d3aef82a6c89ef76f9b41005e1a0d8a056f5b097
[deliverable/linux.git] / drivers / misc / mei / hw-me.c
1 /*
2 *
3 * Intel Management Engine Interface (Intel MEI) Linux driver
4 * Copyright (c) 2003-2012, Intel Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 */
16
17 #include <linux/pci.h>
18
19 #include <linux/kthread.h>
20 #include <linux/interrupt.h>
21
22 #include "mei_dev.h"
23 #include "hbm.h"
24
25 #include "hw-me.h"
26 #include "hw-me-regs.h"
27
28 #include "mei-trace.h"
29
30 /**
31 * mei_me_reg_read - Reads 32bit data from the mei device
32 *
33 * @hw: the me hardware structure
34 * @offset: offset from which to read the data
35 *
36 * Return: register value (u32)
37 */
38 static inline u32 mei_me_reg_read(const struct mei_me_hw *hw,
39 unsigned long offset)
40 {
41 return ioread32(hw->mem_addr + offset);
42 }
43
44
45 /**
46 * mei_me_reg_write - Writes 32bit data to the mei device
47 *
48 * @hw: the me hardware structure
49 * @offset: offset from which to write the data
50 * @value: register value to write (u32)
51 */
52 static inline void mei_me_reg_write(const struct mei_me_hw *hw,
53 unsigned long offset, u32 value)
54 {
55 iowrite32(value, hw->mem_addr + offset);
56 }
57
58 /**
59 * mei_me_mecbrw_read - Reads 32bit data from ME circular buffer
60 * read window register
61 *
62 * @dev: the device structure
63 *
64 * Return: ME_CB_RW register value (u32)
65 */
66 static inline u32 mei_me_mecbrw_read(const struct mei_device *dev)
67 {
68 return mei_me_reg_read(to_me_hw(dev), ME_CB_RW);
69 }
70
71 /**
72 * mei_me_hcbww_write - write 32bit data to the host circular buffer
73 *
74 * @dev: the device structure
75 * @data: 32bit data to be written to the host circular buffer
76 */
77 static inline void mei_me_hcbww_write(struct mei_device *dev, u32 data)
78 {
79 mei_me_reg_write(to_me_hw(dev), H_CB_WW, data);
80 }
81
82 /**
83 * mei_me_mecsr_read - Reads 32bit data from the ME CSR
84 *
85 * @dev: the device structure
86 *
87 * Return: ME_CSR_HA register value (u32)
88 */
89 static inline u32 mei_me_mecsr_read(const struct mei_device *dev)
90 {
91 u32 reg;
92
93 reg = mei_me_reg_read(to_me_hw(dev), ME_CSR_HA);
94 trace_mei_reg_read(dev->dev, "ME_CSR_HA", ME_CSR_HA, reg);
95
96 return reg;
97 }
98
99 /**
100 * mei_hcsr_read - Reads 32bit data from the host CSR
101 *
102 * @dev: the device structure
103 *
104 * Return: H_CSR register value (u32)
105 */
106 static inline u32 mei_hcsr_read(const struct mei_device *dev)
107 {
108 u32 reg;
109
110 reg = mei_me_reg_read(to_me_hw(dev), H_CSR);
111 trace_mei_reg_read(dev->dev, "H_CSR", H_CSR, reg);
112
113 return reg;
114 }
115
116 /**
117 * mei_hcsr_write - writes H_CSR register to the mei device
118 *
119 * @dev: the device structure
120 * @reg: new register value
121 */
122 static inline void mei_hcsr_write(struct mei_device *dev, u32 reg)
123 {
124 trace_mei_reg_write(dev->dev, "H_CSR", H_CSR, reg);
125 mei_me_reg_write(to_me_hw(dev), H_CSR, reg);
126 }
127
128 /**
129 * mei_hcsr_set - writes H_CSR register to the mei device,
130 * and ignores the H_IS bit for it is write-one-to-zero.
