Merge branches 'pm-opp' and 'pm-cpufreq-fixes'
[deliverable/linux.git] / drivers / misc / sgi-gru / grukservices.c
1 /*
2 * SN Platform GRU Driver
3 *
4 * KERNEL SERVICES THAT USE THE GRU
5 *
6 * Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 */
22
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/slab.h>
26 #include <linux/mm.h>
27 #include <linux/spinlock.h>
28 #include <linux/device.h>
29 #include <linux/miscdevice.h>
30 #include <linux/proc_fs.h>
31 #include <linux/interrupt.h>
32 #include <linux/uaccess.h>
33 #include <linux/delay.h>
34 #include <linux/export.h>
35 #include <asm/io_apic.h>
36 #include "gru.h"
37 #include "grulib.h"
38 #include "grutables.h"
39 #include "grukservices.h"
40 #include "gru_instructions.h"
41 #include <asm/uv/uv_hub.h>
42
43 /*
44 * Kernel GRU Usage
45 *
46 * The following is an interim algorithm for management of kernel GRU
47 * resources. This will likely be replaced when we better understand the
48 * kernel/user requirements.
49 *
50 * Blade percpu resources reserved for kernel use. These resources are
51 * reserved whenever the the kernel context for the blade is loaded. Note
52 * that the kernel context is not guaranteed to be always available. It is
53 * loaded on demand & can be stolen by a user if the user demand exceeds the
54 * kernel demand. The kernel can always reload the kernel context but
55 * a SLEEP may be required!!!.
56 *
57 * Async Overview:
58 *
59 * Each blade has one "kernel context" that owns GRU kernel resources
60 * located on the blade. Kernel drivers use GRU resources in this context
61 * for sending messages, zeroing memory, etc.
62 *
63 * The kernel context is dynamically loaded on demand. If it is not in
64 * use by the kernel, the kernel context can be unloaded & given to a user.
65 * The kernel context will be reloaded when needed. This may require that
66 * a context be stolen from a user.
67 * NOTE: frequent unloading/reloading of the kernel context is
68 * expensive. We are depending on batch schedulers, cpusets, sane
69 * drivers or some other mechanism to prevent the need for frequent
70 * stealing/reloading.
71 *
72 * The kernel context consists of two parts:
73 * - 1 CB & a few DSRs that are reserved for each cpu on the blade.
74 * Each cpu has it's own private resources & does not share them
75 * with other cpus. These resources are used serially, ie,
76 * locked, used & unlocked on each call to a function in
77 * grukservices.
78 * (Now that we have dynamic loading of kernel contexts, I
79 * may rethink this & allow sharing between cpus....)
80 *
81 * - Additional resources can be reserved long term & used directly
82 * by UV drivers located in the kernel. Drivers using these GRU
83 * resources can use asynchronous GRU instructions that send
84 * interrupts on completion.
85 * - these resources must be explicitly locked/unlocked
86 * - locked resources prevent (obviously) the kernel
87 * context from being unloaded.
88 * - drivers using these resource directly issue their own
89 * GRU instruction and must wait/check completion.
90 *
91 * When these resources are reserved, the caller can optionally
92 * associate a wait_queue with the resources and use asynchronous
93 * GRU instructions. When an async GRU instruction completes, the
94 * driver will do a wakeup on the event.
95 *
96 */
97
98
99 #define ASYNC_HAN_TO_BID(h) ((h) - 1)
100 #define ASYNC_BID_TO_HAN(b) ((b) + 1)
101 #define ASYNC_HAN_TO_BS(h) gru_base[ASYNC_HAN_TO_BID(h)]
102
103 #define GRU_NUM_KERNEL_CBR 1
104 #define GRU_NUM_KERNEL_DSR_BYTES 256
105 #define GRU_NUM_KERNEL_DSR_CL (GRU_NUM_KERNEL_DSR_BYTES / \
106 GRU_CACHE_LINE_BYTES)
107
108 /* GRU instruction attributes for all instructions */
109 #define IMA IMA_CB_DELAY
110
111 /* GRU cacheline size is always 64 bytes - even on arches with 128 byte lines */
112 #define __gru_cacheline_aligned__ \
113 __attribute__((__aligned__(GRU_CACHE_LINE_BYTES)))
114
115 #define MAGIC 0x1234567887654321UL
116
117 /* Default retry count for GRU errors on kernel instructions */
118 #define EXCEPTION_RETRY_LIMIT 3
119
120 /* Status of message queue sections */
121 #define MQS_EMPTY 0
122 #define MQS_FULL 1
123 #define MQS_NOOP 2
124
125 /*----------------- RESOURCE MANAGEMENT -------------------------------------*/
126 /* optimized for x86_64 */
127 struct message_queue {
128 union gru_mesqhead head __gru_cacheline_aligned__; /* CL 0 */
129 int qlines; /* DW 1 */
130 long hstatus[2];
131 void *next __gru_cacheline_aligned__;/* CL 1 */
132 void *limit;
133 void *start;
134 void *start2;
135 char data ____cacheline_aligned; /* CL 2 */
136 };
137
138 /* First word in every message - used by mesq interface */
139 struct message_header {
140 char present;
141 char present2;
142 char lines;
143 char fill;
144 };
145
146 #define HSTATUS(mq, h) ((mq) + offsetof(struct message_queue, hstatus[h]))
147
148 /*
149 * Reload the blade's kernel context into a GRU chiplet. Called holding
150 * the bs_kgts_sema for READ. Will steal user contexts if necessary.
