724 set_bit(R5_Insync, &dev->flags);
2725 }
2726 rcu_read_unlock();
2727
2728 if (unlikely(blocked_rdev)) {
2729 set_bit(STRIPE_HANDLE, &sh->state);
2730 goto unlock;
2731 }
2732
2733 if (s.to_fill && !test_and_set_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2734 sh->ops.count++;
2735
2736 pr_debug("locked=%d uptodate=%d to_read=%d"
2737 " to_write=%d failed=%d failed_num=%d\n",
2738 s.locked, s.uptodate, s.to_read, s.to_write,
2739 s.failed, s.failed_num);
2740 /* check if the array has lost two devices and, if so, some requests might
2741 * need to be failed
2742 */
2743 if (s.failed > 1 && s.to_read+s.to_write+s.written)
2744 handle_requests_to_failed_array(conf, sh, &s, disks,
2745 &return_bi);
2746 if (s.failed > 1 && s.syncing) {
2747 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2748 clear_bit(STRIPE_SYNCING, &sh->state);
2749 s.syncing = 0;
2750 }
2751
2752 /* might be able to return some write requests if the parity block
2753 * is safe, or on a failed drive
2754 */
2755 dev = &sh->dev[sh->pd_idx];
2756 if ( s.written &&
2757 ((test_bit(R5_Insync, &dev->flags) &&
2758 !test_bit(R5_LOCKED, &dev->flags) &&
2759 test_bit(R5_UPTODATE, &dev->flags)) ||
2760 (s.failed == 1 && s.failed_num == sh->pd_idx)))
2761 handle_completed_write_requests(conf, sh, disks, &return_bi);
2762
2763 /* Now we might consider reading some blocks, either to check/generate
2764 * parity, or to satisfy requests
2765 * or to load a block that is being partially written.
2766 */
2767 if (s.to_read || s.non_overwrite ||
2768 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding ||
2769 test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
2770 handle_issuing_new_read_requests5(sh, &s, disks);
2771
2772 /* Now we check to see if any write operations have recently
2773 * completed
2774 */
2775
2776 /* leave prexor set until postxor is done, allows us to distinguish
2777 * a rmw from a rcw during biodrain
2778 */
2779 prexor = 0;
2780 if (test_bit(STRIPE_OP_PREXOR, &sh->ops.complete) &&
2781 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2782
2783 prexor = 1;
2784 clear_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
2785 clear_bit(STRIPE_OP_PREXOR, &sh->ops.ack);
2786 clear_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
2787
2788 for (i = disks; i--; )
2789 clear_bit(R5_Wantprexor, &sh->dev[i].flags);
2790 }
2791
2792 /* if only POSTXOR is set then this is an 'expand' postxor */
2793 if (test_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete) &&
2794 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2795
2796 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
2797 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.ack);
2798 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
2799
2800 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2801 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2802 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2803
2804 /* All the 'written' buffers and the parity block are ready to
2805 * be written back to disk
2806 */
2807 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2808 for (i = disks; i--; ) {
2809 dev = &sh->dev[i];
2810 if (test_bit(R5_LOCKED, &dev->flags) &&
2811 (i == sh->pd_idx || dev->written)) {
2812 pr_debug("Writing block %d\n", i);
2813 set_bit(R5_Wantwrite, &dev->flags);
2814 if (!test_and_set_bit(
2815 STRIPE_OP_IO, &sh->ops.pending))
2816 sh->ops.count++;
2817 if (prexor)
2818 continue;
2819 if (!test_bit(R5_Insync, &dev->flags) ||
2820 (i == sh->pd_idx && s.failed == 0))
2821 set_bit(STRIPE_INSYNC, &sh->state);
2822 }
2823 }
2824 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2825 atomic_dec(&conf->preread_active_stripes);
2826 if (atomic_read(&conf->preread_active_stripes) <
2827 IO_THRESHOLD)
2828 md_wakeup_thread(conf->mddev->thread);
2829 }
2830 }
2831
2832 /* Now to consider new write requests and what else, if anything
2833 * should be read. We do not handle new writes when:
2834 * 1/ A 'write' operation (copy+xor) is already in flight.
2835 * 2/ A 'check' operation is in flight, as it may clobber the parity
2836 * block.
2837 */
2838 if (s.to_write && !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending) &&
2839 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
2840 handle_issuing_new_write_requests5(conf, sh, &s, disks);
2841
2842 /* maybe we need to check and possibly fix the parity for this stripe
2843 * Any reads will already have been scheduled, so we just see if enough
2844 * data is available. The parity check is held off while parity
2845 * dependent operations are in flight.
2846 */
2847 if ((s.syncing && s.locked == 0 &&
2848 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2849 !test_bit(STRIPE_INSYNC, &sh->state)) ||
2850 test_bit(STRIPE_OP_CHECK, &sh->ops.pending) ||
2851 test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending))
2852 handle_parity_checks5(conf, sh, &s, disks);
2853
2854 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2855 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2856 clear_bit(STRIPE_SYNCING, &sh->state);
2857 }
2858
2859 /* If the failed drive is just a ReadError, then we might need to progress
2860 * the repair/check process
2861 */
2862 if (s.failed == 1 && !conf->mddev->ro &&
2863 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2864 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2865 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2866 ) {
2867 dev = &sh->dev[s.failed_num];
2868 if (!test_bit(R5_ReWrite, &dev->flags)) {
2869 set_bit(R5_Wantwrite, &dev->flags);
2870 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2871 sh->ops.count++;
2872 set_bit(R5_ReWrite, &dev->flags);
2873 set_bit(R5_LOCKED, &dev->flags);
2874 s.locked++;
2875 } else {
2876 /* let's read it back */
2877 set_bit(R5_Wantread, &dev->flags);
2878 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2879 sh->ops.count++;
2880 set_bit(R5_LOCKED, &dev->flags);
2881 s.locked++;
2882 }
2883 }
2884
2885 /* Finish postxor operations initiated by the expansion
2886 * process
2887 */
2888 if (test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete) &&
2889 !test_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending)) {
2890
2891 clear_bit(STRIPE_EXPANDING, &sh->state);
2892
2893 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2894 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2895 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2896
2897 for (i = conf->raid_disks; i--; ) {
2898 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2899 set_bit(R5_LOCKED, &dev->flags);
2900 s.locked++;
2901 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2902 sh->ops.count++;
2903 }
2904 }
2905
2906 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2907 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2908 /* Need to write out all blocks after computing parity */
2909 sh->disks = conf->raid_disks;
2910 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
2911 conf->raid_disks);
2912 s.locked += handle_write_operations5(sh, 1, 1);
2913 } else if (s.expanded &&
2914 s.locked == 0 &&
2915 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2916 clear_bit(STRIPE_EXPAND_READY, &sh->state);
2917 atomic_dec(&conf->reshape_stripes);
2918 wake_up(&conf->wait_for_overlap);
2919 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2920 }
2921
2922 if (s.expanding && s.locked == 0 &&
2923 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
2924 handle_stripe_expansion(conf, sh, NULL);
2925
2926 if (sh->ops.count)
2927 pending = get_stripe_work(sh);
2928
2929 unlock:
2930 spin_unlock(&sh->lock);
2931
2932 /* wait for this device to become unblocked */
2933 if (unlikely(blocked_rdev))
2934 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
2935
2936 if (pending)
2937 raid5_run_ops(sh, pending);
2938
2939 return_io(return_bi);
2940
2941 }
2942
2943 static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
2944 {
2945 raid6_conf_t *conf = sh->raid_conf;
2946 int disks = sh->disks;
2947 struct bio *return_bi = NULL;
2948 int i, pd_idx = sh->pd_idx;
2949 struct stripe_head_state s;
2950 struct r6_state r6s;
2951 struct r5dev *dev, *pdev, *qdev;
2952 mdk_rdev_t *blocked_rdev = NULL;
2953
2954 r6s.qd_idx = raid6_next_disk(pd_idx, disks);
2955 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
2956 "pd_idx=%d, qd_idx=%d\n",
2957 (unsigned long long)sh->sector, sh->state,
2958 atomic_read(&sh->count), pd_idx, r6s.qd_idx);
2959 memset(&s, 0, sizeof(s));
2960
2961 spin_lock(&sh->lock);
2962 clear_bit(STRIPE_HANDLE, &sh->state);
2963 clear_bit(STRIPE_DELAYED, &sh->state);
2964
2965 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2966 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2967 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2968 /* Now to look around and see what can be done */
2969
2970 rcu_read_lock();
2971 for (i=disks; i--; ) {
2972 mdk_rdev_t *rdev;
2973 dev = &sh->dev[i];
2974 clear_bit(R5_Insync, &dev->flags);
2975
2976 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
2977 i, dev->flags, dev->toread, dev->towrite, dev->written);
2978 /* maybe we can reply to a read */
2979 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
2980 struct bio *rbi, *rbi2;
2981 pr_debug("Return read for disc %d\n", i);
2982 spin_lock_irq(&conf->device_lock);
2983 rbi = dev->toread;
2984 dev->toread = NULL;
2985 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2986 wake_up(&conf->wait_for_overlap);
2987 spin_unlock_irq(&conf->device_lock);
2988 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2989 copy_data(0, rbi, dev->page, dev->sector);
2990 rbi2 = r5_next_bio(rbi, dev->sector);
2991 spin_lock_irq(&conf->device_lock);
2992 if (--rbi->bi_phys_segments == 0) {
2993 rbi->bi_next = return_bi;
2994 return_bi = rbi;
2995 }
2996 spin_unlock_irq(&conf->device_lock);
2997 rbi = rbi2;
2998 }
2999 }
3000
3001 /* now count some things */