131 *
132 * @dev: the device structure
133 * @reg: new register value
134 */
135 static inline void mei_hcsr_set(struct mei_device *dev, u32 reg)
136 {
137 reg &= ~H_IS;
138 mei_hcsr_write(dev, reg);
139 }
140
141 /**
142 * mei_me_fw_status - read fw status register from pci config space
143 *
144 * @dev: mei device
145 * @fw_status: fw status register values
146 *
147 * Return: 0 on success, error otherwise
148 */
149 static int mei_me_fw_status(struct mei_device *dev,
150 struct mei_fw_status *fw_status)
151 {
152 struct pci_dev *pdev = to_pci_dev(dev->dev);
153 struct mei_me_hw *hw = to_me_hw(dev);
154 const struct mei_fw_status *fw_src = &hw->cfg->fw_status;
155 int ret;
156 int i;
157
158 if (!fw_status)
159 return -EINVAL;
160
161 fw_status->count = fw_src->count;
162 for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) {
163 ret = pci_read_config_dword(pdev,
164 fw_src->status[i], &fw_status->status[i]);
165 if (ret)
166 return ret;
167 }
168
169 return 0;
170 }
171
172 /**
173 * mei_me_hw_config - configure hw dependent settings
174 *
175 * @dev: mei device
176 */
177 static void mei_me_hw_config(struct mei_device *dev)
178 {
179 struct mei_me_hw *hw = to_me_hw(dev);
180 u32 hcsr = mei_hcsr_read(dev);
181 /* Doesn't change in runtime */
182 dev->hbuf_depth = (hcsr & H_CBD) >> 24;
183
184 hw->pg_state = MEI_PG_OFF;
185 }
186
187 /**
188 * mei_me_pg_state - translate internal pg state
189 * to the mei power gating state
190 *
191 * @dev: mei device
192 *
193 * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
194 */
195 static inline enum mei_pg_state mei_me_pg_state(struct mei_device *dev)
196 {
197 struct mei_me_hw *hw = to_me_hw(dev);
198
199 return hw->pg_state;
200 }
201
202 /**
203 * mei_me_intr_clear - clear and stop interrupts
204 *
205 * @dev: the device structure
206 */
207 static void mei_me_intr_clear(struct mei_device *dev)
208 {
209 u32 hcsr = mei_hcsr_read(dev);
210
211 if ((hcsr & H_IS) == H_IS)
212 mei_hcsr_write(dev, hcsr);
213 }
214 /**
215 * mei_me_intr_enable - enables mei device interrupts
216 *
217 * @dev: the device structure
218 */
219 static void mei_me_intr_enable(struct mei_device *dev)
220 {
221 u32 hcsr = mei_hcsr_read(dev);
222
223 hcsr |= H_IE;
224 mei_hcsr_set(dev, hcsr);
225 }
226
227 /**
228 * mei_me_intr_disable - disables mei device interrupts
229 *
230 * @dev: the device structure
231 */
232 static void mei_me_intr_disable(struct mei_device *dev)
233 {
234 u32 hcsr = mei_hcsr_read(dev);
235
236 hcsr &= ~H_IE;
237 mei_hcsr_set(dev, hcsr);
238 }
239
240 /**
241 * mei_me_hw_reset_release - release device from the reset
242 *
243 * @dev: the device structure
244 */
245 static void mei_me_hw_reset_release(struct mei_device *dev)
246 {
247 u32 hcsr = mei_hcsr_read(dev);
248
249 hcsr |= H_IG;
250 hcsr &= ~H_RST;
251 mei_hcsr_set(dev, hcsr);
252
253 /* complete this write before we set host ready on another CPU */
254 mmiowb();
255 }
256 /**
257 * mei_me_hw_reset - resets fw via mei csr register.
258 *
259 * @dev: the device structure
260 * @intr_enable: if interrupt should be enabled after reset.