151 */
152 static void gru_load_kernel_context(struct gru_blade_state *bs, int blade_id)
153 {
154 struct gru_state *gru;
155 struct gru_thread_state *kgts;
156 void *vaddr;
157 int ctxnum, ncpus;
158
159 up_read(&bs->bs_kgts_sema);
160 down_write(&bs->bs_kgts_sema);
161
162 if (!bs->bs_kgts) {
163 do {
164 bs->bs_kgts = gru_alloc_gts(NULL, 0, 0, 0, 0, 0);
165 if (!IS_ERR(bs->bs_kgts))
166 break;
167 msleep(1);
168 } while (true);
169 bs->bs_kgts->ts_user_blade_id = blade_id;
170 }
171 kgts = bs->bs_kgts;
172
173 if (!kgts->ts_gru) {
174 STAT(load_kernel_context);
175 ncpus = uv_blade_nr_possible_cpus(blade_id);
176 kgts->ts_cbr_au_count = GRU_CB_COUNT_TO_AU(
177 GRU_NUM_KERNEL_CBR * ncpus + bs->bs_async_cbrs);
178 kgts->ts_dsr_au_count = GRU_DS_BYTES_TO_AU(
179 GRU_NUM_KERNEL_DSR_BYTES * ncpus +
180 bs->bs_async_dsr_bytes);
181 while (!gru_assign_gru_context(kgts)) {
182 msleep(1);
183 gru_steal_context(kgts);
184 }
185 gru_load_context(kgts);
186 gru = bs->bs_kgts->ts_gru;
187 vaddr = gru->gs_gru_base_vaddr;
188 ctxnum = kgts->ts_ctxnum;
189 bs->kernel_cb = get_gseg_base_address_cb(vaddr, ctxnum, 0);
190 bs->kernel_dsr = get_gseg_base_address_ds(vaddr, ctxnum, 0);
191 }
192 downgrade_write(&bs->bs_kgts_sema);
193 }
194
195 /*
196 * Free all kernel contexts that are not currently in use.
197 * Returns 0 if all freed, else number of inuse context.
198 */
199 static int gru_free_kernel_contexts(void)
200 {
201 struct gru_blade_state *bs;
202 struct gru_thread_state *kgts;
203 int bid, ret = 0;
204
205 for (bid = 0; bid < GRU_MAX_BLADES; bid++) {
206 bs = gru_base[bid];
207 if (!bs)
208 continue;
209
210 /* Ignore busy contexts. Don't want to block here. */
211 if (down_write_trylock(&bs->bs_kgts_sema)) {
212 kgts = bs->bs_kgts;
213 if (kgts && kgts->ts_gru)
214 gru_unload_context(kgts, 0);
215 bs->bs_kgts = NULL;
216 up_write(&bs->bs_kgts_sema);
217 kfree(kgts);
218 } else {
219 ret++;
220 }
221 }
222 return ret;
223 }
224
225 /*
226 * Lock & load the kernel context for the specified blade.
227 */
228 static struct gru_blade_state *gru_lock_kernel_context(int blade_id)
229 {
230 struct gru_blade_state *bs;
231 int bid;
232
233 STAT(lock_kernel_context);
234 again:
235 bid = blade_id < 0 ? uv_numa_blade_id() : blade_id;
236 bs = gru_base[bid];
237
238 /* Handle the case where migration occurred while waiting for the sema */
239 down_read(&bs->bs_kgts_sema);
240 if (blade_id < 0 && bid != uv_numa_blade_id()) {
241 up_read(&bs->bs_kgts_sema);
242 goto again;
243 }
244 if (!bs->bs_kgts || !bs->bs_kgts->ts_gru)
245 gru_load_kernel_context(bs, bid);
246 return bs;
247
248 }
249
250 /*
251 * Unlock the kernel context for the specified blade. Context is not
252 * unloaded but may be stolen before next use.
253 */
254 static void gru_unlock_kernel_context(int blade_id)
255 {
256 struct gru_blade_state *bs;
257
258 bs = gru_base[blade_id];
259 up_read(&bs->bs_kgts_sema);
260 STAT(unlock_kernel_context);
261 }
262
263 /*
264 * Reserve & get pointers to the DSR/CBRs reserved for the current cpu.
265 * - returns with preemption disabled
266 */
267 static int gru_get_cpu_resources(int dsr_bytes, void **cb, void **dsr)
268 {
269 struct gru_blade_state *bs;
270 int lcpu;
271
272 BUG_ON(dsr_bytes > GRU_NUM_KERNEL_DSR_BYTES);
273 preempt_disable();
274 bs = gru_lock_kernel_context(-1);
275 lcpu = uv_blade_processor_id();
276 *cb = bs->kernel_cb + lcpu * GRU_HANDLE_STRIDE;
277 *dsr = bs->kernel_dsr + lcpu * GRU_NUM_KERNEL_DSR_BYTES;
278 return 0;
279 }
280
281 /*
282 * Free the current cpus reserved DSR/CBR resources.
283 */
284 static void gru_free_cpu_resources(void *cb, void *dsr)
285 {
286 gru_unlock_kernel_context(uv_numa_blade_id());
287 preempt_enable();
288 }
289
290 /*
291 * Reserve GRU resources to be used asynchronously.
292 * Note: currently supports only 1 reservation per blade.
