Merge branch 'for-linus-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/mason...
[deliverable/linux.git] / drivers / media / rc / nuvoton-cir.c
1 /*
2 * Driver for Nuvoton Technology Corporation w83667hg/w83677hg-i CIR
3 *
4 * Copyright (C) 2010 Jarod Wilson <jarod@redhat.com>
5 * Copyright (C) 2009 Nuvoton PS Team
6 *
7 * Special thanks to Nuvoton for providing hardware, spec sheets and
8 * sample code upon which portions of this driver are based. Indirect
9 * thanks also to Maxim Levitsky, whose ene_ir driver this driver is
10 * modeled after.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License as
14 * published by the Free Software Foundation; either version 2 of the
15 * License, or (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
25 * USA
26 */
27
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pnp.h>
33 #include <linux/io.h>
34 #include <linux/interrupt.h>
35 #include <linux/sched.h>
36 #include <linux/slab.h>
37 #include <media/rc-core.h>
38 #include <linux/pci_ids.h>
39
40 #include "nuvoton-cir.h"
41
42 /* write val to config reg */
43 static inline void nvt_cr_write(struct nvt_dev *nvt, u8 val, u8 reg)
44 {
45 outb(reg, nvt->cr_efir);
46 outb(val, nvt->cr_efdr);
47 }
48
49 /* read val from config reg */
50 static inline u8 nvt_cr_read(struct nvt_dev *nvt, u8 reg)
51 {
52 outb(reg, nvt->cr_efir);
53 return inb(nvt->cr_efdr);
54 }
55
56 /* update config register bit without changing other bits */
57 static inline void nvt_set_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
58 {
59 u8 tmp = nvt_cr_read(nvt, reg) | val;
60 nvt_cr_write(nvt, tmp, reg);
61 }
62
63 /* clear config register bit without changing other bits */
64 static inline void nvt_clear_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
65 {
66 u8 tmp = nvt_cr_read(nvt, reg) & ~val;
67 nvt_cr_write(nvt, tmp, reg);
68 }
69
70 /* enter extended function mode */
71 static inline void nvt_efm_enable(struct nvt_dev *nvt)
72 {
73 /* Enabling Extended Function Mode explicitly requires writing 2x */
74 outb(EFER_EFM_ENABLE, nvt->cr_efir);
75 outb(EFER_EFM_ENABLE, nvt->cr_efir);
76 }
77
78 /* exit extended function mode */
79 static inline void nvt_efm_disable(struct nvt_dev *nvt)
80 {
81 outb(EFER_EFM_DISABLE, nvt->cr_efir);
82 }
83
84 /*
85 * When you want to address a specific logical device, write its logical
86 * device number to CR_LOGICAL_DEV_SEL, then enable/disable by writing
87 * 0x1/0x0 respectively to CR_LOGICAL_DEV_EN.
88 */
89 static inline void nvt_select_logical_dev(struct nvt_dev *nvt, u8 ldev)
90 {
91 outb(CR_LOGICAL_DEV_SEL, nvt->cr_efir);
92 outb(ldev, nvt->cr_efdr);
93 }
94
95 /* write val to cir config register */
96 static inline void nvt_cir_reg_write(struct nvt_dev *nvt, u8 val, u8 offset)
97 {
98 outb(val, nvt->cir_addr + offset);
99 }
100
101 /* read val from cir config register */
102 static u8 nvt_cir_reg_read(struct nvt_dev *nvt, u8 offset)
103 {
104 u8 val;
105
106 val = inb(nvt->cir_addr + offset);
107
108 return val;
109 }
110
111 /* write val to cir wake register */
112 static inline void nvt_cir_wake_reg_write(struct nvt_dev *nvt,
113 u8 val, u8 offset)
114 {
115 outb(val, nvt->cir_wake_addr + offset);
116 }
117
118 /* read val from cir wake config register */
119 static u8 nvt_cir_wake_reg_read(struct nvt_dev *nvt, u8 offset)
120 {
121 u8 val;
122
123 val = inb(nvt->cir_wake_addr + offset);
124
125 return val;
126 }
127
128 /* dump current cir register contents */
129 static void cir_dump_regs(struct nvt_dev *nvt)
130 {
131 nvt_efm_enable(nvt);
132 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
133
134 pr_info("%s: Dump CIR logical device registers:\n", NVT_DRIVER_NAME);
135 pr_info(" * CR CIR ACTIVE : 0x%x\n",
136 nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
137 pr_info(" * CR CIR BASE ADDR: 0x%x\n",
138 (nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
139 nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
140 pr_info(" * CR CIR IRQ NUM: 0x%x\n",
141 nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
142
143 nvt_efm_disable(nvt);
144
145 pr_info("%s: Dump CIR registers:\n", NVT_DRIVER_NAME);
146 pr_info(" * IRCON: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRCON));
147 pr_info(" * IRSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRSTS));
148 pr_info(" * IREN: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IREN));
149 pr_info(" * RXFCONT: 0x%x\n", nvt_cir_reg_read(nvt, CIR_RXFCONT));
150 pr_info(" * CP: 0x%x\n", nvt_cir_reg_read(nvt, CIR_CP));
151 pr_info(" * CC: 0x%x\n", nvt_cir_reg_read(nvt, CIR_CC));
152 pr_info(" * SLCH: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCH));
153 pr_info(" * SLCL: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCL));
154 pr_info(" * FIFOCON: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FIFOCON));
155 pr_info(" * IRFIFOSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFIFOSTS));
156 pr_info(" * SRXFIFO: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SRXFIFO));
157 pr_info(" * TXFCONT: 0x%x\n", nvt_cir_reg_read(nvt, CIR_TXFCONT));
158 pr_info(" * STXFIFO: 0x%x\n", nvt_cir_reg_read(nvt, CIR_STXFIFO));
