Merge tag 'iommu-updates-v4.3' of git://git.kernel.org/pub/scm/linux/kernel/git/joro...
[deliverable/linux.git] / drivers / misc / mei / hw-txe.c
1 /*
2 *
3 * Intel Management Engine Interface (Intel MEI) Linux driver
4 * Copyright (c) 2013-2014, Intel Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 */
16
17 #include <linux/pci.h>
18 #include <linux/jiffies.h>
19 #include <linux/ktime.h>
20 #include <linux/delay.h>
21 #include <linux/kthread.h>
22 #include <linux/irqreturn.h>
23
24 #include <linux/mei.h>
25
26 #include "mei_dev.h"
27 #include "hw-txe.h"
28 #include "client.h"
29 #include "hbm.h"
30
31 /**
32 * mei_txe_reg_read - Reads 32bit data from the txe device
33 *
34 * @base_addr: registers base address
35 * @offset: register offset
36 *
37 * Return: register value
38 */
39 static inline u32 mei_txe_reg_read(void __iomem *base_addr,
40 unsigned long offset)
41 {
42 return ioread32(base_addr + offset);
43 }
44
45 /**
46 * mei_txe_reg_write - Writes 32bit data to the txe device
47 *
48 * @base_addr: registers base address
49 * @offset: register offset
50 * @value: the value to write
51 */
52 static inline void mei_txe_reg_write(void __iomem *base_addr,
53 unsigned long offset, u32 value)
54 {
55 iowrite32(value, base_addr + offset);
56 }
57
58 /**
59 * mei_txe_sec_reg_read_silent - Reads 32bit data from the SeC BAR
60 *
61 * @hw: the txe hardware structure
62 * @offset: register offset
63 *
64 * Doesn't check for aliveness while Reads 32bit data from the SeC BAR
65 *
66 * Return: register value
67 */
68 static inline u32 mei_txe_sec_reg_read_silent(struct mei_txe_hw *hw,
69 unsigned long offset)
70 {
71 return mei_txe_reg_read(hw->mem_addr[SEC_BAR], offset);
72 }
73
74 /**
75 * mei_txe_sec_reg_read - Reads 32bit data from the SeC BAR
76 *
77 * @hw: the txe hardware structure
78 * @offset: register offset
79 *
80 * Reads 32bit data from the SeC BAR and shout loud if aliveness is not set
81 *
82 * Return: register value
83 */
84 static inline u32 mei_txe_sec_reg_read(struct mei_txe_hw *hw,
85 unsigned long offset)
86 {
87 WARN(!hw->aliveness, "sec read: aliveness not asserted\n");
88 return mei_txe_sec_reg_read_silent(hw, offset);
89 }
90 /**
91 * mei_txe_sec_reg_write_silent - Writes 32bit data to the SeC BAR
92 * doesn't check for aliveness
93 *
94 * @hw: the txe hardware structure
95 * @offset: register offset
96 * @value: value to write
97 *
98 * Doesn't check for aliveness while writes 32bit data from to the SeC BAR
99 */
100 static inline void mei_txe_sec_reg_write_silent(struct mei_txe_hw *hw,
101 unsigned long offset, u32 value)
102 {
103 mei_txe_reg_write(hw->mem_addr[SEC_BAR], offset, value);
104 }
105
106 /**
107 * mei_txe_sec_reg_write - Writes 32bit data to the SeC BAR
108 *
109 * @hw: the txe hardware structure
110 * @offset: register offset
111 * @value: value to write
112 *
113 * Writes 32bit data from the SeC BAR and shout loud if aliveness is not set
114 */
115 static inline void mei_txe_sec_reg_write(struct mei_txe_hw *hw,
116 unsigned long offset, u32 value)
117 {
118 WARN(!hw->aliveness, "sec write: aliveness not asserted\n");
119 mei_txe_sec_reg_write_silent(hw, offset, value);
120 }
121 /**
122 * mei_txe_br_reg_read - Reads 32bit data from the Bridge BAR
123 *
124 * @hw: the txe hardware structure
125 * @offset: offset from which to read the data
126 *
127 * Return: the byte read.