293 *
294 * input:
295 * blade_id - blade on which resources should be reserved
296 * cbrs - number of CBRs
297 * dsr_bytes - number of DSR bytes needed
298 * output:
299 * handle to identify resource
300 * (0 = async resources already reserved)
301 */
302 unsigned long gru_reserve_async_resources(int blade_id, int cbrs, int dsr_bytes,
303 struct completion *cmp)
304 {
305 struct gru_blade_state *bs;
306 struct gru_thread_state *kgts;
307 int ret = 0;
308
309 bs = gru_base[blade_id];
310
311 down_write(&bs->bs_kgts_sema);
312
313 /* Verify no resources already reserved */
314 if (bs->bs_async_dsr_bytes + bs->bs_async_cbrs)
315 goto done;
316 bs->bs_async_dsr_bytes = dsr_bytes;
317 bs->bs_async_cbrs = cbrs;
318 bs->bs_async_wq = cmp;
319 kgts = bs->bs_kgts;
320
321 /* Resources changed. Unload context if already loaded */
322 if (kgts && kgts->ts_gru)
323 gru_unload_context(kgts, 0);
324 ret = ASYNC_BID_TO_HAN(blade_id);
325
326 done:
327 up_write(&bs->bs_kgts_sema);
328 return ret;
329 }
330
331 /*
332 * Release async resources previously reserved.
333 *
334 * input:
335 * han - handle to identify resources
336 */
337 void gru_release_async_resources(unsigned long han)
338 {
339 struct gru_blade_state *bs = ASYNC_HAN_TO_BS(han);
340
341 down_write(&bs->bs_kgts_sema);
342 bs->bs_async_dsr_bytes = 0;
343 bs->bs_async_cbrs = 0;
344 bs->bs_async_wq = NULL;
345 up_write(&bs->bs_kgts_sema);
346 }
347
348 /*
349 * Wait for async GRU instructions to complete.
350 *
351 * input:
352 * han - handle to identify resources
353 */
354 void gru_wait_async_cbr(unsigned long han)
355 {
356 struct gru_blade_state *bs = ASYNC_HAN_TO_BS(han);
357
358 wait_for_completion(bs->bs_async_wq);
359 mb();
360 }
361
362 /*
363 * Lock previous reserved async GRU resources
364 *
365 * input:
366 * han - handle to identify resources
367 * output:
368 * cb - pointer to first CBR
369 * dsr - pointer to first DSR
370 */
371 void gru_lock_async_resource(unsigned long han, void **cb, void **dsr)
372 {
373 struct gru_blade_state *bs = ASYNC_HAN_TO_BS(han);
374 int blade_id = ASYNC_HAN_TO_BID(han);
375 int ncpus;
376
377 gru_lock_kernel_context(blade_id);
378 ncpus = uv_blade_nr_possible_cpus(blade_id);
379 if (cb)
380 *cb = bs->kernel_cb + ncpus * GRU_HANDLE_STRIDE;
381 if (dsr)
382 *dsr = bs->kernel_dsr + ncpus * GRU_NUM_KERNEL_DSR_BYTES;
383 }
384
385 /*
386 * Unlock previous reserved async GRU resources
387 *
388 * input:
389 * han - handle to identify resources
390 */
391 void gru_unlock_async_resource(unsigned long han)
392 {
393 int blade_id = ASYNC_HAN_TO_BID(han);
394
395 gru_unlock_kernel_context(blade_id);
396 }
397
398 /*----------------------------------------------------------------------*/
399 int gru_get_cb_exception_detail(void *cb,
400 struct control_block_extended_exc_detail *excdet)
401 {
402 struct gru_control_block_extended *cbe;
403 struct gru_thread_state *kgts = NULL;
404 unsigned long off;
405 int cbrnum, bid;
406
407 /*
408 * Locate kgts for cb. This algorithm is SLOW but
409 * this function is rarely called (ie., almost never).
410 * Performance does not matter.
