Merge tag 'efi-urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/mfleming...
[deliverable/linux.git] / drivers / misc / vmw_vmci / vmci_queue_pair.c
1 /*
2 * VMware VMCI Driver
3 *
4 * Copyright (C) 2012 VMware, Inc. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the
8 * Free Software Foundation version 2 and no later version.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * for more details.
14 */
15
16 #include <linux/vmw_vmci_defs.h>
17 #include <linux/vmw_vmci_api.h>
18 #include <linux/highmem.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/module.h>
22 #include <linux/mutex.h>
23 #include <linux/pagemap.h>
24 #include <linux/pci.h>
25 #include <linux/sched.h>
26 #include <linux/slab.h>
27 #include <linux/uio.h>
28 #include <linux/wait.h>
29 #include <linux/vmalloc.h>
30 #include <linux/skbuff.h>
31
32 #include "vmci_handle_array.h"
33 #include "vmci_queue_pair.h"
34 #include "vmci_datagram.h"
35 #include "vmci_resource.h"
36 #include "vmci_context.h"
37 #include "vmci_driver.h"
38 #include "vmci_event.h"
39 #include "vmci_route.h"
40
41 /*
42 * In the following, we will distinguish between two kinds of VMX processes -
43 * the ones with versions lower than VMCI_VERSION_NOVMVM that use specialized
44 * VMCI page files in the VMX and supporting VM to VM communication and the
45 * newer ones that use the guest memory directly. We will in the following
46 * refer to the older VMX versions as old-style VMX'en, and the newer ones as
47 * new-style VMX'en.
48 *
49 * The state transition datagram is as follows (the VMCIQPB_ prefix has been
50 * removed for readability) - see below for more details on the transtions:
51 *
52 * -------------- NEW -------------
53 * | |
54 * \_/ \_/
55 * CREATED_NO_MEM <-----------------> CREATED_MEM
56 * | | |
57 * | o-----------------------o |
58 * | | |
59 * \_/ \_/ \_/
60 * ATTACHED_NO_MEM <----------------> ATTACHED_MEM
61 * | | |
62 * | o----------------------o |
63 * | | |
64 * \_/ \_/ \_/
65 * SHUTDOWN_NO_MEM <----------------> SHUTDOWN_MEM
66 * | |
67 * | |
68 * -------------> gone <-------------
69 *
70 * In more detail. When a VMCI queue pair is first created, it will be in the
71 * VMCIQPB_NEW state. It will then move into one of the following states:
72 *
73 * - VMCIQPB_CREATED_NO_MEM: this state indicates that either:
74 *
75 * - the created was performed by a host endpoint, in which case there is
76 * no backing memory yet.
77 *
78 * - the create was initiated by an old-style VMX, that uses
79 * vmci_qp_broker_set_page_store to specify the UVAs of the queue pair at
80 * a later point in time. This state can be distinguished from the one
81 * above by the context ID of the creator. A host side is not allowed to
82 * attach until the page store has been set.
83 *
84 * - VMCIQPB_CREATED_MEM: this state is the result when the queue pair
85 * is created by a VMX using the queue pair device backend that
86 * sets the UVAs of the queue pair immediately and stores the
87 * information for later attachers. At this point, it is ready for
88 * the host side to attach to it.
89 *
90 * Once the queue pair is in one of the created states (with the exception of
91 * the case mentioned for older VMX'en above), it is possible to attach to the
92 * queue pair. Again we have two new states possible:
93 *
94 * - VMCIQPB_ATTACHED_MEM: this state can be reached through the following
95 * paths:
96 *
97 * - from VMCIQPB_CREATED_NO_MEM when a new-style VMX allocates a queue
98 * pair, and attaches to a queue pair previously created by the host side.
99 *
100 * - from VMCIQPB_CREATED_MEM when the host side attaches to a queue pair
101 * already created by a guest.
102 *
103 * - from VMCIQPB_ATTACHED_NO_MEM, when an old-style VMX calls
104 * vmci_qp_broker_set_page_store (see below).
105 *
106 * - VMCIQPB_ATTACHED_NO_MEM: If the queue pair already was in the
107 * VMCIQPB_CREATED_NO_MEM due to a host side create, an old-style VMX will
108 * bring the queue pair into this state. Once vmci_qp_broker_set_page_store
109 * is called to register the user memory, the VMCIQPB_ATTACH_MEM state
110 * will be entered.
111 *
112 * From the attached queue pair, the queue pair can enter the shutdown states
113 * when either side of the queue pair detaches. If the guest side detaches
114 * first, the queue pair will enter the VMCIQPB_SHUTDOWN_NO_MEM state, where
115 * the content of the queue pair will no longer be available. If the host
116 * side detaches first, the queue pair will either enter the
117 * VMCIQPB_SHUTDOWN_MEM, if the guest memory is currently mapped, or
118 * VMCIQPB_SHUTDOWN_NO_MEM, if the guest memory is not mapped
119 * (e.g., the host detaches while a guest is stunned).
120 *
121 * New-style VMX'en will also unmap guest memory, if the guest is
122 * quiesced, e.g., during a snapshot operation. In that case, the guest
123 * memory will no longer be available, and the queue pair will transition from
124 * *_MEM state to a *_NO_MEM state. The VMX may later map the memory once more,
125 * in which case the queue pair will transition from the *_NO_MEM state at that
126 * point back to the *_MEM state. Note that the *_NO_MEM state may have changed,
127 * since the peer may have either attached or detached in the meantime. The
128 * values are laid out such that ++ on a state will move from a *_NO_MEM to a
129 * *_MEM state, and vice versa.
130 */
131
132 /*
133 * VMCIMemcpy{To,From}QueueFunc() prototypes. Functions of these
134 * types are passed around to enqueue and dequeue routines. Note that
135 * often the functions passed are simply wrappers around memcpy
136 * itself.
137 *
138 * Note: In order for the memcpy typedefs to be compatible with the VMKernel,
139 * there's an unused last parameter for the hosted side. In
140 * ESX, that parameter holds a buffer type.
141 */
142 typedef int vmci_memcpy_to_queue_func(struct vmci_queue *queue,
143 u64 queue_offset, const void *src,
144 size_t src_offset, size_t size);
145 typedef int vmci_memcpy_from_queue_func(void *dest, size_t dest_offset,
146 const struct vmci_queue *queue,
147 u64 queue_offset, size_t size);
148
149 /* The Kernel specific component of the struct vmci_queue structure. */
150 struct vmci_queue_kern_if {
151 struct mutex __mutex; /* Protects the queue. */
152 struct mutex *mutex; /* Shared by producer and consumer queues. */
153 size_t num_pages; /* Number of pages incl. header. */
154 bool host; /* Host or guest? */
155 union {
156 struct {
157 dma_addr_t *pas;
158 void **vas;
159 } g; /* Used by the guest. */
160 struct {
161 struct page **page;
162 struct page **header_page;
163 } h; /* Used by the host. */
164 } u;
165 };
166
167 /*
168 * This structure is opaque to the clients.
169 */
170 struct vmci_qp {
171 struct vmci_handle handle;
172 struct vmci_queue *produce_q;
173 struct vmci_queue *consume_q;
174 u64 produce_q_size;
175 u64 consume_q_size;
176 u32 peer;
177 u32 flags;
178 u32 priv_flags;
179 bool guest_endpoint;
180 unsigned int blocked;
181 unsigned int generation;
182 wait_queue_head_t event;
183 };
184
185 enum qp_broker_state {
186 VMCIQPB_NEW,
187 VMCIQPB_CREATED_NO_MEM,
188 VMCIQPB_CREATED_MEM,
189 VMCIQPB_ATTACHED_NO_MEM,
190 VMCIQPB_ATTACHED_MEM,
191 VMCIQPB_SHUTDOWN_NO_MEM,
192 VMCIQPB_SHUTDOWN_MEM,
193 VMCIQPB_GONE
194 };
195
196 #define QPBROKERSTATE_HAS_MEM(_qpb) (_qpb->state == VMCIQPB_CREATED_MEM || \
197 _qpb->state == VMCIQPB_ATTACHED_MEM || \
198 _qpb->state == VMCIQPB_SHUTDOWN_MEM)
199
200 /*
201 * In the queue pair broker, we always use the guest point of view for
202 * the produce and consume queue values and references, e.g., the
203 * produce queue size stored is the guests produce queue size. The
204 * host endpoint will need to swap these around. The only exception is
205 * the local queue pairs on the host, in which case the host endpoint
206 * that creates the queue pair will have the right orientation, and
207 * the attaching host endpoint will need to swap.
208 */
209 struct qp_entry {
210 struct list_head list_item;
211 struct vmci_handle handle;
212 u32 peer;
213 u32 flags;
214 u64 produce_size;
215 u64 consume_size;
216 u32 ref_count;
217 };
218
219 struct qp_broker_entry {
220 struct vmci_resource resource;
221 struct qp_entry qp;
222 u32 create_id;
223 u32 attach_id;
224 enum qp_broker_state state;
225 bool require_trusted_attach;
226 bool created_by_trusted;
227 bool vmci_page_files; /* Created by VMX using VMCI page files */
228 struct vmci_queue *produce_q;
229 struct vmci_queue *consume_q;
230 struct vmci_queue_header saved_produce_q;
231 struct vmci_queue_header saved_consume_q;
232 vmci_event_release_cb wakeup_cb;
233 void *client_data;
234 void *local_mem; /* Kernel memory for local queue pair */
235 };
236
237 struct qp_guest_endpoint {
238 struct vmci_resource resource;
239 struct qp_entry qp;
240 u64 num_ppns;
241 void *produce_q;
242 void *consume_q;
243 struct ppn_set ppn_set;
244 };
245
246 struct qp_list {
247 struct list_head head;
248 struct mutex mutex; /* Protect queue list. */
249 };
250
251 static struct qp_list qp_broker_list = {
252 .head = LIST_HEAD_INIT(qp_broker_list.head),
253 .mutex = __MUTEX_INITIALIZER(qp_broker_list.mutex),
254 };
255
256 static struct qp_list qp_guest_endpoints = {
257 .head = LIST_HEAD_INIT(qp_guest_endpoints.head),
258 .mutex = __MUTEX_INITIALIZER(qp_guest_endpoints.mutex),
259 };
260
261 #define INVALID_VMCI_GUEST_MEM_ID 0
262 #define QPE_NUM_PAGES(_QPE) ((u32) \
263 (DIV_ROUND_UP(_QPE.produce_size, PAGE_SIZE) + \
264 DIV_ROUND_UP(_QPE.consume_size, PAGE_SIZE) + 2))
265
266
267 /*
268 * Frees kernel VA space for a given queue and its queue header, and
269 * frees physical data pages.
270 */
271 static void qp_free_queue(void *q, u64 size)
272 {
273 struct vmci_queue *queue = q;
274
275 if (queue) {
276 u64 i;
277
278 /* Given size does not include header, so add in a page here. */
279 for (i = 0; i < DIV_ROUND_UP(size, PAGE_SIZE) + 1; i++) {
280 dma_free_coherent(&vmci_pdev->dev, PAGE_SIZE,
281 queue->kernel_if->u.g.vas[i],
282 queue->kernel_if->u.g.pas[i]);
283 }
284
285 vfree(queue);
286 }
287 }
288
289 /*
290 * Allocates kernel queue pages of specified size with IOMMU mappings,
291 * plus space for the queue structure/kernel interface and the queue
292 * header.
293 */
294 static void *qp_alloc_queue(u64 size, u32 flags)
295 {
296 u64 i;
297 struct vmci_queue *queue;
298 const size_t num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
299 const size_t pas_size = num_pages * sizeof(*queue->kernel_if->u.g.pas);
300 const size_t vas_size = num_pages * sizeof(*queue->kernel_if->u.g.vas);
301 const size_t queue_size =
302 sizeof(*queue) + sizeof(*queue->kernel_if) +
303 pas_size + vas_size;
304
305 queue = vmalloc(queue_size);
306 if (!queue)
307 return NULL;
308
309 queue->q_header = NULL;
310 queue->saved_header = NULL;
311 queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
312 queue->kernel_if->mutex = NULL;
313 queue->kernel_if->num_pages = num_pages;
314 queue->kernel_if->u.g.pas = (dma_addr_t *)(queue->kernel_if + 1);
315 queue->kernel_if->u.g.vas =
316 (void **)((u8 *)queue->kernel_if->u.g.pas + pas_size);
317 queue->kernel_if->host = false;
318
319 for (i = 0; i < num_pages; i++) {
320 queue->kernel_if->u.g.vas[i] =
321 dma_alloc_coherent(&vmci_pdev->dev, PAGE_SIZE,
322 &queue->kernel_if->u.g.pas[i],
323 GFP_KERNEL);
324 if (!queue->kernel_if->u.g.vas[i]) {
325 /* Size excl. the header. */
326 qp_free_queue(queue, i * PAGE_SIZE);
327 return NULL;
328 }
329 }
330
331 /* Queue header is the first page. */
332 queue->q_header = queue->kernel_if->u.g.vas[0];
333
334 return queue;
335 }
336
337 /*
338 * Copies from a given buffer or iovector to a VMCI Queue. Uses
339 * kmap()/kunmap() to dynamically map/unmap required portions of the queue
340 * by traversing the offset -> page translation structure for the queue.
341 * Assumes that offset + size does not wrap around in the queue.
342 */
343 static int __qp_memcpy_to_queue(struct vmci_queue *queue,
344 u64 queue_offset,
345 const void *src,
346 size_t size,
347 bool is_iovec)
348 {
349 struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
350 size_t bytes_copied = 0;
351
352 while (bytes_copied < size) {
353 const u64 page_index =
354 (queue_offset + bytes_copied) / PAGE_SIZE;
355 const size_t page_offset =
356 (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
357 void *va;
358 size_t to_copy;
359
360 if (kernel_if->host)
361 va = kmap(kernel_if->u.h.page[page_index]);
362 else
363 va = kernel_if->u.g.vas[page_index + 1];
364 /* Skip header. */
365
366 if (size - bytes_copied > PAGE_SIZE - page_offset)
367 /* Enough payload to fill up from this page. */
368 to_copy = PAGE_SIZE - page_offset;
369 else
370 to_copy = size - bytes_copied;
371
372 if (is_iovec) {
373 struct msghdr *msg = (struct msghdr *)src;
374 int err;
375
376 /* The iovec will track bytes_copied internally. */
377 err = memcpy_from_msg((u8 *)va + page_offset,
378 msg, to_copy);
379 if (err != 0) {
380 if (kernel_if->host)
381 kunmap(kernel_if->u.h.page[page_index]);
382 return VMCI_ERROR_INVALID_ARGS;
383 }
384 } else {
385 memcpy((u8 *)va + page_offset,
386 (u8 *)src + bytes_copied, to_copy);
387 }
388
389 bytes_copied += to_copy;
390 if (kernel_if->host)
391 kunmap(kernel_if->u.h.page[page_index]);
392 }
393
394 return VMCI_SUCCESS;
395 }
396
397 /*
398 * Copies to a given buffer or iovector from a VMCI Queue. Uses
399 * kmap()/kunmap() to dynamically map/unmap required portions of the queue
400 * by traversing the offset -> page translation structure for the queue.
401 * Assumes that offset + size does not wrap around in the queue.
