Merge git://git.kernel.org/pub/scm/linux/kernel/git/sam/kbuild
[deliverable/linux.git] / drivers / mfd / ucb1x00-ts.c
1 /*
2 * Touchscreen driver for UCB1x00-based touchscreens
3 *
4 * Copyright (C) 2001 Russell King, All Rights Reserved.
5 * Copyright (C) 2005 Pavel Machek
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * 21-Jan-2002 <jco@ict.es> :
12 *
13 * Added support for synchronous A/D mode. This mode is useful to
14 * avoid noise induced in the touchpanel by the LCD, provided that
15 * the UCB1x00 has a valid LCD sync signal routed to its ADCSYNC pin.
16 * It is important to note that the signal connected to the ADCSYNC
17 * pin should provide pulses even when the LCD is blanked, otherwise
18 * a pen touch needed to unblank the LCD will never be read.
19 */
20 #include <linux/config.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/init.h>
24 #include <linux/smp.h>
25 #include <linux/smp_lock.h>
26 #include <linux/sched.h>
27 #include <linux/completion.h>
28 #include <linux/delay.h>
29 #include <linux/string.h>
30 #include <linux/input.h>
31 #include <linux/device.h>
32 #include <linux/suspend.h>
33 #include <linux/slab.h>
34 #include <linux/kthread.h>
35 #include <linux/delay.h>
36
37 #include <asm/dma.h>
38 #include <asm/semaphore.h>
39 #include <asm/arch/collie.h>
40 #include <asm/mach-types.h>
41
42 #include "ucb1x00.h"
43
44
45 struct ucb1x00_ts {
46 struct input_dev *idev;
47 struct ucb1x00 *ucb;
48
49 wait_queue_head_t irq_wait;
50 struct task_struct *rtask;
51 u16 x_res;
52 u16 y_res;
53
54 unsigned int restart:1;
55 unsigned int adcsync:1;
56 };
57
58 static int adcsync;
59
60 static inline void ucb1x00_ts_evt_add(struct ucb1x00_ts *ts, u16 pressure, u16 x, u16 y)
61 {
62 struct input_dev *idev = ts->idev;
63 input_report_abs(idev, ABS_X, x);
64 input_report_abs(idev, ABS_Y, y);
65 input_report_abs(idev, ABS_PRESSURE, pressure);
66 input_sync(idev);
67 }
68
69 static inline void ucb1x00_ts_event_release(struct ucb1x00_ts *ts)
70 {
71 struct input_dev *idev = ts->idev;
72 input_report_abs(idev, ABS_PRESSURE, 0);
73 input_sync(idev);
74 }
75
76 /*
77 * Switch to interrupt mode.
78 */
79 static inline void ucb1x00_ts_mode_int(struct ucb1x00_ts *ts)
80 {
81 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
82 UCB_TS_CR_TSMX_POW | UCB_TS_CR_TSPX_POW |
83 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_GND |
84 UCB_TS_CR_MODE_INT);
85 }
86
87 /*
88 * Switch to pressure mode, and read pressure. We don't need to wait
89 * here, since both plates are being driven.
90 */
91 static inline unsigned int ucb1x00_ts_read_pressure(struct ucb1x00_ts *ts)
92 {
93 if (machine_is_collie()) {
94 ucb1x00_io_write(ts->ucb, COLLIE_TC35143_GPIO_TBL_CHK, 0);
95 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
96 UCB_TS_CR_TSPX_POW | UCB_TS_CR_TSMX_POW |
97 UCB_TS_CR_MODE_POS | UCB_TS_CR_BIAS_ENA);
98
99 udelay(55);
100
101 return ucb1x00_adc_read(ts->ucb, UCB_ADC_INP_AD2, ts->adcsync);
102 } else {
103 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
104 UCB_TS_CR_TSMX_POW | UCB_TS_CR_TSPX_POW |
105 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_GND |
106 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
107
108 return ucb1x00_adc_read(ts->ucb, UCB_ADC_INP_TSPY, ts->adcsync);
109 }
110 }
111
112 /*
113 * Switch to X position mode and measure Y plate. We switch the plate
114 * configuration in pressure mode, then switch to position mode. This
115 * gives a faster response time. Even so, we need to wait about 55us
116 * for things to stabilise.
117 */
118 static inline unsigned int ucb1x00_ts_read_xpos(struct ucb1x00_ts *ts)
119 {
120 if (machine_is_collie())
121 ucb1x00_io_write(ts->ucb, 0, COLLIE_TC35143_GPIO_TBL_CHK);
122 else {
123 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
124 UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
125 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
126 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
127 UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
128 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
129 }
130 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
131 UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
132 UCB_TS_CR_MODE_POS | UCB_TS_CR_BIAS_ENA);
133
134 udelay(55);
135
136 return ucb1x00_adc_read(ts->ucb, UCB_ADC_INP_TSPY, ts->adcsync);
137 }
138
139 /*
140 * Switch to Y position mode and measure X plate. We switch the plate
141 * configuration in pressure mode, then switch to position mode. This
142 * gives a faster response time. Even so, we need to wait about 55us
143 * for things to stabilise.