411 */
412 for_each_possible_blade(bid) {
413 if (!gru_base[bid])
414 break;
415 kgts = gru_base[bid]->bs_kgts;
416 if (!kgts || !kgts->ts_gru)
417 continue;
418 off = cb - kgts->ts_gru->gs_gru_base_vaddr;
419 if (off < GRU_SIZE)
420 break;
421 kgts = NULL;
422 }
423 BUG_ON(!kgts);
424 cbrnum = thread_cbr_number(kgts, get_cb_number(cb));
425 cbe = get_cbe(GRUBASE(cb), cbrnum);
426 gru_flush_cache(cbe); /* CBE not coherent */
427 sync_core();
428 excdet->opc = cbe->opccpy;
429 excdet->exopc = cbe->exopccpy;
430 excdet->ecause = cbe->ecause;
431 excdet->exceptdet0 = cbe->idef1upd;
432 excdet->exceptdet1 = cbe->idef3upd;
433 gru_flush_cache(cbe);
434 return 0;
435 }
436
437 static char *gru_get_cb_exception_detail_str(int ret, void *cb,
438 char *buf, int size)
439 {
440 struct gru_control_block_status *gen = (void *)cb;
441 struct control_block_extended_exc_detail excdet;
442
443 if (ret > 0 && gen->istatus == CBS_EXCEPTION) {
444 gru_get_cb_exception_detail(cb, &excdet);
445 snprintf(buf, size,
446 "GRU:%d exception: cb %p, opc %d, exopc %d, ecause 0x%x,"
447 "excdet0 0x%lx, excdet1 0x%x", smp_processor_id(),
448 gen, excdet.opc, excdet.exopc, excdet.ecause,
449 excdet.exceptdet0, excdet.exceptdet1);
450 } else {
451 snprintf(buf, size, "No exception");
452 }
453 return buf;
454 }
455
456 static int gru_wait_idle_or_exception(struct gru_control_block_status *gen)
457 {
458 while (gen->istatus >= CBS_ACTIVE) {
459 cpu_relax();
460 barrier();
461 }
462 return gen->istatus;
463 }
464
465 static int gru_retry_exception(void *cb)
466 {
467 struct gru_control_block_status *gen = (void *)cb;
468 struct control_block_extended_exc_detail excdet;
469 int retry = EXCEPTION_RETRY_LIMIT;
470
471 while (1) {
472 if (gru_wait_idle_or_exception(gen) == CBS_IDLE)
473 return CBS_IDLE;
474 if (gru_get_cb_message_queue_substatus(cb))
475 return CBS_EXCEPTION;
476 gru_get_cb_exception_detail(cb, &excdet);
477 if ((excdet.ecause & ~EXCEPTION_RETRY_BITS) ||
478 (excdet.cbrexecstatus & CBR_EXS_ABORT_OCC))
479 break;
480 if (retry-- == 0)
481 break;
482 gen->icmd = 1;
483 gru_flush_cache(gen);
484 }
485 return CBS_EXCEPTION;
486 }
487
488 int gru_check_status_proc(void *cb)
489 {
490 struct gru_control_block_status *gen = (void *)cb;
491 int ret;
492
493 ret = gen->istatus;
494 if (ret == CBS_EXCEPTION)
495 ret = gru_retry_exception(cb);
496 rmb();
497 return ret;
498
499 }
500
501 int gru_wait_proc(void *cb)
502 {
503 struct gru_control_block_status *gen = (void *)cb;
504 int ret;
505
506 ret = gru_wait_idle_or_exception(gen);
507 if (ret == CBS_EXCEPTION)
508 ret = gru_retry_exception(cb);
509 rmb();
510 return ret;
511 }
512
513 static void gru_abort(int ret, void *cb, char *str)
514 {
515 char buf[GRU_EXC_STR_SIZE];
516
517 panic("GRU FATAL ERROR: %s - %s\n", str,
518 gru_get_cb_exception_detail_str(ret, cb, buf, sizeof(buf)));
519 }
520
521 void gru_wait_abort_proc(void *cb)
522 {
523 int ret;
524
525 ret = gru_wait_proc(cb);
526 if (ret)
527 gru_abort(ret, cb, "gru_wait_abort");
528 }
529
530
531 /*------------------------------ MESSAGE QUEUES -----------------------------*/
532
533 /* Internal status . These are NOT returned to the user. */
534 #define MQIE_AGAIN -1 /* try again */
535
536
537 /*
538 * Save/restore the "present" flag that is in the second line of 2-line
539 * messages
540 */
541 static inline int get_present2(void *p)
542 {
543 struct message_header *mhdr = p + GRU_CACHE_LINE_BYTES;
544 return mhdr->present;
545 }
546
547 static inline void restore_present2(void *p, int val)
548 {
549 struct message_header *mhdr = p + GRU_CACHE_LINE_BYTES;
550 mhdr->present = val;
551 }
552
553 /*
554 * Create a message queue.
555 * qlines - message queue size in cache lines. Includes 2-line header.
556 */
557 int gru_create_message_queue(struct gru_message_queue_desc *mqd,
558 void *p, unsigned int bytes, int nasid, int vector, int apicid)
559 {
560 struct message_queue *mq = p;
561 unsigned int qlines;
562
563 qlines = bytes / GRU_CACHE_LINE_BYTES - 2;
564 memset(mq, 0, bytes);
565 mq->start = &mq->data;
566 mq->start2 = &mq->data + (qlines / 2 - 1) * GRU_CACHE_LINE_BYTES;
567 mq->next = &mq->data;
568 mq->limit = &mq->data + (qlines - 2) * GRU_CACHE_LINE_BYTES;
569 mq->qlines = qlines;
570 mq->hstatus[0] = 0;
571 mq->hstatus[1] = 1;
572 mq->head = gru_mesq_head(2, qlines / 2 + 1);
573 mqd->mq = mq;
574 mqd->mq_gpa = uv_gpa(mq);
575 mqd->qlines = qlines;
576 mqd->interrupt_pnode = nasid >> 1;
577 mqd->interrupt_vector = vector;
578 mqd->interrupt_apicid = apicid;
579 return 0;
580 }
581 EXPORT_SYMBOL_GPL(gru_create_message_queue);
582
583 /*
584 * Send a NOOP message to a message queue
585 * Returns:
586 * 0 - if queue is full after the send. This is the normal case
587 * but various races can change this.
