mei: txe: add hw-txe.c
[deliverable/linux.git] / drivers / misc / mei / hw-txe.c
1 /*
2 *
3 * Intel Management Engine Interface (Intel MEI) Linux driver
4 * Copyright (c) 2013-2014, Intel Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 */
16
17 #include <linux/pci.h>
18 #include <linux/jiffies.h>
19 #include <linux/delay.h>
20 #include <linux/kthread.h>
21
22 #include <linux/mei.h>
23
24 #include "mei_dev.h"
25 #include "hw-txe.h"
26 #include "client.h"
27 #include "hbm.h"
28
29 /**
30 * mei_txe_reg_read - Reads 32bit data from the device
31 *
32 * @base_addr: registers base address
33 * @offset: register offset
34 *
35 */
36 static inline u32 mei_txe_reg_read(void __iomem *base_addr,
37 unsigned long offset)
38 {
39 return ioread32(base_addr + offset);
40 }
41
42 /**
43 * mei_txe_reg_write - Writes 32bit data to the device
44 *
45 * @base_addr: registers base address
46 * @offset: register offset
47 * @value: the value to write
48 */
49 static inline void mei_txe_reg_write(void __iomem *base_addr,
50 unsigned long offset, u32 value)
51 {
52 iowrite32(value, base_addr + offset);
53 }
54
55 /**
56 * mei_txe_sec_reg_read_silent - Reads 32bit data from the SeC BAR
57 *
58 * @dev: the device structure
59 * @offset: register offset
60 *
61 * Doesn't check for aliveness while Reads 32bit data from the SeC BAR
62 */
63 static inline u32 mei_txe_sec_reg_read_silent(struct mei_txe_hw *hw,
64 unsigned long offset)
65 {
66 return mei_txe_reg_read(hw->mem_addr[SEC_BAR], offset);
67 }
68
69 /**
70 * mei_txe_sec_reg_read - Reads 32bit data from the SeC BAR
71 *
72 * @dev: the device structure
73 * @offset: register offset
74 *
75 * Reads 32bit data from the SeC BAR and shout loud if aliveness is not set
76 */
77 static inline u32 mei_txe_sec_reg_read(struct mei_txe_hw *hw,
78 unsigned long offset)
79 {
80 WARN(!hw->aliveness, "sec read: aliveness not asserted\n");
81 return mei_txe_sec_reg_read_silent(hw, offset);
82 }
83 /**
84 * mei_txe_sec_reg_write_silent - Writes 32bit data to the SeC BAR
85 * doesn't check for aliveness
86 *
87 * @dev: the device structure
88 * @offset: register offset
89 * @value: value to write
90 *
91 * Doesn't check for aliveness while writes 32bit data from to the SeC BAR
92 */
93 static inline void mei_txe_sec_reg_write_silent(struct mei_txe_hw *hw,
94 unsigned long offset, u32 value)
95 {
96 mei_txe_reg_write(hw->mem_addr[SEC_BAR], offset, value);
97 }
98
99 /**
100 * mei_txe_sec_reg_write - Writes 32bit data to the SeC BAR
101 *
102 * @dev: the device structure
103 * @offset: register offset
104 * @value: value to write
105 *
106 * Writes 32bit data from the SeC BAR and shout loud if aliveness is not set
107 */
108 static inline void mei_txe_sec_reg_write(struct mei_txe_hw *hw,
109 unsigned long offset, u32 value)
110 {
111 WARN(!hw->aliveness, "sec write: aliveness not asserted\n");
112 mei_txe_sec_reg_write_silent(hw, offset, value);
113 }
114 /**
115 * mei_txe_br_reg_read - Reads 32bit data from the Bridge BAR
116 *
117 * @hw: the device structure
118 * @offset: offset from which to read the data
119 *
120 */
121 static inline u32 mei_txe_br_reg_read(struct mei_txe_hw *hw,
122 unsigned long offset)
123 {
124 return mei_txe_reg_read(hw->mem_addr[BRIDGE_BAR], offset);
125 }
126
127 /**
128 * mei_txe_br_reg_write - Writes 32bit data to the Bridge BAR
129 *
130 * @hw: the device structure
131 * @offset: offset from which to write the data
132 * @value: the byte to write
133 */
134 static inline void mei_txe_br_reg_write(struct mei_txe_hw *hw,
135 unsigned long offset, u32 value)
136 {
137 mei_txe_reg_write(hw->mem_addr[BRIDGE_BAR], offset, value);
138 }
139
140 /**
141 * mei_txe_aliveness_set - request for aliveness change
142 *
143 * @dev: the device structure
144 * @req: requested aliveness value
145 *
146 * Request for aliveness change and returns true if the change is
147 * really needed and false if aliveness is already
148 * in the requested state
149 * Requires device lock to be held
150 */
151 static bool mei_txe_aliveness_set(struct mei_device *dev, u32 req)
152 {
153
154 struct mei_txe_hw *hw = to_txe_hw(dev);
155 bool do_req = hw->aliveness != req;
156
