Merge tag 'dm-3.7-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/agk/linux-dm
[deliverable/linux.git] / drivers / media / dvb-frontends / af9033.c
1 /*
2 * Afatech AF9033 demodulator driver
3 *
4 * Copyright (C) 2009 Antti Palosaari <crope@iki.fi>
5 * Copyright (C) 2012 Antti Palosaari <crope@iki.fi>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
20 */
21
22 #include "af9033_priv.h"
23
24 struct af9033_state {
25 struct i2c_adapter *i2c;
26 struct dvb_frontend fe;
27 struct af9033_config cfg;
28
29 u32 bandwidth_hz;
30 bool ts_mode_parallel;
31 bool ts_mode_serial;
32
33 u32 ber;
34 u32 ucb;
35 unsigned long last_stat_check;
36 };
37
38 /* write multiple registers */
39 static int af9033_wr_regs(struct af9033_state *state, u32 reg, const u8 *val,
40 int len)
41 {
42 int ret;
43 u8 buf[3 + len];
44 struct i2c_msg msg[1] = {
45 {
46 .addr = state->cfg.i2c_addr,
47 .flags = 0,
48 .len = sizeof(buf),
49 .buf = buf,
50 }
51 };
52
53 buf[0] = (reg >> 16) & 0xff;
54 buf[1] = (reg >> 8) & 0xff;
55 buf[2] = (reg >> 0) & 0xff;
56 memcpy(&buf[3], val, len);
57
58 ret = i2c_transfer(state->i2c, msg, 1);
59 if (ret == 1) {
60 ret = 0;
61 } else {
62 dev_warn(&state->i2c->dev, "%s: i2c wr failed=%d reg=%06x " \
63 "len=%d\n", KBUILD_MODNAME, ret, reg, len);
64 ret = -EREMOTEIO;
65 }
66
67 return ret;
68 }
69
70 /* read multiple registers */
71 static int af9033_rd_regs(struct af9033_state *state, u32 reg, u8 *val, int len)
72 {
73 int ret;
74 u8 buf[3] = { (reg >> 16) & 0xff, (reg >> 8) & 0xff,
75 (reg >> 0) & 0xff };
76 struct i2c_msg msg[2] = {
77 {
78 .addr = state->cfg.i2c_addr,
79 .flags = 0,
80 .len = sizeof(buf),
81 .buf = buf
82 }, {
83 .addr = state->cfg.i2c_addr,
84 .flags = I2C_M_RD,
85 .len = len,
86 .buf = val
87 }
88 };
89
90 ret = i2c_transfer(state->i2c, msg, 2);
91 if (ret == 2) {
92 ret = 0;
93 } else {
94 dev_warn(&state->i2c->dev, "%s: i2c rd failed=%d reg=%06x " \
95 "len=%d\n", KBUILD_MODNAME, ret, reg, len);
96 ret = -EREMOTEIO;
97 }
98
99 return ret;
100 }
101
102
103 /* write single register */
104 static int af9033_wr_reg(struct af9033_state *state, u32 reg, u8 val)
105 {
106 return af9033_wr_regs(state, reg, &val, 1);
107 }
108
109 /* read single register */
110 static int af9033_rd_reg(struct af9033_state *state, u32 reg, u8 *val)
111 {
112 return af9033_rd_regs(state, reg, val, 1);
113 }
114
115 /* write single register with mask */
116 static int af9033_wr_reg_mask(struct af9033_state *state, u32 reg, u8 val,
117 u8 mask)
118 {
119 int ret;
120 u8 tmp;
121
122 /* no need for read if whole reg is written */
123 if (mask != 0xff) {
124 ret = af9033_rd_regs(state, reg, &tmp, 1);
125 if (ret)
126 return ret;
127
128 val &= mask;
129 tmp &= ~mask;
130 val |= tmp;
131 }
132
133 return af9033_wr_regs(state, reg, &val, 1);
134 }
135
136 /* read single register with mask */
137 static int af9033_rd_reg_mask(struct af9033_state *state, u32 reg, u8 *val,