159 pr_info(" * FCCH: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCH));
160 pr_info(" * FCCL: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCL));
161 pr_info(" * IRFSM: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFSM));
162 }
163
164 /* dump current cir wake register contents */
165 static void cir_wake_dump_regs(struct nvt_dev *nvt)
166 {
167 u8 i, fifo_len;
168
169 nvt_efm_enable(nvt);
170 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
171
172 pr_info("%s: Dump CIR WAKE logical device registers:\n",
173 NVT_DRIVER_NAME);
174 pr_info(" * CR CIR WAKE ACTIVE : 0x%x\n",
175 nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
176 pr_info(" * CR CIR WAKE BASE ADDR: 0x%x\n",
177 (nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
178 nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
179 pr_info(" * CR CIR WAKE IRQ NUM: 0x%x\n",
180 nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
181
182 nvt_efm_disable(nvt);
183
184 pr_info("%s: Dump CIR WAKE registers\n", NVT_DRIVER_NAME);
185 pr_info(" * IRCON: 0x%x\n",
186 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON));
187 pr_info(" * IRSTS: 0x%x\n",
188 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS));
189 pr_info(" * IREN: 0x%x\n",
190 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN));
191 pr_info(" * FIFO CMP DEEP: 0x%x\n",
192 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_DEEP));
193 pr_info(" * FIFO CMP TOL: 0x%x\n",
194 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_TOL));
195 pr_info(" * FIFO COUNT: 0x%x\n",
196 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT));
197 pr_info(" * SLCH: 0x%x\n",
198 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCH));
199 pr_info(" * SLCL: 0x%x\n",
200 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCL));
201 pr_info(" * FIFOCON: 0x%x\n",
202 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON));
203 pr_info(" * SRXFSTS: 0x%x\n",
204 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SRXFSTS));
205 pr_info(" * SAMPLE RX FIFO: 0x%x\n",
206 nvt_cir_wake_reg_read(nvt, CIR_WAKE_SAMPLE_RX_FIFO));
207 pr_info(" * WR FIFO DATA: 0x%x\n",
208 nvt_cir_wake_reg_read(nvt, CIR_WAKE_WR_FIFO_DATA));
209 pr_info(" * RD FIFO ONLY: 0x%x\n",
210 nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
211 pr_info(" * RD FIFO ONLY IDX: 0x%x\n",
212 nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX));
213 pr_info(" * FIFO IGNORE: 0x%x\n",
214 nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_IGNORE));
215 pr_info(" * IRFSM: 0x%x\n",
216 nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRFSM));
217
218 fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT);
219 pr_info("%s: Dump CIR WAKE FIFO (len %d)\n", NVT_DRIVER_NAME, fifo_len);
220 pr_info("* Contents =");
221 for (i = 0; i < fifo_len; i++)
222 pr_cont(" %02x",
223 nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
224 pr_cont("\n");
225 }
226
227 /* detect hardware features */
228 static int nvt_hw_detect(struct nvt_dev *nvt)
229 {
230 unsigned long flags;
231 u8 chip_major, chip_minor;
232 char chip_id[12];
233 bool chip_unknown = false;
234
235 nvt_efm_enable(nvt);
236
237 /* Check if we're wired for the alternate EFER setup */
238 chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
239 if (chip_major == 0xff) {
240 nvt->cr_efir = CR_EFIR2;
241 nvt->cr_efdr = CR_EFDR2;
242 nvt_efm_enable(nvt);
243 chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
244 }
245
246 chip_minor = nvt_cr_read(nvt, CR_CHIP_ID_LO);
247
248 /* these are the known working chip revisions... */
249 switch (chip_major) {
250 case CHIP_ID_HIGH_667:
251 strcpy(chip_id, "w83667hg\0");
252 if (chip_minor != CHIP_ID_LOW_667)
253 chip_unknown = true;
254 break;
255 case CHIP_ID_HIGH_677B:
256 strcpy(chip_id, "w83677hg\0");
257 if (chip_minor != CHIP_ID_LOW_677B2 &&
258 chip_minor != CHIP_ID_LOW_677B3)
259 chip_unknown = true;
260 break;
261 case CHIP_ID_HIGH_677C:
262 strcpy(chip_id, "w83677hg-c\0");
263 if (chip_minor != CHIP_ID_LOW_677C)
264 chip_unknown = true;
265 break;
266 default:
267 strcpy(chip_id, "w836x7hg\0");
268 chip_unknown = true;
269 break;
270 }
271
272 /* warn, but still let the driver load, if we don't know this chip */
273 if (chip_unknown)
274 nvt_pr(KERN_WARNING, "%s: unknown chip, id: 0x%02x 0x%02x, "
275 "it may not work...", chip_id, chip_major, chip_minor);
276 else
277 nvt_dbg("%s: chip id: 0x%02x 0x%02x",
278 chip_id, chip_major, chip_minor);
279
280 nvt_efm_disable(nvt);
281
282 spin_lock_irqsave(&nvt->nvt_lock, flags);
283 nvt->chip_major = chip_major;
284 nvt->chip_minor = chip_minor;
285 spin_unlock_irqrestore(&nvt->nvt_lock, flags);
286
287 return 0;
288 }
289
290 static void nvt_cir_ldev_init(struct nvt_dev *nvt)
291 {
292 u8 val, psreg, psmask, psval;
293
294 if (nvt->chip_major == CHIP_ID_HIGH_667) {
295 psreg = CR_MULTIFUNC_PIN_SEL;
296 psmask = MULTIFUNC_PIN_SEL_MASK;
297 psval = MULTIFUNC_ENABLE_CIR | MULTIFUNC_ENABLE_CIRWB;
298 } else {
299 psreg = CR_OUTPUT_PIN_SEL;
300 psmask = OUTPUT_PIN_SEL_MASK;
301 psval = OUTPUT_ENABLE_CIR | OUTPUT_ENABLE_CIRWB;
302 }
303
304 /* output pin selection: enable CIR, with WB sensor enabled */