261 *
262 * Return: always 0
263 */
264 static int mei_me_hw_reset(struct mei_device *dev, bool intr_enable)
265 {
266 u32 hcsr = mei_hcsr_read(dev);
267
268 /* H_RST may be found lit before reset is started,
269 * for example if preceding reset flow hasn't completed.
270 * In that case asserting H_RST will be ignored, therefore
271 * we need to clean H_RST bit to start a successful reset sequence.
272 */
273 if ((hcsr & H_RST) == H_RST) {
274 dev_warn(dev->dev, "H_RST is set = 0x%08X", hcsr);
275 hcsr &= ~H_RST;
276 mei_hcsr_set(dev, hcsr);
277 hcsr = mei_hcsr_read(dev);
278 }
279
280 hcsr |= H_RST | H_IG | H_IS;
281
282 if (intr_enable)
283 hcsr |= H_IE;
284 else
285 hcsr &= ~H_IE;
286
287 dev->recvd_hw_ready = false;
288 mei_hcsr_write(dev, hcsr);
289
290 /*
291 * Host reads the H_CSR once to ensure that the
292 * posted write to H_CSR completes.
293 */
294 hcsr = mei_hcsr_read(dev);
295
296 if ((hcsr & H_RST) == 0)
297 dev_warn(dev->dev, "H_RST is not set = 0x%08X", hcsr);
298
299 if ((hcsr & H_RDY) == H_RDY)
300 dev_warn(dev->dev, "H_RDY is not cleared 0x%08X", hcsr);
301
302 if (intr_enable == false)
303 mei_me_hw_reset_release(dev);
304
305 return 0;
306 }
307
308 /**
309 * mei_me_host_set_ready - enable device
310 *
311 * @dev: mei device
312 */
313 static void mei_me_host_set_ready(struct mei_device *dev)
314 {
315 u32 hcsr = mei_hcsr_read(dev);
316
317 hcsr |= H_IE | H_IG | H_RDY;
318 mei_hcsr_set(dev, hcsr);
319 }
320
321 /**
322 * mei_me_host_is_ready - check whether the host has turned ready
323 *
324 * @dev: mei device
325 * Return: bool
326 */
327 static bool mei_me_host_is_ready(struct mei_device *dev)
328 {
329 u32 hcsr = mei_hcsr_read(dev);
330
331 return (hcsr & H_RDY) == H_RDY;
332 }
333
334 /**
335 * mei_me_hw_is_ready - check whether the me(hw) has turned ready
336 *
337 * @dev: mei device
338 * Return: bool
339 */
340 static bool mei_me_hw_is_ready(struct mei_device *dev)
341 {
342 u32 mecsr = mei_me_mecsr_read(dev);
343
344 return (mecsr & ME_RDY_HRA) == ME_RDY_HRA;
345 }
346
347 /**
348 * mei_me_hw_ready_wait - wait until the me(hw) has turned ready
349 * or timeout is reached
350 *
351 * @dev: mei device
352 * Return: 0 on success, error otherwise
353 */
354 static int mei_me_hw_ready_wait(struct mei_device *dev)
355 {
356 mutex_unlock(&dev->device_lock);
357 wait_event_timeout(dev->wait_hw_ready,
358 dev->recvd_hw_ready,
359 mei_secs_to_jiffies(MEI_HW_READY_TIMEOUT));
360 mutex_lock(&dev->device_lock);
361 if (!dev->recvd_hw_ready) {
362 dev_err(dev->dev, "wait hw ready failed\n");
363 return -ETIME;
364 }
365
366 mei_me_hw_reset_release(dev);
367 dev->recvd_hw_ready = false;
368 return 0;
369 }
370
371 /**
372 * mei_me_hw_start - hw start routine
373 *
374 * @dev: mei device
375 * Return: 0 on success, error otherwise
376 */
377 static int mei_me_hw_start(struct mei_device *dev)
378 {
379 int ret = mei_me_hw_ready_wait(dev);
380
381 if (ret)
382 return ret;
383 dev_dbg(dev->dev, "hw is ready\n");
384
385 mei_me_host_set_ready(dev);
386 return ret;
387 }
388
389
390 /**
391 * mei_hbuf_filled_slots - gets number of device filled buffer slots
392 *
393 * @dev: the device structure
394 *
395 * Return: number of filled slots
396 */
397 static unsigned char mei_hbuf_filled_slots(struct mei_device *dev)
398 {
399 u32 hcsr;
400 char read_ptr, write_ptr;
401
402 hcsr = mei_hcsr_read(dev);
403
404 read_ptr = (char) ((hcsr & H_CBRP) >> 8);
405 write_ptr = (char) ((hcsr & H_CBWP) >> 16);
406
407 return (unsigned char) (write_ptr - read_ptr);
408 }
409
410 /**
411 * mei_me_hbuf_is_empty - checks if host buffer is empty.
