Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[deliverable/linux.git] / drivers / mmc / host / dw_mmc.c
1 /*
2 * Synopsys DesignWare Multimedia Card Interface driver
3 * (Based on NXP driver for lpc 31xx)
4 *
5 * Copyright (C) 2009 NXP Semiconductors
6 * Copyright (C) 2009, 2010 Imagination Technologies Ltd.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
14 #include <linux/blkdev.h>
15 #include <linux/clk.h>
16 #include <linux/debugfs.h>
17 #include <linux/device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/ioport.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/seq_file.h>
26 #include <linux/slab.h>
27 #include <linux/stat.h>
28 #include <linux/delay.h>
29 #include <linux/irq.h>
30 #include <linux/mmc/card.h>
31 #include <linux/mmc/host.h>
32 #include <linux/mmc/mmc.h>
33 #include <linux/mmc/sd.h>
34 #include <linux/mmc/sdio.h>
35 #include <linux/mmc/dw_mmc.h>
36 #include <linux/bitops.h>
37 #include <linux/regulator/consumer.h>
38 #include <linux/of.h>
39 #include <linux/of_gpio.h>
40 #include <linux/mmc/slot-gpio.h>
41
42 #include "dw_mmc.h"
43
44 /* Common flag combinations */
45 #define DW_MCI_DATA_ERROR_FLAGS (SDMMC_INT_DRTO | SDMMC_INT_DCRC | \
46 SDMMC_INT_HTO | SDMMC_INT_SBE | \
47 SDMMC_INT_EBE | SDMMC_INT_HLE)
48 #define DW_MCI_CMD_ERROR_FLAGS (SDMMC_INT_RTO | SDMMC_INT_RCRC | \
49 SDMMC_INT_RESP_ERR | SDMMC_INT_HLE)
50 #define DW_MCI_ERROR_FLAGS (DW_MCI_DATA_ERROR_FLAGS | \
51 DW_MCI_CMD_ERROR_FLAGS)
52 #define DW_MCI_SEND_STATUS 1
53 #define DW_MCI_RECV_STATUS 2
54 #define DW_MCI_DMA_THRESHOLD 16
55
56 #define DW_MCI_FREQ_MAX 200000000 /* unit: HZ */
57 #define DW_MCI_FREQ_MIN 400000 /* unit: HZ */
58
59 #define IDMAC_INT_CLR (SDMMC_IDMAC_INT_AI | SDMMC_IDMAC_INT_NI | \
60 SDMMC_IDMAC_INT_CES | SDMMC_IDMAC_INT_DU | \
61 SDMMC_IDMAC_INT_FBE | SDMMC_IDMAC_INT_RI | \
62 SDMMC_IDMAC_INT_TI)
63
64 struct idmac_desc_64addr {
65 u32 des0; /* Control Descriptor */
66
67 u32 des1; /* Reserved */
68
69 u32 des2; /*Buffer sizes */
70 #define IDMAC_64ADDR_SET_BUFFER1_SIZE(d, s) \
71 ((d)->des2 = ((d)->des2 & cpu_to_le32(0x03ffe000)) | \
72 ((cpu_to_le32(s)) & cpu_to_le32(0x1fff)))
73
74 u32 des3; /* Reserved */
75
76 u32 des4; /* Lower 32-bits of Buffer Address Pointer 1*/
77 u32 des5; /* Upper 32-bits of Buffer Address Pointer 1*/
78
79 u32 des6; /* Lower 32-bits of Next Descriptor Address */
80 u32 des7; /* Upper 32-bits of Next Descriptor Address */
81 };
82
83 struct idmac_desc {
84 __le32 des0; /* Control Descriptor */
85 #define IDMAC_DES0_DIC BIT(1)
86 #define IDMAC_DES0_LD BIT(2)
87 #define IDMAC_DES0_FD BIT(3)
88 #define IDMAC_DES0_CH BIT(4)
89 #define IDMAC_DES0_ER BIT(5)
90 #define IDMAC_DES0_CES BIT(30)
91 #define IDMAC_DES0_OWN BIT(31)
92
93 __le32 des1; /* Buffer sizes */
94 #define IDMAC_SET_BUFFER1_SIZE(d, s) \
95 ((d)->des1 = ((d)->des1 & cpu_to_le32(0x03ffe000)) | (cpu_to_le32((s) & 0x1fff)))
96
97 __le32 des2; /* buffer 1 physical address */
98
99 __le32 des3; /* buffer 2 physical address */
100 };
101
102 /* Each descriptor can transfer up to 4KB of data in chained mode */
103 #define DW_MCI_DESC_DATA_LENGTH 0x1000
104
105 static bool dw_mci_reset(struct dw_mci *host);
106 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset);
107 static int dw_mci_card_busy(struct mmc_host *mmc);
108 static int dw_mci_get_cd(struct mmc_host *mmc);
109
110 #if defined(CONFIG_DEBUG_FS)
111 static int dw_mci_req_show(struct seq_file *s, void *v)
112 {
113 struct dw_mci_slot *slot = s->private;
114 struct mmc_request *mrq;
115 struct mmc_command *cmd;
116 struct mmc_command *stop;
117 struct mmc_data *data;
118
119 /* Make sure we get a consistent snapshot */
120 spin_lock_bh(&slot->host->lock);
121 mrq = slot->mrq;
122
123 if (mrq) {
124 cmd = mrq->cmd;
125 data = mrq->data;
126 stop = mrq->stop;
127
128 if (cmd)
129 seq_printf(s,
130 "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
131 cmd->opcode, cmd->arg, cmd->flags,
132 cmd->resp[0], cmd->resp[1], cmd->resp[2],
133 cmd->resp[2], cmd->error);
134 if (data)
135 seq_printf(s, "DATA %u / %u * %u flg %x err %d\n",
136 data->bytes_xfered, data->blocks,
137 data->blksz, data->flags, data->error);
138 if (stop)
139 seq_printf(s,
140 "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n",
141 stop->opcode, stop->arg, stop->flags,
142 stop->resp[0], stop->resp[1], stop->resp[2],
143 stop->resp[2], stop->error);
144 }
145
146 spin_unlock_bh(&slot->host->lock);
147
148 return 0;
149 }
150
151 static int dw_mci_req_open(struct inode *inode, struct file *file)
152 {
153 return single_open(file, dw_mci_req_show, inode->i_private);
154 }
155
156 static const struct file_operations dw_mci_req_fops = {
157 .owner = THIS_MODULE,
158 .open = dw_mci_req_open,
159 .read = seq_read,
160 .llseek = seq_lseek,
161 .release = single_release,
162 };
163
164 static int dw_mci_regs_show(struct seq_file *s, void *v)
165 {
166 seq_printf(s, "STATUS:\t0x%08x\n", SDMMC_STATUS);
167 seq_printf(s, "RINTSTS:\t0x%08x\n", SDMMC_RINTSTS);
168 seq_printf(s, "CMD:\t0x%08x\n", SDMMC_CMD);
169 seq_printf(s, "CTRL:\t0x%08x\n", SDMMC_CTRL);
170 seq_printf(s, "INTMASK:\t0x%08x\n", SDMMC_INTMASK);
171 seq_printf(s, "CLKENA:\t0x%08x\n", SDMMC_CLKENA);