128 */
129 static inline u32 mei_txe_br_reg_read(struct mei_txe_hw *hw,
130 unsigned long offset)
131 {
132 return mei_txe_reg_read(hw->mem_addr[BRIDGE_BAR], offset);
133 }
134
135 /**
136 * mei_txe_br_reg_write - Writes 32bit data to the Bridge BAR
137 *
138 * @hw: the txe hardware structure
139 * @offset: offset from which to write the data
140 * @value: the byte to write
141 */
142 static inline void mei_txe_br_reg_write(struct mei_txe_hw *hw,
143 unsigned long offset, u32 value)
144 {
145 mei_txe_reg_write(hw->mem_addr[BRIDGE_BAR], offset, value);
146 }
147
148 /**
149 * mei_txe_aliveness_set - request for aliveness change
150 *
151 * @dev: the device structure
152 * @req: requested aliveness value
153 *
154 * Request for aliveness change and returns true if the change is
155 * really needed and false if aliveness is already
156 * in the requested state
157 *
158 * Locking: called under "dev->device_lock" lock
159 *
160 * Return: true if request was send
161 */
162 static bool mei_txe_aliveness_set(struct mei_device *dev, u32 req)
163 {
164
165 struct mei_txe_hw *hw = to_txe_hw(dev);
166 bool do_req = hw->aliveness != req;
167
168 dev_dbg(dev->dev, "Aliveness current=%d request=%d\n",
169 hw->aliveness, req);
170 if (do_req) {
171 dev->pg_event = MEI_PG_EVENT_WAIT;
172 mei_txe_br_reg_write(hw, SICR_HOST_ALIVENESS_REQ_REG, req);
173 }
174 return do_req;
175 }
176
177
178 /**
179 * mei_txe_aliveness_req_get - get aliveness requested register value
180 *
181 * @dev: the device structure
182 *
183 * Extract HICR_HOST_ALIVENESS_RESP_ACK bit from
184 * from HICR_HOST_ALIVENESS_REQ register value
185 *
186 * Return: SICR_HOST_ALIVENESS_REQ_REQUESTED bit value
187 */
188 static u32 mei_txe_aliveness_req_get(struct mei_device *dev)
189 {
190 struct mei_txe_hw *hw = to_txe_hw(dev);
191 u32 reg;
192
193 reg = mei_txe_br_reg_read(hw, SICR_HOST_ALIVENESS_REQ_REG);
194 return reg & SICR_HOST_ALIVENESS_REQ_REQUESTED;
195 }
196
197 /**
198 * mei_txe_aliveness_get - get aliveness response register value
199 *
200 * @dev: the device structure
201 *
202 * Return: HICR_HOST_ALIVENESS_RESP_ACK bit from HICR_HOST_ALIVENESS_RESP
203 * register
204 */
205 static u32 mei_txe_aliveness_get(struct mei_device *dev)
206 {
207 struct mei_txe_hw *hw = to_txe_hw(dev);
208 u32 reg;
209
210 reg = mei_txe_br_reg_read(hw, HICR_HOST_ALIVENESS_RESP_REG);
211 return reg & HICR_HOST_ALIVENESS_RESP_ACK;
212 }
213
214 /**
215 * mei_txe_aliveness_poll - waits for aliveness to settle
216 *
217 * @dev: the device structure
218 * @expected: expected aliveness value
219 *
220 * Polls for HICR_HOST_ALIVENESS_RESP.ALIVENESS_RESP to be set
221 *
222 * Return: 0 if the expected value was received, -ETIME otherwise
223 */
224 static int mei_txe_aliveness_poll(struct mei_device *dev, u32 expected)
225 {
226 struct mei_txe_hw *hw = to_txe_hw(dev);
227 ktime_t stop, start;
228
229 start = ktime_get();
230 stop = ktime_add(start, ms_to_ktime(SEC_ALIVENESS_WAIT_TIMEOUT));
231 do {
232 hw->aliveness = mei_txe_aliveness_get(dev);
233 if (hw->aliveness == expected) {
234 dev->pg_event = MEI_PG_EVENT_IDLE;
235 dev_dbg(dev->dev, "aliveness settled after %lld usecs\n",
236 ktime_to_us(ktime_sub(ktime_get(), start)));
237 return 0;
238 }
239 usleep_range(20, 50);
240 } while (ktime_before(ktime_get(), stop));
241
242 dev->pg_event = MEI_PG_EVENT_IDLE;
243 dev_err(dev->dev, "aliveness timed out\n");
244 return -ETIME;
245 }
246
247 /**
248 * mei_txe_aliveness_wait - waits for aliveness to settle
249 *
250 * @dev: the device structure
251 * @expected: expected aliveness value
252 *
253 * Waits for HICR_HOST_ALIVENESS_RESP.ALIVENESS_RESP to be set
254 *
255 * Return: 0 on success and < 0 otherwise
256 */
257 static int mei_txe_aliveness_wait(struct mei_device *dev, u32 expected)
258 {
259 struct mei_txe_hw *hw = to_txe_hw(dev);
260 const unsigned long timeout =
261 msecs_to_jiffies(SEC_ALIVENESS_WAIT_TIMEOUT);
262 long err;
263 int ret;
264
265 hw->aliveness = mei_txe_aliveness_get(dev);
266 if (hw->aliveness == expected)
267 return 0;
268
269 mutex_unlock(&dev->device_lock);
270 err = wait_event_timeout(hw->wait_aliveness_resp,
271 dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
272 mutex_lock(&dev->device_lock);
273
274 hw->aliveness = mei_txe_aliveness_get(dev);
275 ret = hw->aliveness == expected ? 0 : -ETIME;
276
277 if (ret)
278 dev_warn(dev->dev, "aliveness timed out = %ld aliveness = %d event = %d\n",
279 err, hw->aliveness, dev->pg_event);
280 else
281 dev_dbg(dev->dev, "aliveness settled after = %d msec aliveness = %d event = %d\n",
282 jiffies_to_msecs(timeout - err),
283 hw->aliveness, dev->pg_event);
284
285 dev->pg_event = MEI_PG_EVENT_IDLE;
286 return ret;
287 }
288
289 /**
290 * mei_txe_aliveness_set_sync - sets an wait for aliveness to complete
291 *
292 * @dev: the device structure
293 * @req: requested aliveness value
294 *
295 * Return: 0 on success and < 0 otherwise
296 */
297 int mei_txe_aliveness_set_sync(struct mei_device *dev, u32 req)
298 {
299 if (mei_txe_aliveness_set(dev, req))
300 return mei_txe_aliveness_wait(dev, req);
301 return 0;
302 }
303
304 /**
305 * mei_txe_pg_in_transition - is device now in pg transition
306 *
307 * @dev: the device structure
308 *
309 * Return: true if in pg transition, false otherwise
310 */
311 static bool mei_txe_pg_in_transition(struct mei_device *dev)
312 {
313 return dev->pg_event == MEI_PG_EVENT_WAIT;
314 }
315
316 /**
317 * mei_txe_pg_is_enabled - detect if PG is supported by HW
318 *
319 * @dev: the device structure
320 *
321 * Return: true is pg supported, false otherwise
322 */
323 static bool mei_txe_pg_is_enabled(struct mei_device *dev)
324 {
325 return true;
326 }
327
328 /**
329 * mei_txe_pg_state - translate aliveness register value
330 * to the mei power gating state
331 *
332 * @dev: the device structure
333 *
334 * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
335 */
336 static inline enum mei_pg_state mei_txe_pg_state(struct mei_device *dev)
337 {
338 struct mei_txe_hw *hw = to_txe_hw(dev);
339
340 return hw->aliveness ? MEI_PG_OFF : MEI_PG_ON;
341 }
342
343 /**
344 * mei_txe_input_ready_interrupt_enable - sets the Input Ready Interrupt
345 *
346 * @dev: the device structure
347 */
348 static void mei_txe_input_ready_interrupt_enable(struct mei_device *dev)
349 {
350 struct mei_txe_hw *hw = to_txe_hw(dev);
351 u32 hintmsk;
352 /* Enable the SEC_IPC_HOST_INT_MASK_IN_RDY interrupt */
353 hintmsk = mei_txe_sec_reg_read(hw, SEC_IPC_HOST_INT_MASK_REG);
354 hintmsk |= SEC_IPC_HOST_INT_MASK_IN_RDY;
355 mei_txe_sec_reg_write(hw, SEC_IPC_HOST_INT_MASK_REG, hintmsk);
356 }
357
358 /**
359 * mei_txe_input_doorbell_set - sets bit 0 in
360 * SEC_IPC_INPUT_DOORBELL.IPC_INPUT_DOORBELL.