138 u8 mask)
139 {
140 int ret, i;
141 u8 tmp;
142
143 ret = af9033_rd_regs(state, reg, &tmp, 1);
144 if (ret)
145 return ret;
146
147 tmp &= mask;
148
149 /* find position of the first bit */
150 for (i = 0; i < 8; i++) {
151 if ((mask >> i) & 0x01)
152 break;
153 }
154 *val = tmp >> i;
155
156 return 0;
157 }
158
159 static u32 af9033_div(struct af9033_state *state, u32 a, u32 b, u32 x)
160 {
161 u32 r = 0, c = 0, i;
162
163 dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d\n", __func__, a, b, x);
164
165 if (a > b) {
166 c = a / b;
167 a = a - c * b;
168 }
169
170 for (i = 0; i < x; i++) {
171 if (a >= b) {
172 r += 1;
173 a -= b;
174 }
175 a <<= 1;
176 r <<= 1;
177 }
178 r = (c << (u32)x) + r;
179
180 dev_dbg(&state->i2c->dev, "%s: a=%d b=%d x=%d r=%d r=%x\n",
181 __func__, a, b, x, r, r);
182
183 return r;
184 }
185
186 static void af9033_release(struct dvb_frontend *fe)
187 {
188 struct af9033_state *state = fe->demodulator_priv;
189
190 kfree(state);
191 }
192
193 static int af9033_init(struct dvb_frontend *fe)
194 {
195 struct af9033_state *state = fe->demodulator_priv;
196 int ret, i, len;
197 const struct reg_val *init;
198 u8 buf[4];
199 u32 adc_cw, clock_cw;
200 struct reg_val_mask tab[] = {
201 { 0x80fb24, 0x00, 0x08 },
202 { 0x80004c, 0x00, 0xff },
203 { 0x00f641, state->cfg.tuner, 0xff },
204 { 0x80f5ca, 0x01, 0x01 },
205 { 0x80f715, 0x01, 0x01 },
206 { 0x00f41f, 0x04, 0x04 },
207 { 0x00f41a, 0x01, 0x01 },
208 { 0x80f731, 0x00, 0x01 },
209 { 0x00d91e, 0x00, 0x01 },
210 { 0x00d919, 0x00, 0x01 },
211 { 0x80f732, 0x00, 0x01 },
212 { 0x00d91f, 0x00, 0x01 },
213 { 0x00d91a, 0x00, 0x01 },
214 { 0x80f730, 0x00, 0x01 },
215 { 0x80f778, 0x00, 0xff },
216 { 0x80f73c, 0x01, 0x01 },
217 { 0x80f776, 0x00, 0x01 },
218 { 0x00d8fd, 0x01, 0xff },
219 { 0x00d830, 0x01, 0xff },
220 { 0x00d831, 0x00, 0xff },
221 { 0x00d832, 0x00, 0xff },
222 { 0x80f985, state->ts_mode_serial, 0x01 },
223 { 0x80f986, state->ts_mode_parallel, 0x01 },
224 { 0x00d827, 0x00, 0xff },
225 { 0x00d829, 0x00, 0xff },
226 };
227
228 /* program clock control */
229 clock_cw = af9033_div(state, state->cfg.clock, 1000000ul, 19ul);
230 buf[0] = (clock_cw >> 0) & 0xff;
231 buf[1] = (clock_cw >> 8) & 0xff;
232 buf[2] = (clock_cw >> 16) & 0xff;
233 buf[3] = (clock_cw >> 24) & 0xff;
234
235 dev_dbg(&state->i2c->dev, "%s: clock=%d clock_cw=%08x\n",
236 __func__, state->cfg.clock, clock_cw);
237
238 ret = af9033_wr_regs(state, 0x800025, buf, 4);
239 if (ret < 0)
240 goto err;
241
242 /* program ADC control */
243 for (i = 0; i < ARRAY_SIZE(clock_adc_lut); i++) {
244 if (clock_adc_lut[i].clock == state->cfg.clock)
245 break;
246 }
247
248 adc_cw = af9033_div(state, clock_adc_lut[i].adc, 1000000ul, 19ul);
249 buf[0] = (adc_cw >> 0) & 0xff;
250 buf[1] = (adc_cw >> 8) & 0xff;
251 buf[2] = (adc_cw >> 16) & 0xff;
252
253 dev_dbg(&state->i2c->dev, "%s: adc=%d adc_cw=%06x\n",