305 val = nvt_cr_read(nvt, psreg);
306 val &= psmask;
307 val |= psval;
308 nvt_cr_write(nvt, val, psreg);
309
310 /* Select CIR logical device and enable */
311 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
312 nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
313
314 nvt_cr_write(nvt, nvt->cir_addr >> 8, CR_CIR_BASE_ADDR_HI);
315 nvt_cr_write(nvt, nvt->cir_addr & 0xff, CR_CIR_BASE_ADDR_LO);
316
317 nvt_cr_write(nvt, nvt->cir_irq, CR_CIR_IRQ_RSRC);
318
319 nvt_dbg("CIR initialized, base io port address: 0x%lx, irq: %d",
320 nvt->cir_addr, nvt->cir_irq);
321 }
322
323 static void nvt_cir_wake_ldev_init(struct nvt_dev *nvt)
324 {
325 /* Select ACPI logical device, enable it and CIR Wake */
326 nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
327 nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
328
329 /* Enable CIR Wake via PSOUT# (Pin60) */
330 nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
331
332 /* enable pme interrupt of cir wakeup event */
333 nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
334
335 /* Select CIR Wake logical device and enable */
336 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
337 nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
338
339 nvt_cr_write(nvt, nvt->cir_wake_addr >> 8, CR_CIR_BASE_ADDR_HI);
340 nvt_cr_write(nvt, nvt->cir_wake_addr & 0xff, CR_CIR_BASE_ADDR_LO);
341
342 nvt_cr_write(nvt, nvt->cir_wake_irq, CR_CIR_IRQ_RSRC);
343
344 nvt_dbg("CIR Wake initialized, base io port address: 0x%lx, irq: %d",
345 nvt->cir_wake_addr, nvt->cir_wake_irq);
346 }
347
348 /* clear out the hardware's cir rx fifo */
349 static void nvt_clear_cir_fifo(struct nvt_dev *nvt)
350 {
351 u8 val;
352
353 val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
354 nvt_cir_reg_write(nvt, val | CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
355 }
356
357 /* clear out the hardware's cir wake rx fifo */
358 static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt)
359 {
360 u8 val;
361
362 val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON);
363 nvt_cir_wake_reg_write(nvt, val | CIR_WAKE_FIFOCON_RXFIFOCLR,
364 CIR_WAKE_FIFOCON);
365 }
366
367 /* clear out the hardware's cir tx fifo */
368 static void nvt_clear_tx_fifo(struct nvt_dev *nvt)
369 {
370 u8 val;
371
372 val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
373 nvt_cir_reg_write(nvt, val | CIR_FIFOCON_TXFIFOCLR, CIR_FIFOCON);
374 }
375
376 /* enable RX Trigger Level Reach and Packet End interrupts */
377 static void nvt_set_cir_iren(struct nvt_dev *nvt)
378 {
379 u8 iren;
380
381 iren = CIR_IREN_RTR | CIR_IREN_PE;
382 nvt_cir_reg_write(nvt, iren, CIR_IREN);
383 }
384
385 static void nvt_cir_regs_init(struct nvt_dev *nvt)
386 {
387 /* set sample limit count (PE interrupt raised when reached) */
388 nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_SLCH);
389 nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_SLCL);
390
391 /* set fifo irq trigger levels */
392 nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV |
393 CIR_FIFOCON_RX_TRIGGER_LEV, CIR_FIFOCON);
394
395 /*
396 * Enable TX and RX, specify carrier on = low, off = high, and set
397 * sample period (currently 50us)
398 */
399 nvt_cir_reg_write(nvt,
400 CIR_IRCON_TXEN | CIR_IRCON_RXEN |
401 CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
402 CIR_IRCON);
403
404 /* clear hardware rx and tx fifos */
405 nvt_clear_cir_fifo(nvt);
406 nvt_clear_tx_fifo(nvt);
407
408 /* clear any and all stray interrupts */
409 nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
410
411 /* and finally, enable interrupts */
412 nvt_set_cir_iren(nvt);
413 }
414
415 static void nvt_cir_wake_regs_init(struct nvt_dev *nvt)
416 {
417 /* set number of bytes needed for wake from s3 (default 65) */
418 nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFO_CMP_BYTES,
419 CIR_WAKE_FIFO_CMP_DEEP);
420
421 /* set tolerance/variance allowed per byte during wake compare */
422 nvt_cir_wake_reg_write(nvt, CIR_WAKE_CMP_TOLERANCE,
423 CIR_WAKE_FIFO_CMP_TOL);
424
425 /* set sample limit count (PE interrupt raised when reached) */
426 nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_WAKE_SLCH);
427 nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_WAKE_SLCL);
428
429 /* set cir wake fifo rx trigger level (currently 67) */
430 nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFOCON_RX_TRIGGER_LEV,
431 CIR_WAKE_FIFOCON);
432
433 /*
434 * Enable TX and RX, specific carrier on = low, off = high, and set
435 * sample period (currently 50us)
436 */
437 nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
438 CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
439 CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
440 CIR_WAKE_IRCON);
441
442 /* clear cir wake rx fifo */
443 nvt_clear_cir_wake_fifo(nvt);
444
445 /* clear any and all stray interrupts */
446 nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
447 }
448
449 static void nvt_enable_wake(struct nvt_dev *nvt)
450 {
451 nvt_efm_enable(nvt);
452
453 nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
454 nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