402 */
403 static int __qp_memcpy_from_queue(void *dest,
404 const struct vmci_queue *queue,
405 u64 queue_offset,
406 size_t size,
407 bool is_iovec)
408 {
409 struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
410 size_t bytes_copied = 0;
411
412 while (bytes_copied < size) {
413 const u64 page_index =
414 (queue_offset + bytes_copied) / PAGE_SIZE;
415 const size_t page_offset =
416 (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
417 void *va;
418 size_t to_copy;
419
420 if (kernel_if->host)
421 va = kmap(kernel_if->u.h.page[page_index]);
422 else
423 va = kernel_if->u.g.vas[page_index + 1];
424 /* Skip header. */
425
426 if (size - bytes_copied > PAGE_SIZE - page_offset)
427 /* Enough payload to fill up this page. */
428 to_copy = PAGE_SIZE - page_offset;
429 else
430 to_copy = size - bytes_copied;
431
432 if (is_iovec) {
433 struct msghdr *msg = dest;
434 int err;
435
436 /* The iovec will track bytes_copied internally. */
437 err = memcpy_to_msg(msg, (u8 *)va + page_offset,
438 to_copy);
439 if (err != 0) {
440 if (kernel_if->host)
441 kunmap(kernel_if->u.h.page[page_index]);
442 return VMCI_ERROR_INVALID_ARGS;
443 }
444 } else {
445 memcpy((u8 *)dest + bytes_copied,
446 (u8 *)va + page_offset, to_copy);
447 }
448
449 bytes_copied += to_copy;
450 if (kernel_if->host)
451 kunmap(kernel_if->u.h.page[page_index]);
452 }
453
454 return VMCI_SUCCESS;
455 }
456
457 /*
458 * Allocates two list of PPNs --- one for the pages in the produce queue,
459 * and the other for the pages in the consume queue. Intializes the list
460 * of PPNs with the page frame numbers of the KVA for the two queues (and
461 * the queue headers).
462 */
463 static int qp_alloc_ppn_set(void *prod_q,
464 u64 num_produce_pages,
465 void *cons_q,
466 u64 num_consume_pages, struct ppn_set *ppn_set)
467 {
468 u32 *produce_ppns;
469 u32 *consume_ppns;
470 struct vmci_queue *produce_q = prod_q;
471 struct vmci_queue *consume_q = cons_q;
472 u64 i;
473
474 if (!produce_q || !num_produce_pages || !consume_q ||
475 !num_consume_pages || !ppn_set)
476 return VMCI_ERROR_INVALID_ARGS;
477
478 if (ppn_set->initialized)
479 return VMCI_ERROR_ALREADY_EXISTS;
480
481 produce_ppns =
482 kmalloc(num_produce_pages * sizeof(*produce_ppns), GFP_KERNEL);
483 if (!produce_ppns)
484 return VMCI_ERROR_NO_MEM;
485
486 consume_ppns =
487 kmalloc(num_consume_pages * sizeof(*consume_ppns), GFP_KERNEL);
488 if (!consume_ppns) {
489 kfree(produce_ppns);
490 return VMCI_ERROR_NO_MEM;
491 }
492
493 for (i = 0; i < num_produce_pages; i++) {
494 unsigned long pfn;
495
496 produce_ppns[i] =
497 produce_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
498 pfn = produce_ppns[i];
499
500 /* Fail allocation if PFN isn't supported by hypervisor. */
501 if (sizeof(pfn) > sizeof(*produce_ppns)
502 && pfn != produce_ppns[i])
503 goto ppn_error;
504 }
505
506 for (i = 0; i < num_consume_pages; i++) {
507 unsigned long pfn;
508
509 consume_ppns[i] =
510 consume_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
511 pfn = consume_ppns[i];
512
513 /* Fail allocation if PFN isn't supported by hypervisor. */
514 if (sizeof(pfn) > sizeof(*consume_ppns)
515 && pfn != consume_ppns[i])
516 goto ppn_error;
517 }
518
519 ppn_set->num_produce_pages = num_produce_pages;
520 ppn_set->num_consume_pages = num_consume_pages;
521 ppn_set->produce_ppns = produce_ppns;
522 ppn_set->consume_ppns = consume_ppns;
523 ppn_set->initialized = true;
524 return VMCI_SUCCESS;
525
526 ppn_error:
527 kfree(produce_ppns);
528 kfree(consume_ppns);
529 return VMCI_ERROR_INVALID_ARGS;
530 }
531
532 /*
533 * Frees the two list of PPNs for a queue pair.
534 */
535 static void qp_free_ppn_set(struct ppn_set *ppn_set)
536 {
537 if (ppn_set->initialized) {
538 /* Do not call these functions on NULL inputs. */
539 kfree(ppn_set->produce_ppns);
540 kfree(ppn_set->consume_ppns);
541 }
542 memset(ppn_set, 0, sizeof(*ppn_set));
543 }
544
545 /*
546 * Populates the list of PPNs in the hypercall structure with the PPNS
547 * of the produce queue and the consume queue.
548 */
549 static int qp_populate_ppn_set(u8 *call_buf, const struct ppn_set *ppn_set)
550 {
551 memcpy(call_buf, ppn_set->produce_ppns,
552 ppn_set->num_produce_pages * sizeof(*ppn_set->produce_ppns));
553 memcpy(call_buf +
554 ppn_set->num_produce_pages * sizeof(*ppn_set->produce_ppns),
555 ppn_set->consume_ppns,
556 ppn_set->num_consume_pages * sizeof(*ppn_set->consume_ppns));
557
558 return VMCI_SUCCESS;
559 }
560
561 static int qp_memcpy_to_queue(struct vmci_queue *queue,
562 u64 queue_offset,
563 const void *src, size_t src_offset, size_t size)
564 {
565 return __qp_memcpy_to_queue(queue, queue_offset,
566 (u8 *)src + src_offset, size, false);
567 }
568
569 static int qp_memcpy_from_queue(void *dest,
570 size_t dest_offset,
571 const struct vmci_queue *queue,
572 u64 queue_offset, size_t size)
573 {
574 return __qp_memcpy_from_queue((u8 *)dest + dest_offset,
575 queue, queue_offset, size, false);
576 }
577
578 /*
579 * Copies from a given iovec from a VMCI Queue.
580 */
581 static int qp_memcpy_to_queue_iov(struct vmci_queue *queue,
582 u64 queue_offset,
583 const void *msg,
584 size_t src_offset, size_t size)
585 {
586
587 /*
588 * We ignore src_offset because src is really a struct iovec * and will
589 * maintain offset internally.
590 */
591 return __qp_memcpy_to_queue(queue, queue_offset, msg, size, true);
592 }
593
594 /*
595 * Copies to a given iovec from a VMCI Queue.
596 */
597 static int qp_memcpy_from_queue_iov(void *dest,
598 size_t dest_offset,
599 const struct vmci_queue *queue,
600 u64 queue_offset, size_t size)
601 {
602 /*
603 * We ignore dest_offset because dest is really a struct iovec * and
604 * will maintain offset internally.
605 */
606 return __qp_memcpy_from_queue(dest, queue, queue_offset, size, true);
607 }
608
609 /*
610 * Allocates kernel VA space of specified size plus space for the queue
611 * and kernel interface. This is different from the guest queue allocator,
612 * because we do not allocate our own queue header/data pages here but
613 * share those of the guest.
614 */
615 static struct vmci_queue *qp_host_alloc_queue(u64 size)
616 {
617 struct vmci_queue *queue;
618 const size_t num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
619 const size_t queue_size = sizeof(*queue) + sizeof(*(queue->kernel_if));
620 const size_t queue_page_size =
621 num_pages * sizeof(*queue->kernel_if->u.h.page);
622
623 queue = kzalloc(queue_size + queue_page_size, GFP_KERNEL);
624 if (queue) {
625 queue->q_header = NULL;
626 queue->saved_header = NULL;
627 queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
628 queue->kernel_if->host = true;
629 queue->kernel_if->mutex = NULL;
630 queue->kernel_if->num_pages = num_pages;
631 queue->kernel_if->u.h.header_page =
632 (struct page **)((u8 *)queue + queue_size);
633 queue->kernel_if->u.h.page =
634 &queue->kernel_if->u.h.header_page[1];
635 }
636
637 return queue;
638 }
639
640 /*
641 * Frees kernel memory for a given queue (header plus translation
642 * structure).
643 */
644 static void qp_host_free_queue(struct vmci_queue *queue, u64 queue_size)
645 {
646 kfree(queue);
647 }
648
649 /*
650 * Initialize the mutex for the pair of queues. This mutex is used to
651 * protect the q_header and the buffer from changing out from under any
652 * users of either queue. Of course, it's only any good if the mutexes
653 * are actually acquired. Queue structure must lie on non-paged memory
654 * or we cannot guarantee access to the mutex.
655 */
656 static void qp_init_queue_mutex(struct vmci_queue *produce_q,
657 struct vmci_queue *consume_q)
658 {
659 /*
660 * Only the host queue has shared state - the guest queues do not
661 * need to synchronize access using a queue mutex.
662 */
663
664 if (produce_q->kernel_if->host) {
665 produce_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
666 consume_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
667 mutex_init(produce_q->kernel_if->mutex);
668 }
669 }
670
671 /*
672 * Cleans up the mutex for the pair of queues.
673 */
674 static void qp_cleanup_queue_mutex(struct vmci_queue *produce_q,
675 struct vmci_queue *consume_q)
676 {
677 if (produce_q->kernel_if->host) {
678 produce_q->kernel_if->mutex = NULL;
679 consume_q->kernel_if->mutex = NULL;
680 }
681 }
682
683 /*
684 * Acquire the mutex for the queue. Note that the produce_q and
685 * the consume_q share a mutex. So, only one of the two need to
686 * be passed in to this routine. Either will work just fine.
687 */
688 static void qp_acquire_queue_mutex(struct vmci_queue *queue)
689 {
690 if (queue->kernel_if->host)
691 mutex_lock(queue->kernel_if->mutex);
692 }
693
694 /*
695 * Release the mutex for the queue. Note that the produce_q and
696 * the consume_q share a mutex. So, only one of the two need to
697 * be passed in to this routine. Either will work just fine.
698 */
699 static void qp_release_queue_mutex(struct vmci_queue *queue)
700 {
701 if (queue->kernel_if->host)
702 mutex_unlock(queue->kernel_if->mutex);
703 }
704
705 /*
706 * Helper function to release pages in the PageStoreAttachInfo
707 * previously obtained using get_user_pages.
708 */
709 static void qp_release_pages(struct page **pages,
710 u64 num_pages, bool dirty)
711 {
712 int i;
713
714 for (i = 0; i < num_pages; i++) {
715 if (dirty)
716 set_page_dirty(pages[i]);
717
718 page_cache_release(pages[i]);
719 pages[i] = NULL;
720 }
721 }
722
723 /*
724 * Lock the user pages referenced by the {produce,consume}Buffer
725 * struct into memory and populate the {produce,consume}Pages
726 * arrays in the attach structure with them.
727 */
728 static int qp_host_get_user_memory(u64 produce_uva,
729 u64 consume_uva,
730 struct vmci_queue *produce_q,
731 struct vmci_queue *consume_q)
732 {
733 int retval;
734 int err = VMCI_SUCCESS;
735
736 retval = get_user_pages_fast((uintptr_t) produce_uva,
737 produce_q->kernel_if->num_pages, 1,
738 produce_q->kernel_if->u.h.header_page);
739 if (retval < produce_q->kernel_if->num_pages) {
740 pr_warn("get_user_pages(produce) failed (retval=%d)", retval);
741 qp_release_pages(produce_q->kernel_if->u.h.header_page,
742 retval, false);
743 err = VMCI_ERROR_NO_MEM;
744 goto out;
745 }
746
747 retval = get_user_pages_fast((uintptr_t) consume_uva,
748 consume_q->kernel_if->num_pages, 1,
749 consume_q->kernel_if->u.h.header_page);
750 if (retval < consume_q->kernel_if->num_pages) {
751 pr_warn("get_user_pages(consume) failed (retval=%d)", retval);
752 qp_release_pages(consume_q->kernel_if->u.h.header_page,
753 retval, false);
754 qp_release_pages(produce_q->kernel_if->u.h.header_page,
755 produce_q->kernel_if->num_pages, false);
756 err = VMCI_ERROR_NO_MEM;
757 }
758
759 out:
760 return err;
761 }
762
763 /*
764 * Registers the specification of the user pages used for backing a queue
765 * pair. Enough information to map in pages is stored in the OS specific
766 * part of the struct vmci_queue structure.
767 */
768 static int qp_host_register_user_memory(struct vmci_qp_page_store *page_store,
769 struct vmci_queue *produce_q,
770 struct vmci_queue *consume_q)
771 {
772 u64 produce_uva;
773 u64 consume_uva;
774
775 /*
776 * The new style and the old style mapping only differs in
777 * that we either get a single or two UVAs, so we split the
778 * single UVA range at the appropriate spot.
779 */
780 produce_uva = page_store->pages;
781 consume_uva = page_store->pages +
782 produce_q->kernel_if->num_pages * PAGE_SIZE;
783 return qp_host_get_user_memory(produce_uva, consume_uva, produce_q,
784 consume_q);
785 }
786
787 /*
788 * Releases and removes the references to user pages stored in the attach
789 * struct. Pages are released from the page cache and may become
790 * swappable again.
791 */
792 static void qp_host_unregister_user_memory(struct vmci_queue *produce_q,
793 struct vmci_queue *consume_q)
794 {
795 qp_release_pages(produce_q->kernel_if->u.h.header_page,
796 produce_q->kernel_if->num_pages, true);
797 memset(produce_q->kernel_if->u.h.header_page, 0,
798 sizeof(*produce_q->kernel_if->u.h.header_page) *
799 produce_q->kernel_if->num_pages);
800 qp_release_pages(consume_q->kernel_if->u.h.header_page,
801 consume_q->kernel_if->num_pages, true);
802 memset(consume_q->kernel_if->u.h.header_page, 0,
803 sizeof(*consume_q->kernel_if->u.h.header_page) *
804 consume_q->kernel_if->num_pages);
805 }
806
807 /*
808 * Once qp_host_register_user_memory has been performed on a
809 * queue, the queue pair headers can be mapped into the
810 * kernel. Once mapped, they must be unmapped with
811 * qp_host_unmap_queues prior to calling
812 * qp_host_unregister_user_memory.
813 * Pages are pinned.
814 */
815 static int qp_host_map_queues(struct vmci_queue *produce_q,
816 struct vmci_queue *consume_q)
817 {
818 int result;
819
820 if (!produce_q->q_header || !consume_q->q_header) {
821 struct page *headers[2];
822
823 if (produce_q->q_header != consume_q->q_header)
824 return VMCI_ERROR_QUEUEPAIR_MISMATCH;
825
826 if (produce_q->kernel_if->u.h.header_page == NULL ||
827 *produce_q->kernel_if->u.h.header_page == NULL)
828 return VMCI_ERROR_UNAVAILABLE;
829
830 headers[0] = *produce_q->kernel_if->u.h.header_page;
831 headers[1] = *consume_q->kernel_if->u.h.header_page;
832
833 produce_q->q_header = vmap(headers, 2, VM_MAP, PAGE_KERNEL);
834 if (produce_q->q_header != NULL) {
835 consume_q->q_header =
836 (struct vmci_queue_header *)((u8 *)
837 produce_q->q_header +
838 PAGE_SIZE);
839 result = VMCI_SUCCESS;
840 } else {
841 pr_warn("vmap failed\n");
842 result = VMCI_ERROR_NO_MEM;
843 }
844 } else {
845 result = VMCI_SUCCESS;
846 }
847
848 return result;
849 }
850
851 /*
852 * Unmaps previously mapped queue pair headers from the kernel.
