Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[deliverable/linux.git] / drivers / media / dvb-frontends / af9013.c
1 /*
2 * Afatech AF9013 demodulator driver
3 *
4 * Copyright (C) 2007 Antti Palosaari <crope@iki.fi>
5 * Copyright (C) 2011 Antti Palosaari <crope@iki.fi>
6 *
7 * Thanks to Afatech who kindly provided information.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 *
23 */
24
25 #include "af9013_priv.h"
26
27 /* Max transfer size done by I2C transfer functions */
28 #define MAX_XFER_SIZE 64
29
30 struct af9013_state {
31 struct i2c_adapter *i2c;
32 struct dvb_frontend fe;
33 struct af9013_config config;
34
35 /* tuner/demod RF and IF AGC limits used for signal strength calc */
36 u8 signal_strength_en, rf_50, rf_80, if_50, if_80;
37 u16 signal_strength;
38 u32 ber;
39 u32 ucblocks;
40 u16 snr;
41 u32 bandwidth_hz;
42 fe_status_t fe_status;
43 unsigned long set_frontend_jiffies;
44 unsigned long read_status_jiffies;
45 bool first_tune;
46 bool i2c_gate_state;
47 unsigned int statistics_step:3;
48 struct delayed_work statistics_work;
49 };
50
51 /* write multiple registers */
52 static int af9013_wr_regs_i2c(struct af9013_state *priv, u8 mbox, u16 reg,
53 const u8 *val, int len)
54 {
55 int ret;
56 u8 buf[MAX_XFER_SIZE];
57 struct i2c_msg msg[1] = {
58 {
59 .addr = priv->config.i2c_addr,
60 .flags = 0,
61 .len = 3 + len,
62 .buf = buf,
63 }
64 };
65
66 if (3 + len > sizeof(buf)) {
67 dev_warn(&priv->i2c->dev,
68 "%s: i2c wr reg=%04x: len=%d is too big!\n",
69 KBUILD_MODNAME, reg, len);
70 return -EINVAL;
71 }
72
73 buf[0] = (reg >> 8) & 0xff;
74 buf[1] = (reg >> 0) & 0xff;
75 buf[2] = mbox;
76 memcpy(&buf[3], val, len);
77
78 ret = i2c_transfer(priv->i2c, msg, 1);
79 if (ret == 1) {
80 ret = 0;
81 } else {
82 dev_warn(&priv->i2c->dev, "%s: i2c wr failed=%d reg=%04x " \
83 "len=%d\n", KBUILD_MODNAME, ret, reg, len);
84 ret = -EREMOTEIO;
85 }
86 return ret;
87 }
88
89 /* read multiple registers */
90 static int af9013_rd_regs_i2c(struct af9013_state *priv, u8 mbox, u16 reg,
91 u8 *val, int len)
92 {
93 int ret;
94 u8 buf[3];
95 struct i2c_msg msg[2] = {
96 {
97 .addr = priv->config.i2c_addr,
98 .flags = 0,
99 .len = 3,
100 .buf = buf,
101 }, {
102 .addr = priv->config.i2c_addr,
103 .flags = I2C_M_RD,
104 .len = len,
105 .buf = val,
106 }
107 };
108
109 buf[0] = (reg >> 8) & 0xff;
110 buf[1] = (reg >> 0) & 0xff;
111 buf[2] = mbox;
112
113 ret = i2c_transfer(priv->i2c, msg, 2);
114 if (ret == 2) {
115 ret = 0;
116 } else {
117 dev_warn(&priv->i2c->dev, "%s: i2c rd failed=%d reg=%04x " \
118 "len=%d\n", KBUILD_MODNAME, ret, reg, len);
119 ret = -EREMOTEIO;
120 }
121 return ret;
122 }
123
124 /* write multiple registers */
125 static int af9013_wr_regs(struct af9013_state *priv, u16 reg, const u8 *val,
126 int len)
127 {
128 int ret, i;
129 u8 mbox = (0 << 7)|(0 << 6)|(1 << 1)|(1 << 0);
130
131 if ((priv->config.ts_mode == AF9013_TS_USB) &&
132 ((reg & 0xff00) != 0xff00) && ((reg & 0xff00) != 0xae00)) {
133 mbox |= ((len - 1) << 2);
134 ret = af9013_wr_regs_i2c(priv, mbox, reg, val, len);
135 } else {
136 for (i = 0; i < len; i++) {
137 ret = af9013_wr_regs_i2c(priv, mbox, reg+i, val+i, 1);
138 if (ret)
139 goto err;
140 }
141 }
142
143 err:
144 return 0;
145 }
146
147 /* read multiple registers */
148 static int af9013_rd_regs(struct af9013_state *priv, u16 reg, u8 *val, int len)
149 {
150 int ret, i;
151 u8 mbox = (0 << 7)|(0 << 6)|(1 << 1)|(0 << 0);
152
153 if ((priv->config.ts_mode == AF9013_TS_USB) &&
154 ((reg & 0xff00) != 0xff00) && ((reg & 0xff00) != 0xae00)) {
155 mbox |= ((len - 1) << 2);
156 ret = af9013_rd_regs_i2c(priv, mbox, reg, val, len);
157 } else {
158 for (i = 0; i < len; i++) {
159 ret = af9013_rd_regs_i2c(priv, mbox, reg+i, val+i, 1);
160 if (ret)
161 goto err;
162 }
163 }
164
165 err:
166 return 0;
167 }
168
169 /* write single register */
170 static int af9013_wr_reg(struct af9013_state *priv, u16 reg, u8 val)
171 {
172 return af9013_wr_regs(priv, reg, &val, 1);
173 }
174
175 /* read single register */
176 static int af9013_rd_reg(struct af9013_state *priv, u16 reg, u8 *val)
177 {
178 return af9013_rd_regs(priv, reg, val, 1);
179 }
180
181 static int af9013_write_ofsm_regs(struct af9013_state *state, u16 reg, u8 *val,
182 u8 len)
183 {
184 u8 mbox = (1 << 7)|(1 << 6)|((len - 1) << 2)|(1 << 1)|(1 << 0);
185 return af9013_wr_regs_i2c(state, mbox, reg, val, len);
186 }
187
