Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/shaggy...
[deliverable/linux.git] / drivers / media / dvb / frontends / tda10086.c
1 /*
2 Driver for Philips tda10086 DVBS Demodulator
3
4 (c) 2006 Andrew de Quincey
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20
21 */
22
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/device.h>
26 #include <linux/jiffies.h>
27 #include <linux/string.h>
28 #include <linux/slab.h>
29
30 #include "dvb_frontend.h"
31 #include "tda10086.h"
32
33 #define SACLK 96000000
34
35 struct tda10086_state {
36 struct i2c_adapter* i2c;
37 const struct tda10086_config* config;
38 struct dvb_frontend frontend;
39
40 /* private demod data */
41 u32 frequency;
42 u32 symbol_rate;
43 bool has_lock;
44 };
45
46 static int debug = 0;
47 #define dprintk(args...) \
48 do { \
49 if (debug) printk(KERN_DEBUG "tda10086: " args); \
50 } while (0)
51
52 static int tda10086_write_byte(struct tda10086_state *state, int reg, int data)
53 {
54 int ret;
55 u8 b0[] = { reg, data };
56 struct i2c_msg msg = { .flags = 0, .buf = b0, .len = 2 };
57
58 msg.addr = state->config->demod_address;
59 ret = i2c_transfer(state->i2c, &msg, 1);
60
61 if (ret != 1)
62 dprintk("%s: error reg=0x%x, data=0x%x, ret=%i\n",
63 __FUNCTION__, reg, data, ret);
64
65 return (ret != 1) ? ret : 0;
66 }
67
68 static int tda10086_read_byte(struct tda10086_state *state, int reg)
69 {
70 int ret;
71 u8 b0[] = { reg };
72 u8 b1[] = { 0 };
73 struct i2c_msg msg[] = {{ .flags = 0, .buf = b0, .len = 1 },
74 { .flags = I2C_M_RD, .buf = b1, .len = 1 }};
75
76 msg[0].addr = state->config->demod_address;
77 msg[1].addr = state->config->demod_address;
78 ret = i2c_transfer(state->i2c, msg, 2);
79
80 if (ret != 2) {
81 dprintk("%s: error reg=0x%x, ret=%i\n", __FUNCTION__, reg,
82 ret);
83 return ret;
84 }
85
86 return b1[0];
87 }
88
89 static int tda10086_write_mask(struct tda10086_state *state, int reg, int mask, int data)
90 {
91 int val;
92
93 // read a byte and check
94 val = tda10086_read_byte(state, reg);
95 if (val < 0)
96 return val;
97
98 // mask if off
99 val = val & ~mask;
100 val |= data & 0xff;
101
102 // write it out again
103 return tda10086_write_byte(state, reg, val);
104 }
105
106 static int tda10086_init(struct dvb_frontend* fe)
107 {
108 struct tda10086_state* state = fe->demodulator_priv;
109 u8 t22k_off = 0x80;
110
111 dprintk ("%s\n", __FUNCTION__);
112
113 if (state->config->diseqc_tone)
114 t22k_off = 0;
115 // reset
116 tda10086_write_byte(state, 0x00, 0x00);
117 msleep(10);
118
119 // misc setup
120 tda10086_write_byte(state, 0x01, 0x94);
121 tda10086_write_byte(state, 0x02, 0x35); // NOTE: TT drivers appear to disable CSWP
122 tda10086_write_byte(state, 0x03, 0xe4);
123 tda10086_write_byte(state, 0x04, 0x43);
124 tda10086_write_byte(state, 0x0c, 0x0c);
125 tda10086_write_byte(state, 0x1b, 0xb0); // noise threshold
126 tda10086_write_byte(state, 0x20, 0x89); // misc
