mfd: Add BTN_TOUCH event to ucb1x00-ts
[deliverable/linux.git] / drivers / mfd / ucb1x00-ts.c
1 /*
2 * Touchscreen driver for UCB1x00-based touchscreens
3 *
4 * Copyright (C) 2001 Russell King, All Rights Reserved.
5 * Copyright (C) 2005 Pavel Machek
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * 21-Jan-2002 <jco@ict.es> :
12 *
13 * Added support for synchronous A/D mode. This mode is useful to
14 * avoid noise induced in the touchpanel by the LCD, provided that
15 * the UCB1x00 has a valid LCD sync signal routed to its ADCSYNC pin.
16 * It is important to note that the signal connected to the ADCSYNC
17 * pin should provide pulses even when the LCD is blanked, otherwise
18 * a pen touch needed to unblank the LCD will never be read.
19 */
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/init.h>
23 #include <linux/smp.h>
24 #include <linux/sched.h>
25 #include <linux/completion.h>
26 #include <linux/delay.h>
27 #include <linux/string.h>
28 #include <linux/input.h>
29 #include <linux/device.h>
30 #include <linux/freezer.h>
31 #include <linux/slab.h>
32 #include <linux/kthread.h>
33 #include <linux/mfd/ucb1x00.h>
34
35 #include <mach/dma.h>
36 #include <mach/collie.h>
37 #include <asm/mach-types.h>
38
39
40
41 struct ucb1x00_ts {
42 struct input_dev *idev;
43 struct ucb1x00 *ucb;
44
45 wait_queue_head_t irq_wait;
46 struct task_struct *rtask;
47 u16 x_res;
48 u16 y_res;
49
50 unsigned int restart:1;
51 unsigned int adcsync:1;
52 };
53
54 static int adcsync;
55
56 static inline void ucb1x00_ts_evt_add(struct ucb1x00_ts *ts, u16 pressure, u16 x, u16 y)
57 {
58 struct input_dev *idev = ts->idev;
59
60 input_report_abs(idev, ABS_X, x);
61 input_report_abs(idev, ABS_Y, y);
62 input_report_abs(idev, ABS_PRESSURE, pressure);
63 input_report_key(idev, BTN_TOUCH, 1);
64 input_sync(idev);
65 }
66
67 static inline void ucb1x00_ts_event_release(struct ucb1x00_ts *ts)
68 {
69 struct input_dev *idev = ts->idev;
70
71 input_report_abs(idev, ABS_PRESSURE, 0);
72 input_report_key(idev, BTN_TOUCH, 0);
73 input_sync(idev);
74 }
75
76 /*
77 * Switch to interrupt mode.
78 */
79 static inline void ucb1x00_ts_mode_int(struct ucb1x00_ts *ts)
80 {
81 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
82 UCB_TS_CR_TSMX_POW | UCB_TS_CR_TSPX_POW |
83 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_GND |
84 UCB_TS_CR_MODE_INT);
85 }
86
87 /*
88 * Switch to pressure mode, and read pressure. We don't need to wait
89 * here, since both plates are being driven.
90 */
91 static inline unsigned int ucb1x00_ts_read_pressure(struct ucb1x00_ts *ts)
92 {
93 if (machine_is_collie()) {
94 ucb1x00_io_write(ts->ucb, COLLIE_TC35143_GPIO_TBL_CHK, 0);
95 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
96 UCB_TS_CR_TSPX_POW | UCB_TS_CR_TSMX_POW |
97 UCB_TS_CR_MODE_POS | UCB_TS_CR_BIAS_ENA);
98
99 udelay(55);
100
101 return ucb1x00_adc_read(ts->ucb, UCB_ADC_INP_AD2, ts->adcsync);
102 } else {
103 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
104 UCB_TS_CR_TSMX_POW | UCB_TS_CR_TSPX_POW |
105 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_GND |
106 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
107
108 return ucb1x00_adc_read(ts->ucb, UCB_ADC_INP_TSPY, ts->adcsync);
109 }
110 }
111
112 /*
113 * Switch to X position mode and measure Y plate. We switch the plate
114 * configuration in pressure mode, then switch to position mode. This
115 * gives a faster response time. Even so, we need to wait about 55us
116 * for things to stabilise.
117 */
118 static inline unsigned int ucb1x00_ts_read_xpos(struct ucb1x00_ts *ts)
119 {
120 if (machine_is_collie())
121 ucb1x00_io_write(ts->ucb, 0, COLLIE_TC35143_GPIO_TBL_CHK);
122 else {
123 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
124 UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
125 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
126 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
127 UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
128 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
129 }
130 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
131 UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
132 UCB_TS_CR_MODE_POS | UCB_TS_CR_BIAS_ENA);
133
134 udelay(55);
135
136 return ucb1x00_adc_read(ts->ucb, UCB_ADC_INP_TSPY, ts->adcsync);
137 }
138
139 /*
140 * Switch to Y position mode and measure X plate. We switch the plate
141 * configuration in pressure mode, then switch to position mode. This
142 * gives a faster response time. Even so, we need to wait about 55us
143 * for things to stabilise.