588 * -1 - if mesq sent successfully but queue not full
589 * >0 - unexpected error. MQE_xxx returned
590 */
591 static int send_noop_message(void *cb, struct gru_message_queue_desc *mqd,
592 void *mesg)
593 {
594 const struct message_header noop_header = {
595 .present = MQS_NOOP, .lines = 1};
596 unsigned long m;
597 int substatus, ret;
598 struct message_header save_mhdr, *mhdr = mesg;
599
600 STAT(mesq_noop);
601 save_mhdr = *mhdr;
602 *mhdr = noop_header;
603 gru_mesq(cb, mqd->mq_gpa, gru_get_tri(mhdr), 1, IMA);
604 ret = gru_wait(cb);
605
606 if (ret) {
607 substatus = gru_get_cb_message_queue_substatus(cb);
608 switch (substatus) {
609 case CBSS_NO_ERROR:
610 STAT(mesq_noop_unexpected_error);
611 ret = MQE_UNEXPECTED_CB_ERR;
612 break;
613 case CBSS_LB_OVERFLOWED:
614 STAT(mesq_noop_lb_overflow);
615 ret = MQE_CONGESTION;
616 break;
617 case CBSS_QLIMIT_REACHED:
618 STAT(mesq_noop_qlimit_reached);
619 ret = 0;
620 break;
621 case CBSS_AMO_NACKED:
622 STAT(mesq_noop_amo_nacked);
623 ret = MQE_CONGESTION;
624 break;
625 case CBSS_PUT_NACKED:
626 STAT(mesq_noop_put_nacked);
627 m = mqd->mq_gpa + (gru_get_amo_value_head(cb) << 6);
628 gru_vstore(cb, m, gru_get_tri(mesg), XTYPE_CL, 1, 1,
629 IMA);
630 if (gru_wait(cb) == CBS_IDLE)
631 ret = MQIE_AGAIN;
632 else
633 ret = MQE_UNEXPECTED_CB_ERR;
634 break;
635 case CBSS_PAGE_OVERFLOW:
636 STAT(mesq_noop_page_overflow);
637 /* fallthru */
638 default:
639 BUG();
640 }
641 }
642 *mhdr = save_mhdr;
643 return ret;
644 }
645
646 /*
647 * Handle a gru_mesq full.
648 */
649 static int send_message_queue_full(void *cb, struct gru_message_queue_desc *mqd,
650 void *mesg, int lines)
651 {
652 union gru_mesqhead mqh;
653 unsigned int limit, head;
654 unsigned long avalue;
655 int half, qlines;
656
657 /* Determine if switching to first/second half of q */
658 avalue = gru_get_amo_value(cb);
659 head = gru_get_amo_value_head(cb);
660 limit = gru_get_amo_value_limit(cb);
661
662 qlines = mqd->qlines;
663 half = (limit != qlines);
664
665 if (half)
666 mqh = gru_mesq_head(qlines / 2 + 1, qlines);
667 else
668 mqh = gru_mesq_head(2, qlines / 2 + 1);
669
670 /* Try to get lock for switching head pointer */
671 gru_gamir(cb, EOP_IR_CLR, HSTATUS(mqd->mq_gpa, half), XTYPE_DW, IMA);
672 if (gru_wait(cb) != CBS_IDLE)
673 goto cberr;
674 if (!gru_get_amo_value(cb)) {
675 STAT(mesq_qf_locked);
676 return MQE_QUEUE_FULL;
677 }
678
679 /* Got the lock. Send optional NOP if queue not full, */
680 if (head != limit) {
681 if (send_noop_message(cb, mqd, mesg)) {
682 gru_gamir(cb, EOP_IR_INC, HSTATUS(mqd->mq_gpa, half),
683 XTYPE_DW, IMA);
684 if (gru_wait(cb) != CBS_IDLE)
685 goto cberr;
686 STAT(mesq_qf_noop_not_full);
687 return MQIE_AGAIN;
688 }
689 avalue++;
690 }
691
692 /* Then flip queuehead to other half of queue. */
693 gru_gamer(cb, EOP_ERR_CSWAP, mqd->mq_gpa, XTYPE_DW, mqh.val, avalue,
694 IMA);
695 if (gru_wait(cb) != CBS_IDLE)
696 goto cberr;
697
698 /* If not successfully in swapping queue head, clear the hstatus lock */
699 if (gru_get_amo_value(cb) != avalue) {
700 STAT(mesq_qf_switch_head_failed);
701 gru_gamir(cb, EOP_IR_INC, HSTATUS(mqd->mq_gpa, half), XTYPE_DW,
702 IMA);
703 if (gru_wait(cb) != CBS_IDLE)
704 goto cberr;
705 }
706 return MQIE_AGAIN;
707 cberr:
708 STAT(mesq_qf_unexpected_error);
709 return MQE_UNEXPECTED_CB_ERR;
710 }
711
712 /*
713 * Handle a PUT failure. Note: if message was a 2-line message, one of the
714 * lines might have successfully have been written. Before sending the
715 * message, "present" must be cleared in BOTH lines to prevent the receiver
716 * from prematurely seeing the full message.
717 */
718 static int send_message_put_nacked(void *cb, struct gru_message_queue_desc *mqd,
719 void *mesg, int lines)
720 {
721 unsigned long m;
722 int ret, loops = 200; /* experimentally determined */
723
724 m = mqd->mq_gpa + (gru_get_amo_value_head(cb) << 6);
725 if (lines == 2) {
726 gru_vset(cb, m, 0, XTYPE_CL, lines, 1, IMA);
727 if (gru_wait(cb) != CBS_IDLE)
728 return MQE_UNEXPECTED_CB_ERR;
729 }
730 gru_vstore(cb, m, gru_get_tri(mesg), XTYPE_CL, lines, 1, IMA);
731 if (gru_wait(cb) != CBS_IDLE)
732 return MQE_UNEXPECTED_CB_ERR;
733
734 if (!mqd->interrupt_vector)
735 return MQE_OK;
736
737 /*
738 * Send a noop message in order to deliver a cross-partition interrupt
739 * to the SSI that contains the target message queue. Normally, the
740 * interrupt is automatically delivered by hardware following mesq
741 * operations, but some error conditions require explicit delivery.