412 *
413 * @dev: the device structure
414 *
415 * Return: true if empty, false - otherwise.
416 */
417 static bool mei_me_hbuf_is_empty(struct mei_device *dev)
418 {
419 return mei_hbuf_filled_slots(dev) == 0;
420 }
421
422 /**
423 * mei_me_hbuf_empty_slots - counts write empty slots.
424 *
425 * @dev: the device structure
426 *
427 * Return: -EOVERFLOW if overflow, otherwise empty slots count
428 */
429 static int mei_me_hbuf_empty_slots(struct mei_device *dev)
430 {
431 unsigned char filled_slots, empty_slots;
432
433 filled_slots = mei_hbuf_filled_slots(dev);
434 empty_slots = dev->hbuf_depth - filled_slots;
435
436 /* check for overflow */
437 if (filled_slots > dev->hbuf_depth)
438 return -EOVERFLOW;
439
440 return empty_slots;
441 }
442
443 /**
444 * mei_me_hbuf_max_len - returns size of hw buffer.
445 *
446 * @dev: the device structure
447 *
448 * Return: size of hw buffer in bytes
449 */
450 static size_t mei_me_hbuf_max_len(const struct mei_device *dev)
451 {
452 return dev->hbuf_depth * sizeof(u32) - sizeof(struct mei_msg_hdr);
453 }
454
455
456 /**
457 * mei_me_write_message - writes a message to mei device.
458 *
459 * @dev: the device structure
460 * @header: mei HECI header of message
461 * @buf: message payload will be written
462 *
463 * Return: -EIO if write has failed
464 */
465 static int mei_me_write_message(struct mei_device *dev,
466 struct mei_msg_hdr *header,
467 unsigned char *buf)
468 {
469 unsigned long rem;
470 unsigned long length = header->length;
471 u32 *reg_buf = (u32 *)buf;
472 u32 hcsr;
473 u32 dw_cnt;
474 int i;
475 int empty_slots;
476
477 dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header));
478
479 empty_slots = mei_hbuf_empty_slots(dev);
480 dev_dbg(dev->dev, "empty slots = %hu.\n", empty_slots);
481
482 dw_cnt = mei_data2slots(length);
483 if (empty_slots < 0 || dw_cnt > empty_slots)
484 return -EMSGSIZE;
485
486 mei_me_hcbww_write(dev, *((u32 *) header));
487
488 for (i = 0; i < length / 4; i++)
489 mei_me_hcbww_write(dev, reg_buf[i]);
490
491 rem = length & 0x3;
492 if (rem > 0) {
493 u32 reg = 0;
494
495 memcpy(&reg, &buf[length - rem], rem);
496 mei_me_hcbww_write(dev, reg);
497 }
498
499 hcsr = mei_hcsr_read(dev) | H_IG;
500 mei_hcsr_set(dev, hcsr);
501 if (!mei_me_hw_is_ready(dev))
502 return -EIO;
503
504 return 0;
505 }
506
507 /**
508 * mei_me_count_full_read_slots - counts read full slots.