144 */
145 static inline unsigned int ucb1x00_ts_read_ypos(struct ucb1x00_ts *ts)
146 {
147 if (machine_is_collie())
148 ucb1x00_io_write(ts->ucb, 0, COLLIE_TC35143_GPIO_TBL_CHK);
149 else {
150 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
151 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
152 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
153 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
154 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
155 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
156 }
157
158 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
159 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
160 UCB_TS_CR_MODE_POS | UCB_TS_CR_BIAS_ENA);
161
162 udelay(55);
163
164 return ucb1x00_adc_read(ts->ucb, UCB_ADC_INP_TSPX, ts->adcsync);
165 }
166
167 /*
168 * Switch to X plate resistance mode. Set MX to ground, PX to
169 * supply. Measure current.
170 */
171 static inline unsigned int ucb1x00_ts_read_xres(struct ucb1x00_ts *ts)
172 {
173 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
174 UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
175 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
176 return ucb1x00_adc_read(ts->ucb, 0, ts->adcsync);
177 }
178
179 /*
180 * Switch to Y plate resistance mode. Set MY to ground, PY to
181 * supply. Measure current.
182 */
183 static inline unsigned int ucb1x00_ts_read_yres(struct ucb1x00_ts *ts)
184 {
185 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
186 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
187 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
188 return ucb1x00_adc_read(ts->ucb, 0, ts->adcsync);
189 }
190
191 static inline int ucb1x00_ts_pen_down(struct ucb1x00_ts *ts)
192 {
193 unsigned int val = ucb1x00_reg_read(ts->ucb, UCB_TS_CR);
194
195 if (machine_is_collie())
196 return (!(val & (UCB_TS_CR_TSPX_LOW)));
197 else
198 return (val & (UCB_TS_CR_TSPX_LOW | UCB_TS_CR_TSMX_LOW));
199 }
200
201 /*
202 * This is a RT kernel thread that handles the ADC accesses
203 * (mainly so we can use semaphores in the UCB1200 core code
204 * to serialise accesses to the ADC).
205 */
206 static int ucb1x00_thread(void *_ts)
207 {
208 struct ucb1x00_ts *ts = _ts;
209 DECLARE_WAITQUEUE(wait, current);
210 int valid = 0;
211
212 set_freezable();
213 add_wait_queue(&ts->irq_wait, &wait);
214 while (!kthread_should_stop()) {
215 unsigned int x, y, p;
216 signed long timeout;
217
218 ts->restart = 0;
219
220 ucb1x00_adc_enable(ts->ucb);
221
222 x = ucb1x00_ts_read_xpos(ts);
223 y = ucb1x00_ts_read_ypos(ts);
224 p = ucb1x00_ts_read_pressure(ts);
225
226 /*
227 * Switch back to interrupt mode.
228 */
229 ucb1x00_ts_mode_int(ts);
230 ucb1x00_adc_disable(ts->ucb);
231
232 msleep(10);
233
234 ucb1x00_enable(ts->ucb);
235
236
237 if (ucb1x00_ts_pen_down(ts)) {
238 set_current_state(TASK_INTERRUPTIBLE);
239
240 ucb1x00_enable_irq(ts->ucb, UCB_IRQ_TSPX, machine_is_collie() ? UCB_RISING : UCB_FALLING);
241 ucb1x00_disable(ts->ucb);
242
243 /*
244 * If we spat out a valid sample set last time,
245 * spit out a "pen off" sample here.
246 */
247 if (valid) {
248 ucb1x00_ts_event_release(ts);
249 valid = 0;
250 }
251
252 timeout = MAX_SCHEDULE_TIMEOUT;
253 } else {
254 ucb1x00_disable(ts->ucb);
255
256 /*
257 * Filtering is policy. Policy belongs in user
258 * space. We therefore leave it to user space
259 * to do any filtering they please.
260 */
261 if (!ts->restart) {
262 ucb1x00_ts_evt_add(ts, p, x, y);
263 valid = 1;
264 }
265
266 set_current_state(TASK_INTERRUPTIBLE);
267 timeout = HZ / 100;
268 }
269
270 try_to_freeze();
271
272 schedule_timeout(timeout);
273 }
274
275 remove_wait_queue(&ts->irq_wait, &wait);
276
277 ts->rtask = NULL;
278 return 0;
279 }
280
281 /*
282 * We only detect touch screen _touches_ with this interrupt
283 * handler, and even then we just schedule our task.
284 */
285 static void ucb1x00_ts_irq(int idx, void *id)
286 {
287 struct ucb1x00_ts *ts = id;
288
289 ucb1x00_disable_irq(ts->ucb, UCB_IRQ_TSPX, UCB_FALLING);
290 wake_up(&ts->irq_wait);
291 }
292
293 static int ucb1x00_ts_open(struct input_dev *idev)
294 {
295 struct ucb1x00_ts *ts = input_get_drvdata(idev);
296 int ret = 0;
297
298 BUG_ON(ts->rtask);
299
300 init_waitqueue_head(&ts->irq_wait);
301 ret = ucb1x00_hook_irq(ts->ucb, UCB_IRQ_TSPX, ucb1x00_ts_irq, ts);
302 if (ret < 0)
303 goto out;
304
305 /*
306 * If we do this at all, we should allow the user to
307 * measure and read the X and Y resistance at any time.