742 * The noop message will trigger delivery. Otherwise partition failures
743 * could cause unrecovered errors.
744 */
745 do {
746 ret = send_noop_message(cb, mqd, mesg);
747 } while ((ret == MQIE_AGAIN || ret == MQE_CONGESTION) && (loops-- > 0));
748
749 if (ret == MQIE_AGAIN || ret == MQE_CONGESTION) {
750 /*
751 * Don't indicate to the app to resend the message, as it's
752 * already been successfully sent. We simply send an OK
753 * (rather than fail the send with MQE_UNEXPECTED_CB_ERR),
754 * assuming that the other side is receiving enough
755 * interrupts to get this message processed anyway.
756 */
757 ret = MQE_OK;
758 }
759 return ret;
760 }
761
762 /*
763 * Handle a gru_mesq failure. Some of these failures are software recoverable
764 * or retryable.
765 */
766 static int send_message_failure(void *cb, struct gru_message_queue_desc *mqd,
767 void *mesg, int lines)
768 {
769 int substatus, ret = 0;
770
771 substatus = gru_get_cb_message_queue_substatus(cb);
772 switch (substatus) {
773 case CBSS_NO_ERROR:
774 STAT(mesq_send_unexpected_error);
775 ret = MQE_UNEXPECTED_CB_ERR;
776 break;
777 case CBSS_LB_OVERFLOWED:
778 STAT(mesq_send_lb_overflow);
779 ret = MQE_CONGESTION;
780 break;
781 case CBSS_QLIMIT_REACHED:
782 STAT(mesq_send_qlimit_reached);
783 ret = send_message_queue_full(cb, mqd, mesg, lines);
784 break;
785 case CBSS_AMO_NACKED:
786 STAT(mesq_send_amo_nacked);
787 ret = MQE_CONGESTION;
788 break;
789 case CBSS_PUT_NACKED:
790 STAT(mesq_send_put_nacked);
791 ret = send_message_put_nacked(cb, mqd, mesg, lines);
792 break;
793 case CBSS_PAGE_OVERFLOW:
794 STAT(mesq_page_overflow);
795 /* fallthru */
796 default:
797 BUG();
798 }
799 return ret;
800 }
801
802 /*
803 * Send a message to a message queue
804 * mqd message queue descriptor
805 * mesg message. ust be vaddr within a GSEG
806 * bytes message size (<= 2 CL)
807 */
808 int gru_send_message_gpa(struct gru_message_queue_desc *mqd, void *mesg,
809 unsigned int bytes)
810 {
811 struct message_header *mhdr;
812 void *cb;
813 void *dsr;
814 int istatus, clines, ret;
815
816 STAT(mesq_send);
817 BUG_ON(bytes < sizeof(int) || bytes > 2 * GRU_CACHE_LINE_BYTES);
818
819 clines = DIV_ROUND_UP(bytes, GRU_CACHE_LINE_BYTES);
820 if (gru_get_cpu_resources(bytes, &cb, &dsr))
821 return MQE_BUG_NO_RESOURCES;
822 memcpy(dsr, mesg, bytes);
823 mhdr = dsr;
824 mhdr->present = MQS_FULL;
825 mhdr->lines = clines;
826 if (clines == 2) {
827 mhdr->present2 = get_present2(mhdr);
828 restore_present2(mhdr, MQS_FULL);
829 }
830
831 do {
832 ret = MQE_OK;
833 gru_mesq(cb, mqd->mq_gpa, gru_get_tri(mhdr), clines, IMA);
834 istatus = gru_wait(cb);
835 if (istatus != CBS_IDLE)
836 ret = send_message_failure(cb, mqd, dsr, clines);
837 } while (ret == MQIE_AGAIN);
838 gru_free_cpu_resources(cb, dsr);
839
840 if (ret)
841 STAT(mesq_send_failed);
842 return ret;
843 }
844 EXPORT_SYMBOL_GPL(gru_send_message_gpa);
845
846 /*
847 * Advance the receive pointer for the queue to the next message.
848 */
849 void gru_free_message(struct gru_message_queue_desc *mqd, void *mesg)
850 {
851 struct message_queue *mq = mqd->mq;
852 struct message_header *mhdr = mq->next;
853 void *next, *pnext;
854 int half = -1;
855 int lines = mhdr->lines;
856
857 if (lines == 2)
858 restore_present2(mhdr, MQS_EMPTY);
859 mhdr->present = MQS_EMPTY;
860
861 pnext = mq->next;
862 next = pnext + GRU_CACHE_LINE_BYTES * lines;
863 if (next == mq->limit) {
864 next = mq->start;
865 half = 1;
866 } else if (pnext < mq->start2 && next >= mq->start2) {
867 half = 0;
868 }
869
870 if (half >= 0)
871 mq->hstatus[half] = 1;
872 mq->next = next;
873 }
874 EXPORT_SYMBOL_GPL(gru_free_message);
875
876 /*
877 * Get next message from message queue. Return NULL if no message
878 * present. User must call next_message() to move to next message.
