Merge branch 'master' into for-next
[deliverable/linux.git] / drivers / media / video / omap / omap_vout.c
1 /*
2 * omap_vout.c
3 *
4 * Copyright (C) 2005-2010 Texas Instruments.
5 *
6 * This file is licensed under the terms of the GNU General Public License
7 * version 2. This program is licensed "as is" without any warranty of any
8 * kind, whether express or implied.
9 *
10 * Leveraged code from the OMAP2 camera driver
11 * Video-for-Linux (Version 2) camera capture driver for
12 * the OMAP24xx camera controller.
13 *
14 * Author: Andy Lowe (source@mvista.com)
15 *
16 * Copyright (C) 2004 MontaVista Software, Inc.
17 * Copyright (C) 2010 Texas Instruments.
18 *
19 * History:
20 * 20-APR-2006 Khasim Modified VRFB based Rotation,
21 * The image data is always read from 0 degree
22 * view and written
23 * to the virtual space of desired rotation angle
24 * 4-DEC-2006 Jian Changed to support better memory management
25 *
26 * 17-Nov-2008 Hardik Changed driver to use video_ioctl2
27 *
28 * 23-Feb-2010 Vaibhav H Modified to use new DSS2 interface
29 *
30 */
31
32 #include <linux/init.h>
33 #include <linux/module.h>
34 #include <linux/vmalloc.h>
35 #include <linux/sched.h>
36 #include <linux/types.h>
37 #include <linux/platform_device.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/irq.h>
40 #include <linux/videodev2.h>
41 #include <linux/slab.h>
42
43 #include <media/videobuf-dma-contig.h>
44 #include <media/v4l2-device.h>
45 #include <media/v4l2-ioctl.h>
46
47 #include <plat/dma.h>
48 #include <plat/vram.h>
49 #include <plat/vrfb.h>
50 #include <video/omapdss.h>
51
52 #include "omap_voutlib.h"
53 #include "omap_voutdef.h"
54
55 MODULE_AUTHOR("Texas Instruments");
56 MODULE_DESCRIPTION("OMAP Video for Linux Video out driver");
57 MODULE_LICENSE("GPL");
58
59
60 /* Driver Configuration macros */
61 #define VOUT_NAME "omap_vout"
62
63 enum omap_vout_channels {
64 OMAP_VIDEO1,
65 OMAP_VIDEO2,
66 };
67
68 enum dma_channel_state {
69 DMA_CHAN_NOT_ALLOTED,
70 DMA_CHAN_ALLOTED,
71 };
72
73 #define QQVGA_WIDTH 160
74 #define QQVGA_HEIGHT 120
75
76 /* Max Resolution supported by the driver */
77 #define VID_MAX_WIDTH 1280 /* Largest width */
78 #define VID_MAX_HEIGHT 720 /* Largest height */
79
80 /* Mimimum requirement is 2x2 for DSS */
81 #define VID_MIN_WIDTH 2
82 #define VID_MIN_HEIGHT 2
83
84 /* 2048 x 2048 is max res supported by OMAP display controller */
85 #define MAX_PIXELS_PER_LINE 2048
86
87 #define VRFB_TX_TIMEOUT 1000
88 #define VRFB_NUM_BUFS 4
89
90 /* Max buffer size tobe allocated during init */
91 #define OMAP_VOUT_MAX_BUF_SIZE (VID_MAX_WIDTH*VID_MAX_HEIGHT*4)
92
93 static struct videobuf_queue_ops video_vbq_ops;
94 /* Variables configurable through module params*/
95 static u32 video1_numbuffers = 3;
96 static u32 video2_numbuffers = 3;
97 static u32 video1_bufsize = OMAP_VOUT_MAX_BUF_SIZE;
98 static u32 video2_bufsize = OMAP_VOUT_MAX_BUF_SIZE;
99 static u32 vid1_static_vrfb_alloc;
100 static u32 vid2_static_vrfb_alloc;
101 static int debug;
102
103 /* Module parameters */
104 module_param(video1_numbuffers, uint, S_IRUGO);
105 MODULE_PARM_DESC(video1_numbuffers,
106 "Number of buffers to be allocated at init time for Video1 device.");
107
108 module_param(video2_numbuffers, uint, S_IRUGO);
109 MODULE_PARM_DESC(video2_numbuffers,
110 "Number of buffers to be allocated at init time for Video2 device.");
111
112 module_param(video1_bufsize, uint, S_IRUGO);
113 MODULE_PARM_DESC(video1_bufsize,
114 "Size of the buffer to be allocated for video1 device");
115
116 module_param(video2_bufsize, uint, S_IRUGO);
117 MODULE_PARM_DESC(video2_bufsize,
118 "Size of the buffer to be allocated for video2 device");
119
120 module_param(vid1_static_vrfb_alloc, bool, S_IRUGO);
121 MODULE_PARM_DESC(vid1_static_vrfb_alloc,
122 "Static allocation of the VRFB buffer for video1 device");
123
124 module_param(vid2_static_vrfb_alloc, bool, S_IRUGO);
125 MODULE_PARM_DESC(vid2_static_vrfb_alloc,
126 "Static allocation of the VRFB buffer for video2 device");
127
128 module_param(debug, bool, S_IRUGO);
129 MODULE_PARM_DESC(debug, "Debug level (0-1)");
130
131 /* list of image formats supported by OMAP2 video pipelines */
132 static const struct v4l2_fmtdesc omap_formats[] = {
133 {
134 /* Note: V4L2 defines RGB565 as:
135 *
136 * Byte 0 Byte 1
137 * g2 g1 g0 r4 r3 r2 r1 r0 b4 b3 b2 b1 b0 g5 g4 g3
138 *
139 * We interpret RGB565 as:
140 *
141 * Byte 0 Byte 1
142 * g2 g1 g0 b4 b3 b2 b1 b0 r4 r3 r2 r1 r0 g5 g4 g3
143 */
144 .description = "RGB565, le",
145 .pixelformat = V4L2_PIX_FMT_RGB565,
146 },
147 {
148 /* Note: V4L2 defines RGB32 as: RGB-8-8-8-8 we use
149 * this for RGB24 unpack mode, the last 8 bits are ignored
150 * */
151 .description = "RGB32, le",
152 .pixelformat = V4L2_PIX_FMT_RGB32,
153 },
154 {
155 /* Note: V4L2 defines RGB24 as: RGB-8-8-8 we use
156 * this for RGB24 packed mode
157 *
158 */
159 .description = "RGB24, le",
160 .pixelformat = V4L2_PIX_FMT_RGB24,
161 },
162 {
163 .description = "YUYV (YUV 4:2:2), packed",
164 .pixelformat = V4L2_PIX_FMT_YUYV,
165 },
166 {
167 .description = "UYVY, packed",
168 .pixelformat = V4L2_PIX_FMT_UYVY,
169 },
170 };
171
172 #define NUM_OUTPUT_FORMATS (ARRAY_SIZE(omap_formats))
173
174 /*
175 * Allocate buffers
176 */
177 static unsigned long omap_vout_alloc_buffer(u32 buf_size, u32 *phys_addr)
178 {
179 u32 order, size;
180 unsigned long virt_addr, addr;
181
182 size = PAGE_ALIGN(buf_size);
183 order = get_order(size);
184 virt_addr = __get_free_pages(GFP_KERNEL | GFP_DMA, order);
185 addr = virt_addr;
186
187 if (virt_addr) {
188 while (size > 0) {
189 SetPageReserved(virt_to_page(addr));
190 addr += PAGE_SIZE;
191 size -= PAGE_SIZE;
192 }
193 }
194 *phys_addr = (u32) virt_to_phys((void *) virt_addr);
195 return virt_addr;
196 }
197
198 /*
199 * Free buffers
200 */
201 static void omap_vout_free_buffer(unsigned long virtaddr, u32 buf_size)
202 {
203 u32 order, size;
204 unsigned long addr = virtaddr;
205
206 size = PAGE_ALIGN(buf_size);
207 order = get_order(size);
208
209 while (size > 0) {
210 ClearPageReserved(virt_to_page(addr));
211 addr += PAGE_SIZE;
212 size -= PAGE_SIZE;
213 }
214 free_pages((unsigned long) virtaddr, order);
215 }
216
217 /*
218 * Function for allocating video buffers
219 */
220 static int omap_vout_allocate_vrfb_buffers(struct omap_vout_device *vout,
221 unsigned int *count, int startindex)
222 {
223 int i, j;
224
225 for (i = 0; i < *count; i++) {
226 if (!vout->smsshado_virt_addr[i]) {
227 vout->smsshado_virt_addr[i] =
228 omap_vout_alloc_buffer(vout->smsshado_size,
229 &vout->smsshado_phy_addr[i]);
230 }
231 if (!vout->smsshado_virt_addr[i] && startindex != -1) {
232 if (V4L2_MEMORY_MMAP == vout->memory && i >= startindex)
233 break;
234 }
235 if (!vout->smsshado_virt_addr[i]) {
236 for (j = 0; j < i; j++) {
237 omap_vout_free_buffer(
238 vout->smsshado_virt_addr[j],
239 vout->smsshado_size);
240 vout->smsshado_virt_addr[j] = 0;
241 vout->smsshado_phy_addr[j] = 0;
242 }
243 *count = 0;
244 return -ENOMEM;
245 }
246 memset((void *) vout->smsshado_virt_addr[i], 0,
247 vout->smsshado_size);
248 }
249 return 0;
250 }
251
252 /*
253 * Try format
254 */
255 static int omap_vout_try_format(struct v4l2_pix_format *pix)
256 {
257 int ifmt, bpp = 0;
258
259 pix->height = clamp(pix->height, (u32)VID_MIN_HEIGHT,
260 (u32)VID_MAX_HEIGHT);
261 pix->width = clamp(pix->width, (u32)VID_MIN_WIDTH, (u32)VID_MAX_WIDTH);
262
263 for (ifmt = 0; ifmt < NUM_OUTPUT_FORMATS; ifmt++) {
264 if (pix->pixelformat == omap_formats[ifmt].pixelformat)
265 break;
266 }
267
268 if (ifmt == NUM_OUTPUT_FORMATS)
269 ifmt = 0;
270
271 pix->pixelformat = omap_formats[ifmt].pixelformat;
272 pix->field = V4L2_FIELD_ANY;
273 pix->priv = 0;
274
275 switch (pix->pixelformat) {
276 case V4L2_PIX_FMT_YUYV:
277 case V4L2_PIX_FMT_UYVY:
278 default:
279 pix->colorspace = V4L2_COLORSPACE_JPEG;
280 bpp = YUYV_BPP;
281 break;
282 case V4L2_PIX_FMT_RGB565:
283 case V4L2_PIX_FMT_RGB565X:
284 pix->colorspace = V4L2_COLORSPACE_SRGB;
285 bpp = RGB565_BPP;
286 break;
287 case V4L2_PIX_FMT_RGB24:
288 pix->colorspace = V4L2_COLORSPACE_SRGB;
289 bpp = RGB24_BPP;
290 break;
291 case V4L2_PIX_FMT_RGB32:
292 case V4L2_PIX_FMT_BGR32:
293 pix->colorspace = V4L2_COLORSPACE_SRGB;
294 bpp = RGB32_BPP;
295 break;
296 }
297 pix->bytesperline = pix->width * bpp;
298 pix->sizeimage = pix->bytesperline * pix->height;
299
300 return bpp;
301 }
302
303 /*
304 * omap_vout_uservirt_to_phys: This inline function is used to convert user
305 * space virtual address to physical address.
306 */
307 static u32 omap_vout_uservirt_to_phys(u32 virtp)
308 {
309 unsigned long physp = 0;
310 struct vm_area_struct *vma;
311 struct mm_struct *mm = current->mm;
312
313 vma = find_vma(mm, virtp);
314 /* For kernel direct-mapped memory, take the easy way */
315 if (virtp >= PAGE_OFFSET) {
316 physp = virt_to_phys((void *) virtp);
317 } else if (vma && (vma->vm_flags & VM_IO) && vma->vm_pgoff) {
318 /* this will catch, kernel-allocated, mmaped-to-usermode
319 addresses */
320 physp = (vma->vm_pgoff << PAGE_SHIFT) + (virtp - vma->vm_start);
321 } else {
322 /* otherwise, use get_user_pages() for general userland pages */
323 int res, nr_pages = 1;
324 struct page *pages;
325 down_read(&current->mm->mmap_sem);
326
327 res = get_user_pages(current, current->mm, virtp, nr_pages, 1,
328 0, &pages, NULL);
329 up_read(&current->mm->mmap_sem);
330
331 if (res == nr_pages) {
332 physp = __pa(page_address(&pages[0]) +
333 (virtp & ~PAGE_MASK));
334 } else {
335 printk(KERN_WARNING VOUT_NAME
336 "get_user_pages failed\n");
337 return 0;
338 }
339 }
340
341 return physp;
342 }
343
344 /*
345 * Wakes up the application once the DMA transfer to VRFB space is completed.