254 __func__, clock_adc_lut[i].adc, adc_cw);
255
256 ret = af9033_wr_regs(state, 0x80f1cd, buf, 3);
257 if (ret < 0)
258 goto err;
259
260 /* program register table */
261 for (i = 0; i < ARRAY_SIZE(tab); i++) {
262 ret = af9033_wr_reg_mask(state, tab[i].reg, tab[i].val,
263 tab[i].mask);
264 if (ret < 0)
265 goto err;
266 }
267
268 /* settings for TS interface */
269 if (state->cfg.ts_mode == AF9033_TS_MODE_USB) {
270 ret = af9033_wr_reg_mask(state, 0x80f9a5, 0x00, 0x01);
271 if (ret < 0)
272 goto err;
273
274 ret = af9033_wr_reg_mask(state, 0x80f9b5, 0x01, 0x01);
275 if (ret < 0)
276 goto err;
277 } else {
278 ret = af9033_wr_reg_mask(state, 0x80f990, 0x00, 0x01);
279 if (ret < 0)
280 goto err;
281
282 ret = af9033_wr_reg_mask(state, 0x80f9b5, 0x00, 0x01);
283 if (ret < 0)
284 goto err;
285 }
286
287 /* load OFSM settings */
288 dev_dbg(&state->i2c->dev, "%s: load ofsm settings\n", __func__);
289 len = ARRAY_SIZE(ofsm_init);
290 init = ofsm_init;
291 for (i = 0; i < len; i++) {
292 ret = af9033_wr_reg(state, init[i].reg, init[i].val);
293 if (ret < 0)
294 goto err;
295 }
296
297 /* load tuner specific settings */
298 dev_dbg(&state->i2c->dev, "%s: load tuner specific settings\n",
299 __func__);
300 switch (state->cfg.tuner) {
301 case AF9033_TUNER_TUA9001:
302 len = ARRAY_SIZE(tuner_init_tua9001);
303 init = tuner_init_tua9001;
304 break;
305 case AF9033_TUNER_FC0011:
306 len = ARRAY_SIZE(tuner_init_fc0011);
307 init = tuner_init_fc0011;
308 break;
309 case AF9033_TUNER_MXL5007T:
310 len = ARRAY_SIZE(tuner_init_mxl5007t);
311 init = tuner_init_mxl5007t;
312 break;
313 case AF9033_TUNER_TDA18218:
314 len = ARRAY_SIZE(tuner_init_tda18218);
315 init = tuner_init_tda18218;
316 break;
317 case AF9033_TUNER_FC2580:
318 len = ARRAY_SIZE(tuner_init_fc2580);
319 init = tuner_init_fc2580;
320 break;
321 default:
322 dev_dbg(&state->i2c->dev, "%s: unsupported tuner ID=%d\n",
323 __func__, state->cfg.tuner);
324 ret = -ENODEV;
325 goto err;
326 }
327
328 for (i = 0; i < len; i++) {
329 ret = af9033_wr_reg(state, init[i].reg, init[i].val);
330 if (ret < 0)
331 goto err;
332 }
333
334 state->bandwidth_hz = 0; /* force to program all parameters */
335
336 return 0;
337
338 err:
339 dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
340
341 return ret;
342 }
343
344 static int af9033_sleep(struct dvb_frontend *fe)
345 {
346 struct af9033_state *state = fe->demodulator_priv;
347 int ret, i;
348 u8 tmp;
349
350 ret = af9033_wr_reg(state, 0x80004c, 1);
351 if (ret < 0)
352 goto err;
353
354 ret = af9033_wr_reg(state, 0x800000, 0);
355 if (ret < 0)
356 goto err;
357
358 for (i = 100, tmp = 1; i && tmp; i--) {
359 ret = af9033_rd_reg(state, 0x80004c, &tmp);
360 if (ret < 0)
361 goto err;
362
363 usleep_range(200, 10000);
364 }
365
366 dev_dbg(&state->i2c->dev, "%s: loop=%d\n", __func__, i);
367
368 if (i == 0) {
369 ret = -ETIMEDOUT;
370 goto err;