172
173 return 0;
174 }
175
176 static int dw_mci_regs_open(struct inode *inode, struct file *file)
177 {
178 return single_open(file, dw_mci_regs_show, inode->i_private);
179 }
180
181 static const struct file_operations dw_mci_regs_fops = {
182 .owner = THIS_MODULE,
183 .open = dw_mci_regs_open,
184 .read = seq_read,
185 .llseek = seq_lseek,
186 .release = single_release,
187 };
188
189 static void dw_mci_init_debugfs(struct dw_mci_slot *slot)
190 {
191 struct mmc_host *mmc = slot->mmc;
192 struct dw_mci *host = slot->host;
193 struct dentry *root;
194 struct dentry *node;
195
196 root = mmc->debugfs_root;
197 if (!root)
198 return;
199
200 node = debugfs_create_file("regs", S_IRUSR, root, host,
201 &dw_mci_regs_fops);
202 if (!node)
203 goto err;
204
205 node = debugfs_create_file("req", S_IRUSR, root, slot,
206 &dw_mci_req_fops);
207 if (!node)
208 goto err;
209
210 node = debugfs_create_u32("state", S_IRUSR, root, (u32 *)&host->state);
211 if (!node)
212 goto err;
213
214 node = debugfs_create_x32("pending_events", S_IRUSR, root,
215 (u32 *)&host->pending_events);
216 if (!node)
217 goto err;
218
219 node = debugfs_create_x32("completed_events", S_IRUSR, root,
220 (u32 *)&host->completed_events);
221 if (!node)
222 goto err;
223
224 return;
225
226 err:
227 dev_err(&mmc->class_dev, "failed to initialize debugfs for slot\n");
228 }
229 #endif /* defined(CONFIG_DEBUG_FS) */
230
231 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg);
232
233 static u32 dw_mci_prepare_command(struct mmc_host *mmc, struct mmc_command *cmd)
234 {
235 struct mmc_data *data;
236 struct dw_mci_slot *slot = mmc_priv(mmc);
237 struct dw_mci *host = slot->host;
238 u32 cmdr;
239
240 cmd->error = -EINPROGRESS;
241 cmdr = cmd->opcode;
242
243 if (cmd->opcode == MMC_STOP_TRANSMISSION ||
244 cmd->opcode == MMC_GO_IDLE_STATE ||
245 cmd->opcode == MMC_GO_INACTIVE_STATE ||
246 (cmd->opcode == SD_IO_RW_DIRECT &&
247 ((cmd->arg >> 9) & 0x1FFFF) == SDIO_CCCR_ABORT))
248 cmdr |= SDMMC_CMD_STOP;
249 else if (cmd->opcode != MMC_SEND_STATUS && cmd->data)
250 cmdr |= SDMMC_CMD_PRV_DAT_WAIT;
251
252 if (cmd->opcode == SD_SWITCH_VOLTAGE) {
253 u32 clk_en_a;
254
255 /* Special bit makes CMD11 not die */
256 cmdr |= SDMMC_CMD_VOLT_SWITCH;
257
258 /* Change state to continue to handle CMD11 weirdness */
259 WARN_ON(slot->host->state != STATE_SENDING_CMD);
260 slot->host->state = STATE_SENDING_CMD11;
261
262 /*
263 * We need to disable low power mode (automatic clock stop)
264 * while doing voltage switch so we don't confuse the card,
265 * since stopping the clock is a specific part of the UHS
266 * voltage change dance.
267 *
268 * Note that low power mode (SDMMC_CLKEN_LOW_PWR) will be
269 * unconditionally turned back on in dw_mci_setup_bus() if it's
270 * ever called with a non-zero clock. That shouldn't happen
271 * until the voltage change is all done.
272 */
273 clk_en_a = mci_readl(host, CLKENA);
274 clk_en_a &= ~(SDMMC_CLKEN_LOW_PWR << slot->id);
275 mci_writel(host, CLKENA, clk_en_a);
276 mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
277 SDMMC_CMD_PRV_DAT_WAIT, 0);
278 }
279
280 if (cmd->flags & MMC_RSP_PRESENT) {
281 /* We expect a response, so set this bit */
282 cmdr |= SDMMC_CMD_RESP_EXP;
283 if (cmd->flags & MMC_RSP_136)
284 cmdr |= SDMMC_CMD_RESP_LONG;
285 }
286
287 if (cmd->flags & MMC_RSP_CRC)
288 cmdr |= SDMMC_CMD_RESP_CRC;
289
290 data = cmd->data;
291 if (data) {
292 cmdr |= SDMMC_CMD_DAT_EXP;
293 if (data->flags & MMC_DATA_WRITE)
294 cmdr |= SDMMC_CMD_DAT_WR;
295 }
296
297 if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &slot->flags))
298 cmdr |= SDMMC_CMD_USE_HOLD_REG;
299
300 return cmdr;
301 }
302
303 static u32 dw_mci_prep_stop_abort(struct dw_mci *host, struct mmc_command *cmd)
304 {
305 struct mmc_command *stop;
306 u32 cmdr;
307
308 if (!cmd->data)
309 return 0;
310
311 stop = &host->stop_abort;
312 cmdr = cmd->opcode;
313 memset(stop, 0, sizeof(struct mmc_command));
314
315 if (cmdr == MMC_READ_SINGLE_BLOCK ||
316 cmdr == MMC_READ_MULTIPLE_BLOCK ||
317 cmdr == MMC_WRITE_BLOCK ||
318 cmdr == MMC_WRITE_MULTIPLE_BLOCK ||
319 cmdr == MMC_SEND_TUNING_BLOCK ||
320 cmdr == MMC_SEND_TUNING_BLOCK_HS200) {
321 stop->opcode = MMC_STOP_TRANSMISSION;
322 stop->arg = 0;
323 stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
324 } else if (cmdr == SD_IO_RW_EXTENDED) {
325 stop->opcode = SD_IO_RW_DIRECT;
326 stop->arg |= (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) |
327 ((cmd->arg >> 28) & 0x7);
328 stop->flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_AC;
329 } else {
330 return 0;
331 }
332
333 cmdr = stop->opcode | SDMMC_CMD_STOP |
334 SDMMC_CMD_RESP_CRC | SDMMC_CMD_RESP_EXP;
335
336 return cmdr;
337 }
338
339 static void dw_mci_wait_while_busy(struct dw_mci *host, u32 cmd_flags)
340 {
341 unsigned long timeout = jiffies + msecs_to_jiffies(500);
342
343 /*
344 * Databook says that before issuing a new data transfer command
345 * we need to check to see if the card is busy. Data transfer commands
346 * all have SDMMC_CMD_PRV_DAT_WAIT set, so we'll key off that.
347 *
348 * ...also allow sending for SDMMC_CMD_VOLT_SWITCH where busy is
349 * expected.