455 nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
456
457 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
458 nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
459
460 nvt_efm_disable(nvt);
461
462 nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
463 CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
464 CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
465 CIR_WAKE_IRCON);
466 nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
467 nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
468 }
469
470 #if 0 /* Currently unused */
471 /* rx carrier detect only works in learning mode, must be called w/nvt_lock */
472 static u32 nvt_rx_carrier_detect(struct nvt_dev *nvt)
473 {
474 u32 count, carrier, duration = 0;
475 int i;
476
477 count = nvt_cir_reg_read(nvt, CIR_FCCL) |
478 nvt_cir_reg_read(nvt, CIR_FCCH) << 8;
479
480 for (i = 0; i < nvt->pkts; i++) {
481 if (nvt->buf[i] & BUF_PULSE_BIT)
482 duration += nvt->buf[i] & BUF_LEN_MASK;
483 }
484
485 duration *= SAMPLE_PERIOD;
486
487 if (!count || !duration) {
488 nvt_pr(KERN_NOTICE, "Unable to determine carrier! (c:%u, d:%u)",
489 count, duration);
490 return 0;
491 }
492
493 carrier = MS_TO_NS(count) / duration;
494
495 if ((carrier > MAX_CARRIER) || (carrier < MIN_CARRIER))
496 nvt_dbg("WTF? Carrier frequency out of range!");
497
498 nvt_dbg("Carrier frequency: %u (count %u, duration %u)",
499 carrier, count, duration);
500
501 return carrier;
502 }
503 #endif
504 /*
505 * set carrier frequency
506 *
507 * set carrier on 2 registers: CP & CC
508 * always set CP as 0x81
509 * set CC by SPEC, CC = 3MHz/carrier - 1
510 */
511 static int nvt_set_tx_carrier(struct rc_dev *dev, u32 carrier)
512 {
513 struct nvt_dev *nvt = dev->priv;
514 u16 val;
515
516 if (carrier == 0)
517 return -EINVAL;
518
519 nvt_cir_reg_write(nvt, 1, CIR_CP);
520 val = 3000000 / (carrier) - 1;
521 nvt_cir_reg_write(nvt, val & 0xff, CIR_CC);
522
523 nvt_dbg("cp: 0x%x cc: 0x%x\n",
524 nvt_cir_reg_read(nvt, CIR_CP), nvt_cir_reg_read(nvt, CIR_CC));
525
526 return 0;
527 }
528
529 /*
530 * nvt_tx_ir
531 *
532 * 1) clean TX fifo first (handled by AP)
533 * 2) copy data from user space
534 * 3) disable RX interrupts, enable TX interrupts: TTR & TFU
535 * 4) send 9 packets to TX FIFO to open TTR
536 * in interrupt_handler:
537 * 5) send all data out
538 * go back to write():
539 * 6) disable TX interrupts, re-enable RX interupts
540 *
541 * The key problem of this function is user space data may larger than
542 * driver's data buf length. So nvt_tx_ir() will only copy TX_BUF_LEN data to
543 * buf, and keep current copied data buf num in cur_buf_num. But driver's buf
544 * number may larger than TXFCONT (0xff). So in interrupt_handler, it has to
545 * set TXFCONT as 0xff, until buf_count less than 0xff.
546 */
547 static int nvt_tx_ir(struct rc_dev *dev, unsigned *txbuf, unsigned n)
548 {
549 struct nvt_dev *nvt = dev->priv;
550 unsigned long flags;
551 unsigned int i;
552 u8 iren;
553 int ret;
554
555 spin_lock_irqsave(&nvt->tx.lock, flags);
556
557 ret = min((unsigned)(TX_BUF_LEN / sizeof(unsigned)), n);
558 nvt->tx.buf_count = (ret * sizeof(unsigned));
559
560 memcpy(nvt->tx.buf, txbuf, nvt->tx.buf_count);
561
562 nvt->tx.cur_buf_num = 0;
563
564 /* save currently enabled interrupts */
565 iren = nvt_cir_reg_read(nvt, CIR_IREN);
566
567 /* now disable all interrupts, save TFU & TTR */
568 nvt_cir_reg_write(nvt, CIR_IREN_TFU | CIR_IREN_TTR, CIR_IREN);
569
570 nvt->tx.tx_state = ST_TX_REPLY;
571
572 nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV_8 |
573 CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
574
575 /* trigger TTR interrupt by writing out ones, (yes, it's ugly) */
576 for (i = 0; i < 9; i++)
577 nvt_cir_reg_write(nvt, 0x01, CIR_STXFIFO);
578
579 spin_unlock_irqrestore(&nvt->tx.lock, flags);
580
581 wait_event(nvt->tx.queue, nvt->tx.tx_state == ST_TX_REQUEST);
582
583 spin_lock_irqsave(&nvt->tx.lock, flags);
584 nvt->tx.tx_state = ST_TX_NONE;
585 spin_unlock_irqrestore(&nvt->tx.lock, flags);
586
587 /* restore enabled interrupts to prior state */
588 nvt_cir_reg_write(nvt, iren, CIR_IREN);
589
590 return ret;
591 }
592
593 /* dump contents of the last rx buffer we got from the hw rx fifo */
594 static void nvt_dump_rx_buf(struct nvt_dev *nvt)
595 {
596 int i;
597
598 printk(KERN_DEBUG "%s (len %d): ", __func__, nvt->pkts);
599 for (i = 0; (i < nvt->pkts) && (i < RX_BUF_LEN); i++)
600 printk(KERN_CONT "0x%02x ", nvt->buf[i]);
601 printk(KERN_CONT "\n");
602 }
603
604 /*
605 * Process raw data in rx driver buffer, store it in raw IR event kfifo,
606 * trigger decode when appropriate.
607 *
608 * We get IR data samples one byte at a time. If the msb is set, its a pulse,
609 * otherwise its a space. The lower 7 bits are the count of SAMPLE_PERIOD
610 * (default 50us) intervals for that pulse/space. A discrete signal is
611 * followed by a series of 0x7f packets, then either 0x7<something> or 0x80
612 * to signal more IR coming (repeats) or end of IR, respectively. We store
613 * sample data in the raw event kfifo until we see 0x7<something> (except f)
614 * or 0x80, at which time, we trigger a decode operation.
