pcnet-cs: declare MODULE_FIRMWARE
[deliverable/linux.git] / drivers / md / raid5.c
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21 /*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
53 #include "md.h"
54 #include "raid5.h"
55 #include "bitmap.h"
56
57 /*
58 * Stripe cache
59 */
60
61 #define NR_STRIPES 256
62 #define STRIPE_SIZE PAGE_SIZE
63 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
64 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
65 #define IO_THRESHOLD 1
66 #define BYPASS_THRESHOLD 1
67 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
68 #define HASH_MASK (NR_HASH - 1)
69
70 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
71
72 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
73 * order without overlap. There may be several bio's per stripe+device, and
74 * a bio could span several devices.
75 * When walking this list for a particular stripe+device, we must never proceed
76 * beyond a bio that extends past this device, as the next bio might no longer
77 * be valid.
78 * This macro is used to determine the 'next' bio in the list, given the sector
79 * of the current stripe+device
80 */
81 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
82 /*
83 * The following can be used to debug the driver
84 */
85 #define RAID5_PARANOIA 1
86 #if RAID5_PARANOIA && defined(CONFIG_SMP)
87 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
88 #else
89 # define CHECK_DEVLOCK()
90 #endif
91
92 #ifdef DEBUG
93 #define inline
94 #define __inline__
95 #endif
96
97 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
98
99 /*
100 * We maintain a biased count of active stripes in the bottom 16 bits of
101 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
102 */
103 static inline int raid5_bi_phys_segments(struct bio *bio)
104 {
105 return bio->bi_phys_segments & 0xffff;
106 }
107
108 static inline int raid5_bi_hw_segments(struct bio *bio)
109 {
110 return (bio->bi_phys_segments >> 16) & 0xffff;
111 }
112
113 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
114 {
115 --bio->bi_phys_segments;
116 return raid5_bi_phys_segments(bio);
117 }
118
119 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
120 {
121 unsigned short val = raid5_bi_hw_segments(bio);
122
123 --val;
124 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
125 return val;
126 }
127
128 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
129 {
130 bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
131 }
132
133 /* Find first data disk in a raid6 stripe */
134 static inline int raid6_d0(struct stripe_head *sh)
135 {
136 if (sh->ddf_layout)
137 /* ddf always start from first device */
138 return 0;
139 /* md starts just after Q block */
140 if (sh->qd_idx == sh->disks - 1)
141 return 0;
142 else
143 return sh->qd_idx + 1;
144 }
145 static inline int raid6_next_disk(int disk, int raid_disks)
146 {
147 disk++;
148 return (disk < raid_disks) ? disk : 0;
149 }
150
151 /* When walking through the disks in a raid5, starting at raid6_d0,
152 * We need to map each disk to a 'slot', where the data disks are slot
153 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
154 * is raid_disks-1. This help does that mapping.
155 */
156 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
157 int *count, int syndrome_disks)
158 {
159 int slot;
160
161 if (idx == sh->pd_idx)
162 return syndrome_disks;
163 if (idx == sh->qd_idx)
164 return syndrome_disks + 1;
165 slot = (*count)++;
166 return slot;
167 }
168
169 static void return_io(struct bio *return_bi)
170 {
171 struct bio *bi = return_bi;
172 while (bi) {
173
174 return_bi = bi->bi_next;
175 bi->bi_next = NULL;
176 bi->bi_size = 0;
177 bio_endio(bi, 0);
178 bi = return_bi;
179 }
180 }
181
182 static void print_raid5_conf (raid5_conf_t *conf);
183
184 static int stripe_operations_active(struct stripe_head *sh)
185 {
186 return sh->check_state || sh->reconstruct_state ||
187 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
188 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
189 }
190
191 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
192 {
193 if (atomic_dec_and_test(&sh->count)) {
194 BUG_ON(!list_empty(&sh->lru));
195 BUG_ON(atomic_read(&conf->active_stripes)==0);
196 if (test_bit(STRIPE_HANDLE, &sh->state)) {
197 if (test_bit(STRIPE_DELAYED, &sh->state)) {
198 list_add_tail(&sh->lru, &conf->delayed_list);
199 blk_plug_device(conf->mddev->queue);
200 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
201 sh->bm_seq - conf->seq_write > 0) {
202 list_add_tail(&sh->lru, &conf->bitmap_list);
203 blk_plug_device(conf->mddev->queue);
204 } else {
205 clear_bit(STRIPE_BIT_DELAY, &sh->state);
206 list_add_tail(&sh->lru, &conf->handle_list);
207 }
208 md_wakeup_thread(conf->mddev->thread);
209 } else {
210 BUG_ON(stripe_operations_active(sh));
211 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
212 atomic_dec(&conf->preread_active_stripes);
213 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
214 md_wakeup_thread(conf->mddev->thread);
215 }
216 atomic_dec(&conf->active_stripes);
217 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
218 list_add_tail(&sh->lru, &conf->inactive_list);
219 wake_up(&conf->wait_for_stripe);
220 if (conf->retry_read_aligned)
221 md_wakeup_thread(conf->mddev->thread);
222 }
223 }
224 }
225 }
226
227 static void release_stripe(struct stripe_head *sh)
228 {
229 raid5_conf_t *conf = sh->raid_conf;
230 unsigned long flags;
231
232 spin_lock_irqsave(&conf->device_lock, flags);
233 __release_stripe(conf, sh);
234 spin_unlock_irqrestore(&conf->device_lock, flags);
235 }
236
237 static inline void remove_hash(struct stripe_head *sh)
238 {
239 pr_debug("remove_hash(), stripe %llu\n",
240 (unsigned long long)sh->sector);
241
242 hlist_del_init(&sh->hash);
243 }
244
245 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
246 {
247 struct hlist_head *hp = stripe_hash(conf, sh->sector);
248
249 pr_debug("insert_hash(), stripe %llu\n",
250 (unsigned long long)sh->sector);
251
252 CHECK_DEVLOCK();
253 hlist_add_head(&sh->hash, hp);
254 }
255
256
257 /* find an idle stripe, make sure it is unhashed, and return it. */
258 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
259 {
260 struct stripe_head *sh = NULL;
261 struct list_head *first;
262
263 CHECK_DEVLOCK();
264 if (list_empty(&conf->inactive_list))
265 goto out;
266 first = conf->inactive_list.next;
267 sh = list_entry(first, struct stripe_head, lru);
268 list_del_init(first);
269 remove_hash(sh);
270 atomic_inc(&conf->active_stripes);
271 out:
272 return sh;
273 }
274
275 static void shrink_buffers(struct stripe_head *sh, int num)
276 {
277 struct page *p;
278 int i;
279
280 for (i=0; i<num ; i++) {
281 p = sh->dev[i].page;
282 if (!p)
283 continue;
284 sh->dev[i].page = NULL;
285 put_page(p);
286 }
287 }
288
289 static int grow_buffers(struct stripe_head *sh, int num)
290 {
291 int i;
292
293 for (i=0; i<num; i++) {
294 struct page *page;
295
296 if (!(page = alloc_page(GFP_KERNEL))) {
297 return 1;
298 }
299 sh->dev[i].page = page;
300 }
301 return 0;
302 }
303
304 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
305 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
306 struct stripe_head *sh);
307
308 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
309 {
310 raid5_conf_t *conf = sh->raid_conf;
311 int i;
312
313 BUG_ON(atomic_read(&sh->count) != 0);
314 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
315 BUG_ON(stripe_operations_active(sh));
316
317 CHECK_DEVLOCK();
318 pr_debug("init_stripe called, stripe %llu\n",
319 (unsigned long long)sh->sector);
320
321 remove_hash(sh);
322
323 sh->generation = conf->generation - previous;
324 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
325 sh->sector = sector;
326 stripe_set_idx(sector, conf, previous, sh);
327 sh->state = 0;
328
329
330 for (i = sh->disks; i--; ) {
331 struct r5dev *dev = &sh->dev[i];
332
333 if (dev->toread || dev->read || dev->towrite || dev->written ||
334 test_bit(R5_LOCKED, &dev->flags)) {
335 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
336 (unsigned long long)sh->sector, i, dev->toread,
337 dev->read, dev->towrite, dev->written,
338 test_bit(R5_LOCKED, &dev->flags));
339 BUG();
340 }
341 dev->flags = 0;
342 raid5_build_block(sh, i, previous);
343 }
344 insert_hash(conf, sh);
345 }
346
347 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
348 short generation)
349 {
350 struct stripe_head *sh;
351 struct hlist_node *hn;
352
353 CHECK_DEVLOCK();
354 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
355 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
356 if (sh->sector == sector && sh->generation == generation)
357 return sh;
358 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
359 return NULL;
360 }
361
362 static void unplug_slaves(mddev_t *mddev);
363 static void raid5_unplug_device(struct request_queue *q);
364
365 static struct stripe_head *
366 get_active_stripe(raid5_conf_t *conf, sector_t sector,
367 int previous, int noblock, int noquiesce)
368 {
369 struct stripe_head *sh;
370
371 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
372
373 spin_lock_irq(&conf->device_lock);
374
375 do {
376 wait_event_lock_irq(conf->wait_for_stripe,
377 conf->quiesce == 0 || noquiesce,
378 conf->device_lock, /* nothing */);
379 sh = __find_stripe(conf, sector, conf->generation - previous);
380 if (!sh) {
381 if (!conf->inactive_blocked)
382 sh = get_free_stripe(conf);
383 if (noblock && sh == NULL)
384 break;
385 if (!sh) {
386 conf->inactive_blocked = 1;
387 wait_event_lock_irq(conf->wait_for_stripe,
388 !list_empty(&conf->inactive_list) &&
389 (atomic_read(&conf->active_stripes)
390 < (conf->max_nr_stripes *3/4)
391 || !conf->inactive_blocked),
392 conf->device_lock,
393 raid5_unplug_device(conf->mddev->queue)
394 );
395 conf->inactive_blocked = 0;
396 } else
397 init_stripe(sh, sector, previous);
398 } else {
399 if (atomic_read(&sh->count)) {
400 BUG_ON(!list_empty(&sh->lru)
401 && !test_bit(STRIPE_EXPANDING, &sh->state));
402 } else {
403 if (!test_bit(STRIPE_HANDLE, &sh->state))
404 atomic_inc(&conf->active_stripes);
405 if (list_empty(&sh->lru) &&
406 !test_bit(STRIPE_EXPANDING, &sh->state))
407 BUG();
408 list_del_init(&sh->lru);
409 }
410 }
411 } while (sh == NULL);
412
413 if (sh)
414 atomic_inc(&sh->count);
415
416 spin_unlock_irq(&conf->device_lock);
417 return sh;
418 }
419
420 static void
421 raid5_end_read_request(struct bio *bi, int error);
422 static void
423 raid5_end_write_request(struct bio *bi, int error);
424
425 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
426 {
427 raid5_conf_t *conf = sh->raid_conf;
428 int i, disks = sh->disks;
429
430 might_sleep();
431
432 for (i = disks; i--; ) {
433 int rw;
434 struct bio *bi;
435 mdk_rdev_t *rdev;
436 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
437 rw = WRITE;
438 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
439 rw = READ;
440 else
441 continue;
442
443 bi = &sh->dev[i].req;
444
445 bi->bi_rw = rw;
446 if (rw == WRITE)
447 bi->bi_end_io = raid5_end_write_request;
448 else
449 bi->bi_end_io = raid5_end_read_request;
450
451 rcu_read_lock();
452 rdev = rcu_dereference(conf->disks[i].rdev);
453 if (rdev && test_bit(Faulty, &rdev->flags))
454 rdev = NULL;
455 if (rdev)
456 atomic_inc(&rdev->nr_pending);
457 rcu_read_unlock();
458
459 if (rdev) {
460 if (s->syncing || s->expanding || s->expanded)
461 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
462
463 set_bit(STRIPE_IO_STARTED, &sh->state);
464
465 bi->bi_bdev = rdev->bdev;
466 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
467 __func__, (unsigned long long)sh->sector,
468 bi->bi_rw, i);
469 atomic_inc(&sh->count);
470 bi->bi_sector = sh->sector + rdev->data_offset;
471 bi->bi_flags = 1 << BIO_UPTODATE;
472 bi->bi_vcnt = 1;
473 bi->bi_max_vecs = 1;
474 bi->bi_idx = 0;
475 bi->bi_io_vec = &sh->dev[i].vec;
476 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
477 bi->bi_io_vec[0].bv_offset = 0;
478 bi->bi_size = STRIPE_SIZE;
479 bi->bi_next = NULL;
480 if (rw == WRITE &&
481 test_bit(R5_ReWrite, &sh->dev[i].flags))
482 atomic_add(STRIPE_SECTORS,
483 &rdev->corrected_errors);
484 generic_make_request(bi);
485 } else {
486 if (rw == WRITE)
487 set_bit(STRIPE_DEGRADED, &sh->state);
488 pr_debug("skip op %ld on disc %d for sector %llu\n",
489 bi->bi_rw, i, (unsigned long long)sh->sector);
490 clear_bit(R5_LOCKED, &sh->dev[i].flags);
491 set_bit(STRIPE_HANDLE, &sh->state);
492 }
493 }
494 }
495
496 static struct dma_async_tx_descriptor *
497 async_copy_data(int frombio, struct bio *bio, struct page *page,
498 sector_t sector, struct dma_async_tx_descriptor *tx)
499 {
500 struct bio_vec *bvl;
501 struct page *bio_page;
502 int i;
503 int page_offset;
504 struct async_submit_ctl submit;
505 enum async_tx_flags flags = 0;
506
507 if (bio->bi_sector >= sector)
508 page_offset = (signed)(bio->bi_sector - sector) * 512;
509 else
510 page_offset = (signed)(sector - bio->bi_sector) * -512;
511
512 if (frombio)
513 flags |= ASYNC_TX_FENCE;
514 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
515
516 bio_for_each_segment(bvl, bio, i) {
517 int len = bio_iovec_idx(bio, i)->bv_len;
518 int clen;
519 int b_offset = 0;
520
521 if (page_offset < 0) {
522 b_offset = -page_offset;
523 page_offset += b_offset;
524 len -= b_offset;
525 }
526
527 if (len > 0 && page_offset + len > STRIPE_SIZE)
528 clen = STRIPE_SIZE - page_offset;
529 else
530 clen = len;
531
532 if (clen > 0) {
533 b_offset += bio_iovec_idx(bio, i)->bv_offset;
534 bio_page = bio_iovec_idx(bio, i)->bv_page;
535 if (frombio)
536 tx = async_memcpy(page, bio_page, page_offset,
537 b_offset, clen, &submit);
538 else
539 tx = async_memcpy(bio_page, page, b_offset,
540 page_offset, clen, &submit);
541 }
542 /* chain the operations */
543 submit.depend_tx = tx;
544
545 if (clen < len) /* hit end of page */
546 break;
547 page_offset += len;
548 }
549
550 return tx;
551 }
552
553 static void ops_complete_biofill(void *stripe_head_ref)
554 {
555 struct stripe_head *sh = stripe_head_ref;
556 struct bio *return_bi = NULL;
557 raid5_conf_t *conf = sh->raid_conf;
558 int i;
559
560 pr_debug("%s: stripe %llu\n", __func__,
561 (unsigned long long)sh->sector);
562
563 /* clear completed biofills */
564 spin_lock_irq(&conf->device_lock);
565 for (i = sh->disks; i--; ) {
566 struct r5dev *dev = &sh->dev[i];
567
568 /* acknowledge completion of a biofill operation */
569 /* and check if we need to reply to a read request,
570 * new R5_Wantfill requests are held off until
571 * !STRIPE_BIOFILL_RUN
572 */
573 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
574 struct bio *rbi, *rbi2;
575
576 BUG_ON(!dev->read);
577 rbi = dev->read;
578 dev->read = NULL;
579 while (rbi && rbi->bi_sector <
580 dev->sector + STRIPE_SECTORS) {
581 rbi2 = r5_next_bio(rbi, dev->sector);
582 if (!raid5_dec_bi_phys_segments(rbi)) {
583 rbi->bi_next = return_bi;
584 return_bi = rbi;
585 }
586 rbi = rbi2;
587 }
588 }
589 }
590 spin_unlock_irq(&conf->device_lock);
591 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
592
593 return_io(return_bi);
594
595 set_bit(STRIPE_HANDLE, &sh->state);
596 release_stripe(sh);
597 }
598
599 static void ops_run_biofill(struct stripe_head *sh)
600 {
601 struct dma_async_tx_descriptor *tx = NULL;
602 raid5_conf_t *conf = sh->raid_conf;
603 struct async_submit_ctl submit;
604 int i;
605
606 pr_debug("%s: stripe %llu\n", __func__,
607 (unsigned long long)sh->sector);
608
609 for (i = sh->disks; i--; ) {
610 struct r5dev *dev = &sh->dev[i];
611 if (test_bit(R5_Wantfill, &dev->flags)) {
612 struct bio *rbi;
613 spin_lock_irq(&conf->device_lock);
614 dev->read = rbi = dev->toread;
615 dev->toread = NULL;
616 spin_unlock_irq(&conf->device_lock);
617 while (rbi && rbi->bi_sector <
618 dev->sector + STRIPE_SECTORS) {
619 tx = async_copy_data(0, rbi, dev->page,
620 dev->sector, tx);
621 rbi = r5_next_bio(rbi, dev->sector);
622 }
623 }
624 }
625
626 atomic_inc(&sh->count);
627 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
628 async_trigger_callback(&submit);
629 }
630
631 static void mark_target_uptodate(struct stripe_head *sh, int target)
632 {
633 struct r5dev *tgt;
634
635 if (target < 0)
636 return;
637
638 tgt = &sh->dev[target];
639 set_bit(R5_UPTODATE, &tgt->flags);
640 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
641 clear_bit(R5_Wantcompute, &tgt->flags);
642 }
643
644 static void ops_complete_compute(void *stripe_head_ref)
645 {
646 struct stripe_head *sh = stripe_head_ref;
647
648 pr_debug("%s: stripe %llu\n", __func__,
649 (unsigned long long)sh->sector);
650
651 /* mark the computed target(s) as uptodate */
652 mark_target_uptodate(sh, sh->ops.target);
653 mark_target_uptodate(sh, sh->ops.target2);
654
655 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
656 if (sh->check_state == check_state_compute_run)
657 sh->check_state = check_state_compute_result;
658 set_bit(STRIPE_HANDLE, &sh->state);
659 release_stripe(sh);
660 }
661
662 /* return a pointer to the address conversion region of the scribble buffer */
663 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
664 struct raid5_percpu *percpu)
665 {
666 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
667 }
668
669 static struct dma_async_tx_descriptor *
670 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
671 {
672 int disks = sh->disks;
673 struct page **xor_srcs = percpu->scribble;
674 int target = sh->ops.target;
675 struct r5dev *tgt = &sh->dev[target];
676 struct page *xor_dest = tgt->page;
677 int count = 0;
678 struct dma_async_tx_descriptor *tx;
679 struct async_submit_ctl submit;
680 int i;
681
682 pr_debug("%s: stripe %llu block: %d\n",
683 __func__, (unsigned long long)sh->sector, target);
684 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
685
686 for (i = disks; i--; )
687 if (i != target)
688 xor_srcs[count++] = sh->dev[i].page;
689
690 atomic_inc(&sh->count);
691
692 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
693 ops_complete_compute, sh, to_addr_conv(sh, percpu));
694 if (unlikely(count == 1))
695 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
696 else
697 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
698
699 return tx;
700 }
701
702 /* set_syndrome_sources - populate source buffers for gen_syndrome
703 * @srcs - (struct page *) array of size sh->disks
704 * @sh - stripe_head to parse
705 *
706 * Populates srcs in proper layout order for the stripe and returns the
707 * 'count' of sources to be used in a call to async_gen_syndrome. The P
708 * destination buffer is recorded in srcs[count] and the Q destination
709 * is recorded in srcs[count+1]].