879 * rmq message queue
880 */
881 void *gru_get_next_message(struct gru_message_queue_desc *mqd)
882 {
883 struct message_queue *mq = mqd->mq;
884 struct message_header *mhdr = mq->next;
885 int present = mhdr->present;
886
887 /* skip NOOP messages */
888 while (present == MQS_NOOP) {
889 gru_free_message(mqd, mhdr);
890 mhdr = mq->next;
891 present = mhdr->present;
892 }
893
894 /* Wait for both halves of 2 line messages */
895 if (present == MQS_FULL && mhdr->lines == 2 &&
896 get_present2(mhdr) == MQS_EMPTY)
897 present = MQS_EMPTY;
898
899 if (!present) {
900 STAT(mesq_receive_none);
901 return NULL;
902 }
903
904 if (mhdr->lines == 2)
905 restore_present2(mhdr, mhdr->present2);
906
907 STAT(mesq_receive);
908 return mhdr;
909 }
910 EXPORT_SYMBOL_GPL(gru_get_next_message);
911
912 /* ---------------------- GRU DATA COPY FUNCTIONS ---------------------------*/
913
914 /*
915 * Load a DW from a global GPA. The GPA can be a memory or MMR address.
916 */
917 int gru_read_gpa(unsigned long *value, unsigned long gpa)
918 {
919 void *cb;
920 void *dsr;
921 int ret, iaa;
922
923 STAT(read_gpa);
924 if (gru_get_cpu_resources(GRU_NUM_KERNEL_DSR_BYTES, &cb, &dsr))
925 return MQE_BUG_NO_RESOURCES;
926 iaa = gpa >> 62;
927 gru_vload_phys(cb, gpa, gru_get_tri(dsr), iaa, IMA);
928 ret = gru_wait(cb);
929 if (ret == CBS_IDLE)
930 *value = *(unsigned long *)dsr;
931 gru_free_cpu_resources(cb, dsr);
932 return ret;
933 }
934 EXPORT_SYMBOL_GPL(gru_read_gpa);
935
936
937 /*
938 * Copy a block of data using the GRU resources
939 */
940 int gru_copy_gpa(unsigned long dest_gpa, unsigned long src_gpa,
941 unsigned int bytes)
942 {
943 void *cb;
944 void *dsr;
945 int ret;
946
947 STAT(copy_gpa);
948 if (gru_get_cpu_resources(GRU_NUM_KERNEL_DSR_BYTES, &cb, &dsr))
949 return MQE_BUG_NO_RESOURCES;
950 gru_bcopy(cb, src_gpa, dest_gpa, gru_get_tri(dsr),
951 XTYPE_B, bytes, GRU_NUM_KERNEL_DSR_CL, IMA);
952 ret = gru_wait(cb);
953 gru_free_cpu_resources(cb, dsr);
954 return ret;
955 }
956 EXPORT_SYMBOL_GPL(gru_copy_gpa);
957
958 /* ------------------- KERNEL QUICKTESTS RUN AT STARTUP ----------------*/
959 /* Temp - will delete after we gain confidence in the GRU */
960
961 static int quicktest0(unsigned long arg)
962 {
963 unsigned long word0;
964 unsigned long word1;
965 void *cb;
966 void *dsr;
967 unsigned long *p;
968 int ret = -EIO;
969
970 if (gru_get_cpu_resources(GRU_CACHE_LINE_BYTES, &cb, &dsr))
971 return MQE_BUG_NO_RESOURCES;
972 p = dsr;
973 word0 = MAGIC;
974 word1 = 0;
975
976 gru_vload(cb, uv_gpa(&word0), gru_get_tri(dsr), XTYPE_DW, 1, 1, IMA);
977 if (gru_wait(cb) != CBS_IDLE) {
978 printk(KERN_DEBUG "GRU:%d quicktest0: CBR failure 1\n", smp_processor_id());
979 goto done;
980 }
981
982 if (*p != MAGIC) {
983 printk(KERN_DEBUG "GRU:%d quicktest0 bad magic 0x%lx\n", smp_processor_id(), *p);
984 goto done;
985 }
986 gru_vstore(cb, uv_gpa(&word1), gru_get_tri(dsr), XTYPE_DW, 1, 1, IMA);
987 if (gru_wait(cb) != CBS_IDLE) {
988 printk(KERN_DEBUG "GRU:%d quicktest0: CBR failure 2\n", smp_processor_id());
989 goto done;
990 }
991
992 if (word0 != word1 || word1 != MAGIC) {
993 printk(KERN_DEBUG
994 "GRU:%d quicktest0 err: found 0x%lx, expected 0x%lx\n",
995 smp_processor_id(), word1, MAGIC);
996 goto done;
997 }
998 ret = 0;
999
1000 done:
1001 gru_free_cpu_resources(cb, dsr);
1002 return ret;
1003 }
1004
1005 #define ALIGNUP(p, q) ((void *)(((unsigned long)(p) + (q) - 1) & ~(q - 1)))
1006
1007 static int quicktest1(unsigned long arg)
1008 {
1009 struct gru_message_queue_desc mqd;
1010 void *p, *mq;
1011 int i, ret = -EIO;
1012 char mes[GRU_CACHE_LINE_BYTES], *m;
1013
1014 /* Need 1K cacheline aligned that does not cross page boundary */
1015 p = kmalloc(4096, 0);
1016 if (p == NULL)
1017 return -ENOMEM;
1018 mq = ALIGNUP(p, 1024);