188 static int af9013_wr_reg_bits(struct af9013_state *state, u16 reg, int pos,
189 int len, u8 val)
190 {
191 int ret;
192 u8 tmp, mask;
193
194 /* no need for read if whole reg is written */
195 if (len != 8) {
196 ret = af9013_rd_reg(state, reg, &tmp);
197 if (ret)
198 return ret;
199
200 mask = (0xff >> (8 - len)) << pos;
201 val <<= pos;
202 tmp &= ~mask;
203 val |= tmp;
204 }
205
206 return af9013_wr_reg(state, reg, val);
207 }
208
209 static int af9013_rd_reg_bits(struct af9013_state *state, u16 reg, int pos,
210 int len, u8 *val)
211 {
212 int ret;
213 u8 tmp;
214
215 ret = af9013_rd_reg(state, reg, &tmp);
216 if (ret)
217 return ret;
218
219 *val = (tmp >> pos);
220 *val &= (0xff >> (8 - len));
221
222 return 0;
223 }
224
225 static int af9013_set_gpio(struct af9013_state *state, u8 gpio, u8 gpioval)
226 {
227 int ret;
228 u8 pos;
229 u16 addr;
230
231 dev_dbg(&state->i2c->dev, "%s: gpio=%d gpioval=%02x\n",
232 __func__, gpio, gpioval);
233
234 /*
235 * GPIO0 & GPIO1 0xd735
236 * GPIO2 & GPIO3 0xd736
237 */
238
239 switch (gpio) {
240 case 0:
241 case 1:
242 addr = 0xd735;
243 break;
244 case 2:
245 case 3:
246 addr = 0xd736;
247 break;
248
249 default:
250 dev_err(&state->i2c->dev, "%s: invalid gpio=%d\n",
251 KBUILD_MODNAME, gpio);
252 ret = -EINVAL;
253 goto err;
254 }
255
256 switch (gpio) {
257 case 0:
258 case 2:
259 pos = 0;
260 break;
261 case 1:
262 case 3:
263 default:
264 pos = 4;
265 break;
266 }
267
268 ret = af9013_wr_reg_bits(state, addr, pos, 4, gpioval);
269 if (ret)
270 goto err;
271
272 return ret;
273 err:
274 dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
275 return ret;
276 }
277
278 static u32 af9013_div(struct af9013_state *state, u32 a, u32 b, u32 x)
279 {
280 u32 r = 0, c = 0, i;
281
282 dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d\n", __func__, a, b, x);
283
284 if (a > b) {
285 c = a / b;
286 a = a - c * b;
287 }
288
289 for (i = 0; i < x; i++) {
290 if (a >= b) {
291 r += 1;
292 a -= b;
293 }
294 a <<= 1;
295 r <<= 1;
296 }
297 r = (c << (u32)x) + r;
298
299 dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d r=%d r=%x\n",
300 __func__, a, b, x, r, r);
301
302 return r;
303 }
304
305 static int af9013_power_ctrl(struct af9013_state *state, u8 onoff)
306 {
307 int ret, i;
308 u8 tmp;
309
310 dev_dbg(&state->i2c->dev, "%s: onoff=%d\n", __func__, onoff);
311
312 /* enable reset */
313 ret = af9013_wr_reg_bits(state, 0xd417, 4, 1, 1);
314 if (ret)
315 goto err;
316
317 /* start reset mechanism */
318 ret = af9013_wr_reg(state, 0xaeff, 1);
319 if (ret)
320 goto err;
321
322 /* wait reset performs */
323 for (i = 0; i < 150; i++) {
324 ret = af9013_rd_reg_bits(state, 0xd417, 1, 1, &tmp);
325 if (ret)
326 goto err;
327
328 if (tmp)
329 break; /* reset done */
330
331 usleep_range(5000, 25000);
332 }
333
334 if (!tmp)
335 return -ETIMEDOUT;
336
337 if (onoff) {
338 /* clear reset */
339 ret = af9013_wr_reg_bits(state, 0xd417, 1, 1, 0);
340 if (ret)
341 goto err;
342
343 /* disable reset */
344 ret = af9013_wr_reg_bits(state, 0xd417, 4, 1, 0);
345
346 /* power on */
347 ret = af9013_wr_reg_bits(state, 0xd73a, 3, 1, 0);
348 } else {
349 /* power off */
350 ret = af9013_wr_reg_bits(state, 0xd73a, 3, 1, 1);
351 }
352
353 return ret;
354 err:
355 dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
356 return ret;
357 }
358
359 static int af9013_statistics_ber_unc_start(struct dvb_frontend *fe)
360 {
361 struct af9013_state *state = fe->demodulator_priv;
362 int ret;
363
364 dev_dbg(&state->i2c->dev, "%s:\n", __func__);
365
366 /* reset and start BER counter */
367 ret = af9013_wr_reg_bits(state, 0xd391, 4, 1, 1);
368 if (ret)
369 goto err;
370
371 return ret;
372 err:
373 dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
374 return ret;
375 }
376
377 static int af9013_statistics_ber_unc_result(struct dvb_frontend *fe)
378 {
379 struct af9013_state *state = fe->demodulator_priv;
380 int ret;
381 u8 buf[5];
382
383 dev_dbg(&state->i2c->dev, "%s:\n", __func__);
384
385 /* check if error bit count is ready */
386 ret = af9013_rd_reg_bits(state, 0xd391, 4, 1, &buf[0]);
387 if (ret)
388 goto err;
389
390 if (!buf[0]) {
391 dev_dbg(&state->i2c->dev, "%s: not ready\n", __func__);
392 return 0;
393 }
394
395 ret = af9013_rd_regs(state, 0xd387, buf, 5);
396 if (ret)
397 goto err;
398
399 state->ber = (buf[2] << 16) | (buf[1] << 8) | buf[0];
400 state->ucblocks += (buf[4] << 8) | buf[3];