127 tda10086_write_byte(state, 0x30, 0x04); // acquisition period length
128 tda10086_write_byte(state, 0x32, 0x00); // irq off
129 tda10086_write_byte(state, 0x31, 0x56); // setup AFC
130
131 // setup PLL (assumes 16Mhz XIN)
132 tda10086_write_byte(state, 0x55, 0x2c); // misc PLL setup
133 tda10086_write_byte(state, 0x3a, 0x0b); // M=12
134 tda10086_write_byte(state, 0x3b, 0x01); // P=2
135 tda10086_write_mask(state, 0x55, 0x20, 0x00); // powerup PLL
136
137 // setup TS interface
138 tda10086_write_byte(state, 0x11, 0x81);
139 tda10086_write_byte(state, 0x12, 0x81);
140 tda10086_write_byte(state, 0x19, 0x40); // parallel mode A + MSBFIRST
141 tda10086_write_byte(state, 0x56, 0x80); // powerdown WPLL - unused in the mode we use
142 tda10086_write_byte(state, 0x57, 0x08); // bypass WPLL - unused in the mode we use
143 tda10086_write_byte(state, 0x10, 0x2a);
144
145 // setup ADC
146 tda10086_write_byte(state, 0x58, 0x61); // ADC setup
147 tda10086_write_mask(state, 0x58, 0x01, 0x00); // powerup ADC
148
149 // setup AGC
150 tda10086_write_byte(state, 0x05, 0x0B);
151 tda10086_write_byte(state, 0x37, 0x63);
152 tda10086_write_byte(state, 0x3f, 0x0a); // NOTE: flydvb varies it
153 tda10086_write_byte(state, 0x40, 0x64);
154 tda10086_write_byte(state, 0x41, 0x4f);
155 tda10086_write_byte(state, 0x42, 0x43);
156
157 // setup viterbi
158 tda10086_write_byte(state, 0x1a, 0x11); // VBER 10^6, DVB, QPSK
159
160 // setup carrier recovery
161 tda10086_write_byte(state, 0x3d, 0x80);
162
163 // setup SEC
164 tda10086_write_byte(state, 0x36, t22k_off); // all SEC off, 22k tone
165 tda10086_write_byte(state, 0x34, (((1<<19) * (22000/1000)) / (SACLK/1000))); // } tone frequency
166 tda10086_write_byte(state, 0x35, (((1<<19) * (22000/1000)) / (SACLK/1000)) >> 8); // }
167
168 return 0;
169 }
170
171 static void tda10086_diseqc_wait(struct tda10086_state *state)
172 {
173 unsigned long timeout = jiffies + msecs_to_jiffies(200);
174 while (!(tda10086_read_byte(state, 0x50) & 0x01)) {
175 if(time_after(jiffies, timeout)) {
176 printk("%s: diseqc queue not ready, command may be lost.\n", __FUNCTION__);
177 break;
178 }
179 msleep(10);
180 }
181 }
182
183 static int tda10086_set_tone (struct dvb_frontend* fe, fe_sec_tone_mode_t tone)
184 {
185 struct tda10086_state* state = fe->demodulator_priv;
186 u8 t22k_off = 0x80;
187
188 dprintk ("%s\n", __FUNCTION__);
189
190 if (state->config->diseqc_tone)
191 t22k_off = 0;
192
193 switch (tone) {
194 case SEC_TONE_OFF:
195 tda10086_write_byte(state, 0x36, t22k_off);
196 break;
197
198 case SEC_TONE_ON:
199 tda10086_write_byte(state, 0x36, 0x01 + t22k_off);
200 break;
201 }
202
203 return 0;
204 }
205
206 static int tda10086_send_master_cmd (struct dvb_frontend* fe,
207 struct dvb_diseqc_master_cmd* cmd)
208 {
209 struct tda10086_state* state = fe->demodulator_priv;
210 int i;
211 u8 oldval;
212 u8 t22k_off = 0x80;
213
214 dprintk ("%s\n", __FUNCTION__);
215
216 if (state->config->diseqc_tone)