853 * Pages are unpinned.
854 */
855 static int qp_host_unmap_queues(u32 gid,
856 struct vmci_queue *produce_q,
857 struct vmci_queue *consume_q)
858 {
859 if (produce_q->q_header) {
860 if (produce_q->q_header < consume_q->q_header)
861 vunmap(produce_q->q_header);
862 else
863 vunmap(consume_q->q_header);
864
865 produce_q->q_header = NULL;
866 consume_q->q_header = NULL;
867 }
868
869 return VMCI_SUCCESS;
870 }
871
872 /*
873 * Finds the entry in the list corresponding to a given handle. Assumes
874 * that the list is locked.
875 */
876 static struct qp_entry *qp_list_find(struct qp_list *qp_list,
877 struct vmci_handle handle)
878 {
879 struct qp_entry *entry;
880
881 if (vmci_handle_is_invalid(handle))
882 return NULL;
883
884 list_for_each_entry(entry, &qp_list->head, list_item) {
885 if (vmci_handle_is_equal(entry->handle, handle))
886 return entry;
887 }
888
889 return NULL;
890 }
891
892 /*
893 * Finds the entry in the list corresponding to a given handle.
894 */
895 static struct qp_guest_endpoint *
896 qp_guest_handle_to_entry(struct vmci_handle handle)
897 {
898 struct qp_guest_endpoint *entry;
899 struct qp_entry *qp = qp_list_find(&qp_guest_endpoints, handle);
900
901 entry = qp ? container_of(
902 qp, struct qp_guest_endpoint, qp) : NULL;
903 return entry;
904 }
905
906 /*
907 * Finds the entry in the list corresponding to a given handle.
908 */
909 static struct qp_broker_entry *
910 qp_broker_handle_to_entry(struct vmci_handle handle)
911 {
912 struct qp_broker_entry *entry;
913 struct qp_entry *qp = qp_list_find(&qp_broker_list, handle);
914
915 entry = qp ? container_of(
916 qp, struct qp_broker_entry, qp) : NULL;
917 return entry;
918 }
919
920 /*
921 * Dispatches a queue pair event message directly into the local event
922 * queue.
923 */
924 static int qp_notify_peer_local(bool attach, struct vmci_handle handle)
925 {
926 u32 context_id = vmci_get_context_id();
927 struct vmci_event_qp ev;
928
929 ev.msg.hdr.dst = vmci_make_handle(context_id, VMCI_EVENT_HANDLER);
930 ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
931 VMCI_CONTEXT_RESOURCE_ID);
932 ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
933 ev.msg.event_data.event =
934 attach ? VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
935 ev.payload.peer_id = context_id;
936 ev.payload.handle = handle;
937
938 return vmci_event_dispatch(&ev.msg.hdr);
939 }
940
941 /*
942 * Allocates and initializes a qp_guest_endpoint structure.
943 * Allocates a queue_pair rid (and handle) iff the given entry has
944 * an invalid handle. 0 through VMCI_RESERVED_RESOURCE_ID_MAX
945 * are reserved handles. Assumes that the QP list mutex is held
946 * by the caller.
947 */
948 static struct qp_guest_endpoint *
949 qp_guest_endpoint_create(struct vmci_handle handle,
950 u32 peer,
951 u32 flags,
952 u64 produce_size,
953 u64 consume_size,
954 void *produce_q,
955 void *consume_q)
956 {
957 int result;
958 struct qp_guest_endpoint *entry;
959 /* One page each for the queue headers. */
960 const u64 num_ppns = DIV_ROUND_UP(produce_size, PAGE_SIZE) +
961 DIV_ROUND_UP(consume_size, PAGE_SIZE) + 2;
962
963 if (vmci_handle_is_invalid(handle)) {
964 u32 context_id = vmci_get_context_id();
965
966 handle = vmci_make_handle(context_id, VMCI_INVALID_ID);
967 }
968
969 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
970 if (entry) {
971 entry->qp.peer = peer;
972 entry->qp.flags = flags;
973 entry->qp.produce_size = produce_size;
974 entry->qp.consume_size = consume_size;
975 entry->qp.ref_count = 0;
976 entry->num_ppns = num_ppns;
977 entry->produce_q = produce_q;
978 entry->consume_q = consume_q;
979 INIT_LIST_HEAD(&entry->qp.list_item);
980
981 /* Add resource obj */
982 result = vmci_resource_add(&entry->resource,
983 VMCI_RESOURCE_TYPE_QPAIR_GUEST,
984 handle);
985 entry->qp.handle = vmci_resource_handle(&entry->resource);
986 if ((result != VMCI_SUCCESS) ||
987 qp_list_find(&qp_guest_endpoints, entry->qp.handle)) {
988 pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
989 handle.context, handle.resource, result);
990 kfree(entry);
991 entry = NULL;
992 }
993 }
994 return entry;
995 }
996
997 /*
998 * Frees a qp_guest_endpoint structure.
999 */
1000 static void qp_guest_endpoint_destroy(struct qp_guest_endpoint *entry)
1001 {
1002 qp_free_ppn_set(&entry->ppn_set);
1003 qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
1004 qp_free_queue(entry->produce_q, entry->qp.produce_size);
1005 qp_free_queue(entry->consume_q, entry->qp.consume_size);
1006 /* Unlink from resource hash table and free callback */
1007 vmci_resource_remove(&entry->resource);
1008
1009 kfree(entry);
1010 }
1011
1012 /*
1013 * Helper to make a queue_pairAlloc hypercall when the driver is
1014 * supporting a guest device.
1015 */
1016 static int qp_alloc_hypercall(const struct qp_guest_endpoint *entry)
1017 {
1018 struct vmci_qp_alloc_msg *alloc_msg;
1019 size_t msg_size;
1020 int result;
1021
1022 if (!entry || entry->num_ppns <= 2)
1023 return VMCI_ERROR_INVALID_ARGS;
1024
1025 msg_size = sizeof(*alloc_msg) +
1026 (size_t) entry->num_ppns * sizeof(u32);
1027 alloc_msg = kmalloc(msg_size, GFP_KERNEL);
1028 if (!alloc_msg)
1029 return VMCI_ERROR_NO_MEM;
1030
1031 alloc_msg->hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1032 VMCI_QUEUEPAIR_ALLOC);
1033 alloc_msg->hdr.src = VMCI_ANON_SRC_HANDLE;
1034 alloc_msg->hdr.payload_size = msg_size - VMCI_DG_HEADERSIZE;
1035 alloc_msg->handle = entry->qp.handle;
1036 alloc_msg->peer = entry->qp.peer;
1037 alloc_msg->flags = entry->qp.flags;
1038 alloc_msg->produce_size = entry->qp.produce_size;
1039 alloc_msg->consume_size = entry->qp.consume_size;
1040 alloc_msg->num_ppns = entry->num_ppns;
1041
1042 result = qp_populate_ppn_set((u8 *)alloc_msg + sizeof(*alloc_msg),
1043 &entry->ppn_set);
1044 if (result == VMCI_SUCCESS)
1045 result = vmci_send_datagram(&alloc_msg->hdr);
1046
1047 kfree(alloc_msg);
1048
1049 return result;
1050 }
1051
1052 /*
1053 * Helper to make a queue_pairDetach hypercall when the driver is
1054 * supporting a guest device.
1055 */
1056 static int qp_detatch_hypercall(struct vmci_handle handle)
1057 {
1058 struct vmci_qp_detach_msg detach_msg;
1059
1060 detach_msg.hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1061 VMCI_QUEUEPAIR_DETACH);
1062 detach_msg.hdr.src = VMCI_ANON_SRC_HANDLE;
1063 detach_msg.hdr.payload_size = sizeof(handle);
1064 detach_msg.handle = handle;
1065
1066 return vmci_send_datagram(&detach_msg.hdr);
1067 }
1068
1069 /*
1070 * Adds the given entry to the list. Assumes that the list is locked.
1071 */
1072 static void qp_list_add_entry(struct qp_list *qp_list, struct qp_entry *entry)
1073 {
1074 if (entry)
1075 list_add(&entry->list_item, &qp_list->head);
1076 }
1077
1078 /*
1079 * Removes the given entry from the list. Assumes that the list is locked.
1080 */
1081 static void qp_list_remove_entry(struct qp_list *qp_list,
1082 struct qp_entry *entry)
1083 {
1084 if (entry)
1085 list_del(&entry->list_item);
1086 }
1087
1088 /*
1089 * Helper for VMCI queue_pair detach interface. Frees the physical
1090 * pages for the queue pair.
1091 */
1092 static int qp_detatch_guest_work(struct vmci_handle handle)
1093 {
1094 int result;
1095 struct qp_guest_endpoint *entry;
1096 u32 ref_count = ~0; /* To avoid compiler warning below */
1097
1098 mutex_lock(&qp_guest_endpoints.mutex);
1099
1100 entry = qp_guest_handle_to_entry(handle);
1101 if (!entry) {
1102 mutex_unlock(&qp_guest_endpoints.mutex);
1103 return VMCI_ERROR_NOT_FOUND;
1104 }
1105
1106 if (entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1107 result = VMCI_SUCCESS;
1108
1109 if (entry->qp.ref_count > 1) {
1110 result = qp_notify_peer_local(false, handle);
1111 /*
1112 * We can fail to notify a local queuepair
1113 * because we can't allocate. We still want
1114 * to release the entry if that happens, so
1115 * don't bail out yet.
1116 */
1117 }
1118 } else {
1119 result = qp_detatch_hypercall(handle);
1120 if (result < VMCI_SUCCESS) {
1121 /*
1122 * We failed to notify a non-local queuepair.
1123 * That other queuepair might still be
1124 * accessing the shared memory, so don't
1125 * release the entry yet. It will get cleaned
1126 * up by VMCIqueue_pair_Exit() if necessary
1127 * (assuming we are going away, otherwise why
1128 * did this fail?).
1129 */
1130
1131 mutex_unlock(&qp_guest_endpoints.mutex);
1132 return result;
1133 }
1134 }
1135
1136 /*
1137 * If we get here then we either failed to notify a local queuepair, or
1138 * we succeeded in all cases. Release the entry if required.
1139 */
1140
1141 entry->qp.ref_count--;
1142 if (entry->qp.ref_count == 0)
1143 qp_list_remove_entry(&qp_guest_endpoints, &entry->qp);
1144
1145 /* If we didn't remove the entry, this could change once we unlock. */
1146 if (entry)
1147 ref_count = entry->qp.ref_count;
1148
1149 mutex_unlock(&qp_guest_endpoints.mutex);
1150
1151 if (ref_count == 0)
1152 qp_guest_endpoint_destroy(entry);
1153
1154 return result;
1155 }
1156
1157 /*
1158 * This functions handles the actual allocation of a VMCI queue
1159 * pair guest endpoint. Allocates physical pages for the queue
1160 * pair. It makes OS dependent calls through generic wrappers.
1161 */
1162 static int qp_alloc_guest_work(struct vmci_handle *handle,
1163 struct vmci_queue **produce_q,
1164 u64 produce_size,
1165 struct vmci_queue **consume_q,
1166 u64 consume_size,
1167 u32 peer,
1168 u32 flags,
1169 u32 priv_flags)
1170 {
1171 const u64 num_produce_pages =
1172 DIV_ROUND_UP(produce_size, PAGE_SIZE) + 1;
1173 const u64 num_consume_pages =
1174 DIV_ROUND_UP(consume_size, PAGE_SIZE) + 1;
1175 void *my_produce_q = NULL;
1176 void *my_consume_q = NULL;
1177 int result;
1178 struct qp_guest_endpoint *queue_pair_entry = NULL;
1179
1180 if (priv_flags != VMCI_NO_PRIVILEGE_FLAGS)
1181 return VMCI_ERROR_NO_ACCESS;
1182
1183 mutex_lock(&qp_guest_endpoints.mutex);
1184
1185 queue_pair_entry = qp_guest_handle_to_entry(*handle);
1186 if (queue_pair_entry) {
1187 if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1188 /* Local attach case. */
1189 if (queue_pair_entry->qp.ref_count > 1) {
1190 pr_devel("Error attempting to attach more than once\n");
1191 result = VMCI_ERROR_UNAVAILABLE;
1192 goto error_keep_entry;
1193 }
1194
1195 if (queue_pair_entry->qp.produce_size != consume_size ||
1196 queue_pair_entry->qp.consume_size !=
1197 produce_size ||
1198 queue_pair_entry->qp.flags !=
1199 (flags & ~VMCI_QPFLAG_ATTACH_ONLY)) {
1200 pr_devel("Error mismatched queue pair in local attach\n");
1201 result = VMCI_ERROR_QUEUEPAIR_MISMATCH;
1202 goto error_keep_entry;
1203 }
1204
1205 /*
1206 * Do a local attach. We swap the consume and
1207 * produce queues for the attacher and deliver
1208 * an attach event.
1209 */
1210 result = qp_notify_peer_local(true, *handle);
1211 if (result < VMCI_SUCCESS)
1212 goto error_keep_entry;
1213
1214 my_produce_q = queue_pair_entry->consume_q;
1215 my_consume_q = queue_pair_entry->produce_q;
1216 goto out;
1217 }
1218
1219 result = VMCI_ERROR_ALREADY_EXISTS;
1220 goto error_keep_entry;
1221 }
1222
1223 my_produce_q = qp_alloc_queue(produce_size, flags);
1224 if (!my_produce_q) {
1225 pr_warn("Error allocating pages for produce queue\n");
1226 result = VMCI_ERROR_NO_MEM;
1227 goto error;
1228 }
1229
1230 my_consume_q = qp_alloc_queue(consume_size, flags);
1231 if (!my_consume_q) {
1232 pr_warn("Error allocating pages for consume queue\n");
1233 result = VMCI_ERROR_NO_MEM;
1234 goto error;
1235 }
1236
1237 queue_pair_entry = qp_guest_endpoint_create(*handle, peer, flags,
1238 produce_size, consume_size,
1239 my_produce_q, my_consume_q);
1240 if (!queue_pair_entry) {
1241 pr_warn("Error allocating memory in %s\n", __func__);
1242 result = VMCI_ERROR_NO_MEM;
1243 goto error;
1244 }
1245
1246 result = qp_alloc_ppn_set(my_produce_q, num_produce_pages, my_consume_q,
1247 num_consume_pages,
1248 &queue_pair_entry->ppn_set);
1249 if (result < VMCI_SUCCESS) {
1250 pr_warn("qp_alloc_ppn_set failed\n");
1251 goto error;
1252 }
1253
1254 /*
1255 * It's only necessary to notify the host if this queue pair will be
1256 * attached to from another context.
1257 */
1258 if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1259 /* Local create case. */
1260 u32 context_id = vmci_get_context_id();
1261
1262 /*
1263 * Enforce similar checks on local queue pairs as we
1264 * do for regular ones. The handle's context must
1265 * match the creator or attacher context id (here they
1266 * are both the current context id) and the
1267 * attach-only flag cannot exist during create. We
1268 * also ensure specified peer is this context or an
1269 * invalid one.