509 *
510 * @dev: the device structure
511 *
512 * Return: -EOVERFLOW if overflow, otherwise filled slots count
513 */
514 static int mei_me_count_full_read_slots(struct mei_device *dev)
515 {
516 u32 me_csr;
517 char read_ptr, write_ptr;
518 unsigned char buffer_depth, filled_slots;
519
520 me_csr = mei_me_mecsr_read(dev);
521 buffer_depth = (unsigned char)((me_csr & ME_CBD_HRA) >> 24);
522 read_ptr = (char) ((me_csr & ME_CBRP_HRA) >> 8);
523 write_ptr = (char) ((me_csr & ME_CBWP_HRA) >> 16);
524 filled_slots = (unsigned char) (write_ptr - read_ptr);
525
526 /* check for overflow */
527 if (filled_slots > buffer_depth)
528 return -EOVERFLOW;
529
530 dev_dbg(dev->dev, "filled_slots =%08x\n", filled_slots);
531 return (int)filled_slots;
532 }
533
534 /**
535 * mei_me_read_slots - reads a message from mei device.
536 *
537 * @dev: the device structure
538 * @buffer: message buffer will be written
539 * @buffer_length: message size will be read
540 *
541 * Return: always 0
542 */
543 static int mei_me_read_slots(struct mei_device *dev, unsigned char *buffer,
544 unsigned long buffer_length)
545 {
546 u32 *reg_buf = (u32 *)buffer;
547 u32 hcsr;
548
549 for (; buffer_length >= sizeof(u32); buffer_length -= sizeof(u32))
550 *reg_buf++ = mei_me_mecbrw_read(dev);
551
552 if (buffer_length > 0) {
553 u32 reg = mei_me_mecbrw_read(dev);
554
555 memcpy(reg_buf, &reg, buffer_length);
556 }
557
558 hcsr = mei_hcsr_read(dev) | H_IG;
559 mei_hcsr_set(dev, hcsr);
560 return 0;
561 }
562
563 /**
564 * mei_me_pg_enter - write pg enter register
565 *
566 * @dev: the device structure
567 */
568 static void mei_me_pg_enter(struct mei_device *dev)
569 {
570 struct mei_me_hw *hw = to_me_hw(dev);
571 u32 reg;
572
573 reg = mei_me_reg_read(hw, H_HPG_CSR);
574 trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
575
576 reg |= H_HPG_CSR_PGI;
577
578 trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
579 mei_me_reg_write(hw, H_HPG_CSR, reg);
580 }
581
582 /**
583 * mei_me_pg_exit - write pg exit register
584 *
585 * @dev: the device structure
586 */
587 static void mei_me_pg_exit(struct mei_device *dev)
588 {
589 struct mei_me_hw *hw = to_me_hw(dev);
590 u32 reg;
591
592 reg = mei_me_reg_read(hw, H_HPG_CSR);
593 trace_mei_reg_read(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
594
595 WARN(!(reg & H_HPG_CSR_PGI), "PGI is not set\n");
596
597 reg |= H_HPG_CSR_PGIHEXR;
598
599 trace_mei_reg_write(dev->dev, "H_HPG_CSR", H_HPG_CSR, reg);
600 mei_me_reg_write(hw, H_HPG_CSR, reg);
601 }
602
603 /**
604 * mei_me_pg_set_sync - perform pg entry procedure
605 *
606 * @dev: the device structure
607 *
608 * Return: 0 on success an error code otherwise
609 */
610 int mei_me_pg_set_sync(struct mei_device *dev)
611 {
612 struct mei_me_hw *hw = to_me_hw(dev);
613 unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