1019 memset(mes, 0xee, sizeof(mes));
1020
1021 gru_create_message_queue(&mqd, mq, 8 * GRU_CACHE_LINE_BYTES, 0, 0, 0);
1022 for (i = 0; i < 6; i++) {
1023 mes[8] = i;
1024 do {
1025 ret = gru_send_message_gpa(&mqd, mes, sizeof(mes));
1026 } while (ret == MQE_CONGESTION);
1027 if (ret)
1028 break;
1029 }
1030 if (ret != MQE_QUEUE_FULL || i != 4) {
1031 printk(KERN_DEBUG "GRU:%d quicktest1: unexpect status %d, i %d\n",
1032 smp_processor_id(), ret, i);
1033 goto done;
1034 }
1035
1036 for (i = 0; i < 6; i++) {
1037 m = gru_get_next_message(&mqd);
1038 if (!m || m[8] != i)
1039 break;
1040 gru_free_message(&mqd, m);
1041 }
1042 if (i != 4) {
1043 printk(KERN_DEBUG "GRU:%d quicktest2: bad message, i %d, m %p, m8 %d\n",
1044 smp_processor_id(), i, m, m ? m[8] : -1);
1045 goto done;
1046 }
1047 ret = 0;
1048
1049 done:
1050 kfree(p);
1051 return ret;
1052 }
1053
1054 static int quicktest2(unsigned long arg)
1055 {
1056 static DECLARE_COMPLETION(cmp);
1057 unsigned long han;
1058 int blade_id = 0;
1059 int numcb = 4;
1060 int ret = 0;
1061 unsigned long *buf;
1062 void *cb0, *cb;
1063 struct gru_control_block_status *gen;
1064 int i, k, istatus, bytes;
1065
1066 bytes = numcb * 4 * 8;
1067 buf = kmalloc(bytes, GFP_KERNEL);
1068 if (!buf)
1069 return -ENOMEM;
1070
1071 ret = -EBUSY;
1072 han = gru_reserve_async_resources(blade_id, numcb, 0, &cmp);
1073 if (!han)
1074 goto done;
1075
1076 gru_lock_async_resource(han, &cb0, NULL);
1077 memset(buf, 0xee, bytes);
1078 for (i = 0; i < numcb; i++)
1079 gru_vset(cb0 + i * GRU_HANDLE_STRIDE, uv_gpa(&buf[i * 4]), 0,
1080 XTYPE_DW, 4, 1, IMA_INTERRUPT);
1081
1082 ret = 0;
1083 k = numcb;
1084 do {
1085 gru_wait_async_cbr(han);
1086 for (i = 0; i < numcb; i++) {
1087 cb = cb0 + i * GRU_HANDLE_STRIDE;
1088 istatus = gru_check_status(cb);
1089 if (istatus != CBS_ACTIVE && istatus != CBS_CALL_OS)
1090 break;
1091 }
1092 if (i == numcb)
1093 continue;
1094 if (istatus != CBS_IDLE) {
1095 printk(KERN_DEBUG "GRU:%d quicktest2: cb %d, exception\n", smp_processor_id(), i);
1096 ret = -EFAULT;
1097 } else if (buf[4 * i] || buf[4 * i + 1] || buf[4 * i + 2] ||
1098 buf[4 * i + 3]) {
1099 printk(KERN_DEBUG "GRU:%d quicktest2:cb %d, buf 0x%lx, 0x%lx, 0x%lx, 0x%lx\n",
1100 smp_processor_id(), i, buf[4 * i], buf[4 * i + 1], buf[4 * i + 2], buf[4 * i + 3]);
1101 ret = -EIO;
1102 }
1103 k--;
1104 gen = cb;
1105 gen->istatus = CBS_CALL_OS; /* don't handle this CBR again */
1106 } while (k);
1107 BUG_ON(cmp.done);
1108
1109 gru_unlock_async_resource(han);
1110 gru_release_async_resources(han);
1111 done:
1112 kfree(buf);
1113 return ret;
1114 }
1115
1116 #define BUFSIZE 200
1117 static int quicktest3(unsigned long arg)
1118 {
1119 char buf1[BUFSIZE], buf2[BUFSIZE];
1120 int ret = 0;
1121
1122 memset(buf2, 0, sizeof(buf2));
1123 memset(buf1, get_cycles() & 255, sizeof(buf1));
1124 gru_copy_gpa(uv_gpa(buf2), uv_gpa(buf1), BUFSIZE);
1125 if (memcmp(buf1, buf2, BUFSIZE)) {
1126 printk(KERN_DEBUG "GRU:%d quicktest3 error\n", smp_processor_id());
1127 ret = -EIO;
1128 }
1129 return ret;
1130 }
1131
1132 /*
1133 * Debugging only. User hook for various kernel tests
1134 * of driver & gru.
1135 */
1136 int gru_ktest(unsigned long arg)
1137 {
1138 int ret = -EINVAL;
1139
1140 switch (arg & 0xff) {
1141 case 0:
1142 ret = quicktest0(arg);
1143 break;
1144 case 1:
1145 ret = quicktest1(arg);
1146 break;
1147 case 2:
1148 ret = quicktest2(arg);
1149 break;
1150 case 3:
1151 ret = quicktest3(arg);
1152 break;
1153 case 99:
1154 ret = gru_free_kernel_contexts();
1155 break;
1156 }
1157 return ret;
1158
1159 }
1160
1161 int gru_kservices_init(void)
1162 {
1163 return 0;
1164 }
1165
1166 void gru_kservices_exit(void)
1167 {
1168 if (gru_free_kernel_contexts())
1169 BUG();
1170 }
1171
This page took 0.059507 seconds and 5 git commands to generate.