3002 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3003 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3004
3005
3006 if (dev->toread)
3007 s.to_read++;
3008 if (dev->towrite) {
3009 s.to_write++;
3010 if (!test_bit(R5_OVERWRITE, &dev->flags))
3011 s.non_overwrite++;
3012 }
3013 if (dev->written)
3014 s.written++;
3015 rdev = rcu_dereference(conf->disks[i].rdev);
3016 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3017 blocked_rdev = rdev;
3018 atomic_inc(&rdev->nr_pending);
3019 break;
3020 }
3021 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3022 /* The ReadError flag will just be confusing now */
3023 clear_bit(R5_ReadError, &dev->flags);
3024 clear_bit(R5_ReWrite, &dev->flags);
3025 }
3026 if (!rdev || !test_bit(In_sync, &rdev->flags)
3027 || test_bit(R5_ReadError, &dev->flags)) {
3028 if (s.failed < 2)
3029 r6s.failed_num[s.failed] = i;
3030 s.failed++;
3031 } else
3032 set_bit(R5_Insync, &dev->flags);
3033 }
3034 rcu_read_unlock();
3035
3036 if (unlikely(blocked_rdev)) {
3037 set_bit(STRIPE_HANDLE, &sh->state);
3038 goto unlock;
3039 }
3040 pr_debug("locked=%d uptodate=%d to_read=%d"
3041 " to_write=%d failed=%d failed_num=%d,%d\n",
3042 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3043 r6s.failed_num[0], r6s.failed_num[1]);
3044 /* check if the array has lost >2 devices and, if so, some requests
3045 * might need to be failed
3046 */
3047 if (s.failed > 2 && s.to_read+s.to_write+s.written)
3048 handle_requests_to_failed_array(conf, sh, &s, disks,
3049 &return_bi);
3050 if (s.failed > 2 && s.syncing) {
3051 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3052 clear_bit(STRIPE_SYNCING, &sh->state);
3053 s.syncing = 0;
3054 }
3055
3056 /*
3057 * might be able to return some write requests if the parity blocks
3058 * are safe, or on a failed drive
3059 */
3060 pdev = &sh->dev[pd_idx];
3061 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3062 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3063 qdev = &sh->dev[r6s.qd_idx];
3064 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx)
3065 || (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx);
3066
3067 if ( s.written &&
3068 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3069 && !test_bit(R5_LOCKED, &pdev->flags)
3070 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3071 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3072 && !test_bit(R5_LOCKED, &qdev->flags)
3073 && test_bit(R5_UPTODATE, &qdev->flags)))))
3074 handle_completed_write_requests(conf, sh, disks, &return_bi);
3075
3076 /* Now we might consider reading some blocks, either to check/generate
3077 * parity, or to satisfy requests
3078 * or to load a block that is being partially written.
3079 */
3080 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3081 (s.syncing && (s.uptodate < disks)) || s.expanding)
3082 handle_issuing_new_read_requests6(sh, &s, &r6s, disks);
3083
3084 /* now to consider writing and what else, if anything should be read */
3085 if (s.to_write)
3086 handle_issuing_new_write_requests6(conf, sh, &s, &r6s, disks);
3087
3088 /* maybe we need to check and possibly fix the parity for this stripe
3089 * Any reads will already have been scheduled, so we just see if enough
3090 * data is available
3091 */
3092 if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3093 handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
3094
3095 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3096 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3097 clear_bit(STRIPE_SYNCING, &sh->state);
3098 }
3099
3100 /* If the failed drives are just a ReadError, then we might need
3101 * to progress the repair/check process
3102 */
3103 if (s.failed <= 2 && !conf->mddev->ro)
3104 for (i = 0; i < s.failed; i++) {
3105 dev = &sh->dev[r6s.failed_num[i]];
3106 if (test_bit(R5_ReadError, &dev->flags)
3107 && !test_bit(R5_LOCKED, &dev->flags)
3108 && test_bit(R5_UPTODATE, &dev->flags)
3109 ) {
3110 if (!test_bit(R5_ReWrite, &dev->flags)) {
3111 set_bit(R5_Wantwrite, &dev->flags);
3112 set_bit(R5_ReWrite, &dev->flags);
3113 set_bit(R5_LOCKED, &dev->flags);
3114 } else {
3115 /* let's read it back */
3116 set_bit(R5_Wantread, &dev->flags);
3117 set_bit(R5_LOCKED, &dev->flags);
3118 }
3119 }
3120 }
3121
3122 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
3123 /* Need to write out all blocks after computing P&Q */
3124 sh->disks = conf->raid_disks;
3125 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
3126 conf->raid_disks);
3127 compute_parity6(sh, RECONSTRUCT_WRITE);
3128 for (i = conf->raid_disks ; i-- ; ) {
3129 set_bit(R5_LOCKED, &sh->dev[i].flags);
3130 s.locked++;
3131 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3132 }
3133 clear_bit(STRIPE_EXPANDING, &sh->state);
3134 } else if (s.expanded) {
3135 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3136 atomic_dec(&conf->reshape_stripes);
3137 wake_up(&conf->wait_for_overlap);
3138 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3139 }
3140
3141 if (s.expanding && s.locked == 0 &&
3142 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
3143 handle_stripe_expansion(conf, sh, &r6s);
3144
3145 unlock:
3146 spin_unlock(&sh->lock);
3147
3148 /* wait for this device to become unblocked */
3149 if (unlikely(blocked_rdev))
3150 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3151
3152 return_io(return_bi);
3153
3154 for (i=disks; i-- ;) {
3155 int rw;
3156 struct bio *bi;
3157 mdk_rdev_t *rdev;
3158 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
3159 rw = WRITE;
3160 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
3161 rw = READ;
3162 else
3163 continue;
3164
3165 set_bit(STRIPE_IO_STARTED, &sh->state);
3166
3167 bi = &sh->dev[i].req;
3168
3169 bi->bi_rw = rw;
3170 if (rw == WRITE)
3171 bi->bi_end_io = raid5_end_write_request;
3172 else
3173 bi->bi_end_io = raid5_end_read_request;
3174
3175 rcu_read_lock();
3176 rdev = rcu_dereference(conf->disks[i].rdev);
3177 if (rdev && test_bit(Faulty, &rdev->flags))
3178 rdev = NULL;
3179 if (rdev)
3180 atomic_inc(&rdev->nr_pending);
3181 rcu_read_unlock();
3182
3183 if (rdev) {
3184 if (s.syncing || s.expanding || s.expanded)
3185 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
3186
3187 bi->bi_bdev = rdev->bdev;
3188 pr_debug("for %llu schedule op %ld on disc %d\n",
3189 (unsigned long long)sh->sector, bi->bi_rw, i);
3190 atomic_inc(&sh->count);
3191 bi->bi_sector = sh->sector + rdev->data_offset;
3192 bi->bi_flags = 1 << BIO_UPTODATE;
3193 bi->bi_vcnt = 1;
3194 bi->bi_max_vecs = 1;
3195 bi->bi_idx = 0;
3196 bi->bi_io_vec = &sh->dev[i].vec;
3197 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
3198 bi->bi_io_vec[0].bv_offset = 0;
3199 bi->bi_size = STRIPE_SIZE;
3200 bi->bi_next = NULL;
3201 if (rw == WRITE &&
3202 test_bit(R5_ReWrite, &sh->dev[i].flags))
3203 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
3204 generic_make_request(bi);
3205 } else {
3206 if (rw == WRITE)
3207 set_bit(STRIPE_DEGRADED, &sh->state);
3208 pr_debug("skip op %ld on disc %d for sector %llu\n",
3209 bi->bi_rw, i, (unsigned long long)sh->sector);
3210 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3211 set_bit(STRIPE_HANDLE, &sh->state);
3212 }
3213 }
3214 }
3215
3216 static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3217 {
3218 if (sh->raid_conf->level == 6)
3219 handle_stripe6(sh, tmp_page);
3220 else
3221 handle_stripe5(sh);
3222 }
3223
3224
3225
3226 static void raid5_activate_delayed(raid5_conf_t *conf)
3227 {
3228 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3229 while (!list_empty(&conf->delayed_list)) {
3230 struct list_head *l = conf->delayed_list.next;
3231 struct stripe_head *sh;
3232 sh = list_entry(l, struct stripe_head, lru);
3233 list_del_init(l);
3234 clear_bit(STRIPE_DELAYED, &sh->state);
3235 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3236 atomic_inc(&conf->preread_active_stripes);
3237 list_add_tail(&sh->lru, &conf->hold_list);
3238 }
3239 } else
3240 blk_plug_device(conf->mddev->queue);
3241 }
3242
3243 static void activate_bit_delay(raid5_conf_t *conf)
3244 {
3245 /* device_lock is held */
3246 struct list_head head;
3247 list_add(&head, &conf->bitmap_list);
3248 list_del_init(&conf->bitmap_list);
3249 while (!list_empty(&head)) {
3250 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3251 list_del_init(&sh->lru);
3252 atomic_inc(&sh->count);
3253 __release_stripe(conf, sh);
3254 }
3255 }
3256
3257 static void unplug_slaves(mddev_t *mddev)
3258 {
3259 raid5_conf_t *conf = mddev_to_conf(mddev);
3260 int i;
3261
3262 rcu_read_lock();
3263 for (i=0; i<mddev->raid_disks; i++) {
3264 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3265 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3266 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3267
3268 atomic_inc(&rdev->nr_pending);
3269 rcu_read_unlock();
3270
3271 blk_unplug(r_queue);
3272
3273 rdev_dec_pending(rdev, mddev);
3274 rcu_read_lock();
3275 }
3276 }
3277 rcu_read_unlock();
3278 }
3279
3280 static void raid5_unplug_device(struct request_queue *q)
3281 {
3282 mddev_t *mddev = q->queuedata;
3283 raid5_conf_t *conf = mddev_to_conf(mddev);
3284 unsigned long flags;
3285
3286 spin_lock_irqsave(&conf->device_lock, flags);
3287
3288 if (blk_remove_plug(q)) {
3289 conf->seq_flush++;
3290 raid5_activate_delayed(conf);
3291 }
3292 md_wakeup_thread(mddev->thread);
3293
3294 spin_unlock_irqrestore(&conf->device_lock, flags);
3295
3296 unplug_slaves(mddev);
3297 }
3298
3299 static int raid5_congested(void *data, int bits)
3300 {
3301 mddev_t *mddev = data;
3302 raid5_conf_t *conf = mddev_to_conf(mddev);
3303
3304 /* No difference between reads and writes. Just check
3305 * how busy the stripe_cache is
3306 */
3307 if (conf->inactive_blocked)
3308 return 1;
3309 if (conf->quiesce)
3310 return 1;
3311 if (list_empty_careful(&conf->inactive_list))
3312 return 1;
3313
3314 return 0;
3315 }
3316
3317 /* We want read requests to align with chunks where possible,
3318 * but write requests don't need to.