361 *
362 * @hw: the txe hardware structure
363 */
364 static void mei_txe_input_doorbell_set(struct mei_txe_hw *hw)
365 {
366 /* Clear the interrupt cause */
367 clear_bit(TXE_INTR_IN_READY_BIT, &hw->intr_cause);
368 mei_txe_sec_reg_write(hw, SEC_IPC_INPUT_DOORBELL_REG, 1);
369 }
370
371 /**
372 * mei_txe_output_ready_set - Sets the SICR_SEC_IPC_OUTPUT_STATUS bit to 1
373 *
374 * @hw: the txe hardware structure
375 */
376 static void mei_txe_output_ready_set(struct mei_txe_hw *hw)
377 {
378 mei_txe_br_reg_write(hw,
379 SICR_SEC_IPC_OUTPUT_STATUS_REG,
380 SEC_IPC_OUTPUT_STATUS_RDY);
381 }
382
383 /**
384 * mei_txe_is_input_ready - check if TXE is ready for receiving data
385 *
386 * @dev: the device structure
387 *
388 * Return: true if INPUT STATUS READY bit is set
389 */
390 static bool mei_txe_is_input_ready(struct mei_device *dev)
391 {
392 struct mei_txe_hw *hw = to_txe_hw(dev);
393 u32 status;
394
395 status = mei_txe_sec_reg_read(hw, SEC_IPC_INPUT_STATUS_REG);
396 return !!(SEC_IPC_INPUT_STATUS_RDY & status);
397 }
398
399 /**
400 * mei_txe_intr_clear - clear all interrupts
401 *
402 * @dev: the device structure
403 */
404 static inline void mei_txe_intr_clear(struct mei_device *dev)
405 {
406 struct mei_txe_hw *hw = to_txe_hw(dev);
407
408 mei_txe_sec_reg_write_silent(hw, SEC_IPC_HOST_INT_STATUS_REG,
409 SEC_IPC_HOST_INT_STATUS_PENDING);
410 mei_txe_br_reg_write(hw, HISR_REG, HISR_INT_STS_MSK);
411 mei_txe_br_reg_write(hw, HHISR_REG, IPC_HHIER_MSK);
412 }
413
414 /**
415 * mei_txe_intr_disable - disable all interrupts
416 *
417 * @dev: the device structure
418 */
419 static void mei_txe_intr_disable(struct mei_device *dev)
420 {
421 struct mei_txe_hw *hw = to_txe_hw(dev);
422
423 mei_txe_br_reg_write(hw, HHIER_REG, 0);
424 mei_txe_br_reg_write(hw, HIER_REG, 0);
425 }
426 /**
427 * mei_txe_intr_enable - enable all interrupts
428 *
429 * @dev: the device structure
430 */
431 static void mei_txe_intr_enable(struct mei_device *dev)
432 {
433 struct mei_txe_hw *hw = to_txe_hw(dev);
434
435 mei_txe_br_reg_write(hw, HHIER_REG, IPC_HHIER_MSK);
436 mei_txe_br_reg_write(hw, HIER_REG, HIER_INT_EN_MSK);
437 }
438
439 /**
440 * mei_txe_pending_interrupts - check if there are pending interrupts
441 * only Aliveness, Input ready, and output doorbell are of relevance
442 *
443 * @dev: the device structure
444 *
445 * Checks if there are pending interrupts
446 * only Aliveness, Readiness, Input ready, and Output doorbell are relevant
447 *
448 * Return: true if there are pending interrupts
449 */
450 static bool mei_txe_pending_interrupts(struct mei_device *dev)
451 {
452
453 struct mei_txe_hw *hw = to_txe_hw(dev);
454 bool ret = (hw->intr_cause & (TXE_INTR_READINESS |
455 TXE_INTR_ALIVENESS |
456 TXE_INTR_IN_READY |
457 TXE_INTR_OUT_DB));
458
459 if (ret) {
460 dev_dbg(dev->dev,
461 "Pending Interrupts InReady=%01d Readiness=%01d, Aliveness=%01d, OutDoor=%01d\n",
462 !!(hw->intr_cause & TXE_INTR_IN_READY),
463 !!(hw->intr_cause & TXE_INTR_READINESS),
464 !!(hw->intr_cause & TXE_INTR_ALIVENESS),
465 !!(hw->intr_cause & TXE_INTR_OUT_DB));
466 }
467 return ret;
468 }
469
470 /**
471 * mei_txe_input_payload_write - write a dword to the host buffer
472 * at offset idx
473 *
474 * @dev: the device structure
475 * @idx: index in the host buffer
476 * @value: value
477 */
478 static void mei_txe_input_payload_write(struct mei_device *dev,
479 unsigned long idx, u32 value)
480 {
481 struct mei_txe_hw *hw = to_txe_hw(dev);
482
483 mei_txe_sec_reg_write(hw, SEC_IPC_INPUT_PAYLOAD_REG +
484 (idx * sizeof(u32)), value);
485 }
486
487 /**
488 * mei_txe_out_data_read - read dword from the device buffer
489 * at offset idx
490 *
491 * @dev: the device structure
492 * @idx: index in the device buffer
493 *
494 * Return: register value at index
495 */
496 static u32 mei_txe_out_data_read(const struct mei_device *dev,
497 unsigned long idx)
498 {
499 struct mei_txe_hw *hw = to_txe_hw(dev);
500
501 return mei_txe_br_reg_read(hw,
502 BRIDGE_IPC_OUTPUT_PAYLOAD_REG + (idx * sizeof(u32)));
503 }
504
505 /* Readiness */
506
507 /**
508 * mei_txe_readiness_set_host_rdy - set host readiness bit
509 *
510 * @dev: the device structure
511 */
512 static void mei_txe_readiness_set_host_rdy(struct mei_device *dev)