614 int ret;
615
616 dev->pg_event = MEI_PG_EVENT_WAIT;
617
618 ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_ENTRY_REQ_CMD);
619 if (ret)
620 return ret;
621
622 mutex_unlock(&dev->device_lock);
623 wait_event_timeout(dev->wait_pg,
624 dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
625 mutex_lock(&dev->device_lock);
626
627 if (dev->pg_event == MEI_PG_EVENT_RECEIVED) {
628 mei_me_pg_enter(dev);
629 ret = 0;
630 } else {
631 ret = -ETIME;
632 }
633
634 dev->pg_event = MEI_PG_EVENT_IDLE;
635 hw->pg_state = MEI_PG_ON;
636
637 return ret;
638 }
639
640 /**
641 * mei_me_pg_unset_sync - perform pg exit procedure
642 *
643 * @dev: the device structure
644 *
645 * Return: 0 on success an error code otherwise
646 */
647 int mei_me_pg_unset_sync(struct mei_device *dev)
648 {
649 struct mei_me_hw *hw = to_me_hw(dev);
650 unsigned long timeout = mei_secs_to_jiffies(MEI_PGI_TIMEOUT);
651 int ret;
652
653 if (dev->pg_event == MEI_PG_EVENT_RECEIVED)
654 goto reply;
655
656 dev->pg_event = MEI_PG_EVENT_WAIT;
657
658 mei_me_pg_exit(dev);
659
660 mutex_unlock(&dev->device_lock);
661 wait_event_timeout(dev->wait_pg,
662 dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
663 mutex_lock(&dev->device_lock);
664
665 reply:
666 if (dev->pg_event == MEI_PG_EVENT_RECEIVED)
667 ret = mei_hbm_pg(dev, MEI_PG_ISOLATION_EXIT_RES_CMD);
668 else
669 ret = -ETIME;
670
671 dev->pg_event = MEI_PG_EVENT_IDLE;
672 hw->pg_state = MEI_PG_OFF;
673
674 return ret;
675 }
676
677 /**
678 * mei_me_pg_is_enabled - detect if PG is supported by HW
679 *
680 * @dev: the device structure
681 *
682 * Return: true is pg supported, false otherwise
683 */
684 static bool mei_me_pg_is_enabled(struct mei_device *dev)
685 {
686 u32 reg = mei_me_mecsr_read(dev);
687
688 if ((reg & ME_PGIC_HRA) == 0)
689 goto notsupported;
690
691 if (!dev->hbm_f_pg_supported)
692 goto notsupported;
693
694 return true;
695
696 notsupported:
697 dev_dbg(dev->dev, "pg: not supported: HGP = %d hbm version %d.%d ?= %d.%d\n",
698 !!(reg & ME_PGIC_HRA),
699 dev->version.major_version,
700 dev->version.minor_version,
701 HBM_MAJOR_VERSION_PGI,
702 HBM_MINOR_VERSION_PGI);
703
704 return false;
705 }
706
707 /**
708 * mei_me_irq_quick_handler - The ISR of the MEI device
709 *
710 * @irq: The irq number
711 * @dev_id: pointer to the device structure
712 *
713 * Return: irqreturn_t
714 */
715
716 irqreturn_t mei_me_irq_quick_handler(int irq, void *dev_id)
717 {
718 struct mei_device *dev = (struct mei_device *) dev_id;
719 u32 hcsr = mei_hcsr_read(dev);
720
721 if ((hcsr & H_IS) != H_IS)
722 return IRQ_NONE;
723
724 /* clear H_IS bit in H_CSR */
725 mei_hcsr_write(dev, hcsr);
726
727 return IRQ_WAKE_THREAD;
728 }
729
730 /**
731 * mei_me_irq_thread_handler - function called after ISR to handle the interrupt
732 * processing.