350 */
351 if ((cmd_flags & SDMMC_CMD_PRV_DAT_WAIT) &&
352 !(cmd_flags & SDMMC_CMD_VOLT_SWITCH)) {
353 while (mci_readl(host, STATUS) & SDMMC_STATUS_BUSY) {
354 if (time_after(jiffies, timeout)) {
355 /* Command will fail; we'll pass error then */
356 dev_err(host->dev, "Busy; trying anyway\n");
357 break;
358 }
359 udelay(10);
360 }
361 }
362 }
363
364 static void dw_mci_start_command(struct dw_mci *host,
365 struct mmc_command *cmd, u32 cmd_flags)
366 {
367 host->cmd = cmd;
368 dev_vdbg(host->dev,
369 "start command: ARGR=0x%08x CMDR=0x%08x\n",
370 cmd->arg, cmd_flags);
371
372 mci_writel(host, CMDARG, cmd->arg);
373 wmb(); /* drain writebuffer */
374 dw_mci_wait_while_busy(host, cmd_flags);
375
376 mci_writel(host, CMD, cmd_flags | SDMMC_CMD_START);
377 }
378
379 static inline void send_stop_abort(struct dw_mci *host, struct mmc_data *data)
380 {
381 struct mmc_command *stop = data->stop ? data->stop : &host->stop_abort;
382
383 dw_mci_start_command(host, stop, host->stop_cmdr);
384 }
385
386 /* DMA interface functions */
387 static void dw_mci_stop_dma(struct dw_mci *host)
388 {
389 if (host->using_dma) {
390 host->dma_ops->stop(host);
391 host->dma_ops->cleanup(host);
392 }
393
394 /* Data transfer was stopped by the interrupt handler */
395 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
396 }
397
398 static int dw_mci_get_dma_dir(struct mmc_data *data)
399 {
400 if (data->flags & MMC_DATA_WRITE)
401 return DMA_TO_DEVICE;
402 else
403 return DMA_FROM_DEVICE;
404 }
405
406 static void dw_mci_dma_cleanup(struct dw_mci *host)
407 {
408 struct mmc_data *data = host->data;
409
410 if (data)
411 if (!data->host_cookie)
412 dma_unmap_sg(host->dev,
413 data->sg,
414 data->sg_len,
415 dw_mci_get_dma_dir(data));
416 }
417
418 static void dw_mci_idmac_reset(struct dw_mci *host)
419 {
420 u32 bmod = mci_readl(host, BMOD);
421 /* Software reset of DMA */
422 bmod |= SDMMC_IDMAC_SWRESET;
423 mci_writel(host, BMOD, bmod);
424 }
425
426 static void dw_mci_idmac_stop_dma(struct dw_mci *host)
427 {
428 u32 temp;
429
430 /* Disable and reset the IDMAC interface */
431 temp = mci_readl(host, CTRL);
432 temp &= ~SDMMC_CTRL_USE_IDMAC;
433 temp |= SDMMC_CTRL_DMA_RESET;
434 mci_writel(host, CTRL, temp);
435
436 /* Stop the IDMAC running */
437 temp = mci_readl(host, BMOD);
438 temp &= ~(SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB);
439 temp |= SDMMC_IDMAC_SWRESET;
440 mci_writel(host, BMOD, temp);
441 }
442
443 static void dw_mci_dmac_complete_dma(void *arg)
444 {
445 struct dw_mci *host = arg;
446 struct mmc_data *data = host->data;
447
448 dev_vdbg(host->dev, "DMA complete\n");
449
450 if ((host->use_dma == TRANS_MODE_EDMAC) &&
451 data && (data->flags & MMC_DATA_READ))
452 /* Invalidate cache after read */
453 dma_sync_sg_for_cpu(mmc_dev(host->cur_slot->mmc),
454 data->sg,
455 data->sg_len,
456 DMA_FROM_DEVICE);
457
458 host->dma_ops->cleanup(host);
459
460 /*
461 * If the card was removed, data will be NULL. No point in trying to
462 * send the stop command or waiting for NBUSY in this case.
463 */
464 if (data) {
465 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
466 tasklet_schedule(&host->tasklet);
467 }
468 }
469
470 static void dw_mci_translate_sglist(struct dw_mci *host, struct mmc_data *data,
471 unsigned int sg_len)
472 {
473 unsigned int desc_len;
474 int i;
475
476 if (host->dma_64bit_address == 1) {
477 struct idmac_desc_64addr *desc_first, *desc_last, *desc;
478
479 desc_first = desc_last = desc = host->sg_cpu;
480
481 for (i = 0; i < sg_len; i++) {
482 unsigned int length = sg_dma_len(&data->sg[i]);
483
484 u64 mem_addr = sg_dma_address(&data->sg[i]);
485
486 for ( ; length ; desc++) {
487 desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
488 length : DW_MCI_DESC_DATA_LENGTH;
489
490 length -= desc_len;
491
492 /*
493 * Set the OWN bit and disable interrupts
494 * for this descriptor
495 */
496 desc->des0 = IDMAC_DES0_OWN | IDMAC_DES0_DIC |
497 IDMAC_DES0_CH;
498
499 /* Buffer length */
500 IDMAC_64ADDR_SET_BUFFER1_SIZE(desc, desc_len);
501
502 /* Physical address to DMA to/from */
503 desc->des4 = mem_addr & 0xffffffff;
504 desc->des5 = mem_addr >> 32;
505
506 /* Update physical address for the next desc */
507 mem_addr += desc_len;
508
509 /* Save pointer to the last descriptor */
510 desc_last = desc;
511 }
512 }
513
514 /* Set first descriptor */
515 desc_first->des0 |= IDMAC_DES0_FD;
516
517 /* Set last descriptor */
518 desc_last->des0 &= ~(IDMAC_DES0_CH | IDMAC_DES0_DIC);
519 desc_last->des0 |= IDMAC_DES0_LD;
520
521 } else {
522 struct idmac_desc *desc_first, *desc_last, *desc;
523
524 desc_first = desc_last = desc = host->sg_cpu;
525
526 for (i = 0; i < sg_len; i++) {
527 unsigned int length = sg_dma_len(&data->sg[i]);
528
529 u32 mem_addr = sg_dma_address(&data->sg[i]);
530
531 for ( ; length ; desc++) {
532 desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ?
533 length : DW_MCI_DESC_DATA_LENGTH;
534
535 length -= desc_len;
536
537 /*
538 * Set the OWN bit and disable interrupts
539 * for this descriptor
540 */
541 desc->des0 = cpu_to_le32(IDMAC_DES0_OWN |
542 IDMAC_DES0_DIC |
543 IDMAC_DES0_CH);
544
545 /* Buffer length */
546 IDMAC_SET_BUFFER1_SIZE(desc, desc_len);
547
548 /* Physical address to DMA to/from */
549 desc->des2 = cpu_to_le32(mem_addr);
550
551 /* Update physical address for the next desc */
552 mem_addr += desc_len;
553
554 /* Save pointer to the last descriptor */
555 desc_last = desc;
556 }
557 }
558
559 /* Set first descriptor */
560 desc_first->des0 |= cpu_to_le32(IDMAC_DES0_FD);
561
562 /* Set last descriptor */
563 desc_last->des0 &= cpu_to_le32(~(IDMAC_DES0_CH |
564 IDMAC_DES0_DIC));
565 desc_last->des0 |= cpu_to_le32(IDMAC_DES0_LD);
566 }
567
568 wmb(); /* drain writebuffer */
569 }
570
571 static int dw_mci_idmac_start_dma(struct dw_mci *host, unsigned int sg_len)
572 {
573 u32 temp;
574
575 dw_mci_translate_sglist(host, host->data, sg_len);
576
577 /* Make sure to reset DMA in case we did PIO before this */
578 dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET);
579 dw_mci_idmac_reset(host);
580
581 /* Select IDMAC interface */
582 temp = mci_readl(host, CTRL);
583 temp |= SDMMC_CTRL_USE_IDMAC;