1270 */
1271 if (queue_pair_entry->qp.handle.context != context_id ||
1272 (queue_pair_entry->qp.peer != VMCI_INVALID_ID &&
1273 queue_pair_entry->qp.peer != context_id)) {
1274 result = VMCI_ERROR_NO_ACCESS;
1275 goto error;
1276 }
1277
1278 if (queue_pair_entry->qp.flags & VMCI_QPFLAG_ATTACH_ONLY) {
1279 result = VMCI_ERROR_NOT_FOUND;
1280 goto error;
1281 }
1282 } else {
1283 result = qp_alloc_hypercall(queue_pair_entry);
1284 if (result < VMCI_SUCCESS) {
1285 pr_warn("qp_alloc_hypercall result = %d\n", result);
1286 goto error;
1287 }
1288 }
1289
1290 qp_init_queue_mutex((struct vmci_queue *)my_produce_q,
1291 (struct vmci_queue *)my_consume_q);
1292
1293 qp_list_add_entry(&qp_guest_endpoints, &queue_pair_entry->qp);
1294
1295 out:
1296 queue_pair_entry->qp.ref_count++;
1297 *handle = queue_pair_entry->qp.handle;
1298 *produce_q = (struct vmci_queue *)my_produce_q;
1299 *consume_q = (struct vmci_queue *)my_consume_q;
1300
1301 /*
1302 * We should initialize the queue pair header pages on a local
1303 * queue pair create. For non-local queue pairs, the
1304 * hypervisor initializes the header pages in the create step.
1305 */
1306 if ((queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) &&
1307 queue_pair_entry->qp.ref_count == 1) {
1308 vmci_q_header_init((*produce_q)->q_header, *handle);
1309 vmci_q_header_init((*consume_q)->q_header, *handle);
1310 }
1311
1312 mutex_unlock(&qp_guest_endpoints.mutex);
1313
1314 return VMCI_SUCCESS;
1315
1316 error:
1317 mutex_unlock(&qp_guest_endpoints.mutex);
1318 if (queue_pair_entry) {
1319 /* The queues will be freed inside the destroy routine. */
1320 qp_guest_endpoint_destroy(queue_pair_entry);
1321 } else {
1322 qp_free_queue(my_produce_q, produce_size);
1323 qp_free_queue(my_consume_q, consume_size);
1324 }
1325 return result;
1326
1327 error_keep_entry:
1328 /* This path should only be used when an existing entry was found. */
1329 mutex_unlock(&qp_guest_endpoints.mutex);
1330 return result;
1331 }
1332
1333 /*
1334 * The first endpoint issuing a queue pair allocation will create the state
1335 * of the queue pair in the queue pair broker.
1336 *
1337 * If the creator is a guest, it will associate a VMX virtual address range
1338 * with the queue pair as specified by the page_store. For compatibility with
1339 * older VMX'en, that would use a separate step to set the VMX virtual
1340 * address range, the virtual address range can be registered later using
1341 * vmci_qp_broker_set_page_store. In that case, a page_store of NULL should be
1342 * used.
1343 *
1344 * If the creator is the host, a page_store of NULL should be used as well,
1345 * since the host is not able to supply a page store for the queue pair.
1346 *
1347 * For older VMX and host callers, the queue pair will be created in the
1348 * VMCIQPB_CREATED_NO_MEM state, and for current VMX callers, it will be
1349 * created in VMCOQPB_CREATED_MEM state.
1350 */
1351 static int qp_broker_create(struct vmci_handle handle,
1352 u32 peer,
1353 u32 flags,
1354 u32 priv_flags,
1355 u64 produce_size,
1356 u64 consume_size,
1357 struct vmci_qp_page_store *page_store,
1358 struct vmci_ctx *context,
1359 vmci_event_release_cb wakeup_cb,
1360 void *client_data, struct qp_broker_entry **ent)
1361 {
1362 struct qp_broker_entry *entry = NULL;
1363 const u32 context_id = vmci_ctx_get_id(context);
1364 bool is_local = flags & VMCI_QPFLAG_LOCAL;
1365 int result;
1366 u64 guest_produce_size;
1367 u64 guest_consume_size;
1368
1369 /* Do not create if the caller asked not to. */
1370 if (flags & VMCI_QPFLAG_ATTACH_ONLY)
1371 return VMCI_ERROR_NOT_FOUND;
1372
1373 /*
1374 * Creator's context ID should match handle's context ID or the creator
1375 * must allow the context in handle's context ID as the "peer".
1376 */
1377 if (handle.context != context_id && handle.context != peer)
1378 return VMCI_ERROR_NO_ACCESS;
1379
1380 if (VMCI_CONTEXT_IS_VM(context_id) && VMCI_CONTEXT_IS_VM(peer))
1381 return VMCI_ERROR_DST_UNREACHABLE;
1382
1383 /*
1384 * Creator's context ID for local queue pairs should match the
1385 * peer, if a peer is specified.
1386 */
1387 if (is_local && peer != VMCI_INVALID_ID && context_id != peer)
1388 return VMCI_ERROR_NO_ACCESS;
1389
1390 entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
1391 if (!entry)
1392 return VMCI_ERROR_NO_MEM;
1393
1394 if (vmci_ctx_get_id(context) == VMCI_HOST_CONTEXT_ID && !is_local) {
1395 /*
1396 * The queue pair broker entry stores values from the guest
1397 * point of view, so a creating host side endpoint should swap
1398 * produce and consume values -- unless it is a local queue
1399 * pair, in which case no swapping is necessary, since the local
1400 * attacher will swap queues.
1401 */
1402
1403 guest_produce_size = consume_size;
1404 guest_consume_size = produce_size;
1405 } else {
1406 guest_produce_size = produce_size;
1407 guest_consume_size = consume_size;
1408 }
1409
1410 entry->qp.handle = handle;
1411 entry->qp.peer = peer;
1412 entry->qp.flags = flags;
1413 entry->qp.produce_size = guest_produce_size;
1414 entry->qp.consume_size = guest_consume_size;
1415 entry->qp.ref_count = 1;
1416 entry->create_id = context_id;
1417 entry->attach_id = VMCI_INVALID_ID;
1418 entry->state = VMCIQPB_NEW;
1419 entry->require_trusted_attach =
1420 !!(context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED);
1421 entry->created_by_trusted =
1422 !!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED);
1423 entry->vmci_page_files = false;
1424 entry->wakeup_cb = wakeup_cb;
1425 entry->client_data = client_data;
1426 entry->produce_q = qp_host_alloc_queue(guest_produce_size);
1427 if (entry->produce_q == NULL) {
1428 result = VMCI_ERROR_NO_MEM;
1429 goto error;
1430 }
1431 entry->consume_q = qp_host_alloc_queue(guest_consume_size);
1432 if (entry->consume_q == NULL) {
1433 result = VMCI_ERROR_NO_MEM;
1434 goto error;
1435 }
1436
1437 qp_init_queue_mutex(entry->produce_q, entry->consume_q);
1438
1439 INIT_LIST_HEAD(&entry->qp.list_item);
1440
1441 if (is_local) {
1442 u8 *tmp;
1443
1444 entry->local_mem = kcalloc(QPE_NUM_PAGES(entry->qp),
1445 PAGE_SIZE, GFP_KERNEL);
1446 if (entry->local_mem == NULL) {
1447 result = VMCI_ERROR_NO_MEM;
1448 goto error;
1449 }
1450 entry->state = VMCIQPB_CREATED_MEM;
1451 entry->produce_q->q_header = entry->local_mem;
1452 tmp = (u8 *)entry->local_mem + PAGE_SIZE *
1453 (DIV_ROUND_UP(entry->qp.produce_size, PAGE_SIZE) + 1);
1454 entry->consume_q->q_header = (struct vmci_queue_header *)tmp;
1455 } else if (page_store) {
1456 /*
1457 * The VMX already initialized the queue pair headers, so no
1458 * need for the kernel side to do that.
1459 */
1460 result = qp_host_register_user_memory(page_store,
1461 entry->produce_q,
1462 entry->consume_q);
1463 if (result < VMCI_SUCCESS)
1464 goto error;
1465
1466 entry->state = VMCIQPB_CREATED_MEM;
1467 } else {
1468 /*
1469 * A create without a page_store may be either a host
1470 * side create (in which case we are waiting for the
1471 * guest side to supply the memory) or an old style
1472 * queue pair create (in which case we will expect a
1473 * set page store call as the next step).
1474 */
1475 entry->state = VMCIQPB_CREATED_NO_MEM;
1476 }
1477
1478 qp_list_add_entry(&qp_broker_list, &entry->qp);
1479 if (ent != NULL)
1480 *ent = entry;
1481
1482 /* Add to resource obj */
1483 result = vmci_resource_add(&entry->resource,
1484 VMCI_RESOURCE_TYPE_QPAIR_HOST,
1485 handle);
1486 if (result != VMCI_SUCCESS) {
1487 pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
1488 handle.context, handle.resource, result);
1489 goto error;
1490 }
1491
1492 entry->qp.handle = vmci_resource_handle(&entry->resource);
1493 if (is_local) {
1494 vmci_q_header_init(entry->produce_q->q_header,
1495 entry->qp.handle);
1496 vmci_q_header_init(entry->consume_q->q_header,
1497 entry->qp.handle);
1498 }
1499
1500 vmci_ctx_qp_create(context, entry->qp.handle);
1501
1502 return VMCI_SUCCESS;
1503
1504 error:
1505 if (entry != NULL) {
1506 qp_host_free_queue(entry->produce_q, guest_produce_size);
1507 qp_host_free_queue(entry->consume_q, guest_consume_size);
1508 kfree(entry);
1509 }
1510
1511 return result;
1512 }
1513
1514 /*
1515 * Enqueues an event datagram to notify the peer VM attached to
1516 * the given queue pair handle about attach/detach event by the
1517 * given VM. Returns Payload size of datagram enqueued on
1518 * success, error code otherwise.
1519 */
1520 static int qp_notify_peer(bool attach,
1521 struct vmci_handle handle,
1522 u32 my_id,
1523 u32 peer_id)
1524 {
1525 int rv;
1526 struct vmci_event_qp ev;
1527
1528 if (vmci_handle_is_invalid(handle) || my_id == VMCI_INVALID_ID ||
1529 peer_id == VMCI_INVALID_ID)
1530 return VMCI_ERROR_INVALID_ARGS;
1531
1532 /*
1533 * In vmci_ctx_enqueue_datagram() we enforce the upper limit on
1534 * number of pending events from the hypervisor to a given VM
1535 * otherwise a rogue VM could do an arbitrary number of attach
1536 * and detach operations causing memory pressure in the host
1537 * kernel.
1538 */
1539
1540 ev.msg.hdr.dst = vmci_make_handle(peer_id, VMCI_EVENT_HANDLER);
1541 ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1542 VMCI_CONTEXT_RESOURCE_ID);
1543 ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
1544 ev.msg.event_data.event = attach ?
1545 VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
1546 ev.payload.handle = handle;
1547 ev.payload.peer_id = my_id;
1548
1549 rv = vmci_datagram_dispatch(VMCI_HYPERVISOR_CONTEXT_ID,
1550 &ev.msg.hdr, false);
1551 if (rv < VMCI_SUCCESS)
1552 pr_warn("Failed to enqueue queue_pair %s event datagram for context (ID=0x%x)\n",
1553 attach ? "ATTACH" : "DETACH", peer_id);
1554
1555 return rv;
1556 }
1557
1558 /*
1559 * The second endpoint issuing a queue pair allocation will attach to
1560 * the queue pair registered with the queue pair broker.
1561 *
1562 * If the attacher is a guest, it will associate a VMX virtual address
1563 * range with the queue pair as specified by the page_store. At this
1564 * point, the already attach host endpoint may start using the queue
1565 * pair, and an attach event is sent to it. For compatibility with
1566 * older VMX'en, that used a separate step to set the VMX virtual
1567 * address range, the virtual address range can be registered later
1568 * using vmci_qp_broker_set_page_store. In that case, a page_store of
1569 * NULL should be used, and the attach event will be generated once
1570 * the actual page store has been set.
1571 *
1572 * If the attacher is the host, a page_store of NULL should be used as
1573 * well, since the page store information is already set by the guest.
1574 *
1575 * For new VMX and host callers, the queue pair will be moved to the
1576 * VMCIQPB_ATTACHED_MEM state, and for older VMX callers, it will be
1577 * moved to the VMCOQPB_ATTACHED_NO_MEM state.
1578 */
1579 static int qp_broker_attach(struct qp_broker_entry *entry,
1580 u32 peer,
1581 u32 flags,
1582 u32 priv_flags,
1583 u64 produce_size,
1584 u64 consume_size,
1585 struct vmci_qp_page_store *page_store,
1586 struct vmci_ctx *context,
1587 vmci_event_release_cb wakeup_cb,
1588 void *client_data,
1589 struct qp_broker_entry **ent)
1590 {
1591 const u32 context_id = vmci_ctx_get_id(context);
1592 bool is_local = flags & VMCI_QPFLAG_LOCAL;
1593 int result;
1594
1595 if (entry->state != VMCIQPB_CREATED_NO_MEM &&
1596 entry->state != VMCIQPB_CREATED_MEM)
1597 return VMCI_ERROR_UNAVAILABLE;
1598
1599 if (is_local) {
1600 if (!(entry->qp.flags & VMCI_QPFLAG_LOCAL) ||
1601 context_id != entry->create_id) {
1602 return VMCI_ERROR_INVALID_ARGS;
1603 }
1604 } else if (context_id == entry->create_id ||
1605 context_id == entry->attach_id) {
1606 return VMCI_ERROR_ALREADY_EXISTS;
1607 }
1608
1609 if (VMCI_CONTEXT_IS_VM(context_id) &&
1610 VMCI_CONTEXT_IS_VM(entry->create_id))
1611 return VMCI_ERROR_DST_UNREACHABLE;
1612
1613 /*
1614 * If we are attaching from a restricted context then the queuepair
1615 * must have been created by a trusted endpoint.
1616 */
1617 if ((context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED) &&
1618 !entry->created_by_trusted)
1619 return VMCI_ERROR_NO_ACCESS;
1620
1621 /*
1622 * If we are attaching to a queuepair that was created by a restricted
1623 * context then we must be trusted.
1624 */
1625 if (entry->require_trusted_attach &&
1626 (!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED)))
1627 return VMCI_ERROR_NO_ACCESS;
1628
1629 /*
1630 * If the creator specifies VMCI_INVALID_ID in "peer" field, access
1631 * control check is not performed.
1632 */
1633 if (entry->qp.peer != VMCI_INVALID_ID && entry->qp.peer != context_id)
1634 return VMCI_ERROR_NO_ACCESS;
1635
1636 if (entry->create_id == VMCI_HOST_CONTEXT_ID) {
1637 /*
1638 * Do not attach if the caller doesn't support Host Queue Pairs
1639 * and a host created this queue pair.
1640 */
1641
1642 if (!vmci_ctx_supports_host_qp(context))
1643 return VMCI_ERROR_INVALID_RESOURCE;
1644
1645 } else if (context_id == VMCI_HOST_CONTEXT_ID) {
1646 struct vmci_ctx *create_context;
1647 bool supports_host_qp;
1648
1649 /*
1650 * Do not attach a host to a user created queue pair if that
1651 * user doesn't support host queue pair end points.