217 t22k_off = 0;
218
219 if (cmd->msg_len > 6)
220 return -EINVAL;
221 oldval = tda10086_read_byte(state, 0x36);
222
223 for(i=0; i< cmd->msg_len; i++) {
224 tda10086_write_byte(state, 0x48+i, cmd->msg[i]);
225 }
226 tda10086_write_byte(state, 0x36, (0x08 + t22k_off)
227 | ((cmd->msg_len - 1) << 4));
228
229 tda10086_diseqc_wait(state);
230
231 tda10086_write_byte(state, 0x36, oldval);
232
233 return 0;
234 }
235
236 static int tda10086_send_burst (struct dvb_frontend* fe, fe_sec_mini_cmd_t minicmd)
237 {
238 struct tda10086_state* state = fe->demodulator_priv;
239 u8 oldval = tda10086_read_byte(state, 0x36);
240 u8 t22k_off = 0x80;
241
242 dprintk ("%s\n", __FUNCTION__);
243
244 if (state->config->diseqc_tone)
245 t22k_off = 0;
246
247 switch(minicmd) {
248 case SEC_MINI_A:
249 tda10086_write_byte(state, 0x36, 0x04 + t22k_off);
250 break;
251
252 case SEC_MINI_B:
253 tda10086_write_byte(state, 0x36, 0x06 + t22k_off);
254 break;
255 }
256
257 tda10086_diseqc_wait(state);
258
259 tda10086_write_byte(state, 0x36, oldval);
260
261 return 0;
262 }
263
264 static int tda10086_set_inversion(struct tda10086_state *state,
265 struct dvb_frontend_parameters *fe_params)
266 {
267 u8 invval = 0x80;
268
269 dprintk ("%s %i %i\n", __FUNCTION__, fe_params->inversion, state->config->invert);
270
271 switch(fe_params->inversion) {
272 case INVERSION_OFF:
273 if (state->config->invert)
274 invval = 0x40;
275 break;
276 case INVERSION_ON:
277 if (!state->config->invert)
278 invval = 0x40;
279 break;
280 case INVERSION_AUTO:
281 invval = 0x00;
282 break;
283 }
284 tda10086_write_mask(state, 0x0c, 0xc0, invval);
285
286 return 0;
287 }
288
289 static int tda10086_set_symbol_rate(struct tda10086_state *state,
290 struct dvb_frontend_parameters *fe_params)
291 {
292 u8 dfn = 0;
293 u8 afs = 0;
294 u8 byp = 0;
295 u8 reg37 = 0x43;
296 u8 reg42 = 0x43;
297 u64 big;
298 u32 tmp;
299 u32 bdr;
300 u32 bdri;
301 u32 symbol_rate = fe_params->u.qpsk.symbol_rate;
302
303 dprintk ("%s %i\n", __FUNCTION__, symbol_rate);
304
305 // setup the decimation and anti-aliasing filters..
306 if (symbol_rate < (u32) (SACLK * 0.0137)) {
307 dfn=4;
308 afs=1;
309 } else if (symbol_rate < (u32) (SACLK * 0.0208)) {
310 dfn=4;
311 afs=0;
312 } else if (symbol_rate < (u32) (SACLK * 0.0270)) {
313 dfn=3;
314 afs=1;
315 } else if (symbol_rate < (u32) (SACLK * 0.0416)) {
316 dfn=3;
317 afs=0;
318 } else if (symbol_rate < (u32) (SACLK * 0.0550)) {
319 dfn=2;
320 afs=1;
321 } else if (symbol_rate < (u32) (SACLK * 0.0833)) {
322 dfn=2;
323 afs=0;
324 } else if (symbol_rate < (u32) (SACLK * 0.1100)) {
325 dfn=1;
326 afs=1;
327 } else if (symbol_rate < (u32) (SACLK * 0.1666)) {
328 dfn=1;
329 afs=0;
330 } else if (symbol_rate < (u32) (SACLK * 0.2200)) {
331 dfn=0;
332 afs=1;
333 } else if (symbol_rate < (u32) (SACLK * 0.3333)) {
334 dfn=0;
335 afs=0;
336 } else {
337 reg37 = 0x63;
338 reg42 = 0x4f;
339 byp=1;
340 }
341
342 // calculate BDR