371 }
372
373 ret = af9033_wr_reg_mask(state, 0x80fb24, 0x08, 0x08);
374 if (ret < 0)
375 goto err;
376
377 /* prevent current leak (?) */
378 if (state->cfg.ts_mode == AF9033_TS_MODE_SERIAL) {
379 /* enable parallel TS */
380 ret = af9033_wr_reg_mask(state, 0x00d917, 0x00, 0x01);
381 if (ret < 0)
382 goto err;
383
384 ret = af9033_wr_reg_mask(state, 0x00d916, 0x01, 0x01);
385 if (ret < 0)
386 goto err;
387 }
388
389 return 0;
390
391 err:
392 dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
393
394 return ret;
395 }
396
397 static int af9033_get_tune_settings(struct dvb_frontend *fe,
398 struct dvb_frontend_tune_settings *fesettings)
399 {
400 fesettings->min_delay_ms = 800;
401 fesettings->step_size = 0;
402 fesettings->max_drift = 0;
403
404 return 0;
405 }
406
407 static int af9033_set_frontend(struct dvb_frontend *fe)
408 {
409 struct af9033_state *state = fe->demodulator_priv;
410 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
411 int ret, i, spec_inv, sampling_freq;
412 u8 tmp, buf[3], bandwidth_reg_val;
413 u32 if_frequency, freq_cw, adc_freq;
414
415 dev_dbg(&state->i2c->dev, "%s: frequency=%d bandwidth_hz=%d\n",
416 __func__, c->frequency, c->bandwidth_hz);
417
418 /* check bandwidth */
419 switch (c->bandwidth_hz) {
420 case 6000000:
421 bandwidth_reg_val = 0x00;
422 break;
423 case 7000000:
424 bandwidth_reg_val = 0x01;
425 break;
426 case 8000000:
427 bandwidth_reg_val = 0x02;
428 break;
429 default:
430 dev_dbg(&state->i2c->dev, "%s: invalid bandwidth_hz\n",
431 __func__);
432 ret = -EINVAL;
433 goto err;
434 }
435
436 /* program tuner */
437 if (fe->ops.tuner_ops.set_params)
438 fe->ops.tuner_ops.set_params(fe);
439
440 /* program CFOE coefficients */
441 if (c->bandwidth_hz != state->bandwidth_hz) {
442 for (i = 0; i < ARRAY_SIZE(coeff_lut); i++) {
443 if (coeff_lut[i].clock == state->cfg.clock &&
444 coeff_lut[i].bandwidth_hz == c->bandwidth_hz) {
445 break;
446 }
447 }
448 ret = af9033_wr_regs(state, 0x800001,
449 coeff_lut[i].val, sizeof(coeff_lut[i].val));
450 }
451
452 /* program frequency control */
453 if (c->bandwidth_hz != state->bandwidth_hz) {
454 spec_inv = state->cfg.spec_inv ? -1 : 1;
455
456 for (i = 0; i < ARRAY_SIZE(clock_adc_lut); i++) {
457 if (clock_adc_lut[i].clock == state->cfg.clock)
458 break;
459 }
460 adc_freq = clock_adc_lut[i].adc;
461
462 /* get used IF frequency */
463 if (fe->ops.tuner_ops.get_if_frequency)
464 fe->ops.tuner_ops.get_if_frequency(fe, &if_frequency);
465 else
466 if_frequency = 0;
467
468 sampling_freq = if_frequency;
469
470 while (sampling_freq > (adc_freq / 2))
471 sampling_freq -= adc_freq;
472
473 if (sampling_freq >= 0)
474 spec_inv *= -1;
475 else
476 sampling_freq *= -1;
477
478 freq_cw = af9033_div(state, sampling_freq, adc_freq, 23ul);
479
480 if (spec_inv == -1)
481 freq_cw = 0x800000 - freq_cw;
482
483 /* get adc multiplies */
484 ret = af9033_rd_reg(state, 0x800045, &tmp);