710 */
711 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
712 {
713 int disks = sh->disks;
714 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
715 int d0_idx = raid6_d0(sh);
716 int count;
717 int i;
718
719 for (i = 0; i < disks; i++)
720 srcs[i] = (void *)raid6_empty_zero_page;
721
722 count = 0;
723 i = d0_idx;
724 do {
725 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
726
727 srcs[slot] = sh->dev[i].page;
728 i = raid6_next_disk(i, disks);
729 } while (i != d0_idx);
730 BUG_ON(count != syndrome_disks);
731
732 return count;
733 }
734
735 static struct dma_async_tx_descriptor *
736 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
737 {
738 int disks = sh->disks;
739 struct page **blocks = percpu->scribble;
740 int target;
741 int qd_idx = sh->qd_idx;
742 struct dma_async_tx_descriptor *tx;
743 struct async_submit_ctl submit;
744 struct r5dev *tgt;
745 struct page *dest;
746 int i;
747 int count;
748
749 if (sh->ops.target < 0)
750 target = sh->ops.target2;
751 else if (sh->ops.target2 < 0)
752 target = sh->ops.target;
753 else
754 /* we should only have one valid target */
755 BUG();
756 BUG_ON(target < 0);
757 pr_debug("%s: stripe %llu block: %d\n",
758 __func__, (unsigned long long)sh->sector, target);
759
760 tgt = &sh->dev[target];
761 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
762 dest = tgt->page;
763
764 atomic_inc(&sh->count);
765
766 if (target == qd_idx) {
767 count = set_syndrome_sources(blocks, sh);
768 blocks[count] = NULL; /* regenerating p is not necessary */
769 BUG_ON(blocks[count+1] != dest); /* q should already be set */
770 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
771 ops_complete_compute, sh,
772 to_addr_conv(sh, percpu));
773 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
774 } else {
775 /* Compute any data- or p-drive using XOR */
776 count = 0;
777 for (i = disks; i-- ; ) {
778 if (i == target || i == qd_idx)
779 continue;
780 blocks[count++] = sh->dev[i].page;
781 }
782
783 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
784 NULL, ops_complete_compute, sh,
785 to_addr_conv(sh, percpu));
786 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
787 }
788
789 return tx;
790 }
791
792 static struct dma_async_tx_descriptor *
793 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
794 {
795 int i, count, disks = sh->disks;
796 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
797 int d0_idx = raid6_d0(sh);
798 int faila = -1, failb = -1;
799 int target = sh->ops.target;
800 int target2 = sh->ops.target2;
801 struct r5dev *tgt = &sh->dev[target];
802 struct r5dev *tgt2 = &sh->dev[target2];
803 struct dma_async_tx_descriptor *tx;
804 struct page **blocks = percpu->scribble;
805 struct async_submit_ctl submit;
806
807 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
808 __func__, (unsigned long long)sh->sector, target, target2);
809 BUG_ON(target < 0 || target2 < 0);
810 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
811 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
812
813 /* we need to open-code set_syndrome_sources to handle the
814 * slot number conversion for 'faila' and 'failb'
815 */
816 for (i = 0; i < disks ; i++)
817 blocks[i] = (void *)raid6_empty_zero_page;
818 count = 0;
819 i = d0_idx;
820 do {
821 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
822
823 blocks[slot] = sh->dev[i].page;
824
825 if (i == target)
826 faila = slot;
827 if (i == target2)
828 failb = slot;
829 i = raid6_next_disk(i, disks);
830 } while (i != d0_idx);
831 BUG_ON(count != syndrome_disks);
832
833 BUG_ON(faila == failb);
834 if (failb < faila)
835 swap(faila, failb);
836 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
837 __func__, (unsigned long long)sh->sector, faila, failb);
838
839 atomic_inc(&sh->count);
840
841 if (failb == syndrome_disks+1) {
842 /* Q disk is one of the missing disks */
843 if (faila == syndrome_disks) {
844 /* Missing P+Q, just recompute */
845 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
846 ops_complete_compute, sh,
847 to_addr_conv(sh, percpu));
848 return async_gen_syndrome(blocks, 0, count+2,
849 STRIPE_SIZE, &submit);
850 } else {
851 struct page *dest;
852 int data_target;
853 int qd_idx = sh->qd_idx;
854
855 /* Missing D+Q: recompute D from P, then recompute Q */
856 if (target == qd_idx)
857 data_target = target2;
858 else
859 data_target = target;
860
861 count = 0;
862 for (i = disks; i-- ; ) {
863 if (i == data_target || i == qd_idx)
864 continue;
865 blocks[count++] = sh->dev[i].page;
866 }
867 dest = sh->dev[data_target].page;
868 init_async_submit(&submit,
869 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
870 NULL, NULL, NULL,
871 to_addr_conv(sh, percpu));
872 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
873 &submit);
874
875 count = set_syndrome_sources(blocks, sh);
876 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
877 ops_complete_compute, sh,
878 to_addr_conv(sh, percpu));
879 return async_gen_syndrome(blocks, 0, count+2,
880 STRIPE_SIZE, &submit);
881 }
882 } else {
883 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
884 ops_complete_compute, sh,
885 to_addr_conv(sh, percpu));
886 if (failb == syndrome_disks) {
887 /* We're missing D+P. */
888 return async_raid6_datap_recov(syndrome_disks+2,
889 STRIPE_SIZE, faila,
890 blocks, &submit);
891 } else {
892 /* We're missing D+D. */
893 return async_raid6_2data_recov(syndrome_disks+2,
894 STRIPE_SIZE, faila, failb,
895 blocks, &submit);
896 }
897 }
898 }
899
900
901 static void ops_complete_prexor(void *stripe_head_ref)
902 {
903 struct stripe_head *sh = stripe_head_ref;
904
905 pr_debug("%s: stripe %llu\n", __func__,
906 (unsigned long long)sh->sector);
907 }
908
909 static struct dma_async_tx_descriptor *
910 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
911 struct dma_async_tx_descriptor *tx)
912 {
913 int disks = sh->disks;
914 struct page **xor_srcs = percpu->scribble;
915 int count = 0, pd_idx = sh->pd_idx, i;
916 struct async_submit_ctl submit;
917
918 /* existing parity data subtracted */
919 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
920
921 pr_debug("%s: stripe %llu\n", __func__,
922 (unsigned long long)sh->sector);
923
924 for (i = disks; i--; ) {
925 struct r5dev *dev = &sh->dev[i];
926 /* Only process blocks that are known to be uptodate */
927 if (test_bit(R5_Wantdrain, &dev->flags))
928 xor_srcs[count++] = dev->page;
929 }
930
931 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
932 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
933 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
934
935 return tx;
936 }
937
938 static struct dma_async_tx_descriptor *
939 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
940 {
941 int disks = sh->disks;
942 int i;
943
944 pr_debug("%s: stripe %llu\n", __func__,
945 (unsigned long long)sh->sector);
946
947 for (i = disks; i--; ) {
948 struct r5dev *dev = &sh->dev[i];
949 struct bio *chosen;
950
951 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
952 struct bio *wbi;
953
954 spin_lock(&sh->lock);
955 chosen = dev->towrite;
956 dev->towrite = NULL;
957 BUG_ON(dev->written);
958 wbi = dev->written = chosen;
959 spin_unlock(&sh->lock);
960
961 while (wbi && wbi->bi_sector <
962 dev->sector + STRIPE_SECTORS) {
963 tx = async_copy_data(1, wbi, dev->page,
964 dev->sector, tx);
965 wbi = r5_next_bio(wbi, dev->sector);
966 }
967 }
968 }
969
970 return tx;
971 }
972
973 static void ops_complete_reconstruct(void *stripe_head_ref)
974 {
975 struct stripe_head *sh = stripe_head_ref;
976 int disks = sh->disks;
977 int pd_idx = sh->pd_idx;
978 int qd_idx = sh->qd_idx;
979 int i;
980
981 pr_debug("%s: stripe %llu\n", __func__,
982 (unsigned long long)sh->sector);
983
984 for (i = disks; i--; ) {
985 struct r5dev *dev = &sh->dev[i];
986
987 if (dev->written || i == pd_idx || i == qd_idx)
988 set_bit(R5_UPTODATE, &dev->flags);
989 }
990
991 if (sh->reconstruct_state == reconstruct_state_drain_run)
992 sh->reconstruct_state = reconstruct_state_drain_result;
993 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
994 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
995 else {
996 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
997 sh->reconstruct_state = reconstruct_state_result;
998 }
999
1000 set_bit(STRIPE_HANDLE, &sh->state);
1001 release_stripe(sh);
1002 }
1003
1004 static void
1005 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1006 struct dma_async_tx_descriptor *tx)
1007 {
1008 int disks = sh->disks;
1009 struct page **xor_srcs = percpu->scribble;
1010 struct async_submit_ctl submit;
1011 int count = 0, pd_idx = sh->pd_idx, i;
1012 struct page *xor_dest;
1013 int prexor = 0;
1014 unsigned long flags;
1015
1016 pr_debug("%s: stripe %llu\n", __func__,
1017 (unsigned long long)sh->sector);
1018
1019 /* check if prexor is active which means only process blocks
1020 * that are part of a read-modify-write (written)
1021 */
1022 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1023 prexor = 1;
1024 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1025 for (i = disks; i--; ) {
1026 struct r5dev *dev = &sh->dev[i];
1027 if (dev->written)
1028 xor_srcs[count++] = dev->page;
1029 }
1030 } else {
1031 xor_dest = sh->dev[pd_idx].page;
1032 for (i = disks; i--; ) {
1033 struct r5dev *dev = &sh->dev[i];
1034 if (i != pd_idx)
1035 xor_srcs[count++] = dev->page;
1036 }
1037 }
1038
1039 /* 1/ if we prexor'd then the dest is reused as a source
1040 * 2/ if we did not prexor then we are redoing the parity
1041 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1042 * for the synchronous xor case
1043 */
1044 flags = ASYNC_TX_ACK |
1045 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1046
1047 atomic_inc(&sh->count);
1048
1049 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1050 to_addr_conv(sh, percpu));
1051 if (unlikely(count == 1))
1052 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1053 else
1054 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1055 }
1056
1057 static void
1058 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1059 struct dma_async_tx_descriptor *tx)
1060 {
1061 struct async_submit_ctl submit;
1062 struct page **blocks = percpu->scribble;
1063 int count;
1064
1065 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1066
1067 count = set_syndrome_sources(blocks, sh);
1068
1069 atomic_inc(&sh->count);
1070
1071 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1072 sh, to_addr_conv(sh, percpu));
1073 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1074 }
1075
1076 static void ops_complete_check(void *stripe_head_ref)
1077 {
1078 struct stripe_head *sh = stripe_head_ref;
1079
1080 pr_debug("%s: stripe %llu\n", __func__,
1081 (unsigned long long)sh->sector);
1082
1083 sh->check_state = check_state_check_result;
1084 set_bit(STRIPE_HANDLE, &sh->state);
1085 release_stripe(sh);
1086 }
1087
1088 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1089 {
1090 int disks = sh->disks;
1091 int pd_idx = sh->pd_idx;
1092 int qd_idx = sh->qd_idx;
1093 struct page *xor_dest;
1094 struct page **xor_srcs = percpu->scribble;
1095 struct dma_async_tx_descriptor *tx;
1096 struct async_submit_ctl submit;
1097 int count;
1098 int i;
1099
1100 pr_debug("%s: stripe %llu\n", __func__,
1101 (unsigned long long)sh->sector);
1102
1103 count = 0;
1104 xor_dest = sh->dev[pd_idx].page;
1105 xor_srcs[count++] = xor_dest;
1106 for (i = disks; i--; ) {
1107 if (i == pd_idx || i == qd_idx)
1108 continue;
1109 xor_srcs[count++] = sh->dev[i].page;
1110 }
1111
1112 init_async_submit(&submit, 0, NULL, NULL, NULL,
1113 to_addr_conv(sh, percpu));
1114 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1115 &sh->ops.zero_sum_result, &submit);
1116
1117 atomic_inc(&sh->count);
1118 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1119 tx = async_trigger_callback(&submit);
1120 }
1121
1122 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1123 {
1124 struct page **srcs = percpu->scribble;
1125 struct async_submit_ctl submit;
1126 int count;
1127
1128 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1129 (unsigned long long)sh->sector, checkp);
1130
1131 count = set_syndrome_sources(srcs, sh);
1132 if (!checkp)
1133 srcs[count] = NULL;
1134
1135 atomic_inc(&sh->count);
1136 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1137 sh, to_addr_conv(sh, percpu));
1138 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1139 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1140 }
1141
1142 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1143 {
1144 int overlap_clear = 0, i, disks = sh->disks;
1145 struct dma_async_tx_descriptor *tx = NULL;
1146 raid5_conf_t *conf = sh->raid_conf;
1147 int level = conf->level;
1148 struct raid5_percpu *percpu;
1149 unsigned long cpu;
1150
1151 cpu = get_cpu();
1152 percpu = per_cpu_ptr(conf->percpu, cpu);
1153 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1154 ops_run_biofill(sh);
1155 overlap_clear++;
1156 }
1157
1158 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1159 if (level < 6)
1160 tx = ops_run_compute5(sh, percpu);
1161 else {
1162 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1163 tx = ops_run_compute6_1(sh, percpu);
1164 else
1165 tx = ops_run_compute6_2(sh, percpu);
1166 }
1167 /* terminate the chain if reconstruct is not set to be run */
1168 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1169 async_tx_ack(tx);
1170 }
1171
1172 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1173 tx = ops_run_prexor(sh, percpu, tx);
1174
1175 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1176 tx = ops_run_biodrain(sh, tx);
1177 overlap_clear++;
1178 }
1179
1180 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1181 if (level < 6)
1182 ops_run_reconstruct5(sh, percpu, tx);
1183 else
1184 ops_run_reconstruct6(sh, percpu, tx);
1185 }
1186
1187 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1188 if (sh->check_state == check_state_run)
1189 ops_run_check_p(sh, percpu);
1190 else if (sh->check_state == check_state_run_q)
1191 ops_run_check_pq(sh, percpu, 0);
1192 else if (sh->check_state == check_state_run_pq)
1193 ops_run_check_pq(sh, percpu, 1);
1194 else
1195 BUG();
1196 }
1197
1198 if (overlap_clear)
1199 for (i = disks; i--; ) {
1200 struct r5dev *dev = &sh->dev[i];
1201 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1202 wake_up(&sh->raid_conf->wait_for_overlap);
1203 }
1204 put_cpu();
1205 }
1206
1207 static int grow_one_stripe(raid5_conf_t *conf)
1208 {
1209 struct stripe_head *sh;
1210 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
1211 if (!sh)
1212 return 0;
1213 memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
1214 sh->raid_conf = conf;
1215 spin_lock_init(&sh->lock);
1216
1217 if (grow_buffers(sh, conf->raid_disks)) {
1218 shrink_buffers(sh, conf->raid_disks);
1219 kmem_cache_free(conf->slab_cache, sh);
1220 return 0;
1221 }
1222 sh->disks = conf->raid_disks;
1223 /* we just created an active stripe so... */
1224 atomic_set(&sh->count, 1);
1225 atomic_inc(&conf->active_stripes);
1226 INIT_LIST_HEAD(&sh->lru);
1227 release_stripe(sh);
1228 return 1;
1229 }
1230
1231 static int grow_stripes(raid5_conf_t *conf, int num)
1232 {
1233 struct kmem_cache *sc;
1234 int devs = conf->raid_disks;
1235
1236 sprintf(conf->cache_name[0],
1237 "raid%d-%s", conf->level, mdname(conf->mddev));
1238 sprintf(conf->cache_name[1],
1239 "raid%d-%s-alt", conf->level, mdname(conf->mddev));
1240 conf->active_name = 0;
1241 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1242 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1243 0, 0, NULL);
1244 if (!sc)
1245 return 1;
1246 conf->slab_cache = sc;
1247 conf->pool_size = devs;
1248 while (num--)
1249 if (!grow_one_stripe(conf))
1250 return 1;
1251 return 0;
1252 }
1253
1254 /**
1255 * scribble_len - return the required size of the scribble region
1256 * @num - total number of disks in the array
1257 *
1258 * The size must be enough to contain:
1259 * 1/ a struct page pointer for each device in the array +2
1260 * 2/ room to convert each entry in (1) to its corresponding dma
1261 * (dma_map_page()) or page (page_address()) address.
1262 *
1263 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1264 * calculate over all devices (not just the data blocks), using zeros in place
1265 * of the P and Q blocks.
1266 */
1267 static size_t scribble_len(int num)
1268 {
1269 size_t len;
1270
1271 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1272
1273 return len;
1274 }
1275
1276 static int resize_stripes(raid5_conf_t *conf, int newsize)
1277 {
1278 /* Make all the stripes able to hold 'newsize' devices.
1279 * New slots in each stripe get 'page' set to a new page.
1280 *
1281 * This happens in stages:
1282 * 1/ create a new kmem_cache and allocate the required number of
1283 * stripe_heads.
1284 * 2/ gather all the old stripe_heads and tranfer the pages across
1285 * to the new stripe_heads. This will have the side effect of
1286 * freezing the array as once all stripe_heads have been collected,
1287 * no IO will be possible. Old stripe heads are freed once their
1288 * pages have been transferred over, and the old kmem_cache is
1289 * freed when all stripes are done.
1290 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1291 * we simple return a failre status - no need to clean anything up.
1292 * 4/ allocate new pages for the new slots in the new stripe_heads.
1293 * If this fails, we don't bother trying the shrink the
1294 * stripe_heads down again, we just leave them as they are.
1295 * As each stripe_head is processed the new one is released into
1296 * active service.
1297 *
1298 * Once step2 is started, we cannot afford to wait for a write,
1299 * so we use GFP_NOIO allocations.
1300 */
1301 struct stripe_head *osh, *nsh;
1302 LIST_HEAD(newstripes);
1303 struct disk_info *ndisks;
1304 unsigned long cpu;
1305 int err;
1306 struct kmem_cache *sc;
1307 int i;
1308
1309 if (newsize <= conf->pool_size)
1310 return 0; /* never bother to shrink */
1311
1312 err = md_allow_write(conf->mddev);
1313 if (err)
1314 return err;
1315
1316 /* Step 1 */
1317 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1318 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1319 0, 0, NULL);
1320 if (!sc)
1321 return -ENOMEM;
1322
1323 for (i = conf->max_nr_stripes; i; i--) {
1324 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1325 if (!nsh)
1326 break;
1327
1328 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1329
1330 nsh->raid_conf = conf;
1331 spin_lock_init(&nsh->lock);
1332
1333 list_add(&nsh->lru, &newstripes);
1334 }
1335 if (i) {
1336 /* didn't get enough, give up */
1337 while (!list_empty(&newstripes)) {
1338 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1339 list_del(&nsh->lru);
1340 kmem_cache_free(sc, nsh);
1341 }
1342 kmem_cache_destroy(sc);
1343 return -ENOMEM;
1344 }
1345 /* Step 2 - Must use GFP_NOIO now.
1346 * OK, we have enough stripes, start collecting inactive
1347 * stripes and copying them over
1348 */
1349 list_for_each_entry(nsh, &newstripes, lru) {
1350 spin_lock_irq(&conf->device_lock);
1351 wait_event_lock_irq(conf->wait_for_stripe,
1352 !list_empty(&conf->inactive_list),
1353 conf->device_lock,
1354 unplug_slaves(conf->mddev)
1355 );
1356 osh = get_free_stripe(conf);
1357 spin_unlock_irq(&conf->device_lock);
1358 atomic_set(&nsh->count, 1);
1359 for(i=0; i<conf->pool_size; i++)
1360 nsh->dev[i].page = osh->dev[i].page;
1361 for( ; i<newsize; i++)
1362 nsh->dev[i].page = NULL;
1363 kmem_cache_free(conf->slab_cache, osh);
1364 }
1365 kmem_cache_destroy(conf->slab_cache);
1366
1367 /* Step 3.
1368 * At this point, we are holding all the stripes so the array
1369 * is completely stalled, so now is a good time to resize
1370 * conf->disks and the scribble region
1371 */
1372 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1373 if (ndisks) {
1374 for (i=0; i<conf->raid_disks; i++)
1375 ndisks[i] = conf->disks[i];
1376 kfree(conf->disks);
1377 conf->disks = ndisks;
1378 } else
1379 err = -ENOMEM;
1380
1381 get_online_cpus();
1382 conf->scribble_len = scribble_len(newsize);
1383 for_each_present_cpu(cpu) {
1384 struct raid5_percpu *percpu;
1385 void *scribble;
1386
1387 percpu = per_cpu_ptr(conf->percpu, cpu);
1388 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1389
1390 if (scribble) {
1391 kfree(percpu->scribble);
1392 percpu->scribble = scribble;
1393 } else {
1394 err = -ENOMEM;
1395 break;
1396 }
1397 }
1398 put_online_cpus();
1399
1400 /* Step 4, return new stripes to service */
1401 while(!list_empty(&newstripes)) {
1402 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1403 list_del_init(&nsh->lru);
1404
1405 for (i=conf->raid_disks; i < newsize; i++)
1406 if (nsh->dev[i].page == NULL) {
1407 struct page *p = alloc_page(GFP_NOIO);
1408 nsh->dev[i].page = p;
1409 if (!p)
1410 err = -ENOMEM;
1411 }
1412 release_stripe(nsh);
1413 }
1414 /* critical section pass, GFP_NOIO no longer needed */
1415
1416 conf->slab_cache = sc;
1417 conf->active_name = 1-conf->active_name;
1418 conf->pool_size = newsize;
1419 return err;
1420 }
1421
1422 static int drop_one_stripe(raid5_conf_t *conf)
1423 {
1424 struct stripe_head *sh;
1425
1426 spin_lock_irq(&conf->device_lock);
1427 sh = get_free_stripe(conf);
1428 spin_unlock_irq(&conf->device_lock);
1429 if (!sh)
1430 return 0;
1431 BUG_ON(atomic_read(&sh->count));
1432 shrink_buffers(sh, conf->pool_size);
1433 kmem_cache_free(conf->slab_cache, sh);
1434 atomic_dec(&conf->active_stripes);
1435 return 1;
1436 }
1437
1438 static void shrink_stripes(raid5_conf_t *conf)
1439 {
1440 while (drop_one_stripe(conf))
1441 ;
1442
1443 if (conf->slab_cache)
1444 kmem_cache_destroy(conf->slab_cache);
1445 conf->slab_cache = NULL;
1446 }
1447
1448 static void raid5_end_read_request(struct bio * bi, int error)
1449 {
1450 struct stripe_head *sh = bi->bi_private;
1451 raid5_conf_t *conf = sh->raid_conf;
1452 int disks = sh->disks, i;
1453 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1454 char b[BDEVNAME_SIZE];
1455 mdk_rdev_t *rdev;
1456
1457
1458 for (i=0 ; i<disks; i++)
1459 if (bi == &sh->dev[i].req)
1460 break;
1461
1462 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1463 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1464 uptodate);
1465 if (i == disks) {
1466 BUG();
1467 return;
1468 }
1469
1470 if (uptodate) {
1471 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1472 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1473 rdev = conf->disks[i].rdev;
1474 printk_rl(KERN_INFO "raid5:%s: read error corrected"
1475 " (%lu sectors at %llu on %s)\n",
1476 mdname(conf->mddev), STRIPE_SECTORS,
1477 (unsigned long long)(sh->sector
1478 + rdev->data_offset),
1479 bdevname(rdev->bdev, b));
1480 clear_bit(R5_ReadError, &sh->dev[i].flags);
1481 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1482 }
1483 if (atomic_read(&conf->disks[i].rdev->read_errors))
1484 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1485 } else {
1486 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1487 int retry = 0;
1488 rdev = conf->disks[i].rdev;
1489
1490 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1491 atomic_inc(&rdev->read_errors);
1492 if (conf->mddev->degraded)
1493 printk_rl(KERN_WARNING
1494 "raid5:%s: read error not correctable "
1495 "(sector %llu on %s).\n",
1496 mdname(conf->mddev),
1497 (unsigned long long)(sh->sector
1498 + rdev->data_offset),
1499 bdn);
1500 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1501 /* Oh, no!!! */
1502 printk_rl(KERN_WARNING
1503 "raid5:%s: read error NOT corrected!! "
1504 "(sector %llu on %s).\n",
1505 mdname(conf->mddev),
1506 (unsigned long long)(sh->sector
1507 + rdev->data_offset),
1508 bdn);
1509 else if (atomic_read(&rdev->read_errors)
1510 > conf->max_nr_stripes)
1511 printk(KERN_WARNING
1512 "raid5:%s: Too many read errors, failing device %s.\n",
1513 mdname(conf->mddev), bdn);
1514 else
1515 retry = 1;
1516 if (retry)
1517 set_bit(R5_ReadError, &sh->dev[i].flags);
1518 else {
1519 clear_bit(R5_ReadError, &sh->dev[i].flags);
1520 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1521 md_error(conf->mddev, rdev);
1522 }
1523 }
1524 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1525 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1526 set_bit(STRIPE_HANDLE, &sh->state);
1527 release_stripe(sh);
1528 }
1529
1530 static void raid5_end_write_request(struct bio *bi, int error)
1531 {
1532 struct stripe_head *sh = bi->bi_private;
1533 raid5_conf_t *conf = sh->raid_conf;
1534 int disks = sh->disks, i;
1535 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1536
1537 for (i=0 ; i<disks; i++)
1538 if (bi == &sh->dev[i].req)
1539 break;
1540
1541 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1542 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1543 uptodate);
1544 if (i == disks) {
1545 BUG();
1546 return;
1547 }
1548
1549 if (!uptodate)
1550 md_error(conf->mddev, conf->disks[i].rdev);
1551
1552 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1553
1554 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1555 set_bit(STRIPE_HANDLE, &sh->state);
1556 release_stripe(sh);
1557 }
1558
1559
1560 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1561
1562 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1563 {
1564 struct r5dev *dev = &sh->dev[i];
1565
1566 bio_init(&dev->req);
1567 dev->req.bi_io_vec = &dev->vec;
1568 dev->req.bi_vcnt++;
1569 dev->req.bi_max_vecs++;
1570 dev->vec.bv_page = dev->page;
1571 dev->vec.bv_len = STRIPE_SIZE;
1572 dev->vec.bv_offset = 0;
1573
1574 dev->req.bi_sector = sh->sector;
1575 dev->req.bi_private = sh;
1576
1577 dev->flags = 0;
1578 dev->sector = compute_blocknr(sh, i, previous);
1579 }
1580
1581 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1582 {
1583 char b[BDEVNAME_SIZE];
1584 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1585 pr_debug("raid5: error called\n");
1586
1587 if (!test_bit(Faulty, &rdev->flags)) {
1588 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1589 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1590 unsigned long flags;
1591 spin_lock_irqsave(&conf->device_lock, flags);
1592 mddev->degraded++;
1593 spin_unlock_irqrestore(&conf->device_lock, flags);
1594 /*
1595 * if recovery was running, make sure it aborts.