343 big = (1ULL<<21) * ((u64) symbol_rate/1000ULL) * (1ULL<<dfn);
344 big += ((SACLK/1000ULL)-1ULL);
345 do_div(big, (SACLK/1000ULL));
346 bdr = big & 0xfffff;
347
348 // calculate BDRI
349 tmp = (1<<dfn)*(symbol_rate/1000);
350 bdri = ((32 * (SACLK/1000)) + (tmp-1)) / tmp;
351
352 tda10086_write_byte(state, 0x21, (afs << 7) | dfn);
353 tda10086_write_mask(state, 0x20, 0x08, byp << 3);
354 tda10086_write_byte(state, 0x06, bdr);
355 tda10086_write_byte(state, 0x07, bdr >> 8);
356 tda10086_write_byte(state, 0x08, bdr >> 16);
357 tda10086_write_byte(state, 0x09, bdri);
358 tda10086_write_byte(state, 0x37, reg37);
359 tda10086_write_byte(state, 0x42, reg42);
360
361 return 0;
362 }
363
364 static int tda10086_set_fec(struct tda10086_state *state,
365 struct dvb_frontend_parameters *fe_params)
366 {
367 u8 fecval;
368
369 dprintk ("%s %i\n", __FUNCTION__, fe_params->u.qpsk.fec_inner);
370
371 switch(fe_params->u.qpsk.fec_inner) {
372 case FEC_1_2:
373 fecval = 0x00;
374 break;
375 case FEC_2_3:
376 fecval = 0x01;
377 break;
378 case FEC_3_4:
379 fecval = 0x02;
380 break;
381 case FEC_4_5:
382 fecval = 0x03;
383 break;
384 case FEC_5_6:
385 fecval = 0x04;
386 break;
387 case FEC_6_7:
388 fecval = 0x05;
389 break;
390 case FEC_7_8:
391 fecval = 0x06;
392 break;
393 case FEC_8_9:
394 fecval = 0x07;
395 break;
396 case FEC_AUTO:
397 fecval = 0x08;
398 break;
399 default:
400 return -1;
401 }
402 tda10086_write_byte(state, 0x0d, fecval);
403
404 return 0;
405 }
406
407 static int tda10086_set_frontend(struct dvb_frontend* fe,
408 struct dvb_frontend_parameters *fe_params)
409 {
410 struct tda10086_state *state = fe->demodulator_priv;
411 int ret;
412 u32 freq = 0;
413 int freqoff;
414
415 dprintk ("%s\n", __FUNCTION__);
416
417 // modify parameters for tuning
418 tda10086_write_byte(state, 0x02, 0x35);
419 state->has_lock = false;
420
421 // set params
422 if (fe->ops.tuner_ops.set_params) {
423 fe->ops.tuner_ops.set_params(fe, fe_params);
424 if (fe->ops.i2c_gate_ctrl)
425 fe->ops.i2c_gate_ctrl(fe, 0);
426
427 if (fe->ops.tuner_ops.get_frequency)
428 fe->ops.tuner_ops.get_frequency(fe, &freq);
429 if (fe->ops.i2c_gate_ctrl)
430 fe->ops.i2c_gate_ctrl(fe, 0);
431 }
432
433 // calcluate the frequency offset (in *Hz* not kHz)
434 freqoff = fe_params->frequency - freq;
435 freqoff = ((1<<16) * freqoff) / (SACLK/1000);
436 tda10086_write_byte(state, 0x3d, 0x80 | ((freqoff >> 8) & 0x7f));
437 tda10086_write_byte(state, 0x3e, freqoff);
438
439 if ((ret = tda10086_set_inversion(state, fe_params)) < 0)
440 return ret;
441 if ((ret = tda10086_set_symbol_rate(state, fe_params)) < 0)
442 return ret;
443 if ((ret = tda10086_set_fec(state, fe_params)) < 0)
444 return ret;
445
446 // soft reset + disable TS output until lock
447 tda10086_write_mask(state, 0x10, 0x40, 0x40);
448 tda10086_write_mask(state, 0x00, 0x01, 0x00);
449
450 state->symbol_rate = fe_params->u.qpsk.symbol_rate;
451 state->frequency = fe_params->frequency;