485 if (ret < 0)
486 goto err;
487
488 if (tmp == 1)
489 freq_cw /= 2;
490
491 buf[0] = (freq_cw >> 0) & 0xff;
492 buf[1] = (freq_cw >> 8) & 0xff;
493 buf[2] = (freq_cw >> 16) & 0x7f;
494 ret = af9033_wr_regs(state, 0x800029, buf, 3);
495 if (ret < 0)
496 goto err;
497
498 state->bandwidth_hz = c->bandwidth_hz;
499 }
500
501 ret = af9033_wr_reg_mask(state, 0x80f904, bandwidth_reg_val, 0x03);
502 if (ret < 0)
503 goto err;
504
505 ret = af9033_wr_reg(state, 0x800040, 0x00);
506 if (ret < 0)
507 goto err;
508
509 ret = af9033_wr_reg(state, 0x800047, 0x00);
510 if (ret < 0)
511 goto err;
512
513 ret = af9033_wr_reg_mask(state, 0x80f999, 0x00, 0x01);
514 if (ret < 0)
515 goto err;
516
517 if (c->frequency <= 230000000)
518 tmp = 0x00; /* VHF */
519 else
520 tmp = 0x01; /* UHF */
521
522 ret = af9033_wr_reg(state, 0x80004b, tmp);
523 if (ret < 0)
524 goto err;
525
526 ret = af9033_wr_reg(state, 0x800000, 0x00);
527 if (ret < 0)
528 goto err;
529
530 return 0;
531
532 err:
533 dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
534
535 return ret;
536 }
537
538 static int af9033_get_frontend(struct dvb_frontend *fe)
539 {
540 struct af9033_state *state = fe->demodulator_priv;
541 struct dtv_frontend_properties *c = &fe->dtv_property_cache;
542 int ret;
543 u8 buf[8];
544
545 dev_dbg(&state->i2c->dev, "%s:\n", __func__);
546
547 /* read all needed registers */
548 ret = af9033_rd_regs(state, 0x80f900, buf, sizeof(buf));
549 if (ret < 0)
550 goto err;
551
552 switch ((buf[0] >> 0) & 3) {
553 case 0:
554 c->transmission_mode = TRANSMISSION_MODE_2K;
555 break;
556 case 1:
557 c->transmission_mode = TRANSMISSION_MODE_8K;
558 break;
559 }
560
561 switch ((buf[1] >> 0) & 3) {
562 case 0:
563 c->guard_interval = GUARD_INTERVAL_1_32;
564 break;
565 case 1:
566 c->guard_interval = GUARD_INTERVAL_1_16;
567 break;
568 case 2:
569 c->guard_interval = GUARD_INTERVAL_1_8;
570 break;
571 case 3:
572 c->guard_interval = GUARD_INTERVAL_1_4;
573 break;
574 }
575
576 switch ((buf[2] >> 0) & 7) {
577 case 0:
578 c->hierarchy = HIERARCHY_NONE;
579 break;
580 case 1:
581 c->hierarchy = HIERARCHY_1;
582 break;
583 case 2:
584 c->hierarchy = HIERARCHY_2;
585 break;
586 case 3:
587 c->hierarchy = HIERARCHY_4;
588 break;
589 }
590
591 switch ((buf[3] >> 0) & 3) {
592 case 0:
593 c->modulation = QPSK;
594 break;
595 case 1:
596 c->modulation = QAM_16;
597 break;
598 case 2:
599 c->modulation = QAM_64;
600 break;
601 }
602
603 switch ((buf[4] >> 0) & 3) {
604 case 0:
605 c->bandwidth_hz = 6000000;
606 break;
607 case 1:
608 c->bandwidth_hz = 7000000;
609 break;
610 case 2:
611 c->bandwidth_hz = 8000000;
612 break;
613 }
614
615 switch ((buf[6] >> 0) & 7) {
616 case 0:
617 c->code_rate_HP = FEC_1_2;
618 break;
619 case 1:
620 c->code_rate_HP = FEC_2_3;
621 break;
622 case 2:
623 c->code_rate_HP = FEC_3_4;
624 break;
625 case 3:
626 c->code_rate_HP = FEC_5_6;