3319 */
3320 static int raid5_mergeable_bvec(struct request_queue *q, struct bio *bio, struct bio_vec *biovec)
3321 {
3322 mddev_t *mddev = q->queuedata;
3323 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3324 int max;
3325 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3326 unsigned int bio_sectors = bio->bi_size >> 9;
3327
3328 if (bio_data_dir(bio) == WRITE)
3329 return biovec->bv_len; /* always allow writes to be mergeable */
3330
3331 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3332 if (max < 0) max = 0;
3333 if (max <= biovec->bv_len && bio_sectors == 0)
3334 return biovec->bv_len;
3335 else
3336 return max;
3337 }
3338
3339
3340 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3341 {
3342 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3343 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3344 unsigned int bio_sectors = bio->bi_size >> 9;
3345
3346 return chunk_sectors >=
3347 ((sector & (chunk_sectors - 1)) + bio_sectors);
3348 }
3349
3350 /*
3351 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3352 * later sampled by raid5d.
3353 */
3354 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3355 {
3356 unsigned long flags;
3357
3358 spin_lock_irqsave(&conf->device_lock, flags);
3359
3360 bi->bi_next = conf->retry_read_aligned_list;
3361 conf->retry_read_aligned_list = bi;
3362
3363 spin_unlock_irqrestore(&conf->device_lock, flags);
3364 md_wakeup_thread(conf->mddev->thread);
3365 }
3366
3367
3368 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3369 {
3370 struct bio *bi;
3371
3372 bi = conf->retry_read_aligned;
3373 if (bi) {
3374 conf->retry_read_aligned = NULL;
3375 return bi;
3376 }
3377 bi = conf->retry_read_aligned_list;
3378 if(bi) {
3379 conf->retry_read_aligned_list = bi->bi_next;
3380 bi->bi_next = NULL;
3381 bi->bi_phys_segments = 1; /* biased count of active stripes */
3382 bi->bi_hw_segments = 0; /* count of processed stripes */
3383 }
3384
3385 return bi;
3386 }
3387
3388
3389 /*
3390 * The "raid5_align_endio" should check if the read succeeded and if it
3391 * did, call bio_endio on the original bio (having bio_put the new bio
3392 * first).
3393 * If the read failed..
3394 */
3395 static void raid5_align_endio(struct bio *bi, int error)
3396 {
3397 struct bio* raid_bi = bi->bi_private;
3398 mddev_t *mddev;
3399 raid5_conf_t *conf;
3400 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3401 mdk_rdev_t *rdev;
3402
3403 bio_put(bi);
3404
3405 mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3406 conf = mddev_to_conf(mddev);
3407 rdev = (void*)raid_bi->bi_next;
3408 raid_bi->bi_next = NULL;
3409
3410 rdev_dec_pending(rdev, conf->mddev);
3411
3412 if (!error && uptodate) {
3413 bio_endio(raid_bi, 0);
3414 if (atomic_dec_and_test(&conf->active_aligned_reads))
3415 wake_up(&conf->wait_for_stripe);
3416 return;
3417 }
3418
3419
3420 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3421
3422 add_bio_to_retry(raid_bi, conf);
3423 }
3424
3425 static int bio_fits_rdev(struct bio *bi)
3426 {
3427 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3428
3429 if ((bi->bi_size>>9) > q->max_sectors)
3430 return 0;
3431 blk_recount_segments(q, bi);
3432 if (bi->bi_phys_segments > q->max_phys_segments ||
3433 bi->bi_hw_segments > q->max_hw_segments)
3434 return 0;
3435
3436 if (q->merge_bvec_fn)
3437 /* it's too hard to apply the merge_bvec_fn at this stage,
3438 * just just give up
3439 */
3440 return 0;
3441
3442 return 1;
3443 }
3444
3445
3446 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3447 {
3448 mddev_t *mddev = q->queuedata;
3449 raid5_conf_t *conf = mddev_to_conf(mddev);
3450 const unsigned int raid_disks = conf->raid_disks;
3451 const unsigned int data_disks = raid_disks - conf->max_degraded;
3452 unsigned int dd_idx, pd_idx;
3453 struct bio* align_bi;
3454 mdk_rdev_t *rdev;
3455
3456 if (!in_chunk_boundary(mddev, raid_bio)) {
3457 pr_debug("chunk_aligned_read : non aligned\n");
3458 return 0;
3459 }
3460 /*
3461 * use bio_clone to make a copy of the bio
3462 */
3463 align_bi = bio_clone(raid_bio, GFP_NOIO);
3464 if (!align_bi)
3465 return 0;
3466 /*
3467 * set bi_end_io to a new function, and set bi_private to the
3468 * original bio.
3469 */
3470 align_bi->bi_end_io = raid5_align_endio;
3471 align_bi->bi_private = raid_bio;
3472 /*
3473 * compute position
3474 */
3475 align_bi->bi_sector = raid5_compute_sector(raid_bio->bi_sector,
3476 raid_disks,
3477 data_disks,
3478 &dd_idx,
3479 &pd_idx,
3480 conf);
3481
3482 rcu_read_lock();
3483 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3484 if (rdev && test_bit(In_sync, &rdev->flags)) {
3485 atomic_inc(&rdev->nr_pending);
3486 rcu_read_unlock();
3487 raid_bio->bi_next = (void*)rdev;
3488 align_bi->bi_bdev = rdev->bdev;
3489 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3490 align_bi->bi_sector += rdev->data_offset;
3491
3492 if (!bio_fits_rdev(align_bi)) {
3493 /* too big in some way */
3494 bio_put(align_bi);
3495 rdev_dec_pending(rdev, mddev);
3496 return 0;
3497 }
3498
3499 spin_lock_irq(&conf->device_lock);
3500 wait_event_lock_irq(conf->wait_for_stripe,
3501 conf->quiesce == 0,
3502 conf->device_lock, /* nothing */);
3503 atomic_inc(&conf->active_aligned_reads);
3504 spin_unlock_irq(&conf->device_lock);
3505
3506 generic_make_request(align_bi);
3507 return 1;
3508 } else {
3509 rcu_read_unlock();
3510 bio_put(align_bi);
3511 return 0;
3512 }
3513 }
3514
3515 /* __get_priority_stripe - get the next stripe to process
3516 *
3517 * Full stripe writes are allowed to pass preread active stripes up until
3518 * the bypass_threshold is exceeded. In general the bypass_count
3519 * increments when the handle_list is handled before the hold_list; however, it
3520 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3521 * stripe with in flight i/o. The bypass_count will be reset when the
3522 * head of the hold_list has changed, i.e. the head was promoted to the
3523 * handle_list.