308 */
309 ucb1x00_adc_enable(ts->ucb);
310 ts->x_res = ucb1x00_ts_read_xres(ts);
311 ts->y_res = ucb1x00_ts_read_yres(ts);
312 ucb1x00_adc_disable(ts->ucb);
313
314 ts->rtask = kthread_run(ucb1x00_thread, ts, "ktsd");
315 if (!IS_ERR(ts->rtask)) {
316 ret = 0;
317 } else {
318 ucb1x00_free_irq(ts->ucb, UCB_IRQ_TSPX, ts);
319 ts->rtask = NULL;
320 ret = -EFAULT;
321 }
322
323 out:
324 return ret;
325 }
326
327 /*
328 * Release touchscreen resources. Disable IRQs.
329 */
330 static void ucb1x00_ts_close(struct input_dev *idev)
331 {
332 struct ucb1x00_ts *ts = input_get_drvdata(idev);
333
334 if (ts->rtask)
335 kthread_stop(ts->rtask);
336
337 ucb1x00_enable(ts->ucb);
338 ucb1x00_free_irq(ts->ucb, UCB_IRQ_TSPX, ts);
339 ucb1x00_reg_write(ts->ucb, UCB_TS_CR, 0);
340 ucb1x00_disable(ts->ucb);
341 }
342
343 #ifdef CONFIG_PM
344 static int ucb1x00_ts_resume(struct ucb1x00_dev *dev)
345 {
346 struct ucb1x00_ts *ts = dev->priv;
347
348 if (ts->rtask != NULL) {
349 /*
350 * Restart the TS thread to ensure the
351 * TS interrupt mode is set up again
352 * after sleep.
353 */
354 ts->restart = 1;
355 wake_up(&ts->irq_wait);
356 }
357 return 0;
358 }
359 #else
360 #define ucb1x00_ts_resume NULL
361 #endif
362
363
364 /*
365 * Initialisation.
366 */
367 static int ucb1x00_ts_add(struct ucb1x00_dev *dev)
368 {
369 struct ucb1x00_ts *ts;
370 struct input_dev *idev;
371 int err;
372
373 ts = kzalloc(sizeof(struct ucb1x00_ts), GFP_KERNEL);
374 idev = input_allocate_device();
375 if (!ts || !idev) {
376 err = -ENOMEM;
377 goto fail;
378 }
379
380 ts->ucb = dev->ucb;
381 ts->idev = idev;
382 ts->adcsync = adcsync ? UCB_SYNC : UCB_NOSYNC;
383
384 idev->name = "Touchscreen panel";
385 idev->id.product = ts->ucb->id;
386 idev->open = ucb1x00_ts_open;
387 idev->close = ucb1x00_ts_close;
388
389 idev->evbit[0] = BIT_MASK(EV_ABS) | BIT_MASK(EV_KEY);
390 idev->keybit[BIT_WORD(BTN_TOUCH)] = BIT_MASK(BTN_TOUCH);
391
392 input_set_drvdata(idev, ts);
393
394 ucb1x00_adc_enable(ts->ucb);
395 ts->x_res = ucb1x00_ts_read_xres(ts);
396 ts->y_res = ucb1x00_ts_read_yres(ts);
397 ucb1x00_adc_disable(ts->ucb);
398
399 input_set_abs_params(idev, ABS_X, 0, ts->x_res, 0, 0);
400 input_set_abs_params(idev, ABS_Y, 0, ts->y_res, 0, 0);
401 input_set_abs_params(idev, ABS_PRESSURE, 0, 0, 0, 0);
402
403 err = input_register_device(idev);
404 if (err)
405 goto fail;
406
407 dev->priv = ts;
408
409 return 0;
410
411 fail:
412 input_free_device(idev);
413 kfree(ts);
414 return err;
415 }
416
417 static void ucb1x00_ts_remove(struct ucb1x00_dev *dev)
418 {
419 struct ucb1x00_ts *ts = dev->priv;
420
421 input_unregister_device(ts->idev);
422 kfree(ts);
423 }
424
425 static struct ucb1x00_driver ucb1x00_ts_driver = {
426 .add = ucb1x00_ts_add,
427 .remove = ucb1x00_ts_remove,
428 .resume = ucb1x00_ts_resume,
429 };
430
431 static int __init ucb1x00_ts_init(void)
432 {
433 return ucb1x00_register_driver(&ucb1x00_ts_driver);
434 }
435
436 static void __exit ucb1x00_ts_exit(void)
437 {
438 ucb1x00_unregister_driver(&ucb1x00_ts_driver);
439 }
440
441 module_param(adcsync, int, 0444);
442 module_init(ucb1x00_ts_init);
443 module_exit(ucb1x00_ts_exit);
444
445 MODULE_AUTHOR("Russell King <rmk@arm.linux.org.uk>");
446 MODULE_DESCRIPTION("UCB1x00 touchscreen driver");
447 MODULE_LICENSE("GPL");
This page took 0.040279 seconds and 5 git commands to generate.