615 */
616 static void nvt_process_rx_ir_data(struct nvt_dev *nvt)
617 {
618 DEFINE_IR_RAW_EVENT(rawir);
619 u8 sample;
620 int i;
621
622 nvt_dbg_verbose("%s firing", __func__);
623
624 if (debug)
625 nvt_dump_rx_buf(nvt);
626
627 nvt_dbg_verbose("Processing buffer of len %d", nvt->pkts);
628
629 init_ir_raw_event(&rawir);
630
631 for (i = 0; i < nvt->pkts; i++) {
632 sample = nvt->buf[i];
633
634 rawir.pulse = ((sample & BUF_PULSE_BIT) != 0);
635 rawir.duration = US_TO_NS((sample & BUF_LEN_MASK)
636 * SAMPLE_PERIOD);
637
638 nvt_dbg("Storing %s with duration %d",
639 rawir.pulse ? "pulse" : "space", rawir.duration);
640
641 ir_raw_event_store_with_filter(nvt->rdev, &rawir);
642
643 /*
644 * BUF_PULSE_BIT indicates end of IR data, BUF_REPEAT_BYTE
645 * indicates end of IR signal, but new data incoming. In both
646 * cases, it means we're ready to call ir_raw_event_handle
647 */
648 if ((sample == BUF_PULSE_BIT) && (i + 1 < nvt->pkts)) {
649 nvt_dbg("Calling ir_raw_event_handle (signal end)\n");
650 ir_raw_event_handle(nvt->rdev);
651 }
652 }
653
654 nvt->pkts = 0;
655
656 nvt_dbg("Calling ir_raw_event_handle (buffer empty)\n");
657 ir_raw_event_handle(nvt->rdev);
658
659 nvt_dbg_verbose("%s done", __func__);
660 }
661
662 static void nvt_handle_rx_fifo_overrun(struct nvt_dev *nvt)
663 {
664 nvt_pr(KERN_WARNING, "RX FIFO overrun detected, flushing data!");
665
666 nvt->pkts = 0;
667 nvt_clear_cir_fifo(nvt);
668 ir_raw_event_reset(nvt->rdev);
669 }
670
671 /* copy data from hardware rx fifo into driver buffer */
672 static void nvt_get_rx_ir_data(struct nvt_dev *nvt)
673 {
674 unsigned long flags;
675 u8 fifocount, val;
676 unsigned int b_idx;
677 bool overrun = false;
678 int i;
679
680 /* Get count of how many bytes to read from RX FIFO */
681 fifocount = nvt_cir_reg_read(nvt, CIR_RXFCONT);
682 /* if we get 0xff, probably means the logical dev is disabled */
683 if (fifocount == 0xff)
684 return;
685 /* watch out for a fifo overrun condition */
686 else if (fifocount > RX_BUF_LEN) {
687 overrun = true;
688 fifocount = RX_BUF_LEN;
689 }
690
691 nvt_dbg("attempting to fetch %u bytes from hw rx fifo", fifocount);
692
693 spin_lock_irqsave(&nvt->nvt_lock, flags);
694
695 b_idx = nvt->pkts;
696
697 /* This should never happen, but lets check anyway... */
698 if (b_idx + fifocount > RX_BUF_LEN) {
699 nvt_process_rx_ir_data(nvt);
700 b_idx = 0;
701 }
702
703 /* Read fifocount bytes from CIR Sample RX FIFO register */
704 for (i = 0; i < fifocount; i++) {
705 val = nvt_cir_reg_read(nvt, CIR_SRXFIFO);
706 nvt->buf[b_idx + i] = val;
707 }
708
709 nvt->pkts += fifocount;
710 nvt_dbg("%s: pkts now %d", __func__, nvt->pkts);
711
712 nvt_process_rx_ir_data(nvt);
713
714 if (overrun)
715 nvt_handle_rx_fifo_overrun(nvt);
716
717 spin_unlock_irqrestore(&nvt->nvt_lock, flags);
718 }
719
720 static void nvt_cir_log_irqs(u8 status, u8 iren)
721 {
722 nvt_pr(KERN_INFO, "IRQ 0x%02x (IREN 0x%02x) :%s%s%s%s%s%s%s%s%s",
723 status, iren,
724 status & CIR_IRSTS_RDR ? " RDR" : "",
725 status & CIR_IRSTS_RTR ? " RTR" : "",
726 status & CIR_IRSTS_PE ? " PE" : "",
727 status & CIR_IRSTS_RFO ? " RFO" : "",
728 status & CIR_IRSTS_TE ? " TE" : "",
729 status & CIR_IRSTS_TTR ? " TTR" : "",
730 status & CIR_IRSTS_TFU ? " TFU" : "",
731 status & CIR_IRSTS_GH ? " GH" : "",
732 status & ~(CIR_IRSTS_RDR | CIR_IRSTS_RTR | CIR_IRSTS_PE |
733 CIR_IRSTS_RFO | CIR_IRSTS_TE | CIR_IRSTS_TTR |
734 CIR_IRSTS_TFU | CIR_IRSTS_GH) ? " ?" : "");
735 }
736
737 static bool nvt_cir_tx_inactive(struct nvt_dev *nvt)
738 {
739 unsigned long flags;
740 bool tx_inactive;
741 u8 tx_state;
742
743 spin_lock_irqsave(&nvt->tx.lock, flags);
744 tx_state = nvt->tx.tx_state;
745 spin_unlock_irqrestore(&nvt->tx.lock, flags);
746
747 tx_inactive = (tx_state == ST_TX_NONE);
748
749 return tx_inactive;
750 }
751
752 /* interrupt service routine for incoming and outgoing CIR data */
753 static irqreturn_t nvt_cir_isr(int irq, void *data)
754 {
755 struct nvt_dev *nvt = data;
756 u8 status, iren, cur_state;
757 unsigned long flags;
758
759 nvt_dbg_verbose("%s firing", __func__);
760
761 nvt_efm_enable(nvt);
762 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
763 nvt_efm_disable(nvt);
764
765 /*
766 * Get IR Status register contents. Write 1 to ack/clear
767 *
768 * bit: reg name - description
769 * 7: CIR_IRSTS_RDR - RX Data Ready
770 * 6: CIR_IRSTS_RTR - RX FIFO Trigger Level Reach
771 * 5: CIR_IRSTS_PE - Packet End