3524 */
3525 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3526 {
3527 struct stripe_head *sh;
3528
3529 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3530 __func__,
3531 list_empty(&conf->handle_list) ? "empty" : "busy",
3532 list_empty(&conf->hold_list) ? "empty" : "busy",
3533 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3534
3535 if (!list_empty(&conf->handle_list)) {
3536 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3537
3538 if (list_empty(&conf->hold_list))
3539 conf->bypass_count = 0;
3540 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3541 if (conf->hold_list.next == conf->last_hold)
3542 conf->bypass_count++;
3543 else {
3544 conf->last_hold = conf->hold_list.next;
3545 conf->bypass_count -= conf->bypass_threshold;
3546 if (conf->bypass_count < 0)
3547 conf->bypass_count = 0;
3548 }
3549 }
3550 } else if (!list_empty(&conf->hold_list) &&
3551 ((conf->bypass_threshold &&
3552 conf->bypass_count > conf->bypass_threshold) ||
3553 atomic_read(&conf->pending_full_writes) == 0)) {
3554 sh = list_entry(conf->hold_list.next,
3555 typeof(*sh), lru);
3556 conf->bypass_count -= conf->bypass_threshold;
3557 if (conf->bypass_count < 0)
3558 conf->bypass_count = 0;
3559 } else
3560 return NULL;
3561
3562 list_del_init(&sh->lru);
3563 atomic_inc(&sh->count);
3564 BUG_ON(atomic_read(&sh->count) != 1);
3565 return sh;
3566 }
3567
3568 static int make_request(struct request_queue *q, struct bio * bi)
3569 {
3570 mddev_t *mddev = q->queuedata;
3571 raid5_conf_t *conf = mddev_to_conf(mddev);
3572 unsigned int dd_idx, pd_idx;
3573 sector_t new_sector;
3574 sector_t logical_sector, last_sector;
3575 struct stripe_head *sh;
3576 const int rw = bio_data_dir(bi);
3577 int remaining;
3578
3579 if (unlikely(bio_barrier(bi))) {
3580 bio_endio(bi, -EOPNOTSUPP);
3581 return 0;
3582 }
3583
3584 md_write_start(mddev, bi);
3585
3586 disk_stat_inc(mddev->gendisk, ios[rw]);
3587 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
3588
3589 if (rw == READ &&
3590 mddev->reshape_position == MaxSector &&
3591 chunk_aligned_read(q,bi))
3592 return 0;
3593
3594 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3595 last_sector = bi->bi_sector + (bi->bi_size>>9);
3596 bi->bi_next = NULL;
3597 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
3598
3599 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3600 DEFINE_WAIT(w);
3601 int disks, data_disks;
3602
3603 retry:
3604 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3605 if (likely(conf->expand_progress == MaxSector))
3606 disks = conf->raid_disks;
3607 else {
3608 /* spinlock is needed as expand_progress may be
3609 * 64bit on a 32bit platform, and so it might be
3610 * possible to see a half-updated value
3611 * Ofcourse expand_progress could change after
3612 * the lock is dropped, so once we get a reference
3613 * to the stripe that we think it is, we will have
3614 * to check again.
3615 */
3616 spin_lock_irq(&conf->device_lock);
3617 disks = conf->raid_disks;
3618 if (logical_sector >= conf->expand_progress)
3619 disks = conf->previous_raid_disks;
3620 else {
3621 if (logical_sector >= conf->expand_lo) {
3622 spin_unlock_irq(&conf->device_lock);
3623 schedule();
3624 goto retry;
3625 }
3626 }
3627 spin_unlock_irq(&conf->device_lock);
3628 }
3629 data_disks = disks - conf->max_degraded;
3630
3631 new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
3632 &dd_idx, &pd_idx, conf);
3633 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3634 (unsigned long long)new_sector,
3635 (unsigned long long)logical_sector);
3636
3637 sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
3638 if (sh) {
3639 if (unlikely(conf->expand_progress != MaxSector)) {
3640 /* expansion might have moved on while waiting for a
3641 * stripe, so we must do the range check again.
3642 * Expansion could still move past after this
3643 * test, but as we are holding a reference to
3644 * 'sh', we know that if that happens,
3645 * STRIPE_EXPANDING will get set and the expansion
3646 * won't proceed until we finish with the stripe.
3647 */
3648 int must_retry = 0;
3649 spin_lock_irq(&conf->device_lock);
3650 if (logical_sector < conf->expand_progress &&
3651 disks == conf->previous_raid_disks)
3652 /* mismatch, need to try again */
3653 must_retry = 1;
3654 spin_unlock_irq(&conf->device_lock);
3655 if (must_retry) {
3656 release_stripe(sh);
3657 goto retry;
3658 }
3659 }
3660 /* FIXME what if we get a false positive because these
3661 * are being updated.
3662 */
3663 if (logical_sector >= mddev->suspend_lo &&
3664 logical_sector < mddev->suspend_hi) {
3665 release_stripe(sh);
3666 schedule();
3667 goto retry;
3668 }
3669
3670 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3671 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3672 /* Stripe is busy expanding or
3673 * add failed due to overlap. Flush everything
3674 * and wait a while
3675 */
3676 raid5_unplug_device(mddev->queue);
3677 release_stripe(sh);
3678 schedule();
3679 goto retry;
3680 }
3681 finish_wait(&conf->wait_for_overlap, &w);
3682 set_bit(STRIPE_HANDLE, &sh->state);
3683 clear_bit(STRIPE_DELAYED, &sh->state);
3684 release_stripe(sh);
3685 } else {
3686 /* cannot get stripe for read-ahead, just give-up */
3687 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3688 finish_wait(&conf->wait_for_overlap, &w);
3689 break;
3690 }
3691
3692 }
3693 spin_lock_irq(&conf->device_lock);
3694 remaining = --bi->bi_phys_segments;
3695 spin_unlock_irq(&conf->device_lock);
3696 if (remaining == 0) {
3697
3698 if ( rw == WRITE )
3699 md_write_end(mddev);
3700
3701 bio_endio(bi, 0);
3702 }
3703 return 0;
3704 }
3705
3706 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3707 {
3708 /* reshaping is quite different to recovery/resync so it is
3709 * handled quite separately ... here.
3710 *
3711 * On each call to sync_request, we gather one chunk worth of
3712 * destination stripes and flag them as expanding.
3713 * Then we find all the source stripes and request reads.
3714 * As the reads complete, handle_stripe will copy the data
3715 * into the destination stripe and release that stripe.
3716 */
3717 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3718 struct stripe_head *sh;
3719 int pd_idx;
3720 sector_t first_sector, last_sector;
3721 int raid_disks = conf->previous_raid_disks;
3722 int data_disks = raid_disks - conf->max_degraded;
3723 int new_data_disks = conf->raid_disks - conf->max_degraded;
3724 int i;
3725 int dd_idx;
3726 sector_t writepos, safepos, gap;
3727
3728 if (sector_nr == 0 &&
3729 conf->expand_progress != 0) {
3730 /* restarting in the middle, skip the initial sectors */
3731 sector_nr = conf->expand_progress;
3732 sector_div(sector_nr, new_data_disks);
3733 *skipped = 1;
3734 return sector_nr;
3735 }
3736
3737 /* we update the metadata when there is more than 3Meg
3738 * in the block range (that is rather arbitrary, should
3739 * probably be time based) or when the data about to be
3740 * copied would over-write the source of the data at
3741 * the front of the range.
3742 * i.e. one new_stripe forward from expand_progress new_maps
3743 * to after where expand_lo old_maps to
3744 */
3745 writepos = conf->expand_progress +
3746 conf->chunk_size/512*(new_data_disks);
3747 sector_div(writepos, new_data_disks);
3748 safepos = conf->expand_lo;
3749 sector_div(safepos, data_disks);
3750 gap = conf->expand_progress - conf->expand_lo;
3751
3752 if (writepos >= safepos ||
3753 gap > (new_data_disks)*3000*2 /*3Meg*/) {
3754 /* Cannot proceed until we've updated the superblock... */
3755 wait_event(conf->wait_for_overlap,
3756 atomic_read(&conf->reshape_stripes)==0);
3757 mddev->reshape_position = conf->expand_progress;
3758 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3759 md_wakeup_thread(mddev->thread);
3760 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3761 kthread_should_stop());
3762 spin_lock_irq(&conf->device_lock);
3763 conf->expand_lo = mddev->reshape_position;
3764 spin_unlock_irq(&conf->device_lock);
3765 wake_up(&conf->wait_for_overlap);
3766 }
3767
3768 for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
3769 int j;
3770 int skipped = 0;
3771 pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
3772 sh = get_active_stripe(conf, sector_nr+i,
3773 conf->raid_disks, pd_idx, 0);
3774 set_bit(STRIPE_EXPANDING, &sh->state);
3775 atomic_inc(&conf->reshape_stripes);
3776 /* If any of this stripe is beyond the end of the old
3777 * array, then we need to zero those blocks
3778 */
3779 for (j=sh->disks; j--;) {
3780 sector_t s;
3781 if (j == sh->pd_idx)
3782 continue;
3783 if (conf->level == 6 &&
3784 j == raid6_next_disk(sh->pd_idx, sh->disks))
3785 continue;
3786 s = compute_blocknr(sh, j);
3787 if (s < (mddev->array_size<<1)) {
3788 skipped = 1;
3789 continue;
3790 }
3791 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3792 set_bit(R5_Expanded, &sh->dev[j].flags);
3793 set_bit(R5_UPTODATE, &sh->dev[j].flags);
3794 }
3795 if (!skipped) {
3796 set_bit(STRIPE_EXPAND_READY, &sh->state);
3797 set_bit(STRIPE_HANDLE, &sh->state);
3798 }
3799 release_stripe(sh);
3800 }
3801 spin_lock_irq(&conf->device_lock);
3802 conf->expand_progress = (sector_nr + i) * new_data_disks;
3803 spin_unlock_irq(&conf->device_lock);
3804 /* Ok, those stripe are ready. We can start scheduling
3805 * reads on the source stripes.
3806 * The source stripes are determined by mapping the first and last
3807 * block on the destination stripes.