1596 */
1597 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1598 }
1599 set_bit(Faulty, &rdev->flags);
1600 printk(KERN_ALERT
1601 "raid5: Disk failure on %s, disabling device.\n"
1602 "raid5: Operation continuing on %d devices.\n",
1603 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1604 }
1605 }
1606
1607 /*
1608 * Input: a 'big' sector number,
1609 * Output: index of the data and parity disk, and the sector # in them.
1610 */
1611 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1612 int previous, int *dd_idx,
1613 struct stripe_head *sh)
1614 {
1615 long stripe;
1616 unsigned long chunk_number;
1617 unsigned int chunk_offset;
1618 int pd_idx, qd_idx;
1619 int ddf_layout = 0;
1620 sector_t new_sector;
1621 int algorithm = previous ? conf->prev_algo
1622 : conf->algorithm;
1623 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1624 : conf->chunk_sectors;
1625 int raid_disks = previous ? conf->previous_raid_disks
1626 : conf->raid_disks;
1627 int data_disks = raid_disks - conf->max_degraded;
1628
1629 /* First compute the information on this sector */
1630
1631 /*
1632 * Compute the chunk number and the sector offset inside the chunk
1633 */
1634 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1635 chunk_number = r_sector;
1636 BUG_ON(r_sector != chunk_number);
1637
1638 /*
1639 * Compute the stripe number
1640 */
1641 stripe = chunk_number / data_disks;
1642
1643 /*
1644 * Compute the data disk and parity disk indexes inside the stripe
1645 */
1646 *dd_idx = chunk_number % data_disks;
1647
1648 /*
1649 * Select the parity disk based on the user selected algorithm.
1650 */
1651 pd_idx = qd_idx = ~0;
1652 switch(conf->level) {
1653 case 4:
1654 pd_idx = data_disks;
1655 break;
1656 case 5:
1657 switch (algorithm) {
1658 case ALGORITHM_LEFT_ASYMMETRIC:
1659 pd_idx = data_disks - stripe % raid_disks;
1660 if (*dd_idx >= pd_idx)
1661 (*dd_idx)++;
1662 break;
1663 case ALGORITHM_RIGHT_ASYMMETRIC:
1664 pd_idx = stripe % raid_disks;
1665 if (*dd_idx >= pd_idx)
1666 (*dd_idx)++;
1667 break;
1668 case ALGORITHM_LEFT_SYMMETRIC:
1669 pd_idx = data_disks - stripe % raid_disks;
1670 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1671 break;
1672 case ALGORITHM_RIGHT_SYMMETRIC:
1673 pd_idx = stripe % raid_disks;
1674 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1675 break;
1676 case ALGORITHM_PARITY_0:
1677 pd_idx = 0;
1678 (*dd_idx)++;
1679 break;
1680 case ALGORITHM_PARITY_N:
1681 pd_idx = data_disks;
1682 break;
1683 default:
1684 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1685 algorithm);
1686 BUG();
1687 }
1688 break;
1689 case 6:
1690
1691 switch (algorithm) {
1692 case ALGORITHM_LEFT_ASYMMETRIC:
1693 pd_idx = raid_disks - 1 - (stripe % raid_disks);
1694 qd_idx = pd_idx + 1;
1695 if (pd_idx == raid_disks-1) {
1696 (*dd_idx)++; /* Q D D D P */
1697 qd_idx = 0;
1698 } else if (*dd_idx >= pd_idx)
1699 (*dd_idx) += 2; /* D D P Q D */
1700 break;
1701 case ALGORITHM_RIGHT_ASYMMETRIC:
1702 pd_idx = stripe % raid_disks;
1703 qd_idx = pd_idx + 1;
1704 if (pd_idx == raid_disks-1) {
1705 (*dd_idx)++; /* Q D D D P */
1706 qd_idx = 0;
1707 } else if (*dd_idx >= pd_idx)
1708 (*dd_idx) += 2; /* D D P Q D */
1709 break;
1710 case ALGORITHM_LEFT_SYMMETRIC:
1711 pd_idx = raid_disks - 1 - (stripe % raid_disks);
1712 qd_idx = (pd_idx + 1) % raid_disks;
1713 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1714 break;
1715 case ALGORITHM_RIGHT_SYMMETRIC:
1716 pd_idx = stripe % raid_disks;
1717 qd_idx = (pd_idx + 1) % raid_disks;
1718 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1719 break;
1720
1721 case ALGORITHM_PARITY_0:
1722 pd_idx = 0;
1723 qd_idx = 1;
1724 (*dd_idx) += 2;
1725 break;
1726 case ALGORITHM_PARITY_N:
1727 pd_idx = data_disks;
1728 qd_idx = data_disks + 1;
1729 break;
1730
1731 case ALGORITHM_ROTATING_ZERO_RESTART:
1732 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1733 * of blocks for computing Q is different.
1734 */
1735 pd_idx = stripe % raid_disks;
1736 qd_idx = pd_idx + 1;
1737 if (pd_idx == raid_disks-1) {
1738 (*dd_idx)++; /* Q D D D P */
1739 qd_idx = 0;
1740 } else if (*dd_idx >= pd_idx)
1741 (*dd_idx) += 2; /* D D P Q D */
1742 ddf_layout = 1;
1743 break;
1744
1745 case ALGORITHM_ROTATING_N_RESTART:
1746 /* Same a left_asymmetric, by first stripe is
1747 * D D D P Q rather than
1748 * Q D D D P
1749 */
1750 pd_idx = raid_disks - 1 - ((stripe + 1) % raid_disks);
1751 qd_idx = pd_idx + 1;
1752 if (pd_idx == raid_disks-1) {
1753 (*dd_idx)++; /* Q D D D P */
1754 qd_idx = 0;
1755 } else if (*dd_idx >= pd_idx)
1756 (*dd_idx) += 2; /* D D P Q D */
1757 ddf_layout = 1;
1758 break;
1759
1760 case ALGORITHM_ROTATING_N_CONTINUE:
1761 /* Same as left_symmetric but Q is before P */
1762 pd_idx = raid_disks - 1 - (stripe % raid_disks);
1763 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1764 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1765 ddf_layout = 1;
1766 break;
1767
1768 case ALGORITHM_LEFT_ASYMMETRIC_6:
1769 /* RAID5 left_asymmetric, with Q on last device */
1770 pd_idx = data_disks - stripe % (raid_disks-1);
1771 if (*dd_idx >= pd_idx)
1772 (*dd_idx)++;
1773 qd_idx = raid_disks - 1;
1774 break;
1775
1776 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1777 pd_idx = stripe % (raid_disks-1);
1778 if (*dd_idx >= pd_idx)
1779 (*dd_idx)++;
1780 qd_idx = raid_disks - 1;
1781 break;
1782
1783 case ALGORITHM_LEFT_SYMMETRIC_6:
1784 pd_idx = data_disks - stripe % (raid_disks-1);
1785 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1786 qd_idx = raid_disks - 1;
1787 break;
1788
1789 case ALGORITHM_RIGHT_SYMMETRIC_6:
1790 pd_idx = stripe % (raid_disks-1);
1791 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1792 qd_idx = raid_disks - 1;
1793 break;
1794
1795 case ALGORITHM_PARITY_0_6:
1796 pd_idx = 0;
1797 (*dd_idx)++;
1798 qd_idx = raid_disks - 1;
1799 break;
1800
1801
1802 default:
1803 printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1804 algorithm);
1805 BUG();
1806 }
1807 break;
1808 }
1809
1810 if (sh) {
1811 sh->pd_idx = pd_idx;
1812 sh->qd_idx = qd_idx;
1813 sh->ddf_layout = ddf_layout;
1814 }
1815 /*
1816 * Finally, compute the new sector number
1817 */
1818 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1819 return new_sector;
1820 }
1821
1822
1823 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1824 {
1825 raid5_conf_t *conf = sh->raid_conf;
1826 int raid_disks = sh->disks;
1827 int data_disks = raid_disks - conf->max_degraded;
1828 sector_t new_sector = sh->sector, check;
1829 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1830 : conf->chunk_sectors;
1831 int algorithm = previous ? conf->prev_algo
1832 : conf->algorithm;
1833 sector_t stripe;
1834 int chunk_offset;
1835 int chunk_number, dummy1, dd_idx = i;
1836 sector_t r_sector;
1837 struct stripe_head sh2;
1838
1839
1840 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1841 stripe = new_sector;
1842 BUG_ON(new_sector != stripe);
1843
1844 if (i == sh->pd_idx)
1845 return 0;
1846 switch(conf->level) {
1847 case 4: break;
1848 case 5:
1849 switch (algorithm) {
1850 case ALGORITHM_LEFT_ASYMMETRIC:
1851 case ALGORITHM_RIGHT_ASYMMETRIC:
1852 if (i > sh->pd_idx)
1853 i--;
1854 break;
1855 case ALGORITHM_LEFT_SYMMETRIC:
1856 case ALGORITHM_RIGHT_SYMMETRIC:
1857 if (i < sh->pd_idx)
1858 i += raid_disks;
1859 i -= (sh->pd_idx + 1);
1860 break;
1861 case ALGORITHM_PARITY_0:
1862 i -= 1;
1863 break;
1864 case ALGORITHM_PARITY_N:
1865 break;
1866 default:
1867 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1868 algorithm);
1869 BUG();
1870 }
1871 break;
1872 case 6:
1873 if (i == sh->qd_idx)
1874 return 0; /* It is the Q disk */
1875 switch (algorithm) {
1876 case ALGORITHM_LEFT_ASYMMETRIC:
1877 case ALGORITHM_RIGHT_ASYMMETRIC:
1878 case ALGORITHM_ROTATING_ZERO_RESTART:
1879 case ALGORITHM_ROTATING_N_RESTART:
1880 if (sh->pd_idx == raid_disks-1)
1881 i--; /* Q D D D P */
1882 else if (i > sh->pd_idx)
1883 i -= 2; /* D D P Q D */
1884 break;
1885 case ALGORITHM_LEFT_SYMMETRIC:
1886 case ALGORITHM_RIGHT_SYMMETRIC:
1887 if (sh->pd_idx == raid_disks-1)
1888 i--; /* Q D D D P */
1889 else {
1890 /* D D P Q D */
1891 if (i < sh->pd_idx)
1892 i += raid_disks;
1893 i -= (sh->pd_idx + 2);
1894 }
1895 break;
1896 case ALGORITHM_PARITY_0:
1897 i -= 2;
1898 break;
1899 case ALGORITHM_PARITY_N:
1900 break;
1901 case ALGORITHM_ROTATING_N_CONTINUE:
1902 if (sh->pd_idx == 0)
1903 i--; /* P D D D Q */
1904 else if (i > sh->pd_idx)
1905 i -= 2; /* D D Q P D */
1906 break;
1907 case ALGORITHM_LEFT_ASYMMETRIC_6:
1908 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1909 if (i > sh->pd_idx)
1910 i--;
1911 break;
1912 case ALGORITHM_LEFT_SYMMETRIC_6:
1913 case ALGORITHM_RIGHT_SYMMETRIC_6:
1914 if (i < sh->pd_idx)
1915 i += data_disks + 1;
1916 i -= (sh->pd_idx + 1);
1917 break;
1918 case ALGORITHM_PARITY_0_6:
1919 i -= 1;
1920 break;
1921 default:
1922 printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1923 algorithm);
1924 BUG();
1925 }
1926 break;
1927 }
1928
1929 chunk_number = stripe * data_disks + i;
1930 r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1931
1932 check = raid5_compute_sector(conf, r_sector,
1933 previous, &dummy1, &sh2);
1934 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
1935 || sh2.qd_idx != sh->qd_idx) {
1936 printk(KERN_ERR "compute_blocknr: map not correct\n");
1937 return 0;
1938 }
1939 return r_sector;
1940 }
1941
1942
1943 static void
1944 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
1945 int rcw, int expand)
1946 {
1947 int i, pd_idx = sh->pd_idx, disks = sh->disks;
1948 raid5_conf_t *conf = sh->raid_conf;
1949 int level = conf->level;
1950
1951 if (rcw) {
1952 /* if we are not expanding this is a proper write request, and
1953 * there will be bios with new data to be drained into the
1954 * stripe cache
1955 */
1956 if (!expand) {
1957 sh->reconstruct_state = reconstruct_state_drain_run;
1958 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1959 } else
1960 sh->reconstruct_state = reconstruct_state_run;
1961
1962 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
1963
1964 for (i = disks; i--; ) {
1965 struct r5dev *dev = &sh->dev[i];
1966
1967 if (dev->towrite) {
1968 set_bit(R5_LOCKED, &dev->flags);
1969 set_bit(R5_Wantdrain, &dev->flags);
1970 if (!expand)
1971 clear_bit(R5_UPTODATE, &dev->flags);
1972 s->locked++;
1973 }
1974 }
1975 if (s->locked + conf->max_degraded == disks)
1976 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1977 atomic_inc(&conf->pending_full_writes);
1978 } else {
1979 BUG_ON(level == 6);
1980 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1981 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1982
1983 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
1984 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
1985 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1986 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
1987
1988 for (i = disks; i--; ) {
1989 struct r5dev *dev = &sh->dev[i];
1990 if (i == pd_idx)
1991 continue;
1992
1993 if (dev->towrite &&
1994 (test_bit(R5_UPTODATE, &dev->flags) ||
1995 test_bit(R5_Wantcompute, &dev->flags))) {
1996 set_bit(R5_Wantdrain, &dev->flags);
1997 set_bit(R5_LOCKED, &dev->flags);
1998 clear_bit(R5_UPTODATE, &dev->flags);
1999 s->locked++;
2000 }
2001 }
2002 }
2003
2004 /* keep the parity disk(s) locked while asynchronous operations
2005 * are in flight
2006 */
2007 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2008 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2009 s->locked++;
2010
2011 if (level == 6) {
2012 int qd_idx = sh->qd_idx;
2013 struct r5dev *dev = &sh->dev[qd_idx];
2014
2015 set_bit(R5_LOCKED, &dev->flags);
2016 clear_bit(R5_UPTODATE, &dev->flags);
2017 s->locked++;
2018 }
2019
2020 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2021 __func__, (unsigned long long)sh->sector,
2022 s->locked, s->ops_request);
2023 }
2024
2025 /*
2026 * Each stripe/dev can have one or more bion attached.
2027 * toread/towrite point to the first in a chain.
2028 * The bi_next chain must be in order.
2029 */
2030 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2031 {
2032 struct bio **bip;
2033 raid5_conf_t *conf = sh->raid_conf;
2034 int firstwrite=0;
2035
2036 pr_debug("adding bh b#%llu to stripe s#%llu\n",
2037 (unsigned long long)bi->bi_sector,
2038 (unsigned long long)sh->sector);
2039
2040
2041 spin_lock(&sh->lock);
2042 spin_lock_irq(&conf->device_lock);
2043 if (forwrite) {
2044 bip = &sh->dev[dd_idx].towrite;
2045 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2046 firstwrite = 1;
2047 } else
2048 bip = &sh->dev[dd_idx].toread;
2049 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2050 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2051 goto overlap;
2052 bip = & (*bip)->bi_next;
2053 }
2054 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2055 goto overlap;
2056
2057 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2058 if (*bip)
2059 bi->bi_next = *bip;
2060 *bip = bi;
2061 bi->bi_phys_segments++;
2062 spin_unlock_irq(&conf->device_lock);
2063 spin_unlock(&sh->lock);
2064
2065 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2066 (unsigned long long)bi->bi_sector,
2067 (unsigned long long)sh->sector, dd_idx);
2068
2069 if (conf->mddev->bitmap && firstwrite) {
2070 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2071 STRIPE_SECTORS, 0);
2072 sh->bm_seq = conf->seq_flush+1;
2073 set_bit(STRIPE_BIT_DELAY, &sh->state);
2074 }
2075
2076 if (forwrite) {
2077 /* check if page is covered */
2078 sector_t sector = sh->dev[dd_idx].sector;
2079 for (bi=sh->dev[dd_idx].towrite;
2080 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2081 bi && bi->bi_sector <= sector;
2082 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2083 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2084 sector = bi->bi_sector + (bi->bi_size>>9);
2085 }
2086 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2087 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2088 }
2089 return 1;
2090
2091 overlap:
2092 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2093 spin_unlock_irq(&conf->device_lock);
2094 spin_unlock(&sh->lock);
2095 return 0;
2096 }
2097
2098 static void end_reshape(raid5_conf_t *conf);
2099
2100 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2101 struct stripe_head *sh)
2102 {
2103 int sectors_per_chunk =
2104 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2105 int dd_idx;
2106 int chunk_offset = sector_div(stripe, sectors_per_chunk);
2107 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2108
2109 raid5_compute_sector(conf,
2110 stripe * (disks - conf->max_degraded)
2111 *sectors_per_chunk + chunk_offset,
2112 previous,
2113 &dd_idx, sh);
2114 }
2115
2116 static void
2117 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2118 struct stripe_head_state *s, int disks,
2119 struct bio **return_bi)
2120 {
2121 int i;
2122 for (i = disks; i--; ) {
2123 struct bio *bi;
2124 int bitmap_end = 0;
2125
2126 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2127 mdk_rdev_t *rdev;
2128 rcu_read_lock();
2129 rdev = rcu_dereference(conf->disks[i].rdev);
2130 if (rdev && test_bit(In_sync, &rdev->flags))
2131 /* multiple read failures in one stripe */
2132 md_error(conf->mddev, rdev);
2133 rcu_read_unlock();
2134 }
2135 spin_lock_irq(&conf->device_lock);
2136 /* fail all writes first */
2137 bi = sh->dev[i].towrite;
2138 sh->dev[i].towrite = NULL;
2139 if (bi) {
2140 s->to_write--;
2141 bitmap_end = 1;
2142 }
2143
2144 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2145 wake_up(&conf->wait_for_overlap);
2146
2147 while (bi && bi->bi_sector <
2148 sh->dev[i].sector + STRIPE_SECTORS) {
2149 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2150 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2151 if (!raid5_dec_bi_phys_segments(bi)) {
2152 md_write_end(conf->mddev);
2153 bi->bi_next = *return_bi;
2154 *return_bi = bi;
2155 }
2156 bi = nextbi;
2157 }
2158 /* and fail all 'written' */
2159 bi = sh->dev[i].written;
2160 sh->dev[i].written = NULL;
2161 if (bi) bitmap_end = 1;
2162 while (bi && bi->bi_sector <
2163 sh->dev[i].sector + STRIPE_SECTORS) {
2164 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2165 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2166 if (!raid5_dec_bi_phys_segments(bi)) {
2167 md_write_end(conf->mddev);
2168 bi->bi_next = *return_bi;
2169 *return_bi = bi;
2170 }
2171 bi = bi2;
2172 }
2173
2174 /* fail any reads if this device is non-operational and
2175 * the data has not reached the cache yet.
2176 */
2177 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2178 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2179 test_bit(R5_ReadError, &sh->dev[i].flags))) {
2180 bi = sh->dev[i].toread;
2181 sh->dev[i].toread = NULL;
2182 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2183 wake_up(&conf->wait_for_overlap);
2184 if (bi) s->to_read--;
2185 while (bi && bi->bi_sector <
2186 sh->dev[i].sector + STRIPE_SECTORS) {
2187 struct bio *nextbi =
2188 r5_next_bio(bi, sh->dev[i].sector);
2189 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2190 if (!raid5_dec_bi_phys_segments(bi)) {
2191 bi->bi_next = *return_bi;
2192 *return_bi = bi;
2193 }
2194 bi = nextbi;
2195 }
2196 }
2197 spin_unlock_irq(&conf->device_lock);
2198 if (bitmap_end)
2199 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2200 STRIPE_SECTORS, 0, 0);
2201 }
2202
2203 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2204 if (atomic_dec_and_test(&conf->pending_full_writes))
2205 md_wakeup_thread(conf->mddev->thread);
2206 }
2207
2208 /* fetch_block5 - checks the given member device to see if its data needs
2209 * to be read or computed to satisfy a request.
2210 *
2211 * Returns 1 when no more member devices need to be checked, otherwise returns
2212 * 0 to tell the loop in handle_stripe_fill5 to continue
2213 */
2214 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2215 int disk_idx, int disks)
2216 {
2217 struct r5dev *dev = &sh->dev[disk_idx];
2218 struct r5dev *failed_dev = &sh->dev[s->failed_num];
2219
2220 /* is the data in this block needed, and can we get it? */
2221 if (!test_bit(R5_LOCKED, &dev->flags) &&
2222 !test_bit(R5_UPTODATE, &dev->flags) &&
2223 (dev->toread ||
2224 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2225 s->syncing || s->expanding ||
2226 (s->failed &&
2227 (failed_dev->toread ||
2228 (failed_dev->towrite &&
2229 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2230 /* We would like to get this block, possibly by computing it,
2231 * otherwise read it if the backing disk is insync
2232 */
2233 if ((s->uptodate == disks - 1) &&
2234 (s->failed && disk_idx == s->failed_num)) {
2235 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2236 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2237 set_bit(R5_Wantcompute, &dev->flags);
2238 sh->ops.target = disk_idx;
2239 sh->ops.target2 = -1;
2240 s->req_compute = 1;
2241 /* Careful: from this point on 'uptodate' is in the eye
2242 * of raid_run_ops which services 'compute' operations
2243 * before writes. R5_Wantcompute flags a block that will
2244 * be R5_UPTODATE by the time it is needed for a
2245 * subsequent operation.
2246 */
2247 s->uptodate++;
2248 return 1; /* uptodate + compute == disks */
2249 } else if (test_bit(R5_Insync, &dev->flags)) {
2250 set_bit(R5_LOCKED, &dev->flags);
2251 set_bit(R5_Wantread, &dev->flags);
2252 s->locked++;
2253 pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2254 s->syncing);
2255 }
2256 }
2257
2258 return 0;
2259 }
2260
2261 /**
2262 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2263 */
2264 static void handle_stripe_fill5(struct stripe_head *sh,
2265 struct stripe_head_state *s, int disks)
2266 {
2267 int i;
2268
2269 /* look for blocks to read/compute, skip this if a compute
2270 * is already in flight, or if the stripe contents are in the
2271 * midst of changing due to a write
2272 */
2273 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2274 !sh->reconstruct_state)
2275 for (i = disks; i--; )
2276 if (fetch_block5(sh, s, i, disks))
2277 break;
2278 set_bit(STRIPE_HANDLE, &sh->state);
2279 }
2280
2281 /* fetch_block6 - checks the given member device to see if its data needs
2282 * to be read or computed to satisfy a request.