772 * 4: CIR_IRSTS_RFO - RX FIFO Overrun (RDR will also be set)
773 * 3: CIR_IRSTS_TE - TX FIFO Empty
774 * 2: CIR_IRSTS_TTR - TX FIFO Trigger Level Reach
775 * 1: CIR_IRSTS_TFU - TX FIFO Underrun
776 * 0: CIR_IRSTS_GH - Min Length Detected
777 */
778 status = nvt_cir_reg_read(nvt, CIR_IRSTS);
779 if (!status) {
780 nvt_dbg_verbose("%s exiting, IRSTS 0x0", __func__);
781 nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
782 return IRQ_RETVAL(IRQ_NONE);
783 }
784
785 /* ack/clear all irq flags we've got */
786 nvt_cir_reg_write(nvt, status, CIR_IRSTS);
787 nvt_cir_reg_write(nvt, 0, CIR_IRSTS);
788
789 /* Interrupt may be shared with CIR Wake, bail if CIR not enabled */
790 iren = nvt_cir_reg_read(nvt, CIR_IREN);
791 if (!iren) {
792 nvt_dbg_verbose("%s exiting, CIR not enabled", __func__);
793 return IRQ_RETVAL(IRQ_NONE);
794 }
795
796 if (debug)
797 nvt_cir_log_irqs(status, iren);
798
799 if (status & CIR_IRSTS_RTR) {
800 /* FIXME: add code for study/learn mode */
801 /* We only do rx if not tx'ing */
802 if (nvt_cir_tx_inactive(nvt))
803 nvt_get_rx_ir_data(nvt);
804 }
805
806 if (status & CIR_IRSTS_PE) {
807 if (nvt_cir_tx_inactive(nvt))
808 nvt_get_rx_ir_data(nvt);
809
810 spin_lock_irqsave(&nvt->nvt_lock, flags);
811
812 cur_state = nvt->study_state;
813
814 spin_unlock_irqrestore(&nvt->nvt_lock, flags);
815
816 if (cur_state == ST_STUDY_NONE)
817 nvt_clear_cir_fifo(nvt);
818 }
819
820 if (status & CIR_IRSTS_TE)
821 nvt_clear_tx_fifo(nvt);
822
823 if (status & CIR_IRSTS_TTR) {
824 unsigned int pos, count;
825 u8 tmp;
826
827 spin_lock_irqsave(&nvt->tx.lock, flags);
828
829 pos = nvt->tx.cur_buf_num;
830 count = nvt->tx.buf_count;
831
832 /* Write data into the hardware tx fifo while pos < count */
833 if (pos < count) {
834 nvt_cir_reg_write(nvt, nvt->tx.buf[pos], CIR_STXFIFO);
835 nvt->tx.cur_buf_num++;
836 /* Disable TX FIFO Trigger Level Reach (TTR) interrupt */
837 } else {
838 tmp = nvt_cir_reg_read(nvt, CIR_IREN);
839 nvt_cir_reg_write(nvt, tmp & ~CIR_IREN_TTR, CIR_IREN);
840 }
841
842 spin_unlock_irqrestore(&nvt->tx.lock, flags);
843
844 }
845
846 if (status & CIR_IRSTS_TFU) {
847 spin_lock_irqsave(&nvt->tx.lock, flags);
848 if (nvt->tx.tx_state == ST_TX_REPLY) {
849 nvt->tx.tx_state = ST_TX_REQUEST;
850 wake_up(&nvt->tx.queue);
851 }
852 spin_unlock_irqrestore(&nvt->tx.lock, flags);
853 }
854
855 nvt_dbg_verbose("%s done", __func__);
856 return IRQ_RETVAL(IRQ_HANDLED);
857 }
858
859 /* Interrupt service routine for CIR Wake */
860 static irqreturn_t nvt_cir_wake_isr(int irq, void *data)
861 {
862 u8 status, iren, val;
863 struct nvt_dev *nvt = data;
864 unsigned long flags;
865
866 nvt_dbg_wake("%s firing", __func__);
867
868 status = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS);
869 if (!status)
870 return IRQ_RETVAL(IRQ_NONE);
871
872 if (status & CIR_WAKE_IRSTS_IR_PENDING)
873 nvt_clear_cir_wake_fifo(nvt);
874
875 nvt_cir_wake_reg_write(nvt, status, CIR_WAKE_IRSTS);
876 nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IRSTS);
877
878 /* Interrupt may be shared with CIR, bail if Wake not enabled */
879 iren = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN);
880 if (!iren) {
881 nvt_dbg_wake("%s exiting, wake not enabled", __func__);
882 return IRQ_RETVAL(IRQ_HANDLED);
883 }
884
885 if ((status & CIR_WAKE_IRSTS_PE) &&
886 (nvt->wake_state == ST_WAKE_START)) {
887 while (nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX)) {
888 val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY);
889 nvt_dbg("setting wake up key: 0x%x", val);
890 }
891
892 nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
893 spin_lock_irqsave(&nvt->nvt_lock, flags);
894 nvt->wake_state = ST_WAKE_FINISH;
895 spin_unlock_irqrestore(&nvt->nvt_lock, flags);
896 }
897
898 nvt_dbg_wake("%s done", __func__);
899 return IRQ_RETVAL(IRQ_HANDLED);
900 }
901
902 static void nvt_enable_cir(struct nvt_dev *nvt)
903 {
904 /* set function enable flags */
905 nvt_cir_reg_write(nvt, CIR_IRCON_TXEN | CIR_IRCON_RXEN |
906 CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
907 CIR_IRCON);
908
909 nvt_efm_enable(nvt);
910
911 /* enable the CIR logical device */
912 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
913 nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
914
915 nvt_efm_disable(nvt);
916
917 /* clear all pending interrupts */
918 nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
919
920 /* enable interrupts */