513 {
514 struct mei_txe_hw *hw = to_txe_hw(dev);
515
516 mei_txe_br_reg_write(hw,
517 SICR_HOST_IPC_READINESS_REQ_REG,
518 SICR_HOST_IPC_READINESS_HOST_RDY);
519 }
520
521 /**
522 * mei_txe_readiness_clear - clear host readiness bit
523 *
524 * @dev: the device structure
525 */
526 static void mei_txe_readiness_clear(struct mei_device *dev)
527 {
528 struct mei_txe_hw *hw = to_txe_hw(dev);
529
530 mei_txe_br_reg_write(hw, SICR_HOST_IPC_READINESS_REQ_REG,
531 SICR_HOST_IPC_READINESS_RDY_CLR);
532 }
533 /**
534 * mei_txe_readiness_get - Reads and returns
535 * the HICR_SEC_IPC_READINESS register value
536 *
537 * @dev: the device structure
538 *
539 * Return: the HICR_SEC_IPC_READINESS register value
540 */
541 static u32 mei_txe_readiness_get(struct mei_device *dev)
542 {
543 struct mei_txe_hw *hw = to_txe_hw(dev);
544
545 return mei_txe_br_reg_read(hw, HICR_SEC_IPC_READINESS_REG);
546 }
547
548
549 /**
550 * mei_txe_readiness_is_sec_rdy - check readiness
551 * for HICR_SEC_IPC_READINESS_SEC_RDY
552 *
553 * @readiness: cached readiness state
554 *
555 * Return: true if readiness bit is set
556 */
557 static inline bool mei_txe_readiness_is_sec_rdy(u32 readiness)
558 {
559 return !!(readiness & HICR_SEC_IPC_READINESS_SEC_RDY);
560 }
561
562 /**
563 * mei_txe_hw_is_ready - check if the hw is ready
564 *
565 * @dev: the device structure
566 *
567 * Return: true if sec is ready
568 */
569 static bool mei_txe_hw_is_ready(struct mei_device *dev)
570 {
571 u32 readiness = mei_txe_readiness_get(dev);
572
573 return mei_txe_readiness_is_sec_rdy(readiness);
574 }
575
576 /**
577 * mei_txe_host_is_ready - check if the host is ready
578 *
579 * @dev: the device structure
580 *
581 * Return: true if host is ready
582 */
583 static inline bool mei_txe_host_is_ready(struct mei_device *dev)
584 {
585 struct mei_txe_hw *hw = to_txe_hw(dev);
586 u32 reg = mei_txe_br_reg_read(hw, HICR_SEC_IPC_READINESS_REG);
587
588 return !!(reg & HICR_SEC_IPC_READINESS_HOST_RDY);
589 }
590
591 /**
592 * mei_txe_readiness_wait - wait till readiness settles
593 *
594 * @dev: the device structure
595 *
596 * Return: 0 on success and -ETIME on timeout
597 */
598 static int mei_txe_readiness_wait(struct mei_device *dev)
599 {
600 if (mei_txe_hw_is_ready(dev))
601 return 0;
602
603 mutex_unlock(&dev->device_lock);
604 wait_event_timeout(dev->wait_hw_ready, dev->recvd_hw_ready,
605 msecs_to_jiffies(SEC_RESET_WAIT_TIMEOUT));
606 mutex_lock(&dev->device_lock);
607 if (!dev->recvd_hw_ready) {
608 dev_err(dev->dev, "wait for readiness failed\n");
609 return -ETIME;
610 }
611
612 dev->recvd_hw_ready = false;
613 return 0;
614 }
615
616 static const struct mei_fw_status mei_txe_fw_sts = {
617 .count = 2,
618 .status[0] = PCI_CFG_TXE_FW_STS0,
619 .status[1] = PCI_CFG_TXE_FW_STS1
620 };
621
622 /**
623 * mei_txe_fw_status - read fw status register from pci config space
624 *
625 * @dev: mei device
626 * @fw_status: fw status register values
627 *
628 * Return: 0 on success, error otherwise
629 */
630 static int mei_txe_fw_status(struct mei_device *dev,
631 struct mei_fw_status *fw_status)
632 {
633 const struct mei_fw_status *fw_src = &mei_txe_fw_sts;
634 struct pci_dev *pdev = to_pci_dev(dev->dev);
635 int ret;
636 int i;
637
638 if (!fw_status)
639 return -EINVAL;
640
641 fw_status->count = fw_src->count;
642 for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) {
643 ret = pci_read_config_dword(pdev,
644 fw_src->status[i], &fw_status->status[i]);
645 if (ret)
646 return ret;
647 }
648
649 return 0;
650 }
651
652 /**
653 * mei_txe_hw_config - configure hardware at the start of the devices
654 *
655 * @dev: the device structure
656 *
657 * Configure hardware at the start of the device should be done only
658 * once at the device probe time
659 */
660 static void mei_txe_hw_config(struct mei_device *dev)
661 {
662
663 struct mei_txe_hw *hw = to_txe_hw(dev);
664
665 /* Doesn't change in runtime */
666 dev->hbuf_depth = PAYLOAD_SIZE / 4;
667
668 hw->aliveness = mei_txe_aliveness_get(dev);
669 hw->readiness = mei_txe_readiness_get(dev);
670
671 dev_dbg(dev->dev, "aliveness_resp = 0x%08x, readiness = 0x%08x.\n",
672 hw->aliveness, hw->readiness);
673 }
674
675
676 /**
677 * mei_txe_write - writes a message to device.