157 dev_dbg(&dev->pdev->dev, "Aliveness current=%d request=%d\n",
158 hw->aliveness, req);
159 if (do_req) {
160 hw->recvd_aliveness = false;
161 mei_txe_br_reg_write(hw, SICR_HOST_ALIVENESS_REQ_REG, req);
162 }
163 return do_req;
164 }
165
166
167 /**
168 * mei_txe_aliveness_req_get - get aliveness requested register value
169 *
170 * @dev: the device structure
171 *
172 * Extract HICR_HOST_ALIVENESS_RESP_ACK bit from
173 * from HICR_HOST_ALIVENESS_REQ register value
174 */
175 static u32 mei_txe_aliveness_req_get(struct mei_device *dev)
176 {
177 struct mei_txe_hw *hw = to_txe_hw(dev);
178 u32 reg;
179 reg = mei_txe_br_reg_read(hw, SICR_HOST_ALIVENESS_REQ_REG);
180 return reg & SICR_HOST_ALIVENESS_REQ_REQUESTED;
181 }
182
183 /**
184 * mei_txe_aliveness_get - get aliveness response register value
185 * @dev: the device structure
186 *
187 * Extract HICR_HOST_ALIVENESS_RESP_ACK bit
188 * from HICR_HOST_ALIVENESS_RESP register value
189 */
190 static u32 mei_txe_aliveness_get(struct mei_device *dev)
191 {
192 struct mei_txe_hw *hw = to_txe_hw(dev);
193 u32 reg;
194 reg = mei_txe_br_reg_read(hw, HICR_HOST_ALIVENESS_RESP_REG);
195 return reg & HICR_HOST_ALIVENESS_RESP_ACK;
196 }
197
198 /**
199 * mei_txe_aliveness_poll - waits for aliveness to settle
200 *
201 * @dev: the device structure
202 * @expected: expected aliveness value
203 *
204 * Polls for HICR_HOST_ALIVENESS_RESP.ALIVENESS_RESP to be set
205 * returns > 0 if the expected value was received, -ETIME otherwise
206 */
207 static int mei_txe_aliveness_poll(struct mei_device *dev, u32 expected)
208 {
209 struct mei_txe_hw *hw = to_txe_hw(dev);
210 int t = 0;
211
212 do {
213 hw->aliveness = mei_txe_aliveness_get(dev);
214 if (hw->aliveness == expected) {
215 dev_dbg(&dev->pdev->dev,
216 "aliveness settled after %d msecs\n", t);
217 return t;
218 }
219 mutex_unlock(&dev->device_lock);
220 msleep(MSEC_PER_SEC / 5);
221 mutex_lock(&dev->device_lock);
222 t += MSEC_PER_SEC / 5;
223 } while (t < SEC_ALIVENESS_WAIT_TIMEOUT);
224
225 dev_err(&dev->pdev->dev, "aliveness timed out\n");
226 return -ETIME;
227 }
228
229 /**
230 * mei_txe_aliveness_wait - waits for aliveness to settle
231 *
232 * @dev: the device structure
233 * @expected: expected aliveness value
234 *
235 * Waits for HICR_HOST_ALIVENESS_RESP.ALIVENESS_RESP to be set
236 * returns returns 0 on success and < 0 otherwise
237 */
238 static int mei_txe_aliveness_wait(struct mei_device *dev, u32 expected)
239 {
240 struct mei_txe_hw *hw = to_txe_hw(dev);
241 const unsigned long timeout =
242 msecs_to_jiffies(SEC_ALIVENESS_WAIT_TIMEOUT);
243 long err;
244 int ret;
245
246 hw->aliveness = mei_txe_aliveness_get(dev);
247 if (hw->aliveness == expected)
248 return 0;
249
250 mutex_unlock(&dev->device_lock);
251 err = wait_event_timeout(hw->wait_aliveness,
252 hw->recvd_aliveness, timeout);
253 mutex_lock(&dev->device_lock);
254
255 hw->aliveness = mei_txe_aliveness_get(dev);
256 ret = hw->aliveness == expected ? 0 : -ETIME;
257
258 if (ret)
259 dev_err(&dev->pdev->dev, "aliveness timed out");
260 else
261 dev_dbg(&dev->pdev->dev, "aliveness settled after %d msecs\n",
262 jiffies_to_msecs(timeout - err));
263 hw->recvd_aliveness = false;
264 return ret;
265 }
266
267 /**
268 * mei_txe_aliveness_set_sync - sets an wait for aliveness to complete
269 *
270 * @dev: the device structure
271 *
272 * returns returns 0 on success and < 0 otherwise
273 */
274 int mei_txe_aliveness_set_sync(struct mei_device *dev, u32 req)
275 {
276 if (mei_txe_aliveness_set(dev, req))
277 return mei_txe_aliveness_wait(dev, req);
278 return 0;
279 }
280
281 /**
282 * mei_txe_input_ready_interrupt_enable - sets the Input Ready Interrupt
283 *
284 * @dev: the device structure
285 */
286 static void mei_txe_input_ready_interrupt_enable(struct mei_device *dev)
287 {
288 struct mei_txe_hw *hw = to_txe_hw(dev);
289 u32 hintmsk;
290 /* Enable the SEC_IPC_HOST_INT_MASK_IN_RDY interrupt */
291 hintmsk = mei_txe_sec_reg_read(hw, SEC_IPC_HOST_INT_MASK_REG);
292 hintmsk |= SEC_IPC_HOST_INT_MASK_IN_RDY;
293 mei_txe_sec_reg_write(hw, SEC_IPC_HOST_INT_MASK_REG, hintmsk);
294 }
295
296 /**
297 * mei_txe_input_doorbell_set
298 * - Sets bit 0 in SEC_IPC_INPUT_DOORBELL.IPC_INPUT_DOORBELL.