584 mci_writel(host, CTRL, temp);
585
586 /* drain writebuffer */
587 wmb();
588
589 /* Enable the IDMAC */
590 temp = mci_readl(host, BMOD);
591 temp |= SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB;
592 mci_writel(host, BMOD, temp);
593
594 /* Start it running */
595 mci_writel(host, PLDMND, 1);
596
597 return 0;
598 }
599
600 static int dw_mci_idmac_init(struct dw_mci *host)
601 {
602 int i;
603
604 if (host->dma_64bit_address == 1) {
605 struct idmac_desc_64addr *p;
606 /* Number of descriptors in the ring buffer */
607 host->ring_size = PAGE_SIZE / sizeof(struct idmac_desc_64addr);
608
609 /* Forward link the descriptor list */
610 for (i = 0, p = host->sg_cpu; i < host->ring_size - 1;
611 i++, p++) {
612 p->des6 = (host->sg_dma +
613 (sizeof(struct idmac_desc_64addr) *
614 (i + 1))) & 0xffffffff;
615
616 p->des7 = (u64)(host->sg_dma +
617 (sizeof(struct idmac_desc_64addr) *
618 (i + 1))) >> 32;
619 /* Initialize reserved and buffer size fields to "0" */
620 p->des1 = 0;
621 p->des2 = 0;
622 p->des3 = 0;
623 }
624
625 /* Set the last descriptor as the end-of-ring descriptor */
626 p->des6 = host->sg_dma & 0xffffffff;
627 p->des7 = (u64)host->sg_dma >> 32;
628 p->des0 = IDMAC_DES0_ER;
629
630 } else {
631 struct idmac_desc *p;
632 /* Number of descriptors in the ring buffer */
633 host->ring_size = PAGE_SIZE / sizeof(struct idmac_desc);
634
635 /* Forward link the descriptor list */
636 for (i = 0, p = host->sg_cpu;
637 i < host->ring_size - 1;
638 i++, p++) {
639 p->des3 = cpu_to_le32(host->sg_dma +
640 (sizeof(struct idmac_desc) * (i + 1)));
641 p->des1 = 0;
642 }
643
644 /* Set the last descriptor as the end-of-ring descriptor */
645 p->des3 = cpu_to_le32(host->sg_dma);
646 p->des0 = cpu_to_le32(IDMAC_DES0_ER);
647 }
648
649 dw_mci_idmac_reset(host);
650
651 if (host->dma_64bit_address == 1) {
652 /* Mask out interrupts - get Tx & Rx complete only */
653 mci_writel(host, IDSTS64, IDMAC_INT_CLR);
654 mci_writel(host, IDINTEN64, SDMMC_IDMAC_INT_NI |
655 SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
656
657 /* Set the descriptor base address */
658 mci_writel(host, DBADDRL, host->sg_dma & 0xffffffff);
659 mci_writel(host, DBADDRU, (u64)host->sg_dma >> 32);
660
661 } else {
662 /* Mask out interrupts - get Tx & Rx complete only */
663 mci_writel(host, IDSTS, IDMAC_INT_CLR);
664 mci_writel(host, IDINTEN, SDMMC_IDMAC_INT_NI |
665 SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI);
666
667 /* Set the descriptor base address */
668 mci_writel(host, DBADDR, host->sg_dma);
669 }
670
671 return 0;
672 }
673
674 static const struct dw_mci_dma_ops dw_mci_idmac_ops = {
675 .init = dw_mci_idmac_init,
676 .start = dw_mci_idmac_start_dma,
677 .stop = dw_mci_idmac_stop_dma,
678 .complete = dw_mci_dmac_complete_dma,
679 .cleanup = dw_mci_dma_cleanup,
680 };
681
682 static void dw_mci_edmac_stop_dma(struct dw_mci *host)
683 {
684 dmaengine_terminate_async(host->dms->ch);
685 }
686
687 static int dw_mci_edmac_start_dma(struct dw_mci *host,
688 unsigned int sg_len)
689 {
690 struct dma_slave_config cfg;
691 struct dma_async_tx_descriptor *desc = NULL;
692 struct scatterlist *sgl = host->data->sg;
693 const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
694 u32 sg_elems = host->data->sg_len;
695 u32 fifoth_val;
696 u32 fifo_offset = host->fifo_reg - host->regs;
697 int ret = 0;
698
699 /* Set external dma config: burst size, burst width */
700 cfg.dst_addr = host->phy_regs + fifo_offset;
701 cfg.src_addr = cfg.dst_addr;
702 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
703 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
704
705 /* Match burst msize with external dma config */
706 fifoth_val = mci_readl(host, FIFOTH);
707 cfg.dst_maxburst = mszs[(fifoth_val >> 28) & 0x7];
708 cfg.src_maxburst = cfg.dst_maxburst;
709
710 if (host->data->flags & MMC_DATA_WRITE)
711 cfg.direction = DMA_MEM_TO_DEV;
712 else
713 cfg.direction = DMA_DEV_TO_MEM;
714
715 ret = dmaengine_slave_config(host->dms->ch, &cfg);
716 if (ret) {
717 dev_err(host->dev, "Failed to config edmac.\n");
718 return -EBUSY;
719 }
720
721 desc = dmaengine_prep_slave_sg(host->dms->ch, sgl,
722 sg_len, cfg.direction,
723 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
724 if (!desc) {
725 dev_err(host->dev, "Can't prepare slave sg.\n");
726 return -EBUSY;
727 }
728
729 /* Set dw_mci_dmac_complete_dma as callback */
730 desc->callback = dw_mci_dmac_complete_dma;
731 desc->callback_param = (void *)host;
732 dmaengine_submit(desc);
733
734 /* Flush cache before write */
735 if (host->data->flags & MMC_DATA_WRITE)
736 dma_sync_sg_for_device(mmc_dev(host->cur_slot->mmc), sgl,
737 sg_elems, DMA_TO_DEVICE);
738
739 dma_async_issue_pending(host->dms->ch);
740
741 return 0;
742 }
743
744 static int dw_mci_edmac_init(struct dw_mci *host)
745 {
746 /* Request external dma channel */
747 host->dms = kzalloc(sizeof(struct dw_mci_dma_slave), GFP_KERNEL);
748 if (!host->dms)
749 return -ENOMEM;
750
751 host->dms->ch = dma_request_slave_channel(host->dev, "rx-tx");
752 if (!host->dms->ch) {
753 dev_err(host->dev, "Failed to get external DMA channel.\n");
754 kfree(host->dms);
755 host->dms = NULL;
756 return -ENXIO;
757 }
758
759 return 0;
760 }
761
762 static void dw_mci_edmac_exit(struct dw_mci *host)
763 {
764 if (host->dms) {
765 if (host->dms->ch) {
766 dma_release_channel(host->dms->ch);
767 host->dms->ch = NULL;
768 }
769 kfree(host->dms);
770 host->dms = NULL;
771 }
772 }
773
774 static const struct dw_mci_dma_ops dw_mci_edmac_ops = {
775 .init = dw_mci_edmac_init,
776 .exit = dw_mci_edmac_exit,
777 .start = dw_mci_edmac_start_dma,
778 .stop = dw_mci_edmac_stop_dma,
779 .complete = dw_mci_dmac_complete_dma,
780 .cleanup = dw_mci_dma_cleanup,
781 };
782
783 static int dw_mci_pre_dma_transfer(struct dw_mci *host,
784 struct mmc_data *data,
785 bool next)
786 {
787 struct scatterlist *sg;
788 unsigned int i, sg_len;
789
790 if (!next && data->host_cookie)
791 return data->host_cookie;
792
793 /*
794 * We don't do DMA on "complex" transfers, i.e. with
795 * non-word-aligned buffers or lengths. Also, we don't bother
796 * with all the DMA setup overhead for short transfers.