401
402 return ret;
403 err:
404 dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
405 return ret;
406 }
407
408 static int af9013_statistics_snr_start(struct dvb_frontend *fe)
409 {
410 struct af9013_state *state = fe->demodulator_priv;
411 int ret;
412
413 dev_dbg(&state->i2c->dev, "%s:\n", __func__);
414
415 /* start SNR meas */
416 ret = af9013_wr_reg_bits(state, 0xd2e1, 3, 1, 1);
417 if (ret)
418 goto err;
419
420 return ret;
421 err:
422 dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
423 return ret;
424 }
425
426 static int af9013_statistics_snr_result(struct dvb_frontend *fe)
427 {
428 struct af9013_state *state = fe->demodulator_priv;
429 int ret, i, len;
430 u8 buf[3], tmp;
431 u32 snr_val;
432 const struct af9013_snr *uninitialized_var(snr_lut);
433
434 dev_dbg(&state->i2c->dev, "%s:\n", __func__);
435
436 /* check if SNR ready */
437 ret = af9013_rd_reg_bits(state, 0xd2e1, 3, 1, &tmp);
438 if (ret)
439 goto err;
440
441 if (!tmp) {
442 dev_dbg(&state->i2c->dev, "%s: not ready\n", __func__);
443 return 0;
444 }
445
446 /* read value */
447 ret = af9013_rd_regs(state, 0xd2e3, buf, 3);
448 if (ret)
449 goto err;
450
451 snr_val = (buf[2] << 16) | (buf[1] << 8) | buf[0];
452
453 /* read current modulation */
454 ret = af9013_rd_reg(state, 0xd3c1, &tmp);
455 if (ret)
456 goto err;
457
458 switch ((tmp >> 6) & 3) {
459 case 0:
460 len = ARRAY_SIZE(qpsk_snr_lut);
461 snr_lut = qpsk_snr_lut;
462 break;
463 case 1:
464 len = ARRAY_SIZE(qam16_snr_lut);
465 snr_lut = qam16_snr_lut;
466 break;
467 case 2:
468 len = ARRAY_SIZE(qam64_snr_lut);
469 snr_lut = qam64_snr_lut;
470 break;
471 default:
472 goto err;
473 }
474
475 for (i = 0; i < len; i++) {
476 tmp = snr_lut[i].snr;
477
478 if (snr_val < snr_lut[i].val)
479 break;
480 }
481 state->snr = tmp * 10; /* dB/10 */
482
483 return ret;
484 err:
485 dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
486 return ret;
487 }
488
489 static int af9013_statistics_signal_strength(struct dvb_frontend *fe)
490 {
491 struct af9013_state *state = fe->demodulator_priv;
492 int ret = 0;
493 u8 buf[2], rf_gain, if_gain;
494 int signal_strength;
495
496 dev_dbg(&state->i2c->dev, "%s:\n", __func__);
497
498 if (!state->signal_strength_en)
499 return 0;
500
501 ret = af9013_rd_regs(state, 0xd07c, buf, 2);
502 if (ret)
503 goto err;
504
505 rf_gain = buf[0];
506 if_gain = buf[1];
507
508 signal_strength = (0xffff / \
509 (9 * (state->rf_50 + state->if_50) - \
510 11 * (state->rf_80 + state->if_80))) * \
511 (10 * (rf_gain + if_gain) - \
512 11 * (state->rf_80 + state->if_80));
513 if (signal_strength < 0)
514 signal_strength = 0;
515 else if (signal_strength > 0xffff)
516 signal_strength = 0xffff;
517
518 state->signal_strength = signal_strength;
519
520 return ret;
521 err:
522 dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
523 return ret;
524 }
525
526 static void af9013_statistics_work(struct work_struct *work)
527 {
528 struct af9013_state *state = container_of(work,
529 struct af9013_state, statistics_work.work);
530 unsigned int next_msec;
531
532 /* update only signal strength when demod is not locked */
533 if (!(state->fe_status & FE_HAS_LOCK)) {
534 state->statistics_step = 0;
535 state->ber = 0;
536 state->snr = 0;
537 }
538
539 switch (state->statistics_step) {
540 default:
541 state->statistics_step = 0;
542 case 0:
543 af9013_statistics_signal_strength(&state->fe);
544 state->statistics_step++;
545 next_msec = 300;
546 break;
547 case 1:
548 af9013_statistics_snr_start(&state->fe);
549 state->statistics_step++;
550 next_msec = 200;
551 break;
552 case 2:
553 af9013_statistics_ber_unc_start(&state->fe);
554 state->statistics_step++;
555 next_msec = 1000;
556 break;
557 case 3:
558 af9013_statistics_snr_result(&state->fe);
559 state->statistics_step++;
560 next_msec = 400;
561 break;
562 case 4:
563 af9013_statistics_ber_unc_result(&state->fe);
564 state->statistics_step++;
565 next_msec = 100;
566 break;
567 }
568
569 schedule_delayed_work(&state->statistics_work,
570 msecs_to_jiffies(next_msec));
571 }
572
573 static int af9013_get_tune_settings(struct dvb_frontend *fe,
574 struct dvb_frontend_tune_settings *fesettings)
575 {
576 fesettings->min_delay_ms = 800;
577 fesettings->step_size = 0;
578 fesettings->max_drift = 0;
579
580 return 0;
581 }
582
583 static int af9013_set_frontend(struct dvb_frontend *fe)
584 {
585 struct af9013_state *state = fe->demodulator_priv;