452 return 0;
453 }
454
455 static int tda10086_get_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *fe_params)
456 {
457 struct tda10086_state* state = fe->demodulator_priv;
458 u8 val;
459 int tmp;
460 u64 tmp64;
461
462 dprintk ("%s\n", __FUNCTION__);
463
464 // check for invalid symbol rate
465 if (fe_params->u.qpsk.symbol_rate < 500000)
466 return -EINVAL;
467
468 // calculate the updated frequency (note: we convert from Hz->kHz)
469 tmp64 = tda10086_read_byte(state, 0x52);
470 tmp64 |= (tda10086_read_byte(state, 0x51) << 8);
471 if (tmp64 & 0x8000)
472 tmp64 |= 0xffffffffffff0000ULL;
473 tmp64 = (tmp64 * (SACLK/1000ULL));
474 do_div(tmp64, (1ULL<<15) * (1ULL<<1));
475 fe_params->frequency = (int) state->frequency + (int) tmp64;
476
477 // the inversion
478 val = tda10086_read_byte(state, 0x0c);
479 if (val & 0x80) {
480 switch(val & 0x40) {
481 case 0x00:
482 fe_params->inversion = INVERSION_OFF;
483 if (state->config->invert)
484 fe_params->inversion = INVERSION_ON;
485 break;
486 default:
487 fe_params->inversion = INVERSION_ON;
488 if (state->config->invert)
489 fe_params->inversion = INVERSION_OFF;
490 break;
491 }
492 } else {
493 tda10086_read_byte(state, 0x0f);
494 switch(val & 0x02) {
495 case 0x00:
496 fe_params->inversion = INVERSION_OFF;
497 if (state->config->invert)
498 fe_params->inversion = INVERSION_ON;
499 break;
500 default:
501 fe_params->inversion = INVERSION_ON;
502 if (state->config->invert)
503 fe_params->inversion = INVERSION_OFF;
504 break;
505 }
506 }
507
508 // calculate the updated symbol rate
509 tmp = tda10086_read_byte(state, 0x1d);
510 if (tmp & 0x80)
511 tmp |= 0xffffff00;
512 tmp = (tmp * 480 * (1<<1)) / 128;
513 tmp = ((state->symbol_rate/1000) * tmp) / (1000000/1000);
514 fe_params->u.qpsk.symbol_rate = state->symbol_rate + tmp;
515
516 // the FEC
517 val = (tda10086_read_byte(state, 0x0d) & 0x70) >> 4;
518 switch(val) {
519 case 0x00:
520 fe_params->u.qpsk.fec_inner = FEC_1_2;
521 break;
522 case 0x01:
523 fe_params->u.qpsk.fec_inner = FEC_2_3;
524 break;
525 case 0x02:
526 fe_params->u.qpsk.fec_inner = FEC_3_4;
527 break;
528 case 0x03:
529 fe_params->u.qpsk.fec_inner = FEC_4_5;
530 break;
531 case 0x04:
532 fe_params->u.qpsk.fec_inner = FEC_5_6;
533 break;
534 case 0x05:
535 fe_params->u.qpsk.fec_inner = FEC_6_7;
536 break;
537 case 0x06:
538 fe_params->u.qpsk.fec_inner = FEC_7_8;
539 break;
540 case 0x07:
541 fe_params->u.qpsk.fec_inner = FEC_8_9;
542 break;
543 }
544
545 return 0;
546 }
547
548 static int tda10086_read_status(struct dvb_frontend* fe, fe_status_t *fe_status)
549 {
550 struct tda10086_state* state = fe->demodulator_priv;
551 u8 val;
552
553 dprintk ("%s\n", __FUNCTION__);
554
555 val = tda10086_read_byte(state, 0x0e);
556 *fe_status = 0;
557 if (val & 0x01)
558 *fe_status |= FE_HAS_SIGNAL;
559 if (val & 0x02)
560 *fe_status |= FE_HAS_CARRIER;
561 if (val & 0x04)
562 *fe_status |= FE_HAS_VITERBI;
563 if (val & 0x08)
564 *fe_status |= FE_HAS_SYNC;