346 */
347 static void omap_vout_vrfb_dma_tx_callback(int lch, u16 ch_status, void *data)
348 {
349 struct vid_vrfb_dma *t = (struct vid_vrfb_dma *) data;
350
351 t->tx_status = 1;
352 wake_up_interruptible(&t->wait);
353 }
354
355 /*
356 * Release the VRFB context once the module exits
357 */
358 static void omap_vout_release_vrfb(struct omap_vout_device *vout)
359 {
360 int i;
361
362 for (i = 0; i < VRFB_NUM_BUFS; i++)
363 omap_vrfb_release_ctx(&vout->vrfb_context[i]);
364
365 if (vout->vrfb_dma_tx.req_status == DMA_CHAN_ALLOTED) {
366 vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED;
367 omap_free_dma(vout->vrfb_dma_tx.dma_ch);
368 }
369 }
370
371 /*
372 * Return true if rotation is 90 or 270
373 */
374 static inline int rotate_90_or_270(const struct omap_vout_device *vout)
375 {
376 return (vout->rotation == dss_rotation_90_degree ||
377 vout->rotation == dss_rotation_270_degree);
378 }
379
380 /*
381 * Return true if rotation is enabled
382 */
383 static inline int rotation_enabled(const struct omap_vout_device *vout)
384 {
385 return vout->rotation || vout->mirror;
386 }
387
388 /*
389 * Reverse the rotation degree if mirroring is enabled
390 */
391 static inline int calc_rotation(const struct omap_vout_device *vout)
392 {
393 if (!vout->mirror)
394 return vout->rotation;
395
396 switch (vout->rotation) {
397 case dss_rotation_90_degree:
398 return dss_rotation_270_degree;
399 case dss_rotation_270_degree:
400 return dss_rotation_90_degree;
401 case dss_rotation_180_degree:
402 return dss_rotation_0_degree;
403 default:
404 return dss_rotation_180_degree;
405 }
406 }
407
408 /*
409 * Free the V4L2 buffers
410 */
411 static void omap_vout_free_buffers(struct omap_vout_device *vout)
412 {
413 int i, numbuffers;
414
415 /* Allocate memory for the buffers */
416 numbuffers = (vout->vid) ? video2_numbuffers : video1_numbuffers;
417 vout->buffer_size = (vout->vid) ? video2_bufsize : video1_bufsize;
418
419 for (i = 0; i < numbuffers; i++) {
420 omap_vout_free_buffer(vout->buf_virt_addr[i],
421 vout->buffer_size);
422 vout->buf_phy_addr[i] = 0;
423 vout->buf_virt_addr[i] = 0;
424 }
425 }
426
427 /*
428 * Free VRFB buffers
429 */
430 static void omap_vout_free_vrfb_buffers(struct omap_vout_device *vout)
431 {
432 int j;
433
434 for (j = 0; j < VRFB_NUM_BUFS; j++) {
435 omap_vout_free_buffer(vout->smsshado_virt_addr[j],
436 vout->smsshado_size);
437 vout->smsshado_virt_addr[j] = 0;
438 vout->smsshado_phy_addr[j] = 0;
439 }
440 }
441
442 /*
443 * Allocate the buffers for the VRFB space. Data is copied from V4L2
444 * buffers to the VRFB buffers using the DMA engine.
445 */
446 static int omap_vout_vrfb_buffer_setup(struct omap_vout_device *vout,
447 unsigned int *count, unsigned int startindex)
448 {
449 int i;
450 bool yuv_mode;
451
452 /* Allocate the VRFB buffers only if the buffers are not
453 * allocated during init time.
454 */
455 if ((rotation_enabled(vout)) && !vout->vrfb_static_allocation)
456 if (omap_vout_allocate_vrfb_buffers(vout, count, startindex))
457 return -ENOMEM;
458
459 if (vout->dss_mode == OMAP_DSS_COLOR_YUV2 ||
460 vout->dss_mode == OMAP_DSS_COLOR_UYVY)
461 yuv_mode = true;
462 else
463 yuv_mode = false;
464
465 for (i = 0; i < *count; i++)
466 omap_vrfb_setup(&vout->vrfb_context[i],
467 vout->smsshado_phy_addr[i], vout->pix.width,
468 vout->pix.height, vout->bpp, yuv_mode);
469
470 return 0;
471 }
472
473 /*
474 * Convert V4L2 rotation to DSS rotation
475 * V4L2 understand 0, 90, 180, 270.
476 * Convert to 0, 1, 2 and 3 respectively for DSS
477 */
478 static int v4l2_rot_to_dss_rot(int v4l2_rotation,
479 enum dss_rotation *rotation, bool mirror)
480 {
481 int ret = 0;
482
483 switch (v4l2_rotation) {
484 case 90:
485 *rotation = dss_rotation_90_degree;
486 break;
487 case 180:
488 *rotation = dss_rotation_180_degree;
489 break;
490 case 270:
491 *rotation = dss_rotation_270_degree;
492 break;
493 case 0:
494 *rotation = dss_rotation_0_degree;
495 break;
496 default:
497 ret = -EINVAL;
498 }
499 return ret;
500 }
501
502 /*
503 * Calculate the buffer offsets from which the streaming should
504 * start. This offset calculation is mainly required because of
505 * the VRFB 32 pixels alignment with rotation.
506 */
507 static int omap_vout_calculate_offset(struct omap_vout_device *vout)
508 {
509 struct omap_overlay *ovl;
510 enum dss_rotation rotation;
511 struct omapvideo_info *ovid;
512 bool mirroring = vout->mirror;
513 struct omap_dss_device *cur_display;
514 struct v4l2_rect *crop = &vout->crop;
515 struct v4l2_pix_format *pix = &vout->pix;
516 int *cropped_offset = &vout->cropped_offset;
517 int vr_ps = 1, ps = 2, temp_ps = 2;
518 int offset = 0, ctop = 0, cleft = 0, line_length = 0;
519
520 ovid = &vout->vid_info;
521 ovl = ovid->overlays[0];
522 /* get the display device attached to the overlay */
523 if (!ovl->manager || !ovl->manager->device)
524 return -1;
525
526 cur_display = ovl->manager->device;
527 rotation = calc_rotation(vout);
528
529 if (V4L2_PIX_FMT_YUYV == pix->pixelformat ||
530 V4L2_PIX_FMT_UYVY == pix->pixelformat) {
531 if (rotation_enabled(vout)) {
532 /*
533 * ps - Actual pixel size for YUYV/UYVY for
534 * VRFB/Mirroring is 4 bytes
535 * vr_ps - Virtually pixel size for YUYV/UYVY is
536 * 2 bytes
537 */
538 ps = 4;
539 vr_ps = 2;
540 } else {
541 ps = 2; /* otherwise the pixel size is 2 byte */
542 }
543 } else if (V4L2_PIX_FMT_RGB32 == pix->pixelformat) {
544 ps = 4;
545 } else if (V4L2_PIX_FMT_RGB24 == pix->pixelformat) {
546 ps = 3;
547 }
548 vout->ps = ps;
549 vout->vr_ps = vr_ps;
550
551 if (rotation_enabled(vout)) {
552 line_length = MAX_PIXELS_PER_LINE;
553 ctop = (pix->height - crop->height) - crop->top;
554 cleft = (pix->width - crop->width) - crop->left;
555 } else {
556 line_length = pix->width;
557 }
558 vout->line_length = line_length;
559 switch (rotation) {
560 case dss_rotation_90_degree:
561 offset = vout->vrfb_context[0].yoffset *
562 vout->vrfb_context[0].bytespp;
563 temp_ps = ps / vr_ps;
564 if (mirroring == 0) {
565 *cropped_offset = offset + line_length *
566 temp_ps * cleft + crop->top * temp_ps;
567 } else {
568 *cropped_offset = offset + line_length * temp_ps *
569 cleft + crop->top * temp_ps + (line_length *
570 ((crop->width / (vr_ps)) - 1) * ps);
571 }
572 break;
573 case dss_rotation_180_degree:
574 offset = ((MAX_PIXELS_PER_LINE * vout->vrfb_context[0].yoffset *
575 vout->vrfb_context[0].bytespp) +
576 (vout->vrfb_context[0].xoffset *
577 vout->vrfb_context[0].bytespp));
578 if (mirroring == 0) {
579 *cropped_offset = offset + (line_length * ps * ctop) +
580 (cleft / vr_ps) * ps;
581
582 } else {
583 *cropped_offset = offset + (line_length * ps * ctop) +
584 (cleft / vr_ps) * ps + (line_length *
585 (crop->height - 1) * ps);
586 }
587 break;
588 case dss_rotation_270_degree:
589 offset = MAX_PIXELS_PER_LINE * vout->vrfb_context[0].xoffset *
590 vout->vrfb_context[0].bytespp;
591 temp_ps = ps / vr_ps;
592 if (mirroring == 0) {
593 *cropped_offset = offset + line_length *
594 temp_ps * crop->left + ctop * ps;
595 } else {
596 *cropped_offset = offset + line_length *
597 temp_ps * crop->left + ctop * ps +
598 (line_length * ((crop->width / vr_ps) - 1) *
599 ps);
600 }
601 break;
602 case dss_rotation_0_degree:
603 if (mirroring == 0) {
604 *cropped_offset = (line_length * ps) *
605 crop->top + (crop->left / vr_ps) * ps;
606 } else {
607 *cropped_offset = (line_length * ps) *
608 crop->top + (crop->left / vr_ps) * ps +
609 (line_length * (crop->height - 1) * ps);
610 }
611 break;
612 default:
613 *cropped_offset = (line_length * ps * crop->top) /
614 vr_ps + (crop->left * ps) / vr_ps +
615 ((crop->width / vr_ps) - 1) * ps;
616 break;
617 }
618 v4l2_dbg(1, debug, &vout->vid_dev->v4l2_dev, "%s Offset:%x\n",
619 __func__, *cropped_offset);
620 return 0;
621 }
622
623 /*
624 * Convert V4L2 pixel format to DSS pixel format
625 */
626 static int video_mode_to_dss_mode(struct omap_vout_device *vout)
627 {
628 struct omap_overlay *ovl;
629 struct omapvideo_info *ovid;
630 struct v4l2_pix_format *pix = &vout->pix;
631 enum omap_color_mode mode;
632
633 ovid = &vout->vid_info;
634 ovl = ovid->overlays[0];
635
636 switch (pix->pixelformat) {
637 case 0:
638 break;
639 case V4L2_PIX_FMT_YUYV:
640 mode = OMAP_DSS_COLOR_YUV2;
641 break;
642 case V4L2_PIX_FMT_UYVY:
643 mode = OMAP_DSS_COLOR_UYVY;
644 break;
645 case V4L2_PIX_FMT_RGB565:
646 mode = OMAP_DSS_COLOR_RGB16;
647 break;
648 case V4L2_PIX_FMT_RGB24:
649 mode = OMAP_DSS_COLOR_RGB24P;
650 break;
651 case V4L2_PIX_FMT_RGB32:
652 mode = (ovl->id == OMAP_DSS_VIDEO1) ?
653 OMAP_DSS_COLOR_RGB24U : OMAP_DSS_COLOR_ARGB32;
654 break;
655 case V4L2_PIX_FMT_BGR32:
656 mode = OMAP_DSS_COLOR_RGBX32;
657 break;
658 default:
659 mode = -EINVAL;
660 }
661 return mode;
662 }
663
664 /*
665 * Setup the overlay
666 */
667 int omapvid_setup_overlay(struct omap_vout_device *vout,
668 struct omap_overlay *ovl, int posx, int posy, int outw,
669 int outh, u32 addr)
670 {
671 int ret = 0;
672 struct omap_overlay_info info;
673 int cropheight, cropwidth, pixheight, pixwidth;
674
675 if ((ovl->caps & OMAP_DSS_OVL_CAP_SCALE) == 0 &&
676 (outw != vout->pix.width || outh != vout->pix.height)) {
677 ret = -EINVAL;
678 goto setup_ovl_err;
679 }
680
681 vout->dss_mode = video_mode_to_dss_mode(vout);
682 if (vout->dss_mode == -EINVAL) {
683 ret = -EINVAL;
684 goto setup_ovl_err;
685 }
686
687 /* Setup the input plane parameters according to
688 * rotation value selected.