1652 */
1653
1654 create_context = vmci_ctx_get(entry->create_id);
1655 supports_host_qp = vmci_ctx_supports_host_qp(create_context);
1656 vmci_ctx_put(create_context);
1657
1658 if (!supports_host_qp)
1659 return VMCI_ERROR_INVALID_RESOURCE;
1660 }
1661
1662 if ((entry->qp.flags & ~VMCI_QP_ASYMM) != (flags & ~VMCI_QP_ASYMM_PEER))
1663 return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1664
1665 if (context_id != VMCI_HOST_CONTEXT_ID) {
1666 /*
1667 * The queue pair broker entry stores values from the guest
1668 * point of view, so an attaching guest should match the values
1669 * stored in the entry.
1670 */
1671
1672 if (entry->qp.produce_size != produce_size ||
1673 entry->qp.consume_size != consume_size) {
1674 return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1675 }
1676 } else if (entry->qp.produce_size != consume_size ||
1677 entry->qp.consume_size != produce_size) {
1678 return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1679 }
1680
1681 if (context_id != VMCI_HOST_CONTEXT_ID) {
1682 /*
1683 * If a guest attached to a queue pair, it will supply
1684 * the backing memory. If this is a pre NOVMVM vmx,
1685 * the backing memory will be supplied by calling
1686 * vmci_qp_broker_set_page_store() following the
1687 * return of the vmci_qp_broker_alloc() call. If it is
1688 * a vmx of version NOVMVM or later, the page store
1689 * must be supplied as part of the
1690 * vmci_qp_broker_alloc call. Under all circumstances
1691 * must the initially created queue pair not have any
1692 * memory associated with it already.
1693 */
1694
1695 if (entry->state != VMCIQPB_CREATED_NO_MEM)
1696 return VMCI_ERROR_INVALID_ARGS;
1697
1698 if (page_store != NULL) {
1699 /*
1700 * Patch up host state to point to guest
1701 * supplied memory. The VMX already
1702 * initialized the queue pair headers, so no
1703 * need for the kernel side to do that.
1704 */
1705
1706 result = qp_host_register_user_memory(page_store,
1707 entry->produce_q,
1708 entry->consume_q);
1709 if (result < VMCI_SUCCESS)
1710 return result;
1711
1712 entry->state = VMCIQPB_ATTACHED_MEM;
1713 } else {
1714 entry->state = VMCIQPB_ATTACHED_NO_MEM;
1715 }
1716 } else if (entry->state == VMCIQPB_CREATED_NO_MEM) {
1717 /*
1718 * The host side is attempting to attach to a queue
1719 * pair that doesn't have any memory associated with
1720 * it. This must be a pre NOVMVM vmx that hasn't set
1721 * the page store information yet, or a quiesced VM.
1722 */
1723
1724 return VMCI_ERROR_UNAVAILABLE;
1725 } else {
1726 /* The host side has successfully attached to a queue pair. */
1727 entry->state = VMCIQPB_ATTACHED_MEM;
1728 }
1729
1730 if (entry->state == VMCIQPB_ATTACHED_MEM) {
1731 result =
1732 qp_notify_peer(true, entry->qp.handle, context_id,
1733 entry->create_id);
1734 if (result < VMCI_SUCCESS)
1735 pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
1736 entry->create_id, entry->qp.handle.context,
1737 entry->qp.handle.resource);
1738 }
1739
1740 entry->attach_id = context_id;
1741 entry->qp.ref_count++;
1742 if (wakeup_cb) {
1743 entry->wakeup_cb = wakeup_cb;
1744 entry->client_data = client_data;
1745 }
1746
1747 /*
1748 * When attaching to local queue pairs, the context already has
1749 * an entry tracking the queue pair, so don't add another one.
1750 */
1751 if (!is_local)
1752 vmci_ctx_qp_create(context, entry->qp.handle);
1753
1754 if (ent != NULL)
1755 *ent = entry;
1756
1757 return VMCI_SUCCESS;
1758 }
1759
1760 /*
1761 * queue_pair_Alloc for use when setting up queue pair endpoints
1762 * on the host.
1763 */
1764 static int qp_broker_alloc(struct vmci_handle handle,
1765 u32 peer,
1766 u32 flags,
1767 u32 priv_flags,
1768 u64 produce_size,
1769 u64 consume_size,
1770 struct vmci_qp_page_store *page_store,
1771 struct vmci_ctx *context,
1772 vmci_event_release_cb wakeup_cb,
1773 void *client_data,
1774 struct qp_broker_entry **ent,
1775 bool *swap)
1776 {
1777 const u32 context_id = vmci_ctx_get_id(context);
1778 bool create;
1779 struct qp_broker_entry *entry = NULL;
1780 bool is_local = flags & VMCI_QPFLAG_LOCAL;
1781 int result;
1782
1783 if (vmci_handle_is_invalid(handle) ||
1784 (flags & ~VMCI_QP_ALL_FLAGS) || is_local ||
1785 !(produce_size || consume_size) ||
1786 !context || context_id == VMCI_INVALID_ID ||
1787 handle.context == VMCI_INVALID_ID) {
1788 return VMCI_ERROR_INVALID_ARGS;
1789 }
1790
1791 if (page_store && !VMCI_QP_PAGESTORE_IS_WELLFORMED(page_store))
1792 return VMCI_ERROR_INVALID_ARGS;
1793
1794 /*
1795 * In the initial argument check, we ensure that non-vmkernel hosts
1796 * are not allowed to create local queue pairs.
1797 */
1798
1799 mutex_lock(&qp_broker_list.mutex);
1800
1801 if (!is_local && vmci_ctx_qp_exists(context, handle)) {
1802 pr_devel("Context (ID=0x%x) already attached to queue pair (handle=0x%x:0x%x)\n",
1803 context_id, handle.context, handle.resource);
1804 mutex_unlock(&qp_broker_list.mutex);
1805 return VMCI_ERROR_ALREADY_EXISTS;
1806 }
1807
1808 if (handle.resource != VMCI_INVALID_ID)
1809 entry = qp_broker_handle_to_entry(handle);
1810
1811 if (!entry) {
1812 create = true;
1813 result =
1814 qp_broker_create(handle, peer, flags, priv_flags,
1815 produce_size, consume_size, page_store,
1816 context, wakeup_cb, client_data, ent);
1817 } else {
1818 create = false;
1819 result =
1820 qp_broker_attach(entry, peer, flags, priv_flags,
1821 produce_size, consume_size, page_store,
1822 context, wakeup_cb, client_data, ent);
1823 }
1824
1825 mutex_unlock(&qp_broker_list.mutex);
1826
1827 if (swap)
1828 *swap = (context_id == VMCI_HOST_CONTEXT_ID) &&
1829 !(create && is_local);
1830
1831 return result;
1832 }
1833
1834 /*
1835 * This function implements the kernel API for allocating a queue
1836 * pair.
1837 */
1838 static int qp_alloc_host_work(struct vmci_handle *handle,
1839 struct vmci_queue **produce_q,
1840 u64 produce_size,
1841 struct vmci_queue **consume_q,
1842 u64 consume_size,
1843 u32 peer,
1844 u32 flags,
1845 u32 priv_flags,
1846 vmci_event_release_cb wakeup_cb,
1847 void *client_data)
1848 {
1849 struct vmci_handle new_handle;
1850 struct vmci_ctx *context;
1851 struct qp_broker_entry *entry;
1852 int result;
1853 bool swap;
1854
1855 if (vmci_handle_is_invalid(*handle)) {
1856 new_handle = vmci_make_handle(
1857 VMCI_HOST_CONTEXT_ID, VMCI_INVALID_ID);
1858 } else
1859 new_handle = *handle;
1860
1861 context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1862 entry = NULL;
1863 result =
1864 qp_broker_alloc(new_handle, peer, flags, priv_flags,
1865 produce_size, consume_size, NULL, context,
1866 wakeup_cb, client_data, &entry, &swap);
1867 if (result == VMCI_SUCCESS) {
1868 if (swap) {
1869 /*
1870 * If this is a local queue pair, the attacher
1871 * will swap around produce and consume
1872 * queues.
1873 */
1874
1875 *produce_q = entry->consume_q;
1876 *consume_q = entry->produce_q;
1877 } else {
1878 *produce_q = entry->produce_q;
1879 *consume_q = entry->consume_q;
1880 }
1881
1882 *handle = vmci_resource_handle(&entry->resource);
1883 } else {
1884 *handle = VMCI_INVALID_HANDLE;
1885 pr_devel("queue pair broker failed to alloc (result=%d)\n",
1886 result);
1887 }
1888 vmci_ctx_put(context);
1889 return result;
1890 }
1891
1892 /*
1893 * Allocates a VMCI queue_pair. Only checks validity of input
1894 * arguments. The real work is done in the host or guest
1895 * specific function.
1896 */
1897 int vmci_qp_alloc(struct vmci_handle *handle,
1898 struct vmci_queue **produce_q,
1899 u64 produce_size,
1900 struct vmci_queue **consume_q,
1901 u64 consume_size,
1902 u32 peer,
1903 u32 flags,
1904 u32 priv_flags,
1905 bool guest_endpoint,
1906 vmci_event_release_cb wakeup_cb,
1907 void *client_data)
1908 {
1909 if (!handle || !produce_q || !consume_q ||
1910 (!produce_size && !consume_size) || (flags & ~VMCI_QP_ALL_FLAGS))
1911 return VMCI_ERROR_INVALID_ARGS;
1912
1913 if (guest_endpoint) {
1914 return qp_alloc_guest_work(handle, produce_q,
1915 produce_size, consume_q,
1916 consume_size, peer,
1917 flags, priv_flags);
1918 } else {
1919 return qp_alloc_host_work(handle, produce_q,
1920 produce_size, consume_q,
1921 consume_size, peer, flags,
1922 priv_flags, wakeup_cb, client_data);
1923 }
1924 }
1925
1926 /*
1927 * This function implements the host kernel API for detaching from
1928 * a queue pair.
1929 */
1930 static int qp_detatch_host_work(struct vmci_handle handle)
1931 {
1932 int result;
1933 struct vmci_ctx *context;
1934
1935 context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1936
1937 result = vmci_qp_broker_detach(handle, context);
1938
1939 vmci_ctx_put(context);
1940 return result;
1941 }
1942
1943 /*
1944 * Detaches from a VMCI queue_pair. Only checks validity of input argument.
1945 * Real work is done in the host or guest specific function.
1946 */
1947 static int qp_detatch(struct vmci_handle handle, bool guest_endpoint)
1948 {
1949 if (vmci_handle_is_invalid(handle))
1950 return VMCI_ERROR_INVALID_ARGS;
1951
1952 if (guest_endpoint)
1953 return qp_detatch_guest_work(handle);
1954 else
1955 return qp_detatch_host_work(handle);
1956 }
1957
1958 /*
1959 * Returns the entry from the head of the list. Assumes that the list is
1960 * locked.
1961 */
1962 static struct qp_entry *qp_list_get_head(struct qp_list *qp_list)
1963 {
1964 if (!list_empty(&qp_list->head)) {
1965 struct qp_entry *entry =
1966 list_first_entry(&qp_list->head, struct qp_entry,
1967 list_item);
1968 return entry;
1969 }
1970
1971 return NULL;
1972 }
1973
1974 void vmci_qp_broker_exit(void)
1975 {
1976 struct qp_entry *entry;
1977 struct qp_broker_entry *be;
1978
1979 mutex_lock(&qp_broker_list.mutex);
1980
1981 while ((entry = qp_list_get_head(&qp_broker_list))) {
1982 be = (struct qp_broker_entry *)entry;
1983
1984 qp_list_remove_entry(&qp_broker_list, entry);
1985 kfree(be);
1986 }
1987
1988 mutex_unlock(&qp_broker_list.mutex);
1989 }
1990
1991 /*
1992 * Requests that a queue pair be allocated with the VMCI queue
1993 * pair broker. Allocates a queue pair entry if one does not
1994 * exist. Attaches to one if it exists, and retrieves the page
1995 * files backing that queue_pair. Assumes that the queue pair
1996 * broker lock is held.
1997 */
1998 int vmci_qp_broker_alloc(struct vmci_handle handle,
1999 u32 peer,
2000 u32 flags,
2001 u32 priv_flags,
2002 u64 produce_size,
2003 u64 consume_size,
2004 struct vmci_qp_page_store *page_store,
2005 struct vmci_ctx *context)
2006 {
2007 return qp_broker_alloc(handle, peer, flags, priv_flags,
2008 produce_size, consume_size,
2009 page_store, context, NULL, NULL, NULL, NULL);
2010 }
2011
2012 /*
2013 * VMX'en with versions lower than VMCI_VERSION_NOVMVM use a separate
2014 * step to add the UVAs of the VMX mapping of the queue pair. This function
2015 * provides backwards compatibility with such VMX'en, and takes care of
2016 * registering the page store for a queue pair previously allocated by the
2017 * VMX during create or attach. This function will move the queue pair state
2018 * to either from VMCIQBP_CREATED_NO_MEM to VMCIQBP_CREATED_MEM or
2019 * VMCIQBP_ATTACHED_NO_MEM to VMCIQBP_ATTACHED_MEM. If moving to the
2020 * attached state with memory, the queue pair is ready to be used by the
2021 * host peer, and an attached event will be generated.
2022 *
2023 * Assumes that the queue pair broker lock is held.
2024 *
2025 * This function is only used by the hosted platform, since there is no
2026 * issue with backwards compatibility for vmkernel.
2027 */
2028 int vmci_qp_broker_set_page_store(struct vmci_handle handle,
2029 u64 produce_uva,
2030 u64 consume_uva,
2031 struct vmci_ctx *context)
2032 {
2033 struct qp_broker_entry *entry;
2034 int result;
2035 const u32 context_id = vmci_ctx_get_id(context);
2036
2037 if (vmci_handle_is_invalid(handle) || !context ||
2038 context_id == VMCI_INVALID_ID)
2039 return VMCI_ERROR_INVALID_ARGS;
2040
2041 /*
2042 * We only support guest to host queue pairs, so the VMX must
2043 * supply UVAs for the mapped page files.
2044 */
2045
2046 if (produce_uva == 0 || consume_uva == 0)
2047 return VMCI_ERROR_INVALID_ARGS;
2048
2049 mutex_lock(&qp_broker_list.mutex);
2050
2051 if (!vmci_ctx_qp_exists(context, handle)) {
2052 pr_warn("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2053 context_id, handle.context, handle.resource);
2054 result = VMCI_ERROR_NOT_FOUND;
2055 goto out;
2056 }
2057
2058 entry = qp_broker_handle_to_entry(handle);
2059 if (!entry) {
2060 result = VMCI_ERROR_NOT_FOUND;
2061 goto out;
2062 }
2063
2064 /*
2065 * If I'm the owner then I can set the page store.
2066 *
2067 * Or, if a host created the queue_pair and I'm the attached peer
2068 * then I can set the page store.