733 *
734 * @irq: The irq number
735 * @dev_id: pointer to the device structure
736 *
737 * Return: irqreturn_t
738 *
739 */
740 irqreturn_t mei_me_irq_thread_handler(int irq, void *dev_id)
741 {
742 struct mei_device *dev = (struct mei_device *) dev_id;
743 struct mei_cl_cb complete_list;
744 s32 slots;
745 int rets = 0;
746
747 dev_dbg(dev->dev, "function called after ISR to handle the interrupt processing.\n");
748 /* initialize our complete list */
749 mutex_lock(&dev->device_lock);
750 mei_io_list_init(&complete_list);
751
752 /* Ack the interrupt here
753 * In case of MSI we don't go through the quick handler */
754 if (pci_dev_msi_enabled(to_pci_dev(dev->dev)))
755 mei_clear_interrupts(dev);
756
757 /* check if ME wants a reset */
758 if (!mei_hw_is_ready(dev) && dev->dev_state != MEI_DEV_RESETTING) {
759 dev_warn(dev->dev, "FW not ready: resetting.\n");
760 schedule_work(&dev->reset_work);
761 goto end;
762 }
763
764 /* check if we need to start the dev */
765 if (!mei_host_is_ready(dev)) {
766 if (mei_hw_is_ready(dev)) {
767 dev_dbg(dev->dev, "we need to start the dev.\n");
768 dev->recvd_hw_ready = true;
769 wake_up(&dev->wait_hw_ready);
770 } else {
771 dev_dbg(dev->dev, "Spurious Interrupt\n");
772 }
773 goto end;
774 }
775 /* check slots available for reading */
776 slots = mei_count_full_read_slots(dev);
777 while (slots > 0) {
778 dev_dbg(dev->dev, "slots to read = %08x\n", slots);
779 rets = mei_irq_read_handler(dev, &complete_list, &slots);
780 /* There is a race between ME write and interrupt delivery:
781 * Not all data is always available immediately after the
782 * interrupt, so try to read again on the next interrupt.
783 */
784 if (rets == -ENODATA)
785 break;
786
787 if (rets && dev->dev_state != MEI_DEV_RESETTING) {
788 dev_err(dev->dev, "mei_irq_read_handler ret = %d.\n",
789 rets);
790 schedule_work(&dev->reset_work);
791 goto end;
792 }
793 }
794
795 dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
796
797 /*
798 * During PG handshake only allowed write is the replay to the
799 * PG exit message, so block calling write function
800 * if the pg state is not idle
801 */
802 if (dev->pg_event == MEI_PG_EVENT_IDLE) {
803 rets = mei_irq_write_handler(dev, &complete_list);
804 dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
805 }
806
807 mei_irq_compl_handler(dev, &complete_list);
808
809 end:
810 dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets);
811 mutex_unlock(&dev->device_lock);
812 return IRQ_HANDLED;
813 }
814
815 static const struct mei_hw_ops mei_me_hw_ops = {
816
817 .fw_status = mei_me_fw_status,
818 .pg_state = mei_me_pg_state,
819
820 .host_is_ready = mei_me_host_is_ready,
821
822 .hw_is_ready = mei_me_hw_is_ready,
823 .hw_reset = mei_me_hw_reset,
824 .hw_config = mei_me_hw_config,
825 .hw_start = mei_me_hw_start,
826
827 .pg_is_enabled = mei_me_pg_is_enabled,
828
829 .intr_clear = mei_me_intr_clear,
830 .intr_enable = mei_me_intr_enable,
831 .intr_disable = mei_me_intr_disable,
832
833 .hbuf_free_slots = mei_me_hbuf_empty_slots,