689 */
690 if (rotate_90_or_270(vout)) {
691 cropheight = vout->crop.width;
692 cropwidth = vout->crop.height;
693 pixheight = vout->pix.width;
694 pixwidth = vout->pix.height;
695 } else {
696 cropheight = vout->crop.height;
697 cropwidth = vout->crop.width;
698 pixheight = vout->pix.height;
699 pixwidth = vout->pix.width;
700 }
701
702 ovl->get_overlay_info(ovl, &info);
703 info.paddr = addr;
704 info.vaddr = NULL;
705 info.width = cropwidth;
706 info.height = cropheight;
707 info.color_mode = vout->dss_mode;
708 info.mirror = vout->mirror;
709 info.pos_x = posx;
710 info.pos_y = posy;
711 info.out_width = outw;
712 info.out_height = outh;
713 info.global_alpha = vout->win.global_alpha;
714 if (!rotation_enabled(vout)) {
715 info.rotation = 0;
716 info.rotation_type = OMAP_DSS_ROT_DMA;
717 info.screen_width = pixwidth;
718 } else {
719 info.rotation = vout->rotation;
720 info.rotation_type = OMAP_DSS_ROT_VRFB;
721 info.screen_width = 2048;
722 }
723
724 v4l2_dbg(1, debug, &vout->vid_dev->v4l2_dev,
725 "%s enable=%d addr=%x width=%d\n height=%d color_mode=%d\n"
726 "rotation=%d mirror=%d posx=%d posy=%d out_width = %d \n"
727 "out_height=%d rotation_type=%d screen_width=%d\n",
728 __func__, info.enabled, info.paddr, info.width, info.height,
729 info.color_mode, info.rotation, info.mirror, info.pos_x,
730 info.pos_y, info.out_width, info.out_height, info.rotation_type,
731 info.screen_width);
732
733 ret = ovl->set_overlay_info(ovl, &info);
734 if (ret)
735 goto setup_ovl_err;
736
737 return 0;
738
739 setup_ovl_err:
740 v4l2_warn(&vout->vid_dev->v4l2_dev, "setup_overlay failed\n");
741 return ret;
742 }
743
744 /*
745 * Initialize the overlay structure
746 */
747 int omapvid_init(struct omap_vout_device *vout, u32 addr)
748 {
749 int ret = 0, i;
750 struct v4l2_window *win;
751 struct omap_overlay *ovl;
752 int posx, posy, outw, outh, temp;
753 struct omap_video_timings *timing;
754 struct omapvideo_info *ovid = &vout->vid_info;
755
756 win = &vout->win;
757 for (i = 0; i < ovid->num_overlays; i++) {
758 ovl = ovid->overlays[i];
759 if (!ovl->manager || !ovl->manager->device)
760 return -EINVAL;
761
762 timing = &ovl->manager->device->panel.timings;
763
764 outw = win->w.width;
765 outh = win->w.height;
766 switch (vout->rotation) {
767 case dss_rotation_90_degree:
768 /* Invert the height and width for 90
769 * and 270 degree rotation
770 */
771 temp = outw;
772 outw = outh;
773 outh = temp;
774 posy = (timing->y_res - win->w.width) - win->w.left;
775 posx = win->w.top;
776 break;
777
778 case dss_rotation_180_degree:
779 posx = (timing->x_res - win->w.width) - win->w.left;
780 posy = (timing->y_res - win->w.height) - win->w.top;
781 break;
782
783 case dss_rotation_270_degree:
784 temp = outw;
785 outw = outh;
786 outh = temp;
787 posy = win->w.left;
788 posx = (timing->x_res - win->w.height) - win->w.top;
789 break;
790
791 default:
792 posx = win->w.left;
793 posy = win->w.top;
794 break;
795 }
796
797 ret = omapvid_setup_overlay(vout, ovl, posx, posy,
798 outw, outh, addr);
799 if (ret)
800 goto omapvid_init_err;
801 }
802 return 0;
803
804 omapvid_init_err:
805 v4l2_warn(&vout->vid_dev->v4l2_dev, "apply_changes failed\n");
806 return ret;
807 }
808
809 /*
810 * Apply the changes set the go bit of DSS
811 */
812 int omapvid_apply_changes(struct omap_vout_device *vout)
813 {
814 int i;
815 struct omap_overlay *ovl;
816 struct omapvideo_info *ovid = &vout->vid_info;
817
818 for (i = 0; i < ovid->num_overlays; i++) {
819 ovl = ovid->overlays[i];
820 if (!ovl->manager || !ovl->manager->device)
821 return -EINVAL;
822 ovl->manager->apply(ovl->manager);
823 }
824
825 return 0;
826 }
827
828 void omap_vout_isr(void *arg, unsigned int irqstatus)
829 {
830 int ret;
831 u32 addr, fid;
832 struct omap_overlay *ovl;
833 struct timeval timevalue;
834 struct omapvideo_info *ovid;
835 struct omap_dss_device *cur_display;
836 struct omap_vout_device *vout = (struct omap_vout_device *)arg;
837
838 if (!vout->streaming)
839 return;
840
841 ovid = &vout->vid_info;
842 ovl = ovid->overlays[0];
843 /* get the display device attached to the overlay */
844 if (!ovl->manager || !ovl->manager->device)
845 return;
846
847 cur_display = ovl->manager->device;
848
849 spin_lock(&vout->vbq_lock);
850 do_gettimeofday(&timevalue);
851 if (cur_display->type == OMAP_DISPLAY_TYPE_DPI) {
852 if (!(irqstatus & DISPC_IRQ_VSYNC))
853 goto vout_isr_err;
854
855 if (!vout->first_int && (vout->cur_frm != vout->next_frm)) {
856 vout->cur_frm->ts = timevalue;
857 vout->cur_frm->state = VIDEOBUF_DONE;
858 wake_up_interruptible(&vout->cur_frm->done);
859 vout->cur_frm = vout->next_frm;
860 }
861 vout->first_int = 0;
862 if (list_empty(&vout->dma_queue))
863 goto vout_isr_err;
864
865 vout->next_frm = list_entry(vout->dma_queue.next,
866 struct videobuf_buffer, queue);
867 list_del(&vout->next_frm->queue);
868
869 vout->next_frm->state = VIDEOBUF_ACTIVE;
870
871 addr = (unsigned long) vout->queued_buf_addr[vout->next_frm->i]
872 + vout->cropped_offset;
873
874 /* First save the configuration in ovelray structure */
875 ret = omapvid_init(vout, addr);
876 if (ret)
877 printk(KERN_ERR VOUT_NAME
878 "failed to set overlay info\n");
879 /* Enable the pipeline and set the Go bit */
880 ret = omapvid_apply_changes(vout);
881 if (ret)
882 printk(KERN_ERR VOUT_NAME "failed to change mode\n");
883 } else {
884
885 if (vout->first_int) {
886 vout->first_int = 0;
887 goto vout_isr_err;
888 }
889 if (irqstatus & DISPC_IRQ_EVSYNC_ODD)
890 fid = 1;
891 else if (irqstatus & DISPC_IRQ_EVSYNC_EVEN)
892 fid = 0;
893 else
894 goto vout_isr_err;
895
896 vout->field_id ^= 1;
897 if (fid != vout->field_id) {
898 if (0 == fid)
899 vout->field_id = fid;
900
901 goto vout_isr_err;
902 }
903 if (0 == fid) {
904 if (vout->cur_frm == vout->next_frm)
905 goto vout_isr_err;
906
907 vout->cur_frm->ts = timevalue;
908 vout->cur_frm->state = VIDEOBUF_DONE;
909 wake_up_interruptible(&vout->cur_frm->done);
910 vout->cur_frm = vout->next_frm;
911 } else if (1 == fid) {
912 if (list_empty(&vout->dma_queue) ||
913 (vout->cur_frm != vout->next_frm))
914 goto vout_isr_err;
915
916 vout->next_frm = list_entry(vout->dma_queue.next,
917 struct videobuf_buffer, queue);
918 list_del(&vout->next_frm->queue);
919
920 vout->next_frm->state = VIDEOBUF_ACTIVE;
921 addr = (unsigned long)
922 vout->queued_buf_addr[vout->next_frm->i] +
923 vout->cropped_offset;
924 /* First save the configuration in ovelray structure */
925 ret = omapvid_init(vout, addr);
926 if (ret)
927 printk(KERN_ERR VOUT_NAME
928 "failed to set overlay info\n");
929 /* Enable the pipeline and set the Go bit */
930 ret = omapvid_apply_changes(vout);
931 if (ret)
932 printk(KERN_ERR VOUT_NAME
933 "failed to change mode\n");
934 }
935
936 }
937
938 vout_isr_err:
939 spin_unlock(&vout->vbq_lock);
940 }
941
942
943 /* Video buffer call backs */
944
945 /*
946 * Buffer setup function is called by videobuf layer when REQBUF ioctl is
947 * called. This is used to setup buffers and return size and count of
948 * buffers allocated. After the call to this buffer, videobuf layer will
949 * setup buffer queue depending on the size and count of buffers
950 */
951 static int omap_vout_buffer_setup(struct videobuf_queue *q, unsigned int *count,
952 unsigned int *size)
953 {
954 int startindex = 0, i, j;
955 u32 phy_addr = 0, virt_addr = 0;
956 struct omap_vout_device *vout = q->priv_data;
957
958 if (!vout)
959 return -EINVAL;
960
961 if (V4L2_BUF_TYPE_VIDEO_OUTPUT != q->type)
962 return -EINVAL;
963
964 startindex = (vout->vid == OMAP_VIDEO1) ?
965 video1_numbuffers : video2_numbuffers;
966 if (V4L2_MEMORY_MMAP == vout->memory && *count < startindex)
967 *count = startindex;
968
969 if ((rotation_enabled(vout)) && *count > VRFB_NUM_BUFS)
970 *count = VRFB_NUM_BUFS;
971
972 /* If rotation is enabled, allocate memory for VRFB space also */
973 if (rotation_enabled(vout))
974 if (omap_vout_vrfb_buffer_setup(vout, count, startindex))
975 return -ENOMEM;
976
977 if (V4L2_MEMORY_MMAP != vout->memory)
978 return 0;
979
980 /* Now allocated the V4L2 buffers */
981 *size = PAGE_ALIGN(vout->pix.width * vout->pix.height * vout->bpp);
982 startindex = (vout->vid == OMAP_VIDEO1) ?
983 video1_numbuffers : video2_numbuffers;
984
985 /* Check the size of the buffer */
986 if (*size > vout->buffer_size) {
987 v4l2_err(&vout->vid_dev->v4l2_dev,
988 "buffer allocation mismatch [%u] [%u]\n",
989 *size, vout->buffer_size);
990 return -ENOMEM;
991 }
992
993 for (i = startindex; i < *count; i++) {
994 vout->buffer_size = *size;
995
996 virt_addr = omap_vout_alloc_buffer(vout->buffer_size,
997 &phy_addr);
998 if (!virt_addr) {
999 if (!rotation_enabled(vout))
1000 break;
1001 /* Free the VRFB buffers if no space for V4L2 buffers */
1002 for (j = i; j < *count; j++) {
1003 omap_vout_free_buffer(
1004 vout->smsshado_virt_addr[j],
1005 vout->smsshado_size);
1006 vout->smsshado_virt_addr[j] = 0;
1007 vout->smsshado_phy_addr[j] = 0;
1008 }
1009 }
1010 vout->buf_virt_addr[i] = virt_addr;
1011 vout->buf_phy_addr[i] = phy_addr;
1012 }
1013 *count = vout->buffer_allocated = i;
1014
1015 return 0;
1016 }
1017
1018 /*
1019 * Free the V4L2 buffers additionally allocated than default
1020 * number of buffers and free all the VRFB buffers
1021 */
1022 static void omap_vout_free_allbuffers(struct omap_vout_device *vout)
1023 {
1024 int num_buffers = 0, i;
1025
1026 num_buffers = (vout->vid == OMAP_VIDEO1) ?
1027 video1_numbuffers : video2_numbuffers;
1028
1029 for (i = num_buffers; i < vout->buffer_allocated; i++) {
1030 if (vout->buf_virt_addr[i])
1031 omap_vout_free_buffer(vout->buf_virt_addr[i],
1032 vout->buffer_size);
1033
1034 vout->buf_virt_addr[i] = 0;
1035 vout->buf_phy_addr[i] = 0;
1036 }
1037 /* Free the VRFB buffers only if they are allocated
1038 * during reqbufs. Don't free if init time allocated
1039 */
1040 if (!vout->vrfb_static_allocation) {
1041 for (i = 0; i < VRFB_NUM_BUFS; i++) {
1042 if (vout->smsshado_virt_addr[i]) {
1043 omap_vout_free_buffer(
1044 vout->smsshado_virt_addr[i],
1045 vout->smsshado_size);
1046 vout->smsshado_virt_addr[i] = 0;
1047 vout->smsshado_phy_addr[i] = 0;
1048 }
1049 }
1050 }
1051 vout->buffer_allocated = num_buffers;
1052 }
1053
1054 /*
1055 * This function will be called when VIDIOC_QBUF ioctl is called.