2283 *
2284 * Returns 1 when no more member devices need to be checked, otherwise returns
2285 * 0 to tell the loop in handle_stripe_fill6 to continue
2286 */
2287 static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
2288 struct r6_state *r6s, int disk_idx, int disks)
2289 {
2290 struct r5dev *dev = &sh->dev[disk_idx];
2291 struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
2292 &sh->dev[r6s->failed_num[1]] };
2293
2294 if (!test_bit(R5_LOCKED, &dev->flags) &&
2295 !test_bit(R5_UPTODATE, &dev->flags) &&
2296 (dev->toread ||
2297 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2298 s->syncing || s->expanding ||
2299 (s->failed >= 1 &&
2300 (fdev[0]->toread || s->to_write)) ||
2301 (s->failed >= 2 &&
2302 (fdev[1]->toread || s->to_write)))) {
2303 /* we would like to get this block, possibly by computing it,
2304 * otherwise read it if the backing disk is insync
2305 */
2306 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2307 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2308 if ((s->uptodate == disks - 1) &&
2309 (s->failed && (disk_idx == r6s->failed_num[0] ||
2310 disk_idx == r6s->failed_num[1]))) {
2311 /* have disk failed, and we're requested to fetch it;
2312 * do compute it
2313 */
2314 pr_debug("Computing stripe %llu block %d\n",
2315 (unsigned long long)sh->sector, disk_idx);
2316 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2317 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2318 set_bit(R5_Wantcompute, &dev->flags);
2319 sh->ops.target = disk_idx;
2320 sh->ops.target2 = -1; /* no 2nd target */
2321 s->req_compute = 1;
2322 s->uptodate++;
2323 return 1;
2324 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2325 /* Computing 2-failure is *very* expensive; only
2326 * do it if failed >= 2
2327 */
2328 int other;
2329 for (other = disks; other--; ) {
2330 if (other == disk_idx)
2331 continue;
2332 if (!test_bit(R5_UPTODATE,
2333 &sh->dev[other].flags))
2334 break;
2335 }
2336 BUG_ON(other < 0);
2337 pr_debug("Computing stripe %llu blocks %d,%d\n",
2338 (unsigned long long)sh->sector,
2339 disk_idx, other);
2340 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2341 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2342 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2343 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2344 sh->ops.target = disk_idx;
2345 sh->ops.target2 = other;
2346 s->uptodate += 2;
2347 s->req_compute = 1;
2348 return 1;
2349 } else if (test_bit(R5_Insync, &dev->flags)) {
2350 set_bit(R5_LOCKED, &dev->flags);
2351 set_bit(R5_Wantread, &dev->flags);
2352 s->locked++;
2353 pr_debug("Reading block %d (sync=%d)\n",
2354 disk_idx, s->syncing);
2355 }
2356 }
2357
2358 return 0;
2359 }
2360
2361 /**
2362 * handle_stripe_fill6 - read or compute data to satisfy pending requests.
2363 */
2364 static void handle_stripe_fill6(struct stripe_head *sh,
2365 struct stripe_head_state *s, struct r6_state *r6s,
2366 int disks)
2367 {
2368 int i;
2369
2370 /* look for blocks to read/compute, skip this if a compute
2371 * is already in flight, or if the stripe contents are in the
2372 * midst of changing due to a write
2373 */
2374 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2375 !sh->reconstruct_state)
2376 for (i = disks; i--; )
2377 if (fetch_block6(sh, s, r6s, i, disks))
2378 break;
2379 set_bit(STRIPE_HANDLE, &sh->state);
2380 }
2381
2382
2383 /* handle_stripe_clean_event
2384 * any written block on an uptodate or failed drive can be returned.
2385 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2386 * never LOCKED, so we don't need to test 'failed' directly.
2387 */
2388 static void handle_stripe_clean_event(raid5_conf_t *conf,
2389 struct stripe_head *sh, int disks, struct bio **return_bi)
2390 {
2391 int i;
2392 struct r5dev *dev;
2393
2394 for (i = disks; i--; )
2395 if (sh->dev[i].written) {
2396 dev = &sh->dev[i];
2397 if (!test_bit(R5_LOCKED, &dev->flags) &&
2398 test_bit(R5_UPTODATE, &dev->flags)) {
2399 /* We can return any write requests */
2400 struct bio *wbi, *wbi2;
2401 int bitmap_end = 0;
2402 pr_debug("Return write for disc %d\n", i);
2403 spin_lock_irq(&conf->device_lock);
2404 wbi = dev->written;
2405 dev->written = NULL;
2406 while (wbi && wbi->bi_sector <
2407 dev->sector + STRIPE_SECTORS) {
2408 wbi2 = r5_next_bio(wbi, dev->sector);
2409 if (!raid5_dec_bi_phys_segments(wbi)) {
2410 md_write_end(conf->mddev);
2411 wbi->bi_next = *return_bi;
2412 *return_bi = wbi;
2413 }
2414 wbi = wbi2;
2415 }
2416 if (dev->towrite == NULL)
2417 bitmap_end = 1;
2418 spin_unlock_irq(&conf->device_lock);
2419 if (bitmap_end)
2420 bitmap_endwrite(conf->mddev->bitmap,
2421 sh->sector,
2422 STRIPE_SECTORS,
2423 !test_bit(STRIPE_DEGRADED, &sh->state),
2424 0);
2425 }
2426 }
2427
2428 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2429 if (atomic_dec_and_test(&conf->pending_full_writes))
2430 md_wakeup_thread(conf->mddev->thread);
2431 }
2432
2433 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2434 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2435 {
2436 int rmw = 0, rcw = 0, i;
2437 for (i = disks; i--; ) {
2438 /* would I have to read this buffer for read_modify_write */
2439 struct r5dev *dev = &sh->dev[i];
2440 if ((dev->towrite || i == sh->pd_idx) &&
2441 !test_bit(R5_LOCKED, &dev->flags) &&
2442 !(test_bit(R5_UPTODATE, &dev->flags) ||
2443 test_bit(R5_Wantcompute, &dev->flags))) {
2444 if (test_bit(R5_Insync, &dev->flags))
2445 rmw++;
2446 else
2447 rmw += 2*disks; /* cannot read it */
2448 }
2449 /* Would I have to read this buffer for reconstruct_write */
2450 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2451 !test_bit(R5_LOCKED, &dev->flags) &&
2452 !(test_bit(R5_UPTODATE, &dev->flags) ||
2453 test_bit(R5_Wantcompute, &dev->flags))) {
2454 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2455 else
2456 rcw += 2*disks;
2457 }
2458 }
2459 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2460 (unsigned long long)sh->sector, rmw, rcw);
2461 set_bit(STRIPE_HANDLE, &sh->state);
2462 if (rmw < rcw && rmw > 0)
2463 /* prefer read-modify-write, but need to get some data */
2464 for (i = disks; i--; ) {
2465 struct r5dev *dev = &sh->dev[i];
2466 if ((dev->towrite || i == sh->pd_idx) &&
2467 !test_bit(R5_LOCKED, &dev->flags) &&
2468 !(test_bit(R5_UPTODATE, &dev->flags) ||
2469 test_bit(R5_Wantcompute, &dev->flags)) &&
2470 test_bit(R5_Insync, &dev->flags)) {
2471 if (
2472 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2473 pr_debug("Read_old block "
2474 "%d for r-m-w\n", i);
2475 set_bit(R5_LOCKED, &dev->flags);
2476 set_bit(R5_Wantread, &dev->flags);
2477 s->locked++;
2478 } else {
2479 set_bit(STRIPE_DELAYED, &sh->state);
2480 set_bit(STRIPE_HANDLE, &sh->state);
2481 }
2482 }
2483 }
2484 if (rcw <= rmw && rcw > 0)
2485 /* want reconstruct write, but need to get some data */
2486 for (i = disks; i--; ) {
2487 struct r5dev *dev = &sh->dev[i];
2488 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2489 i != sh->pd_idx &&
2490 !test_bit(R5_LOCKED, &dev->flags) &&
2491 !(test_bit(R5_UPTODATE, &dev->flags) ||
2492 test_bit(R5_Wantcompute, &dev->flags)) &&
2493 test_bit(R5_Insync, &dev->flags)) {
2494 if (
2495 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2496 pr_debug("Read_old block "
2497 "%d for Reconstruct\n", i);
2498 set_bit(R5_LOCKED, &dev->flags);
2499 set_bit(R5_Wantread, &dev->flags);
2500 s->locked++;
2501 } else {
2502 set_bit(STRIPE_DELAYED, &sh->state);
2503 set_bit(STRIPE_HANDLE, &sh->state);
2504 }
2505 }
2506 }
2507 /* now if nothing is locked, and if we have enough data,
2508 * we can start a write request
2509 */
2510 /* since handle_stripe can be called at any time we need to handle the
2511 * case where a compute block operation has been submitted and then a
2512 * subsequent call wants to start a write request. raid_run_ops only
2513 * handles the case where compute block and reconstruct are requested
2514 * simultaneously. If this is not the case then new writes need to be
2515 * held off until the compute completes.
2516 */
2517 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2518 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2519 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2520 schedule_reconstruction(sh, s, rcw == 0, 0);
2521 }
2522
2523 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2524 struct stripe_head *sh, struct stripe_head_state *s,
2525 struct r6_state *r6s, int disks)
2526 {
2527 int rcw = 0, pd_idx = sh->pd_idx, i;
2528 int qd_idx = sh->qd_idx;
2529
2530 set_bit(STRIPE_HANDLE, &sh->state);
2531 for (i = disks; i--; ) {
2532 struct r5dev *dev = &sh->dev[i];
2533 /* check if we haven't enough data */
2534 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2535 i != pd_idx && i != qd_idx &&
2536 !test_bit(R5_LOCKED, &dev->flags) &&
2537 !(test_bit(R5_UPTODATE, &dev->flags) ||
2538 test_bit(R5_Wantcompute, &dev->flags))) {
2539 rcw++;
2540 if (!test_bit(R5_Insync, &dev->flags))
2541 continue; /* it's a failed drive */
2542
2543 if (
2544 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2545 pr_debug("Read_old stripe %llu "
2546 "block %d for Reconstruct\n",
2547 (unsigned long long)sh->sector, i);
2548 set_bit(R5_LOCKED, &dev->flags);
2549 set_bit(R5_Wantread, &dev->flags);
2550 s->locked++;
2551 } else {
2552 pr_debug("Request delayed stripe %llu "
2553 "block %d for Reconstruct\n",
2554 (unsigned long long)sh->sector, i);
2555 set_bit(STRIPE_DELAYED, &sh->state);
2556 set_bit(STRIPE_HANDLE, &sh->state);
2557 }
2558 }
2559 }
2560 /* now if nothing is locked, and if we have enough data, we can start a
2561 * write request
2562 */
2563 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2564 s->locked == 0 && rcw == 0 &&
2565 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2566 schedule_reconstruction(sh, s, 1, 0);
2567 }
2568 }
2569
2570 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2571 struct stripe_head_state *s, int disks)
2572 {
2573 struct r5dev *dev = NULL;
2574
2575 set_bit(STRIPE_HANDLE, &sh->state);
2576
2577 switch (sh->check_state) {
2578 case check_state_idle:
2579 /* start a new check operation if there are no failures */
2580 if (s->failed == 0) {
2581 BUG_ON(s->uptodate != disks);
2582 sh->check_state = check_state_run;
2583 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2584 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2585 s->uptodate--;
2586 break;
2587 }
2588 dev = &sh->dev[s->failed_num];
2589 /* fall through */
2590 case check_state_compute_result:
2591 sh->check_state = check_state_idle;
2592 if (!dev)
2593 dev = &sh->dev[sh->pd_idx];
2594
2595 /* check that a write has not made the stripe insync */
2596 if (test_bit(STRIPE_INSYNC, &sh->state))
2597 break;
2598
2599 /* either failed parity check, or recovery is happening */
2600 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2601 BUG_ON(s->uptodate != disks);
2602
2603 set_bit(R5_LOCKED, &dev->flags);
2604 s->locked++;
2605 set_bit(R5_Wantwrite, &dev->flags);
2606
2607 clear_bit(STRIPE_DEGRADED, &sh->state);
2608 set_bit(STRIPE_INSYNC, &sh->state);
2609 break;
2610 case check_state_run:
2611 break; /* we will be called again upon completion */
2612 case check_state_check_result:
2613 sh->check_state = check_state_idle;
2614
2615 /* if a failure occurred during the check operation, leave
2616 * STRIPE_INSYNC not set and let the stripe be handled again
2617 */
2618 if (s->failed)
2619 break;
2620
2621 /* handle a successful check operation, if parity is correct
2622 * we are done. Otherwise update the mismatch count and repair
2623 * parity if !MD_RECOVERY_CHECK
2624 */
2625 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2626 /* parity is correct (on disc,
2627 * not in buffer any more)
2628 */
2629 set_bit(STRIPE_INSYNC, &sh->state);
2630 else {
2631 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2632 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2633 /* don't try to repair!! */
2634 set_bit(STRIPE_INSYNC, &sh->state);
2635 else {
2636 sh->check_state = check_state_compute_run;
2637 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2638 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2639 set_bit(R5_Wantcompute,
2640 &sh->dev[sh->pd_idx].flags);
2641 sh->ops.target = sh->pd_idx;
2642 sh->ops.target2 = -1;
2643 s->uptodate++;
2644 }
2645 }
2646 break;
2647 case check_state_compute_run:
2648 break;
2649 default:
2650 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2651 __func__, sh->check_state,
2652 (unsigned long long) sh->sector);
2653 BUG();
2654 }
2655 }
2656
2657
2658 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2659 struct stripe_head_state *s,
2660 struct r6_state *r6s, int disks)
2661 {
2662 int pd_idx = sh->pd_idx;
2663 int qd_idx = sh->qd_idx;
2664 struct r5dev *dev;
2665
2666 set_bit(STRIPE_HANDLE, &sh->state);
2667
2668 BUG_ON(s->failed > 2);
2669
2670 /* Want to check and possibly repair P and Q.
2671 * However there could be one 'failed' device, in which
2672 * case we can only check one of them, possibly using the
2673 * other to generate missing data
2674 */
2675
2676 switch (sh->check_state) {
2677 case check_state_idle:
2678 /* start a new check operation if there are < 2 failures */
2679 if (s->failed == r6s->q_failed) {
2680 /* The only possible failed device holds Q, so it
2681 * makes sense to check P (If anything else were failed,
2682 * we would have used P to recreate it).
2683 */
2684 sh->check_state = check_state_run;
2685 }
2686 if (!r6s->q_failed && s->failed < 2) {
2687 /* Q is not failed, and we didn't use it to generate
2688 * anything, so it makes sense to check it
2689 */
2690 if (sh->check_state == check_state_run)
2691 sh->check_state = check_state_run_pq;
2692 else
2693 sh->check_state = check_state_run_q;
2694 }
2695
2696 /* discard potentially stale zero_sum_result */
2697 sh->ops.zero_sum_result = 0;
2698
2699 if (sh->check_state == check_state_run) {
2700 /* async_xor_zero_sum destroys the contents of P */
2701 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2702 s->uptodate--;
2703 }
2704 if (sh->check_state >= check_state_run &&
2705 sh->check_state <= check_state_run_pq) {
2706 /* async_syndrome_zero_sum preserves P and Q, so
2707 * no need to mark them !uptodate here
2708 */
2709 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2710 break;
2711 }
2712
2713 /* we have 2-disk failure */
2714 BUG_ON(s->failed != 2);
2715 /* fall through */
2716 case check_state_compute_result:
2717 sh->check_state = check_state_idle;
2718
2719 /* check that a write has not made the stripe insync */
2720 if (test_bit(STRIPE_INSYNC, &sh->state))
2721 break;
2722
2723 /* now write out any block on a failed drive,
2724 * or P or Q if they were recomputed
2725 */
2726 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2727 if (s->failed == 2) {
2728 dev = &sh->dev[r6s->failed_num[1]];
2729 s->locked++;
2730 set_bit(R5_LOCKED, &dev->flags);
2731 set_bit(R5_Wantwrite, &dev->flags);
2732 }
2733 if (s->failed >= 1) {
2734 dev = &sh->dev[r6s->failed_num[0]];
2735 s->locked++;
2736 set_bit(R5_LOCKED, &dev->flags);
2737 set_bit(R5_Wantwrite, &dev->flags);
2738 }
2739 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2740 dev = &sh->dev[pd_idx];
2741 s->locked++;
2742 set_bit(R5_LOCKED, &dev->flags);
2743 set_bit(R5_Wantwrite, &dev->flags);
2744 }
2745 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2746 dev = &sh->dev[qd_idx];
2747 s->locked++;
2748 set_bit(R5_LOCKED, &dev->flags);
2749 set_bit(R5_Wantwrite, &dev->flags);
2750 }
2751 clear_bit(STRIPE_DEGRADED, &sh->state);
2752
2753 set_bit(STRIPE_INSYNC, &sh->state);
2754 break;
2755 case check_state_run:
2756 case check_state_run_q:
2757 case check_state_run_pq:
2758 break; /* we will be called again upon completion */
2759 case check_state_check_result:
2760 sh->check_state = check_state_idle;
2761
2762 /* handle a successful check operation, if parity is correct
2763 * we are done. Otherwise update the mismatch count and repair
2764 * parity if !MD_RECOVERY_CHECK
2765 */
2766 if (sh->ops.zero_sum_result == 0) {
2767 /* both parities are correct */
2768 if (!s->failed)
2769 set_bit(STRIPE_INSYNC, &sh->state);
2770 else {
2771 /* in contrast to the raid5 case we can validate
2772 * parity, but still have a failure to write
2773 * back
2774 */
2775 sh->check_state = check_state_compute_result;
2776 /* Returning at this point means that we may go
2777 * off and bring p and/or q uptodate again so
2778 * we make sure to check zero_sum_result again
2779 * to verify if p or q need writeback
2780 */
2781 }
2782 } else {
2783 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2784 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2785 /* don't try to repair!! */
2786 set_bit(STRIPE_INSYNC, &sh->state);
2787 else {
2788 int *target = &sh->ops.target;
2789
2790 sh->ops.target = -1;
2791 sh->ops.target2 = -1;
2792 sh->check_state = check_state_compute_run;
2793 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2794 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2795 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2796 set_bit(R5_Wantcompute,
2797 &sh->dev[pd_idx].flags);
2798 *target = pd_idx;
2799 target = &sh->ops.target2;
2800 s->uptodate++;
2801 }
2802 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2803 set_bit(R5_Wantcompute,
2804 &sh->dev[qd_idx].flags);
2805 *target = qd_idx;
2806 s->uptodate++;
2807 }
2808 }
2809 }
2810 break;
2811 case check_state_compute_run:
2812 break;
2813 default:
2814 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2815 __func__, sh->check_state,
2816 (unsigned long long) sh->sector);
2817 BUG();
2818 }
2819 }
2820
2821 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2822 struct r6_state *r6s)
2823 {
2824 int i;
2825
2826 /* We have read all the blocks in this stripe and now we need to
2827 * copy some of them into a target stripe for expand.
2828 */
2829 struct dma_async_tx_descriptor *tx = NULL;
2830 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2831 for (i = 0; i < sh->disks; i++)
2832 if (i != sh->pd_idx && i != sh->qd_idx) {
2833 int dd_idx, j;
2834 struct stripe_head *sh2;
2835 struct async_submit_ctl submit;
2836
2837 sector_t bn = compute_blocknr(sh, i, 1);
2838 sector_t s = raid5_compute_sector(conf, bn, 0,
2839 &dd_idx, NULL);
2840 sh2 = get_active_stripe(conf, s, 0, 1, 1);
2841 if (sh2 == NULL)
2842 /* so far only the early blocks of this stripe
2843 * have been requested. When later blocks
2844 * get requested, we will try again
2845 */
2846 continue;
2847 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2848 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2849 /* must have already done this block */
2850 release_stripe(sh2);
2851 continue;
2852 }
2853
2854 /* place all the copies on one channel */
2855 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2856 tx = async_memcpy(sh2->dev[dd_idx].page,
2857 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2858 &submit);
2859
2860 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2861 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2862 for (j = 0; j < conf->raid_disks; j++)
2863 if (j != sh2->pd_idx &&
2864 (!r6s || j != sh2->qd_idx) &&
2865 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2866 break;
2867 if (j == conf->raid_disks) {
2868 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2869 set_bit(STRIPE_HANDLE, &sh2->state);
2870 }
2871 release_stripe(sh2);
2872
2873 }
2874 /* done submitting copies, wait for them to complete */
2875 if (tx) {
2876 async_tx_ack(tx);
2877 dma_wait_for_async_tx(tx);
2878 }
2879 }
2880
2881
2882 /*
2883 * handle_stripe - do things to a stripe.
2884 *
2885 * We lock the stripe and then examine the state of various bits
2886 * to see what needs to be done.
2887 * Possible results:
2888 * return some read request which now have data
2889 * return some write requests which are safely on disc
2890 * schedule a read on some buffers
2891 * schedule a write of some buffers
2892 * return confirmation of parity correctness
2893 *
2894 * buffers are taken off read_list or write_list, and bh_cache buffers
2895 * get BH_Lock set before the stripe lock is released.
2896 *
2897 */
2898
2899 static bool handle_stripe5(struct stripe_head *sh)
2900 {
2901 raid5_conf_t *conf = sh->raid_conf;
2902 int disks = sh->disks, i;
2903 struct bio *return_bi = NULL;
2904 struct stripe_head_state s;
2905 struct r5dev *dev;
2906 mdk_rdev_t *blocked_rdev = NULL;
2907 int prexor;
2908
2909 memset(&s, 0, sizeof(s));
2910 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2911 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
2912 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
2913 sh->reconstruct_state);
2914
2915 spin_lock(&sh->lock);
2916 clear_bit(STRIPE_HANDLE, &sh->state);
2917 clear_bit(STRIPE_DELAYED, &sh->state);
2918
2919 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2920 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2921 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2922
2923 /* Now to look around and see what can be done */
2924 rcu_read_lock();
2925 for (i=disks; i--; ) {
2926 mdk_rdev_t *rdev;
2927
2928 dev = &sh->dev[i];
2929 clear_bit(R5_Insync, &dev->flags);
2930
2931 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2932 "written %p\n", i, dev->flags, dev->toread, dev->read,
2933 dev->towrite, dev->written);
2934
2935 /* maybe we can request a biofill operation
2936 *
2937 * new wantfill requests are only permitted while
2938 * ops_complete_biofill is guaranteed to be inactive
2939 */
2940 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2941 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2942 set_bit(R5_Wantfill, &dev->flags);
2943
2944 /* now count some things */
2945 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2946 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2947 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2948
2949 if (test_bit(R5_Wantfill, &dev->flags))
2950 s.to_fill++;
2951 else if (dev->toread)
2952 s.to_read++;
2953 if (dev->towrite) {
2954 s.to_write++;
2955 if (!test_bit(R5_OVERWRITE, &dev->flags))
2956 s.non_overwrite++;
2957 }
2958 if (dev->written)
2959 s.written++;
2960 rdev = rcu_dereference(conf->disks[i].rdev);
2961 if (blocked_rdev == NULL &&
2962 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
2963 blocked_rdev = rdev;
2964 atomic_inc(&rdev->nr_pending);
2965 }
2966 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2967 /* The ReadError flag will just be confusing now */
2968 clear_bit(R5_ReadError, &dev->flags);
2969 clear_bit(R5_ReWrite, &dev->flags);
2970 }
2971 if (!rdev || !test_bit(In_sync, &rdev->flags)
2972 || test_bit(R5_ReadError, &dev->flags)) {
2973 s.failed++;
2974 s.failed_num = i;
2975 } else
2976 set_bit(R5_Insync, &dev->flags);
2977 }
2978 rcu_read_unlock();
2979
2980 if (unlikely(blocked_rdev)) {
2981 if (s.syncing || s.expanding || s.expanded ||
2982 s.to_write || s.written) {
2983 set_bit(STRIPE_HANDLE, &sh->state);
2984 goto unlock;
2985 }
2986 /* There is nothing for the blocked_rdev to block */
2987 rdev_dec_pending(blocked_rdev, conf->mddev);
2988 blocked_rdev = NULL;
2989 }
2990
2991 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
2992 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
2993 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
2994 }
2995
2996 pr_debug("locked=%d uptodate=%d to_read=%d"
2997 " to_write=%d failed=%d failed_num=%d\n",
2998 s.locked, s.uptodate, s.to_read, s.to_write,
2999 s.failed, s.failed_num);
3000 /* check if the array has lost two devices and, if so, some requests might
3001 * need to be failed
3002 */
3003 if (s.failed > 1 && s.to_read+s.to_write+s.written)
3004 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3005 if (s.failed > 1 && s.syncing) {
3006 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3007 clear_bit(STRIPE_SYNCING, &sh->state);
3008 s.syncing = 0;
3009 }
3010
3011 /* might be able to return some write requests if the parity block
3012 * is safe, or on a failed drive
3013 */
3014 dev = &sh->dev[sh->pd_idx];
3015 if ( s.written &&
3016 ((test_bit(R5_Insync, &dev->flags) &&
3017 !test_bit(R5_LOCKED, &dev->flags) &&
3018 test_bit(R5_UPTODATE, &dev->flags)) ||
3019 (s.failed == 1 && s.failed_num == sh->pd_idx)))
3020 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3021
3022 /* Now we might consider reading some blocks, either to check/generate
3023 * parity, or to satisfy requests
3024 * or to load a block that is being partially written.