299 * @dev: the device structure
300 */
301 static void mei_txe_input_doorbell_set(struct mei_txe_hw *hw)
302 {
303 /* Clear the interrupt cause */
304 clear_bit(TXE_INTR_IN_READY_BIT, &hw->intr_cause);
305 mei_txe_sec_reg_write(hw, SEC_IPC_INPUT_DOORBELL_REG, 1);
306 }
307
308 /**
309 * mei_txe_output_ready_set - Sets the SICR_SEC_IPC_OUTPUT_STATUS bit to 1
310 *
311 * @dev: the device structure
312 */
313 static void mei_txe_output_ready_set(struct mei_txe_hw *hw)
314 {
315 mei_txe_br_reg_write(hw,
316 SICR_SEC_IPC_OUTPUT_STATUS_REG,
317 SEC_IPC_OUTPUT_STATUS_RDY);
318 }
319
320 /**
321 * mei_txe_is_input_ready - check if TXE is ready for receiving data
322 *
323 * @dev: the device structure
324 */
325 static bool mei_txe_is_input_ready(struct mei_device *dev)
326 {
327 struct mei_txe_hw *hw = to_txe_hw(dev);
328 u32 status;
329 status = mei_txe_sec_reg_read(hw, SEC_IPC_INPUT_STATUS_REG);
330 return !!(SEC_IPC_INPUT_STATUS_RDY & status);
331 }
332
333 /**
334 * mei_txe_intr_clear - clear all interrupts
335 *
336 * @dev: the device structure
337 */
338 static inline void mei_txe_intr_clear(struct mei_device *dev)
339 {
340 struct mei_txe_hw *hw = to_txe_hw(dev);
341 mei_txe_sec_reg_write_silent(hw, SEC_IPC_HOST_INT_STATUS_REG,
342 SEC_IPC_HOST_INT_STATUS_PENDING);
343 mei_txe_br_reg_write(hw, HISR_REG, HISR_INT_STS_MSK);
344 mei_txe_br_reg_write(hw, HHISR_REG, IPC_HHIER_MSK);
345 }
346
347 /**
348 * mei_txe_intr_disable - disable all interrupts
349 *
350 * @dev: the device structure
351 */
352 static void mei_txe_intr_disable(struct mei_device *dev)
353 {
354 struct mei_txe_hw *hw = to_txe_hw(dev);
355 mei_txe_br_reg_write(hw, HHIER_REG, 0);
356 mei_txe_br_reg_write(hw, HIER_REG, 0);
357 }
358 /**
359 * mei_txe_intr_disable - enable all interrupts
360 *
361 * @dev: the device structure
362 */
363 static void mei_txe_intr_enable(struct mei_device *dev)
364 {
365 struct mei_txe_hw *hw = to_txe_hw(dev);
366 mei_txe_br_reg_write(hw, HHIER_REG, IPC_HHIER_MSK);
367 mei_txe_br_reg_write(hw, HIER_REG, HIER_INT_EN_MSK);
368 }
369
370 /**
371 * mei_txe_pending_interrupts - check if there are pending interrupts
372 * only Aliveness, Input ready, and output doorbell are of relevance
373 *
374 * @dev: the device structure
375 *
376 * Checks if there are pending interrupts
377 * only Aliveness, Readiness, Input ready, and Output doorbell are relevant
378 */
379 static bool mei_txe_pending_interrupts(struct mei_device *dev)
380 {
381
382 struct mei_txe_hw *hw = to_txe_hw(dev);
383 bool ret = (hw->intr_cause & (TXE_INTR_READINESS |
384 TXE_INTR_ALIVENESS |
385 TXE_INTR_IN_READY |
386 TXE_INTR_OUT_DB));
387
388 if (ret) {
389 dev_dbg(&dev->pdev->dev,
390 "Pending Interrupts InReady=%01d Readiness=%01d, Aliveness=%01d, OutDoor=%01d\n",
391 !!(hw->intr_cause & TXE_INTR_IN_READY),
392 !!(hw->intr_cause & TXE_INTR_READINESS),
393 !!(hw->intr_cause & TXE_INTR_ALIVENESS),
394 !!(hw->intr_cause & TXE_INTR_OUT_DB));
395 }
396 return ret;
397 }
398
399 /**
400 * mei_txe_input_payload_write - write a dword to the host buffer
401 * at offset idx
402 *
403 * @dev: the device structure
404 * @idx: index in the host buffer
405 * @value: value
406 */
407 static void mei_txe_input_payload_write(struct mei_device *dev,
408 unsigned long idx, u32 value)
409 {
410 struct mei_txe_hw *hw = to_txe_hw(dev);
411 mei_txe_sec_reg_write(hw, SEC_IPC_INPUT_PAYLOAD_REG +
412 (idx * sizeof(u32)), value);
413 }
414
415 /**
416 * mei_txe_out_data_read - read dword from the device buffer
417 * at offset idx
418 *
419 * @dev: the device structure
420 * @idx: index in the device buffer