1056 * It prepare buffers before give out for the display. This function
1057 * converts user space virtual address into physical address if userptr memory
1058 * exchange mechanism is used. If rotation is enabled, it copies entire
1059 * buffer into VRFB memory space before giving it to the DSS.
1060 */
1061 static int omap_vout_buffer_prepare(struct videobuf_queue *q,
1062 struct videobuf_buffer *vb,
1063 enum v4l2_field field)
1064 {
1065 dma_addr_t dmabuf;
1066 struct vid_vrfb_dma *tx;
1067 enum dss_rotation rotation;
1068 struct omap_vout_device *vout = q->priv_data;
1069 u32 dest_frame_index = 0, src_element_index = 0;
1070 u32 dest_element_index = 0, src_frame_index = 0;
1071 u32 elem_count = 0, frame_count = 0, pixsize = 2;
1072
1073 if (VIDEOBUF_NEEDS_INIT == vb->state) {
1074 vb->width = vout->pix.width;
1075 vb->height = vout->pix.height;
1076 vb->size = vb->width * vb->height * vout->bpp;
1077 vb->field = field;
1078 }
1079 vb->state = VIDEOBUF_PREPARED;
1080 /* if user pointer memory mechanism is used, get the physical
1081 * address of the buffer
1082 */
1083 if (V4L2_MEMORY_USERPTR == vb->memory) {
1084 if (0 == vb->baddr)
1085 return -EINVAL;
1086 /* Physical address */
1087 vout->queued_buf_addr[vb->i] = (u8 *)
1088 omap_vout_uservirt_to_phys(vb->baddr);
1089 } else {
1090 vout->queued_buf_addr[vb->i] = (u8 *)vout->buf_phy_addr[vb->i];
1091 }
1092
1093 if (!rotation_enabled(vout))
1094 return 0;
1095
1096 dmabuf = vout->buf_phy_addr[vb->i];
1097 /* If rotation is enabled, copy input buffer into VRFB
1098 * memory space using DMA. We are copying input buffer
1099 * into VRFB memory space of desired angle and DSS will
1100 * read image VRFB memory for 0 degree angle
1101 */
1102 pixsize = vout->bpp * vout->vrfb_bpp;
1103 /*
1104 * DMA transfer in double index mode
1105 */
1106
1107 /* Frame index */
1108 dest_frame_index = ((MAX_PIXELS_PER_LINE * pixsize) -
1109 (vout->pix.width * vout->bpp)) + 1;
1110
1111 /* Source and destination parameters */
1112 src_element_index = 0;
1113 src_frame_index = 0;
1114 dest_element_index = 1;
1115 /* Number of elements per frame */
1116 elem_count = vout->pix.width * vout->bpp;
1117 frame_count = vout->pix.height;
1118 tx = &vout->vrfb_dma_tx;
1119 tx->tx_status = 0;
1120 omap_set_dma_transfer_params(tx->dma_ch, OMAP_DMA_DATA_TYPE_S32,
1121 (elem_count / 4), frame_count, OMAP_DMA_SYNC_ELEMENT,
1122 tx->dev_id, 0x0);
1123 /* src_port required only for OMAP1 */
1124 omap_set_dma_src_params(tx->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
1125 dmabuf, src_element_index, src_frame_index);
1126 /*set dma source burst mode for VRFB */
1127 omap_set_dma_src_burst_mode(tx->dma_ch, OMAP_DMA_DATA_BURST_16);
1128 rotation = calc_rotation(vout);
1129
1130 /* dest_port required only for OMAP1 */
1131 omap_set_dma_dest_params(tx->dma_ch, 0, OMAP_DMA_AMODE_DOUBLE_IDX,
1132 vout->vrfb_context[vb->i].paddr[0], dest_element_index,
1133 dest_frame_index);
1134 /*set dma dest burst mode for VRFB */
1135 omap_set_dma_dest_burst_mode(tx->dma_ch, OMAP_DMA_DATA_BURST_16);
1136 omap_dma_set_global_params(DMA_DEFAULT_ARB_RATE, 0x20, 0);
1137
1138 omap_start_dma(tx->dma_ch);
1139 interruptible_sleep_on_timeout(&tx->wait, VRFB_TX_TIMEOUT);
1140
1141 if (tx->tx_status == 0) {
1142 omap_stop_dma(tx->dma_ch);
1143 return -EINVAL;
1144 }
1145 /* Store buffers physical address into an array. Addresses
1146 * from this array will be used to configure DSS */
1147 vout->queued_buf_addr[vb->i] = (u8 *)
1148 vout->vrfb_context[vb->i].paddr[rotation];
1149 return 0;
1150 }
1151
1152 /*
1153 * Buffer queue function will be called from the videobuf layer when _QBUF
1154 * ioctl is called. It is used to enqueue buffer, which is ready to be
1155 * displayed.
1156 */
1157 static void omap_vout_buffer_queue(struct videobuf_queue *q,
1158 struct videobuf_buffer *vb)
1159 {
1160 struct omap_vout_device *vout = q->priv_data;
1161
1162 /* Driver is also maintainig a queue. So enqueue buffer in the driver
1163 * queue */
1164 list_add_tail(&vb->queue, &vout->dma_queue);
1165
1166 vb->state = VIDEOBUF_QUEUED;
1167 }
1168
1169 /*
1170 * Buffer release function is called from videobuf layer to release buffer
1171 * which are already allocated
1172 */
1173 static void omap_vout_buffer_release(struct videobuf_queue *q,
1174 struct videobuf_buffer *vb)
1175 {
1176 struct omap_vout_device *vout = q->priv_data;
1177
1178 vb->state = VIDEOBUF_NEEDS_INIT;
1179
1180 if (V4L2_MEMORY_MMAP != vout->memory)
1181 return;
1182 }
1183
1184 /*
1185 * File operations
1186 */
1187 static void omap_vout_vm_open(struct vm_area_struct *vma)
1188 {
1189 struct omap_vout_device *vout = vma->vm_private_data;
1190
1191 v4l2_dbg(1, debug, &vout->vid_dev->v4l2_dev,
1192 "vm_open [vma=%08lx-%08lx]\n", vma->vm_start, vma->vm_end);
1193 vout->mmap_count++;
1194 }
1195
1196 static void omap_vout_vm_close(struct vm_area_struct *vma)
1197 {
1198 struct omap_vout_device *vout = vma->vm_private_data;
1199
1200 v4l2_dbg(1, debug, &vout->vid_dev->v4l2_dev,
1201 "vm_close [vma=%08lx-%08lx]\n", vma->vm_start, vma->vm_end);
1202 vout->mmap_count--;
1203 }
1204
1205 static struct vm_operations_struct omap_vout_vm_ops = {
1206 .open = omap_vout_vm_open,
1207 .close = omap_vout_vm_close,
1208 };
1209
1210 static int omap_vout_mmap(struct file *file, struct vm_area_struct *vma)
1211 {
1212 int i;
1213 void *pos;
1214 unsigned long start = vma->vm_start;
1215 unsigned long size = (vma->vm_end - vma->vm_start);
1216 struct omap_vout_device *vout = file->private_data;
1217 struct videobuf_queue *q = &vout->vbq;
1218
1219 v4l2_dbg(1, debug, &vout->vid_dev->v4l2_dev,
1220 " %s pgoff=0x%lx, start=0x%lx, end=0x%lx\n", __func__,
1221 vma->vm_pgoff, vma->vm_start, vma->vm_end);
1222
1223 /* look for the buffer to map */
1224 for (i = 0; i < VIDEO_MAX_FRAME; i++) {
1225 if (NULL == q->bufs[i])
1226 continue;
1227 if (V4L2_MEMORY_MMAP != q->bufs[i]->memory)
1228 continue;
1229 if (q->bufs[i]->boff == (vma->vm_pgoff << PAGE_SHIFT))
1230 break;
1231 }
1232
1233 if (VIDEO_MAX_FRAME == i) {
1234 v4l2_dbg(1, debug, &vout->vid_dev->v4l2_dev,
1235 "offset invalid [offset=0x%lx]\n",
1236 (vma->vm_pgoff << PAGE_SHIFT));
1237 return -EINVAL;
1238 }
1239 /* Check the size of the buffer */
1240 if (size > vout->buffer_size) {
1241 v4l2_err(&vout->vid_dev->v4l2_dev,
1242 "insufficient memory [%lu] [%u]\n",
1243 size, vout->buffer_size);
1244 return -ENOMEM;
1245 }
1246
1247 q->bufs[i]->baddr = vma->vm_start;
1248
1249 vma->vm_flags |= VM_RESERVED;
1250 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
1251 vma->vm_ops = &omap_vout_vm_ops;
1252 vma->vm_private_data = (void *) vout;
1253 pos = (void *)vout->buf_virt_addr[i];
1254 vma->vm_pgoff = virt_to_phys((void *)pos) >> PAGE_SHIFT;
1255 while (size > 0) {
1256 unsigned long pfn;
1257 pfn = virt_to_phys((void *) pos) >> PAGE_SHIFT;
1258 if (remap_pfn_range(vma, start, pfn, PAGE_SIZE, PAGE_SHARED))
1259 return -EAGAIN;
1260 start += PAGE_SIZE;
1261 pos += PAGE_SIZE;
1262 size -= PAGE_SIZE;
1263 }
1264 vout->mmap_count++;
1265 v4l2_dbg(1, debug, &vout->vid_dev->v4l2_dev, "Exiting %s\n", __func__);
1266
1267 return 0;
1268 }
1269
1270 static int omap_vout_release(struct file *file)
1271 {
1272 unsigned int ret, i;
1273 struct videobuf_queue *q;
1274 struct omapvideo_info *ovid;
1275 struct omap_vout_device *vout = file->private_data;
1276
1277 v4l2_dbg(1, debug, &vout->vid_dev->v4l2_dev, "Entering %s\n", __func__);
1278 ovid = &vout->vid_info;
1279
1280 if (!vout)
1281 return 0;
1282
1283 q = &vout->vbq;
1284 /* Disable all the overlay managers connected with this interface */
1285 for (i = 0; i < ovid->num_overlays; i++) {
1286 struct omap_overlay *ovl = ovid->overlays[i];
1287 if (ovl->manager && ovl->manager->device) {
1288 struct omap_overlay_info info;
1289 ovl->get_overlay_info(ovl, &info);
1290 info.enabled = 0;
1291 ovl->set_overlay_info(ovl, &info);
1292 }
1293 }
1294 /* Turn off the pipeline */
1295 ret = omapvid_apply_changes(vout);
1296 if (ret)
1297 v4l2_warn(&vout->vid_dev->v4l2_dev,
1298 "Unable to apply changes\n");
1299
1300 /* Free all buffers */
1301 omap_vout_free_allbuffers(vout);
1302 videobuf_mmap_free(q);
1303
1304 /* Even if apply changes fails we should continue
1305 freeing allocated memory */
1306 if (vout->streaming) {
1307 u32 mask = 0;
1308
1309 mask = DISPC_IRQ_VSYNC | DISPC_IRQ_EVSYNC_EVEN |
1310 DISPC_IRQ_EVSYNC_ODD;
1311 omap_dispc_unregister_isr(omap_vout_isr, vout, mask);
1312 vout->streaming = 0;
1313
1314 videobuf_streamoff(q);
1315 videobuf_queue_cancel(q);
1316 }
1317
1318 if (vout->mmap_count != 0)
1319 vout->mmap_count = 0;
1320
1321 vout->opened -= 1;
1322 file->private_data = NULL;
1323
1324 if (vout->buffer_allocated)
1325 videobuf_mmap_free(q);
1326
1327 v4l2_dbg(1, debug, &vout->vid_dev->v4l2_dev, "Exiting %s\n", __func__);
1328 return ret;
1329 }
1330
1331 static int omap_vout_open(struct file *file)
1332 {
1333 struct videobuf_queue *q;
1334 struct omap_vout_device *vout = NULL;
1335
1336 vout = video_drvdata(file);
1337 v4l2_dbg(1, debug, &vout->vid_dev->v4l2_dev, "Entering %s\n", __func__);
1338
1339 if (vout == NULL)
1340 return -ENODEV;
1341
1342 /* for now, we only support single open */
1343 if (vout->opened)
1344 return -EBUSY;
1345
1346 vout->opened += 1;
1347
1348 file->private_data = vout;
1349 vout->type = V4L2_BUF_TYPE_VIDEO_OUTPUT;
1350
1351 q = &vout->vbq;
1352 video_vbq_ops.buf_setup = omap_vout_buffer_setup;
1353 video_vbq_ops.buf_prepare = omap_vout_buffer_prepare;