797 */
798 if (data->blocks * data->blksz < DW_MCI_DMA_THRESHOLD)
799 return -EINVAL;
800
801 if (data->blksz & 3)
802 return -EINVAL;
803
804 for_each_sg(data->sg, sg, data->sg_len, i) {
805 if (sg->offset & 3 || sg->length & 3)
806 return -EINVAL;
807 }
808
809 sg_len = dma_map_sg(host->dev,
810 data->sg,
811 data->sg_len,
812 dw_mci_get_dma_dir(data));
813 if (sg_len == 0)
814 return -EINVAL;
815
816 if (next)
817 data->host_cookie = sg_len;
818
819 return sg_len;
820 }
821
822 static void dw_mci_pre_req(struct mmc_host *mmc,
823 struct mmc_request *mrq,
824 bool is_first_req)
825 {
826 struct dw_mci_slot *slot = mmc_priv(mmc);
827 struct mmc_data *data = mrq->data;
828
829 if (!slot->host->use_dma || !data)
830 return;
831
832 if (data->host_cookie) {
833 data->host_cookie = 0;
834 return;
835 }
836
837 if (dw_mci_pre_dma_transfer(slot->host, mrq->data, 1) < 0)
838 data->host_cookie = 0;
839 }
840
841 static void dw_mci_post_req(struct mmc_host *mmc,
842 struct mmc_request *mrq,
843 int err)
844 {
845 struct dw_mci_slot *slot = mmc_priv(mmc);
846 struct mmc_data *data = mrq->data;
847
848 if (!slot->host->use_dma || !data)
849 return;
850
851 if (data->host_cookie)
852 dma_unmap_sg(slot->host->dev,
853 data->sg,
854 data->sg_len,
855 dw_mci_get_dma_dir(data));
856 data->host_cookie = 0;
857 }
858
859 static void dw_mci_adjust_fifoth(struct dw_mci *host, struct mmc_data *data)
860 {
861 unsigned int blksz = data->blksz;
862 const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256};
863 u32 fifo_width = 1 << host->data_shift;
864 u32 blksz_depth = blksz / fifo_width, fifoth_val;
865 u32 msize = 0, rx_wmark = 1, tx_wmark, tx_wmark_invers;
866 int idx = ARRAY_SIZE(mszs) - 1;
867
868 /* pio should ship this scenario */
869 if (!host->use_dma)
870 return;
871
872 tx_wmark = (host->fifo_depth) / 2;
873 tx_wmark_invers = host->fifo_depth - tx_wmark;
874
875 /*
876 * MSIZE is '1',
877 * if blksz is not a multiple of the FIFO width
878 */
879 if (blksz % fifo_width) {
880 msize = 0;
881 rx_wmark = 1;
882 goto done;
883 }
884
885 do {
886 if (!((blksz_depth % mszs[idx]) ||
887 (tx_wmark_invers % mszs[idx]))) {
888 msize = idx;
889 rx_wmark = mszs[idx] - 1;
890 break;
891 }
892 } while (--idx > 0);
893 /*
894 * If idx is '0', it won't be tried
895 * Thus, initial values are uesed
896 */
897 done:
898 fifoth_val = SDMMC_SET_FIFOTH(msize, rx_wmark, tx_wmark);
899 mci_writel(host, FIFOTH, fifoth_val);
900 }
901
902 static void dw_mci_ctrl_thld(struct dw_mci *host, struct mmc_data *data)
903 {
904 unsigned int blksz = data->blksz;
905 u32 blksz_depth, fifo_depth;
906 u16 thld_size;
907 u8 enable;
908
909 /*
910 * CDTHRCTL doesn't exist prior to 240A (in fact that register offset is
911 * in the FIFO region, so we really shouldn't access it).
912 */
913 if (host->verid < DW_MMC_240A ||
914 (host->verid < DW_MMC_280A && data->flags & MMC_DATA_WRITE))
915 return;
916
917 /*
918 * Card write Threshold is introduced since 2.80a
919 * It's used when HS400 mode is enabled.
920 */
921 if (data->flags & MMC_DATA_WRITE &&
922 !(host->timing != MMC_TIMING_MMC_HS400))
923 return;
924
925 if (data->flags & MMC_DATA_WRITE)
926 enable = SDMMC_CARD_WR_THR_EN;
927 else
928 enable = SDMMC_CARD_RD_THR_EN;
929
930 if (host->timing != MMC_TIMING_MMC_HS200 &&
931 host->timing != MMC_TIMING_UHS_SDR104)
932 goto disable;
933
934 blksz_depth = blksz / (1 << host->data_shift);
935 fifo_depth = host->fifo_depth;
936
937 if (blksz_depth > fifo_depth)
938 goto disable;
939
940 /*
941 * If (blksz_depth) >= (fifo_depth >> 1), should be 'thld_size <= blksz'
942 * If (blksz_depth) < (fifo_depth >> 1), should be thld_size = blksz
943 * Currently just choose blksz.
944 */
945 thld_size = blksz;
946 mci_writel(host, CDTHRCTL, SDMMC_SET_THLD(thld_size, enable));
947 return;
948
949 disable:
950 mci_writel(host, CDTHRCTL, 0);
951 }
952
953 static int dw_mci_submit_data_dma(struct dw_mci *host, struct mmc_data *data)
954 {
955 unsigned long irqflags;
956 int sg_len;
957 u32 temp;
958
959 host->using_dma = 0;
960
961 /* If we don't have a channel, we can't do DMA */
962 if (!host->use_dma)
963 return -ENODEV;
964
965 sg_len = dw_mci_pre_dma_transfer(host, data, 0);
966 if (sg_len < 0) {
967 host->dma_ops->stop(host);
968 return sg_len;
969 }
970
971 host->using_dma = 1;
972
973 if (host->use_dma == TRANS_MODE_IDMAC)
974 dev_vdbg(host->dev,
975 "sd sg_cpu: %#lx sg_dma: %#lx sg_len: %d\n",
976 (unsigned long)host->sg_cpu,
977 (unsigned long)host->sg_dma,
978 sg_len);
979
980 /*
981 * Decide the MSIZE and RX/TX Watermark.
982 * If current block size is same with previous size,
983 * no need to update fifoth.
984 */
985 if (host->prev_blksz != data->blksz)
986 dw_mci_adjust_fifoth(host, data);
987
988 /* Enable the DMA interface */
989 temp = mci_readl(host, CTRL);
990 temp |= SDMMC_CTRL_DMA_ENABLE;
991 mci_writel(host, CTRL, temp);
992
993 /* Disable RX/TX IRQs, let DMA handle it */
994 spin_lock_irqsave(&host->irq_lock, irqflags);
995 temp = mci_readl(host, INTMASK);
996 temp &= ~(SDMMC_INT_RXDR | SDMMC_INT_TXDR);
997 mci_writel(host, INTMASK, temp);
998 spin_unlock_irqrestore(&host->irq_lock, irqflags);
999
1000 if (host->dma_ops->start(host, sg_len)) {
1001 /* We can't do DMA */
1002 dev_err(host->dev, "%s: failed to start DMA.\n", __func__);
1003 return -ENODEV;
1004 }
1005
1006 return 0;
1007 }
1008
1009 static void dw_mci_submit_data(struct dw_mci *host, struct mmc_data *data)
1010 {
1011 unsigned long irqflags;
1012 int flags = SG_MITER_ATOMIC;
1013 u32 temp;
1014
1015 data->error = -EINPROGRESS;
1016
1017 WARN_ON(host->data);
1018 host->sg = NULL;
1019 host->data = data;
1020
1021 if (data->flags & MMC_DATA_READ)
1022 host->dir_status = DW_MCI_RECV_STATUS;
1023 else
1024 host->dir_status = DW_MCI_SEND_STATUS;
1025
1026 dw_mci_ctrl_thld(host, data);
1027
1028 if (dw_mci_submit_data_dma(host, data)) {
1029 if (host->data->flags & MMC_DATA_READ)
1030 flags |= SG_MITER_TO_SG;
1031 else
1032 flags |= SG_MITER_FROM_SG;
1033
1034 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
1035 host->sg = data->sg;
1036 host->part_buf_start = 0;
1037 host->part_buf_count = 0;
1038
1039 mci_writel(host, RINTSTS, SDMMC_INT_TXDR | SDMMC_INT_RXDR);
1040
1041 spin_lock_irqsave(&host->irq_lock, irqflags);
1042 temp = mci_readl(host, INTMASK);
1043 temp |= SDMMC_INT_TXDR | SDMMC_INT_RXDR;
1044 mci_writel(host, INTMASK, temp);
1045 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1046
1047 temp = mci_readl(host, CTRL);
1048 temp &= ~SDMMC_CTRL_DMA_ENABLE;
1049 mci_writel(host, CTRL, temp);
1050
1051 /*
1052 * Use the initial fifoth_val for PIO mode.
1053 * If next issued data may be transfered by DMA mode,
1054 * prev_blksz should be invalidated.
1055 */
1056 mci_writel(host, FIFOTH, host->fifoth_val);
1057 host->prev_blksz = 0;
1058 } else {
1059 /*
1060 * Keep the current block size.
1061 * It will be used to decide whether to update
1062 * fifoth register next time.