586 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
587 int ret, i, sampling_freq;
588 bool auto_mode, spec_inv;
589 u8 buf[6];
590 u32 if_frequency, freq_cw;
591
592 dev_dbg(&state->i2c->dev, "%s: frequency=%d bandwidth_hz=%d\n",
593 __func__, c->frequency, c->bandwidth_hz);
594
595 /* program tuner */
596 if (fe->ops.tuner_ops.set_params)
597 fe->ops.tuner_ops.set_params(fe);
598
599 /* program CFOE coefficients */
600 if (c->bandwidth_hz != state->bandwidth_hz) {
601 for (i = 0; i < ARRAY_SIZE(coeff_lut); i++) {
602 if (coeff_lut[i].clock == state->config.clock &&
603 coeff_lut[i].bandwidth_hz == c->bandwidth_hz) {
604 break;
605 }
606 }
607
608 ret = af9013_wr_regs(state, 0xae00, coeff_lut[i].val,
609 sizeof(coeff_lut[i].val));
610 }
611
612 /* program frequency control */
613 if (c->bandwidth_hz != state->bandwidth_hz || state->first_tune) {
614 /* get used IF frequency */
615 if (fe->ops.tuner_ops.get_if_frequency)
616 fe->ops.tuner_ops.get_if_frequency(fe, &if_frequency);
617 else
618 if_frequency = state->config.if_frequency;
619
620 dev_dbg(&state->i2c->dev, "%s: if_frequency=%d\n",
621 __func__, if_frequency);
622
623 sampling_freq = if_frequency;
624
625 while (sampling_freq > (state->config.clock / 2))
626 sampling_freq -= state->config.clock;
627
628 if (sampling_freq < 0) {
629 sampling_freq *= -1;
630 spec_inv = state->config.spec_inv;
631 } else {
632 spec_inv = !state->config.spec_inv;
633 }
634
635 freq_cw = af9013_div(state, sampling_freq, state->config.clock,
636 23);
637
638 if (spec_inv)
639 freq_cw = 0x800000 - freq_cw;
640
641 buf[0] = (freq_cw >> 0) & 0xff;
642 buf[1] = (freq_cw >> 8) & 0xff;
643 buf[2] = (freq_cw >> 16) & 0x7f;
644
645 freq_cw = 0x800000 - freq_cw;
646
647 buf[3] = (freq_cw >> 0) & 0xff;
648 buf[4] = (freq_cw >> 8) & 0xff;
649 buf[5] = (freq_cw >> 16) & 0x7f;
650
651 ret = af9013_wr_regs(state, 0xd140, buf, 3);
652 if (ret)
653 goto err;
654
655 ret = af9013_wr_regs(state, 0x9be7, buf, 6);
656 if (ret)
657 goto err;
658 }
659
660 /* clear TPS lock flag */
661 ret = af9013_wr_reg_bits(state, 0xd330, 3, 1, 1);
662 if (ret)
663 goto err;
664
665 /* clear MPEG2 lock flag */
666 ret = af9013_wr_reg_bits(state, 0xd507, 6, 1, 0);
667 if (ret)
668 goto err;
669
670 /* empty channel function */
671 ret = af9013_wr_reg_bits(state, 0x9bfe, 0, 1, 0);
672 if (ret)
673 goto err;
674
675 /* empty DVB-T channel function */
676 ret = af9013_wr_reg_bits(state, 0x9bc2, 0, 1, 0);
677 if (ret)
678 goto err;
679
680 /* transmission parameters */
681 auto_mode = false;
682 memset(buf, 0, 3);
683
684 switch (c->transmission_mode) {
685 case TRANSMISSION_MODE_AUTO:
686 auto_mode = true;
687 break;
688 case TRANSMISSION_MODE_2K:
689 break;
690 case TRANSMISSION_MODE_8K:
691 buf[0] |= (1 << 0);
692 break;
693 default:
694 dev_dbg(&state->i2c->dev, "%s: invalid transmission_mode\n",
695 __func__);
696 auto_mode = true;
697 }
698
699 switch (c->guard_interval) {
700 case GUARD_INTERVAL_AUTO:
701 auto_mode = true;
702 break;
703 case GUARD_INTERVAL_1_32:
704 break;
705 case GUARD_INTERVAL_1_16:
706 buf[0] |= (1 << 2);
707 break;
708 case GUARD_INTERVAL_1_8:
709 buf[0] |= (2 << 2);
710 break;
711 case GUARD_INTERVAL_1_4:
712 buf[0] |= (3 << 2);
713 break;
714 default:
715 dev_dbg(&state->i2c->dev, "%s: invalid guard_interval\n",
716 __func__);
717 auto_mode = true;
718 }
719
720 switch (c->hierarchy) {
721 case HIERARCHY_AUTO:
722 auto_mode = true;
723 break;
724 case HIERARCHY_NONE:
725 break;
726 case HIERARCHY_1:
727 buf[0] |= (1 << 4);
728 break;
729 case HIERARCHY_2:
730 buf[0] |= (2 << 4);
731 break;
732 case HIERARCHY_4:
733 buf[0] |= (3 << 4);
734 break;
735 default:
736 dev_dbg(&state->i2c->dev, "%s: invalid hierarchy\n", __func__);
737 auto_mode = true;
738 }
739
740 switch (c->modulation) {
741 case QAM_AUTO:
742 auto_mode = true;
743 break;
744 case QPSK:
745 break;
746 case QAM_16:
747 buf[1] |= (1 << 6);
748 break;
749 case QAM_64:
750 buf[1] |= (2 << 6);
751 break;
752 default:
753 dev_dbg(&state->i2c->dev, "%s: invalid modulation\n", __func__);
754 auto_mode = true;
755 }
756
757 /* Use HP. How and which case we can switch to LP? */
758 buf[1] |= (1 << 4);
759
760 switch (c->code_rate_HP) {
761 case FEC_AUTO:
762 auto_mode = true;
763 break;
764 case FEC_1_2:
765 break;
766 case FEC_2_3:
767 buf[2] |= (1 << 0);
768 break;
769 case FEC_3_4:
770 buf[2] |= (2 << 0);