1354 video_vbq_ops.buf_release = omap_vout_buffer_release;
1355 video_vbq_ops.buf_queue = omap_vout_buffer_queue;
1356 spin_lock_init(&vout->vbq_lock);
1357
1358 videobuf_queue_dma_contig_init(q, &video_vbq_ops, q->dev,
1359 &vout->vbq_lock, vout->type, V4L2_FIELD_NONE,
1360 sizeof(struct videobuf_buffer), vout, NULL);
1361
1362 v4l2_dbg(1, debug, &vout->vid_dev->v4l2_dev, "Exiting %s\n", __func__);
1363 return 0;
1364 }
1365
1366 /*
1367 * V4L2 ioctls
1368 */
1369 static int vidioc_querycap(struct file *file, void *fh,
1370 struct v4l2_capability *cap)
1371 {
1372 struct omap_vout_device *vout = fh;
1373
1374 strlcpy(cap->driver, VOUT_NAME, sizeof(cap->driver));
1375 strlcpy(cap->card, vout->vfd->name, sizeof(cap->card));
1376 cap->bus_info[0] = '\0';
1377 cap->capabilities = V4L2_CAP_STREAMING | V4L2_CAP_VIDEO_OUTPUT;
1378
1379 return 0;
1380 }
1381
1382 static int vidioc_enum_fmt_vid_out(struct file *file, void *fh,
1383 struct v4l2_fmtdesc *fmt)
1384 {
1385 int index = fmt->index;
1386 enum v4l2_buf_type type = fmt->type;
1387
1388 fmt->index = index;
1389 fmt->type = type;
1390 if (index >= NUM_OUTPUT_FORMATS)
1391 return -EINVAL;
1392
1393 fmt->flags = omap_formats[index].flags;
1394 strlcpy(fmt->description, omap_formats[index].description,
1395 sizeof(fmt->description));
1396 fmt->pixelformat = omap_formats[index].pixelformat;
1397
1398 return 0;
1399 }
1400
1401 static int vidioc_g_fmt_vid_out(struct file *file, void *fh,
1402 struct v4l2_format *f)
1403 {
1404 struct omap_vout_device *vout = fh;
1405
1406 f->fmt.pix = vout->pix;
1407 return 0;
1408
1409 }
1410
1411 static int vidioc_try_fmt_vid_out(struct file *file, void *fh,
1412 struct v4l2_format *f)
1413 {
1414 struct omap_overlay *ovl;
1415 struct omapvideo_info *ovid;
1416 struct omap_video_timings *timing;
1417 struct omap_vout_device *vout = fh;
1418
1419 ovid = &vout->vid_info;
1420 ovl = ovid->overlays[0];
1421
1422 if (!ovl->manager || !ovl->manager->device)
1423 return -EINVAL;
1424 /* get the display device attached to the overlay */
1425 timing = &ovl->manager->device->panel.timings;
1426
1427 vout->fbuf.fmt.height = timing->y_res;
1428 vout->fbuf.fmt.width = timing->x_res;
1429
1430 omap_vout_try_format(&f->fmt.pix);
1431 return 0;
1432 }
1433
1434 static int vidioc_s_fmt_vid_out(struct file *file, void *fh,
1435 struct v4l2_format *f)
1436 {
1437 int ret, bpp;
1438 struct omap_overlay *ovl;
1439 struct omapvideo_info *ovid;
1440 struct omap_video_timings *timing;
1441 struct omap_vout_device *vout = fh;
1442
1443 if (vout->streaming)
1444 return -EBUSY;
1445
1446 mutex_lock(&vout->lock);
1447
1448 ovid = &vout->vid_info;
1449 ovl = ovid->overlays[0];
1450
1451 /* get the display device attached to the overlay */
1452 if (!ovl->manager || !ovl->manager->device) {
1453 ret = -EINVAL;
1454 goto s_fmt_vid_out_exit;
1455 }
1456 timing = &ovl->manager->device->panel.timings;
1457
1458 /* We dont support RGB24-packed mode if vrfb rotation
1459 * is enabled*/
1460 if ((rotation_enabled(vout)) &&
1461 f->fmt.pix.pixelformat == V4L2_PIX_FMT_RGB24) {
1462 ret = -EINVAL;
1463 goto s_fmt_vid_out_exit;
1464 }
1465
1466 /* get the framebuffer parameters */
1467
1468 if (rotate_90_or_270(vout)) {
1469 vout->fbuf.fmt.height = timing->x_res;
1470 vout->fbuf.fmt.width = timing->y_res;
1471 } else {
1472 vout->fbuf.fmt.height = timing->y_res;
1473 vout->fbuf.fmt.width = timing->x_res;
1474 }
1475
1476 /* change to samller size is OK */
1477
1478 bpp = omap_vout_try_format(&f->fmt.pix);
1479 f->fmt.pix.sizeimage = f->fmt.pix.width * f->fmt.pix.height * bpp;
1480
1481 /* try & set the new output format */
1482 vout->bpp = bpp;
1483 vout->pix = f->fmt.pix;
1484 vout->vrfb_bpp = 1;
1485
1486 /* If YUYV then vrfb bpp is 2, for others its 1 */
1487 if (V4L2_PIX_FMT_YUYV == vout->pix.pixelformat ||
1488 V4L2_PIX_FMT_UYVY == vout->pix.pixelformat)
1489 vout->vrfb_bpp = 2;
1490
1491 /* set default crop and win */
1492 omap_vout_new_format(&vout->pix, &vout->fbuf, &vout->crop, &vout->win);
1493
1494 /* Save the changes in the overlay strcuture */
1495 ret = omapvid_init(vout, 0);
1496 if (ret) {
1497 v4l2_err(&vout->vid_dev->v4l2_dev, "failed to change mode\n");
1498 goto s_fmt_vid_out_exit;
1499 }
1500
1501 ret = 0;
1502
1503 s_fmt_vid_out_exit:
1504 mutex_unlock(&vout->lock);
1505 return ret;
1506 }
1507
1508 static int vidioc_try_fmt_vid_overlay(struct file *file, void *fh,
1509 struct v4l2_format *f)
1510 {
1511 int ret = 0;
1512 struct omap_vout_device *vout = fh;
1513 struct v4l2_window *win = &f->fmt.win;
1514
1515 ret = omap_vout_try_window(&vout->fbuf, win);
1516
1517 if (!ret) {
1518 if (vout->vid == OMAP_VIDEO1)
1519 win->global_alpha = 255;
1520 else
1521 win->global_alpha = f->fmt.win.global_alpha;
1522 }
1523
1524 return ret;
1525 }
1526
1527 static int vidioc_s_fmt_vid_overlay(struct file *file, void *fh,
1528 struct v4l2_format *f)
1529 {
1530 int ret = 0;
1531 struct omap_overlay *ovl;
1532 struct omapvideo_info *ovid;
1533 struct omap_vout_device *vout = fh;
1534 struct v4l2_window *win = &f->fmt.win;
1535
1536 mutex_lock(&vout->lock);
1537 ovid = &vout->vid_info;
1538 ovl = ovid->overlays[0];
1539
1540 ret = omap_vout_new_window(&vout->crop, &vout->win, &vout->fbuf, win);
1541 if (!ret) {
1542 /* Video1 plane does not support global alpha */
1543 if (ovl->id == OMAP_DSS_VIDEO1)
1544 vout->win.global_alpha = 255;
1545 else
1546 vout->win.global_alpha = f->fmt.win.global_alpha;
1547
1548 vout->win.chromakey = f->fmt.win.chromakey;
1549 }
1550 mutex_unlock(&vout->lock);
1551 return ret;
1552 }
1553
1554 static int vidioc_enum_fmt_vid_overlay(struct file *file, void *fh,
1555 struct v4l2_fmtdesc *fmt)
1556 {
1557 int index = fmt->index;
1558 enum v4l2_buf_type type = fmt->type;
1559
1560 fmt->index = index;
1561 fmt->type = type;
1562 if (index >= NUM_OUTPUT_FORMATS)
1563 return -EINVAL;
1564
1565 fmt->flags = omap_formats[index].flags;
1566 strlcpy(fmt->description, omap_formats[index].description,
1567 sizeof(fmt->description));
1568 fmt->pixelformat = omap_formats[index].pixelformat;
1569 return 0;
1570 }
1571
1572 static int vidioc_g_fmt_vid_overlay(struct file *file, void *fh,
1573 struct v4l2_format *f)
1574 {
1575 u32 key_value = 0;
1576 struct omap_overlay *ovl;
1577 struct omapvideo_info *ovid;
1578 struct omap_vout_device *vout = fh;
1579 struct omap_overlay_manager_info info;
1580 struct v4l2_window *win = &f->fmt.win;
1581
1582 ovid = &vout->vid_info;
1583 ovl = ovid->overlays[0];
1584
1585 win->w = vout->win.w;
1586 win->field = vout->win.field;
1587 win->global_alpha = vout->win.global_alpha;
1588
1589 if (ovl->manager && ovl->manager->get_manager_info) {
1590 ovl->manager->get_manager_info(ovl->manager, &info);
1591 key_value = info.trans_key;
1592 }
1593 win->chromakey = key_value;
1594 return 0;
1595 }
1596
1597 static int vidioc_cropcap(struct file *file, void *fh,
1598 struct v4l2_cropcap *cropcap)
1599 {
1600 struct omap_vout_device *vout = fh;
1601 struct v4l2_pix_format *pix = &vout->pix;
1602
1603 if (cropcap->type != V4L2_BUF_TYPE_VIDEO_OUTPUT)
1604 return -EINVAL;
1605
1606 /* Width and height are always even */
1607 cropcap->bounds.width = pix->width & ~1;
1608 cropcap->bounds.height = pix->height & ~1;
1609
1610 omap_vout_default_crop(&vout->pix, &vout->fbuf, &cropcap->defrect);
1611 cropcap->pixelaspect.numerator = 1;
1612 cropcap->pixelaspect.denominator = 1;
1613 return 0;
1614 }
1615
1616 static int vidioc_g_crop(struct file *file, void *fh, struct v4l2_crop *crop)
1617 {
1618 struct omap_vout_device *vout = fh;
1619
1620 if (crop->type != V4L2_BUF_TYPE_VIDEO_OUTPUT)
1621 return -EINVAL;
1622 crop->c = vout->crop;
1623 return 0;
1624 }
1625
1626 static int vidioc_s_crop(struct file *file, void *fh, struct v4l2_crop *crop)
1627 {
1628 int ret = -EINVAL;
1629 struct omap_vout_device *vout = fh;
1630 struct omapvideo_info *ovid;
1631 struct omap_overlay *ovl;
1632 struct omap_video_timings *timing;
1633
1634 if (vout->streaming)
1635 return -EBUSY;
1636
1637 mutex_lock(&vout->lock);
1638 ovid = &vout->vid_info;
1639 ovl = ovid->overlays[0];
1640
1641 if (!ovl->manager || !ovl->manager->device) {
1642 ret = -EINVAL;
1643 goto s_crop_err;
1644 }
1645 /* get the display device attached to the overlay */
1646 timing = &ovl->manager->device->panel.timings;
1647
1648 if (rotate_90_or_270(vout)) {
1649 vout->fbuf.fmt.height = timing->x_res;
1650 vout->fbuf.fmt.width = timing->y_res;
1651 } else {
1652 vout->fbuf.fmt.height = timing->y_res;
1653 vout->fbuf.fmt.width = timing->x_res;
1654 }
1655
1656 if (crop->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
1657 ret = omap_vout_new_crop(&vout->pix, &vout->crop, &vout->win,
1658 &vout->fbuf, &crop->c);
1659
1660 s_crop_err:
1661 mutex_unlock(&vout->lock);
1662 return ret;
1663 }
1664
1665 static int vidioc_queryctrl(struct file *file, void *fh,
1666 struct v4l2_queryctrl *ctrl)
1667 {
1668 int ret = 0;
1669
1670 switch (ctrl->id) {
1671 case V4L2_CID_ROTATE:
1672 ret = v4l2_ctrl_query_fill(ctrl, 0, 270, 90, 0);
1673 break;
1674 case V4L2_CID_BG_COLOR:
1675 ret = v4l2_ctrl_query_fill(ctrl, 0, 0xFFFFFF, 1, 0);
1676 break;
1677 case V4L2_CID_VFLIP:
1678 ret = v4l2_ctrl_query_fill(ctrl, 0, 1, 1, 0);
1679 break;
1680 default:
1681 ctrl->name[0] = '\0';
1682 ret = -EINVAL;
1683 }
1684 return ret;
1685 }
1686
1687 static int vidioc_g_ctrl(struct file *file, void *fh, struct v4l2_control *ctrl)
1688 {
1689 int ret = 0;
1690 struct omap_vout_device *vout = fh;
1691
1692 switch (ctrl->id) {
1693 case V4L2_CID_ROTATE:
1694 ctrl->value = vout->control[0].value;