627 break;
628 case 4:
629 c->code_rate_HP = FEC_7_8;
630 break;
631 case 5:
632 c->code_rate_HP = FEC_NONE;
633 break;
634 }
635
636 switch ((buf[7] >> 0) & 7) {
637 case 0:
638 c->code_rate_LP = FEC_1_2;
639 break;
640 case 1:
641 c->code_rate_LP = FEC_2_3;
642 break;
643 case 2:
644 c->code_rate_LP = FEC_3_4;
645 break;
646 case 3:
647 c->code_rate_LP = FEC_5_6;
648 break;
649 case 4:
650 c->code_rate_LP = FEC_7_8;
651 break;
652 case 5:
653 c->code_rate_LP = FEC_NONE;
654 break;
655 }
656
657 return 0;
658
659 err:
660 dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
661
662 return ret;
663 }
664
665 static int af9033_read_status(struct dvb_frontend *fe, fe_status_t *status)
666 {
667 struct af9033_state *state = fe->demodulator_priv;
668 int ret;
669 u8 tmp;
670
671 *status = 0;
672
673 /* radio channel status, 0=no result, 1=has signal, 2=no signal */
674 ret = af9033_rd_reg(state, 0x800047, &tmp);
675 if (ret < 0)
676 goto err;
677
678 /* has signal */
679 if (tmp == 0x01)
680 *status |= FE_HAS_SIGNAL;
681
682 if (tmp != 0x02) {
683 /* TPS lock */
684 ret = af9033_rd_reg_mask(state, 0x80f5a9, &tmp, 0x01);
685 if (ret < 0)
686 goto err;
687
688 if (tmp)
689 *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
690 FE_HAS_VITERBI;
691
692 /* full lock */
693 ret = af9033_rd_reg_mask(state, 0x80f999, &tmp, 0x01);
694 if (ret < 0)
695 goto err;
696
697 if (tmp)
698 *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER |
699 FE_HAS_VITERBI | FE_HAS_SYNC |
700 FE_HAS_LOCK;
701 }
702
703 return 0;
704
705 err:
706 dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
707
708 return ret;
709 }
710
711 static int af9033_read_snr(struct dvb_frontend *fe, u16 *snr)
712 {
713 struct af9033_state *state = fe->demodulator_priv;
714 int ret, i, len;
715 u8 buf[3], tmp;
716 u32 snr_val;
717 const struct val_snr *uninitialized_var(snr_lut);
718
719 /* read value */
720 ret = af9033_rd_regs(state, 0x80002c, buf, 3);
721 if (ret < 0)
722 goto err;
723
724 snr_val = (buf[2] << 16) | (buf[1] << 8) | buf[0];
725
726 /* read current modulation */
727 ret = af9033_rd_reg(state, 0x80f903, &tmp);
728 if (ret < 0)
729 goto err;
730
731 switch ((tmp >> 0) & 3) {
732 case 0:
733 len = ARRAY_SIZE(qpsk_snr_lut);
734 snr_lut = qpsk_snr_lut;
735 break;
736 case 1:
737 len = ARRAY_SIZE(qam16_snr_lut);
738 snr_lut = qam16_snr_lut;
739 break;
740 case 2:
741 len = ARRAY_SIZE(qam64_snr_lut);
742 snr_lut = qam64_snr_lut;
743 break;
744 default:
745 goto err;
746 }
747
748 for (i = 0; i < len; i++) {
749 tmp = snr_lut[i].snr;
750
751 if (snr_val < snr_lut[i].val)
752 break;
753 }
754
755 *snr = tmp * 10; /* dB/10 */
756
757 return 0;
758
759 err:
760 dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
761
762 return ret;
763 }
764
765 static int af9033_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
766 {
767 struct af9033_state *state = fe->demodulator_priv;