3025 */
3026 if (s.to_read || s.non_overwrite ||
3027 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3028 handle_stripe_fill5(sh, &s, disks);
3029
3030 /* Now we check to see if any write operations have recently
3031 * completed
3032 */
3033 prexor = 0;
3034 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3035 prexor = 1;
3036 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3037 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3038 sh->reconstruct_state = reconstruct_state_idle;
3039
3040 /* All the 'written' buffers and the parity block are ready to
3041 * be written back to disk
3042 */
3043 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3044 for (i = disks; i--; ) {
3045 dev = &sh->dev[i];
3046 if (test_bit(R5_LOCKED, &dev->flags) &&
3047 (i == sh->pd_idx || dev->written)) {
3048 pr_debug("Writing block %d\n", i);
3049 set_bit(R5_Wantwrite, &dev->flags);
3050 if (prexor)
3051 continue;
3052 if (!test_bit(R5_Insync, &dev->flags) ||
3053 (i == sh->pd_idx && s.failed == 0))
3054 set_bit(STRIPE_INSYNC, &sh->state);
3055 }
3056 }
3057 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
3058 atomic_dec(&conf->preread_active_stripes);
3059 if (atomic_read(&conf->preread_active_stripes) <
3060 IO_THRESHOLD)
3061 md_wakeup_thread(conf->mddev->thread);
3062 }
3063 }
3064
3065 /* Now to consider new write requests and what else, if anything
3066 * should be read. We do not handle new writes when:
3067 * 1/ A 'write' operation (copy+xor) is already in flight.
3068 * 2/ A 'check' operation is in flight, as it may clobber the parity
3069 * block.
3070 */
3071 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3072 handle_stripe_dirtying5(conf, sh, &s, disks);
3073
3074 /* maybe we need to check and possibly fix the parity for this stripe
3075 * Any reads will already have been scheduled, so we just see if enough
3076 * data is available. The parity check is held off while parity
3077 * dependent operations are in flight.
3078 */
3079 if (sh->check_state ||
3080 (s.syncing && s.locked == 0 &&
3081 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3082 !test_bit(STRIPE_INSYNC, &sh->state)))
3083 handle_parity_checks5(conf, sh, &s, disks);
3084
3085 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3086 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3087 clear_bit(STRIPE_SYNCING, &sh->state);
3088 }
3089
3090 /* If the failed drive is just a ReadError, then we might need to progress
3091 * the repair/check process
3092 */
3093 if (s.failed == 1 && !conf->mddev->ro &&
3094 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
3095 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
3096 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
3097 ) {
3098 dev = &sh->dev[s.failed_num];
3099 if (!test_bit(R5_ReWrite, &dev->flags)) {
3100 set_bit(R5_Wantwrite, &dev->flags);
3101 set_bit(R5_ReWrite, &dev->flags);
3102 set_bit(R5_LOCKED, &dev->flags);
3103 s.locked++;
3104 } else {
3105 /* let's read it back */
3106 set_bit(R5_Wantread, &dev->flags);
3107 set_bit(R5_LOCKED, &dev->flags);
3108 s.locked++;
3109 }
3110 }
3111
3112 /* Finish reconstruct operations initiated by the expansion process */
3113 if (sh->reconstruct_state == reconstruct_state_result) {
3114 struct stripe_head *sh2
3115 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3116 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3117 /* sh cannot be written until sh2 has been read.
3118 * so arrange for sh to be delayed a little
3119 */
3120 set_bit(STRIPE_DELAYED, &sh->state);
3121 set_bit(STRIPE_HANDLE, &sh->state);
3122 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3123 &sh2->state))
3124 atomic_inc(&conf->preread_active_stripes);
3125 release_stripe(sh2);
3126 goto unlock;
3127 }
3128 if (sh2)
3129 release_stripe(sh2);
3130
3131 sh->reconstruct_state = reconstruct_state_idle;
3132 clear_bit(STRIPE_EXPANDING, &sh->state);
3133 for (i = conf->raid_disks; i--; ) {
3134 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3135 set_bit(R5_LOCKED, &sh->dev[i].flags);
3136 s.locked++;
3137 }
3138 }
3139
3140 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3141 !sh->reconstruct_state) {
3142 /* Need to write out all blocks after computing parity */
3143 sh->disks = conf->raid_disks;
3144 stripe_set_idx(sh->sector, conf, 0, sh);
3145 schedule_reconstruction(sh, &s, 1, 1);
3146 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3147 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3148 atomic_dec(&conf->reshape_stripes);
3149 wake_up(&conf->wait_for_overlap);
3150 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3151 }
3152
3153 if (s.expanding && s.locked == 0 &&
3154 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3155 handle_stripe_expansion(conf, sh, NULL);
3156
3157 unlock:
3158 spin_unlock(&sh->lock);
3159
3160 /* wait for this device to become unblocked */
3161 if (unlikely(blocked_rdev))
3162 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3163
3164 if (s.ops_request)
3165 raid_run_ops(sh, s.ops_request);
3166
3167 ops_run_io(sh, &s);
3168
3169 return_io(return_bi);
3170
3171 return blocked_rdev == NULL;
3172 }
3173
3174 static bool handle_stripe6(struct stripe_head *sh)
3175 {
3176 raid5_conf_t *conf = sh->raid_conf;
3177 int disks = sh->disks;
3178 struct bio *return_bi = NULL;
3179 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3180 struct stripe_head_state s;
3181 struct r6_state r6s;
3182 struct r5dev *dev, *pdev, *qdev;
3183 mdk_rdev_t *blocked_rdev = NULL;
3184
3185 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3186 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3187 (unsigned long long)sh->sector, sh->state,
3188 atomic_read(&sh->count), pd_idx, qd_idx,
3189 sh->check_state, sh->reconstruct_state);
3190 memset(&s, 0, sizeof(s));
3191
3192 spin_lock(&sh->lock);
3193 clear_bit(STRIPE_HANDLE, &sh->state);
3194 clear_bit(STRIPE_DELAYED, &sh->state);
3195
3196 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3197 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3198 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3199 /* Now to look around and see what can be done */
3200
3201 rcu_read_lock();
3202 for (i=disks; i--; ) {
3203 mdk_rdev_t *rdev;
3204 dev = &sh->dev[i];
3205 clear_bit(R5_Insync, &dev->flags);
3206
3207 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3208 i, dev->flags, dev->toread, dev->towrite, dev->written);
3209 /* maybe we can reply to a read
3210 *
3211 * new wantfill requests are only permitted while
3212 * ops_complete_biofill is guaranteed to be inactive
3213 */
3214 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3215 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3216 set_bit(R5_Wantfill, &dev->flags);
3217
3218 /* now count some things */
3219 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3220 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3221 if (test_bit(R5_Wantcompute, &dev->flags)) {
3222 s.compute++;
3223 BUG_ON(s.compute > 2);
3224 }
3225
3226 if (test_bit(R5_Wantfill, &dev->flags)) {
3227 s.to_fill++;
3228 } else if (dev->toread)
3229 s.to_read++;
3230 if (dev->towrite) {
3231 s.to_write++;
3232 if (!test_bit(R5_OVERWRITE, &dev->flags))
3233 s.non_overwrite++;
3234 }
3235 if (dev->written)
3236 s.written++;
3237 rdev = rcu_dereference(conf->disks[i].rdev);
3238 if (blocked_rdev == NULL &&
3239 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3240 blocked_rdev = rdev;
3241 atomic_inc(&rdev->nr_pending);
3242 }
3243 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3244 /* The ReadError flag will just be confusing now */
3245 clear_bit(R5_ReadError, &dev->flags);
3246 clear_bit(R5_ReWrite, &dev->flags);
3247 }
3248 if (!rdev || !test_bit(In_sync, &rdev->flags)
3249 || test_bit(R5_ReadError, &dev->flags)) {
3250 if (s.failed < 2)
3251 r6s.failed_num[s.failed] = i;
3252 s.failed++;
3253 } else
3254 set_bit(R5_Insync, &dev->flags);
3255 }
3256 rcu_read_unlock();
3257
3258 if (unlikely(blocked_rdev)) {
3259 if (s.syncing || s.expanding || s.expanded ||
3260 s.to_write || s.written) {
3261 set_bit(STRIPE_HANDLE, &sh->state);
3262 goto unlock;
3263 }
3264 /* There is nothing for the blocked_rdev to block */
3265 rdev_dec_pending(blocked_rdev, conf->mddev);
3266 blocked_rdev = NULL;
3267 }
3268
3269 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3270 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3271 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3272 }
3273
3274 pr_debug("locked=%d uptodate=%d to_read=%d"
3275 " to_write=%d failed=%d failed_num=%d,%d\n",
3276 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3277 r6s.failed_num[0], r6s.failed_num[1]);
3278 /* check if the array has lost >2 devices and, if so, some requests
3279 * might need to be failed
3280 */
3281 if (s.failed > 2 && s.to_read+s.to_write+s.written)
3282 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3283 if (s.failed > 2 && s.syncing) {
3284 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3285 clear_bit(STRIPE_SYNCING, &sh->state);
3286 s.syncing = 0;
3287 }
3288
3289 /*
3290 * might be able to return some write requests if the parity blocks
3291 * are safe, or on a failed drive
3292 */
3293 pdev = &sh->dev[pd_idx];
3294 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3295 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3296 qdev = &sh->dev[qd_idx];
3297 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3298 || (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3299
3300 if ( s.written &&
3301 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3302 && !test_bit(R5_LOCKED, &pdev->flags)
3303 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3304 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3305 && !test_bit(R5_LOCKED, &qdev->flags)
3306 && test_bit(R5_UPTODATE, &qdev->flags)))))
3307 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3308
3309 /* Now we might consider reading some blocks, either to check/generate
3310 * parity, or to satisfy requests
3311 * or to load a block that is being partially written.
3312 */
3313 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3314 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3315 handle_stripe_fill6(sh, &s, &r6s, disks);
3316
3317 /* Now we check to see if any write operations have recently
3318 * completed
3319 */
3320 if (sh->reconstruct_state == reconstruct_state_drain_result) {
3321 int qd_idx = sh->qd_idx;
3322
3323 sh->reconstruct_state = reconstruct_state_idle;
3324 /* All the 'written' buffers and the parity blocks are ready to
3325 * be written back to disk
3326 */
3327 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3328 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
3329 for (i = disks; i--; ) {
3330 dev = &sh->dev[i];
3331 if (test_bit(R5_LOCKED, &dev->flags) &&
3332 (i == sh->pd_idx || i == qd_idx ||
3333 dev->written)) {
3334 pr_debug("Writing block %d\n", i);
3335 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3336 set_bit(R5_Wantwrite, &dev->flags);
3337 if (!test_bit(R5_Insync, &dev->flags) ||
3338 ((i == sh->pd_idx || i == qd_idx) &&
3339 s.failed == 0))
3340 set_bit(STRIPE_INSYNC, &sh->state);
3341 }
3342 }
3343 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
3344 atomic_dec(&conf->preread_active_stripes);
3345 if (atomic_read(&conf->preread_active_stripes) <
3346 IO_THRESHOLD)
3347 md_wakeup_thread(conf->mddev->thread);
3348 }
3349 }
3350
3351 /* Now to consider new write requests and what else, if anything
3352 * should be read. We do not handle new writes when:
3353 * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
3354 * 2/ A 'check' operation is in flight, as it may clobber the parity
3355 * block.
3356 */
3357 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3358 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3359
3360 /* maybe we need to check and possibly fix the parity for this stripe
3361 * Any reads will already have been scheduled, so we just see if enough
3362 * data is available. The parity check is held off while parity
3363 * dependent operations are in flight.
3364 */
3365 if (sh->check_state ||
3366 (s.syncing && s.locked == 0 &&
3367 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3368 !test_bit(STRIPE_INSYNC, &sh->state)))
3369 handle_parity_checks6(conf, sh, &s, &r6s, disks);
3370
3371 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3372 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3373 clear_bit(STRIPE_SYNCING, &sh->state);
3374 }
3375
3376 /* If the failed drives are just a ReadError, then we might need
3377 * to progress the repair/check process
3378 */
3379 if (s.failed <= 2 && !conf->mddev->ro)
3380 for (i = 0; i < s.failed; i++) {
3381 dev = &sh->dev[r6s.failed_num[i]];
3382 if (test_bit(R5_ReadError, &dev->flags)
3383 && !test_bit(R5_LOCKED, &dev->flags)
3384 && test_bit(R5_UPTODATE, &dev->flags)
3385 ) {
3386 if (!test_bit(R5_ReWrite, &dev->flags)) {
3387 set_bit(R5_Wantwrite, &dev->flags);
3388 set_bit(R5_ReWrite, &dev->flags);
3389 set_bit(R5_LOCKED, &dev->flags);
3390 s.locked++;
3391 } else {
3392 /* let's read it back */
3393 set_bit(R5_Wantread, &dev->flags);
3394 set_bit(R5_LOCKED, &dev->flags);
3395 s.locked++;
3396 }
3397 }
3398 }
3399
3400 /* Finish reconstruct operations initiated by the expansion process */
3401 if (sh->reconstruct_state == reconstruct_state_result) {
3402 sh->reconstruct_state = reconstruct_state_idle;
3403 clear_bit(STRIPE_EXPANDING, &sh->state);
3404 for (i = conf->raid_disks; i--; ) {
3405 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3406 set_bit(R5_LOCKED, &sh->dev[i].flags);
3407 s.locked++;
3408 }
3409 }
3410
3411 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3412 !sh->reconstruct_state) {
3413 struct stripe_head *sh2
3414 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3415 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3416 /* sh cannot be written until sh2 has been read.
3417 * so arrange for sh to be delayed a little
3418 */
3419 set_bit(STRIPE_DELAYED, &sh->state);
3420 set_bit(STRIPE_HANDLE, &sh->state);
3421 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3422 &sh2->state))
3423 atomic_inc(&conf->preread_active_stripes);
3424 release_stripe(sh2);
3425 goto unlock;
3426 }
3427 if (sh2)
3428 release_stripe(sh2);
3429
3430 /* Need to write out all blocks after computing P&Q */
3431 sh->disks = conf->raid_disks;
3432 stripe_set_idx(sh->sector, conf, 0, sh);
3433 schedule_reconstruction(sh, &s, 1, 1);
3434 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3435 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3436 atomic_dec(&conf->reshape_stripes);
3437 wake_up(&conf->wait_for_overlap);
3438 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3439 }
3440
3441 if (s.expanding && s.locked == 0 &&
3442 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3443 handle_stripe_expansion(conf, sh, &r6s);
3444
3445 unlock:
3446 spin_unlock(&sh->lock);
3447
3448 /* wait for this device to become unblocked */
3449 if (unlikely(blocked_rdev))
3450 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3451
3452 if (s.ops_request)
3453 raid_run_ops(sh, s.ops_request);
3454
3455 ops_run_io(sh, &s);
3456
3457 return_io(return_bi);
3458
3459 return blocked_rdev == NULL;
3460 }
3461
3462 /* returns true if the stripe was handled */
3463 static bool handle_stripe(struct stripe_head *sh)
3464 {
3465 if (sh->raid_conf->level == 6)
3466 return handle_stripe6(sh);
3467 else
3468 return handle_stripe5(sh);
3469 }
3470
3471 static void raid5_activate_delayed(raid5_conf_t *conf)
3472 {
3473 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3474 while (!list_empty(&conf->delayed_list)) {
3475 struct list_head *l = conf->delayed_list.next;
3476 struct stripe_head *sh;
3477 sh = list_entry(l, struct stripe_head, lru);
3478 list_del_init(l);
3479 clear_bit(STRIPE_DELAYED, &sh->state);
3480 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3481 atomic_inc(&conf->preread_active_stripes);
3482 list_add_tail(&sh->lru, &conf->hold_list);
3483 }
3484 } else
3485 blk_plug_device(conf->mddev->queue);
3486 }
3487
3488 static void activate_bit_delay(raid5_conf_t *conf)
3489 {
3490 /* device_lock is held */
3491 struct list_head head;
3492 list_add(&head, &conf->bitmap_list);
3493 list_del_init(&conf->bitmap_list);
3494 while (!list_empty(&head)) {
3495 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3496 list_del_init(&sh->lru);
3497 atomic_inc(&sh->count);
3498 __release_stripe(conf, sh);
3499 }
3500 }
3501
3502 static void unplug_slaves(mddev_t *mddev)
3503 {
3504 raid5_conf_t *conf = mddev->private;
3505 int i;
3506
3507 rcu_read_lock();
3508 for (i = 0; i < conf->raid_disks; i++) {
3509 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3510 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3511 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3512
3513 atomic_inc(&rdev->nr_pending);
3514 rcu_read_unlock();
3515
3516 blk_unplug(r_queue);
3517
3518 rdev_dec_pending(rdev, mddev);
3519 rcu_read_lock();
3520 }
3521 }
3522 rcu_read_unlock();
3523 }
3524
3525 static void raid5_unplug_device(struct request_queue *q)
3526 {
3527 mddev_t *mddev = q->queuedata;
3528 raid5_conf_t *conf = mddev->private;
3529 unsigned long flags;
3530
3531 spin_lock_irqsave(&conf->device_lock, flags);
3532
3533 if (blk_remove_plug(q)) {
3534 conf->seq_flush++;
3535 raid5_activate_delayed(conf);
3536 }
3537 md_wakeup_thread(mddev->thread);
3538
3539 spin_unlock_irqrestore(&conf->device_lock, flags);
3540
3541 unplug_slaves(mddev);
3542 }
3543
3544 static int raid5_congested(void *data, int bits)
3545 {
3546 mddev_t *mddev = data;
3547 raid5_conf_t *conf = mddev->private;
3548
3549 /* No difference between reads and writes. Just check
3550 * how busy the stripe_cache is
3551 */
3552
3553 if (mddev_congested(mddev, bits))
3554 return 1;
3555 if (conf->inactive_blocked)
3556 return 1;
3557 if (conf->quiesce)
3558 return 1;
3559 if (list_empty_careful(&conf->inactive_list))
3560 return 1;
3561
3562 return 0;
3563 }
3564
3565 /* We want read requests to align with chunks where possible,
3566 * but write requests don't need to.
3567 */
3568 static int raid5_mergeable_bvec(struct request_queue *q,
3569 struct bvec_merge_data *bvm,
3570 struct bio_vec *biovec)
3571 {
3572 mddev_t *mddev = q->queuedata;
3573 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3574 int max;
3575 unsigned int chunk_sectors = mddev->chunk_sectors;
3576 unsigned int bio_sectors = bvm->bi_size >> 9;
3577
3578 if ((bvm->bi_rw & 1) == WRITE)
3579 return biovec->bv_len; /* always allow writes to be mergeable */
3580
3581 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3582 chunk_sectors = mddev->new_chunk_sectors;
3583 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3584 if (max < 0) max = 0;
3585 if (max <= biovec->bv_len && bio_sectors == 0)
3586 return biovec->bv_len;
3587 else
3588 return max;
3589 }
3590
3591
3592 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3593 {
3594 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3595 unsigned int chunk_sectors = mddev->chunk_sectors;
3596 unsigned int bio_sectors = bio->bi_size >> 9;
3597
3598 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3599 chunk_sectors = mddev->new_chunk_sectors;
3600 return chunk_sectors >=
3601 ((sector & (chunk_sectors - 1)) + bio_sectors);
3602 }
3603
3604 /*
3605 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3606 * later sampled by raid5d.
3607 */
3608 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3609 {
3610 unsigned long flags;
3611
3612 spin_lock_irqsave(&conf->device_lock, flags);
3613
3614 bi->bi_next = conf->retry_read_aligned_list;
3615 conf->retry_read_aligned_list = bi;
3616
3617 spin_unlock_irqrestore(&conf->device_lock, flags);
3618 md_wakeup_thread(conf->mddev->thread);
3619 }
3620
3621
3622 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3623 {
3624 struct bio *bi;
3625
3626 bi = conf->retry_read_aligned;
3627 if (bi) {
3628 conf->retry_read_aligned = NULL;
3629 return bi;
3630 }
3631 bi = conf->retry_read_aligned_list;
3632 if(bi) {
3633 conf->retry_read_aligned_list = bi->bi_next;
3634 bi->bi_next = NULL;
3635 /*
3636 * this sets the active strip count to 1 and the processed
3637 * strip count to zero (upper 8 bits)
3638 */
3639 bi->bi_phys_segments = 1; /* biased count of active stripes */
3640 }
3641
3642 return bi;
3643 }
3644
3645
3646 /*
3647 * The "raid5_align_endio" should check if the read succeeded and if it
3648 * did, call bio_endio on the original bio (having bio_put the new bio
3649 * first).
3650 * If the read failed..
3651 */
3652 static void raid5_align_endio(struct bio *bi, int error)
3653 {
3654 struct bio* raid_bi = bi->bi_private;
3655 mddev_t *mddev;
3656 raid5_conf_t *conf;
3657 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3658 mdk_rdev_t *rdev;
3659
3660 bio_put(bi);
3661
3662 mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3663 conf = mddev->private;
3664 rdev = (void*)raid_bi->bi_next;
3665 raid_bi->bi_next = NULL;
3666
3667 rdev_dec_pending(rdev, conf->mddev);
3668
3669 if (!error && uptodate) {
3670 bio_endio(raid_bi, 0);
3671 if (atomic_dec_and_test(&conf->active_aligned_reads))
3672 wake_up(&conf->wait_for_stripe);
3673 return;
3674 }
3675
3676
3677 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3678
3679 add_bio_to_retry(raid_bi, conf);
3680 }
3681
3682 static int bio_fits_rdev(struct bio *bi)
3683 {
3684 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3685
3686 if ((bi->bi_size>>9) > queue_max_sectors(q))
3687 return 0;
3688 blk_recount_segments(q, bi);
3689 if (bi->bi_phys_segments > queue_max_phys_segments(q))
3690 return 0;
3691
3692 if (q->merge_bvec_fn)
3693 /* it's too hard to apply the merge_bvec_fn at this stage,
3694 * just just give up
3695 */
3696 return 0;
3697
3698 return 1;
3699 }
3700
3701
3702 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3703 {
3704 mddev_t *mddev = q->queuedata;
3705 raid5_conf_t *conf = mddev->private;
3706 unsigned int dd_idx;
3707 struct bio* align_bi;
3708 mdk_rdev_t *rdev;
3709
3710 if (!in_chunk_boundary(mddev, raid_bio)) {
3711 pr_debug("chunk_aligned_read : non aligned\n");
3712 return 0;
3713 }
3714 /*
3715 * use bio_clone to make a copy of the bio
3716 */
3717 align_bi = bio_clone(raid_bio, GFP_NOIO);
3718 if (!align_bi)
3719 return 0;
3720 /*
3721 * set bi_end_io to a new function, and set bi_private to the
3722 * original bio.