421 *
422 * returns register value at index
423 */
424 static u32 mei_txe_out_data_read(const struct mei_device *dev,
425 unsigned long idx)
426 {
427 struct mei_txe_hw *hw = to_txe_hw(dev);
428 return mei_txe_br_reg_read(hw,
429 BRIDGE_IPC_OUTPUT_PAYLOAD_REG + (idx * sizeof(u32)));
430 }
431
432 /* Readiness */
433
434 /**
435 * mei_txe_readiness_set_host_rdy
436 *
437 * @dev: the device structure
438 */
439 static void mei_txe_readiness_set_host_rdy(struct mei_device *dev)
440 {
441 struct mei_txe_hw *hw = to_txe_hw(dev);
442 mei_txe_br_reg_write(hw,
443 SICR_HOST_IPC_READINESS_REQ_REG,
444 SICR_HOST_IPC_READINESS_HOST_RDY);
445 }
446
447 /**
448 * mei_txe_readiness_clear
449 *
450 * @dev: the device structure
451 */
452 static void mei_txe_readiness_clear(struct mei_device *dev)
453 {
454 struct mei_txe_hw *hw = to_txe_hw(dev);
455 mei_txe_br_reg_write(hw, SICR_HOST_IPC_READINESS_REQ_REG,
456 SICR_HOST_IPC_READINESS_RDY_CLR);
457 }
458 /**
459 * mei_txe_readiness_get - Reads and returns
460 * the HICR_SEC_IPC_READINESS register value
461 *
462 * @dev: the device structure
463 */
464 static u32 mei_txe_readiness_get(struct mei_device *dev)
465 {
466 struct mei_txe_hw *hw = to_txe_hw(dev);
467 return mei_txe_br_reg_read(hw, HICR_SEC_IPC_READINESS_REG);
468 }
469
470
471 /**
472 * mei_txe_readiness_is_sec_rdy - check readiness
473 * for HICR_SEC_IPC_READINESS_SEC_RDY
474 *
475 * @readiness - cached readiness state
476 */
477 static inline bool mei_txe_readiness_is_sec_rdy(u32 readiness)
478 {
479 return !!(readiness & HICR_SEC_IPC_READINESS_SEC_RDY);
480 }
481
482 /**
483 * mei_txe_hw_is_ready - check if the hw is ready
484 *
485 * @dev: the device structure
486 */
487 static bool mei_txe_hw_is_ready(struct mei_device *dev)
488 {
489 u32 readiness = mei_txe_readiness_get(dev);
490 return mei_txe_readiness_is_sec_rdy(readiness);
491 }
492
493 /**
494 * mei_txe_host_is_ready - check if the host is ready
495 *
496 * @dev: the device structure
497 */
498 static inline bool mei_txe_host_is_ready(struct mei_device *dev)
499 {
500 struct mei_txe_hw *hw = to_txe_hw(dev);
501 u32 reg = mei_txe_br_reg_read(hw, HICR_SEC_IPC_READINESS_REG);
502 return !!(reg & HICR_SEC_IPC_READINESS_HOST_RDY);
503 }
504
505 /**
506 * mei_txe_readiness_wait - wait till readiness settles
507 *
508 * @dev: the device structure
509 *
510 * returns 0 on success and -ETIME on timeout
511 */
512 static int mei_txe_readiness_wait(struct mei_device *dev)
513 {
514 if (mei_txe_hw_is_ready(dev))
515 return 0;
516
517 mutex_unlock(&dev->device_lock);
518 wait_event_timeout(dev->wait_hw_ready, dev->recvd_hw_ready,
519 msecs_to_jiffies(SEC_RESET_WAIT_TIMEOUT));
520 mutex_lock(&dev->device_lock);
521 if (!dev->recvd_hw_ready) {
522 dev_err(&dev->pdev->dev, "wait for readiness failed\n");
523 return -ETIME;
524 }
525
526 dev->recvd_hw_ready = false;
527 return 0;
528 }
529
530 /**
531 * mei_txe_hw_config - configure hardware at the start of the devices
532 *
533 * @dev: the device structure
534 *
535 * Configure hardware at the start of the device should be done only
536 * once at the device probe time
537 */
538 static void mei_txe_hw_config(struct mei_device *dev)
539 {
540
541 struct mei_txe_hw *hw = to_txe_hw(dev);
542 /* Doesn't change in runtime */
543 dev->hbuf_depth = PAYLOAD_SIZE / 4;
544
545 hw->aliveness = mei_txe_aliveness_get(dev);
546 hw->readiness = mei_txe_readiness_get(dev);
547
548 dev_dbg(&dev->pdev->dev, "aliveness_resp = 0x%08x, readiness = 0x%08x.\n",
549 hw->aliveness, hw->readiness);
550 }
551
552
553 /**
554 * mei_txe_write - writes a message to device.