3808 */
3809 first_sector =
3810 raid5_compute_sector(sector_nr*(new_data_disks),
3811 raid_disks, data_disks,
3812 &dd_idx, &pd_idx, conf);
3813 last_sector =
3814 raid5_compute_sector((sector_nr+conf->chunk_size/512)
3815 *(new_data_disks) -1,
3816 raid_disks, data_disks,
3817 &dd_idx, &pd_idx, conf);
3818 if (last_sector >= (mddev->size<<1))
3819 last_sector = (mddev->size<<1)-1;
3820 while (first_sector <= last_sector) {
3821 pd_idx = stripe_to_pdidx(first_sector, conf,
3822 conf->previous_raid_disks);
3823 sh = get_active_stripe(conf, first_sector,
3824 conf->previous_raid_disks, pd_idx, 0);
3825 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3826 set_bit(STRIPE_HANDLE, &sh->state);
3827 release_stripe(sh);
3828 first_sector += STRIPE_SECTORS;
3829 }
3830 /* If this takes us to the resync_max point where we have to pause,
3831 * then we need to write out the superblock.
3832 */
3833 sector_nr += conf->chunk_size>>9;
3834 if (sector_nr >= mddev->resync_max) {
3835 /* Cannot proceed until we've updated the superblock... */
3836 wait_event(conf->wait_for_overlap,
3837 atomic_read(&conf->reshape_stripes) == 0);
3838 mddev->reshape_position = conf->expand_progress;
3839 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3840 md_wakeup_thread(mddev->thread);
3841 wait_event(mddev->sb_wait,
3842 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
3843 || kthread_should_stop());
3844 spin_lock_irq(&conf->device_lock);
3845 conf->expand_lo = mddev->reshape_position;
3846 spin_unlock_irq(&conf->device_lock);
3847 wake_up(&conf->wait_for_overlap);
3848 }
3849 return conf->chunk_size>>9;
3850 }
3851
3852 /* FIXME go_faster isn't used */
3853 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3854 {
3855 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3856 struct stripe_head *sh;
3857 int pd_idx;
3858 int raid_disks = conf->raid_disks;
3859 sector_t max_sector = mddev->size << 1;
3860 int sync_blocks;
3861 int still_degraded = 0;
3862 int i;
3863
3864 if (sector_nr >= max_sector) {
3865 /* just being told to finish up .. nothing much to do */
3866 unplug_slaves(mddev);
3867 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3868 end_reshape(conf);
3869 return 0;
3870 }
3871
3872 if (mddev->curr_resync < max_sector) /* aborted */
3873 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3874 &sync_blocks, 1);
3875 else /* completed sync */
3876 conf->fullsync = 0;
3877 bitmap_close_sync(mddev->bitmap);
3878
3879 return 0;
3880 }
3881
3882 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3883 return reshape_request(mddev, sector_nr, skipped);
3884
3885 /* No need to check resync_max as we never do more than one
3886 * stripe, and as resync_max will always be on a chunk boundary,
3887 * if the check in md_do_sync didn't fire, there is no chance
3888 * of overstepping resync_max here
3889 */
3890
3891 /* if there is too many failed drives and we are trying
3892 * to resync, then assert that we are finished, because there is
3893 * nothing we can do.
3894 */
3895 if (mddev->degraded >= conf->max_degraded &&
3896 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3897 sector_t rv = (mddev->size << 1) - sector_nr;
3898 *skipped = 1;
3899 return rv;
3900 }
3901 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3902 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3903 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3904 /* we can skip this block, and probably more */
3905 sync_blocks /= STRIPE_SECTORS;
3906 *skipped = 1;
3907 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3908 }
3909
3910
3911 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3912
3913 pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
3914 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
3915 if (sh == NULL) {
3916 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
3917 /* make sure we don't swamp the stripe cache if someone else
3918 * is trying to get access
3919 */
3920 schedule_timeout_uninterruptible(1);
3921 }
3922 /* Need to check if array will still be degraded after recovery/resync
3923 * We don't need to check the 'failed' flag as when that gets set,
3924 * recovery aborts.
3925 */
3926 for (i=0; i<mddev->raid_disks; i++)
3927 if (conf->disks[i].rdev == NULL)
3928 still_degraded = 1;
3929
3930 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3931
3932 spin_lock(&sh->lock);
3933 set_bit(STRIPE_SYNCING, &sh->state);
3934 clear_bit(STRIPE_INSYNC, &sh->state);
3935 spin_unlock(&sh->lock);
3936
3937 handle_stripe(sh, NULL);
3938 release_stripe(sh);
3939
3940 return STRIPE_SECTORS;
3941 }
3942
3943 static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3944 {
3945 /* We may not be able to submit a whole bio at once as there
3946 * may not be enough stripe_heads available.
3947 * We cannot pre-allocate enough stripe_heads as we may need
3948 * more than exist in the cache (if we allow ever large chunks).
3949 * So we do one stripe head at a time and record in
3950 * ->bi_hw_segments how many have been done.
3951 *
3952 * We *know* that this entire raid_bio is in one chunk, so
3953 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3954 */
3955 struct stripe_head *sh;
3956 int dd_idx, pd_idx;
3957 sector_t sector, logical_sector, last_sector;
3958 int scnt = 0;
3959 int remaining;
3960 int handled = 0;
3961
3962 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3963 sector = raid5_compute_sector( logical_sector,
3964 conf->raid_disks,
3965 conf->raid_disks - conf->max_degraded,
3966 &dd_idx,
3967 &pd_idx,
3968 conf);
3969 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3970
3971 for (; logical_sector < last_sector;
3972 logical_sector += STRIPE_SECTORS,
3973 sector += STRIPE_SECTORS,
3974 scnt++) {
3975
3976 if (scnt < raid_bio->bi_hw_segments)
3977 /* already done this stripe */
3978 continue;
3979
3980 sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1);
3981
3982 if (!sh) {
3983 /* failed to get a stripe - must wait */
3984 raid_bio->bi_hw_segments = scnt;
3985 conf->retry_read_aligned = raid_bio;
3986 return handled;
3987 }
3988
3989 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
3990 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
3991 release_stripe(sh);
3992 raid_bio->bi_hw_segments = scnt;
3993 conf->retry_read_aligned = raid_bio;
3994 return handled;
3995 }
3996
3997 handle_stripe(sh, NULL);
3998 release_stripe(sh);
3999 handled++;
4000 }
4001 spin_lock_irq(&conf->device_lock);
4002 remaining = --raid_bio->bi_phys_segments;
4003 spin_unlock_irq(&conf->device_lock);
4004 if (remaining == 0)
4005 bio_endio(raid_bio, 0);
4006 if (atomic_dec_and_test(&conf->active_aligned_reads))
4007 wake_up(&conf->wait_for_stripe);
4008 return handled;
4009 }
4010
4011
4012
4013 /*
4014 * This is our raid5 kernel thread.
4015 *
4016 * We scan the hash table for stripes which can be handled now.
4017 * During the scan, completed stripes are saved for us by the interrupt
4018 * handler, so that they will not have to wait for our next wakeup.
4019 */
4020 static void raid5d(mddev_t *mddev)
4021 {
4022 struct stripe_head *sh;
4023 raid5_conf_t *conf = mddev_to_conf(mddev);
4024 int handled;
4025
4026 pr_debug("+++ raid5d active\n");
4027
4028 md_check_recovery(mddev);
4029
4030 handled = 0;
4031 spin_lock_irq(&conf->device_lock);
4032 while (1) {
4033 struct bio *bio;
4034
4035 if (conf->seq_flush != conf->seq_write) {
4036 int seq = conf->seq_flush;
4037 spin_unlock_irq(&conf->device_lock);
4038 bitmap_unplug(mddev->bitmap);
4039 spin_lock_irq(&conf->device_lock);
4040 conf->seq_write = seq;
4041 activate_bit_delay(conf);
4042 }
4043
4044 while ((bio = remove_bio_from_retry(conf))) {
4045 int ok;
4046 spin_unlock_irq(&conf->device_lock);
4047 ok = retry_aligned_read(conf, bio);
4048 spin_lock_irq(&conf->device_lock);
4049 if (!ok)
4050 break;
4051 handled++;
4052 }
4053
4054 sh = __get_priority_stripe(conf);
4055
4056 if (!sh) {
4057 async_tx_issue_pending_all();
4058 break;
4059 }
4060 spin_unlock_irq(&conf->device_lock);
4061
4062 handled++;
4063 handle_stripe(sh, conf->spare_page);
4064 release_stripe(sh);
4065
4066 spin_lock_irq(&conf->device_lock);
4067 }
4068 pr_debug("%d stripes handled\n", handled);
4069
4070 spin_unlock_irq(&conf->device_lock);
4071
4072 unplug_slaves(mddev);
4073
4074 pr_debug("--- raid5d inactive\n");
4075 }
4076
4077 static ssize_t
4078 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4079 {
4080 raid5_conf_t *conf = mddev_to_conf(mddev);
4081 if (conf)
4082 return sprintf(page, "%d\n", conf->max_nr_stripes);
4083 else
4084 return 0;
4085 }
4086
4087 static ssize_t
4088 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4089 {
4090 raid5_conf_t *conf = mddev_to_conf(mddev);
4091 unsigned long new;
4092 if (len >= PAGE_SIZE)
4093 return -EINVAL;
4094 if (!conf)
4095 return -ENODEV;
4096
4097 if (strict_strtoul(page, 10, &new))
4098 return -EINVAL;
4099 if (new <= 16 || new > 32768)
4100 return -EINVAL;
4101 while (new < conf->max_nr_stripes) {
4102 if (drop_one_stripe(conf))
4103 conf->max_nr_stripes--;
4104 else
4105 break;
4106 }
4107 md_allow_write(mddev);
4108 while (new > conf->max_nr_stripes) {
4109 if (grow_one_stripe(conf))
4110 conf->max_nr_stripes++;
4111 else break;
4112 }
4113 return len;
4114 }
4115
4116 static struct md_sysfs_entry
4117 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4118 raid5_show_stripe_cache_size,
4119 raid5_store_stripe_cache_size);
4120
4121 static ssize_t
4122 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4123 {
4124 raid5_conf_t *conf = mddev_to_conf(mddev);
4125 if (conf)
4126 return sprintf(page, "%d\n", conf->bypass_threshold);
4127 else
4128 return 0;
4129 }
4130
4131 static ssize_t
4132 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4133 {
4134 raid5_conf_t *conf = mddev_to_conf(mddev);
4135 unsigned long new;
4136 if (len >= PAGE_SIZE)
4137 return -EINVAL;
4138 if (!conf)
4139 return -ENODEV;
4140
4141 if (strict_strtoul(page, 10, &new))
4142 return -EINVAL;
4143 if (new > conf->max_nr_stripes)
4144 return -EINVAL;
4145 conf->bypass_threshold = new;
4146 return len;
4147 }
4148
4149 static struct md_sysfs_entry
4150 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4151 S_IRUGO | S_IWUSR,
4152 raid5_show_preread_threshold,
4153 raid5_store_preread_threshold);
4154
4155 static ssize_t
4156 stripe_cache_active_show(mddev_t *mddev, char *page)
4157 {
4158 raid5_conf_t *conf = mddev_to_conf(mddev);
4159 if (conf)
4160 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4161 else
4162 return 0;
4163 }
4164
4165 static struct md_sysfs_entry
4166 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4167
4168 static struct attribute *raid5_attrs[] = {
4169 &raid5_stripecache_size.attr,
4170 &raid5_stripecache_active.attr,
4171 &raid5_preread_bypass_threshold.attr,
4172 NULL,
4173 };
4174 static struct attribute_group raid5_attrs_group = {
4175 .name = NULL,
4176 .attrs = raid5_attrs,
4177 };
4178
4179 static int run(mddev_t *mddev)
4180 {
4181 raid5_conf_t *conf;
4182 int raid_disk, memory;
4183 mdk_rdev_t *rdev;
4184 struct disk_info *disk;
4185 struct list_head *tmp;
4186 int working_disks = 0;
4187
4188 if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
4189 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4190 mdname(mddev), mddev->level);
4191 return -EIO;
4192 }
4193
4194 if (mddev->reshape_position != MaxSector) {
4195 /* Check that we can continue the reshape.