3723 */
3724 align_bi->bi_end_io = raid5_align_endio;
3725 align_bi->bi_private = raid_bio;
3726 /*
3727 * compute position
3728 */
3729 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3730 0,
3731 &dd_idx, NULL);
3732
3733 rcu_read_lock();
3734 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3735 if (rdev && test_bit(In_sync, &rdev->flags)) {
3736 atomic_inc(&rdev->nr_pending);
3737 rcu_read_unlock();
3738 raid_bio->bi_next = (void*)rdev;
3739 align_bi->bi_bdev = rdev->bdev;
3740 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3741 align_bi->bi_sector += rdev->data_offset;
3742
3743 if (!bio_fits_rdev(align_bi)) {
3744 /* too big in some way */
3745 bio_put(align_bi);
3746 rdev_dec_pending(rdev, mddev);
3747 return 0;
3748 }
3749
3750 spin_lock_irq(&conf->device_lock);
3751 wait_event_lock_irq(conf->wait_for_stripe,
3752 conf->quiesce == 0,
3753 conf->device_lock, /* nothing */);
3754 atomic_inc(&conf->active_aligned_reads);
3755 spin_unlock_irq(&conf->device_lock);
3756
3757 generic_make_request(align_bi);
3758 return 1;
3759 } else {
3760 rcu_read_unlock();
3761 bio_put(align_bi);
3762 return 0;
3763 }
3764 }
3765
3766 /* __get_priority_stripe - get the next stripe to process
3767 *
3768 * Full stripe writes are allowed to pass preread active stripes up until
3769 * the bypass_threshold is exceeded. In general the bypass_count
3770 * increments when the handle_list is handled before the hold_list; however, it
3771 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3772 * stripe with in flight i/o. The bypass_count will be reset when the
3773 * head of the hold_list has changed, i.e. the head was promoted to the
3774 * handle_list.
3775 */
3776 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3777 {
3778 struct stripe_head *sh;
3779
3780 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3781 __func__,
3782 list_empty(&conf->handle_list) ? "empty" : "busy",
3783 list_empty(&conf->hold_list) ? "empty" : "busy",
3784 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3785
3786 if (!list_empty(&conf->handle_list)) {
3787 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3788
3789 if (list_empty(&conf->hold_list))
3790 conf->bypass_count = 0;
3791 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3792 if (conf->hold_list.next == conf->last_hold)
3793 conf->bypass_count++;
3794 else {
3795 conf->last_hold = conf->hold_list.next;
3796 conf->bypass_count -= conf->bypass_threshold;
3797 if (conf->bypass_count < 0)
3798 conf->bypass_count = 0;
3799 }
3800 }
3801 } else if (!list_empty(&conf->hold_list) &&
3802 ((conf->bypass_threshold &&
3803 conf->bypass_count > conf->bypass_threshold) ||
3804 atomic_read(&conf->pending_full_writes) == 0)) {
3805 sh = list_entry(conf->hold_list.next,
3806 typeof(*sh), lru);
3807 conf->bypass_count -= conf->bypass_threshold;
3808 if (conf->bypass_count < 0)
3809 conf->bypass_count = 0;
3810 } else
3811 return NULL;
3812
3813 list_del_init(&sh->lru);
3814 atomic_inc(&sh->count);
3815 BUG_ON(atomic_read(&sh->count) != 1);
3816 return sh;
3817 }
3818
3819 static int make_request(struct request_queue *q, struct bio * bi)
3820 {
3821 mddev_t *mddev = q->queuedata;
3822 raid5_conf_t *conf = mddev->private;
3823 int dd_idx;
3824 sector_t new_sector;
3825 sector_t logical_sector, last_sector;
3826 struct stripe_head *sh;
3827 const int rw = bio_data_dir(bi);
3828 int cpu, remaining;
3829
3830 if (unlikely(bio_rw_flagged(bi, BIO_RW_BARRIER))) {
3831 bio_endio(bi, -EOPNOTSUPP);
3832 return 0;
3833 }
3834
3835 md_write_start(mddev, bi);
3836
3837 cpu = part_stat_lock();
3838 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
3839 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
3840 bio_sectors(bi));
3841 part_stat_unlock();
3842
3843 if (rw == READ &&
3844 mddev->reshape_position == MaxSector &&
3845 chunk_aligned_read(q,bi))
3846 return 0;
3847
3848 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3849 last_sector = bi->bi_sector + (bi->bi_size>>9);
3850 bi->bi_next = NULL;
3851 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
3852
3853 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3854 DEFINE_WAIT(w);
3855 int disks, data_disks;
3856 int previous;
3857
3858 retry:
3859 previous = 0;
3860 disks = conf->raid_disks;
3861 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3862 if (unlikely(conf->reshape_progress != MaxSector)) {
3863 /* spinlock is needed as reshape_progress may be
3864 * 64bit on a 32bit platform, and so it might be
3865 * possible to see a half-updated value
3866 * Ofcourse reshape_progress could change after
3867 * the lock is dropped, so once we get a reference
3868 * to the stripe that we think it is, we will have
3869 * to check again.
3870 */
3871 spin_lock_irq(&conf->device_lock);
3872 if (mddev->delta_disks < 0
3873 ? logical_sector < conf->reshape_progress
3874 : logical_sector >= conf->reshape_progress) {
3875 disks = conf->previous_raid_disks;
3876 previous = 1;
3877 } else {
3878 if (mddev->delta_disks < 0
3879 ? logical_sector < conf->reshape_safe
3880 : logical_sector >= conf->reshape_safe) {
3881 spin_unlock_irq(&conf->device_lock);
3882 schedule();
3883 goto retry;
3884 }
3885 }
3886 spin_unlock_irq(&conf->device_lock);
3887 }
3888 data_disks = disks - conf->max_degraded;
3889
3890 new_sector = raid5_compute_sector(conf, logical_sector,
3891 previous,
3892 &dd_idx, NULL);
3893 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3894 (unsigned long long)new_sector,
3895 (unsigned long long)logical_sector);
3896
3897 sh = get_active_stripe(conf, new_sector, previous,
3898 (bi->bi_rw&RWA_MASK), 0);
3899 if (sh) {
3900 if (unlikely(previous)) {
3901 /* expansion might have moved on while waiting for a
3902 * stripe, so we must do the range check again.
3903 * Expansion could still move past after this
3904 * test, but as we are holding a reference to
3905 * 'sh', we know that if that happens,
3906 * STRIPE_EXPANDING will get set and the expansion
3907 * won't proceed until we finish with the stripe.
3908 */
3909 int must_retry = 0;
3910 spin_lock_irq(&conf->device_lock);
3911 if (mddev->delta_disks < 0
3912 ? logical_sector >= conf->reshape_progress
3913 : logical_sector < conf->reshape_progress)
3914 /* mismatch, need to try again */
3915 must_retry = 1;
3916 spin_unlock_irq(&conf->device_lock);
3917 if (must_retry) {
3918 release_stripe(sh);
3919 schedule();
3920 goto retry;
3921 }
3922 }
3923
3924 if (bio_data_dir(bi) == WRITE &&
3925 logical_sector >= mddev->suspend_lo &&
3926 logical_sector < mddev->suspend_hi) {
3927 release_stripe(sh);
3928 /* As the suspend_* range is controlled by
3929 * userspace, we want an interruptible
3930 * wait.
3931 */
3932 flush_signals(current);
3933 prepare_to_wait(&conf->wait_for_overlap,
3934 &w, TASK_INTERRUPTIBLE);
3935 if (logical_sector >= mddev->suspend_lo &&
3936 logical_sector < mddev->suspend_hi)
3937 schedule();
3938 goto retry;
3939 }
3940
3941 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3942 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3943 /* Stripe is busy expanding or
3944 * add failed due to overlap. Flush everything
3945 * and wait a while
3946 */
3947 raid5_unplug_device(mddev->queue);
3948 release_stripe(sh);
3949 schedule();
3950 goto retry;
3951 }
3952 finish_wait(&conf->wait_for_overlap, &w);
3953 set_bit(STRIPE_HANDLE, &sh->state);
3954 clear_bit(STRIPE_DELAYED, &sh->state);
3955 release_stripe(sh);
3956 } else {
3957 /* cannot get stripe for read-ahead, just give-up */
3958 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3959 finish_wait(&conf->wait_for_overlap, &w);
3960 break;
3961 }
3962
3963 }
3964 spin_lock_irq(&conf->device_lock);
3965 remaining = raid5_dec_bi_phys_segments(bi);
3966 spin_unlock_irq(&conf->device_lock);
3967 if (remaining == 0) {
3968
3969 if ( rw == WRITE )
3970 md_write_end(mddev);
3971
3972 bio_endio(bi, 0);
3973 }
3974 return 0;
3975 }
3976
3977 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
3978
3979 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3980 {
3981 /* reshaping is quite different to recovery/resync so it is
3982 * handled quite separately ... here.
3983 *
3984 * On each call to sync_request, we gather one chunk worth of
3985 * destination stripes and flag them as expanding.
3986 * Then we find all the source stripes and request reads.
3987 * As the reads complete, handle_stripe will copy the data
3988 * into the destination stripe and release that stripe.
3989 */
3990 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3991 struct stripe_head *sh;
3992 sector_t first_sector, last_sector;
3993 int raid_disks = conf->previous_raid_disks;
3994 int data_disks = raid_disks - conf->max_degraded;
3995 int new_data_disks = conf->raid_disks - conf->max_degraded;
3996 int i;
3997 int dd_idx;
3998 sector_t writepos, readpos, safepos;
3999 sector_t stripe_addr;
4000 int reshape_sectors;
4001 struct list_head stripes;
4002
4003 if (sector_nr == 0) {
4004 /* If restarting in the middle, skip the initial sectors */
4005 if (mddev->delta_disks < 0 &&
4006 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4007 sector_nr = raid5_size(mddev, 0, 0)
4008 - conf->reshape_progress;
4009 } else if (mddev->delta_disks >= 0 &&
4010 conf->reshape_progress > 0)
4011 sector_nr = conf->reshape_progress;
4012 sector_div(sector_nr, new_data_disks);
4013 if (sector_nr) {
4014 *skipped = 1;
4015 return sector_nr;
4016 }
4017 }
4018
4019 /* We need to process a full chunk at a time.
4020 * If old and new chunk sizes differ, we need to process the
4021 * largest of these
4022 */
4023 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4024 reshape_sectors = mddev->new_chunk_sectors;
4025 else
4026 reshape_sectors = mddev->chunk_sectors;
4027
4028 /* we update the metadata when there is more than 3Meg
4029 * in the block range (that is rather arbitrary, should
4030 * probably be time based) or when the data about to be
4031 * copied would over-write the source of the data at
4032 * the front of the range.
4033 * i.e. one new_stripe along from reshape_progress new_maps
4034 * to after where reshape_safe old_maps to
4035 */
4036 writepos = conf->reshape_progress;
4037 sector_div(writepos, new_data_disks);
4038 readpos = conf->reshape_progress;
4039 sector_div(readpos, data_disks);
4040 safepos = conf->reshape_safe;
4041 sector_div(safepos, data_disks);
4042 if (mddev->delta_disks < 0) {
4043 writepos -= min_t(sector_t, reshape_sectors, writepos);
4044 readpos += reshape_sectors;
4045 safepos += reshape_sectors;
4046 } else {
4047 writepos += reshape_sectors;
4048 readpos -= min_t(sector_t, reshape_sectors, readpos);
4049 safepos -= min_t(sector_t, reshape_sectors, safepos);
4050 }
4051
4052 /* 'writepos' is the most advanced device address we might write.
4053 * 'readpos' is the least advanced device address we might read.
4054 * 'safepos' is the least address recorded in the metadata as having
4055 * been reshaped.
4056 * If 'readpos' is behind 'writepos', then there is no way that we can
4057 * ensure safety in the face of a crash - that must be done by userspace
4058 * making a backup of the data. So in that case there is no particular
4059 * rush to update metadata.
4060 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4061 * update the metadata to advance 'safepos' to match 'readpos' so that
4062 * we can be safe in the event of a crash.
4063 * So we insist on updating metadata if safepos is behind writepos and
4064 * readpos is beyond writepos.
4065 * In any case, update the metadata every 10 seconds.
4066 * Maybe that number should be configurable, but I'm not sure it is
4067 * worth it.... maybe it could be a multiple of safemode_delay???
4068 */
4069 if ((mddev->delta_disks < 0
4070 ? (safepos > writepos && readpos < writepos)
4071 : (safepos < writepos && readpos > writepos)) ||
4072 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4073 /* Cannot proceed until we've updated the superblock... */
4074 wait_event(conf->wait_for_overlap,
4075 atomic_read(&conf->reshape_stripes)==0);
4076 mddev->reshape_position = conf->reshape_progress;
4077 mddev->curr_resync_completed = mddev->curr_resync;
4078 conf->reshape_checkpoint = jiffies;
4079 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4080 md_wakeup_thread(mddev->thread);
4081 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4082 kthread_should_stop());
4083 spin_lock_irq(&conf->device_lock);
4084 conf->reshape_safe = mddev->reshape_position;
4085 spin_unlock_irq(&conf->device_lock);
4086 wake_up(&conf->wait_for_overlap);
4087 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4088 }
4089
4090 if (mddev->delta_disks < 0) {
4091 BUG_ON(conf->reshape_progress == 0);
4092 stripe_addr = writepos;
4093 BUG_ON((mddev->dev_sectors &
4094 ~((sector_t)reshape_sectors - 1))
4095 - reshape_sectors - stripe_addr
4096 != sector_nr);
4097 } else {
4098 BUG_ON(writepos != sector_nr + reshape_sectors);
4099 stripe_addr = sector_nr;
4100 }
4101 INIT_LIST_HEAD(&stripes);
4102 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4103 int j;
4104 int skipped_disk = 0;
4105 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4106 set_bit(STRIPE_EXPANDING, &sh->state);
4107 atomic_inc(&conf->reshape_stripes);
4108 /* If any of this stripe is beyond the end of the old
4109 * array, then we need to zero those blocks
4110 */
4111 for (j=sh->disks; j--;) {
4112 sector_t s;
4113 if (j == sh->pd_idx)
4114 continue;
4115 if (conf->level == 6 &&
4116 j == sh->qd_idx)
4117 continue;
4118 s = compute_blocknr(sh, j, 0);
4119 if (s < raid5_size(mddev, 0, 0)) {
4120 skipped_disk = 1;
4121 continue;
4122 }
4123 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4124 set_bit(R5_Expanded, &sh->dev[j].flags);
4125 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4126 }
4127 if (!skipped_disk) {
4128 set_bit(STRIPE_EXPAND_READY, &sh->state);
4129 set_bit(STRIPE_HANDLE, &sh->state);
4130 }
4131 list_add(&sh->lru, &stripes);
4132 }
4133 spin_lock_irq(&conf->device_lock);
4134 if (mddev->delta_disks < 0)
4135 conf->reshape_progress -= reshape_sectors * new_data_disks;
4136 else
4137 conf->reshape_progress += reshape_sectors * new_data_disks;
4138 spin_unlock_irq(&conf->device_lock);
4139 /* Ok, those stripe are ready. We can start scheduling
4140 * reads on the source stripes.
4141 * The source stripes are determined by mapping the first and last
4142 * block on the destination stripes.
4143 */
4144 first_sector =
4145 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4146 1, &dd_idx, NULL);
4147 last_sector =
4148 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4149 * new_data_disks - 1),
4150 1, &dd_idx, NULL);
4151 if (last_sector >= mddev->dev_sectors)
4152 last_sector = mddev->dev_sectors - 1;
4153 while (first_sector <= last_sector) {
4154 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4155 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4156 set_bit(STRIPE_HANDLE, &sh->state);
4157 release_stripe(sh);
4158 first_sector += STRIPE_SECTORS;
4159 }
4160 /* Now that the sources are clearly marked, we can release
4161 * the destination stripes
4162 */
4163 while (!list_empty(&stripes)) {
4164 sh = list_entry(stripes.next, struct stripe_head, lru);
4165 list_del_init(&sh->lru);
4166 release_stripe(sh);
4167 }
4168 /* If this takes us to the resync_max point where we have to pause,
4169 * then we need to write out the superblock.
4170 */
4171 sector_nr += reshape_sectors;
4172 if ((sector_nr - mddev->curr_resync_completed) * 2
4173 >= mddev->resync_max - mddev->curr_resync_completed) {
4174 /* Cannot proceed until we've updated the superblock... */
4175 wait_event(conf->wait_for_overlap,
4176 atomic_read(&conf->reshape_stripes) == 0);
4177 mddev->reshape_position = conf->reshape_progress;
4178 mddev->curr_resync_completed = mddev->curr_resync + reshape_sectors;
4179 conf->reshape_checkpoint = jiffies;
4180 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4181 md_wakeup_thread(mddev->thread);
4182 wait_event(mddev->sb_wait,
4183 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4184 || kthread_should_stop());
4185 spin_lock_irq(&conf->device_lock);
4186 conf->reshape_safe = mddev->reshape_position;
4187 spin_unlock_irq(&conf->device_lock);
4188 wake_up(&conf->wait_for_overlap);
4189 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4190 }
4191 return reshape_sectors;
4192 }
4193
4194 /* FIXME go_faster isn't used */
4195 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4196 {
4197 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4198 struct stripe_head *sh;
4199 sector_t max_sector = mddev->dev_sectors;
4200 int sync_blocks;
4201 int still_degraded = 0;
4202 int i;
4203
4204 if (sector_nr >= max_sector) {
4205 /* just being told to finish up .. nothing much to do */
4206 unplug_slaves(mddev);
4207
4208 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4209 end_reshape(conf);
4210 return 0;
4211 }
4212
4213 if (mddev->curr_resync < max_sector) /* aborted */
4214 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4215 &sync_blocks, 1);
4216 else /* completed sync */
4217 conf->fullsync = 0;
4218 bitmap_close_sync(mddev->bitmap);
4219
4220 return 0;
4221 }
4222
4223 /* Allow raid5_quiesce to complete */
4224 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4225
4226 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4227 return reshape_request(mddev, sector_nr, skipped);
4228
4229 /* No need to check resync_max as we never do more than one
4230 * stripe, and as resync_max will always be on a chunk boundary,
4231 * if the check in md_do_sync didn't fire, there is no chance
4232 * of overstepping resync_max here
4233 */
4234
4235 /* if there is too many failed drives and we are trying
4236 * to resync, then assert that we are finished, because there is
4237 * nothing we can do.
4238 */
4239 if (mddev->degraded >= conf->max_degraded &&
4240 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4241 sector_t rv = mddev->dev_sectors - sector_nr;
4242 *skipped = 1;
4243 return rv;
4244 }
4245 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4246 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4247 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4248 /* we can skip this block, and probably more */
4249 sync_blocks /= STRIPE_SECTORS;
4250 *skipped = 1;
4251 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4252 }
4253
4254
4255 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4256
4257 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4258 if (sh == NULL) {
4259 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4260 /* make sure we don't swamp the stripe cache if someone else
4261 * is trying to get access
4262 */
4263 schedule_timeout_uninterruptible(1);
4264 }
4265 /* Need to check if array will still be degraded after recovery/resync
4266 * We don't need to check the 'failed' flag as when that gets set,
4267 * recovery aborts.
4268 */
4269 for (i = 0; i < conf->raid_disks; i++)
4270 if (conf->disks[i].rdev == NULL)
4271 still_degraded = 1;
4272
4273 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4274
4275 spin_lock(&sh->lock);
4276 set_bit(STRIPE_SYNCING, &sh->state);
4277 clear_bit(STRIPE_INSYNC, &sh->state);
4278 spin_unlock(&sh->lock);
4279
4280 /* wait for any blocked device to be handled */
4281 while (unlikely(!handle_stripe(sh)))
4282 ;
4283 release_stripe(sh);
4284
4285 return STRIPE_SECTORS;
4286 }
4287
4288 static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4289 {
4290 /* We may not be able to submit a whole bio at once as there
4291 * may not be enough stripe_heads available.
4292 * We cannot pre-allocate enough stripe_heads as we may need
4293 * more than exist in the cache (if we allow ever large chunks).
4294 * So we do one stripe head at a time and record in
4295 * ->bi_hw_segments how many have been done.
4296 *
4297 * We *know* that this entire raid_bio is in one chunk, so
4298 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4299 */
4300 struct stripe_head *sh;
4301 int dd_idx;
4302 sector_t sector, logical_sector, last_sector;
4303 int scnt = 0;
4304 int remaining;
4305 int handled = 0;
4306
4307 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4308 sector = raid5_compute_sector(conf, logical_sector,
4309 0, &dd_idx, NULL);
4310 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4311
4312 for (; logical_sector < last_sector;
4313 logical_sector += STRIPE_SECTORS,
4314 sector += STRIPE_SECTORS,
4315 scnt++) {
4316
4317 if (scnt < raid5_bi_hw_segments(raid_bio))
4318 /* already done this stripe */
4319 continue;
4320
4321 sh = get_active_stripe(conf, sector, 0, 1, 0);
4322
4323 if (!sh) {
4324 /* failed to get a stripe - must wait */
4325 raid5_set_bi_hw_segments(raid_bio, scnt);
4326 conf->retry_read_aligned = raid_bio;
4327 return handled;
4328 }
4329
4330 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4331 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4332 release_stripe(sh);
4333 raid5_set_bi_hw_segments(raid_bio, scnt);
4334 conf->retry_read_aligned = raid_bio;
4335 return handled;
4336 }
4337
4338 handle_stripe(sh);
4339 release_stripe(sh);
4340 handled++;
4341 }
4342 spin_lock_irq(&conf->device_lock);
4343 remaining = raid5_dec_bi_phys_segments(raid_bio);
4344 spin_unlock_irq(&conf->device_lock);
4345 if (remaining == 0)
4346 bio_endio(raid_bio, 0);
4347 if (atomic_dec_and_test(&conf->active_aligned_reads))
4348 wake_up(&conf->wait_for_stripe);
4349 return handled;
4350 }
4351
4352 #ifdef CONFIG_MULTICORE_RAID456
4353 static void __process_stripe(void *param, async_cookie_t cookie)
4354 {
4355 struct stripe_head *sh = param;
4356
4357 handle_stripe(sh);
4358 release_stripe(sh);
4359 }
4360
4361 static void process_stripe(struct stripe_head *sh, struct list_head *domain)
4362 {
4363 async_schedule_domain(__process_stripe, sh, domain);
4364 }
4365
4366 static void synchronize_stripe_processing(struct list_head *domain)
4367 {
4368 async_synchronize_full_domain(domain);
4369 }
4370 #else
4371 static void process_stripe(struct stripe_head *sh, struct list_head *domain)
4372 {
4373 handle_stripe(sh);
4374 release_stripe(sh);
4375 cond_resched();
4376 }
4377
4378 static void synchronize_stripe_processing(struct list_head *domain)
4379 {
4380 }
4381 #endif
4382
4383
4384 /*
4385 * This is our raid5 kernel thread.
4386 *
4387 * We scan the hash table for stripes which can be handled now.
4388 * During the scan, completed stripes are saved for us by the interrupt
4389 * handler, so that they will not have to wait for our next wakeup.