771 break;
772 case FEC_5_6:
773 buf[2] |= (3 << 0);
774 break;
775 case FEC_7_8:
776 buf[2] |= (4 << 0);
777 break;
778 default:
779 dev_dbg(&state->i2c->dev, "%s: invalid code_rate_HP\n",
780 __func__);
781 auto_mode = true;
782 }
783
784 switch (c->code_rate_LP) {
785 case FEC_AUTO:
786 auto_mode = true;
787 break;
788 case FEC_1_2:
789 break;
790 case FEC_2_3:
791 buf[2] |= (1 << 3);
792 break;
793 case FEC_3_4:
794 buf[2] |= (2 << 3);
795 break;
796 case FEC_5_6:
797 buf[2] |= (3 << 3);
798 break;
799 case FEC_7_8:
800 buf[2] |= (4 << 3);
801 break;
802 case FEC_NONE:
803 break;
804 default:
805 dev_dbg(&state->i2c->dev, "%s: invalid code_rate_LP\n",
806 __func__);
807 auto_mode = true;
808 }
809
810 switch (c->bandwidth_hz) {
811 case 6000000:
812 break;
813 case 7000000:
814 buf[1] |= (1 << 2);
815 break;
816 case 8000000:
817 buf[1] |= (2 << 2);
818 break;
819 default:
820 dev_dbg(&state->i2c->dev, "%s: invalid bandwidth_hz\n",
821 __func__);
822 ret = -EINVAL;
823 goto err;
824 }
825
826 ret = af9013_wr_regs(state, 0xd3c0, buf, 3);
827 if (ret)
828 goto err;
829
830 if (auto_mode) {
831 /* clear easy mode flag */
832 ret = af9013_wr_reg(state, 0xaefd, 0);
833 if (ret)
834 goto err;
835
836 dev_dbg(&state->i2c->dev, "%s: auto params\n", __func__);
837 } else {
838 /* set easy mode flag */
839 ret = af9013_wr_reg(state, 0xaefd, 1);
840 if (ret)
841 goto err;
842
843 ret = af9013_wr_reg(state, 0xaefe, 0);
844 if (ret)
845 goto err;
846
847 dev_dbg(&state->i2c->dev, "%s: manual params\n", __func__);
848 }
849
850 /* tune */
851 ret = af9013_wr_reg(state, 0xffff, 0);
852 if (ret)
853 goto err;
854
855 state->bandwidth_hz = c->bandwidth_hz;
856 state->set_frontend_jiffies = jiffies;
857 state->first_tune = false;
858
859 return ret;
860 err:
861 dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
862 return ret;
863 }
864
865 static int af9013_get_frontend(struct dvb_frontend *fe)
866 {
867 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
868 struct af9013_state *state = fe->demodulator_priv;
869 int ret;
870 u8 buf[3];
871
872 dev_dbg(&state->i2c->dev, "%s:\n", __func__);
873
874 ret = af9013_rd_regs(state, 0xd3c0, buf, 3);
875 if (ret)
876 goto err;
877
878 switch ((buf[1] >> 6) & 3) {
879 case 0:
880 c->modulation = QPSK;
881 break;
882 case 1:
883 c->modulation = QAM_16;
884 break;
885 case 2:
886 c->modulation = QAM_64;
887 break;
888 }
889
890 switch ((buf[0] >> 0) & 3) {
891 case 0:
892 c->transmission_mode = TRANSMISSION_MODE_2K;
893 break;
894 case 1:
895 c->transmission_mode = TRANSMISSION_MODE_8K;
896 }
897
898 switch ((buf[0] >> 2) & 3) {
899 case 0:
900 c->guard_interval = GUARD_INTERVAL_1_32;
901 break;
902 case 1:
903 c->guard_interval = GUARD_INTERVAL_1_16;
904 break;
905 case 2:
906 c->guard_interval = GUARD_INTERVAL_1_8;
907 break;
908 case 3:
909 c->guard_interval = GUARD_INTERVAL_1_4;
910 break;
911 }
912
913 switch ((buf[0] >> 4) & 7) {
914 case 0:
915 c->hierarchy = HIERARCHY_NONE;
916 break;
917 case 1:
918 c->hierarchy = HIERARCHY_1;
919 break;
920 case 2:
921 c->hierarchy = HIERARCHY_2;
922 break;
923 case 3:
924 c->hierarchy = HIERARCHY_4;
925 break;
926 }
927
928 switch ((buf[2] >> 0) & 7) {
929 case 0:
930 c->code_rate_HP = FEC_1_2;
931 break;
932 case 1:
933 c->code_rate_HP = FEC_2_3;
934 break;
935 case 2:
936 c->code_rate_HP = FEC_3_4;
937 break;
938 case 3:
939 c->code_rate_HP = FEC_5_6;
940 break;
941 case 4:
942 c->code_rate_HP = FEC_7_8;
943 break;
944 }
945
946 switch ((buf[2] >> 3) & 7) {
947 case 0:
948 c->code_rate_LP = FEC_1_2;
949 break;
950 case 1:
951 c->code_rate_LP = FEC_2_3;
952 break;
953 case 2:
954 c->code_rate_LP = FEC_3_4;
955 break;
956 case 3:
957 c->code_rate_LP = FEC_5_6;
958 break;
959 case 4:
960 c->code_rate_LP = FEC_7_8;
961 break;
962 }
963
964 switch ((buf[1] >> 2) & 3) {
965 case 0:
966 c->bandwidth_hz = 6000000;
967 break;
968 case 1:
969 c->bandwidth_hz = 7000000;
970 break;
971 case 2:
972 c->bandwidth_hz = 8000000;
973 break;
974 }
975
976 return ret;
977 err:
978 dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
979 return ret;
980 }
981
982 static int af9013_read_status(struct dvb_frontend *fe, fe_status_t *status)
983 {
984 struct af9013_state *state = fe->demodulator_priv;
985 int ret;
986 u8 tmp;
987
988 /*
989 * Return status from the cache if it is younger than 2000ms with the
990 * exception of last tune is done during 4000ms.