555 *
556 * @dev: the device structure
557 * @header: header of message
558 * @buf: message buffer will be written
559 * returns 1 if success, 0 - otherwise.
560 */
561
562 static int mei_txe_write(struct mei_device *dev,
563 struct mei_msg_hdr *header, unsigned char *buf)
564 {
565 struct mei_txe_hw *hw = to_txe_hw(dev);
566 unsigned long rem;
567 unsigned long length;
568 u32 *reg_buf = (u32 *)buf;
569 int i;
570
571 if (WARN_ON(!header || !buf))
572 return -EINVAL;
573
574 length = header->length;
575
576 dev_dbg(&dev->pdev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header));
577
578 if ((length + sizeof(struct mei_msg_hdr)) > PAYLOAD_SIZE) {
579 dev_err(&dev->pdev->dev, "write length exceeded = %ld > %d\n",
580 length + sizeof(struct mei_msg_hdr), PAYLOAD_SIZE);
581 return -ERANGE;
582 }
583
584 if (WARN(!hw->aliveness, "txe write: aliveness not asserted\n"))
585 return -EAGAIN;
586
587 /* Enable Input Ready Interrupt. */
588 mei_txe_input_ready_interrupt_enable(dev);
589
590 if (!mei_txe_is_input_ready(dev)) {
591 dev_err(&dev->pdev->dev, "Input is not ready");
592 return -EAGAIN;
593 }
594
595 mei_txe_input_payload_write(dev, 0, *((u32 *)header));
596
597 for (i = 0; i < length / 4; i++)
598 mei_txe_input_payload_write(dev, i + 1, reg_buf[i]);
599
600 rem = length & 0x3;
601 if (rem > 0) {
602 u32 reg = 0;
603 memcpy(&reg, &buf[length - rem], rem);
604 mei_txe_input_payload_write(dev, i + 1, reg);
605 }
606
607 dev->hbuf_is_ready = false;
608 /* Set Input-Doorbell */
609 mei_txe_input_doorbell_set(hw);
610
611 return 0;
612 }
613
614 /**
615 * mei_txe_hbuf_max_len - mimics the me hbuf circular buffer
616 *
617 * @dev: the device structure
618 *
619 * returns the PAYLOAD_SIZE - 4
620 */
621 static size_t mei_txe_hbuf_max_len(const struct mei_device *dev)
622 {
623 return PAYLOAD_SIZE - sizeof(struct mei_msg_hdr);
624 }
625
626 /**
627 * mei_txe_hbuf_empty_slots - mimics the me hbuf circular buffer
628 *
629 * @dev: the device structure
630 *
631 * returns always hbuf_depth
632 */
633 static int mei_txe_hbuf_empty_slots(struct mei_device *dev)
634 {
635 return dev->hbuf_depth;
636 }
637
638 /**
639 * mei_txe_count_full_read_slots - mimics the me device circular buffer
640 *
641 * @dev: the device structure
642 *
643 * returns always buffer size in dwords count
644 */
645 static int mei_txe_count_full_read_slots(struct mei_device *dev)
646 {
647 /* read buffers has static size */
648 return PAYLOAD_SIZE / 4;
649 }
650
651 /**
652 * mei_txe_read_hdr - read message header which is always in 4 first bytes
653 *
654 * @dev: the device structure
655 *
656 * returns mei message header
657 */
658
659 static u32 mei_txe_read_hdr(const struct mei_device *dev)
660 {
661 return mei_txe_out_data_read(dev, 0);
662 }
663 /**
664 * mei_txe_read - reads a message from the txe device.
665 *
666 * @dev: the device structure
667 * @buf: message buffer will be written
668 * @len: message size will be read
669 *
670 * returns -EINVAL on error wrong argument and 0 on success
671 */
672 static int mei_txe_read(struct mei_device *dev,
673 unsigned char *buf, unsigned long len)
674 {
675
676 struct mei_txe_hw *hw = to_txe_hw(dev);
677 u32 i;
678 u32 *reg_buf = (u32 *)buf;
679 u32 rem = len & 0x3;
680
681 if (WARN_ON(!buf || !len))
682 return -EINVAL;
683
684 dev_dbg(&dev->pdev->dev,
685 "buffer-length = %lu buf[0]0x%08X\n",
686 len, mei_txe_out_data_read(dev, 0));
687
688 for (i = 0; i < len / 4; i++) {
689 /* skip header: index starts from 1 */
690 u32 reg = mei_txe_out_data_read(dev, i + 1);
691 dev_dbg(&dev->pdev->dev, "buf[%d] = 0x%08X\n", i, reg);
692 *reg_buf++ = reg;
693 }
694
695 if (rem) {
696 u32 reg = mei_txe_out_data_read(dev, i + 1);
697 memcpy(reg_buf, &reg, rem);
698 }
699
700 mei_txe_output_ready_set(hw);
701 return 0;
702 }
703
704 /**
705 * mei_txe_hw_reset - resets host and fw.