1695 break;
1696 case V4L2_CID_BG_COLOR:
1697 {
1698 struct omap_overlay_manager_info info;
1699 struct omap_overlay *ovl;
1700
1701 ovl = vout->vid_info.overlays[0];
1702 if (!ovl->manager || !ovl->manager->get_manager_info) {
1703 ret = -EINVAL;
1704 break;
1705 }
1706
1707 ovl->manager->get_manager_info(ovl->manager, &info);
1708 ctrl->value = info.default_color;
1709 break;
1710 }
1711 case V4L2_CID_VFLIP:
1712 ctrl->value = vout->control[2].value;
1713 break;
1714 default:
1715 ret = -EINVAL;
1716 }
1717 return ret;
1718 }
1719
1720 static int vidioc_s_ctrl(struct file *file, void *fh, struct v4l2_control *a)
1721 {
1722 int ret = 0;
1723 struct omap_vout_device *vout = fh;
1724
1725 switch (a->id) {
1726 case V4L2_CID_ROTATE:
1727 {
1728 int rotation = a->value;
1729
1730 mutex_lock(&vout->lock);
1731
1732 if (rotation && vout->pix.pixelformat == V4L2_PIX_FMT_RGB24) {
1733 mutex_unlock(&vout->lock);
1734 ret = -EINVAL;
1735 break;
1736 }
1737
1738 if (v4l2_rot_to_dss_rot(rotation, &vout->rotation,
1739 vout->mirror)) {
1740 mutex_unlock(&vout->lock);
1741 ret = -EINVAL;
1742 break;
1743 }
1744
1745 vout->control[0].value = rotation;
1746 mutex_unlock(&vout->lock);
1747 break;
1748 }
1749 case V4L2_CID_BG_COLOR:
1750 {
1751 struct omap_overlay *ovl;
1752 unsigned int color = a->value;
1753 struct omap_overlay_manager_info info;
1754
1755 ovl = vout->vid_info.overlays[0];
1756
1757 mutex_lock(&vout->lock);
1758 if (!ovl->manager || !ovl->manager->get_manager_info) {
1759 mutex_unlock(&vout->lock);
1760 ret = -EINVAL;
1761 break;
1762 }
1763
1764 ovl->manager->get_manager_info(ovl->manager, &info);
1765 info.default_color = color;
1766 if (ovl->manager->set_manager_info(ovl->manager, &info)) {
1767 mutex_unlock(&vout->lock);
1768 ret = -EINVAL;
1769 break;
1770 }
1771
1772 vout->control[1].value = color;
1773 mutex_unlock(&vout->lock);
1774 break;
1775 }
1776 case V4L2_CID_VFLIP:
1777 {
1778 struct omap_overlay *ovl;
1779 struct omapvideo_info *ovid;
1780 unsigned int mirror = a->value;
1781
1782 ovid = &vout->vid_info;
1783 ovl = ovid->overlays[0];
1784
1785 mutex_lock(&vout->lock);
1786
1787 if (mirror && vout->pix.pixelformat == V4L2_PIX_FMT_RGB24) {
1788 mutex_unlock(&vout->lock);
1789 ret = -EINVAL;
1790 break;
1791 }
1792 vout->mirror = mirror;
1793 vout->control[2].value = mirror;
1794 mutex_unlock(&vout->lock);
1795 break;
1796 }
1797 default:
1798 ret = -EINVAL;
1799 }
1800 return ret;
1801 }
1802
1803 static int vidioc_reqbufs(struct file *file, void *fh,
1804 struct v4l2_requestbuffers *req)
1805 {
1806 int ret = 0;
1807 unsigned int i, num_buffers = 0;
1808 struct omap_vout_device *vout = fh;
1809 struct videobuf_queue *q = &vout->vbq;
1810
1811 if ((req->type != V4L2_BUF_TYPE_VIDEO_OUTPUT) || (req->count < 0))
1812 return -EINVAL;
1813 /* if memory is not mmp or userptr
1814 return error */
1815 if ((V4L2_MEMORY_MMAP != req->memory) &&
1816 (V4L2_MEMORY_USERPTR != req->memory))
1817 return -EINVAL;
1818
1819 mutex_lock(&vout->lock);
1820 /* Cannot be requested when streaming is on */
1821 if (vout->streaming) {
1822 ret = -EBUSY;
1823 goto reqbuf_err;
1824 }
1825
1826 /* If buffers are already allocated free them */
1827 if (q->bufs[0] && (V4L2_MEMORY_MMAP == q->bufs[0]->memory)) {
1828 if (vout->mmap_count) {
1829 ret = -EBUSY;
1830 goto reqbuf_err;
1831 }
1832 num_buffers = (vout->vid == OMAP_VIDEO1) ?
1833 video1_numbuffers : video2_numbuffers;
1834 for (i = num_buffers; i < vout->buffer_allocated; i++) {
1835 omap_vout_free_buffer(vout->buf_virt_addr[i],
1836 vout->buffer_size);
1837 vout->buf_virt_addr[i] = 0;
1838 vout->buf_phy_addr[i] = 0;
1839 }
1840 vout->buffer_allocated = num_buffers;
1841 videobuf_mmap_free(q);
1842 } else if (q->bufs[0] && (V4L2_MEMORY_USERPTR == q->bufs[0]->memory)) {
1843 if (vout->buffer_allocated) {
1844 videobuf_mmap_free(q);
1845 for (i = 0; i < vout->buffer_allocated; i++) {
1846 kfree(q->bufs[i]);
1847 q->bufs[i] = NULL;
1848 }
1849 vout->buffer_allocated = 0;
1850 }
1851 }
1852
1853 /*store the memory type in data structure */
1854 vout->memory = req->memory;
1855
1856 INIT_LIST_HEAD(&vout->dma_queue);
1857
1858 /* call videobuf_reqbufs api */
1859 ret = videobuf_reqbufs(q, req);
1860 if (ret < 0)
1861 goto reqbuf_err;
1862
1863 vout->buffer_allocated = req->count;
1864
1865 reqbuf_err:
1866 mutex_unlock(&vout->lock);
1867 return ret;
1868 }
1869
1870 static int vidioc_querybuf(struct file *file, void *fh,
1871 struct v4l2_buffer *b)
1872 {
1873 struct omap_vout_device *vout = fh;
1874
1875 return videobuf_querybuf(&vout->vbq, b);
1876 }
1877
1878 static int vidioc_qbuf(struct file *file, void *fh,
1879 struct v4l2_buffer *buffer)
1880 {
1881 struct omap_vout_device *vout = fh;
1882 struct videobuf_queue *q = &vout->vbq;
1883
1884 if ((V4L2_BUF_TYPE_VIDEO_OUTPUT != buffer->type) ||
1885 (buffer->index >= vout->buffer_allocated) ||
1886 (q->bufs[buffer->index]->memory != buffer->memory)) {
1887 return -EINVAL;
1888 }
1889 if (V4L2_MEMORY_USERPTR == buffer->memory) {
1890 if ((buffer->length < vout->pix.sizeimage) ||
1891 (0 == buffer->m.userptr)) {
1892 return -EINVAL;
1893 }
1894 }
1895
1896 if ((rotation_enabled(vout)) &&
1897 vout->vrfb_dma_tx.req_status == DMA_CHAN_NOT_ALLOTED) {
1898 v4l2_warn(&vout->vid_dev->v4l2_dev,
1899 "DMA Channel not allocated for Rotation\n");
1900 return -EINVAL;
1901 }
1902
1903 return videobuf_qbuf(q, buffer);
1904 }
1905
1906 static int vidioc_dqbuf(struct file *file, void *fh, struct v4l2_buffer *b)
1907 {
1908 struct omap_vout_device *vout = fh;
1909 struct videobuf_queue *q = &vout->vbq;
1910
1911 if (!vout->streaming)
1912 return -EINVAL;
1913
1914 if (file->f_flags & O_NONBLOCK)
1915 /* Call videobuf_dqbuf for non blocking mode */
1916 return videobuf_dqbuf(q, (struct v4l2_buffer *)b, 1);
1917 else
1918 /* Call videobuf_dqbuf for blocking mode */
1919 return videobuf_dqbuf(q, (struct v4l2_buffer *)b, 0);
1920 }
1921
1922 static int vidioc_streamon(struct file *file, void *fh, enum v4l2_buf_type i)
1923 {
1924 int ret = 0, j;
1925 u32 addr = 0, mask = 0;
1926 struct omap_vout_device *vout = fh;
1927 struct videobuf_queue *q = &vout->vbq;
1928 struct omapvideo_info *ovid = &vout->vid_info;
1929
1930 mutex_lock(&vout->lock);
1931
1932 if (vout->streaming) {
1933 ret = -EBUSY;
1934 goto streamon_err;
1935 }
1936
1937 ret = videobuf_streamon(q);
1938 if (ret)
1939 goto streamon_err;
1940
1941 if (list_empty(&vout->dma_queue)) {
1942 ret = -EIO;
1943 goto streamon_err1;
1944 }
1945
1946 /* Get the next frame from the buffer queue */
1947 vout->next_frm = vout->cur_frm = list_entry(vout->dma_queue.next,
1948 struct videobuf_buffer, queue);
1949 /* Remove buffer from the buffer queue */
1950 list_del(&vout->cur_frm->queue);
1951 /* Mark state of the current frame to active */
1952 vout->cur_frm->state = VIDEOBUF_ACTIVE;
1953 /* Initialize field_id and started member */
1954 vout->field_id = 0;
1955
1956 /* set flag here. Next QBUF will start DMA */
1957 vout->streaming = 1;
1958
1959 vout->first_int = 1;
1960
1961 if (omap_vout_calculate_offset(vout)) {
1962 ret = -EINVAL;
1963 goto streamon_err1;
1964 }
1965 addr = (unsigned long) vout->queued_buf_addr[vout->cur_frm->i]
1966 + vout->cropped_offset;
1967
1968 mask = DISPC_IRQ_VSYNC | DISPC_IRQ_EVSYNC_EVEN | DISPC_IRQ_EVSYNC_ODD;
1969
1970 omap_dispc_register_isr(omap_vout_isr, vout, mask);
1971
1972 for (j = 0; j < ovid->num_overlays; j++) {
1973 struct omap_overlay *ovl = ovid->overlays[j];
1974
1975 if (ovl->manager && ovl->manager->device) {
1976 struct omap_overlay_info info;
1977 ovl->get_overlay_info(ovl, &info);
1978 info.enabled = 1;
1979 info.paddr = addr;
1980 if (ovl->set_overlay_info(ovl, &info)) {
1981 ret = -EINVAL;
1982 goto streamon_err1;
1983 }
1984 }
1985 }
1986
1987 /* First save the configuration in ovelray structure */
1988 ret = omapvid_init(vout, addr);
1989 if (ret)
1990 v4l2_err(&vout->vid_dev->v4l2_dev,
1991 "failed to set overlay info\n");
1992 /* Enable the pipeline and set the Go bit */
1993 ret = omapvid_apply_changes(vout);
1994 if (ret)
1995 v4l2_err(&vout->vid_dev->v4l2_dev, "failed to change mode\n");
1996
1997 ret = 0;
1998
1999 streamon_err1:
2000 if (ret)
2001 ret = videobuf_streamoff(q);
2002 streamon_err:
2003 mutex_unlock(&vout->lock);
2004 return ret;
2005 }
2006
2007 static int vidioc_streamoff(struct file *file, void *fh, enum v4l2_buf_type i)
2008 {
2009 u32 mask = 0;
2010 int ret = 0, j;
2011 struct omap_vout_device *vout = fh;
2012 struct omapvideo_info *ovid = &vout->vid_info;
2013
2014 if (!vout->streaming)
2015 return -EINVAL;
2016
2017 vout->streaming = 0;
2018 mask = DISPC_IRQ_VSYNC | DISPC_IRQ_EVSYNC_EVEN | DISPC_IRQ_EVSYNC_ODD;
2019
2020 omap_dispc_unregister_isr(omap_vout_isr, vout, mask);
2021
2022 for (j = 0; j < ovid->num_overlays; j++) {
2023 struct omap_overlay *ovl = ovid->overlays[j];
2024
2025 if (ovl->manager && ovl->manager->device) {
2026 struct omap_overlay_info info;
2027
2028 ovl->get_overlay_info(ovl, &info);
2029 info.enabled = 0;
2030 ret = ovl->set_overlay_info(ovl, &info);
2031 if (ret)
2032 v4l2_err(&vout->vid_dev->v4l2_dev,
2033 "failed to update overlay info in streamoff\n");
2034 }
2035 }
2036
2037 /* Turn of the pipeline */
2038 ret = omapvid_apply_changes(vout);
2039 if (ret)
2040 v4l2_err(&vout->vid_dev->v4l2_dev, "failed to change mode in"
2041 " streamoff\n");
2042
2043 INIT_LIST_HEAD(&vout->dma_queue);
2044 ret = videobuf_streamoff(&vout->vbq);
2045
2046 return ret;
2047 }
2048
2049 static int vidioc_s_fbuf(struct file *file, void *fh,