768 int ret;
769 u8 strength2;
770
771 /* read signal strength of 0-100 scale */
772 ret = af9033_rd_reg(state, 0x800048, &strength2);
773 if (ret < 0)
774 goto err;
775
776 /* scale value to 0x0000-0xffff */
777 *strength = strength2 * 0xffff / 100;
778
779 return 0;
780
781 err:
782 dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
783
784 return ret;
785 }
786
787 static int af9033_update_ch_stat(struct af9033_state *state)
788 {
789 int ret = 0;
790 u32 err_cnt, bit_cnt;
791 u16 abort_cnt;
792 u8 buf[7];
793
794 /* only update data every half second */
795 if (time_after(jiffies, state->last_stat_check + msecs_to_jiffies(500))) {
796 ret = af9033_rd_regs(state, 0x800032, buf, sizeof(buf));
797 if (ret < 0)
798 goto err;
799 /* in 8 byte packets? */
800 abort_cnt = (buf[1] << 8) + buf[0];
801 /* in bits */
802 err_cnt = (buf[4] << 16) + (buf[3] << 8) + buf[2];
803 /* in 8 byte packets? always(?) 0x2710 = 10000 */
804 bit_cnt = (buf[6] << 8) + buf[5];
805
806 if (bit_cnt < abort_cnt) {
807 abort_cnt = 1000;
808 state->ber = 0xffffffff;
809 } else {
810 /* 8 byte packets, that have not been rejected already */
811 bit_cnt -= (u32)abort_cnt;
812 if (bit_cnt == 0) {
813 state->ber = 0xffffffff;
814 } else {
815 err_cnt -= (u32)abort_cnt * 8 * 8;
816 bit_cnt *= 8 * 8;
817 state->ber = err_cnt * (0xffffffff / bit_cnt);
818 }
819 }
820 state->ucb += abort_cnt;
821 state->last_stat_check = jiffies;
822 }
823
824 return 0;
825 err:
826 dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
827
828 return ret;
829 }
830
831 static int af9033_read_ber(struct dvb_frontend *fe, u32 *ber)
832 {
833 struct af9033_state *state = fe->demodulator_priv;
834 int ret;
835
836 ret = af9033_update_ch_stat(state);
837 if (ret < 0)
838 return ret;
839
840 *ber = state->ber;
841
842 return 0;
843 }
844
845 static int af9033_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
846 {
847 struct af9033_state *state = fe->demodulator_priv;
848 int ret;
849
850 ret = af9033_update_ch_stat(state);
851 if (ret < 0)
852 return ret;
853
854 *ucblocks = state->ucb;
855
856 return 0;
857 }
858
859 static int af9033_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
860 {
861 struct af9033_state *state = fe->demodulator_priv;
862 int ret;
863
864 dev_dbg(&state->i2c->dev, "%s: enable=%d\n", __func__, enable);
865
866 ret = af9033_wr_reg_mask(state, 0x00fa04, enable, 0x01);
867 if (ret < 0)
868 goto err;
869
870 return 0;
871
872 err:
873 dev_dbg(&state->i2c->dev, "%s: failed=%d\n", __func__, ret);
874
875 return ret;
876 }
877
878 static struct dvb_frontend_ops af9033_ops;
879
880 struct dvb_frontend *af9033_attach(const struct af9033_config *config,
881 struct i2c_adapter *i2c)
882 {
883 int ret;
884 struct af9033_state *state;
885 u8 buf[8];
886
887 dev_dbg(&i2c->dev, "%s:\n", __func__);
888
889 /* allocate memory for the internal state */