706 *
707 * @dev: the device structure
708 * @intr_enable: if interrupt should be enabled after reset.
709 *
710 * returns 0 on success and < 0 in case of error
711 */
712 static int mei_txe_hw_reset(struct mei_device *dev, bool intr_enable)
713 {
714 struct mei_txe_hw *hw = to_txe_hw(dev);
715
716 u32 aliveness_req;
717 /*
718 * read input doorbell to ensure consistency between Bridge and SeC
719 * return value might be garbage return
720 */
721 (void)mei_txe_sec_reg_read_silent(hw, SEC_IPC_INPUT_DOORBELL_REG);
722
723 aliveness_req = mei_txe_aliveness_req_get(dev);
724 hw->aliveness = mei_txe_aliveness_get(dev);
725
726 /* Disable interrupts in this stage we will poll */
727 mei_txe_intr_disable(dev);
728
729 /*
730 * If Aliveness Request and Aliveness Response are not equal then
731 * wait for them to be equal
732 * Since we might have interrupts disabled - poll for it
733 */
734 if (aliveness_req != hw->aliveness)
735 if (mei_txe_aliveness_poll(dev, aliveness_req) < 0) {
736 dev_err(&dev->pdev->dev,
737 "wait for aliveness settle failed ... bailing out\n");
738 return -EIO;
739 }
740
741 /*
742 * If Aliveness Request and Aliveness Response are set then clear them
743 */
744 if (aliveness_req) {
745 mei_txe_aliveness_set(dev, 0);
746 if (mei_txe_aliveness_poll(dev, 0) < 0) {
747 dev_err(&dev->pdev->dev,
748 "wait for aliveness failed ... bailing out\n");
749 return -EIO;
750 }
751 }
752
753 /*
754 * Set rediness RDY_CLR bit
755 */
756 mei_txe_readiness_clear(dev);
757
758 return 0;
759 }
760
761 /**
762 * mei_txe_hw_start - start the hardware after reset
763 *
764 * @dev: the device structure
765 *
766 * returns 0 on success and < 0 in case of error
767 */
768 static int mei_txe_hw_start(struct mei_device *dev)
769 {
770 struct mei_txe_hw *hw = to_txe_hw(dev);
771 int ret;
772
773 u32 hisr;
774
775 /* bring back interrupts */
776 mei_txe_intr_enable(dev);
777
778 ret = mei_txe_readiness_wait(dev);
779 if (ret < 0) {
780 dev_err(&dev->pdev->dev, "wating for readiness failed\n");
781 return ret;
782 }
783
784 /*
785 * If HISR.INT2_STS interrupt status bit is set then clear it.
786 */
787 hisr = mei_txe_br_reg_read(hw, HISR_REG);
788 if (hisr & HISR_INT_2_STS)
789 mei_txe_br_reg_write(hw, HISR_REG, HISR_INT_2_STS);
790
791 /* Clear the interrupt cause of OutputDoorbell */
792 clear_bit(TXE_INTR_OUT_DB_BIT, &hw->intr_cause);
793
794 ret = mei_txe_aliveness_set_sync(dev, 1);
795 if (ret < 0) {
796 dev_err(&dev->pdev->dev, "wait for aliveness failed ... bailing out\n");
797 return ret;
798 }
799
800 /* enable input ready interrupts:
801 * SEC_IPC_HOST_INT_MASK.IPC_INPUT_READY_INT_MASK
802 */
803 mei_txe_input_ready_interrupt_enable(dev);
804
805
806 /* Set the SICR_SEC_IPC_OUTPUT_STATUS.IPC_OUTPUT_READY bit */
807 mei_txe_output_ready_set(hw);
808
809 /* Set bit SICR_HOST_IPC_READINESS.HOST_RDY
810 */
811 mei_txe_readiness_set_host_rdy(dev);
812
813 return 0;
814 }
815
816 /**
817 * mei_txe_check_and_ack_intrs - translate multi BAR interrupt into
818 * single bit mask and acknowledge the interrupts
819 *
820 * @dev: the device structure
821 * @do_ack: acknowledge interrupts
822 */
823 static bool mei_txe_check_and_ack_intrs(struct mei_device *dev, bool do_ack)
824 {
825 struct mei_txe_hw *hw = to_txe_hw(dev);
826 u32 hisr;
827 u32 hhisr;
828 u32 ipc_isr;
829 u32 aliveness;
830 bool generated;
831
832 /* read interrupt registers */
833 hhisr = mei_txe_br_reg_read(hw, HHISR_REG);