2050 struct v4l2_framebuffer *a)
2051 {
2052 int enable = 0;
2053 struct omap_overlay *ovl;
2054 struct omapvideo_info *ovid;
2055 struct omap_vout_device *vout = fh;
2056 struct omap_overlay_manager_info info;
2057 enum omap_dss_trans_key_type key_type = OMAP_DSS_COLOR_KEY_GFX_DST;
2058
2059 ovid = &vout->vid_info;
2060 ovl = ovid->overlays[0];
2061
2062 /* OMAP DSS doesn't support Source and Destination color
2063 key together */
2064 if ((a->flags & V4L2_FBUF_FLAG_SRC_CHROMAKEY) &&
2065 (a->flags & V4L2_FBUF_FLAG_CHROMAKEY))
2066 return -EINVAL;
2067 /* OMAP DSS Doesn't support the Destination color key
2068 and alpha blending together */
2069 if ((a->flags & V4L2_FBUF_FLAG_CHROMAKEY) &&
2070 (a->flags & V4L2_FBUF_FLAG_LOCAL_ALPHA))
2071 return -EINVAL;
2072
2073 if ((a->flags & V4L2_FBUF_FLAG_SRC_CHROMAKEY)) {
2074 vout->fbuf.flags |= V4L2_FBUF_FLAG_SRC_CHROMAKEY;
2075 key_type = OMAP_DSS_COLOR_KEY_VID_SRC;
2076 } else
2077 vout->fbuf.flags &= ~V4L2_FBUF_FLAG_SRC_CHROMAKEY;
2078
2079 if ((a->flags & V4L2_FBUF_FLAG_CHROMAKEY)) {
2080 vout->fbuf.flags |= V4L2_FBUF_FLAG_CHROMAKEY;
2081 key_type = OMAP_DSS_COLOR_KEY_GFX_DST;
2082 } else
2083 vout->fbuf.flags &= ~V4L2_FBUF_FLAG_CHROMAKEY;
2084
2085 if (a->flags & (V4L2_FBUF_FLAG_CHROMAKEY |
2086 V4L2_FBUF_FLAG_SRC_CHROMAKEY))
2087 enable = 1;
2088 else
2089 enable = 0;
2090 if (ovl->manager && ovl->manager->get_manager_info &&
2091 ovl->manager->set_manager_info) {
2092
2093 ovl->manager->get_manager_info(ovl->manager, &info);
2094 info.trans_enabled = enable;
2095 info.trans_key_type = key_type;
2096 info.trans_key = vout->win.chromakey;
2097
2098 if (ovl->manager->set_manager_info(ovl->manager, &info))
2099 return -EINVAL;
2100 }
2101 if (a->flags & V4L2_FBUF_FLAG_LOCAL_ALPHA) {
2102 vout->fbuf.flags |= V4L2_FBUF_FLAG_LOCAL_ALPHA;
2103 enable = 1;
2104 } else {
2105 vout->fbuf.flags &= ~V4L2_FBUF_FLAG_LOCAL_ALPHA;
2106 enable = 0;
2107 }
2108 if (ovl->manager && ovl->manager->get_manager_info &&
2109 ovl->manager->set_manager_info) {
2110 ovl->manager->get_manager_info(ovl->manager, &info);
2111 info.alpha_enabled = enable;
2112 if (ovl->manager->set_manager_info(ovl->manager, &info))
2113 return -EINVAL;
2114 }
2115
2116 return 0;
2117 }
2118
2119 static int vidioc_g_fbuf(struct file *file, void *fh,
2120 struct v4l2_framebuffer *a)
2121 {
2122 struct omap_overlay *ovl;
2123 struct omapvideo_info *ovid;
2124 struct omap_vout_device *vout = fh;
2125 struct omap_overlay_manager_info info;
2126
2127 ovid = &vout->vid_info;
2128 ovl = ovid->overlays[0];
2129
2130 a->flags = 0x0;
2131 a->capability = V4L2_FBUF_CAP_LOCAL_ALPHA | V4L2_FBUF_CAP_CHROMAKEY
2132 | V4L2_FBUF_CAP_SRC_CHROMAKEY;
2133
2134 if (ovl->manager && ovl->manager->get_manager_info) {
2135 ovl->manager->get_manager_info(ovl->manager, &info);
2136 if (info.trans_key_type == OMAP_DSS_COLOR_KEY_VID_SRC)
2137 a->flags |= V4L2_FBUF_FLAG_SRC_CHROMAKEY;
2138 if (info.trans_key_type == OMAP_DSS_COLOR_KEY_GFX_DST)
2139 a->flags |= V4L2_FBUF_FLAG_CHROMAKEY;
2140 }
2141 if (ovl->manager && ovl->manager->get_manager_info) {
2142 ovl->manager->get_manager_info(ovl->manager, &info);
2143 if (info.alpha_enabled)
2144 a->flags |= V4L2_FBUF_FLAG_LOCAL_ALPHA;
2145 }
2146
2147 return 0;
2148 }
2149
2150 static const struct v4l2_ioctl_ops vout_ioctl_ops = {
2151 .vidioc_querycap = vidioc_querycap,
2152 .vidioc_enum_fmt_vid_out = vidioc_enum_fmt_vid_out,
2153 .vidioc_g_fmt_vid_out = vidioc_g_fmt_vid_out,
2154 .vidioc_try_fmt_vid_out = vidioc_try_fmt_vid_out,
2155 .vidioc_s_fmt_vid_out = vidioc_s_fmt_vid_out,
2156 .vidioc_queryctrl = vidioc_queryctrl,
2157 .vidioc_g_ctrl = vidioc_g_ctrl,
2158 .vidioc_s_fbuf = vidioc_s_fbuf,
2159 .vidioc_g_fbuf = vidioc_g_fbuf,
2160 .vidioc_s_ctrl = vidioc_s_ctrl,
2161 .vidioc_try_fmt_vid_overlay = vidioc_try_fmt_vid_overlay,
2162 .vidioc_s_fmt_vid_overlay = vidioc_s_fmt_vid_overlay,
2163 .vidioc_enum_fmt_vid_overlay = vidioc_enum_fmt_vid_overlay,
2164 .vidioc_g_fmt_vid_overlay = vidioc_g_fmt_vid_overlay,
2165 .vidioc_cropcap = vidioc_cropcap,
2166 .vidioc_g_crop = vidioc_g_crop,
2167 .vidioc_s_crop = vidioc_s_crop,
2168 .vidioc_reqbufs = vidioc_reqbufs,
2169 .vidioc_querybuf = vidioc_querybuf,
2170 .vidioc_qbuf = vidioc_qbuf,
2171 .vidioc_dqbuf = vidioc_dqbuf,
2172 .vidioc_streamon = vidioc_streamon,
2173 .vidioc_streamoff = vidioc_streamoff,
2174 };
2175
2176 static const struct v4l2_file_operations omap_vout_fops = {
2177 .owner = THIS_MODULE,
2178 .unlocked_ioctl = video_ioctl2,
2179 .mmap = omap_vout_mmap,
2180 .open = omap_vout_open,
2181 .release = omap_vout_release,
2182 };
2183
2184 /* Init functions used during driver initialization */
2185 /* Initial setup of video_data */
2186 static int __init omap_vout_setup_video_data(struct omap_vout_device *vout)
2187 {
2188 struct video_device *vfd;
2189 struct v4l2_pix_format *pix;
2190 struct v4l2_control *control;
2191 struct omap_dss_device *display =
2192 vout->vid_info.overlays[0]->manager->device;
2193
2194 /* set the default pix */
2195 pix = &vout->pix;
2196
2197 /* Set the default picture of QVGA */
2198 pix->width = QQVGA_WIDTH;
2199 pix->height = QQVGA_HEIGHT;
2200
2201 /* Default pixel format is RGB 5-6-5 */
2202 pix->pixelformat = V4L2_PIX_FMT_RGB565;
2203 pix->field = V4L2_FIELD_ANY;
2204 pix->bytesperline = pix->width * 2;
2205 pix->sizeimage = pix->bytesperline * pix->height;
2206 pix->priv = 0;
2207 pix->colorspace = V4L2_COLORSPACE_JPEG;
2208
2209 vout->bpp = RGB565_BPP;
2210 vout->fbuf.fmt.width = display->panel.timings.x_res;
2211 vout->fbuf.fmt.height = display->panel.timings.y_res;
2212
2213 /* Set the data structures for the overlay parameters*/
2214 vout->win.global_alpha = 255;
2215 vout->fbuf.flags = 0;
2216 vout->fbuf.capability = V4L2_FBUF_CAP_LOCAL_ALPHA |
2217 V4L2_FBUF_CAP_SRC_CHROMAKEY | V4L2_FBUF_CAP_CHROMAKEY;
2218 vout->win.chromakey = 0;
2219
2220 omap_vout_new_format(pix, &vout->fbuf, &vout->crop, &vout->win);
2221
2222 /*Initialize the control variables for
2223 rotation, flipping and background color. */
2224 control = vout->control;
2225 control[0].id = V4L2_CID_ROTATE;
2226 control[0].value = 0;
2227 vout->rotation = 0;
2228 vout->mirror = 0;
2229 vout->control[2].id = V4L2_CID_HFLIP;
2230 vout->control[2].value = 0;
2231 vout->vrfb_bpp = 2;
2232
2233 control[1].id = V4L2_CID_BG_COLOR;
2234 control[1].value = 0;
2235
2236 /* initialize the video_device struct */
2237 vfd = vout->vfd = video_device_alloc();
2238
2239 if (!vfd) {
2240 printk(KERN_ERR VOUT_NAME ": could not allocate"
2241 " video device struct\n");
2242 return -ENOMEM;
2243 }
2244 vfd->release = video_device_release;
2245 vfd->ioctl_ops = &vout_ioctl_ops;
2246
2247 strlcpy(vfd->name, VOUT_NAME, sizeof(vfd->name));
2248
2249 vfd->fops = &omap_vout_fops;
2250 vfd->v4l2_dev = &vout->vid_dev->v4l2_dev;
2251 mutex_init(&vout->lock);
2252
2253 vfd->minor = -1;
2254 return 0;
2255
2256 }
2257
2258 /* Setup video buffers */
2259 static int __init omap_vout_setup_video_bufs(struct platform_device *pdev,
2260 int vid_num)
2261 {
2262 u32 numbuffers;
2263 int ret = 0, i, j;
2264 int image_width, image_height;
2265 struct video_device *vfd;
2266 struct omap_vout_device *vout;
2267 int static_vrfb_allocation = 0, vrfb_num_bufs = VRFB_NUM_BUFS;
2268 struct v4l2_device *v4l2_dev = platform_get_drvdata(pdev);
2269 struct omap2video_device *vid_dev =
2270 container_of(v4l2_dev, struct omap2video_device, v4l2_dev);
2271
2272 vout = vid_dev->vouts[vid_num];
2273 vfd = vout->vfd;
2274
2275 numbuffers = (vid_num == 0) ? video1_numbuffers : video2_numbuffers;
2276 vout->buffer_size = (vid_num == 0) ? video1_bufsize : video2_bufsize;
2277 dev_info(&pdev->dev, "Buffer Size = %d\n", vout->buffer_size);
2278
2279 for (i = 0; i < numbuffers; i++) {
2280 vout->buf_virt_addr[i] =
2281 omap_vout_alloc_buffer(vout->buffer_size,
2282 (u32 *) &vout->buf_phy_addr[i]);
2283 if (!vout->buf_virt_addr[i]) {
2284 numbuffers = i;
2285 ret = -ENOMEM;
2286 goto free_buffers;
2287 }
2288 }
2289
2290 for (i = 0; i < VRFB_NUM_BUFS; i++) {
2291 if (omap_vrfb_request_ctx(&vout->vrfb_context[i])) {
2292 dev_info(&pdev->dev, ": VRFB allocation failed\n");
2293 for (j = 0; j < i; j++)
2294 omap_vrfb_release_ctx(&vout->vrfb_context[j]);
2295 ret = -ENOMEM;
2296 goto free_buffers;
2297 }
2298 }
2299 vout->cropped_offset = 0;
2300
2301 /* Calculate VRFB memory size */
2302 /* allocate for worst case size */
2303 image_width = VID_MAX_WIDTH / TILE_SIZE;
2304 if (VID_MAX_WIDTH % TILE_SIZE)
2305 image_width++;
2306
2307 image_width = image_width * TILE_SIZE;
2308 image_height = VID_MAX_HEIGHT / TILE_SIZE;
2309
2310 if (VID_MAX_HEIGHT % TILE_SIZE)
2311 image_height++;
2312
2313 image_height = image_height * TILE_SIZE;
2314 vout->smsshado_size = PAGE_ALIGN(image_width * image_height * 2 * 2);
2315
2316 /*
2317 * Request and Initialize DMA, for DMA based VRFB transfer
2318 */
2319 vout->vrfb_dma_tx.dev_id = OMAP_DMA_NO_DEVICE;
2320 vout->vrfb_dma_tx.dma_ch = -1;
2321 vout->vrfb_dma_tx.req_status = DMA_CHAN_ALLOTED;
2322 ret = omap_request_dma(vout->vrfb_dma_tx.dev_id, "VRFB DMA TX",
2323 omap_vout_vrfb_dma_tx_callback,
2324 (void *) &vout->vrfb_dma_tx, &vout->vrfb_dma_tx.dma_ch);
2325 if (ret < 0) {
2326 vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED;
2327 dev_info(&pdev->dev, ": failed to allocate DMA Channel for"
2328 " video%d\n", vfd->minor);
2329 }
2330 init_waitqueue_head(&vout->vrfb_dma_tx.wait);
2331
2332 /* Allocate VRFB buffers if selected through bootargs */
2333 static_vrfb_allocation = (vid_num == 0) ?