4390 */
4391 static void raid5d(mddev_t *mddev)
4392 {
4393 struct stripe_head *sh;
4394 raid5_conf_t *conf = mddev->private;
4395 int handled;
4396 LIST_HEAD(raid_domain);
4397
4398 pr_debug("+++ raid5d active\n");
4399
4400 md_check_recovery(mddev);
4401
4402 handled = 0;
4403 spin_lock_irq(&conf->device_lock);
4404 while (1) {
4405 struct bio *bio;
4406
4407 if (conf->seq_flush != conf->seq_write) {
4408 int seq = conf->seq_flush;
4409 spin_unlock_irq(&conf->device_lock);
4410 bitmap_unplug(mddev->bitmap);
4411 spin_lock_irq(&conf->device_lock);
4412 conf->seq_write = seq;
4413 activate_bit_delay(conf);
4414 }
4415
4416 while ((bio = remove_bio_from_retry(conf))) {
4417 int ok;
4418 spin_unlock_irq(&conf->device_lock);
4419 ok = retry_aligned_read(conf, bio);
4420 spin_lock_irq(&conf->device_lock);
4421 if (!ok)
4422 break;
4423 handled++;
4424 }
4425
4426 sh = __get_priority_stripe(conf);
4427
4428 if (!sh)
4429 break;
4430 spin_unlock_irq(&conf->device_lock);
4431
4432 handled++;
4433 process_stripe(sh, &raid_domain);
4434
4435 spin_lock_irq(&conf->device_lock);
4436 }
4437 pr_debug("%d stripes handled\n", handled);
4438
4439 spin_unlock_irq(&conf->device_lock);
4440
4441 synchronize_stripe_processing(&raid_domain);
4442 async_tx_issue_pending_all();
4443 unplug_slaves(mddev);
4444
4445 pr_debug("--- raid5d inactive\n");
4446 }
4447
4448 static ssize_t
4449 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4450 {
4451 raid5_conf_t *conf = mddev->private;
4452 if (conf)
4453 return sprintf(page, "%d\n", conf->max_nr_stripes);
4454 else
4455 return 0;
4456 }
4457
4458 static ssize_t
4459 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4460 {
4461 raid5_conf_t *conf = mddev->private;
4462 unsigned long new;
4463 int err;
4464
4465 if (len >= PAGE_SIZE)
4466 return -EINVAL;
4467 if (!conf)
4468 return -ENODEV;
4469
4470 if (strict_strtoul(page, 10, &new))
4471 return -EINVAL;
4472 if (new <= 16 || new > 32768)
4473 return -EINVAL;
4474 while (new < conf->max_nr_stripes) {
4475 if (drop_one_stripe(conf))
4476 conf->max_nr_stripes--;
4477 else
4478 break;
4479 }
4480 err = md_allow_write(mddev);
4481 if (err)
4482 return err;
4483 while (new > conf->max_nr_stripes) {
4484 if (grow_one_stripe(conf))
4485 conf->max_nr_stripes++;
4486 else break;
4487 }
4488 return len;
4489 }
4490
4491 static struct md_sysfs_entry
4492 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4493 raid5_show_stripe_cache_size,
4494 raid5_store_stripe_cache_size);
4495
4496 static ssize_t
4497 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4498 {
4499 raid5_conf_t *conf = mddev->private;
4500 if (conf)
4501 return sprintf(page, "%d\n", conf->bypass_threshold);
4502 else
4503 return 0;
4504 }
4505
4506 static ssize_t
4507 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4508 {
4509 raid5_conf_t *conf = mddev->private;
4510 unsigned long new;
4511 if (len >= PAGE_SIZE)
4512 return -EINVAL;
4513 if (!conf)
4514 return -ENODEV;
4515
4516 if (strict_strtoul(page, 10, &new))
4517 return -EINVAL;
4518 if (new > conf->max_nr_stripes)
4519 return -EINVAL;
4520 conf->bypass_threshold = new;
4521 return len;
4522 }
4523
4524 static struct md_sysfs_entry
4525 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4526 S_IRUGO | S_IWUSR,
4527 raid5_show_preread_threshold,
4528 raid5_store_preread_threshold);
4529
4530 static ssize_t
4531 stripe_cache_active_show(mddev_t *mddev, char *page)
4532 {
4533 raid5_conf_t *conf = mddev->private;
4534 if (conf)
4535 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4536 else
4537 return 0;
4538 }
4539
4540 static struct md_sysfs_entry
4541 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4542
4543 static struct attribute *raid5_attrs[] = {
4544 &raid5_stripecache_size.attr,
4545 &raid5_stripecache_active.attr,
4546 &raid5_preread_bypass_threshold.attr,
4547 NULL,
4548 };
4549 static struct attribute_group raid5_attrs_group = {
4550 .name = NULL,
4551 .attrs = raid5_attrs,
4552 };
4553
4554 static sector_t
4555 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4556 {
4557 raid5_conf_t *conf = mddev->private;
4558
4559 if (!sectors)
4560 sectors = mddev->dev_sectors;
4561 if (!raid_disks) {
4562 /* size is defined by the smallest of previous and new size */
4563 if (conf->raid_disks < conf->previous_raid_disks)
4564 raid_disks = conf->raid_disks;
4565 else
4566 raid_disks = conf->previous_raid_disks;
4567 }
4568
4569 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4570 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4571 return sectors * (raid_disks - conf->max_degraded);
4572 }
4573
4574 static void raid5_free_percpu(raid5_conf_t *conf)
4575 {
4576 struct raid5_percpu *percpu;
4577 unsigned long cpu;
4578
4579 if (!conf->percpu)
4580 return;
4581
4582 get_online_cpus();
4583 for_each_possible_cpu(cpu) {
4584 percpu = per_cpu_ptr(conf->percpu, cpu);
4585 safe_put_page(percpu->spare_page);
4586 kfree(percpu->scribble);
4587 }
4588 #ifdef CONFIG_HOTPLUG_CPU
4589 unregister_cpu_notifier(&conf->cpu_notify);
4590 #endif
4591 put_online_cpus();
4592
4593 free_percpu(conf->percpu);
4594 }
4595
4596 static void free_conf(raid5_conf_t *conf)
4597 {
4598 shrink_stripes(conf);
4599 raid5_free_percpu(conf);
4600 kfree(conf->disks);
4601 kfree(conf->stripe_hashtbl);
4602 kfree(conf);
4603 }
4604
4605 #ifdef CONFIG_HOTPLUG_CPU
4606 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4607 void *hcpu)
4608 {
4609 raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4610 long cpu = (long)hcpu;
4611 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4612
4613 switch (action) {
4614 case CPU_UP_PREPARE:
4615 case CPU_UP_PREPARE_FROZEN:
4616 if (conf->level == 6 && !percpu->spare_page)
4617 percpu->spare_page = alloc_page(GFP_KERNEL);
4618 if (!percpu->scribble)
4619 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4620
4621 if (!percpu->scribble ||
4622 (conf->level == 6 && !percpu->spare_page)) {
4623 safe_put_page(percpu->spare_page);
4624 kfree(percpu->scribble);
4625 pr_err("%s: failed memory allocation for cpu%ld\n",
4626 __func__, cpu);
4627 return NOTIFY_BAD;
4628 }
4629 break;
4630 case CPU_DEAD:
4631 case CPU_DEAD_FROZEN:
4632 safe_put_page(percpu->spare_page);
4633 kfree(percpu->scribble);
4634 percpu->spare_page = NULL;
4635 percpu->scribble = NULL;
4636 break;
4637 default:
4638 break;
4639 }
4640 return NOTIFY_OK;
4641 }
4642 #endif
4643
4644 static int raid5_alloc_percpu(raid5_conf_t *conf)
4645 {
4646 unsigned long cpu;
4647 struct page *spare_page;
4648 struct raid5_percpu *allcpus;
4649 void *scribble;
4650 int err;
4651
4652 allcpus = alloc_percpu(struct raid5_percpu);
4653 if (!allcpus)
4654 return -ENOMEM;
4655 conf->percpu = allcpus;
4656
4657 get_online_cpus();
4658 err = 0;
4659 for_each_present_cpu(cpu) {
4660 if (conf->level == 6) {
4661 spare_page = alloc_page(GFP_KERNEL);
4662 if (!spare_page) {
4663 err = -ENOMEM;
4664 break;
4665 }
4666 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4667 }
4668 scribble = kmalloc(scribble_len(conf->raid_disks), GFP_KERNEL);
4669 if (!scribble) {
4670 err = -ENOMEM;
4671 break;
4672 }
4673 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4674 }
4675 #ifdef CONFIG_HOTPLUG_CPU
4676 conf->cpu_notify.notifier_call = raid456_cpu_notify;
4677 conf->cpu_notify.priority = 0;
4678 if (err == 0)
4679 err = register_cpu_notifier(&conf->cpu_notify);
4680 #endif
4681 put_online_cpus();
4682
4683 return err;
4684 }
4685
4686 static raid5_conf_t *setup_conf(mddev_t *mddev)
4687 {
4688 raid5_conf_t *conf;
4689 int raid_disk, memory;
4690 mdk_rdev_t *rdev;
4691 struct disk_info *disk;
4692
4693 if (mddev->new_level != 5
4694 && mddev->new_level != 4
4695 && mddev->new_level != 6) {
4696 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4697 mdname(mddev), mddev->new_level);
4698 return ERR_PTR(-EIO);
4699 }
4700 if ((mddev->new_level == 5
4701 && !algorithm_valid_raid5(mddev->new_layout)) ||
4702 (mddev->new_level == 6
4703 && !algorithm_valid_raid6(mddev->new_layout))) {
4704 printk(KERN_ERR "raid5: %s: layout %d not supported\n",
4705 mdname(mddev), mddev->new_layout);
4706 return ERR_PTR(-EIO);
4707 }
4708 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4709 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4710 mdname(mddev), mddev->raid_disks);
4711 return ERR_PTR(-EINVAL);
4712 }
4713
4714 if (!mddev->new_chunk_sectors ||
4715 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4716 !is_power_of_2(mddev->new_chunk_sectors)) {
4717 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4718 mddev->new_chunk_sectors << 9, mdname(mddev));
4719 return ERR_PTR(-EINVAL);
4720 }
4721
4722 conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4723 if (conf == NULL)
4724 goto abort;
4725
4726 conf->raid_disks = mddev->raid_disks;
4727 conf->scribble_len = scribble_len(conf->raid_disks);
4728 if (mddev->reshape_position == MaxSector)
4729 conf->previous_raid_disks = mddev->raid_disks;
4730 else
4731 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4732
4733 conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4734 GFP_KERNEL);
4735 if (!conf->disks)
4736 goto abort;
4737
4738 conf->mddev = mddev;
4739
4740 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4741 goto abort;
4742
4743 conf->level = mddev->new_level;
4744 if (raid5_alloc_percpu(conf) != 0)
4745 goto abort;
4746
4747 spin_lock_init(&conf->device_lock);
4748 init_waitqueue_head(&conf->wait_for_stripe);
4749 init_waitqueue_head(&conf->wait_for_overlap);
4750 INIT_LIST_HEAD(&conf->handle_list);
4751 INIT_LIST_HEAD(&conf->hold_list);
4752 INIT_LIST_HEAD(&conf->delayed_list);
4753 INIT_LIST_HEAD(&conf->bitmap_list);
4754 INIT_LIST_HEAD(&conf->inactive_list);
4755 atomic_set(&conf->active_stripes, 0);
4756 atomic_set(&conf->preread_active_stripes, 0);
4757 atomic_set(&conf->active_aligned_reads, 0);
4758 conf->bypass_threshold = BYPASS_THRESHOLD;
4759
4760 pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4761
4762 list_for_each_entry(rdev, &mddev->disks, same_set) {
4763 raid_disk = rdev->raid_disk;
4764 if (raid_disk >= conf->raid_disks
4765 || raid_disk < 0)
4766 continue;
4767 disk = conf->disks + raid_disk;
4768
4769 disk->rdev = rdev;
4770
4771 if (test_bit(In_sync, &rdev->flags)) {
4772 char b[BDEVNAME_SIZE];
4773 printk(KERN_INFO "raid5: device %s operational as raid"
4774 " disk %d\n", bdevname(rdev->bdev,b),
4775 raid_disk);
4776 } else
4777 /* Cannot rely on bitmap to complete recovery */
4778 conf->fullsync = 1;
4779 }
4780
4781 conf->chunk_sectors = mddev->new_chunk_sectors;
4782 conf->level = mddev->new_level;
4783 if (conf->level == 6)
4784 conf->max_degraded = 2;
4785 else
4786 conf->max_degraded = 1;
4787 conf->algorithm = mddev->new_layout;
4788 conf->max_nr_stripes = NR_STRIPES;
4789 conf->reshape_progress = mddev->reshape_position;
4790 if (conf->reshape_progress != MaxSector) {
4791 conf->prev_chunk_sectors = mddev->chunk_sectors;
4792 conf->prev_algo = mddev->layout;
4793 }
4794
4795 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4796 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4797 if (grow_stripes(conf, conf->max_nr_stripes)) {
4798 printk(KERN_ERR
4799 "raid5: couldn't allocate %dkB for buffers\n", memory);
4800 goto abort;
4801 } else
4802 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4803 memory, mdname(mddev));
4804
4805 conf->thread = md_register_thread(raid5d, mddev, NULL);
4806 if (!conf->thread) {
4807 printk(KERN_ERR
4808 "raid5: couldn't allocate thread for %s\n",
4809 mdname(mddev));
4810 goto abort;
4811 }
4812
4813 return conf;
4814
4815 abort:
4816 if (conf) {
4817 free_conf(conf);
4818 return ERR_PTR(-EIO);
4819 } else
4820 return ERR_PTR(-ENOMEM);
4821 }
4822
4823 static int run(mddev_t *mddev)
4824 {
4825 raid5_conf_t *conf;
4826 int working_disks = 0, chunk_size;
4827 mdk_rdev_t *rdev;
4828
4829 if (mddev->recovery_cp != MaxSector)
4830 printk(KERN_NOTICE "raid5: %s is not clean"
4831 " -- starting background reconstruction\n",
4832 mdname(mddev));
4833 if (mddev->reshape_position != MaxSector) {
4834 /* Check that we can continue the reshape.
4835 * Currently only disks can change, it must
4836 * increase, and we must be past the point where
4837 * a stripe over-writes itself
4838 */
4839 sector_t here_new, here_old;
4840 int old_disks;
4841 int max_degraded = (mddev->level == 6 ? 2 : 1);
4842
4843 if (mddev->new_level != mddev->level) {
4844 printk(KERN_ERR "raid5: %s: unsupported reshape "
4845 "required - aborting.\n",
4846 mdname(mddev));
4847 return -EINVAL;
4848 }
4849 old_disks = mddev->raid_disks - mddev->delta_disks;
4850 /* reshape_position must be on a new-stripe boundary, and one
4851 * further up in new geometry must map after here in old
4852 * geometry.
4853 */
4854 here_new = mddev->reshape_position;
4855 if (sector_div(here_new, mddev->new_chunk_sectors *
4856 (mddev->raid_disks - max_degraded))) {
4857 printk(KERN_ERR "raid5: reshape_position not "
4858 "on a stripe boundary\n");
4859 return -EINVAL;
4860 }
4861 /* here_new is the stripe we will write to */
4862 here_old = mddev->reshape_position;
4863 sector_div(here_old, mddev->chunk_sectors *
4864 (old_disks-max_degraded));
4865 /* here_old is the first stripe that we might need to read
4866 * from */
4867 if (mddev->delta_disks == 0) {
4868 /* We cannot be sure it is safe to start an in-place
4869 * reshape. It is only safe if user-space if monitoring
4870 * and taking constant backups.
4871 * mdadm always starts a situation like this in
4872 * readonly mode so it can take control before
4873 * allowing any writes. So just check for that.
4874 */
4875 if ((here_new * mddev->new_chunk_sectors !=
4876 here_old * mddev->chunk_sectors) ||
4877 mddev->ro == 0) {
4878 printk(KERN_ERR "raid5: in-place reshape must be started"
4879 " in read-only mode - aborting\n");
4880 return -EINVAL;
4881 }
4882 } else if (mddev->delta_disks < 0
4883 ? (here_new * mddev->new_chunk_sectors <=
4884 here_old * mddev->chunk_sectors)
4885 : (here_new * mddev->new_chunk_sectors >=
4886 here_old * mddev->chunk_sectors)) {
4887 /* Reading from the same stripe as writing to - bad */
4888 printk(KERN_ERR "raid5: reshape_position too early for "
4889 "auto-recovery - aborting.\n");
4890 return -EINVAL;
4891 }
4892 printk(KERN_INFO "raid5: reshape will continue\n");
4893 /* OK, we should be able to continue; */
4894 } else {
4895 BUG_ON(mddev->level != mddev->new_level);
4896 BUG_ON(mddev->layout != mddev->new_layout);
4897 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
4898 BUG_ON(mddev->delta_disks != 0);
4899 }
4900
4901 if (mddev->private == NULL)
4902 conf = setup_conf(mddev);
4903 else
4904 conf = mddev->private;
4905
4906 if (IS_ERR(conf))
4907 return PTR_ERR(conf);
4908
4909 mddev->thread = conf->thread;
4910 conf->thread = NULL;
4911 mddev->private = conf;
4912
4913 /*
4914 * 0 for a fully functional array, 1 or 2 for a degraded array.
4915 */
4916 list_for_each_entry(rdev, &mddev->disks, same_set)
4917 if (rdev->raid_disk >= 0 &&
4918 test_bit(In_sync, &rdev->flags))
4919 working_disks++;
4920
4921 mddev->degraded = conf->raid_disks - working_disks;
4922
4923 if (mddev->degraded > conf->max_degraded) {
4924 printk(KERN_ERR "raid5: not enough operational devices for %s"
4925 " (%d/%d failed)\n",
4926 mdname(mddev), mddev->degraded, conf->raid_disks);
4927 goto abort;
4928 }
4929
4930 /* device size must be a multiple of chunk size */
4931 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
4932 mddev->resync_max_sectors = mddev->dev_sectors;
4933
4934 if (mddev->degraded > 0 &&
4935 mddev->recovery_cp != MaxSector) {
4936 if (mddev->ok_start_degraded)
4937 printk(KERN_WARNING
4938 "raid5: starting dirty degraded array: %s"
4939 "- data corruption possible.\n",
4940 mdname(mddev));
4941 else {
4942 printk(KERN_ERR
4943 "raid5: cannot start dirty degraded array for %s\n",
4944 mdname(mddev));
4945 goto abort;
4946 }
4947 }
4948
4949 if (mddev->degraded == 0)
4950 printk("raid5: raid level %d set %s active with %d out of %d"
4951 " devices, algorithm %d\n", conf->level, mdname(mddev),
4952 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4953 mddev->new_layout);
4954 else
4955 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4956 " out of %d devices, algorithm %d\n", conf->level,
4957 mdname(mddev), mddev->raid_disks - mddev->degraded,
4958 mddev->raid_disks, mddev->new_layout);
4959
4960 print_raid5_conf(conf);
4961
4962 if (conf->reshape_progress != MaxSector) {
4963 printk("...ok start reshape thread\n");
4964 conf->reshape_safe = conf->reshape_progress;
4965 atomic_set(&conf->reshape_stripes, 0);
4966 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4967 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4968 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4969 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4970 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4971 "reshape");
4972 }
4973
4974 /* read-ahead size must cover two whole stripes, which is
4975 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4976 */
4977 {
4978 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4979 int stripe = data_disks *
4980 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
4981 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4982 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4983 }
4984
4985 /* Ok, everything is just fine now */
4986 if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4987 printk(KERN_WARNING
4988 "raid5: failed to create sysfs attributes for %s\n",
4989 mdname(mddev));
4990
4991 mddev->queue->queue_lock = &conf->device_lock;
4992
4993 mddev->queue->unplug_fn = raid5_unplug_device;
4994 mddev->queue->backing_dev_info.congested_data = mddev;
4995 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4996
4997 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4998
4999 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5000 chunk_size = mddev->chunk_sectors << 9;
5001 blk_queue_io_min(mddev->queue, chunk_size);
5002 blk_queue_io_opt(mddev->queue, chunk_size *
5003 (conf->raid_disks - conf->max_degraded));
5004
5005 list_for_each_entry(rdev, &mddev->disks, same_set)
5006 disk_stack_limits(mddev->gendisk, rdev->bdev,
5007 rdev->data_offset << 9);
5008
5009 return 0;
5010 abort:
5011 md_unregister_thread(mddev->thread);
5012 mddev->thread = NULL;
5013 if (conf) {
5014 print_raid5_conf(conf);
5015 free_conf(conf);
5016 }
5017 mddev->private = NULL;
5018 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
5019 return -EIO;
5020 }
5021
5022
5023
5024 static int stop(mddev_t *mddev)
5025 {
5026 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
5027
5028 md_unregister_thread(mddev->thread);
5029 mddev->thread = NULL;
5030 mddev->queue->backing_dev_info.congested_fn = NULL;
5031 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5032 sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
5033 free_conf(conf);
5034 mddev->private = NULL;
5035 return 0;
5036 }
5037
5038 #ifdef DEBUG
5039 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
5040 {
5041 int i;
5042
5043 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
5044 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
5045 seq_printf(seq, "sh %llu, count %d.\n",
5046 (unsigned long long)sh->sector, atomic_read(&sh->count));
5047 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5048 for (i = 0; i < sh->disks; i++) {
5049 seq_printf(seq, "(cache%d: %p %ld) ",
5050 i, sh->dev[i].page, sh->dev[i].flags);
5051 }
5052 seq_printf(seq, "\n");
5053 }
5054
5055 static void printall(struct seq_file *seq, raid5_conf_t *conf)
5056 {
5057 struct stripe_head *sh;
5058 struct hlist_node *hn;
5059 int i;
5060
5061 spin_lock_irq(&conf->device_lock);
5062 for (i = 0; i < NR_HASH; i++) {
5063 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
5064 if (sh->raid_conf != conf)
5065 continue;
5066 print_sh(seq, sh);
5067 }
5068 }
5069 spin_unlock_irq(&conf->device_lock);
5070 }
5071 #endif
5072
5073 static void status(struct seq_file *seq, mddev_t *mddev)
5074 {
5075 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
5076 int i;
5077
5078 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5079 mddev->chunk_sectors / 2, mddev->layout);
5080 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5081 for (i = 0; i < conf->raid_disks; i++)
5082 seq_printf (seq, "%s",
5083 conf->disks[i].rdev &&
5084 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5085 seq_printf (seq, "]");
5086 #ifdef DEBUG
5087 seq_printf (seq, "\n");
5088 printall(seq, conf);
5089 #endif
5090 }
5091
5092 static void print_raid5_conf (raid5_conf_t *conf)
5093 {
5094 int i;
5095 struct disk_info *tmp;
5096
5097 printk("RAID5 conf printout:\n");
5098 if (!conf) {
5099 printk("(conf==NULL)\n");
5100 return;
5101 }
5102 printk(" --- rd:%d wd:%d\n", conf->raid_disks,
5103 conf->raid_disks - conf->mddev->degraded);
5104
5105 for (i = 0; i < conf->raid_disks; i++) {
5106 char b[BDEVNAME_SIZE];
5107 tmp = conf->disks + i;
5108 if (tmp->rdev)
5109 printk(" disk %d, o:%d, dev:%s\n",
5110 i, !test_bit(Faulty, &tmp->rdev->flags),
5111 bdevname(tmp->rdev->bdev,b));
5112 }
5113 }
5114
5115 static int raid5_spare_active(mddev_t *mddev)
5116 {
5117 int i;
5118 raid5_conf_t *conf = mddev->private;
5119 struct disk_info *tmp;
5120
5121 for (i = 0; i < conf->raid_disks; i++) {
5122 tmp = conf->disks + i;
5123 if (tmp->rdev
5124 && !test_bit(Faulty, &tmp->rdev->flags)
5125 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5126 unsigned long flags;
5127 spin_lock_irqsave(&conf->device_lock, flags);
5128 mddev->degraded--;
5129 spin_unlock_irqrestore(&conf->device_lock, flags);
5130 }
5131 }
5132 print_raid5_conf(conf);
5133 return 0;
5134 }
5135
5136 static int raid5_remove_disk(mddev_t *mddev, int number)
5137 {
5138 raid5_conf_t *conf = mddev->private;
5139 int err = 0;
5140 mdk_rdev_t *rdev;
5141 struct disk_info *p = conf->disks + number;
5142
5143 print_raid5_conf(conf);
5144 rdev = p->rdev;
5145 if (rdev) {
5146 if (number >= conf->raid_disks &&
5147 conf->reshape_progress == MaxSector)
5148 clear_bit(In_sync, &rdev->flags);
5149
5150 if (test_bit(In_sync, &rdev->flags) ||
5151 atomic_read(&rdev->nr_pending)) {
5152 err = -EBUSY;
5153 goto abort;
5154 }
5155 /* Only remove non-faulty devices if recovery
5156 * isn't possible.