921 nvt_set_cir_iren(nvt);
922 }
923
924 static void nvt_disable_cir(struct nvt_dev *nvt)
925 {
926 /* disable CIR interrupts */
927 nvt_cir_reg_write(nvt, 0, CIR_IREN);
928
929 /* clear any and all pending interrupts */
930 nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
931
932 /* clear all function enable flags */
933 nvt_cir_reg_write(nvt, 0, CIR_IRCON);
934
935 /* clear hardware rx and tx fifos */
936 nvt_clear_cir_fifo(nvt);
937 nvt_clear_tx_fifo(nvt);
938
939 nvt_efm_enable(nvt);
940
941 /* disable the CIR logical device */
942 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
943 nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);
944
945 nvt_efm_disable(nvt);
946 }
947
948 static int nvt_open(struct rc_dev *dev)
949 {
950 struct nvt_dev *nvt = dev->priv;
951 unsigned long flags;
952
953 spin_lock_irqsave(&nvt->nvt_lock, flags);
954 nvt_enable_cir(nvt);
955 spin_unlock_irqrestore(&nvt->nvt_lock, flags);
956
957 return 0;
958 }
959
960 static void nvt_close(struct rc_dev *dev)
961 {
962 struct nvt_dev *nvt = dev->priv;
963 unsigned long flags;
964
965 spin_lock_irqsave(&nvt->nvt_lock, flags);
966 nvt_disable_cir(nvt);
967 spin_unlock_irqrestore(&nvt->nvt_lock, flags);
968 }
969
970 /* Allocate memory, probe hardware, and initialize everything */
971 static int nvt_probe(struct pnp_dev *pdev, const struct pnp_device_id *dev_id)
972 {
973 struct nvt_dev *nvt;
974 struct rc_dev *rdev;
975 int ret = -ENOMEM;
976
977 nvt = kzalloc(sizeof(struct nvt_dev), GFP_KERNEL);
978 if (!nvt)
979 return ret;
980
981 /* input device for IR remote (and tx) */
982 rdev = rc_allocate_device();
983 if (!rdev)
984 goto exit_free_dev_rdev;
985
986 ret = -ENODEV;
987 /* activate pnp device */
988 if (pnp_activate_dev(pdev) < 0) {
989 dev_err(&pdev->dev, "Could not activate PNP device!\n");
990 goto exit_free_dev_rdev;
991 }
992
993 /* validate pnp resources */
994 if (!pnp_port_valid(pdev, 0) ||
995 pnp_port_len(pdev, 0) < CIR_IOREG_LENGTH) {
996 dev_err(&pdev->dev, "IR PNP Port not valid!\n");
997 goto exit_free_dev_rdev;
998 }
999
1000 if (!pnp_irq_valid(pdev, 0)) {
1001 dev_err(&pdev->dev, "PNP IRQ not valid!\n");
1002 goto exit_free_dev_rdev;
1003 }
1004
1005 if (!pnp_port_valid(pdev, 1) ||
1006 pnp_port_len(pdev, 1) < CIR_IOREG_LENGTH) {
1007 dev_err(&pdev->dev, "Wake PNP Port not valid!\n");
1008 goto exit_free_dev_rdev;
1009 }
1010
1011 nvt->cir_addr = pnp_port_start(pdev, 0);
1012 nvt->cir_irq = pnp_irq(pdev, 0);
1013
1014 nvt->cir_wake_addr = pnp_port_start(pdev, 1);
1015 /* irq is always shared between cir and cir wake */
1016 nvt->cir_wake_irq = nvt->cir_irq;
1017
1018 nvt->cr_efir = CR_EFIR;
1019 nvt->cr_efdr = CR_EFDR;
1020
1021 spin_lock_init(&nvt->nvt_lock);
1022 spin_lock_init(&nvt->tx.lock);
1023
1024 pnp_set_drvdata(pdev, nvt);
1025 nvt->pdev = pdev;
1026
1027 init_waitqueue_head(&nvt->tx.queue);
1028
1029 ret = nvt_hw_detect(nvt);
1030 if (ret)
1031 goto exit_free_dev_rdev;
1032
1033 /* Initialize CIR & CIR Wake Logical Devices */
1034 nvt_efm_enable(nvt);
1035 nvt_cir_ldev_init(nvt);
1036 nvt_cir_wake_ldev_init(nvt);
1037 nvt_efm_disable(nvt);
1038
1039 /* Initialize CIR & CIR Wake Config Registers */
1040 nvt_cir_regs_init(nvt);
1041 nvt_cir_wake_regs_init(nvt);
1042
1043 /* Set up the rc device */
1044 rdev->priv = nvt;
1045 rdev->driver_type = RC_DRIVER_IR_RAW;
1046 rdev->allowed_protocols = RC_BIT_ALL;
1047 rdev->open = nvt_open;
1048 rdev->close = nvt_close;
1049 rdev->tx_ir = nvt_tx_ir;
1050 rdev->s_tx_carrier = nvt_set_tx_carrier;
1051 rdev->input_name = "Nuvoton w836x7hg Infrared Remote Transceiver";
1052 rdev->input_phys = "nuvoton/cir0";
1053 rdev->input_id.bustype = BUS_HOST;
1054 rdev->input_id.vendor = PCI_VENDOR_ID_WINBOND2;
1055 rdev->input_id.product = nvt->chip_major;
1056 rdev->input_id.version = nvt->chip_minor;
1057 rdev->dev.parent = &pdev->dev;
1058 rdev->driver_name = NVT_DRIVER_NAME;
1059 rdev->map_name = RC_MAP_RC6_MCE;
1060 rdev->timeout = MS_TO_NS(100);
1061 /* rx resolution is hardwired to 50us atm, 1, 25, 100 also possible */
1062 rdev->rx_resolution = US_TO_NS(CIR_SAMPLE_PERIOD);
1063 #if 0
1064 rdev->min_timeout = XYZ;
1065 rdev->max_timeout = XYZ;
1066 /* tx bits */
1067 rdev->tx_resolution = XYZ;
1068 #endif
1069 nvt->rdev = rdev;
1070
1071 ret = rc_register_device(rdev);
1072 if (ret)
1073 goto exit_free_dev_rdev;
1074
1075 ret = -EBUSY;
1076 /* now claim resources */
1077 if (!request_region(nvt->cir_addr,