2069 */
2070 if (entry->create_id != context_id &&
2071 (entry->create_id != VMCI_HOST_CONTEXT_ID ||
2072 entry->attach_id != context_id)) {
2073 result = VMCI_ERROR_QUEUEPAIR_NOTOWNER;
2074 goto out;
2075 }
2076
2077 if (entry->state != VMCIQPB_CREATED_NO_MEM &&
2078 entry->state != VMCIQPB_ATTACHED_NO_MEM) {
2079 result = VMCI_ERROR_UNAVAILABLE;
2080 goto out;
2081 }
2082
2083 result = qp_host_get_user_memory(produce_uva, consume_uva,
2084 entry->produce_q, entry->consume_q);
2085 if (result < VMCI_SUCCESS)
2086 goto out;
2087
2088 result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2089 if (result < VMCI_SUCCESS) {
2090 qp_host_unregister_user_memory(entry->produce_q,
2091 entry->consume_q);
2092 goto out;
2093 }
2094
2095 if (entry->state == VMCIQPB_CREATED_NO_MEM)
2096 entry->state = VMCIQPB_CREATED_MEM;
2097 else
2098 entry->state = VMCIQPB_ATTACHED_MEM;
2099
2100 entry->vmci_page_files = true;
2101
2102 if (entry->state == VMCIQPB_ATTACHED_MEM) {
2103 result =
2104 qp_notify_peer(true, handle, context_id, entry->create_id);
2105 if (result < VMCI_SUCCESS) {
2106 pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
2107 entry->create_id, entry->qp.handle.context,
2108 entry->qp.handle.resource);
2109 }
2110 }
2111
2112 result = VMCI_SUCCESS;
2113 out:
2114 mutex_unlock(&qp_broker_list.mutex);
2115 return result;
2116 }
2117
2118 /*
2119 * Resets saved queue headers for the given QP broker
2120 * entry. Should be used when guest memory becomes available
2121 * again, or the guest detaches.
2122 */
2123 static void qp_reset_saved_headers(struct qp_broker_entry *entry)
2124 {
2125 entry->produce_q->saved_header = NULL;
2126 entry->consume_q->saved_header = NULL;
2127 }
2128
2129 /*
2130 * The main entry point for detaching from a queue pair registered with the
2131 * queue pair broker. If more than one endpoint is attached to the queue
2132 * pair, the first endpoint will mainly decrement a reference count and
2133 * generate a notification to its peer. The last endpoint will clean up
2134 * the queue pair state registered with the broker.
2135 *
2136 * When a guest endpoint detaches, it will unmap and unregister the guest
2137 * memory backing the queue pair. If the host is still attached, it will
2138 * no longer be able to access the queue pair content.
2139 *
2140 * If the queue pair is already in a state where there is no memory
2141 * registered for the queue pair (any *_NO_MEM state), it will transition to
2142 * the VMCIQPB_SHUTDOWN_NO_MEM state. This will also happen, if a guest
2143 * endpoint is the first of two endpoints to detach. If the host endpoint is
2144 * the first out of two to detach, the queue pair will move to the
2145 * VMCIQPB_SHUTDOWN_MEM state.
2146 */
2147 int vmci_qp_broker_detach(struct vmci_handle handle, struct vmci_ctx *context)
2148 {
2149 struct qp_broker_entry *entry;
2150 const u32 context_id = vmci_ctx_get_id(context);
2151 u32 peer_id;
2152 bool is_local = false;
2153 int result;
2154
2155 if (vmci_handle_is_invalid(handle) || !context ||
2156 context_id == VMCI_INVALID_ID) {
2157 return VMCI_ERROR_INVALID_ARGS;
2158 }
2159
2160 mutex_lock(&qp_broker_list.mutex);
2161
2162 if (!vmci_ctx_qp_exists(context, handle)) {
2163 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2164 context_id, handle.context, handle.resource);
2165 result = VMCI_ERROR_NOT_FOUND;
2166 goto out;
2167 }
2168
2169 entry = qp_broker_handle_to_entry(handle);
2170 if (!entry) {
2171 pr_devel("Context (ID=0x%x) reports being attached to queue pair(handle=0x%x:0x%x) that isn't present in broker\n",
2172 context_id, handle.context, handle.resource);
2173 result = VMCI_ERROR_NOT_FOUND;
2174 goto out;
2175 }
2176
2177 if (context_id != entry->create_id && context_id != entry->attach_id) {
2178 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2179 goto out;
2180 }
2181
2182 if (context_id == entry->create_id) {
2183 peer_id = entry->attach_id;
2184 entry->create_id = VMCI_INVALID_ID;
2185 } else {
2186 peer_id = entry->create_id;
2187 entry->attach_id = VMCI_INVALID_ID;
2188 }
2189 entry->qp.ref_count--;
2190
2191 is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2192
2193 if (context_id != VMCI_HOST_CONTEXT_ID) {
2194 bool headers_mapped;
2195
2196 /*
2197 * Pre NOVMVM vmx'en may detach from a queue pair
2198 * before setting the page store, and in that case
2199 * there is no user memory to detach from. Also, more
2200 * recent VMX'en may detach from a queue pair in the
2201 * quiesced state.
2202 */
2203
2204 qp_acquire_queue_mutex(entry->produce_q);
2205 headers_mapped = entry->produce_q->q_header ||
2206 entry->consume_q->q_header;
2207 if (QPBROKERSTATE_HAS_MEM(entry)) {
2208 result =
2209 qp_host_unmap_queues(INVALID_VMCI_GUEST_MEM_ID,
2210 entry->produce_q,
2211 entry->consume_q);
2212 if (result < VMCI_SUCCESS)
2213 pr_warn("Failed to unmap queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2214 handle.context, handle.resource,
2215 result);
2216
2217 if (entry->vmci_page_files)
2218 qp_host_unregister_user_memory(entry->produce_q,
2219 entry->
2220 consume_q);
2221 else
2222 qp_host_unregister_user_memory(entry->produce_q,
2223 entry->
2224 consume_q);
2225
2226 }
2227
2228 if (!headers_mapped)
2229 qp_reset_saved_headers(entry);
2230
2231 qp_release_queue_mutex(entry->produce_q);
2232
2233 if (!headers_mapped && entry->wakeup_cb)
2234 entry->wakeup_cb(entry->client_data);
2235
2236 } else {
2237 if (entry->wakeup_cb) {
2238 entry->wakeup_cb = NULL;
2239 entry->client_data = NULL;
2240 }
2241 }
2242
2243 if (entry->qp.ref_count == 0) {
2244 qp_list_remove_entry(&qp_broker_list, &entry->qp);
2245
2246 if (is_local)
2247 kfree(entry->local_mem);
2248
2249 qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
2250 qp_host_free_queue(entry->produce_q, entry->qp.produce_size);
2251 qp_host_free_queue(entry->consume_q, entry->qp.consume_size);
2252 /* Unlink from resource hash table and free callback */
2253 vmci_resource_remove(&entry->resource);
2254
2255 kfree(entry);
2256
2257 vmci_ctx_qp_destroy(context, handle);
2258 } else {
2259 qp_notify_peer(false, handle, context_id, peer_id);
2260 if (context_id == VMCI_HOST_CONTEXT_ID &&
2261 QPBROKERSTATE_HAS_MEM(entry)) {
2262 entry->state = VMCIQPB_SHUTDOWN_MEM;
2263 } else {
2264 entry->state = VMCIQPB_SHUTDOWN_NO_MEM;
2265 }
2266
2267 if (!is_local)
2268 vmci_ctx_qp_destroy(context, handle);
2269
2270 }
2271 result = VMCI_SUCCESS;
2272 out:
2273 mutex_unlock(&qp_broker_list.mutex);
2274 return result;
2275 }
2276
2277 /*
2278 * Establishes the necessary mappings for a queue pair given a
2279 * reference to the queue pair guest memory. This is usually
2280 * called when a guest is unquiesced and the VMX is allowed to
2281 * map guest memory once again.
2282 */
2283 int vmci_qp_broker_map(struct vmci_handle handle,
2284 struct vmci_ctx *context,
2285 u64 guest_mem)
2286 {
2287 struct qp_broker_entry *entry;
2288 const u32 context_id = vmci_ctx_get_id(context);
2289 bool is_local = false;
2290 int result;
2291
2292 if (vmci_handle_is_invalid(handle) || !context ||
2293 context_id == VMCI_INVALID_ID)
2294 return VMCI_ERROR_INVALID_ARGS;
2295
2296 mutex_lock(&qp_broker_list.mutex);
2297
2298 if (!vmci_ctx_qp_exists(context, handle)) {
2299 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2300 context_id, handle.context, handle.resource);
2301 result = VMCI_ERROR_NOT_FOUND;
2302 goto out;
2303 }
2304
2305 entry = qp_broker_handle_to_entry(handle);
2306 if (!entry) {
2307 pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2308 context_id, handle.context, handle.resource);
2309 result = VMCI_ERROR_NOT_FOUND;
2310 goto out;
2311 }
2312
2313 if (context_id != entry->create_id && context_id != entry->attach_id) {
2314 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2315 goto out;
2316 }
2317
2318 is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2319 result = VMCI_SUCCESS;
2320
2321 if (context_id != VMCI_HOST_CONTEXT_ID) {
2322 struct vmci_qp_page_store page_store;
2323
2324 page_store.pages = guest_mem;
2325 page_store.len = QPE_NUM_PAGES(entry->qp);
2326
2327 qp_acquire_queue_mutex(entry->produce_q);
2328 qp_reset_saved_headers(entry);
2329 result =
2330 qp_host_register_user_memory(&page_store,
2331 entry->produce_q,
2332 entry->consume_q);
2333 qp_release_queue_mutex(entry->produce_q);
2334 if (result == VMCI_SUCCESS) {
2335 /* Move state from *_NO_MEM to *_MEM */
2336
2337 entry->state++;
2338
2339 if (entry->wakeup_cb)
2340 entry->wakeup_cb(entry->client_data);
2341 }
2342 }
2343
2344 out:
2345 mutex_unlock(&qp_broker_list.mutex);
2346 return result;
2347 }
2348
2349 /*
2350 * Saves a snapshot of the queue headers for the given QP broker
2351 * entry. Should be used when guest memory is unmapped.
2352 * Results:
2353 * VMCI_SUCCESS on success, appropriate error code if guest memory
2354 * can't be accessed..
2355 */
2356 static int qp_save_headers(struct qp_broker_entry *entry)
2357 {
2358 int result;
2359
2360 if (entry->produce_q->saved_header != NULL &&
2361 entry->consume_q->saved_header != NULL) {
2362 /*
2363 * If the headers have already been saved, we don't need to do
2364 * it again, and we don't want to map in the headers
2365 * unnecessarily.
2366 */
2367
2368 return VMCI_SUCCESS;
2369 }
2370
2371 if (NULL == entry->produce_q->q_header ||
2372 NULL == entry->consume_q->q_header) {
2373 result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2374 if (result < VMCI_SUCCESS)
2375 return result;
2376 }
2377
2378 memcpy(&entry->saved_produce_q, entry->produce_q->q_header,
2379 sizeof(entry->saved_produce_q));
2380 entry->produce_q->saved_header = &entry->saved_produce_q;
2381 memcpy(&entry->saved_consume_q, entry->consume_q->q_header,
2382 sizeof(entry->saved_consume_q));
2383 entry->consume_q->saved_header = &entry->saved_consume_q;
2384
2385 return VMCI_SUCCESS;
2386 }
2387
2388 /*
2389 * Removes all references to the guest memory of a given queue pair, and
2390 * will move the queue pair from state *_MEM to *_NO_MEM. It is usually
2391 * called when a VM is being quiesced where access to guest memory should
2392 * avoided.
2393 */
2394 int vmci_qp_broker_unmap(struct vmci_handle handle,
2395 struct vmci_ctx *context,
2396 u32 gid)
2397 {
2398 struct qp_broker_entry *entry;
2399 const u32 context_id = vmci_ctx_get_id(context);
2400 bool is_local = false;
2401 int result;
2402
2403 if (vmci_handle_is_invalid(handle) || !context ||
2404 context_id == VMCI_INVALID_ID)
2405 return VMCI_ERROR_INVALID_ARGS;
2406
2407 mutex_lock(&qp_broker_list.mutex);
2408
2409 if (!vmci_ctx_qp_exists(context, handle)) {
2410 pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2411 context_id, handle.context, handle.resource);
2412 result = VMCI_ERROR_NOT_FOUND;
2413 goto out;
2414 }
2415
2416 entry = qp_broker_handle_to_entry(handle);
2417 if (!entry) {
2418 pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2419 context_id, handle.context, handle.resource);
2420 result = VMCI_ERROR_NOT_FOUND;
2421 goto out;
2422 }
2423
2424 if (context_id != entry->create_id && context_id != entry->attach_id) {
2425 result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2426 goto out;
2427 }
2428
2429 is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2430
2431 if (context_id != VMCI_HOST_CONTEXT_ID) {
2432 qp_acquire_queue_mutex(entry->produce_q);
2433 result = qp_save_headers(entry);
2434 if (result < VMCI_SUCCESS)
2435 pr_warn("Failed to save queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2436 handle.context, handle.resource, result);
2437
2438 qp_host_unmap_queues(gid, entry->produce_q, entry->consume_q);
2439
2440 /*
2441 * On hosted, when we unmap queue pairs, the VMX will also
2442 * unmap the guest memory, so we invalidate the previously
2443 * registered memory. If the queue pair is mapped again at a
2444 * later point in time, we will need to reregister the user
2445 * memory with a possibly new user VA.
2446 */
2447 qp_host_unregister_user_memory(entry->produce_q,
2448 entry->consume_q);
2449
2450 /*
2451 * Move state from *_MEM to *_NO_MEM.
2452 */
2453 entry->state--;
2454
2455 qp_release_queue_mutex(entry->produce_q);
2456 }
2457
2458 result = VMCI_SUCCESS;
2459
2460 out:
2461 mutex_unlock(&qp_broker_list.mutex);
2462 return result;
2463 }
2464
2465 /*
2466 * Destroys all guest queue pair endpoints. If active guest queue
2467 * pairs still exist, hypercalls to attempt detach from these
2468 * queue pairs will be made. Any failure to detach is silently
2469 * ignored.
2470 */
2471 void vmci_qp_guest_endpoints_exit(void)
2472 {
2473 struct qp_entry *entry;
2474 struct qp_guest_endpoint *ep;
2475
2476 mutex_lock(&qp_guest_endpoints.mutex);
2477
2478 while ((entry = qp_list_get_head(&qp_guest_endpoints))) {
2479 ep = (struct qp_guest_endpoint *)entry;
2480
2481 /* Don't make a hypercall for local queue_pairs. */
2482 if (!(entry->flags & VMCI_QPFLAG_LOCAL))
2483 qp_detatch_hypercall(entry->handle);
2484
2485 /* We cannot fail the exit, so let's reset ref_count. */
2486 entry->ref_count = 0;
2487 qp_list_remove_entry(&qp_guest_endpoints, entry);
2488
2489 qp_guest_endpoint_destroy(ep);
2490 }
2491
2492 mutex_unlock(&qp_guest_endpoints.mutex);
2493 }
2494
2495 /*
2496 * Helper routine that will lock the queue pair before subsequent
2497 * operations.
2498 * Note: Non-blocking on the host side is currently only implemented in ESX.
2499 * Since non-blocking isn't yet implemented on the host personality we
2500 * have no reason to acquire a spin lock. So to avoid the use of an
2501 * unnecessary lock only acquire the mutex if we can block.