678 *
679 * @dev: the device structure
680 * @header: header of message
681 * @buf: message buffer will be written
682 *
683 * Return: 0 if success, <0 - otherwise.
684 */
685
686 static int mei_txe_write(struct mei_device *dev,
687 struct mei_msg_hdr *header, unsigned char *buf)
688 {
689 struct mei_txe_hw *hw = to_txe_hw(dev);
690 unsigned long rem;
691 unsigned long length;
692 int slots = dev->hbuf_depth;
693 u32 *reg_buf = (u32 *)buf;
694 u32 dw_cnt;
695 int i;
696
697 if (WARN_ON(!header || !buf))
698 return -EINVAL;
699
700 length = header->length;
701
702 dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header));
703
704 dw_cnt = mei_data2slots(length);
705 if (dw_cnt > slots)
706 return -EMSGSIZE;
707
708 if (WARN(!hw->aliveness, "txe write: aliveness not asserted\n"))
709 return -EAGAIN;
710
711 /* Enable Input Ready Interrupt. */
712 mei_txe_input_ready_interrupt_enable(dev);
713
714 if (!mei_txe_is_input_ready(dev)) {
715 char fw_sts_str[MEI_FW_STATUS_STR_SZ];
716
717 mei_fw_status_str(dev, fw_sts_str, MEI_FW_STATUS_STR_SZ);
718 dev_err(dev->dev, "Input is not ready %s\n", fw_sts_str);
719 return -EAGAIN;
720 }
721
722 mei_txe_input_payload_write(dev, 0, *((u32 *)header));
723
724 for (i = 0; i < length / 4; i++)
725 mei_txe_input_payload_write(dev, i + 1, reg_buf[i]);
726
727 rem = length & 0x3;
728 if (rem > 0) {
729 u32 reg = 0;
730
731 memcpy(&reg, &buf[length - rem], rem);
732 mei_txe_input_payload_write(dev, i + 1, reg);
733 }
734
735 /* after each write the whole buffer is consumed */
736 hw->slots = 0;
737
738 /* Set Input-Doorbell */
739 mei_txe_input_doorbell_set(hw);
740
741 return 0;
742 }
743
744 /**
745 * mei_txe_hbuf_max_len - mimics the me hbuf circular buffer
746 *
747 * @dev: the device structure
748 *
749 * Return: the PAYLOAD_SIZE - 4
750 */
751 static size_t mei_txe_hbuf_max_len(const struct mei_device *dev)
752 {
753 return PAYLOAD_SIZE - sizeof(struct mei_msg_hdr);
754 }
755
756 /**
757 * mei_txe_hbuf_empty_slots - mimics the me hbuf circular buffer
758 *
759 * @dev: the device structure
760 *
761 * Return: always hbuf_depth
762 */
763 static int mei_txe_hbuf_empty_slots(struct mei_device *dev)
764 {
765 struct mei_txe_hw *hw = to_txe_hw(dev);
766
767 return hw->slots;
768 }
769
770 /**
771 * mei_txe_count_full_read_slots - mimics the me device circular buffer
772 *
773 * @dev: the device structure
774 *
775 * Return: always buffer size in dwords count
776 */
777 static int mei_txe_count_full_read_slots(struct mei_device *dev)
778 {
779 /* read buffers has static size */
780 return PAYLOAD_SIZE / 4;
781 }
782
783 /**
784 * mei_txe_read_hdr - read message header which is always in 4 first bytes
785 *
786 * @dev: the device structure
787 *
788 * Return: mei message header
789 */
790
791 static u32 mei_txe_read_hdr(const struct mei_device *dev)
792 {
793 return mei_txe_out_data_read(dev, 0);
794 }
795 /**
796 * mei_txe_read - reads a message from the txe device.