834 .hbuf_is_ready = mei_me_hbuf_is_empty,
835 .hbuf_max_len = mei_me_hbuf_max_len,
836
837 .write = mei_me_write_message,
838
839 .rdbuf_full_slots = mei_me_count_full_read_slots,
840 .read_hdr = mei_me_mecbrw_read,
841 .read = mei_me_read_slots
842 };
843
844 static bool mei_me_fw_type_nm(struct pci_dev *pdev)
845 {
846 u32 reg;
847
848 pci_read_config_dword(pdev, PCI_CFG_HFS_2, &reg);
849 /* make sure that bit 9 (NM) is up and bit 10 (DM) is down */
850 return (reg & 0x600) == 0x200;
851 }
852
853 #define MEI_CFG_FW_NM \
854 .quirk_probe = mei_me_fw_type_nm
855
856 static bool mei_me_fw_type_sps(struct pci_dev *pdev)
857 {
858 u32 reg;
859 /* Read ME FW Status check for SPS Firmware */
860 pci_read_config_dword(pdev, PCI_CFG_HFS_1, &reg);
861 /* if bits [19:16] = 15, running SPS Firmware */
862 return (reg & 0xf0000) == 0xf0000;
863 }
864
865 #define MEI_CFG_FW_SPS \
866 .quirk_probe = mei_me_fw_type_sps
867
868
869 #define MEI_CFG_LEGACY_HFS \
870 .fw_status.count = 0
871
872 #define MEI_CFG_ICH_HFS \
873 .fw_status.count = 1, \
874 .fw_status.status[0] = PCI_CFG_HFS_1
875
876 #define MEI_CFG_PCH_HFS \
877 .fw_status.count = 2, \
878 .fw_status.status[0] = PCI_CFG_HFS_1, \
879 .fw_status.status[1] = PCI_CFG_HFS_2
880
881 #define MEI_CFG_PCH8_HFS \
882 .fw_status.count = 6, \
883 .fw_status.status[0] = PCI_CFG_HFS_1, \
884 .fw_status.status[1] = PCI_CFG_HFS_2, \
885 .fw_status.status[2] = PCI_CFG_HFS_3, \
886 .fw_status.status[3] = PCI_CFG_HFS_4, \
887 .fw_status.status[4] = PCI_CFG_HFS_5, \
888 .fw_status.status[5] = PCI_CFG_HFS_6
889
890 /* ICH Legacy devices */
891 const struct mei_cfg mei_me_legacy_cfg = {
892 MEI_CFG_LEGACY_HFS,
893 };
894
895 /* ICH devices */
896 const struct mei_cfg mei_me_ich_cfg = {
897 MEI_CFG_ICH_HFS,
898 };
899
900 /* PCH devices */
901 const struct mei_cfg mei_me_pch_cfg = {
902 MEI_CFG_PCH_HFS,
903 };
904
905
906 /* PCH Cougar Point and Patsburg with quirk for Node Manager exclusion */
907 const struct mei_cfg mei_me_pch_cpt_pbg_cfg = {
908 MEI_CFG_PCH_HFS,
909 MEI_CFG_FW_NM,
910 };
911
912 /* PCH8 Lynx Point and newer devices */
913 const struct mei_cfg mei_me_pch8_cfg = {
914 MEI_CFG_PCH8_HFS,
915 };
916
917 /* PCH8 Lynx Point with quirk for SPS Firmware exclusion */
918 const struct mei_cfg mei_me_pch8_sps_cfg = {
919 MEI_CFG_PCH8_HFS,
920 MEI_CFG_FW_SPS,
921 };
922
923 /**
924 * mei_me_dev_init - allocates and initializes the mei device structure
925 *
926 * @pdev: The pci device structure
927 * @cfg: per device generation config
928 *
929 * Return: The mei_device_device pointer on success, NULL on failure.
930 */
931 struct mei_device *mei_me_dev_init(struct pci_dev *pdev,
932 const struct mei_cfg *cfg)
933 {
934 struct mei_device *dev;
935 struct mei_me_hw *hw;
936
937 dev = kzalloc(sizeof(struct mei_device) +
938 sizeof(struct mei_me_hw), GFP_KERNEL);
939 if (!dev)
940 return NULL;
941 hw = to_me_hw(dev);
942
943 mei_device_init(dev, &pdev->dev, &mei_me_hw_ops);
944 hw->cfg = cfg;
945 return dev;
946 }
947
This page took 0.054632 seconds and 4 git commands to generate.