565 if (val & 0x10) {
566 *fe_status |= FE_HAS_LOCK;
567 if (!state->has_lock) {
568 state->has_lock = true;
569 // modify parameters for stable reception
570 tda10086_write_byte(state, 0x02, 0x00);
571 }
572 }
573
574 return 0;
575 }
576
577 static int tda10086_read_signal_strength(struct dvb_frontend* fe, u16 * signal)
578 {
579 struct tda10086_state* state = fe->demodulator_priv;
580 u8 _str;
581
582 dprintk ("%s\n", __FUNCTION__);
583
584 _str = 0xff - tda10086_read_byte(state, 0x43);
585 *signal = (_str << 8) | _str;
586
587 return 0;
588 }
589
590 static int tda10086_read_snr(struct dvb_frontend* fe, u16 * snr)
591 {
592 struct tda10086_state* state = fe->demodulator_priv;
593 u8 _snr;
594
595 dprintk ("%s\n", __FUNCTION__);
596
597 _snr = 0xff - tda10086_read_byte(state, 0x1c);
598 *snr = (_snr << 8) | _snr;
599
600 return 0;
601 }
602
603 static int tda10086_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
604 {
605 struct tda10086_state* state = fe->demodulator_priv;
606
607 dprintk ("%s\n", __FUNCTION__);
608
609 // read it
610 *ucblocks = tda10086_read_byte(state, 0x18) & 0x7f;
611
612 // reset counter
613 tda10086_write_byte(state, 0x18, 0x00);
614 tda10086_write_byte(state, 0x18, 0x80);
615
616 return 0;
617 }
618
619 static int tda10086_read_ber(struct dvb_frontend* fe, u32* ber)
620 {
621 struct tda10086_state* state = fe->demodulator_priv;
622
623 dprintk ("%s\n", __FUNCTION__);
624
625 // read it
626 *ber = 0;
627 *ber |= tda10086_read_byte(state, 0x15);
628 *ber |= tda10086_read_byte(state, 0x16) << 8;
629 *ber |= (tda10086_read_byte(state, 0x17) & 0xf) << 16;
630
631 return 0;
632 }
633
634 static int tda10086_sleep(struct dvb_frontend* fe)
635 {
636 struct tda10086_state* state = fe->demodulator_priv;
637
638 dprintk ("%s\n", __FUNCTION__);
639
640 tda10086_write_mask(state, 0x00, 0x08, 0x08);
641
642 return 0;
643 }
644
645 static int tda10086_i2c_gate_ctrl(struct dvb_frontend* fe, int enable)
646 {
647 struct tda10086_state* state = fe->demodulator_priv;
648
649 dprintk ("%s\n", __FUNCTION__);
650
651 if (enable) {
652 tda10086_write_mask(state, 0x00, 0x10, 0x10);
653 } else {
654 tda10086_write_mask(state, 0x00, 0x10, 0x00);
655 }
656
657 return 0;
658 }
659
660 static int tda10086_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings* fesettings)
661 {
662 if (fesettings->parameters.u.qpsk.symbol_rate > 20000000) {
663 fesettings->min_delay_ms = 50;
664 fesettings->step_size = 2000;
665 fesettings->max_drift = 8000;
666 } else if (fesettings->parameters.u.qpsk.symbol_rate > 12000000) {
667 fesettings->min_delay_ms = 100;
668 fesettings->step_size = 1500;
669 fesettings->max_drift = 9000;
670 } else if (fesettings->parameters.u.qpsk.symbol_rate > 8000000) {
671 fesettings->min_delay_ms = 100;
672 fesettings->step_size = 1000;
673 fesettings->max_drift = 8000;
674 } else if (fesettings->parameters.u.qpsk.symbol_rate > 4000000) {
675 fesettings->min_delay_ms = 100;