991 */
992 if (time_is_after_jiffies(
993 state->read_status_jiffies + msecs_to_jiffies(2000)) &&
994 time_is_before_jiffies(
995 state->set_frontend_jiffies + msecs_to_jiffies(4000))
996 ) {
997 *status = state->fe_status;
998 return 0;
999 } else {
1000 *status = 0;
1001 }
1002
1003 /* MPEG2 lock */
1004 ret = af9013_rd_reg_bits(state, 0xd507, 6, 1, &tmp);
1005 if (ret)
1006 goto err;
1007
1008 if (tmp)
1009 *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI |
1010 FE_HAS_SYNC | FE_HAS_LOCK;
1011
1012 if (!*status) {
1013 /* TPS lock */
1014 ret = af9013_rd_reg_bits(state, 0xd330, 3, 1, &tmp);
1015 if (ret)
1016 goto err;
1017
1018 if (tmp)
1019 *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
1020 FE_HAS_VITERBI;
1021 }
1022
1023 state->fe_status = *status;
1024 state->read_status_jiffies = jiffies;
1025
1026 return ret;
1027 err:
1028 dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
1029 return ret;
1030 }
1031
1032 static int af9013_read_snr(struct dvb_frontend *fe, u16 *snr)
1033 {
1034 struct af9013_state *state = fe->demodulator_priv;
1035 *snr = state->snr;
1036 return 0;
1037 }
1038
1039 static int af9013_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
1040 {
1041 struct af9013_state *state = fe->demodulator_priv;
1042 *strength = state->signal_strength;
1043 return 0;
1044 }
1045
1046 static int af9013_read_ber(struct dvb_frontend *fe, u32 *ber)
1047 {
1048 struct af9013_state *state = fe->demodulator_priv;
1049 *ber = state->ber;
1050 return 0;
1051 }
1052
1053 static int af9013_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
1054 {
1055 struct af9013_state *state = fe->demodulator_priv;
1056 *ucblocks = state->ucblocks;
1057 return 0;
1058 }
1059
1060 static int af9013_init(struct dvb_frontend *fe)
1061 {
1062 struct af9013_state *state = fe->demodulator_priv;
1063 int ret, i, len;
1064 u8 buf[3], tmp;
1065 u32 adc_cw;
1066 const struct af9013_reg_bit *init;
1067
1068 dev_dbg(&state->i2c->dev, "%s:\n", __func__);
1069
1070 /* power on */
1071 ret = af9013_power_ctrl(state, 1);
1072 if (ret)
1073 goto err;
1074
1075 /* enable ADC */
1076 ret = af9013_wr_reg(state, 0xd73a, 0xa4);
1077 if (ret)
1078 goto err;
1079
1080 /* write API version to firmware */
1081 ret = af9013_wr_regs(state, 0x9bf2, state->config.api_version, 4);
1082 if (ret)
1083 goto err;
1084
1085 /* program ADC control */
1086 switch (state->config.clock) {
1087 case 28800000: /* 28.800 MHz */
1088 tmp = 0;
1089 break;
1090 case 20480000: /* 20.480 MHz */
1091 tmp = 1;
1092 break;
1093 case 28000000: /* 28.000 MHz */
1094 tmp = 2;
1095 break;
1096 case 25000000: /* 25.000 MHz */
1097 tmp = 3;
1098 break;
1099 default:
1100 dev_err(&state->i2c->dev, "%s: invalid clock\n",
1101 KBUILD_MODNAME);
1102 return -EINVAL;
1103 }
1104
1105 adc_cw = af9013_div(state, state->config.clock, 1000000ul, 19);
1106 buf[0] = (adc_cw >> 0) & 0xff;
1107 buf[1] = (adc_cw >> 8) & 0xff;
1108 buf[2] = (adc_cw >> 16) & 0xff;
1109
1110 ret = af9013_wr_regs(state, 0xd180, buf, 3);
1111 if (ret)
1112 goto err;
1113
1114 ret = af9013_wr_reg_bits(state, 0x9bd2, 0, 4, tmp);
1115 if (ret)
1116 goto err;
1117
1118 /* set I2C master clock */
1119 ret = af9013_wr_reg(state, 0xd416, 0x14);
1120 if (ret)
1121 goto err;
1122
1123 /* set 16 embx */
1124 ret = af9013_wr_reg_bits(state, 0xd700, 1, 1, 1);
1125 if (ret)
1126 goto err;
1127
1128 /* set no trigger */
1129 ret = af9013_wr_reg_bits(state, 0xd700, 2, 1, 0);
1130 if (ret)
1131 goto err;
1132
1133 /* set read-update bit for constellation */
1134 ret = af9013_wr_reg_bits(state, 0xd371, 1, 1, 1);
1135 if (ret)
1136 goto err;
1137
1138 /* settings for mp2if */
1139 if (state->config.ts_mode == AF9013_TS_USB) {
1140 /* AF9015 split PSB to 1.5k + 0.5k */
1141 ret = af9013_wr_reg_bits(state, 0xd50b, 2, 1, 1);
1142 if (ret)
1143 goto err;
1144 } else {
1145 /* AF9013 change the output bit to data7 */
1146 ret = af9013_wr_reg_bits(state, 0xd500, 3, 1, 1);
1147 if (ret)
1148 goto err;
1149
1150 /* AF9013 set mpeg to full speed */
1151 ret = af9013_wr_reg_bits(state, 0xd502, 4, 1, 1);
1152 if (ret)
1153 goto err;
1154 }
1155
1156 ret = af9013_wr_reg_bits(state, 0xd520, 4, 1, 1);
1157 if (ret)
1158 goto err;
1159
1160 /* load OFSM settings */
1161 dev_dbg(&state->i2c->dev, "%s: load ofsm settings\n", __func__);
1162 len = ARRAY_SIZE(ofsm_init);
1163 init = ofsm_init;
1164 for (i = 0; i < len; i++) {
1165 ret = af9013_wr_reg_bits(state, init[i].addr, init[i].pos,
1166 init[i].len, init[i].val);
1167 if (ret)
1168 goto err;
1169 }
1170
1171 /* load tuner specific settings */
1172 dev_dbg(&state->i2c->dev, "%s: load tuner specific settings\n",
1173 __func__);
1174 switch (state->config.tuner) {
1175 case AF9013_TUNER_MXL5003D:
1176 len = ARRAY_SIZE(tuner_init_mxl5003d);
1177 init = tuner_init_mxl5003d;
1178 break;
1179 case AF9013_TUNER_MXL5005D:
1180 case AF9013_TUNER_MXL5005R:
1181 case AF9013_TUNER_MXL5007T:
1182 len = ARRAY_SIZE(tuner_init_mxl5005);
1183 init = tuner_init_mxl5005;
1184 break;
1185 case AF9013_TUNER_ENV77H11D5:
1186 len = ARRAY_SIZE(tuner_init_env77h11d5);
1187 init = tuner_init_env77h11d5;
1188 break;
1189 case AF9013_TUNER_MT2060:
1190 len = ARRAY_SIZE(tuner_init_mt2060);
1191 init = tuner_init_mt2060;
1192 break;
1193 case AF9013_TUNER_MC44S803:
1194 len = ARRAY_SIZE(tuner_init_mc44s803);
1195 init = tuner_init_mc44s803;
1196 break;
1197 case AF9013_TUNER_QT1010:
1198 case AF9013_TUNER_QT1010A:
1199 len = ARRAY_SIZE(tuner_init_qt1010);
1200 init = tuner_init_qt1010;
1201 break;
1202 case AF9013_TUNER_MT2060_2:
1203 len = ARRAY_SIZE(tuner_init_mt2060_2);
1204 init = tuner_init_mt2060_2;
1205 break;
1206 case AF9013_TUNER_TDA18271:
1207 case AF9013_TUNER_TDA18218:
1208 len = ARRAY_SIZE(tuner_init_tda18271);
1209 init = tuner_init_tda18271;
1210 break;
1211 case AF9013_TUNER_UNKNOWN:
1212 default:
1213 len = ARRAY_SIZE(tuner_init_unknown);
1214 init = tuner_init_unknown;
1215 break;
1216 }
1217
1218 for (i = 0; i < len; i++) {
1219 ret = af9013_wr_reg_bits(state, init[i].addr, init[i].pos,
1220 init[i].len, init[i].val);
1221 if (ret)
1222 goto err;
1223 }
1224
1225 /* TS mode */
1226 ret = af9013_wr_reg_bits(state, 0xd500, 1, 2, state->config.ts_mode);
1227 if (ret)
1228 goto err;
1229
1230 /* enable lock led */
1231 ret = af9013_wr_reg_bits(state, 0xd730, 0, 1, 1);
1232 if (ret)
1233 goto err;
1234
1235 /* check if we support signal strength */
1236 if (!state->signal_strength_en) {
1237 ret = af9013_rd_reg_bits(state, 0x9bee, 0, 1,
1238 &state->signal_strength_en);
1239 if (ret)
1240 goto err;
1241 }
1242
1243 /* read values needed for signal strength calculation */
1244 if (state->signal_strength_en && !state->rf_50) {
1245 ret = af9013_rd_reg(state, 0x9bbd, &state->rf_50);
1246 if (ret)
1247 goto err;
1248
1249 ret = af9013_rd_reg(state, 0x9bd0, &state->rf_80);
1250 if (ret)
1251 goto err;
1252
1253 ret = af9013_rd_reg(state, 0x9be2, &state->if_50);
1254 if (ret)
1255 goto err;
1256
1257 ret = af9013_rd_reg(state, 0x9be4, &state->if_80);
1258 if (ret)
1259 goto err;
1260 }
1261
1262 /* SNR */
1263 ret = af9013_wr_reg(state, 0xd2e2, 1);
1264 if (ret)
1265 goto err;
1266
1267 /* BER / UCB */
1268 buf[0] = (10000 >> 0) & 0xff;
1269 buf[1] = (10000 >> 8) & 0xff;
1270 ret = af9013_wr_regs(state, 0xd385, buf, 2);
1271 if (ret)
1272 goto err;
1273
1274 /* enable FEC monitor */
1275 ret = af9013_wr_reg_bits(state, 0xd392, 1, 1, 1);
1276 if (ret)
1277 goto err;
1278
1279 state->first_tune = true;
1280 schedule_delayed_work(&state->statistics_work, msecs_to_jiffies(400));
1281
1282 return ret;
1283 err:
1284 dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
1285 return ret;
1286 }
1287
1288 static int af9013_sleep(struct dvb_frontend *fe)
1289 {
1290 struct af9013_state *state = fe->demodulator_priv;
1291 int ret;
1292
1293 dev_dbg(&state->i2c->dev, "%s:\n", __func__);
1294
1295 /* stop statistics polling */
1296 cancel_delayed_work_sync(&state->statistics_work);
1297
1298 /* disable lock led */
1299 ret = af9013_wr_reg_bits(state, 0xd730, 0, 1, 0);
1300 if (ret)
1301 goto err;
1302
1303 /* power off */
1304 ret = af9013_power_ctrl(state, 0);
1305 if (ret)
1306 goto err;
1307
1308 return ret;
1309 err:
1310 dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
1311 return ret;
1312 }
1313
1314 static int af9013_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
1315 {
1316 int ret;
1317 struct af9013_state *state = fe->demodulator_priv;
1318
1319 dev_dbg(&state->i2c->dev, "%s: enable=%d\n", __func__, enable);
1320
1321 /* gate already open or close */
1322 if (state->i2c_gate_state == enable)
1323 return 0;
1324
1325 if (state->config.ts_mode == AF9013_TS_USB)
1326 ret = af9013_wr_reg_bits(state, 0xd417, 3, 1, enable);
1327 else
1328 ret = af9013_wr_reg_bits(state, 0xd607, 2, 1, enable);
1329 if (ret)
1330 goto err;
1331
1332 state->i2c_gate_state = enable;
1333
1334 return ret;
1335 err:
1336 dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
1337 return ret;
1338 }
1339
1340 static void af9013_release(struct dvb_frontend *fe)
1341 {
1342 struct af9013_state *state = fe->demodulator_priv;
1343 kfree(state);
1344 }
1345
1346 static struct dvb_frontend_ops af9013_ops;
1347
1348 static int af9013_download_firmware(struct af9013_state *state)
1349 {
1350 int i, len, remaining, ret;
1351 const struct firmware *fw;
1352 u16 checksum = 0;
1353 u8 val;
1354 u8 fw_params[4];
1355 u8 *fw_file = AF9013_FIRMWARE;
1356
1357 msleep(100);
1358 /* check whether firmware is already running */
1359 ret = af9013_rd_reg(state, 0x98be, &val);
1360 if (ret)
1361 goto err;
1362 else
1363 dev_dbg(&state->i2c->dev, "%s: firmware status=%02x\n",
1364 __func__, val);
1365
1366 if (val == 0x0c) /* fw is running, no need for download */
1367 goto exit;
1368
1369 dev_info(&state->i2c->dev, "%s: found a '%s' in cold state, will try " \
1370 "to load a firmware\n",
1371 KBUILD_MODNAME, af9013_ops.info.name);
1372
1373 /* request the firmware, this will block and timeout */
1374 ret = request_firmware(&fw, fw_file, state->i2c->dev.parent);
1375 if (ret) {