4196 * Currently only disks can change, it must
4197 * increase, and we must be past the point where
4198 * a stripe over-writes itself
4199 */
4200 sector_t here_new, here_old;
4201 int old_disks;
4202 int max_degraded = (mddev->level == 5 ? 1 : 2);
4203
4204 if (mddev->new_level != mddev->level ||
4205 mddev->new_layout != mddev->layout ||
4206 mddev->new_chunk != mddev->chunk_size) {
4207 printk(KERN_ERR "raid5: %s: unsupported reshape "
4208 "required - aborting.\n",
4209 mdname(mddev));
4210 return -EINVAL;
4211 }
4212 if (mddev->delta_disks <= 0) {
4213 printk(KERN_ERR "raid5: %s: unsupported reshape "
4214 "(reduce disks) required - aborting.\n",
4215 mdname(mddev));
4216 return -EINVAL;
4217 }
4218 old_disks = mddev->raid_disks - mddev->delta_disks;
4219 /* reshape_position must be on a new-stripe boundary, and one
4220 * further up in new geometry must map after here in old
4221 * geometry.
4222 */
4223 here_new = mddev->reshape_position;
4224 if (sector_div(here_new, (mddev->chunk_size>>9)*
4225 (mddev->raid_disks - max_degraded))) {
4226 printk(KERN_ERR "raid5: reshape_position not "
4227 "on a stripe boundary\n");
4228 return -EINVAL;
4229 }
4230 /* here_new is the stripe we will write to */
4231 here_old = mddev->reshape_position;
4232 sector_div(here_old, (mddev->chunk_size>>9)*
4233 (old_disks-max_degraded));
4234 /* here_old is the first stripe that we might need to read
4235 * from */
4236 if (here_new >= here_old) {
4237 /* Reading from the same stripe as writing to - bad */
4238 printk(KERN_ERR "raid5: reshape_position too early for "
4239 "auto-recovery - aborting.\n");
4240 return -EINVAL;
4241 }
4242 printk(KERN_INFO "raid5: reshape will continue\n");
4243 /* OK, we should be able to continue; */
4244 }
4245
4246
4247 mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
4248 if ((conf = mddev->private) == NULL)
4249 goto abort;
4250 if (mddev->reshape_position == MaxSector) {
4251 conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
4252 } else {
4253 conf->raid_disks = mddev->raid_disks;
4254 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4255 }
4256
4257 conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4258 GFP_KERNEL);
4259 if (!conf->disks)
4260 goto abort;
4261
4262 conf->mddev = mddev;
4263
4264 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4265 goto abort;
4266
4267 if (mddev->level == 6) {
4268 conf->spare_page = alloc_page(GFP_KERNEL);
4269 if (!conf->spare_page)
4270 goto abort;
4271 }
4272 spin_lock_init(&conf->device_lock);
4273 mddev->queue->queue_lock = &conf->device_lock;
4274 init_waitqueue_head(&conf->wait_for_stripe);
4275 init_waitqueue_head(&conf->wait_for_overlap);
4276 INIT_LIST_HEAD(&conf->handle_list);
4277 INIT_LIST_HEAD(&conf->hold_list);
4278 INIT_LIST_HEAD(&conf->delayed_list);
4279 INIT_LIST_HEAD(&conf->bitmap_list);
4280 INIT_LIST_HEAD(&conf->inactive_list);
4281 atomic_set(&conf->active_stripes, 0);
4282 atomic_set(&conf->preread_active_stripes, 0);
4283 atomic_set(&conf->active_aligned_reads, 0);
4284 conf->bypass_threshold = BYPASS_THRESHOLD;
4285
4286 pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4287
4288 rdev_for_each(rdev, tmp, mddev) {
4289 raid_disk = rdev->raid_disk;
4290 if (raid_disk >= conf->raid_disks
4291 || raid_disk < 0)
4292 continue;
4293 disk = conf->disks + raid_disk;
4294
4295 disk->rdev = rdev;
4296
4297 if (test_bit(In_sync, &rdev->flags)) {
4298 char b[BDEVNAME_SIZE];
4299 printk(KERN_INFO "raid5: device %s operational as raid"
4300 " disk %d\n", bdevname(rdev->bdev,b),
4301 raid_disk);
4302 working_disks++;
4303 } else
4304 /* Cannot rely on bitmap to complete recovery */
4305 conf->fullsync = 1;
4306 }
4307
4308 /*
4309 * 0 for a fully functional array, 1 or 2 for a degraded array.