144 */
145 static inline unsigned int ucb1x00_ts_read_ypos(struct ucb1x00_ts *ts)
146 {
147 if (machine_is_collie())
148 ucb1x00_io_write(ts->ucb, 0, COLLIE_TC35143_GPIO_TBL_CHK);
149 else {
150 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
151 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
152 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
153 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
154 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
155 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
156 }
157
158 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
159 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
160 UCB_TS_CR_MODE_POS | UCB_TS_CR_BIAS_ENA);
161
162 udelay(55);
163
164 return ucb1x00_adc_read(ts->ucb, UCB_ADC_INP_TSPX, ts->adcsync);
165 }
166
167 /*
168 * Switch to X plate resistance mode. Set MX to ground, PX to
169 * supply. Measure current.
170 */
171 static inline unsigned int ucb1x00_ts_read_xres(struct ucb1x00_ts *ts)
172 {
173 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
174 UCB_TS_CR_TSMX_GND | UCB_TS_CR_TSPX_POW |
175 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
176 return ucb1x00_adc_read(ts->ucb, 0, ts->adcsync);
177 }
178
179 /*
180 * Switch to Y plate resistance mode. Set MY to ground, PY to
181 * supply. Measure current.
182 */
183 static inline unsigned int ucb1x00_ts_read_yres(struct ucb1x00_ts *ts)
184 {
185 ucb1x00_reg_write(ts->ucb, UCB_TS_CR,
186 UCB_TS_CR_TSMY_GND | UCB_TS_CR_TSPY_POW |
187 UCB_TS_CR_MODE_PRES | UCB_TS_CR_BIAS_ENA);
188 return ucb1x00_adc_read(ts->ucb, 0, ts->adcsync);
189 }
190
191 static inline int ucb1x00_ts_pen_down(struct ucb1x00_ts *ts)
192 {
193 unsigned int val = ucb1x00_reg_read(ts->ucb, UCB_TS_CR);
194 if (machine_is_collie())
195 return (!(val & (UCB_TS_CR_TSPX_LOW)));
196 else
197 return (val & (UCB_TS_CR_TSPX_LOW | UCB_TS_CR_TSMX_LOW));
198 }
199
200 /*
201 * This is a RT kernel thread that handles the ADC accesses
202 * (mainly so we can use semaphores in the UCB1200 core code
203 * to serialise accesses to the ADC).
204 */
205 static int ucb1x00_thread(void *_ts)
206 {
207 struct ucb1x00_ts *ts = _ts;
208 struct task_struct *tsk = current;
209 DECLARE_WAITQUEUE(wait, tsk);
210 int valid;
211
212 /*
213 * We could run as a real-time thread. However, thus far
214 * this doesn't seem to be necessary.
215 */
216 // tsk->policy = SCHED_FIFO;
217 // tsk->rt_priority = 1;
218
219 valid = 0;
220
221 add_wait_queue(&ts->irq_wait, &wait);
222 while (!kthread_should_stop()) {
223 unsigned int x, y, p;
224 signed long timeout;
225
226 ts->restart = 0;
227
228 ucb1x00_adc_enable(ts->ucb);
229
230 x = ucb1x00_ts_read_xpos(ts);
231 y = ucb1x00_ts_read_ypos(ts);
232 p = ucb1x00_ts_read_pressure(ts);
233
234 /*
235 * Switch back to interrupt mode.
236 */
237 ucb1x00_ts_mode_int(ts);
238 ucb1x00_adc_disable(ts->ucb);
239
240 msleep(10);
241
242 ucb1x00_enable(ts->ucb);
243
244
245 if (ucb1x00_ts_pen_down(ts)) {
246 set_task_state(tsk, TASK_INTERRUPTIBLE);
247
248 ucb1x00_enable_irq(ts->ucb, UCB_IRQ_TSPX, machine_is_collie() ? UCB_RISING : UCB_FALLING);
249 ucb1x00_disable(ts->ucb);
250
251 /*
252 * If we spat out a valid sample set last time,
253 * spit out a "pen off" sample here.
254 */
255 if (valid) {
256 ucb1x00_ts_event_release(ts);
257 valid = 0;
258 }
259
260 timeout = MAX_SCHEDULE_TIMEOUT;
261 } else {
262 ucb1x00_disable(ts->ucb);
263
264 /*
265 * Filtering is policy. Policy belongs in user
266 * space. We therefore leave it to user space
267 * to do any filtering they please.
268 */
269 if (!ts->restart) {
270 ucb1x00_ts_evt_add(ts, p, x, y);
271 valid = 1;
272 }
273
274 set_task_state(tsk, TASK_INTERRUPTIBLE);
275 timeout = HZ / 100;
276 }
277
278 try_to_freeze();
279
280 schedule_timeout(timeout);
281 }
282
283 remove_wait_queue(&ts->irq_wait, &wait);
284
285 ts->rtask = NULL;
286 return 0;
287 }
288
289 /*
290 * We only detect touch screen _touches_ with this interrupt
291 * handler, and even then we just schedule our task.