797 *
798 * @dev: the device structure
799 * @buf: message buffer will be written
800 * @len: message size will be read
801 *
802 * Return: -EINVAL on error wrong argument and 0 on success
803 */
804 static int mei_txe_read(struct mei_device *dev,
805 unsigned char *buf, unsigned long len)
806 {
807
808 struct mei_txe_hw *hw = to_txe_hw(dev);
809 u32 *reg_buf, reg;
810 u32 rem;
811 u32 i;
812
813 if (WARN_ON(!buf || !len))
814 return -EINVAL;
815
816 reg_buf = (u32 *)buf;
817 rem = len & 0x3;
818
819 dev_dbg(dev->dev, "buffer-length = %lu buf[0]0x%08X\n",
820 len, mei_txe_out_data_read(dev, 0));
821
822 for (i = 0; i < len / 4; i++) {
823 /* skip header: index starts from 1 */
824 reg = mei_txe_out_data_read(dev, i + 1);
825 dev_dbg(dev->dev, "buf[%d] = 0x%08X\n", i, reg);
826 *reg_buf++ = reg;
827 }
828
829 if (rem) {
830 reg = mei_txe_out_data_read(dev, i + 1);
831 memcpy(reg_buf, &reg, rem);
832 }
833
834 mei_txe_output_ready_set(hw);
835 return 0;
836 }
837
838 /**
839 * mei_txe_hw_reset - resets host and fw.
840 *
841 * @dev: the device structure
842 * @intr_enable: if interrupt should be enabled after reset.
843 *
844 * Return: 0 on success and < 0 in case of error
845 */
846 static int mei_txe_hw_reset(struct mei_device *dev, bool intr_enable)
847 {
848 struct mei_txe_hw *hw = to_txe_hw(dev);
849
850 u32 aliveness_req;
851 /*
852 * read input doorbell to ensure consistency between Bridge and SeC
853 * return value might be garbage return
854 */
855 (void)mei_txe_sec_reg_read_silent(hw, SEC_IPC_INPUT_DOORBELL_REG);
856
857 aliveness_req = mei_txe_aliveness_req_get(dev);
858 hw->aliveness = mei_txe_aliveness_get(dev);
859
860 /* Disable interrupts in this stage we will poll */
861 mei_txe_intr_disable(dev);
862
863 /*
864 * If Aliveness Request and Aliveness Response are not equal then
865 * wait for them to be equal
866 * Since we might have interrupts disabled - poll for it
867 */
868 if (aliveness_req != hw->aliveness)
869 if (mei_txe_aliveness_poll(dev, aliveness_req) < 0) {
870 dev_err(dev->dev, "wait for aliveness settle failed ... bailing out\n");
871 return -EIO;
872 }
873
874 /*
875 * If Aliveness Request and Aliveness Response are set then clear them
876 */
877 if (aliveness_req) {
878 mei_txe_aliveness_set(dev, 0);
879 if (mei_txe_aliveness_poll(dev, 0) < 0) {
880 dev_err(dev->dev, "wait for aliveness failed ... bailing out\n");
881 return -EIO;
882 }
883 }
884
885 /*
886 * Set readiness RDY_CLR bit
887 */
888 mei_txe_readiness_clear(dev);
889
890 return 0;
891 }
892
893 /**
894 * mei_txe_hw_start - start the hardware after reset
895 *
896 * @dev: the device structure
897 *
898 * Return: 0 on success an error code otherwise
899 */
900 static int mei_txe_hw_start(struct mei_device *dev)
901 {
902 struct mei_txe_hw *hw = to_txe_hw(dev);
903 int ret;
904
905 u32 hisr;
906
907 /* bring back interrupts */
908 mei_txe_intr_enable(dev);
909
910 ret = mei_txe_readiness_wait(dev);
911 if (ret < 0) {
912 dev_err(dev->dev, "waiting for readiness failed\n");
913 return ret;
914 }
915
916 /*
917 * If HISR.INT2_STS interrupt status bit is set then clear it.
918 */
919 hisr = mei_txe_br_reg_read(hw, HISR_REG);
920 if (hisr & HISR_INT_2_STS)
921 mei_txe_br_reg_write(hw, HISR_REG, HISR_INT_2_STS);
922
923 /* Clear the interrupt cause of OutputDoorbell */
924 clear_bit(TXE_INTR_OUT_DB_BIT, &hw->intr_cause);
925
926 ret = mei_txe_aliveness_set_sync(dev, 1);
927 if (ret < 0) {
928 dev_err(dev->dev, "wait for aliveness failed ... bailing out\n");
929 return ret;
930 }
931
932 /* enable input ready interrupts:
933 * SEC_IPC_HOST_INT_MASK.IPC_INPUT_READY_INT_MASK
934 */
935 mei_txe_input_ready_interrupt_enable(dev);
936
937
938 /* Set the SICR_SEC_IPC_OUTPUT_STATUS.IPC_OUTPUT_READY bit */
939 mei_txe_output_ready_set(hw);
940
941 /* Set bit SICR_HOST_IPC_READINESS.HOST_RDY
942 */
943 mei_txe_readiness_set_host_rdy(dev);
944
945 return 0;
946 }
947
948 /**
949 * mei_txe_check_and_ack_intrs - translate multi BAR interrupt into
950 * single bit mask and acknowledge the interrupts
951 *
952 * @dev: the device structure
953 * @do_ack: acknowledge interrupts
954 *
955 * Return: true if found interrupts to process.