5157 */
5158 if (!test_bit(Faulty, &rdev->flags) &&
5159 mddev->degraded <= conf->max_degraded &&
5160 number < conf->raid_disks) {
5161 err = -EBUSY;
5162 goto abort;
5163 }
5164 p->rdev = NULL;
5165 synchronize_rcu();
5166 if (atomic_read(&rdev->nr_pending)) {
5167 /* lost the race, try later */
5168 err = -EBUSY;
5169 p->rdev = rdev;
5170 }
5171 }
5172 abort:
5173
5174 print_raid5_conf(conf);
5175 return err;
5176 }
5177
5178 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5179 {
5180 raid5_conf_t *conf = mddev->private;
5181 int err = -EEXIST;
5182 int disk;
5183 struct disk_info *p;
5184 int first = 0;
5185 int last = conf->raid_disks - 1;
5186
5187 if (mddev->degraded > conf->max_degraded)
5188 /* no point adding a device */
5189 return -EINVAL;
5190
5191 if (rdev->raid_disk >= 0)
5192 first = last = rdev->raid_disk;
5193
5194 /*
5195 * find the disk ... but prefer rdev->saved_raid_disk
5196 * if possible.
5197 */
5198 if (rdev->saved_raid_disk >= 0 &&
5199 rdev->saved_raid_disk >= first &&
5200 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5201 disk = rdev->saved_raid_disk;
5202 else
5203 disk = first;
5204 for ( ; disk <= last ; disk++)
5205 if ((p=conf->disks + disk)->rdev == NULL) {
5206 clear_bit(In_sync, &rdev->flags);
5207 rdev->raid_disk = disk;
5208 err = 0;
5209 if (rdev->saved_raid_disk != disk)
5210 conf->fullsync = 1;
5211 rcu_assign_pointer(p->rdev, rdev);
5212 break;
5213 }
5214 print_raid5_conf(conf);
5215 return err;
5216 }
5217
5218 static int raid5_resize(mddev_t *mddev, sector_t sectors)
5219 {
5220 /* no resync is happening, and there is enough space
5221 * on all devices, so we can resize.
5222 * We need to make sure resync covers any new space.
5223 * If the array is shrinking we should possibly wait until
5224 * any io in the removed space completes, but it hardly seems
5225 * worth it.
5226 */
5227 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5228 md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5229 mddev->raid_disks));
5230 if (mddev->array_sectors >
5231 raid5_size(mddev, sectors, mddev->raid_disks))
5232 return -EINVAL;
5233 set_capacity(mddev->gendisk, mddev->array_sectors);
5234 mddev->changed = 1;
5235 revalidate_disk(mddev->gendisk);
5236 if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
5237 mddev->recovery_cp = mddev->dev_sectors;
5238 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5239 }
5240 mddev->dev_sectors = sectors;
5241 mddev->resync_max_sectors = sectors;
5242 return 0;
5243 }
5244
5245 static int check_stripe_cache(mddev_t *mddev)
5246 {
5247 /* Can only proceed if there are plenty of stripe_heads.
5248 * We need a minimum of one full stripe,, and for sensible progress
5249 * it is best to have about 4 times that.
5250 * If we require 4 times, then the default 256 4K stripe_heads will
5251 * allow for chunk sizes up to 256K, which is probably OK.
5252 * If the chunk size is greater, user-space should request more
5253 * stripe_heads first.
5254 */
5255 raid5_conf_t *conf = mddev->private;
5256 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5257 > conf->max_nr_stripes ||
5258 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5259 > conf->max_nr_stripes) {
5260 printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n",
5261 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5262 / STRIPE_SIZE)*4);
5263 return 0;
5264 }
5265 return 1;
5266 }
5267
5268 static int check_reshape(mddev_t *mddev)
5269 {
5270 raid5_conf_t *conf = mddev->private;
5271
5272 if (mddev->delta_disks == 0 &&
5273 mddev->new_layout == mddev->layout &&
5274 mddev->new_chunk_sectors == mddev->chunk_sectors)
5275 return 0; /* nothing to do */
5276 if (mddev->bitmap)
5277 /* Cannot grow a bitmap yet */
5278 return -EBUSY;
5279 if (mddev->degraded > conf->max_degraded)
5280 return -EINVAL;
5281 if (mddev->delta_disks < 0) {
5282 /* We might be able to shrink, but the devices must
5283 * be made bigger first.
5284 * For raid6, 4 is the minimum size.
5285 * Otherwise 2 is the minimum
5286 */
5287 int min = 2;
5288 if (mddev->level == 6)
5289 min = 4;
5290 if (mddev->raid_disks + mddev->delta_disks < min)
5291 return -EINVAL;
5292 }
5293
5294 if (!check_stripe_cache(mddev))
5295 return -ENOSPC;
5296
5297 return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5298 }
5299
5300 static int raid5_start_reshape(mddev_t *mddev)
5301 {
5302 raid5_conf_t *conf = mddev->private;
5303 mdk_rdev_t *rdev;
5304 int spares = 0;
5305 int added_devices = 0;
5306 unsigned long flags;
5307
5308 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5309 return -EBUSY;
5310
5311 if (!check_stripe_cache(mddev))
5312 return -ENOSPC;
5313
5314 list_for_each_entry(rdev, &mddev->disks, same_set)
5315 if (rdev->raid_disk < 0 &&
5316 !test_bit(Faulty, &rdev->flags))
5317 spares++;
5318
5319 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5320 /* Not enough devices even to make a degraded array
5321 * of that size
5322 */
5323 return -EINVAL;
5324
5325 /* Refuse to reduce size of the array. Any reductions in
5326 * array size must be through explicit setting of array_size
5327 * attribute.
5328 */
5329 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5330 < mddev->array_sectors) {
5331 printk(KERN_ERR "md: %s: array size must be reduced "
5332 "before number of disks\n", mdname(mddev));
5333 return -EINVAL;
5334 }
5335
5336 atomic_set(&conf->reshape_stripes, 0);
5337 spin_lock_irq(&conf->device_lock);
5338 conf->previous_raid_disks = conf->raid_disks;
5339 conf->raid_disks += mddev->delta_disks;
5340 conf->prev_chunk_sectors = conf->chunk_sectors;
5341 conf->chunk_sectors = mddev->new_chunk_sectors;
5342 conf->prev_algo = conf->algorithm;
5343 conf->algorithm = mddev->new_layout;
5344 if (mddev->delta_disks < 0)
5345 conf->reshape_progress = raid5_size(mddev, 0, 0);
5346 else
5347 conf->reshape_progress = 0;
5348 conf->reshape_safe = conf->reshape_progress;
5349 conf->generation++;
5350 spin_unlock_irq(&conf->device_lock);
5351
5352 /* Add some new drives, as many as will fit.
5353 * We know there are enough to make the newly sized array work.
5354 */
5355 list_for_each_entry(rdev, &mddev->disks, same_set)
5356 if (rdev->raid_disk < 0 &&
5357 !test_bit(Faulty, &rdev->flags)) {
5358 if (raid5_add_disk(mddev, rdev) == 0) {
5359 char nm[20];
5360 set_bit(In_sync, &rdev->flags);
5361 added_devices++;
5362 rdev->recovery_offset = 0;
5363 sprintf(nm, "rd%d", rdev->raid_disk);
5364 if (sysfs_create_link(&mddev->kobj,
5365 &rdev->kobj, nm))
5366 printk(KERN_WARNING
5367 "raid5: failed to create "
5368 " link %s for %s\n",
5369 nm, mdname(mddev));
5370 } else
5371 break;
5372 }
5373
5374 if (mddev->delta_disks > 0) {
5375 spin_lock_irqsave(&conf->device_lock, flags);
5376 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks)
5377 - added_devices;
5378 spin_unlock_irqrestore(&conf->device_lock, flags);
5379 }
5380 mddev->raid_disks = conf->raid_disks;
5381 mddev->reshape_position = conf->reshape_progress;
5382 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5383
5384 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5385 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5386 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5387 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5388 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5389 "reshape");
5390 if (!mddev->sync_thread) {
5391 mddev->recovery = 0;
5392 spin_lock_irq(&conf->device_lock);
5393 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5394 conf->reshape_progress = MaxSector;
5395 spin_unlock_irq(&conf->device_lock);
5396 return -EAGAIN;
5397 }
5398 conf->reshape_checkpoint = jiffies;
5399 md_wakeup_thread(mddev->sync_thread);
5400 md_new_event(mddev);
5401 return 0;
5402 }
5403
5404 /* This is called from the reshape thread and should make any
5405 * changes needed in 'conf'
5406 */
5407 static void end_reshape(raid5_conf_t *conf)
5408 {
5409
5410 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5411
5412 spin_lock_irq(&conf->device_lock);
5413 conf->previous_raid_disks = conf->raid_disks;
5414 conf->reshape_progress = MaxSector;
5415 spin_unlock_irq(&conf->device_lock);
5416 wake_up(&conf->wait_for_overlap);
5417
5418 /* read-ahead size must cover two whole stripes, which is
5419 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5420 */
5421 {
5422 int data_disks = conf->raid_disks - conf->max_degraded;
5423 int stripe = data_disks * ((conf->chunk_sectors << 9)
5424 / PAGE_SIZE);
5425 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5426 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5427 }
5428 }
5429 }
5430
5431 /* This is called from the raid5d thread with mddev_lock held.
5432 * It makes config changes to the device.
5433 */
5434 static void raid5_finish_reshape(mddev_t *mddev)
5435 {
5436 raid5_conf_t *conf = mddev->private;
5437
5438 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5439
5440 if (mddev->delta_disks > 0) {
5441 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5442 set_capacity(mddev->gendisk, mddev->array_sectors);
5443 mddev->changed = 1;
5444 revalidate_disk(mddev->gendisk);
5445 } else {
5446 int d;
5447 mddev->degraded = conf->raid_disks;
5448 for (d = 0; d < conf->raid_disks ; d++)
5449 if (conf->disks[d].rdev &&
5450 test_bit(In_sync,
5451 &conf->disks[d].rdev->flags))
5452 mddev->degraded--;
5453 for (d = conf->raid_disks ;
5454 d < conf->raid_disks - mddev->delta_disks;
5455 d++) {
5456 mdk_rdev_t *rdev = conf->disks[d].rdev;
5457 if (rdev && raid5_remove_disk(mddev, d) == 0) {
5458 char nm[20];
5459 sprintf(nm, "rd%d", rdev->raid_disk);
5460 sysfs_remove_link(&mddev->kobj, nm);
5461 rdev->raid_disk = -1;
5462 }
5463 }
5464 }
5465 mddev->layout = conf->algorithm;
5466 mddev->chunk_sectors = conf->chunk_sectors;
5467 mddev->reshape_position = MaxSector;
5468 mddev->delta_disks = 0;
5469 }
5470 }
5471
5472 static void raid5_quiesce(mddev_t *mddev, int state)
5473 {
5474 raid5_conf_t *conf = mddev->private;
5475
5476 switch(state) {
5477 case 2: /* resume for a suspend */
5478 wake_up(&conf->wait_for_overlap);
5479 break;
5480
5481 case 1: /* stop all writes */
5482 spin_lock_irq(&conf->device_lock);
5483 /* '2' tells resync/reshape to pause so that all
5484 * active stripes can drain
5485 */
5486 conf->quiesce = 2;
5487 wait_event_lock_irq(conf->wait_for_stripe,
5488 atomic_read(&conf->active_stripes) == 0 &&
5489 atomic_read(&conf->active_aligned_reads) == 0,
5490 conf->device_lock, /* nothing */);
5491 conf->quiesce = 1;
5492 spin_unlock_irq(&conf->device_lock);
5493 /* allow reshape to continue */
5494 wake_up(&conf->wait_for_overlap);
5495 break;
5496
5497 case 0: /* re-enable writes */
5498 spin_lock_irq(&conf->device_lock);
5499 conf->quiesce = 0;
5500 wake_up(&conf->wait_for_stripe);
5501 wake_up(&conf->wait_for_overlap);
5502 spin_unlock_irq(&conf->device_lock);
5503 break;
5504 }
5505 }
5506
5507
5508 static void *raid5_takeover_raid1(mddev_t *mddev)
5509 {
5510 int chunksect;
5511
5512 if (mddev->raid_disks != 2 ||
5513 mddev->degraded > 1)
5514 return ERR_PTR(-EINVAL);
5515
5516 /* Should check if there are write-behind devices? */
5517
5518 chunksect = 64*2; /* 64K by default */
5519
5520 /* The array must be an exact multiple of chunksize */
5521 while (chunksect && (mddev->array_sectors & (chunksect-1)))
5522 chunksect >>= 1;
5523
5524 if ((chunksect<<9) < STRIPE_SIZE)
5525 /* array size does not allow a suitable chunk size */
5526 return ERR_PTR(-EINVAL);
5527
5528 mddev->new_level = 5;
5529 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5530 mddev->new_chunk_sectors = chunksect;
5531
5532 return setup_conf(mddev);
5533 }
5534
5535 static void *raid5_takeover_raid6(mddev_t *mddev)
5536 {
5537 int new_layout;
5538
5539 switch (mddev->layout) {
5540 case ALGORITHM_LEFT_ASYMMETRIC_6:
5541 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5542 break;
5543 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5544 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5545 break;
5546 case ALGORITHM_LEFT_SYMMETRIC_6:
5547 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5548 break;
5549 case ALGORITHM_RIGHT_SYMMETRIC_6:
5550 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5551 break;
5552 case ALGORITHM_PARITY_0_6:
5553 new_layout = ALGORITHM_PARITY_0;
5554 break;
5555 case ALGORITHM_PARITY_N:
5556 new_layout = ALGORITHM_PARITY_N;
5557 break;
5558 default:
5559 return ERR_PTR(-EINVAL);
5560 }
5561 mddev->new_level = 5;
5562 mddev->new_layout = new_layout;
5563 mddev->delta_disks = -1;
5564 mddev->raid_disks -= 1;
5565 return setup_conf(mddev);
5566 }
5567
5568
5569 static int raid5_check_reshape(mddev_t *mddev)
5570 {
5571 /* For a 2-drive array, the layout and chunk size can be changed
5572 * immediately as not restriping is needed.
5573 * For larger arrays we record the new value - after validation
5574 * to be used by a reshape pass.
5575 */
5576 raid5_conf_t *conf = mddev->private;
5577 int new_chunk = mddev->new_chunk_sectors;
5578
5579 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5580 return -EINVAL;
5581 if (new_chunk > 0) {
5582 if (!is_power_of_2(new_chunk))
5583 return -EINVAL;
5584 if (new_chunk < (PAGE_SIZE>>9))
5585 return -EINVAL;
5586 if (mddev->array_sectors & (new_chunk-1))
5587 /* not factor of array size */
5588 return -EINVAL;
5589 }
5590
5591 /* They look valid */
5592
5593 if (mddev->raid_disks == 2) {
5594 /* can make the change immediately */
5595 if (mddev->new_layout >= 0) {
5596 conf->algorithm = mddev->new_layout;
5597 mddev->layout = mddev->new_layout;
5598 }
5599 if (new_chunk > 0) {
5600 conf->chunk_sectors = new_chunk ;
5601 mddev->chunk_sectors = new_chunk;
5602 }
5603 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5604 md_wakeup_thread(mddev->thread);
5605 }
5606 return check_reshape(mddev);
5607 }
5608
5609 static int raid6_check_reshape(mddev_t *mddev)
5610 {
5611 int new_chunk = mddev->new_chunk_sectors;
5612
5613 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5614 return -EINVAL;
5615 if (new_chunk > 0) {
5616 if (!is_power_of_2(new_chunk))
5617 return -EINVAL;
5618 if (new_chunk < (PAGE_SIZE >> 9))
5619 return -EINVAL;
5620 if (mddev->array_sectors & (new_chunk-1))
5621 /* not factor of array size */
5622 return -EINVAL;
5623 }
5624
5625 /* They look valid */
5626 return check_reshape(mddev);
5627 }
5628
5629 static void *raid5_takeover(mddev_t *mddev)
5630 {
5631 /* raid5 can take over:
5632 * raid0 - if all devices are the same - make it a raid4 layout
5633 * raid1 - if there are two drives. We need to know the chunk size
5634 * raid4 - trivial - just use a raid4 layout.
5635 * raid6 - Providing it is a *_6 layout
5636 */
5637
5638 if (mddev->level == 1)
5639 return raid5_takeover_raid1(mddev);
5640 if (mddev->level == 4) {
5641 mddev->new_layout = ALGORITHM_PARITY_N;
5642 mddev->new_level = 5;
5643 return setup_conf(mddev);
5644 }
5645 if (mddev->level == 6)
5646 return raid5_takeover_raid6(mddev);
5647
5648 return ERR_PTR(-EINVAL);
5649 }
5650
5651
5652 static struct mdk_personality raid5_personality;
5653
5654 static void *raid6_takeover(mddev_t *mddev)
5655 {
5656 /* Currently can only take over a raid5. We map the
5657 * personality to an equivalent raid6 personality
5658 * with the Q block at the end.
5659 */
5660 int new_layout;
5661
5662 if (mddev->pers != &raid5_personality)
5663 return ERR_PTR(-EINVAL);
5664 if (mddev->degraded > 1)
5665 return ERR_PTR(-EINVAL);
5666 if (mddev->raid_disks > 253)
5667 return ERR_PTR(-EINVAL);
5668 if (mddev->raid_disks < 3)
5669 return ERR_PTR(-EINVAL);
5670
5671 switch (mddev->layout) {
5672 case ALGORITHM_LEFT_ASYMMETRIC:
5673 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5674 break;
5675 case ALGORITHM_RIGHT_ASYMMETRIC:
5676 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5677 break;
5678 case ALGORITHM_LEFT_SYMMETRIC:
5679 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5680 break;
5681 case ALGORITHM_RIGHT_SYMMETRIC:
5682 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5683 break;
5684 case ALGORITHM_PARITY_0:
5685 new_layout = ALGORITHM_PARITY_0_6;
5686 break;
5687 case ALGORITHM_PARITY_N:
5688 new_layout = ALGORITHM_PARITY_N;
5689 break;
5690 default:
5691 return ERR_PTR(-EINVAL);
5692 }
5693 mddev->new_level = 6;
5694 mddev->new_layout = new_layout;
5695 mddev->delta_disks = 1;
5696 mddev->raid_disks += 1;
5697 return setup_conf(mddev);
5698 }
5699
5700
5701 static struct mdk_personality raid6_personality =
5702 {
5703 .name = "raid6",
5704 .level = 6,
5705 .owner = THIS_MODULE,
5706 .make_request = make_request,
5707 .run = run,
5708 .stop = stop,
5709 .status = status,
5710 .error_handler = error,
5711 .hot_add_disk = raid5_add_disk,
5712 .hot_remove_disk= raid5_remove_disk,
5713 .spare_active = raid5_spare_active,
5714 .sync_request = sync_request,
5715 .resize = raid5_resize,
5716 .size = raid5_size,
5717 .check_reshape = raid6_check_reshape,
5718 .start_reshape = raid5_start_reshape,
5719 .finish_reshape = raid5_finish_reshape,
5720 .quiesce = raid5_quiesce,
5721 .takeover = raid6_takeover,
5722 };
5723 static struct mdk_personality raid5_personality =
5724 {
5725 .name = "raid5",
5726 .level = 5,
5727 .owner = THIS_MODULE,
5728 .make_request = make_request,
5729 .run = run,
5730 .stop = stop,
5731 .status = status,
5732 .error_handler = error,
5733 .hot_add_disk = raid5_add_disk,
5734 .hot_remove_disk= raid5_remove_disk,
5735 .spare_active = raid5_spare_active,
5736 .sync_request = sync_request,
5737 .resize = raid5_resize,
5738 .size = raid5_size,
5739 .check_reshape = raid5_check_reshape,
5740 .start_reshape = raid5_start_reshape,
5741 .finish_reshape = raid5_finish_reshape,
5742 .quiesce = raid5_quiesce,
5743 .takeover = raid5_takeover,
5744 };
5745
5746 static struct mdk_personality raid4_personality =
5747 {
5748 .name = "raid4",
5749 .level = 4,
5750 .owner = THIS_MODULE,
5751 .make_request = make_request,
5752 .run = run,
5753 .stop = stop,
5754 .status = status,
5755 .error_handler = error,
5756 .hot_add_disk = raid5_add_disk,
5757 .hot_remove_disk= raid5_remove_disk,
5758 .spare_active = raid5_spare_active,
5759 .sync_request = sync_request,
5760 .resize = raid5_resize,
5761 .size = raid5_size,
5762 .check_reshape = raid5_check_reshape,
5763 .start_reshape = raid5_start_reshape,
5764 .finish_reshape = raid5_finish_reshape,
5765 .quiesce = raid5_quiesce,
5766 };
5767
5768 static int __init raid5_init(void)
5769 {
5770 register_md_personality(&raid6_personality);
5771 register_md_personality(&raid5_personality);
5772 register_md_personality(&raid4_personality);
5773 return 0;
5774 }
5775
5776 static void raid5_exit(void)
5777 {
5778 unregister_md_personality(&raid6_personality);
5779 unregister_md_personality(&raid5_personality);
5780 unregister_md_personality(&raid4_personality);
5781 }
5782
5783 module_init(raid5_init);
5784 module_exit(raid5_exit);
5785 MODULE_LICENSE("GPL");
5786 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5787 MODULE_ALIAS("md-raid5");
5788 MODULE_ALIAS("md-raid4");
5789 MODULE_ALIAS("md-level-5");
5790 MODULE_ALIAS("md-level-4");
5791 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5792 MODULE_ALIAS("md-raid6");
5793 MODULE_ALIAS("md-level-6");
5794
5795 /* This used to be two separate modules, they were: */
5796 MODULE_ALIAS("raid5");
5797 MODULE_ALIAS("raid6");
This page took 0.236325 seconds and 5 git commands to generate.