292 */
293 static void ucb1x00_ts_irq(int idx, void *id)
294 {
295 struct ucb1x00_ts *ts = id;
296 ucb1x00_disable_irq(ts->ucb, UCB_IRQ_TSPX, UCB_FALLING);
297 wake_up(&ts->irq_wait);
298 }
299
300 static int ucb1x00_ts_open(struct input_dev *idev)
301 {
302 struct ucb1x00_ts *ts = idev->private;
303 int ret = 0;
304
305 BUG_ON(ts->rtask);
306
307 init_waitqueue_head(&ts->irq_wait);
308 ret = ucb1x00_hook_irq(ts->ucb, UCB_IRQ_TSPX, ucb1x00_ts_irq, ts);
309 if (ret < 0)
310 goto out;
311
312 /*
313 * If we do this at all, we should allow the user to
314 * measure and read the X and Y resistance at any time.
315 */
316 ucb1x00_adc_enable(ts->ucb);
317 ts->x_res = ucb1x00_ts_read_xres(ts);
318 ts->y_res = ucb1x00_ts_read_yres(ts);
319 ucb1x00_adc_disable(ts->ucb);
320
321 ts->rtask = kthread_run(ucb1x00_thread, ts, "ktsd");
322 if (!IS_ERR(ts->rtask)) {
323 ret = 0;
324 } else {
325 ucb1x00_free_irq(ts->ucb, UCB_IRQ_TSPX, ts);
326 ts->rtask = NULL;
327 ret = -EFAULT;
328 }
329
330 out:
331 return ret;
332 }
333
334 /*
335 * Release touchscreen resources. Disable IRQs.
336 */
337 static void ucb1x00_ts_close(struct input_dev *idev)
338 {
339 struct ucb1x00_ts *ts = idev->private;
340
341 if (ts->rtask)
342 kthread_stop(ts->rtask);
343
344 ucb1x00_enable(ts->ucb);
345 ucb1x00_free_irq(ts->ucb, UCB_IRQ_TSPX, ts);
346 ucb1x00_reg_write(ts->ucb, UCB_TS_CR, 0);
347 ucb1x00_disable(ts->ucb);
348 }
349
350 #ifdef CONFIG_PM
351 static int ucb1x00_ts_resume(struct ucb1x00_dev *dev)
352 {
353 struct ucb1x00_ts *ts = dev->priv;
354
355 if (ts->rtask != NULL) {
356 /*
357 * Restart the TS thread to ensure the
358 * TS interrupt mode is set up again
359 * after sleep.
360 */
361 ts->restart = 1;
362 wake_up(&ts->irq_wait);
363 }
364 return 0;
365 }
366 #else
367 #define ucb1x00_ts_resume NULL
368 #endif
369
370
371 /*
372 * Initialisation.
373 */
374 static int ucb1x00_ts_add(struct ucb1x00_dev *dev)
375 {
376 struct ucb1x00_ts *ts;
377
378 ts = kzalloc(sizeof(struct ucb1x00_ts), GFP_KERNEL);
379 if (!ts)
380 return -ENOMEM;
381
382 ts->idev = input_allocate_device();
383 if (!ts->idev) {
384 kfree(ts);
385 return -ENOMEM;
386 }
387
388 ts->ucb = dev->ucb;
389 ts->adcsync = adcsync ? UCB_SYNC : UCB_NOSYNC;
390
391 ts->idev->private = ts;
392 ts->idev->name = "Touchscreen panel";
393 ts->idev->id.product = ts->ucb->id;
394 ts->idev->open = ucb1x00_ts_open;
395 ts->idev->close = ucb1x00_ts_close;
396
397 __set_bit(EV_ABS, ts->idev->evbit);
398 __set_bit(ABS_X, ts->idev->absbit);
399 __set_bit(ABS_Y, ts->idev->absbit);
400 __set_bit(ABS_PRESSURE, ts->idev->absbit);
401
402 input_register_device(ts->idev);
403
404 dev->priv = ts;
405
406 return 0;
407 }
408
409 static void ucb1x00_ts_remove(struct ucb1x00_dev *dev)
410 {
411 struct ucb1x00_ts *ts = dev->priv;
412
413 input_unregister_device(ts->idev);
414 kfree(ts);
415 }
416
417 static struct ucb1x00_driver ucb1x00_ts_driver = {
418 .add = ucb1x00_ts_add,
419 .remove = ucb1x00_ts_remove,
420 .resume = ucb1x00_ts_resume,
421 };
422
423 static int __init ucb1x00_ts_init(void)
424 {
425 return ucb1x00_register_driver(&ucb1x00_ts_driver);
426 }
427
428 static void __exit ucb1x00_ts_exit(void)
429 {
430 ucb1x00_unregister_driver(&ucb1x00_ts_driver);
431 }
432
433 module_param(adcsync, int, 0444);
434 module_init(ucb1x00_ts_init);
435 module_exit(ucb1x00_ts_exit);
436
437 MODULE_AUTHOR("Russell King <rmk@arm.linux.org.uk>");
438 MODULE_DESCRIPTION("UCB1x00 touchscreen driver");
439 MODULE_LICENSE("GPL");
This page took 0.223102 seconds and 6 git commands to generate.