1063 */
1064 host->prev_blksz = data->blksz;
1065 }
1066 }
1067
1068 static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg)
1069 {
1070 struct dw_mci *host = slot->host;
1071 unsigned long timeout = jiffies + msecs_to_jiffies(500);
1072 unsigned int cmd_status = 0;
1073
1074 mci_writel(host, CMDARG, arg);
1075 wmb(); /* drain writebuffer */
1076 dw_mci_wait_while_busy(host, cmd);
1077 mci_writel(host, CMD, SDMMC_CMD_START | cmd);
1078
1079 while (time_before(jiffies, timeout)) {
1080 cmd_status = mci_readl(host, CMD);
1081 if (!(cmd_status & SDMMC_CMD_START))
1082 return;
1083 }
1084 dev_err(&slot->mmc->class_dev,
1085 "Timeout sending command (cmd %#x arg %#x status %#x)\n",
1086 cmd, arg, cmd_status);
1087 }
1088
1089 static void dw_mci_setup_bus(struct dw_mci_slot *slot, bool force_clkinit)
1090 {
1091 struct dw_mci *host = slot->host;
1092 unsigned int clock = slot->clock;
1093 u32 div;
1094 u32 clk_en_a;
1095 u32 sdmmc_cmd_bits = SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT;
1096
1097 /* We must continue to set bit 28 in CMD until the change is complete */
1098 if (host->state == STATE_WAITING_CMD11_DONE)
1099 sdmmc_cmd_bits |= SDMMC_CMD_VOLT_SWITCH;
1100
1101 if (!clock) {
1102 mci_writel(host, CLKENA, 0);
1103 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1104 } else if (clock != host->current_speed || force_clkinit) {
1105 div = host->bus_hz / clock;
1106 if (host->bus_hz % clock && host->bus_hz > clock)
1107 /*
1108 * move the + 1 after the divide to prevent
1109 * over-clocking the card.
1110 */
1111 div += 1;
1112
1113 div = (host->bus_hz != clock) ? DIV_ROUND_UP(div, 2) : 0;
1114
1115 dev_info(&slot->mmc->class_dev,
1116 "Bus speed (slot %d) = %dHz (slot req %dHz, actual %dHZ div = %d)\n",
1117 slot->id, host->bus_hz, clock,
1118 div ? ((host->bus_hz / div) >> 1) :
1119 host->bus_hz, div);
1120
1121 /* disable clock */
1122 mci_writel(host, CLKENA, 0);
1123 mci_writel(host, CLKSRC, 0);
1124
1125 /* inform CIU */
1126 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1127
1128 /* set clock to desired speed */
1129 mci_writel(host, CLKDIV, div);
1130
1131 /* inform CIU */
1132 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1133
1134 /* enable clock; only low power if no SDIO */
1135 clk_en_a = SDMMC_CLKEN_ENABLE << slot->id;
1136 if (!test_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags))
1137 clk_en_a |= SDMMC_CLKEN_LOW_PWR << slot->id;
1138 mci_writel(host, CLKENA, clk_en_a);
1139
1140 /* inform CIU */
1141 mci_send_cmd(slot, sdmmc_cmd_bits, 0);
1142 }
1143
1144 host->current_speed = clock;
1145
1146 /* Set the current slot bus width */
1147 mci_writel(host, CTYPE, (slot->ctype << slot->id));
1148 }
1149
1150 static void __dw_mci_start_request(struct dw_mci *host,
1151 struct dw_mci_slot *slot,
1152 struct mmc_command *cmd)
1153 {
1154 struct mmc_request *mrq;
1155 struct mmc_data *data;
1156 u32 cmdflags;
1157
1158 mrq = slot->mrq;
1159
1160 host->cur_slot = slot;
1161 host->mrq = mrq;
1162
1163 host->pending_events = 0;
1164 host->completed_events = 0;
1165 host->cmd_status = 0;
1166 host->data_status = 0;
1167 host->dir_status = 0;
1168
1169 data = cmd->data;
1170 if (data) {
1171 mci_writel(host, TMOUT, 0xFFFFFFFF);
1172 mci_writel(host, BYTCNT, data->blksz*data->blocks);
1173 mci_writel(host, BLKSIZ, data->blksz);
1174 }
1175
1176 cmdflags = dw_mci_prepare_command(slot->mmc, cmd);
1177
1178 /* this is the first command, send the initialization clock */
1179 if (test_and_clear_bit(DW_MMC_CARD_NEED_INIT, &slot->flags))
1180 cmdflags |= SDMMC_CMD_INIT;
1181
1182 if (data) {
1183 dw_mci_submit_data(host, data);
1184 wmb(); /* drain writebuffer */
1185 }
1186
1187 dw_mci_start_command(host, cmd, cmdflags);
1188
1189 if (cmd->opcode == SD_SWITCH_VOLTAGE) {
1190 unsigned long irqflags;
1191
1192 /*
1193 * Databook says to fail after 2ms w/ no response, but evidence
1194 * shows that sometimes the cmd11 interrupt takes over 130ms.
1195 * We'll set to 500ms, plus an extra jiffy just in case jiffies
1196 * is just about to roll over.
1197 *
1198 * We do this whole thing under spinlock and only if the
1199 * command hasn't already completed (indicating the the irq
1200 * already ran so we don't want the timeout).
1201 */
1202 spin_lock_irqsave(&host->irq_lock, irqflags);
1203 if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events))
1204 mod_timer(&host->cmd11_timer,
1205 jiffies + msecs_to_jiffies(500) + 1);
1206 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1207 }
1208
1209 if (mrq->stop)
1210 host->stop_cmdr = dw_mci_prepare_command(slot->mmc, mrq->stop);
1211 else
1212 host->stop_cmdr = dw_mci_prep_stop_abort(host, cmd);
1213 }
1214
1215 static void dw_mci_start_request(struct dw_mci *host,
1216 struct dw_mci_slot *slot)
1217 {
1218 struct mmc_request *mrq = slot->mrq;
1219 struct mmc_command *cmd;
1220
1221 cmd = mrq->sbc ? mrq->sbc : mrq->cmd;
1222 __dw_mci_start_request(host, slot, cmd);
1223 }
1224
1225 /* must be called with host->lock held */
1226 static void dw_mci_queue_request(struct dw_mci *host, struct dw_mci_slot *slot,
1227 struct mmc_request *mrq)
1228 {
1229 dev_vdbg(&slot->mmc->class_dev, "queue request: state=%d\n",
1230 host->state);
1231
1232 slot->mrq = mrq;
1233
1234 if (host->state == STATE_WAITING_CMD11_DONE) {
1235 dev_warn(&slot->mmc->class_dev,
1236 "Voltage change didn't complete\n");
1237 /*
1238 * this case isn't expected to happen, so we can
1239 * either crash here or just try to continue on
1240 * in the closest possible state
1241 */
1242 host->state = STATE_IDLE;
1243 }
1244
1245 if (host->state == STATE_IDLE) {
1246 host->state = STATE_SENDING_CMD;
1247 dw_mci_start_request(host, slot);
1248 } else {
1249 list_add_tail(&slot->queue_node, &host->queue);
1250 }
1251 }
1252
1253 static void dw_mci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1254 {
1255 struct dw_mci_slot *slot = mmc_priv(mmc);
1256 struct dw_mci *host = slot->host;
1257
1258 WARN_ON(slot->mrq);
1259
1260 /*
1261 * The check for card presence and queueing of the request must be
1262 * atomic, otherwise the card could be removed in between and the
1263 * request wouldn't fail until another card was inserted.