834 generated = (hhisr & IPC_HHIER_MSK);
835 if (!generated)
836 goto out;
837
838 hisr = mei_txe_br_reg_read(hw, HISR_REG);
839
840 aliveness = mei_txe_aliveness_get(dev);
841 if (hhisr & IPC_HHIER_SEC && aliveness)
842 ipc_isr = mei_txe_sec_reg_read_silent(hw,
843 SEC_IPC_HOST_INT_STATUS_REG);
844 else
845 ipc_isr = 0;
846
847 generated = generated ||
848 (hisr & HISR_INT_STS_MSK) ||
849 (ipc_isr & SEC_IPC_HOST_INT_STATUS_PENDING);
850
851 if (generated && do_ack) {
852 /* Save the interrupt causes */
853 hw->intr_cause |= hisr & HISR_INT_STS_MSK;
854 if (ipc_isr & SEC_IPC_HOST_INT_STATUS_IN_RDY)
855 hw->intr_cause |= TXE_INTR_IN_READY;
856
857
858 mei_txe_intr_disable(dev);
859 /* Clear the interrupts in hierarchy:
860 * IPC and Bridge, than the High Level */
861 mei_txe_sec_reg_write_silent(hw,
862 SEC_IPC_HOST_INT_STATUS_REG, ipc_isr);
863 mei_txe_br_reg_write(hw, HISR_REG, hisr);
864 mei_txe_br_reg_write(hw, HHISR_REG, hhisr);
865 }
866
867 out:
868 return generated;
869 }
870
871 /**
872 * mei_txe_irq_quick_handler - The ISR of the MEI device
873 *
874 * @irq: The irq number
875 * @dev_id: pointer to the device structure
876 *
877 * returns irqreturn_t
878 */
879 irqreturn_t mei_txe_irq_quick_handler(int irq, void *dev_id)
880 {
881 struct mei_device *dev = dev_id;
882
883 if (mei_txe_check_and_ack_intrs(dev, true))
884 return IRQ_WAKE_THREAD;
885 return IRQ_NONE;
886 }
887
888
889 /**
890 * mei_txe_irq_thread_handler - txe interrupt thread
891 *
892 * @irq: The irq number
893 * @dev_id: pointer to the device structure
894 *
895 * returns irqreturn_t
896 *
897 */
898 irqreturn_t mei_txe_irq_thread_handler(int irq, void *dev_id)
899 {
900 struct mei_device *dev = (struct mei_device *) dev_id;
901 struct mei_txe_hw *hw = to_txe_hw(dev);
902 struct mei_cl_cb complete_list;
903 s32 slots;
904 int rets = 0;
905
906 dev_dbg(&dev->pdev->dev, "irq thread: Interrupt Registers HHISR|HISR|SEC=%02X|%04X|%02X\n",
907 mei_txe_br_reg_read(hw, HHISR_REG),
908 mei_txe_br_reg_read(hw, HISR_REG),
909 mei_txe_sec_reg_read_silent(hw, SEC_IPC_HOST_INT_STATUS_REG));
910
911
912 /* initialize our complete list */
913 mutex_lock(&dev->device_lock);
914 mei_io_list_init(&complete_list);
915
916 if (pci_dev_msi_enabled(dev->pdev))
917 mei_txe_check_and_ack_intrs(dev, true);
918
919 /* show irq events */
920 mei_txe_pending_interrupts(dev);
921
922 hw->aliveness = mei_txe_aliveness_get(dev);
923 hw->readiness = mei_txe_readiness_get(dev);
924
925 /* Readiness:
926 * Detection of TXE driver going through reset
927 * or TXE driver resetting the HECI interface.
928 */
929 if (test_and_clear_bit(TXE_INTR_READINESS_BIT, &hw->intr_cause)) {
930 dev_dbg(&dev->pdev->dev, "Readiness Interrupt was received...\n");
931
932 /* Check if SeC is going through reset */
933 if (mei_txe_readiness_is_sec_rdy(hw->readiness)) {
934 dev_dbg(&dev->pdev->dev, "we need to start the dev.\n");
935 dev->recvd_hw_ready = true;
936 } else {
937 dev->recvd_hw_ready = false;
938 if (dev->dev_state != MEI_DEV_RESETTING) {
939
940 dev_warn(&dev->pdev->dev, "FW not ready: resetting.\n");
941 schedule_work(&dev->reset_work);
942 goto end;
943
944 }
945 }
946 wake_up(&dev->wait_hw_ready);
947 }
948
949 /************************************************************/
950 /* Check interrupt cause:
951 * Aliveness: Detection of SeC acknowledge of host request that
952 * it remain alive or host cancellation of that request.