4310 */
4311 mddev->degraded = conf->raid_disks - working_disks;
4312 conf->mddev = mddev;
4313 conf->chunk_size = mddev->chunk_size;
4314 conf->level = mddev->level;
4315 if (conf->level == 6)
4316 conf->max_degraded = 2;
4317 else
4318 conf->max_degraded = 1;
4319 conf->algorithm = mddev->layout;
4320 conf->max_nr_stripes = NR_STRIPES;
4321 conf->expand_progress = mddev->reshape_position;
4322
4323 /* device size must be a multiple of chunk size */
4324 mddev->size &= ~(mddev->chunk_size/1024 -1);
4325 mddev->resync_max_sectors = mddev->size << 1;
4326
4327 if (conf->level == 6 && conf->raid_disks < 4) {
4328 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4329 mdname(mddev), conf->raid_disks);
4330 goto abort;
4331 }
4332 if (!conf->chunk_size || conf->chunk_size % 4) {
4333 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4334 conf->chunk_size, mdname(mddev));
4335 goto abort;
4336 }
4337 if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
4338 printk(KERN_ERR
4339 "raid5: unsupported parity algorithm %d for %s\n",
4340 conf->algorithm, mdname(mddev));
4341 goto abort;
4342 }
4343 if (mddev->degraded > conf->max_degraded) {
4344 printk(KERN_ERR "raid5: not enough operational devices for %s"
4345 " (%d/%d failed)\n",
4346 mdname(mddev), mddev->degraded, conf->raid_disks);
4347 goto abort;
4348 }
4349
4350 if (mddev->degraded > 0 &&
4351 mddev->recovery_cp != MaxSector) {
4352 if (mddev->ok_start_degraded)
4353 printk(KERN_WARNING
4354 "raid5: starting dirty degraded array: %s"
4355 "- data corruption possible.\n",
4356 mdname(mddev));
4357 else {
4358 printk(KERN_ERR
4359 "raid5: cannot start dirty degraded array for %s\n",
4360 mdname(mddev));
4361 goto abort;
4362 }
4363 }
4364
4365 {
4366 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4367 if (!mddev->thread) {
4368 printk(KERN_ERR
4369 "raid5: couldn't allocate thread for %s\n",
4370 mdname(mddev));
4371 goto abort;
4372 }
4373 }
4374 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4375 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4376 if (grow_stripes(conf, conf->max_nr_stripes)) {
4377 printk(KERN_ERR
4378 "raid5: couldn't allocate %dkB for buffers\n", memory);
4379 shrink_stripes(conf);
4380 md_unregister_thread(mddev->thread);
4381 goto abort;
4382 } else
4383 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4384 memory, mdname(mddev));
4385
4386 if (mddev->degraded == 0)
4387 printk("raid5: raid level %d set %s active with %d out of %d"
4388 " devices, algorithm %d\n", conf->level, mdname(mddev),
4389 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4390 conf->algorithm);
4391 else
4392 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4393 " out of %d devices, algorithm %d\n", conf->level,
4394 mdname(mddev), mddev->raid_disks - mddev->degraded,
4395 mddev->raid_disks, conf->algorithm);
4396
4397 print_raid5_conf(conf);
4398
4399 if (conf->expand_progress != MaxSector) {
4400 printk("...ok start reshape thread\n");
4401 conf->expand_lo = conf->expand_progress;
4402 atomic_set(&conf->reshape_stripes, 0);
4403 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4404 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4405 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4406 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4407 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4408 "%s_reshape");
4409 }
4410
4411 /* read-ahead size must cover two whole stripes, which is
4412 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4413 */
4414 {
4415 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4416 int stripe = data_disks *
4417 (mddev->chunk_size / PAGE_SIZE);
4418 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4419 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4420 }
4421
4422 /* Ok, everything is just fine now */
4423 if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4424 printk(KERN_WARNING
4425 "raid5: failed to create sysfs attributes for %s\n",
4426 mdname(mddev));
4427
4428 mddev->queue->unplug_fn = raid5_unplug_device;
4429 mddev->queue->backing_dev_info.congested_data = mddev;
4430 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4431
4432 mddev->array_size = mddev->size * (conf->previous_raid_disks -
4433 conf->max_degraded);
4434
4435 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4436
4437 return 0;
4438 abort:
4439 if (conf) {
4440 print_raid5_conf(conf);
4441 safe_put_page(conf->spare_page);
4442 kfree(conf->disks);
4443 kfree(conf->stripe_hashtbl);
4444 kfree(conf);
4445 }
4446 mddev->private = NULL;
4447 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4448 return -EIO;
4449 }
4450
4451
4452
4453 static int stop(mddev_t *mddev)
4454 {
4455 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4456
4457 md_unregister_thread(mddev->thread);
4458 mddev->thread = NULL;
4459 shrink_stripes(conf);
4460 kfree(conf->stripe_hashtbl);
4461 mddev->queue->backing_dev_info.congested_fn = NULL;
4462 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4463 sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4464 kfree(conf->disks);
4465 kfree(conf);
4466 mddev->private = NULL;
4467 return 0;
4468 }
4469
4470 #ifdef DEBUG
4471 static void print_sh (struct seq_file *seq, struct stripe_head *sh)
4472 {
4473 int i;
4474
4475 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4476 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4477 seq_printf(seq, "sh %llu, count %d.\n",
4478 (unsigned long long)sh->sector, atomic_read(&sh->count));
4479 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4480 for (i = 0; i < sh->disks; i++) {
4481 seq_printf(seq, "(cache%d: %p %ld) ",
4482 i, sh->dev[i].page, sh->dev[i].flags);
4483 }
4484 seq_printf(seq, "\n");
4485 }
4486
4487 static void printall (struct seq_file *seq, raid5_conf_t *conf)
4488 {
4489 struct stripe_head *sh;
4490 struct hlist_node *hn;
4491 int i;
4492
4493 spin_lock_irq(&conf->device_lock);
4494 for (i = 0; i < NR_HASH; i++) {
4495 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4496 if (sh->raid_conf != conf)
4497 continue;
4498 print_sh(seq, sh);
4499 }
4500 }
4501 spin_unlock_irq(&conf->device_lock);
4502 }
4503 #endif
4504
4505 static void status (struct seq_file *seq, mddev_t *mddev)
4506 {
4507 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4508 int i;
4509
4510 seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4511 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4512 for (i = 0; i < conf->raid_disks; i++)
4513 seq_printf (seq, "%s",
4514 conf->disks[i].rdev &&
4515 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4516 seq_printf (seq, "]");
4517 #ifdef DEBUG
4518 seq_printf (seq, "\n");
4519 printall(seq, conf);
4520 #endif
4521 }
4522
4523 static void print_raid5_conf (raid5_conf_t *conf)
4524 {
4525 int i;
4526 struct disk_info *tmp;
4527
4528 printk("RAID5 conf printout:\n");
4529 if (!conf) {
4530 printk("(conf==NULL)\n");
4531 return;
4532 }
4533 printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4534 conf->raid_disks - conf->mddev->degraded);
4535
4536 for (i = 0; i < conf->raid_disks; i++) {
4537 char b[BDEVNAME_SIZE];
4538 tmp = conf->disks + i;
4539 if (tmp->rdev)
4540 printk(" disk %d, o:%d, dev:%s\n",
4541 i, !test_bit(Faulty, &tmp->rdev->flags),
4542 bdevname(tmp->rdev->bdev,b));
4543 }
4544 }
4545
4546 static int raid5_spare_active(mddev_t *mddev)
4547 {
4548 int i;
4549 raid5_conf_t *conf = mddev->private;
4550 struct disk_info *tmp;
4551
4552 for (i = 0; i < conf->raid_disks; i++) {
4553 tmp = conf->disks + i;
4554 if (tmp->rdev
4555 && !test_bit(Faulty, &tmp->rdev->flags)
4556 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4557 unsigned long flags;
4558 spin_lock_irqsave(&conf->device_lock, flags);
4559 mddev->degraded--;
4560 spin_unlock_irqrestore(&conf->device_lock, flags);
4561 }
4562 }
4563 print_raid5_conf(conf);
4564 return 0;
4565 }
4566
4567 static int raid5_remove_disk(mddev_t *mddev, int number)
4568 {
4569 raid5_conf_t *conf = mddev->private;
4570 int err = 0;
4571 mdk_rdev_t *rdev;
4572 struct disk_info *p = conf->disks + number;
4573
4574 print_raid5_conf(conf);
4575 rdev = p->rdev;
4576 if (rdev) {
4577 if (test_bit(In_sync, &rdev->flags) ||
4578 atomic_read(&rdev->nr_pending)) {
4579 err = -EBUSY;
4580 goto abort;
4581 }
4582 /* Only remove non-faulty devices if recovery
4583 * isn't possible.
4584 */
4585 if (!test_bit(Faulty, &rdev->flags) &&
4586 mddev->degraded <= conf->max_degraded) {
4587 err = -EBUSY;
4588 goto abort;
4589 }
4590 p->rdev = NULL;
4591 synchronize_rcu();
4592 if (atomic_read(&rdev->nr_pending)) {
4593 /* lost the race, try later */
4594 err = -EBUSY;
4595 p->rdev = rdev;
4596 }
4597 }
4598 abort:
4599
4600 print_raid5_conf(conf);
4601 return err;
4602 }
4603
4604 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4605 {
4606 raid5_conf_t *conf = mddev->private;
4607 int found = 0;
4608 int disk;
4609 struct disk_info *p;
4610 int first = 0;
4611 int last = conf->raid_disks - 1;
4612
4613 if (mddev->degraded > conf->max_degraded)
4614 /* no point adding a device */
4615 return 0;
4616
4617 if (rdev->raid_disk >= 0)
4618 first = last = rdev->raid_disk;
4619
4620 /*
4621 * find the disk ... but prefer rdev->saved_raid_disk
4622 * if possible.
4623 */
4624 if (rdev->saved_raid_disk >= 0 &&
4625 rdev->saved_raid_disk >= first &&
4626 conf->disks[rdev->saved_raid_disk].rdev == NULL)
4627 disk = rdev->saved_raid_disk;
4628 else
4629 disk = first;
4630 for ( ; disk <= last ; disk++)
4631 if ((p=conf->disks + disk)->rdev == NULL) {
4632 clear_bit(In_sync, &rdev->flags);
4633 rdev->raid_disk = disk;
4634 found = 1;
4635 if (rdev->saved_raid_disk != disk)
4636 conf->fullsync = 1;
4637 rcu_assign_pointer(p->rdev, rdev);
4638 break;
4639 }
4640 print_raid5_conf(conf);
4641 return found;
4642 }
4643
4644 static int raid5_resize(mddev_t *mddev, sector_t sectors)
4645 {
4646 /* no resync is happening, and there is enough space
4647 * on all devices, so we can resize.
4648 * We need to make sure resync covers any new space.
4649 * If the array is shrinking we should possibly wait until
4650 * any io in the removed space completes, but it hardly seems
4651 * worth it.
4652 */
4653 raid5_conf_t *conf = mddev_to_conf(mddev);
4654
4655 sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4656 mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1;
4657 set_capacity(mddev->gendisk, mddev->array_size << 1);
4658 mddev->changed = 1;
4659 if (sectors/2 > mddev->size && mddev->recovery_cp == MaxSector) {
4660 mddev->recovery_cp = mddev->size << 1;
4661 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4662 }
4663 mddev->size = sectors /2;
4664 mddev->resync_max_sectors = sectors;
4665 return 0;
4666 }
4667
4668 #ifdef CONFIG_MD_RAID5_RESHAPE
4669 static int raid5_check_reshape(mddev_t *mddev)
4670 {
4671 raid5_conf_t *conf = mddev_to_conf(mddev);
4672 int err;
4673
4674 if (mddev->delta_disks < 0 ||
4675 mddev->new_level != mddev->level)
4676 return -EINVAL; /* Cannot shrink array or change level yet */
4677 if (mddev->delta_disks == 0)
4678 return 0; /* nothing to do */
4679
4680 /* Can only proceed if there are plenty of stripe_heads.