1264 */
1265
1266 if (!dw_mci_get_cd(mmc)) {
1267 mrq->cmd->error = -ENOMEDIUM;
1268 mmc_request_done(mmc, mrq);
1269 return;
1270 }
1271
1272 spin_lock_bh(&host->lock);
1273
1274 dw_mci_queue_request(host, slot, mrq);
1275
1276 spin_unlock_bh(&host->lock);
1277 }
1278
1279 static void dw_mci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1280 {
1281 struct dw_mci_slot *slot = mmc_priv(mmc);
1282 const struct dw_mci_drv_data *drv_data = slot->host->drv_data;
1283 u32 regs;
1284 int ret;
1285
1286 switch (ios->bus_width) {
1287 case MMC_BUS_WIDTH_4:
1288 slot->ctype = SDMMC_CTYPE_4BIT;
1289 break;
1290 case MMC_BUS_WIDTH_8:
1291 slot->ctype = SDMMC_CTYPE_8BIT;
1292 break;
1293 default:
1294 /* set default 1 bit mode */
1295 slot->ctype = SDMMC_CTYPE_1BIT;
1296 }
1297
1298 regs = mci_readl(slot->host, UHS_REG);
1299
1300 /* DDR mode set */
1301 if (ios->timing == MMC_TIMING_MMC_DDR52 ||
1302 ios->timing == MMC_TIMING_UHS_DDR50 ||
1303 ios->timing == MMC_TIMING_MMC_HS400)
1304 regs |= ((0x1 << slot->id) << 16);
1305 else
1306 regs &= ~((0x1 << slot->id) << 16);
1307
1308 mci_writel(slot->host, UHS_REG, regs);
1309 slot->host->timing = ios->timing;
1310
1311 /*
1312 * Use mirror of ios->clock to prevent race with mmc
1313 * core ios update when finding the minimum.
1314 */
1315 slot->clock = ios->clock;
1316
1317 if (drv_data && drv_data->set_ios)
1318 drv_data->set_ios(slot->host, ios);
1319
1320 switch (ios->power_mode) {
1321 case MMC_POWER_UP:
1322 if (!IS_ERR(mmc->supply.vmmc)) {
1323 ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
1324 ios->vdd);
1325 if (ret) {
1326 dev_err(slot->host->dev,
1327 "failed to enable vmmc regulator\n");
1328 /*return, if failed turn on vmmc*/
1329 return;
1330 }
1331 }
1332 set_bit(DW_MMC_CARD_NEED_INIT, &slot->flags);
1333 regs = mci_readl(slot->host, PWREN);
1334 regs |= (1 << slot->id);
1335 mci_writel(slot->host, PWREN, regs);
1336 break;
1337 case MMC_POWER_ON:
1338 if (!slot->host->vqmmc_enabled) {
1339 if (!IS_ERR(mmc->supply.vqmmc)) {
1340 ret = regulator_enable(mmc->supply.vqmmc);
1341 if (ret < 0)
1342 dev_err(slot->host->dev,
1343 "failed to enable vqmmc\n");
1344 else
1345 slot->host->vqmmc_enabled = true;
1346
1347 } else {
1348 /* Keep track so we don't reset again */
1349 slot->host->vqmmc_enabled = true;
1350 }
1351
1352 /* Reset our state machine after powering on */
1353 dw_mci_ctrl_reset(slot->host,
1354 SDMMC_CTRL_ALL_RESET_FLAGS);
1355 }
1356
1357 /* Adjust clock / bus width after power is up */
1358 dw_mci_setup_bus(slot, false);
1359
1360 break;
1361 case MMC_POWER_OFF:
1362 /* Turn clock off before power goes down */
1363 dw_mci_setup_bus(slot, false);
1364
1365 if (!IS_ERR(mmc->supply.vmmc))
1366 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1367
1368 if (!IS_ERR(mmc->supply.vqmmc) && slot->host->vqmmc_enabled)
1369 regulator_disable(mmc->supply.vqmmc);
1370 slot->host->vqmmc_enabled = false;
1371
1372 regs = mci_readl(slot->host, PWREN);
1373 regs &= ~(1 << slot->id);
1374 mci_writel(slot->host, PWREN, regs);
1375 break;
1376 default:
1377 break;
1378 }
1379
1380 if (slot->host->state == STATE_WAITING_CMD11_DONE && ios->clock != 0)
1381 slot->host->state = STATE_IDLE;
1382 }
1383
1384 static int dw_mci_card_busy(struct mmc_host *mmc)
1385 {
1386 struct dw_mci_slot *slot = mmc_priv(mmc);
1387 u32 status;
1388
1389 /*
1390 * Check the busy bit which is low when DAT[3:0]
1391 * (the data lines) are 0000
1392 */
1393 status = mci_readl(slot->host, STATUS);
1394
1395 return !!(status & SDMMC_STATUS_BUSY);
1396 }
1397
1398 static int dw_mci_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios)
1399 {
1400 struct dw_mci_slot *slot = mmc_priv(mmc);
1401 struct dw_mci *host = slot->host;
1402 const struct dw_mci_drv_data *drv_data = host->drv_data;
1403 u32 uhs;
1404 u32 v18 = SDMMC_UHS_18V << slot->id;
1405 int ret;
1406
1407 if (drv_data && drv_data->switch_voltage)
1408 return drv_data->switch_voltage(mmc, ios);
1409
1410 /*
1411 * Program the voltage. Note that some instances of dw_mmc may use
1412 * the UHS_REG for this. For other instances (like exynos) the UHS_REG
1413 * does no harm but you need to set the regulator directly. Try both.
1414 */
1415 uhs = mci_readl(host, UHS_REG);
1416 if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1417 uhs &= ~v18;
1418 else
1419 uhs |= v18;
1420
1421 if (!IS_ERR(mmc->supply.vqmmc)) {
1422 ret = mmc_regulator_set_vqmmc(mmc, ios);
1423
1424 if (ret) {
1425 dev_dbg(&mmc->class_dev,
1426 "Regulator set error %d - %s V\n",
1427 ret, uhs & v18 ? "1.8" : "3.3");
1428 return ret;
1429 }
1430 }
1431 mci_writel(host, UHS_REG, uhs);
1432
1433 return 0;
1434 }
1435
1436 static int dw_mci_get_ro(struct mmc_host *mmc)
1437 {
1438 int read_only;
1439 struct dw_mci_slot *slot = mmc_priv(mmc);
1440 int gpio_ro = mmc_gpio_get_ro(mmc);
1441
1442 /* Use platform get_ro function, else try on board write protect */
1443 if (gpio_ro >= 0)
1444 read_only = gpio_ro;
1445 else
1446 read_only =
1447 mci_readl(slot->host, WRTPRT) & (1 << slot->id) ? 1 : 0;
1448
1449 dev_dbg(&mmc->class_dev, "card is %s\n",
1450 read_only ? "read-only" : "read-write");
1451
1452 return read_only;
1453 }
1454
1455 static int dw_mci_get_cd(struct mmc_host *mmc)
1456 {
1457 int present;
1458 struct dw_mci_slot *slot = mmc_priv(mmc);
1459 struct dw_mci *host = slot->host;
1460 int gpio_cd = mmc_gpio_get_cd(mmc);
1461
1462 /* Use platform get_cd function, else try onboard card detect */
1463 if ((mmc->caps & MMC_CAP_NEEDS_POLL) || !mmc_card_is_removable(mmc))
1464 present = 1;
1465 else if (gpio_cd >= 0)
1466 present = gpio_cd;
1467 else
1468 present = (mci_readl(slot->host, CDETECT) & (1 << slot->id))
1469 == 0 ? 1 : 0;
1470
1471 spin_lock_bh(&host->lock);
1472 if (present) {
1473 set_bit(DW_MMC_CARD_PRESENT, &slot->flags);
1474 dev_dbg(&mmc->class_dev, "card is present\n");
1475 } else {
1476 clear_bit(DW_MMC_CARD_PRESENT, &slot->flags);
1477 dev_dbg(&mmc->class_dev, "card is not present\n");
1478 }
1479 spin_unlock_bh(&host->lock);
1480
1481 return present;
1482 }
1483
1484 static void dw_mci_hw_reset(struct mmc_host *mmc)
1485 {
1486 struct dw_mci_slot *slot = mmc_priv(mmc);
1487 struct dw_mci *host = slot->host;
1488 int reset;
1489
1490 if (host->use_dma == TRANS_MODE_IDMAC)
1491 dw_mci_idmac_reset(host);
1492
1493 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET |
1494 SDMMC_CTRL_FIFO_RESET))
1495 return;
1496
1497 /*
1498 * According to eMMC spec, card reset procedure:
1499 * tRstW >= 1us: RST_n pulse width
1500 * tRSCA >= 200us: RST_n to Command time
1501 * tRSTH >= 1us: RST_n high period
1502 */
1503 reset = mci_readl(host, RST_N);
1504 reset &= ~(SDMMC_RST_HWACTIVE << slot->id);
1505 mci_writel(host, RST_N, reset);
1506 usleep_range(1, 2);
1507 reset |= SDMMC_RST_HWACTIVE << slot->id;
1508 mci_writel(host, RST_N, reset);
1509 usleep_range(200, 300);
1510 }
1511
1512 static void dw_mci_init_card(struct mmc_host *mmc, struct mmc_card *card)
1513 {
1514 struct dw_mci_slot *slot = mmc_priv(mmc);
1515 struct dw_mci *host = slot->host;
1516
1517 /*
1518 * Low power mode will stop the card clock when idle. According to the
1519 * description of the CLKENA register we should disable low power mode
1520 * for SDIO cards if we need SDIO interrupts to work.