1078 CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
1079 goto exit_unregister_device;
1080
1081 if (request_irq(nvt->cir_irq, nvt_cir_isr, IRQF_SHARED,
1082 NVT_DRIVER_NAME, (void *)nvt))
1083 goto exit_release_cir_addr;
1084
1085 if (!request_region(nvt->cir_wake_addr,
1086 CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
1087 goto exit_free_irq;
1088
1089 if (request_irq(nvt->cir_wake_irq, nvt_cir_wake_isr, IRQF_SHARED,
1090 NVT_DRIVER_NAME, (void *)nvt))
1091 goto exit_release_cir_wake_addr;
1092
1093 device_init_wakeup(&pdev->dev, true);
1094
1095 nvt_pr(KERN_NOTICE, "driver has been successfully loaded\n");
1096 if (debug) {
1097 cir_dump_regs(nvt);
1098 cir_wake_dump_regs(nvt);
1099 }
1100
1101 return 0;
1102
1103 exit_release_cir_wake_addr:
1104 release_region(nvt->cir_wake_addr, CIR_IOREG_LENGTH);
1105 exit_free_irq:
1106 free_irq(nvt->cir_irq, nvt);
1107 exit_release_cir_addr:
1108 release_region(nvt->cir_addr, CIR_IOREG_LENGTH);
1109 exit_unregister_device:
1110 rc_unregister_device(rdev);
1111 rdev = NULL;
1112 exit_free_dev_rdev:
1113 rc_free_device(rdev);
1114 kfree(nvt);
1115
1116 return ret;
1117 }
1118
1119 static void nvt_remove(struct pnp_dev *pdev)
1120 {
1121 struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1122 unsigned long flags;
1123
1124 spin_lock_irqsave(&nvt->nvt_lock, flags);
1125 /* disable CIR */
1126 nvt_cir_reg_write(nvt, 0, CIR_IREN);
1127 nvt_disable_cir(nvt);
1128 /* enable CIR Wake (for IR power-on) */
1129 nvt_enable_wake(nvt);
1130 spin_unlock_irqrestore(&nvt->nvt_lock, flags);
1131
1132 /* free resources */
1133 free_irq(nvt->cir_irq, nvt);
1134 free_irq(nvt->cir_wake_irq, nvt);
1135 release_region(nvt->cir_addr, CIR_IOREG_LENGTH);
1136 release_region(nvt->cir_wake_addr, CIR_IOREG_LENGTH);
1137
1138 rc_unregister_device(nvt->rdev);
1139
1140 kfree(nvt);
1141 }
1142
1143 static int nvt_suspend(struct pnp_dev *pdev, pm_message_t state)
1144 {
1145 struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1146 unsigned long flags;
1147
1148 nvt_dbg("%s called", __func__);
1149
1150 /* zero out misc state tracking */
1151 spin_lock_irqsave(&nvt->nvt_lock, flags);
1152 nvt->study_state = ST_STUDY_NONE;
1153 nvt->wake_state = ST_WAKE_NONE;
1154 spin_unlock_irqrestore(&nvt->nvt_lock, flags);
1155
1156 spin_lock_irqsave(&nvt->tx.lock, flags);
1157 nvt->tx.tx_state = ST_TX_NONE;
1158 spin_unlock_irqrestore(&nvt->tx.lock, flags);
1159
1160 /* disable all CIR interrupts */
1161 nvt_cir_reg_write(nvt, 0, CIR_IREN);
1162
1163 nvt_efm_enable(nvt);
1164
1165 /* disable cir logical dev */
1166 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
1167 nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);
1168
1169 nvt_efm_disable(nvt);
1170
1171 /* make sure wake is enabled */
1172 nvt_enable_wake(nvt);
1173
1174 return 0;
1175 }
1176
1177 static int nvt_resume(struct pnp_dev *pdev)
1178 {
1179 struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1180
1181 nvt_dbg("%s called", __func__);
1182
1183 /* open interrupt */
1184 nvt_set_cir_iren(nvt);
1185
1186 /* Enable CIR logical device */
1187 nvt_efm_enable(nvt);
1188 nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
1189 nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
1190
1191 nvt_efm_disable(nvt);
1192
1193 nvt_cir_regs_init(nvt);
1194 nvt_cir_wake_regs_init(nvt);
1195
1196 return 0;
1197 }
1198
1199 static void nvt_shutdown(struct pnp_dev *pdev)
1200 {
1201 struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1202 nvt_enable_wake(nvt);
1203 }
1204
1205 static const struct pnp_device_id nvt_ids[] = {
1206 { "WEC0530", 0 }, /* CIR */
1207 { "NTN0530", 0 }, /* CIR for new chip's pnp id*/
1208 { "", 0 },
1209 };
1210
1211 static struct pnp_driver nvt_driver = {
1212 .name = NVT_DRIVER_NAME,
1213 .id_table = nvt_ids,
1214 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
1215 .probe = nvt_probe,
1216 .remove = nvt_remove,
1217 .suspend = nvt_suspend,
1218 .resume = nvt_resume,
1219 .shutdown = nvt_shutdown,
1220 };
1221
1222 module_param(debug, int, S_IRUGO | S_IWUSR);
1223 MODULE_PARM_DESC(debug, "Enable debugging output");
1224
1225 MODULE_DEVICE_TABLE(pnp, nvt_ids);
1226 MODULE_DESCRIPTION("Nuvoton W83667HG-A & W83677HG-I CIR driver");
1227
1228 MODULE_AUTHOR("Jarod Wilson <jarod@redhat.com>");
1229 MODULE_LICENSE("GPL");
1230
1231 module_pnp_driver(nvt_driver);
This page took 0.071576 seconds and 6 git commands to generate.