953 */
954
955 if (test_and_clear_bit(TXE_INTR_ALIVENESS_BIT, &hw->intr_cause)) {
956 /* Clear the interrupt cause */
957 dev_dbg(&dev->pdev->dev,
958 "Aliveness Interrupt: Status: %d\n", hw->aliveness);
959 hw->recvd_aliveness = true;
960 if (waitqueue_active(&hw->wait_aliveness))
961 wake_up(&hw->wait_aliveness);
962 }
963
964
965 /* Output Doorbell:
966 * Detection of SeC having sent output to host
967 */
968 slots = mei_count_full_read_slots(dev);
969 if (test_and_clear_bit(TXE_INTR_OUT_DB_BIT, &hw->intr_cause)) {
970 /* Read from TXE */
971 rets = mei_irq_read_handler(dev, &complete_list, &slots);
972 if (rets && dev->dev_state != MEI_DEV_RESETTING) {
973 dev_err(&dev->pdev->dev,
974 "mei_irq_read_handler ret = %d.\n", rets);
975
976 schedule_work(&dev->reset_work);
977 goto end;
978 }
979 }
980 /* Input Ready: Detection if host can write to SeC */
981 if (test_and_clear_bit(TXE_INTR_IN_READY_BIT, &hw->intr_cause))
982 dev->hbuf_is_ready = true;
983
984 if (hw->aliveness && dev->hbuf_is_ready) {
985 /* if SeC did not complete reading the written data by host */
986 if (!mei_txe_is_input_ready(dev)) {
987 dev_dbg(&dev->pdev->dev, "got Input Ready Int, but SEC_IPC_INPUT_STATUS_RDY is 0.\n");
988 goto end;
989 }
990
991 rets = mei_irq_write_handler(dev, &complete_list);
992 if (rets)
993 dev_err(&dev->pdev->dev,
994 "mei_irq_write_handler ret = %d.\n", rets);
995 }
996
997
998
999 mei_irq_compl_handler(dev, &complete_list);
1000
1001 end:
1002 dev_dbg(&dev->pdev->dev, "interrupt thread end ret = %d\n", rets);
1003
1004 mutex_unlock(&dev->device_lock);
1005
1006 mei_enable_interrupts(dev);
1007 return IRQ_HANDLED;
1008 }
1009
1010 static const struct mei_hw_ops mei_txe_hw_ops = {
1011
1012 .host_is_ready = mei_txe_host_is_ready,
1013
1014 .hw_is_ready = mei_txe_hw_is_ready,
1015 .hw_reset = mei_txe_hw_reset,
1016 .hw_config = mei_txe_hw_config,
1017 .hw_start = mei_txe_hw_start,
1018
1019 .intr_clear = mei_txe_intr_clear,
1020 .intr_enable = mei_txe_intr_enable,
1021 .intr_disable = mei_txe_intr_disable,
1022
1023 .hbuf_free_slots = mei_txe_hbuf_empty_slots,
1024 .hbuf_is_ready = mei_txe_is_input_ready,
1025 .hbuf_max_len = mei_txe_hbuf_max_len,
1026
1027 .write = mei_txe_write,
1028
1029 .rdbuf_full_slots = mei_txe_count_full_read_slots,
1030 .read_hdr = mei_txe_read_hdr,
1031
1032 .read = mei_txe_read,
1033
1034 };
1035
1036 /**
1037 * mei_txe_dev_init - allocates and initializes txe hardware specific structure
1038 *
1039 * @pdev - pci device
1040 * returns struct mei_device * on success or NULL;
1041 *
1042 */
1043 struct mei_device *mei_txe_dev_init(struct pci_dev *pdev)
1044 {
1045 struct mei_device *dev;
1046 struct mei_txe_hw *hw;
1047
1048 dev = kzalloc(sizeof(struct mei_device) +
1049 sizeof(struct mei_txe_hw), GFP_KERNEL);
1050 if (!dev)
1051 return NULL;
1052
1053 mei_device_init(dev);
1054
1055 hw = to_txe_hw(dev);
1056
1057 init_waitqueue_head(&hw->wait_aliveness);
1058
1059 dev->ops = &mei_txe_hw_ops;
1060
1061 dev->pdev = pdev;
1062 return dev;
1063 }
1064
1065 /**
1066 * mei_txe_setup_satt2 - SATT2 configuration for DMA support.
1067 *
1068 * @dev: the device structure
1069 * @addr: physical address start of the range
1070 * @range: physical range size
1071 */
1072 int mei_txe_setup_satt2(struct mei_device *dev, phys_addr_t addr, u32 range)
1073 {
1074 struct mei_txe_hw *hw = to_txe_hw(dev);
1075
1076 u32 lo32 = lower_32_bits(addr);
1077 u32 hi32 = upper_32_bits(addr);
1078 u32 ctrl;
1079
1080 /* SATT is limited to 36 Bits */
1081 if (hi32 & ~0xF)
1082 return -EINVAL;
1083
1084 /* SATT has to be 16Byte aligned */
1085 if (lo32 & 0xF)
1086 return -EINVAL;
1087
1088 /* SATT range has to be 4Bytes aligned */
1089 if (range & 0x4)
1090 return -EINVAL;
1091
1092 /* SATT is limited to 32 MB range*/
1093 if (range > SATT_RANGE_MAX)
1094 return -EINVAL;
1095
1096 ctrl = SATT2_CTRL_VALID_MSK;
1097 ctrl |= hi32 << SATT2_CTRL_BR_BASE_ADDR_REG_SHIFT;
1098
1099 mei_txe_br_reg_write(hw, SATT2_SAP_SIZE_REG, range);
1100 mei_txe_br_reg_write(hw, SATT2_BRG_BA_LSB_REG, lo32);
1101 mei_txe_br_reg_write(hw, SATT2_CTRL_REG, ctrl);
1102 dev_dbg(&dev->pdev->dev, "SATT2: SAP_SIZE_OFFSET=0x%08X, BRG_BA_LSB_OFFSET=0x%08X, CTRL_OFFSET=0x%08X\n",
1103 range, lo32, ctrl);
1104
1105 return 0;
1106 }
This page took 0.240849 seconds and 5 git commands to generate.