2502 */
2503 static void qp_lock(const struct vmci_qp *qpair)
2504 {
2505 qp_acquire_queue_mutex(qpair->produce_q);
2506 }
2507
2508 /*
2509 * Helper routine that unlocks the queue pair after calling
2510 * qp_lock.
2511 */
2512 static void qp_unlock(const struct vmci_qp *qpair)
2513 {
2514 qp_release_queue_mutex(qpair->produce_q);
2515 }
2516
2517 /*
2518 * The queue headers may not be mapped at all times. If a queue is
2519 * currently not mapped, it will be attempted to do so.
2520 */
2521 static int qp_map_queue_headers(struct vmci_queue *produce_q,
2522 struct vmci_queue *consume_q)
2523 {
2524 int result;
2525
2526 if (NULL == produce_q->q_header || NULL == consume_q->q_header) {
2527 result = qp_host_map_queues(produce_q, consume_q);
2528 if (result < VMCI_SUCCESS)
2529 return (produce_q->saved_header &&
2530 consume_q->saved_header) ?
2531 VMCI_ERROR_QUEUEPAIR_NOT_READY :
2532 VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2533 }
2534
2535 return VMCI_SUCCESS;
2536 }
2537
2538 /*
2539 * Helper routine that will retrieve the produce and consume
2540 * headers of a given queue pair. If the guest memory of the
2541 * queue pair is currently not available, the saved queue headers
2542 * will be returned, if these are available.
2543 */
2544 static int qp_get_queue_headers(const struct vmci_qp *qpair,
2545 struct vmci_queue_header **produce_q_header,
2546 struct vmci_queue_header **consume_q_header)
2547 {
2548 int result;
2549
2550 result = qp_map_queue_headers(qpair->produce_q, qpair->consume_q);
2551 if (result == VMCI_SUCCESS) {
2552 *produce_q_header = qpair->produce_q->q_header;
2553 *consume_q_header = qpair->consume_q->q_header;
2554 } else if (qpair->produce_q->saved_header &&
2555 qpair->consume_q->saved_header) {
2556 *produce_q_header = qpair->produce_q->saved_header;
2557 *consume_q_header = qpair->consume_q->saved_header;
2558 result = VMCI_SUCCESS;
2559 }
2560
2561 return result;
2562 }
2563
2564 /*
2565 * Callback from VMCI queue pair broker indicating that a queue
2566 * pair that was previously not ready, now either is ready or
2567 * gone forever.
2568 */
2569 static int qp_wakeup_cb(void *client_data)
2570 {
2571 struct vmci_qp *qpair = (struct vmci_qp *)client_data;
2572
2573 qp_lock(qpair);
2574 while (qpair->blocked > 0) {
2575 qpair->blocked--;
2576 qpair->generation++;
2577 wake_up(&qpair->event);
2578 }
2579 qp_unlock(qpair);
2580
2581 return VMCI_SUCCESS;
2582 }
2583
2584 /*
2585 * Makes the calling thread wait for the queue pair to become
2586 * ready for host side access. Returns true when thread is
2587 * woken up after queue pair state change, false otherwise.
2588 */
2589 static bool qp_wait_for_ready_queue(struct vmci_qp *qpair)
2590 {
2591 unsigned int generation;
2592
2593 qpair->blocked++;
2594 generation = qpair->generation;
2595 qp_unlock(qpair);
2596 wait_event(qpair->event, generation != qpair->generation);
2597 qp_lock(qpair);
2598
2599 return true;
2600 }
2601
2602 /*
2603 * Enqueues a given buffer to the produce queue using the provided
2604 * function. As many bytes as possible (space available in the queue)
2605 * are enqueued. Assumes the queue->mutex has been acquired. Returns
2606 * VMCI_ERROR_QUEUEPAIR_NOSPACE if no space was available to enqueue
2607 * data, VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the
2608 * queue (as defined by the queue size), VMCI_ERROR_INVALID_ARGS, if
2609 * an error occured when accessing the buffer,
2610 * VMCI_ERROR_QUEUEPAIR_NOTATTACHED, if the queue pair pages aren't
2611 * available. Otherwise, the number of bytes written to the queue is
2612 * returned. Updates the tail pointer of the produce queue.
2613 */
2614 static ssize_t qp_enqueue_locked(struct vmci_queue *produce_q,
2615 struct vmci_queue *consume_q,
2616 const u64 produce_q_size,
2617 const void *buf,
2618 size_t buf_size,
2619 vmci_memcpy_to_queue_func memcpy_to_queue)
2620 {
2621 s64 free_space;
2622 u64 tail;
2623 size_t written;
2624 ssize_t result;
2625
2626 result = qp_map_queue_headers(produce_q, consume_q);
2627 if (unlikely(result != VMCI_SUCCESS))
2628 return result;
2629
2630 free_space = vmci_q_header_free_space(produce_q->q_header,
2631 consume_q->q_header,
2632 produce_q_size);
2633 if (free_space == 0)
2634 return VMCI_ERROR_QUEUEPAIR_NOSPACE;
2635
2636 if (free_space < VMCI_SUCCESS)
2637 return (ssize_t) free_space;
2638
2639 written = (size_t) (free_space > buf_size ? buf_size : free_space);
2640 tail = vmci_q_header_producer_tail(produce_q->q_header);
2641 if (likely(tail + written < produce_q_size)) {
2642 result = memcpy_to_queue(produce_q, tail, buf, 0, written);
2643 } else {
2644 /* Tail pointer wraps around. */
2645
2646 const size_t tmp = (size_t) (produce_q_size - tail);
2647
2648 result = memcpy_to_queue(produce_q, tail, buf, 0, tmp);
2649 if (result >= VMCI_SUCCESS)
2650 result = memcpy_to_queue(produce_q, 0, buf, tmp,
2651 written - tmp);
2652 }
2653
2654 if (result < VMCI_SUCCESS)
2655 return result;
2656
2657 vmci_q_header_add_producer_tail(produce_q->q_header, written,
2658 produce_q_size);
2659 return written;
2660 }
2661
2662 /*
2663 * Dequeues data (if available) from the given consume queue. Writes data
2664 * to the user provided buffer using the provided function.
2665 * Assumes the queue->mutex has been acquired.
2666 * Results:
2667 * VMCI_ERROR_QUEUEPAIR_NODATA if no data was available to dequeue.
2668 * VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the queue
2669 * (as defined by the queue size).
2670 * VMCI_ERROR_INVALID_ARGS, if an error occured when accessing the buffer.
2671 * Otherwise the number of bytes dequeued is returned.
2672 * Side effects:
2673 * Updates the head pointer of the consume queue.
2674 */
2675 static ssize_t qp_dequeue_locked(struct vmci_queue *produce_q,
2676 struct vmci_queue *consume_q,
2677 const u64 consume_q_size,
2678 void *buf,
2679 size_t buf_size,
2680 vmci_memcpy_from_queue_func memcpy_from_queue,
2681 bool update_consumer)
2682 {
2683 s64 buf_ready;
2684 u64 head;
2685 size_t read;
2686 ssize_t result;
2687
2688 result = qp_map_queue_headers(produce_q, consume_q);
2689 if (unlikely(result != VMCI_SUCCESS))
2690 return result;
2691
2692 buf_ready = vmci_q_header_buf_ready(consume_q->q_header,
2693 produce_q->q_header,
2694 consume_q_size);
2695 if (buf_ready == 0)
2696 return VMCI_ERROR_QUEUEPAIR_NODATA;
2697
2698 if (buf_ready < VMCI_SUCCESS)
2699 return (ssize_t) buf_ready;
2700
2701 read = (size_t) (buf_ready > buf_size ? buf_size : buf_ready);
2702 head = vmci_q_header_consumer_head(produce_q->q_header);
2703 if (likely(head + read < consume_q_size)) {
2704 result = memcpy_from_queue(buf, 0, consume_q, head, read);
2705 } else {
2706 /* Head pointer wraps around. */
2707
2708 const size_t tmp = (size_t) (consume_q_size - head);
2709
2710 result = memcpy_from_queue(buf, 0, consume_q, head, tmp);
2711 if (result >= VMCI_SUCCESS)
2712 result = memcpy_from_queue(buf, tmp, consume_q, 0,
2713 read - tmp);
2714
2715 }
2716
2717 if (result < VMCI_SUCCESS)
2718 return result;
2719
2720 if (update_consumer)
2721 vmci_q_header_add_consumer_head(produce_q->q_header,
2722 read, consume_q_size);
2723
2724 return read;
2725 }
2726
2727 /*
2728 * vmci_qpair_alloc() - Allocates a queue pair.
2729 * @qpair: Pointer for the new vmci_qp struct.
2730 * @handle: Handle to track the resource.
2731 * @produce_qsize: Desired size of the producer queue.
2732 * @consume_qsize: Desired size of the consumer queue.
2733 * @peer: ContextID of the peer.
2734 * @flags: VMCI flags.
2735 * @priv_flags: VMCI priviledge flags.
2736 *
2737 * This is the client interface for allocating the memory for a
2738 * vmci_qp structure and then attaching to the underlying
2739 * queue. If an error occurs allocating the memory for the
2740 * vmci_qp structure no attempt is made to attach. If an
2741 * error occurs attaching, then the structure is freed.
2742 */
2743 int vmci_qpair_alloc(struct vmci_qp **qpair,
2744 struct vmci_handle *handle,
2745 u64 produce_qsize,
2746 u64 consume_qsize,
2747 u32 peer,
2748 u32 flags,
2749 u32 priv_flags)
2750 {
2751 struct vmci_qp *my_qpair;
2752 int retval;
2753 struct vmci_handle src = VMCI_INVALID_HANDLE;
2754 struct vmci_handle dst = vmci_make_handle(peer, VMCI_INVALID_ID);
2755 enum vmci_route route;
2756 vmci_event_release_cb wakeup_cb;
2757 void *client_data;
2758
2759 /*
2760 * Restrict the size of a queuepair. The device already
2761 * enforces a limit on the total amount of memory that can be
2762 * allocated to queuepairs for a guest. However, we try to
2763 * allocate this memory before we make the queuepair
2764 * allocation hypercall. On Linux, we allocate each page
2765 * separately, which means rather than fail, the guest will
2766 * thrash while it tries to allocate, and will become
2767 * increasingly unresponsive to the point where it appears to
2768 * be hung. So we place a limit on the size of an individual
2769 * queuepair here, and leave the device to enforce the
2770 * restriction on total queuepair memory. (Note that this
2771 * doesn't prevent all cases; a user with only this much
2772 * physical memory could still get into trouble.) The error
2773 * used by the device is NO_RESOURCES, so use that here too.
2774 */
2775
2776 if (produce_qsize + consume_qsize < max(produce_qsize, consume_qsize) ||
2777 produce_qsize + consume_qsize > VMCI_MAX_GUEST_QP_MEMORY)
2778 return VMCI_ERROR_NO_RESOURCES;
2779
2780 retval = vmci_route(&src, &dst, false, &route);
2781 if (retval < VMCI_SUCCESS)
2782 route = vmci_guest_code_active() ?
2783 VMCI_ROUTE_AS_GUEST : VMCI_ROUTE_AS_HOST;
2784
2785 if (flags & (VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED)) {
2786 pr_devel("NONBLOCK OR PINNED set");
2787 return VMCI_ERROR_INVALID_ARGS;
2788 }
2789
2790 my_qpair = kzalloc(sizeof(*my_qpair), GFP_KERNEL);
2791 if (!my_qpair)
2792 return VMCI_ERROR_NO_MEM;
2793
2794 my_qpair->produce_q_size = produce_qsize;
2795 my_qpair->consume_q_size = consume_qsize;
2796 my_qpair->peer = peer;
2797 my_qpair->flags = flags;
2798 my_qpair->priv_flags = priv_flags;
2799
2800 wakeup_cb = NULL;
2801 client_data = NULL;
2802
2803 if (VMCI_ROUTE_AS_HOST == route) {
2804 my_qpair->guest_endpoint = false;
2805 if (!(flags & VMCI_QPFLAG_LOCAL)) {
2806 my_qpair->blocked = 0;
2807 my_qpair->generation = 0;
2808 init_waitqueue_head(&my_qpair->event);
2809 wakeup_cb = qp_wakeup_cb;
2810 client_data = (void *)my_qpair;
2811 }
2812 } else {
2813 my_qpair->guest_endpoint = true;
2814 }
2815
2816 retval = vmci_qp_alloc(handle,
2817 &my_qpair->produce_q,
2818 my_qpair->produce_q_size,
2819 &my_qpair->consume_q,
2820 my_qpair->consume_q_size,
2821 my_qpair->peer,
2822 my_qpair->flags,
2823 my_qpair->priv_flags,
2824 my_qpair->guest_endpoint,
2825 wakeup_cb, client_data);
2826
2827 if (retval < VMCI_SUCCESS) {
2828 kfree(my_qpair);
2829 return retval;
2830 }
2831
2832 *qpair = my_qpair;
2833 my_qpair->handle = *handle;
2834
2835 return retval;
2836 }
2837 EXPORT_SYMBOL_GPL(vmci_qpair_alloc);
2838
2839 /*
2840 * vmci_qpair_detach() - Detatches the client from a queue pair.
2841 * @qpair: Reference of a pointer to the qpair struct.
2842 *
2843 * This is the client interface for detaching from a VMCIQPair.
2844 * Note that this routine will free the memory allocated for the
2845 * vmci_qp structure too.
2846 */
2847 int vmci_qpair_detach(struct vmci_qp **qpair)
2848 {
2849 int result;
2850 struct vmci_qp *old_qpair;
2851
2852 if (!qpair || !(*qpair))
2853 return VMCI_ERROR_INVALID_ARGS;
2854
2855 old_qpair = *qpair;
2856 result = qp_detatch(old_qpair->handle, old_qpair->guest_endpoint);
2857
2858 /*
2859 * The guest can fail to detach for a number of reasons, and
2860 * if it does so, it will cleanup the entry (if there is one).
2861 * The host can fail too, but it won't cleanup the entry
2862 * immediately, it will do that later when the context is
2863 * freed. Either way, we need to release the qpair struct
2864 * here; there isn't much the caller can do, and we don't want
2865 * to leak.
2866 */
2867
2868 memset(old_qpair, 0, sizeof(*old_qpair));
2869 old_qpair->handle = VMCI_INVALID_HANDLE;
2870 old_qpair->peer = VMCI_INVALID_ID;
2871 kfree(old_qpair);
2872 *qpair = NULL;
2873
2874 return result;
2875 }
2876 EXPORT_SYMBOL_GPL(vmci_qpair_detach);
2877
2878 /*
2879 * vmci_qpair_get_produce_indexes() - Retrieves the indexes of the producer.
2880 * @qpair: Pointer to the queue pair struct.
2881 * @producer_tail: Reference used for storing producer tail index.
2882 * @consumer_head: Reference used for storing the consumer head index.
2883 *
2884 * This is the client interface for getting the current indexes of the
2885 * QPair from the point of the view of the caller as the producer.