956 */
957 static bool mei_txe_check_and_ack_intrs(struct mei_device *dev, bool do_ack)
958 {
959 struct mei_txe_hw *hw = to_txe_hw(dev);
960 u32 hisr;
961 u32 hhisr;
962 u32 ipc_isr;
963 u32 aliveness;
964 bool generated;
965
966 /* read interrupt registers */
967 hhisr = mei_txe_br_reg_read(hw, HHISR_REG);
968 generated = (hhisr & IPC_HHIER_MSK);
969 if (!generated)
970 goto out;
971
972 hisr = mei_txe_br_reg_read(hw, HISR_REG);
973
974 aliveness = mei_txe_aliveness_get(dev);
975 if (hhisr & IPC_HHIER_SEC && aliveness)
976 ipc_isr = mei_txe_sec_reg_read_silent(hw,
977 SEC_IPC_HOST_INT_STATUS_REG);
978 else
979 ipc_isr = 0;
980
981 generated = generated ||
982 (hisr & HISR_INT_STS_MSK) ||
983 (ipc_isr & SEC_IPC_HOST_INT_STATUS_PENDING);
984
985 if (generated && do_ack) {
986 /* Save the interrupt causes */
987 hw->intr_cause |= hisr & HISR_INT_STS_MSK;
988 if (ipc_isr & SEC_IPC_HOST_INT_STATUS_IN_RDY)
989 hw->intr_cause |= TXE_INTR_IN_READY;
990
991
992 mei_txe_intr_disable(dev);
993 /* Clear the interrupts in hierarchy:
994 * IPC and Bridge, than the High Level */
995 mei_txe_sec_reg_write_silent(hw,
996 SEC_IPC_HOST_INT_STATUS_REG, ipc_isr);
997 mei_txe_br_reg_write(hw, HISR_REG, hisr);
998 mei_txe_br_reg_write(hw, HHISR_REG, hhisr);
999 }
1000
1001 out:
1002 return generated;
1003 }
1004
1005 /**
1006 * mei_txe_irq_quick_handler - The ISR of the MEI device
1007 *
1008 * @irq: The irq number
1009 * @dev_id: pointer to the device structure
1010 *
1011 * Return: IRQ_WAKE_THREAD if interrupt is designed for the device
1012 * IRQ_NONE otherwise
1013 */
1014 irqreturn_t mei_txe_irq_quick_handler(int irq, void *dev_id)
1015 {
1016 struct mei_device *dev = dev_id;
1017
1018 if (mei_txe_check_and_ack_intrs(dev, true))
1019 return IRQ_WAKE_THREAD;
1020 return IRQ_NONE;
1021 }
1022
1023
1024 /**
1025 * mei_txe_irq_thread_handler - txe interrupt thread
1026 *
1027 * @irq: The irq number
1028 * @dev_id: pointer to the device structure
1029 *
1030 * Return: IRQ_HANDLED
1031 */
1032 irqreturn_t mei_txe_irq_thread_handler(int irq, void *dev_id)
1033 {
1034 struct mei_device *dev = (struct mei_device *) dev_id;
1035 struct mei_txe_hw *hw = to_txe_hw(dev);
1036 struct mei_cl_cb complete_list;
1037 s32 slots;
1038 int rets = 0;
1039
1040 dev_dbg(dev->dev, "irq thread: Interrupt Registers HHISR|HISR|SEC=%02X|%04X|%02X\n",
1041 mei_txe_br_reg_read(hw, HHISR_REG),
1042 mei_txe_br_reg_read(hw, HISR_REG),
1043 mei_txe_sec_reg_read_silent(hw, SEC_IPC_HOST_INT_STATUS_REG));
1044
1045
1046 /* initialize our complete list */
1047 mutex_lock(&dev->device_lock);
1048 mei_io_list_init(&complete_list);
1049
1050 if (pci_dev_msi_enabled(to_pci_dev(dev->dev)))
1051 mei_txe_check_and_ack_intrs(dev, true);
1052
1053 /* show irq events */
1054 mei_txe_pending_interrupts(dev);
1055
1056 hw->aliveness = mei_txe_aliveness_get(dev);
1057 hw->readiness = mei_txe_readiness_get(dev);
1058
1059 /* Readiness:
1060 * Detection of TXE driver going through reset
1061 * or TXE driver resetting the HECI interface.
1062 */
1063 if (test_and_clear_bit(TXE_INTR_READINESS_BIT, &hw->intr_cause)) {
1064 dev_dbg(dev->dev, "Readiness Interrupt was received...\n");
1065
1066 /* Check if SeC is going through reset */
1067 if (mei_txe_readiness_is_sec_rdy(hw->readiness)) {
1068 dev_dbg(dev->dev, "we need to start the dev.\n");
1069 dev->recvd_hw_ready = true;
1070 } else {
1071 dev->recvd_hw_ready = false;
1072 if (dev->dev_state != MEI_DEV_RESETTING) {
1073
1074 dev_warn(dev->dev, "FW not ready: resetting.\n");
1075 schedule_work(&dev->reset_work);
1076 goto end;
1077
1078 }
1079 }
1080 wake_up(&dev->wait_hw_ready);
1081 }
1082
1083 /************************************************************/
1084 /* Check interrupt cause:
1085 * Aliveness: Detection of SeC acknowledge of host request that
1086 * it remain alive or host cancellation of that request.