890 state = kzalloc(sizeof(struct af9033_state), GFP_KERNEL);
891 if (state == NULL)
892 goto err;
893
894 /* setup the state */
895 state->i2c = i2c;
896 memcpy(&state->cfg, config, sizeof(struct af9033_config));
897
898 if (state->cfg.clock != 12000000) {
899 dev_err(&state->i2c->dev, "%s: af9033: unsupported clock=%d, " \
900 "only 12000000 Hz is supported currently\n",
901 KBUILD_MODNAME, state->cfg.clock);
902 goto err;
903 }
904
905 /* firmware version */
906 ret = af9033_rd_regs(state, 0x0083e9, &buf[0], 4);
907 if (ret < 0)
908 goto err;
909
910 ret = af9033_rd_regs(state, 0x804191, &buf[4], 4);
911 if (ret < 0)
912 goto err;
913
914 dev_info(&state->i2c->dev, "%s: firmware version: LINK=%d.%d.%d.%d " \
915 "OFDM=%d.%d.%d.%d\n", KBUILD_MODNAME, buf[0], buf[1],
916 buf[2], buf[3], buf[4], buf[5], buf[6], buf[7]);
917
918 /* sleep */
919 ret = af9033_wr_reg(state, 0x80004c, 1);
920 if (ret < 0)
921 goto err;
922
923 ret = af9033_wr_reg(state, 0x800000, 0);
924 if (ret < 0)
925 goto err;
926
927 /* configure internal TS mode */
928 switch (state->cfg.ts_mode) {
929 case AF9033_TS_MODE_PARALLEL:
930 state->ts_mode_parallel = true;
931 break;
932 case AF9033_TS_MODE_SERIAL:
933 state->ts_mode_serial = true;
934 break;
935 case AF9033_TS_MODE_USB:
936 /* usb mode for AF9035 */
937 default:
938 break;
939 }
940
941 /* create dvb_frontend */
942 memcpy(&state->fe.ops, &af9033_ops, sizeof(struct dvb_frontend_ops));
943 state->fe.demodulator_priv = state;
944
945 return &state->fe;
946
947 err:
948 kfree(state);
949 return NULL;
950 }
951 EXPORT_SYMBOL(af9033_attach);
952
953 static struct dvb_frontend_ops af9033_ops = {
954 .delsys = { SYS_DVBT },
955 .info = {
956 .name = "Afatech AF9033 (DVB-T)",
957 .frequency_min = 174000000,
958 .frequency_max = 862000000,
959 .frequency_stepsize = 250000,
960 .frequency_tolerance = 0,
961 .caps = FE_CAN_FEC_1_2 |
962 FE_CAN_FEC_2_3 |
963 FE_CAN_FEC_3_4 |
964 FE_CAN_FEC_5_6 |
965 FE_CAN_FEC_7_8 |
966 FE_CAN_FEC_AUTO |
967 FE_CAN_QPSK |
968 FE_CAN_QAM_16 |
969 FE_CAN_QAM_64 |
970 FE_CAN_QAM_AUTO |
971 FE_CAN_TRANSMISSION_MODE_AUTO |
972 FE_CAN_GUARD_INTERVAL_AUTO |
973 FE_CAN_HIERARCHY_AUTO |
974 FE_CAN_RECOVER |
975 FE_CAN_MUTE_TS
976 },
977
978 .release = af9033_release,
979
980 .init = af9033_init,
981 .sleep = af9033_sleep,
982
983 .get_tune_settings = af9033_get_tune_settings,
984 .set_frontend = af9033_set_frontend,
985 .get_frontend = af9033_get_frontend,
986
987 .read_status = af9033_read_status,
988 .read_snr = af9033_read_snr,
989 .read_signal_strength = af9033_read_signal_strength,
990 .read_ber = af9033_read_ber,
991 .read_ucblocks = af9033_read_ucblocks,
992
993 .i2c_gate_ctrl = af9033_i2c_gate_ctrl,
994 };
995
996 MODULE_AUTHOR("Antti Palosaari <crope@iki.fi>");
997 MODULE_DESCRIPTION("Afatech AF9033 DVB-T demodulator driver");
998 MODULE_LICENSE("GPL");
This page took 0.11618 seconds and 6 git commands to generate.