2886 */
2887 int vmci_qpair_get_produce_indexes(const struct vmci_qp *qpair,
2888 u64 *producer_tail,
2889 u64 *consumer_head)
2890 {
2891 struct vmci_queue_header *produce_q_header;
2892 struct vmci_queue_header *consume_q_header;
2893 int result;
2894
2895 if (!qpair)
2896 return VMCI_ERROR_INVALID_ARGS;
2897
2898 qp_lock(qpair);
2899 result =
2900 qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2901 if (result == VMCI_SUCCESS)
2902 vmci_q_header_get_pointers(produce_q_header, consume_q_header,
2903 producer_tail, consumer_head);
2904 qp_unlock(qpair);
2905
2906 if (result == VMCI_SUCCESS &&
2907 ((producer_tail && *producer_tail >= qpair->produce_q_size) ||
2908 (consumer_head && *consumer_head >= qpair->produce_q_size)))
2909 return VMCI_ERROR_INVALID_SIZE;
2910
2911 return result;
2912 }
2913 EXPORT_SYMBOL_GPL(vmci_qpair_get_produce_indexes);
2914
2915 /*
2916 * vmci_qpair_get_consume_indexes() - Retrieves the indexes of the comsumer.
2917 * @qpair: Pointer to the queue pair struct.
2918 * @consumer_tail: Reference used for storing consumer tail index.
2919 * @producer_head: Reference used for storing the producer head index.
2920 *
2921 * This is the client interface for getting the current indexes of the
2922 * QPair from the point of the view of the caller as the consumer.
2923 */
2924 int vmci_qpair_get_consume_indexes(const struct vmci_qp *qpair,
2925 u64 *consumer_tail,
2926 u64 *producer_head)
2927 {
2928 struct vmci_queue_header *produce_q_header;
2929 struct vmci_queue_header *consume_q_header;
2930 int result;
2931
2932 if (!qpair)
2933 return VMCI_ERROR_INVALID_ARGS;
2934
2935 qp_lock(qpair);
2936 result =
2937 qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2938 if (result == VMCI_SUCCESS)
2939 vmci_q_header_get_pointers(consume_q_header, produce_q_header,
2940 consumer_tail, producer_head);
2941 qp_unlock(qpair);
2942
2943 if (result == VMCI_SUCCESS &&
2944 ((consumer_tail && *consumer_tail >= qpair->consume_q_size) ||
2945 (producer_head && *producer_head >= qpair->consume_q_size)))
2946 return VMCI_ERROR_INVALID_SIZE;
2947
2948 return result;
2949 }
2950 EXPORT_SYMBOL_GPL(vmci_qpair_get_consume_indexes);
2951
2952 /*
2953 * vmci_qpair_produce_free_space() - Retrieves free space in producer queue.
2954 * @qpair: Pointer to the queue pair struct.
2955 *
2956 * This is the client interface for getting the amount of free
2957 * space in the QPair from the point of the view of the caller as
2958 * the producer which is the common case. Returns < 0 if err, else
2959 * available bytes into which data can be enqueued if > 0.
2960 */
2961 s64 vmci_qpair_produce_free_space(const struct vmci_qp *qpair)
2962 {
2963 struct vmci_queue_header *produce_q_header;
2964 struct vmci_queue_header *consume_q_header;
2965 s64 result;
2966
2967 if (!qpair)
2968 return VMCI_ERROR_INVALID_ARGS;
2969
2970 qp_lock(qpair);
2971 result =
2972 qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2973 if (result == VMCI_SUCCESS)
2974 result = vmci_q_header_free_space(produce_q_header,
2975 consume_q_header,
2976 qpair->produce_q_size);
2977 else
2978 result = 0;
2979
2980 qp_unlock(qpair);
2981
2982 return result;
2983 }
2984 EXPORT_SYMBOL_GPL(vmci_qpair_produce_free_space);
2985
2986 /*
2987 * vmci_qpair_consume_free_space() - Retrieves free space in consumer queue.
2988 * @qpair: Pointer to the queue pair struct.
2989 *
2990 * This is the client interface for getting the amount of free
2991 * space in the QPair from the point of the view of the caller as
2992 * the consumer which is not the common case. Returns < 0 if err, else
2993 * available bytes into which data can be enqueued if > 0.
2994 */
2995 s64 vmci_qpair_consume_free_space(const struct vmci_qp *qpair)
2996 {
2997 struct vmci_queue_header *produce_q_header;
2998 struct vmci_queue_header *consume_q_header;
2999 s64 result;
3000
3001 if (!qpair)
3002 return VMCI_ERROR_INVALID_ARGS;
3003
3004 qp_lock(qpair);
3005 result =
3006 qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3007 if (result == VMCI_SUCCESS)
3008 result = vmci_q_header_free_space(consume_q_header,
3009 produce_q_header,
3010 qpair->consume_q_size);
3011 else
3012 result = 0;
3013
3014 qp_unlock(qpair);
3015
3016 return result;
3017 }
3018 EXPORT_SYMBOL_GPL(vmci_qpair_consume_free_space);
3019
3020 /*
3021 * vmci_qpair_produce_buf_ready() - Gets bytes ready to read from
3022 * producer queue.
3023 * @qpair: Pointer to the queue pair struct.
3024 *
3025 * This is the client interface for getting the amount of
3026 * enqueued data in the QPair from the point of the view of the
3027 * caller as the producer which is not the common case. Returns < 0 if err,
3028 * else available bytes that may be read.
3029 */
3030 s64 vmci_qpair_produce_buf_ready(const struct vmci_qp *qpair)
3031 {
3032 struct vmci_queue_header *produce_q_header;
3033 struct vmci_queue_header *consume_q_header;
3034 s64 result;
3035
3036 if (!qpair)
3037 return VMCI_ERROR_INVALID_ARGS;
3038
3039 qp_lock(qpair);
3040 result =
3041 qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3042 if (result == VMCI_SUCCESS)
3043 result = vmci_q_header_buf_ready(produce_q_header,
3044 consume_q_header,
3045 qpair->produce_q_size);
3046 else
3047 result = 0;
3048
3049 qp_unlock(qpair);
3050
3051 return result;
3052 }
3053 EXPORT_SYMBOL_GPL(vmci_qpair_produce_buf_ready);
3054
3055 /*
3056 * vmci_qpair_consume_buf_ready() - Gets bytes ready to read from
3057 * consumer queue.
3058 * @qpair: Pointer to the queue pair struct.
3059 *
3060 * This is the client interface for getting the amount of
3061 * enqueued data in the QPair from the point of the view of the
3062 * caller as the consumer which is the normal case. Returns < 0 if err,
3063 * else available bytes that may be read.
3064 */
3065 s64 vmci_qpair_consume_buf_ready(const struct vmci_qp *qpair)
3066 {
3067 struct vmci_queue_header *produce_q_header;
3068 struct vmci_queue_header *consume_q_header;
3069 s64 result;
3070
3071 if (!qpair)
3072 return VMCI_ERROR_INVALID_ARGS;
3073
3074 qp_lock(qpair);
3075 result =
3076 qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3077 if (result == VMCI_SUCCESS)
3078 result = vmci_q_header_buf_ready(consume_q_header,
3079 produce_q_header,
3080 qpair->consume_q_size);
3081 else
3082 result = 0;
3083
3084 qp_unlock(qpair);
3085
3086 return result;
3087 }
3088 EXPORT_SYMBOL_GPL(vmci_qpair_consume_buf_ready);
3089
3090 /*
3091 * vmci_qpair_enqueue() - Throw data on the queue.
3092 * @qpair: Pointer to the queue pair struct.
3093 * @buf: Pointer to buffer containing data
3094 * @buf_size: Length of buffer.
3095 * @buf_type: Buffer type (Unused).
3096 *
3097 * This is the client interface for enqueueing data into the queue.
3098 * Returns number of bytes enqueued or < 0 on error.
3099 */
3100 ssize_t vmci_qpair_enqueue(struct vmci_qp *qpair,
3101 const void *buf,
3102 size_t buf_size,
3103 int buf_type)
3104 {
3105 ssize_t result;
3106
3107 if (!qpair || !buf)
3108 return VMCI_ERROR_INVALID_ARGS;
3109
3110 qp_lock(qpair);
3111
3112 do {
3113 result = qp_enqueue_locked(qpair->produce_q,
3114 qpair->consume_q,
3115 qpair->produce_q_size,
3116 buf, buf_size,
3117 qp_memcpy_to_queue);
3118
3119 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3120 !qp_wait_for_ready_queue(qpair))
3121 result = VMCI_ERROR_WOULD_BLOCK;
3122
3123 } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3124
3125 qp_unlock(qpair);
3126
3127 return result;
3128 }
3129 EXPORT_SYMBOL_GPL(vmci_qpair_enqueue);
3130
3131 /*
3132 * vmci_qpair_dequeue() - Get data from the queue.
3133 * @qpair: Pointer to the queue pair struct.
3134 * @buf: Pointer to buffer for the data
3135 * @buf_size: Length of buffer.
3136 * @buf_type: Buffer type (Unused).
3137 *
3138 * This is the client interface for dequeueing data from the queue.
3139 * Returns number of bytes dequeued or < 0 on error.
3140 */
3141 ssize_t vmci_qpair_dequeue(struct vmci_qp *qpair,
3142 void *buf,
3143 size_t buf_size,
3144 int buf_type)
3145 {
3146 ssize_t result;
3147
3148 if (!qpair || !buf)
3149 return VMCI_ERROR_INVALID_ARGS;
3150
3151 qp_lock(qpair);
3152
3153 do {
3154 result = qp_dequeue_locked(qpair->produce_q,
3155 qpair->consume_q,
3156 qpair->consume_q_size,
3157 buf, buf_size,
3158 qp_memcpy_from_queue, true);
3159
3160 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3161 !qp_wait_for_ready_queue(qpair))
3162 result = VMCI_ERROR_WOULD_BLOCK;
3163
3164 } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3165
3166 qp_unlock(qpair);
3167
3168 return result;
3169 }
3170 EXPORT_SYMBOL_GPL(vmci_qpair_dequeue);
3171
3172 /*
3173 * vmci_qpair_peek() - Peek at the data in the queue.
3174 * @qpair: Pointer to the queue pair struct.
3175 * @buf: Pointer to buffer for the data
3176 * @buf_size: Length of buffer.
3177 * @buf_type: Buffer type (Unused on Linux).
3178 *
3179 * This is the client interface for peeking into a queue. (I.e.,
3180 * copy data from the queue without updating the head pointer.)
3181 * Returns number of bytes dequeued or < 0 on error.
3182 */
3183 ssize_t vmci_qpair_peek(struct vmci_qp *qpair,
3184 void *buf,
3185 size_t buf_size,
3186 int buf_type)
3187 {
3188 ssize_t result;
3189
3190 if (!qpair || !buf)
3191 return VMCI_ERROR_INVALID_ARGS;
3192
3193 qp_lock(qpair);
3194
3195 do {
3196 result = qp_dequeue_locked(qpair->produce_q,
3197 qpair->consume_q,
3198 qpair->consume_q_size,
3199 buf, buf_size,
3200 qp_memcpy_from_queue, false);
3201
3202 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3203 !qp_wait_for_ready_queue(qpair))
3204 result = VMCI_ERROR_WOULD_BLOCK;
3205
3206 } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3207
3208 qp_unlock(qpair);
3209
3210 return result;
3211 }
3212 EXPORT_SYMBOL_GPL(vmci_qpair_peek);
3213
3214 /*
3215 * vmci_qpair_enquev() - Throw data on the queue using iov.
3216 * @qpair: Pointer to the queue pair struct.
3217 * @iov: Pointer to buffer containing data
3218 * @iov_size: Length of buffer.
3219 * @buf_type: Buffer type (Unused).
3220 *
3221 * This is the client interface for enqueueing data into the queue.
3222 * This function uses IO vectors to handle the work. Returns number
3223 * of bytes enqueued or < 0 on error.
3224 */
3225 ssize_t vmci_qpair_enquev(struct vmci_qp *qpair,
3226 struct msghdr *msg,
3227 size_t iov_size,
3228 int buf_type)
3229 {
3230 ssize_t result;
3231
3232 if (!qpair)
3233 return VMCI_ERROR_INVALID_ARGS;
3234
3235 qp_lock(qpair);
3236
3237 do {
3238 result = qp_enqueue_locked(qpair->produce_q,
3239 qpair->consume_q,
3240 qpair->produce_q_size,
3241 msg, iov_size,
3242 qp_memcpy_to_queue_iov);
3243
3244 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3245 !qp_wait_for_ready_queue(qpair))
3246 result = VMCI_ERROR_WOULD_BLOCK;
3247
3248 } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3249
3250 qp_unlock(qpair);
3251
3252 return result;
3253 }
3254 EXPORT_SYMBOL_GPL(vmci_qpair_enquev);
3255
3256 /*
3257 * vmci_qpair_dequev() - Get data from the queue using iov.
3258 * @qpair: Pointer to the queue pair struct.
3259 * @iov: Pointer to buffer for the data
3260 * @iov_size: Length of buffer.
3261 * @buf_type: Buffer type (Unused).
3262 *
3263 * This is the client interface for dequeueing data from the queue.
3264 * This function uses IO vectors to handle the work. Returns number
3265 * of bytes dequeued or < 0 on error.
3266 */
3267 ssize_t vmci_qpair_dequev(struct vmci_qp *qpair,
3268 struct msghdr *msg,
3269 size_t iov_size,
3270 int buf_type)
3271 {
3272 ssize_t result;
3273
3274 if (!qpair)
3275 return VMCI_ERROR_INVALID_ARGS;
3276
3277 qp_lock(qpair);
3278
3279 do {
3280 result = qp_dequeue_locked(qpair->produce_q,
3281 qpair->consume_q,
3282 qpair->consume_q_size,
3283 msg, iov_size,
3284 qp_memcpy_from_queue_iov,
3285 true);
3286
3287 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3288 !qp_wait_for_ready_queue(qpair))
3289 result = VMCI_ERROR_WOULD_BLOCK;
3290
3291 } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3292
3293 qp_unlock(qpair);
3294
3295 return result;
3296 }
3297 EXPORT_SYMBOL_GPL(vmci_qpair_dequev);
3298
3299 /*
3300 * vmci_qpair_peekv() - Peek at the data in the queue using iov.
3301 * @qpair: Pointer to the queue pair struct.
3302 * @iov: Pointer to buffer for the data
3303 * @iov_size: Length of buffer.
3304 * @buf_type: Buffer type (Unused on Linux).
3305 *
3306 * This is the client interface for peeking into a queue. (I.e.,
3307 * copy data from the queue without updating the head pointer.)
3308 * This function uses IO vectors to handle the work. Returns number
3309 * of bytes peeked or < 0 on error.
3310 */
3311 ssize_t vmci_qpair_peekv(struct vmci_qp *qpair,
3312 struct msghdr *msg,
3313 size_t iov_size,
3314 int buf_type)
3315 {
3316 ssize_t result;
3317
3318 if (!qpair)
3319 return VMCI_ERROR_INVALID_ARGS;
3320
3321 qp_lock(qpair);
3322
3323 do {
3324 result = qp_dequeue_locked(qpair->produce_q,
3325 qpair->consume_q,
3326 qpair->consume_q_size,
3327 msg, iov_size,
3328 qp_memcpy_from_queue_iov,
3329 false);
3330
3331 if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3332 !qp_wait_for_ready_queue(qpair))
3333 result = VMCI_ERROR_WOULD_BLOCK;
3334
3335 } while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3336
3337 qp_unlock(qpair);
3338 return result;
3339 }
3340 EXPORT_SYMBOL_GPL(vmci_qpair_peekv);
This page took 0.099056 seconds and 6 git commands to generate.