4681 * We need a minimum of one full stripe,, and for sensible progress
4682 * it is best to have about 4 times that.
4683 * If we require 4 times, then the default 256 4K stripe_heads will
4684 * allow for chunk sizes up to 256K, which is probably OK.
4685 * If the chunk size is greater, user-space should request more
4686 * stripe_heads first.
4687 */
4688 if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4689 (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
4690 printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n",
4691 (mddev->chunk_size / STRIPE_SIZE)*4);
4692 return -ENOSPC;
4693 }
4694
4695 err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4696 if (err)
4697 return err;
4698
4699 if (mddev->degraded > conf->max_degraded)
4700 return -EINVAL;
4701 /* looks like we might be able to manage this */
4702 return 0;
4703 }
4704
4705 static int raid5_start_reshape(mddev_t *mddev)
4706 {
4707 raid5_conf_t *conf = mddev_to_conf(mddev);
4708 mdk_rdev_t *rdev;
4709 struct list_head *rtmp;
4710 int spares = 0;
4711 int added_devices = 0;
4712 unsigned long flags;
4713
4714 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4715 return -EBUSY;
4716
4717 rdev_for_each(rdev, rtmp, mddev)
4718 if (rdev->raid_disk < 0 &&
4719 !test_bit(Faulty, &rdev->flags))
4720 spares++;
4721
4722 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4723 /* Not enough devices even to make a degraded array
4724 * of that size
4725 */
4726 return -EINVAL;
4727
4728 atomic_set(&conf->reshape_stripes, 0);
4729 spin_lock_irq(&conf->device_lock);
4730 conf->previous_raid_disks = conf->raid_disks;
4731 conf->raid_disks += mddev->delta_disks;
4732 conf->expand_progress = 0;
4733 conf->expand_lo = 0;
4734 spin_unlock_irq(&conf->device_lock);
4735
4736 /* Add some new drives, as many as will fit.
4737 * We know there are enough to make the newly sized array work.
4738 */
4739 rdev_for_each(rdev, rtmp, mddev)
4740 if (rdev->raid_disk < 0 &&
4741 !test_bit(Faulty, &rdev->flags)) {
4742 if (raid5_add_disk(mddev, rdev)) {
4743 char nm[20];
4744 set_bit(In_sync, &rdev->flags);
4745 added_devices++;
4746 rdev->recovery_offset = 0;
4747 sprintf(nm, "rd%d", rdev->raid_disk);
4748 if (sysfs_create_link(&mddev->kobj,
4749 &rdev->kobj, nm))
4750 printk(KERN_WARNING
4751 "raid5: failed to create "
4752 " link %s for %s\n",
4753 nm, mdname(mddev));
4754 } else
4755 break;
4756 }
4757
4758 spin_lock_irqsave(&conf->device_lock, flags);
4759 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
4760 spin_unlock_irqrestore(&conf->device_lock, flags);
4761 mddev->raid_disks = conf->raid_disks;
4762 mddev->reshape_position = 0;
4763 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4764
4765 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4766 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4767 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4768 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4769 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4770 "%s_reshape");
4771 if (!mddev->sync_thread) {
4772 mddev->recovery = 0;
4773 spin_lock_irq(&conf->device_lock);
4774 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4775 conf->expand_progress = MaxSector;
4776 spin_unlock_irq(&conf->device_lock);
4777 return -EAGAIN;
4778 }
4779 md_wakeup_thread(mddev->sync_thread);
4780 md_new_event(mddev);
4781 return 0;
4782 }
4783 #endif
4784
4785 static void end_reshape(raid5_conf_t *conf)
4786 {
4787 struct block_device *bdev;
4788
4789 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
4790 conf->mddev->array_size = conf->mddev->size *
4791 (conf->raid_disks - conf->max_degraded);
4792 set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
4793 conf->mddev->changed = 1;
4794
4795 bdev = bdget_disk(conf->mddev->gendisk, 0);
4796 if (bdev) {
4797 mutex_lock(&bdev->bd_inode->i_mutex);
4798 i_size_write(bdev->bd_inode, (loff_t)conf->mddev->array_size << 10);
4799 mutex_unlock(&bdev->bd_inode->i_mutex);
4800 bdput(bdev);
4801 }
4802 spin_lock_irq(&conf->device_lock);
4803 conf->expand_progress = MaxSector;
4804 spin_unlock_irq(&conf->device_lock);
4805 conf->mddev->reshape_position = MaxSector;
4806
4807 /* read-ahead size must cover two whole stripes, which is
4808 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4809 */
4810 {
4811 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4812 int stripe = data_disks *
4813 (conf->mddev->chunk_size / PAGE_SIZE);
4814 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4815 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4816 }
4817 }
4818 }
4819
4820 static void raid5_quiesce(mddev_t *mddev, int state)
4821 {
4822 raid5_conf_t *conf = mddev_to_conf(mddev);
4823
4824 switch(state) {
4825 case 2: /* resume for a suspend */
4826 wake_up(&conf->wait_for_overlap);
4827 break;
4828
4829 case 1: /* stop all writes */
4830 spin_lock_irq(&conf->device_lock);
4831 conf->quiesce = 1;
4832 wait_event_lock_irq(conf->wait_for_stripe,
4833 atomic_read(&conf->active_stripes) == 0 &&
4834 atomic_read(&conf->active_aligned_reads) == 0,
4835 conf->device_lock, /* nothing */);
4836 spin_unlock_irq(&conf->device_lock);
4837 break;
4838
4839 case 0: /* re-enable writes */
4840 spin_lock_irq(&conf->device_lock);
4841 conf->quiesce = 0;
4842 wake_up(&conf->wait_for_stripe);
4843 wake_up(&conf->wait_for_overlap);
4844 spin_unlock_irq(&conf->device_lock);
4845 break;
4846 }
4847 }
4848
4849 static struct mdk_personality raid6_personality =
4850 {
4851 .name = "raid6",
4852 .level = 6,
4853 .owner = THIS_MODULE,
4854 .make_request = make_request,
4855 .run = run,
4856 .stop = stop,
4857 .status = status,
4858 .error_handler = error,
4859 .hot_add_disk = raid5_add_disk,
4860 .hot_remove_disk= raid5_remove_disk,
4861 .spare_active = raid5_spare_active,
4862 .sync_request = sync_request,
4863 .resize = raid5_resize,
4864 #ifdef CONFIG_MD_RAID5_RESHAPE
4865 .check_reshape = raid5_check_reshape,
4866 .start_reshape = raid5_start_reshape,
4867 #endif
4868 .quiesce = raid5_quiesce,
4869 };
4870 static struct mdk_personality raid5_personality =
4871 {
4872 .name = "raid5",
4873 .level = 5,
4874 .owner = THIS_MODULE,
4875 .make_request = make_request,
4876 .run = run,
4877 .stop = stop,
4878 .status = status,
4879 .error_handler = error,
4880 .hot_add_disk = raid5_add_disk,
4881 .hot_remove_disk= raid5_remove_disk,
4882 .spare_active = raid5_spare_active,
4883 .sync_request = sync_request,
4884 .resize = raid5_resize,
4885 #ifdef CONFIG_MD_RAID5_RESHAPE
4886 .check_reshape = raid5_check_reshape,
4887 .start_reshape = raid5_start_reshape,
4888 #endif
4889 .quiesce = raid5_quiesce,
4890 };
4891
4892 static struct mdk_personality raid4_personality =
4893 {
4894 .name = "raid4",
4895 .level = 4,
4896 .owner = THIS_MODULE,
4897 .make_request = make_request,
4898 .run = run,
4899 .stop = stop,
4900 .status = status,
4901 .error_handler = error,
4902 .hot_add_disk = raid5_add_disk,
4903 .hot_remove_disk= raid5_remove_disk,
4904 .spare_active = raid5_spare_active,
4905 .sync_request = sync_request,
4906 .resize = raid5_resize,
4907 #ifdef CONFIG_MD_RAID5_RESHAPE
4908 .check_reshape = raid5_check_reshape,
4909 .start_reshape = raid5_start_reshape,
4910 #endif
4911 .quiesce = raid5_quiesce,
4912 };
4913
4914 static int __init raid5_init(void)
4915 {
4916 int e;
4917
4918 e = raid6_select_algo();
4919 if ( e )
4920 return e;
4921 register_md_personality(&raid6_personality);
4922 register_md_personality(&raid5_personality);
4923 register_md_personality(&raid4_personality);
4924 return 0;
4925 }
4926
4927 static void raid5_exit(void)
4928 {
4929 unregister_md_personality(&raid6_personality);
4930 unregister_md_personality(&raid5_personality);
4931 unregister_md_personality(&raid4_personality);
4932 }
4933
4934 module_init(raid5_init);
4935 module_exit(raid5_exit);
4936 MODULE_LICENSE("GPL");
4937 MODULE_ALIAS("md-personality-4"); /* RAID5 */
4938 MODULE_ALIAS("md-raid5");
4939 MODULE_ALIAS("md-raid4");
4940 MODULE_ALIAS("md-level-5");
4941 MODULE_ALIAS("md-level-4");
4942 MODULE_ALIAS("md-personality-8"); /* RAID6 */
4943 MODULE_ALIAS("md-raid6");
4944 MODULE_ALIAS("md-level-6");
4945
4946 /* This used to be two separate modules, they were: */
4947 MODULE_ALIAS("raid5");
4948 MODULE_ALIAS("raid6");
This page took 0.207509 seconds and 5 git commands to generate.