2334 vid1_static_vrfb_alloc : vid2_static_vrfb_alloc;
2335
2336 /* statically allocated the VRFB buffer is done through
2337 commands line aruments */
2338 if (static_vrfb_allocation) {
2339 if (omap_vout_allocate_vrfb_buffers(vout, &vrfb_num_bufs, -1)) {
2340 ret = -ENOMEM;
2341 goto release_vrfb_ctx;
2342 }
2343 vout->vrfb_static_allocation = 1;
2344 }
2345 return 0;
2346
2347 release_vrfb_ctx:
2348 for (j = 0; j < VRFB_NUM_BUFS; j++)
2349 omap_vrfb_release_ctx(&vout->vrfb_context[j]);
2350
2351 free_buffers:
2352 for (i = 0; i < numbuffers; i++) {
2353 omap_vout_free_buffer(vout->buf_virt_addr[i],
2354 vout->buffer_size);
2355 vout->buf_virt_addr[i] = 0;
2356 vout->buf_phy_addr[i] = 0;
2357 }
2358 return ret;
2359
2360 }
2361
2362 /* Create video out devices */
2363 static int __init omap_vout_create_video_devices(struct platform_device *pdev)
2364 {
2365 int ret = 0, k;
2366 struct omap_vout_device *vout;
2367 struct video_device *vfd = NULL;
2368 struct v4l2_device *v4l2_dev = platform_get_drvdata(pdev);
2369 struct omap2video_device *vid_dev = container_of(v4l2_dev,
2370 struct omap2video_device, v4l2_dev);
2371
2372 for (k = 0; k < pdev->num_resources; k++) {
2373
2374 vout = kzalloc(sizeof(struct omap_vout_device), GFP_KERNEL);
2375 if (!vout) {
2376 dev_err(&pdev->dev, ": could not allocate memory\n");
2377 return -ENOMEM;
2378 }
2379
2380 vout->vid = k;
2381 vid_dev->vouts[k] = vout;
2382 vout->vid_dev = vid_dev;
2383 /* Select video2 if only 1 overlay is controlled by V4L2 */
2384 if (pdev->num_resources == 1)
2385 vout->vid_info.overlays[0] = vid_dev->overlays[k + 2];
2386 else
2387 /* Else select video1 and video2 one by one. */
2388 vout->vid_info.overlays[0] = vid_dev->overlays[k + 1];
2389 vout->vid_info.num_overlays = 1;
2390 vout->vid_info.id = k + 1;
2391
2392 /* Setup the default configuration for the video devices
2393 */
2394 if (omap_vout_setup_video_data(vout) != 0) {
2395 ret = -ENOMEM;
2396 goto error;
2397 }
2398
2399 /* Allocate default number of buffers for the video streaming
2400 * and reserve the VRFB space for rotation
2401 */
2402 if (omap_vout_setup_video_bufs(pdev, k) != 0) {
2403 ret = -ENOMEM;
2404 goto error1;
2405 }
2406
2407 /* Register the Video device with V4L2
2408 */
2409 vfd = vout->vfd;
2410 if (video_register_device(vfd, VFL_TYPE_GRABBER, -1) < 0) {
2411 dev_err(&pdev->dev, ": Could not register "
2412 "Video for Linux device\n");
2413 vfd->minor = -1;
2414 ret = -ENODEV;
2415 goto error2;
2416 }
2417 video_set_drvdata(vfd, vout);
2418
2419 /* Configure the overlay structure */
2420 ret = omapvid_init(vid_dev->vouts[k], 0);
2421 if (!ret)
2422 goto success;
2423
2424 error2:
2425 omap_vout_release_vrfb(vout);
2426 omap_vout_free_buffers(vout);
2427 error1:
2428 video_device_release(vfd);
2429 error:
2430 kfree(vout);
2431 return ret;
2432
2433 success:
2434 dev_info(&pdev->dev, ": registered and initialized"
2435 " video device %d\n", vfd->minor);
2436 if (k == (pdev->num_resources - 1))
2437 return 0;
2438 }
2439
2440 return -ENODEV;
2441 }
2442 /* Driver functions */
2443 static void omap_vout_cleanup_device(struct omap_vout_device *vout)
2444 {
2445 struct video_device *vfd;
2446
2447 if (!vout)
2448 return;
2449
2450 vfd = vout->vfd;
2451 if (vfd) {
2452 if (!video_is_registered(vfd)) {
2453 /*
2454 * The device was never registered, so release the
2455 * video_device struct directly.
2456 */
2457 video_device_release(vfd);
2458 } else {
2459 /*
2460 * The unregister function will release the video_device
2461 * struct as well as unregistering it.
2462 */
2463 video_unregister_device(vfd);
2464 }
2465 }
2466
2467 omap_vout_release_vrfb(vout);
2468 omap_vout_free_buffers(vout);
2469 /* Free the VRFB buffer if allocated
2470 * init time
2471 */
2472 if (vout->vrfb_static_allocation)
2473 omap_vout_free_vrfb_buffers(vout);
2474
2475 kfree(vout);
2476 }
2477
2478 static int omap_vout_remove(struct platform_device *pdev)
2479 {
2480 int k;
2481 struct v4l2_device *v4l2_dev = platform_get_drvdata(pdev);
2482 struct omap2video_device *vid_dev = container_of(v4l2_dev, struct
2483 omap2video_device, v4l2_dev);
2484
2485 v4l2_device_unregister(v4l2_dev);
2486 for (k = 0; k < pdev->num_resources; k++)
2487 omap_vout_cleanup_device(vid_dev->vouts[k]);
2488
2489 for (k = 0; k < vid_dev->num_displays; k++) {
2490 if (vid_dev->displays[k]->state != OMAP_DSS_DISPLAY_DISABLED)
2491 vid_dev->displays[k]->driver->disable(vid_dev->displays[k]);
2492
2493 omap_dss_put_device(vid_dev->displays[k]);
2494 }
2495 kfree(vid_dev);
2496 return 0;
2497 }
2498
2499 static int __init omap_vout_probe(struct platform_device *pdev)
2500 {
2501 int ret = 0, i;
2502 struct omap_overlay *ovl;
2503 struct omap_dss_device *dssdev = NULL;
2504 struct omap_dss_device *def_display;
2505 struct omap2video_device *vid_dev = NULL;
2506
2507 if (pdev->num_resources == 0) {
2508 dev_err(&pdev->dev, "probed for an unknown device\n");
2509 return -ENODEV;
2510 }
2511
2512 vid_dev = kzalloc(sizeof(struct omap2video_device), GFP_KERNEL);
2513 if (vid_dev == NULL)
2514 return -ENOMEM;
2515
2516 vid_dev->num_displays = 0;
2517 for_each_dss_dev(dssdev) {
2518 omap_dss_get_device(dssdev);
2519 vid_dev->displays[vid_dev->num_displays++] = dssdev;
2520 }
2521
2522 if (vid_dev->num_displays == 0) {
2523 dev_err(&pdev->dev, "no displays\n");
2524 ret = -EINVAL;
2525 goto probe_err0;
2526 }
2527
2528 vid_dev->num_overlays = omap_dss_get_num_overlays();
2529 for (i = 0; i < vid_dev->num_overlays; i++)
2530 vid_dev->overlays[i] = omap_dss_get_overlay(i);
2531
2532 vid_dev->num_managers = omap_dss_get_num_overlay_managers();
2533 for (i = 0; i < vid_dev->num_managers; i++)
2534 vid_dev->managers[i] = omap_dss_get_overlay_manager(i);
2535
2536 /* Get the Video1 overlay and video2 overlay.
2537 * Setup the Display attached to that overlays
2538 */
2539 for (i = 1; i < vid_dev->num_overlays; i++) {
2540 ovl = omap_dss_get_overlay(i);
2541 if (ovl->manager && ovl->manager->device) {
2542 def_display = ovl->manager->device;
2543 } else {
2544 dev_warn(&pdev->dev, "cannot find display\n");
2545 def_display = NULL;
2546 }
2547 if (def_display) {
2548 struct omap_dss_driver *dssdrv = def_display->driver;
2549
2550 ret = dssdrv->enable(def_display);
2551 if (ret) {
2552 /* Here we are not considering a error
2553 * as display may be enabled by frame
2554 * buffer driver
2555 */
2556 dev_warn(&pdev->dev,
2557 "'%s' Display already enabled\n",
2558 def_display->name);
2559 }
2560 /* set the update mode */
2561 if (def_display->caps &
2562 OMAP_DSS_DISPLAY_CAP_MANUAL_UPDATE) {
2563 if (dssdrv->enable_te)
2564 dssdrv->enable_te(def_display, 0);
2565 if (dssdrv->set_update_mode)
2566 dssdrv->set_update_mode(def_display,
2567 OMAP_DSS_UPDATE_MANUAL);
2568 } else {
2569 if (dssdrv->set_update_mode)
2570 dssdrv->set_update_mode(def_display,
2571 OMAP_DSS_UPDATE_AUTO);
2572 }
2573 }
2574 }
2575
2576 if (v4l2_device_register(&pdev->dev, &vid_dev->v4l2_dev) < 0) {
2577 dev_err(&pdev->dev, "v4l2_device_register failed\n");
2578 ret = -ENODEV;
2579 goto probe_err1;
2580 }
2581
2582 ret = omap_vout_create_video_devices(pdev);
2583 if (ret)
2584 goto probe_err2;
2585
2586 for (i = 0; i < vid_dev->num_displays; i++) {
2587 struct omap_dss_device *display = vid_dev->displays[i];
2588
2589 if (display->driver->update)
2590 display->driver->update(display, 0, 0,
2591 display->panel.timings.x_res,
2592 display->panel.timings.y_res);
2593 }
2594 return 0;
2595
2596 probe_err2:
2597 v4l2_device_unregister(&vid_dev->v4l2_dev);
2598 probe_err1:
2599 for (i = 1; i < vid_dev->num_overlays; i++) {
2600 def_display = NULL;
2601 ovl = omap_dss_get_overlay(i);
2602 if (ovl->manager && ovl->manager->device)
2603 def_display = ovl->manager->device;
2604
2605 if (def_display && def_display->driver)
2606 def_display->driver->disable(def_display);
2607 }
2608 probe_err0:
2609 kfree(vid_dev);
2610 return ret;
2611 }
2612
2613 static struct platform_driver omap_vout_driver = {
2614 .driver = {
2615 .name = VOUT_NAME,
2616 },
2617 .probe = omap_vout_probe,
2618 .remove = omap_vout_remove,
2619 };
2620
2621 static int __init omap_vout_init(void)
2622 {
2623 if (platform_driver_register(&omap_vout_driver) != 0) {
2624 printk(KERN_ERR VOUT_NAME ":Could not register Video driver\n");
2625 return -EINVAL;
2626 }
2627 return 0;
2628 }
2629
2630 static void omap_vout_cleanup(void)
2631 {
2632 platform_driver_unregister(&omap_vout_driver);
2633 }
2634
2635 late_initcall(omap_vout_init);
2636 module_exit(omap_vout_cleanup);
This page took 0.116762 seconds and 5 git commands to generate.