676 fesettings->step_size = 500;
677 fesettings->max_drift = 7000;
678 } else if (fesettings->parameters.u.qpsk.symbol_rate > 2000000) {
679 fesettings->min_delay_ms = 200;
680 fesettings->step_size = (fesettings->parameters.u.qpsk.symbol_rate / 8000);
681 fesettings->max_drift = 14 * fesettings->step_size;
682 } else {
683 fesettings->min_delay_ms = 200;
684 fesettings->step_size = (fesettings->parameters.u.qpsk.symbol_rate / 8000);
685 fesettings->max_drift = 18 * fesettings->step_size;
686 }
687
688 return 0;
689 }
690
691 static void tda10086_release(struct dvb_frontend* fe)
692 {
693 struct tda10086_state *state = fe->demodulator_priv;
694 tda10086_sleep(fe);
695 kfree(state);
696 }
697
698 static struct dvb_frontend_ops tda10086_ops = {
699
700 .info = {
701 .name = "Philips TDA10086 DVB-S",
702 .type = FE_QPSK,
703 .frequency_min = 950000,
704 .frequency_max = 2150000,
705 .frequency_stepsize = 125, /* kHz for QPSK frontends */
706 .symbol_rate_min = 1000000,
707 .symbol_rate_max = 45000000,
708 .caps = FE_CAN_INVERSION_AUTO |
709 FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
710 FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
711 FE_CAN_QPSK
712 },
713
714 .release = tda10086_release,
715
716 .init = tda10086_init,
717 .sleep = tda10086_sleep,
718 .i2c_gate_ctrl = tda10086_i2c_gate_ctrl,
719
720 .set_frontend = tda10086_set_frontend,
721 .get_frontend = tda10086_get_frontend,
722 .get_tune_settings = tda10086_get_tune_settings,
723
724 .read_status = tda10086_read_status,
725 .read_ber = tda10086_read_ber,
726 .read_signal_strength = tda10086_read_signal_strength,
727 .read_snr = tda10086_read_snr,
728 .read_ucblocks = tda10086_read_ucblocks,
729
730 .diseqc_send_master_cmd = tda10086_send_master_cmd,
731 .diseqc_send_burst = tda10086_send_burst,
732 .set_tone = tda10086_set_tone,
733 };
734
735 struct dvb_frontend* tda10086_attach(const struct tda10086_config* config,
736 struct i2c_adapter* i2c)
737 {
738 struct tda10086_state *state;
739
740 dprintk ("%s\n", __FUNCTION__);
741
742 /* allocate memory for the internal state */
743 state = kmalloc(sizeof(struct tda10086_state), GFP_KERNEL);
744 if (!state)
745 return NULL;
746
747 /* setup the state */
748 state->config = config;
749 state->i2c = i2c;
750
751 /* check if the demod is there */
752 if (tda10086_read_byte(state, 0x1e) != 0xe1) {
753 kfree(state);
754 return NULL;
755 }
756
757 /* create dvb_frontend */
758 memcpy(&state->frontend.ops, &tda10086_ops, sizeof(struct dvb_frontend_ops));
759 state->frontend.demodulator_priv = state;
760 return &state->frontend;
761 }
762
763 module_param(debug, int, 0644);
764 MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
765
766 MODULE_DESCRIPTION("Philips TDA10086 DVB-S Demodulator");
767 MODULE_AUTHOR("Andrew de Quincey");
768 MODULE_LICENSE("GPL");
769
770 EXPORT_SYMBOL(tda10086_attach);
This page took 0.047887 seconds and 6 git commands to generate.