1376 dev_info(&state->i2c->dev, "%s: did not find the firmware " \
1377 "file. (%s) Please see linux/Documentation/dvb/ for " \
1378 "more details on firmware-problems. (%d)\n",
1379 KBUILD_MODNAME, fw_file, ret);
1380 goto err;
1381 }
1382
1383 dev_info(&state->i2c->dev, "%s: downloading firmware from file '%s'\n",
1384 KBUILD_MODNAME, fw_file);
1385
1386 /* calc checksum */
1387 for (i = 0; i < fw->size; i++)
1388 checksum += fw->data[i];
1389
1390 fw_params[0] = checksum >> 8;
1391 fw_params[1] = checksum & 0xff;
1392 fw_params[2] = fw->size >> 8;
1393 fw_params[3] = fw->size & 0xff;
1394
1395 /* write fw checksum & size */
1396 ret = af9013_write_ofsm_regs(state, 0x50fc,
1397 fw_params, sizeof(fw_params));
1398 if (ret)
1399 goto err_release;
1400
1401 #define FW_ADDR 0x5100 /* firmware start address */
1402 #define LEN_MAX 16 /* max packet size */
1403 for (remaining = fw->size; remaining > 0; remaining -= LEN_MAX) {
1404 len = remaining;
1405 if (len > LEN_MAX)
1406 len = LEN_MAX;
1407
1408 ret = af9013_write_ofsm_regs(state,
1409 FW_ADDR + fw->size - remaining,
1410 (u8 *) &fw->data[fw->size - remaining], len);
1411 if (ret) {
1412 dev_err(&state->i2c->dev,
1413 "%s: firmware download failed=%d\n",
1414 KBUILD_MODNAME, ret);
1415 goto err_release;
1416 }
1417 }
1418
1419 /* request boot firmware */
1420 ret = af9013_wr_reg(state, 0xe205, 1);
1421 if (ret)
1422 goto err_release;
1423
1424 for (i = 0; i < 15; i++) {
1425 msleep(100);
1426
1427 /* check firmware status */
1428 ret = af9013_rd_reg(state, 0x98be, &val);
1429 if (ret)
1430 goto err_release;
1431
1432 dev_dbg(&state->i2c->dev, "%s: firmware status=%02x\n",
1433 __func__, val);
1434
1435 if (val == 0x0c || val == 0x04) /* success or fail */
1436 break;
1437 }
1438
1439 if (val == 0x04) {
1440 dev_err(&state->i2c->dev, "%s: firmware did not run\n",
1441 KBUILD_MODNAME);
1442 ret = -ENODEV;
1443 } else if (val != 0x0c) {
1444 dev_err(&state->i2c->dev, "%s: firmware boot timeout\n",
1445 KBUILD_MODNAME);
1446 ret = -ENODEV;
1447 }
1448
1449 err_release:
1450 release_firmware(fw);
1451 err:
1452 exit:
1453 if (!ret)
1454 dev_info(&state->i2c->dev, "%s: found a '%s' in warm state\n",
1455 KBUILD_MODNAME, af9013_ops.info.name);
1456 return ret;
1457 }
1458
1459 struct dvb_frontend *af9013_attach(const struct af9013_config *config,
1460 struct i2c_adapter *i2c)
1461 {
1462 int ret;
1463 struct af9013_state *state = NULL;
1464 u8 buf[4], i;
1465
1466 /* allocate memory for the internal state */
1467 state = kzalloc(sizeof(struct af9013_state), GFP_KERNEL);
1468 if (state == NULL)
1469 goto err;
1470
1471 /* setup the state */
1472 state->i2c = i2c;
1473 memcpy(&state->config, config, sizeof(struct af9013_config));
1474
1475 /* download firmware */
1476 if (state->config.ts_mode != AF9013_TS_USB) {
1477 ret = af9013_download_firmware(state);
1478 if (ret)
1479 goto err;
1480 }
1481
1482 /* firmware version */
1483 ret = af9013_rd_regs(state, 0x5103, buf, 4);
1484 if (ret)
1485 goto err;
1486
1487 dev_info(&state->i2c->dev, "%s: firmware version %d.%d.%d.%d\n",
1488 KBUILD_MODNAME, buf[0], buf[1], buf[2], buf[3]);
1489
1490 /* set GPIOs */
1491 for (i = 0; i < sizeof(state->config.gpio); i++) {
1492 ret = af9013_set_gpio(state, i, state->config.gpio[i]);
1493 if (ret)
1494 goto err;
1495 }
1496
1497 /* create dvb_frontend */
1498 memcpy(&state->fe.ops, &af9013_ops,
1499 sizeof(struct dvb_frontend_ops));
1500 state->fe.demodulator_priv = state;
1501
1502 INIT_DELAYED_WORK(&state->statistics_work, af9013_statistics_work);
1503
1504 return &state->fe;
1505 err:
1506 kfree(state);
1507 return NULL;
1508 }
1509 EXPORT_SYMBOL(af9013_attach);
1510
1511 static struct dvb_frontend_ops af9013_ops = {
1512 .delsys = { SYS_DVBT },
1513 .info = {
1514 .name = "Afatech AF9013",
1515 .frequency_min = 174000000,
1516 .frequency_max = 862000000,
1517 .frequency_stepsize = 250000,
1518 .frequency_tolerance = 0,
1519 .caps = FE_CAN_FEC_1_2 |
1520 FE_CAN_FEC_2_3 |
1521 FE_CAN_FEC_3_4 |
1522 FE_CAN_FEC_5_6 |
1523 FE_CAN_FEC_7_8 |
1524 FE_CAN_FEC_AUTO |
1525 FE_CAN_QPSK |
1526 FE_CAN_QAM_16 |
1527 FE_CAN_QAM_64 |
1528 FE_CAN_QAM_AUTO |
1529 FE_CAN_TRANSMISSION_MODE_AUTO |
1530 FE_CAN_GUARD_INTERVAL_AUTO |
1531 FE_CAN_HIERARCHY_AUTO |
1532 FE_CAN_RECOVER |
1533 FE_CAN_MUTE_TS
1534 },
1535
1536 .release = af9013_release,
1537
1538 .init = af9013_init,
1539 .sleep = af9013_sleep,
1540
1541 .get_tune_settings = af9013_get_tune_settings,
1542 .set_frontend = af9013_set_frontend,
1543 .get_frontend = af9013_get_frontend,
1544
1545 .read_status = af9013_read_status,
1546 .read_snr = af9013_read_snr,
1547 .read_signal_strength = af9013_read_signal_strength,
1548 .read_ber = af9013_read_ber,
1549 .read_ucblocks = af9013_read_ucblocks,
1550
1551 .i2c_gate_ctrl = af9013_i2c_gate_ctrl,
1552 };
1553
1554 MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
1555 MODULE_DESCRIPTION("Afatech AF9013 DVB-T demodulator driver");
1556 MODULE_LICENSE("GPL");
1557 MODULE_FIRMWARE(AF9013_FIRMWARE);
This page took 0.104137 seconds and 5 git commands to generate.