1087 */
1088
1089 if (test_and_clear_bit(TXE_INTR_ALIVENESS_BIT, &hw->intr_cause)) {
1090 /* Clear the interrupt cause */
1091 dev_dbg(dev->dev,
1092 "Aliveness Interrupt: Status: %d\n", hw->aliveness);
1093 dev->pg_event = MEI_PG_EVENT_RECEIVED;
1094 if (waitqueue_active(&hw->wait_aliveness_resp))
1095 wake_up(&hw->wait_aliveness_resp);
1096 }
1097
1098
1099 /* Output Doorbell:
1100 * Detection of SeC having sent output to host
1101 */
1102 slots = mei_count_full_read_slots(dev);
1103 if (test_and_clear_bit(TXE_INTR_OUT_DB_BIT, &hw->intr_cause)) {
1104 /* Read from TXE */
1105 rets = mei_irq_read_handler(dev, &complete_list, &slots);
1106 if (rets && dev->dev_state != MEI_DEV_RESETTING) {
1107 dev_err(dev->dev,
1108 "mei_irq_read_handler ret = %d.\n", rets);
1109
1110 schedule_work(&dev->reset_work);
1111 goto end;
1112 }
1113 }
1114 /* Input Ready: Detection if host can write to SeC */
1115 if (test_and_clear_bit(TXE_INTR_IN_READY_BIT, &hw->intr_cause)) {
1116 dev->hbuf_is_ready = true;
1117 hw->slots = dev->hbuf_depth;
1118 }
1119
1120 if (hw->aliveness && dev->hbuf_is_ready) {
1121 /* get the real register value */
1122 dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1123 rets = mei_irq_write_handler(dev, &complete_list);
1124 if (rets && rets != -EMSGSIZE)
1125 dev_err(dev->dev, "mei_irq_write_handler ret = %d.\n",
1126 rets);
1127 dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1128 }
1129
1130 mei_irq_compl_handler(dev, &complete_list);
1131
1132 end:
1133 dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets);
1134
1135 mutex_unlock(&dev->device_lock);
1136
1137 mei_enable_interrupts(dev);
1138 return IRQ_HANDLED;
1139 }
1140
1141 static const struct mei_hw_ops mei_txe_hw_ops = {
1142
1143 .host_is_ready = mei_txe_host_is_ready,
1144
1145 .fw_status = mei_txe_fw_status,
1146 .pg_state = mei_txe_pg_state,
1147
1148 .hw_is_ready = mei_txe_hw_is_ready,
1149 .hw_reset = mei_txe_hw_reset,
1150 .hw_config = mei_txe_hw_config,
1151 .hw_start = mei_txe_hw_start,
1152
1153 .pg_in_transition = mei_txe_pg_in_transition,
1154 .pg_is_enabled = mei_txe_pg_is_enabled,
1155
1156 .intr_clear = mei_txe_intr_clear,
1157 .intr_enable = mei_txe_intr_enable,
1158 .intr_disable = mei_txe_intr_disable,
1159
1160 .hbuf_free_slots = mei_txe_hbuf_empty_slots,
1161 .hbuf_is_ready = mei_txe_is_input_ready,
1162 .hbuf_max_len = mei_txe_hbuf_max_len,
1163
1164 .write = mei_txe_write,
1165
1166 .rdbuf_full_slots = mei_txe_count_full_read_slots,
1167 .read_hdr = mei_txe_read_hdr,
1168
1169 .read = mei_txe_read,
1170
1171 };
1172
1173 /**
1174 * mei_txe_dev_init - allocates and initializes txe hardware specific structure
1175 *
1176 * @pdev: pci device
1177 *
1178 * Return: struct mei_device * on success or NULL
1179 */
1180 struct mei_device *mei_txe_dev_init(struct pci_dev *pdev)
1181 {
1182 struct mei_device *dev;
1183 struct mei_txe_hw *hw;
1184
1185 dev = kzalloc(sizeof(struct mei_device) +
1186 sizeof(struct mei_txe_hw), GFP_KERNEL);
1187 if (!dev)
1188 return NULL;
1189
1190 mei_device_init(dev, &pdev->dev, &mei_txe_hw_ops);
1191
1192 hw = to_txe_hw(dev);
1193
1194 init_waitqueue_head(&hw->wait_aliveness_resp);
1195
1196 return dev;
1197 }
1198
1199 /**
1200 * mei_txe_setup_satt2 - SATT2 configuration for DMA support.
1201 *
1202 * @dev: the device structure
1203 * @addr: physical address start of the range
1204 * @range: physical range size
1205 *
1206 * Return: 0 on success an error code otherwise
1207 */
1208 int mei_txe_setup_satt2(struct mei_device *dev, phys_addr_t addr, u32 range)
1209 {
1210 struct mei_txe_hw *hw = to_txe_hw(dev);
1211
1212 u32 lo32 = lower_32_bits(addr);
1213 u32 hi32 = upper_32_bits(addr);
1214 u32 ctrl;
1215
1216 /* SATT is limited to 36 Bits */
1217 if (hi32 & ~0xF)
1218 return -EINVAL;
1219
1220 /* SATT has to be 16Byte aligned */
1221 if (lo32 & 0xF)
1222 return -EINVAL;
1223
1224 /* SATT range has to be 4Bytes aligned */
1225 if (range & 0x4)
1226 return -EINVAL;
1227
1228 /* SATT is limited to 32 MB range*/
1229 if (range > SATT_RANGE_MAX)
1230 return -EINVAL;
1231
1232 ctrl = SATT2_CTRL_VALID_MSK;
1233 ctrl |= hi32 << SATT2_CTRL_BR_BASE_ADDR_REG_SHIFT;
1234
1235 mei_txe_br_reg_write(hw, SATT2_SAP_SIZE_REG, range);
1236 mei_txe_br_reg_write(hw, SATT2_BRG_BA_LSB_REG, lo32);
1237 mei_txe_br_reg_write(hw, SATT2_CTRL_REG, ctrl);
1238 dev_dbg(dev->dev, "SATT2: SAP_SIZE_OFFSET=0x%08X, BRG_BA_LSB_OFFSET=0x%08X, CTRL_OFFSET=0x%08X\n",
1239 range, lo32, ctrl);
1240
1241 return 0;
1242 }
This page took 0.081015 seconds and 5 git commands to generate.