1521 */
1522 if (mmc->caps & MMC_CAP_SDIO_IRQ) {
1523 const u32 clken_low_pwr = SDMMC_CLKEN_LOW_PWR << slot->id;
1524 u32 clk_en_a_old;
1525 u32 clk_en_a;
1526
1527 clk_en_a_old = mci_readl(host, CLKENA);
1528
1529 if (card->type == MMC_TYPE_SDIO ||
1530 card->type == MMC_TYPE_SD_COMBO) {
1531 set_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1532 clk_en_a = clk_en_a_old & ~clken_low_pwr;
1533 } else {
1534 clear_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags);
1535 clk_en_a = clk_en_a_old | clken_low_pwr;
1536 }
1537
1538 if (clk_en_a != clk_en_a_old) {
1539 mci_writel(host, CLKENA, clk_en_a);
1540 mci_send_cmd(slot, SDMMC_CMD_UPD_CLK |
1541 SDMMC_CMD_PRV_DAT_WAIT, 0);
1542 }
1543 }
1544 }
1545
1546 static void dw_mci_enable_sdio_irq(struct mmc_host *mmc, int enb)
1547 {
1548 struct dw_mci_slot *slot = mmc_priv(mmc);
1549 struct dw_mci *host = slot->host;
1550 unsigned long irqflags;
1551 u32 int_mask;
1552
1553 spin_lock_irqsave(&host->irq_lock, irqflags);
1554
1555 /* Enable/disable Slot Specific SDIO interrupt */
1556 int_mask = mci_readl(host, INTMASK);
1557 if (enb)
1558 int_mask |= SDMMC_INT_SDIO(slot->sdio_id);
1559 else
1560 int_mask &= ~SDMMC_INT_SDIO(slot->sdio_id);
1561 mci_writel(host, INTMASK, int_mask);
1562
1563 spin_unlock_irqrestore(&host->irq_lock, irqflags);
1564 }
1565
1566 static int dw_mci_execute_tuning(struct mmc_host *mmc, u32 opcode)
1567 {
1568 struct dw_mci_slot *slot = mmc_priv(mmc);
1569 struct dw_mci *host = slot->host;
1570 const struct dw_mci_drv_data *drv_data = host->drv_data;
1571 int err = -EINVAL;
1572
1573 if (drv_data && drv_data->execute_tuning)
1574 err = drv_data->execute_tuning(slot, opcode);
1575 return err;
1576 }
1577
1578 static int dw_mci_prepare_hs400_tuning(struct mmc_host *mmc,
1579 struct mmc_ios *ios)
1580 {
1581 struct dw_mci_slot *slot = mmc_priv(mmc);
1582 struct dw_mci *host = slot->host;
1583 const struct dw_mci_drv_data *drv_data = host->drv_data;
1584
1585 if (drv_data && drv_data->prepare_hs400_tuning)
1586 return drv_data->prepare_hs400_tuning(host, ios);
1587
1588 return 0;
1589 }
1590
1591 static const struct mmc_host_ops dw_mci_ops = {
1592 .request = dw_mci_request,
1593 .pre_req = dw_mci_pre_req,
1594 .post_req = dw_mci_post_req,
1595 .set_ios = dw_mci_set_ios,
1596 .get_ro = dw_mci_get_ro,
1597 .get_cd = dw_mci_get_cd,
1598 .hw_reset = dw_mci_hw_reset,
1599 .enable_sdio_irq = dw_mci_enable_sdio_irq,
1600 .execute_tuning = dw_mci_execute_tuning,
1601 .card_busy = dw_mci_card_busy,
1602 .start_signal_voltage_switch = dw_mci_switch_voltage,
1603 .init_card = dw_mci_init_card,
1604 .prepare_hs400_tuning = dw_mci_prepare_hs400_tuning,
1605 };
1606
1607 static void dw_mci_request_end(struct dw_mci *host, struct mmc_request *mrq)
1608 __releases(&host->lock)
1609 __acquires(&host->lock)
1610 {
1611 struct dw_mci_slot *slot;
1612 struct mmc_host *prev_mmc = host->cur_slot->mmc;
1613
1614 WARN_ON(host->cmd || host->data);
1615
1616 host->cur_slot->mrq = NULL;
1617 host->mrq = NULL;
1618 if (!list_empty(&host->queue)) {
1619 slot = list_entry(host->queue.next,
1620 struct dw_mci_slot, queue_node);
1621 list_del(&slot->queue_node);
1622 dev_vdbg(host->dev, "list not empty: %s is next\n",
1623 mmc_hostname(slot->mmc));
1624 host->state = STATE_SENDING_CMD;
1625 dw_mci_start_request(host, slot);
1626 } else {
1627 dev_vdbg(host->dev, "list empty\n");
1628
1629 if (host->state == STATE_SENDING_CMD11)
1630 host->state = STATE_WAITING_CMD11_DONE;
1631 else
1632 host->state = STATE_IDLE;
1633 }
1634
1635 spin_unlock(&host->lock);
1636 mmc_request_done(prev_mmc, mrq);
1637 spin_lock(&host->lock);
1638 }
1639
1640 static int dw_mci_command_complete(struct dw_mci *host, struct mmc_command *cmd)
1641 {
1642 u32 status = host->cmd_status;
1643
1644 host->cmd_status = 0;
1645
1646 /* Read the response from the card (up to 16 bytes) */
1647 if (cmd->flags & MMC_RSP_PRESENT) {
1648 if (cmd->flags & MMC_RSP_136) {
1649 cmd->resp[3] = mci_readl(host, RESP0);
1650 cmd->resp[2] = mci_readl(host, RESP1);
1651 cmd->resp[1] = mci_readl(host, RESP2);
1652 cmd->resp[0] = mci_readl(host, RESP3);
1653 } else {
1654 cmd->resp[0] = mci_readl(host, RESP0);
1655 cmd->resp[1] = 0;
1656 cmd->resp[2] = 0;
1657 cmd->resp[3] = 0;
1658 }
1659 }
1660
1661 if (status & SDMMC_INT_RTO)
1662 cmd->error = -ETIMEDOUT;
1663 else if ((cmd->flags & MMC_RSP_CRC) && (status & SDMMC_INT_RCRC))
1664 cmd->error = -EILSEQ;
1665 else if (status & SDMMC_INT_RESP_ERR)
1666 cmd->error = -EIO;
1667 else
1668 cmd->error = 0;
1669
1670 return cmd->error;
1671 }
1672
1673 static int dw_mci_data_complete(struct dw_mci *host, struct mmc_data *data)
1674 {
1675 u32 status = host->data_status;
1676
1677 if (status & DW_MCI_DATA_ERROR_FLAGS) {
1678 if (status & SDMMC_INT_DRTO) {
1679 data->error = -ETIMEDOUT;
1680 } else if (status & SDMMC_INT_DCRC) {
1681 data->error = -EILSEQ;
1682 } else if (status & SDMMC_INT_EBE) {
1683 if (host->dir_status ==
1684 DW_MCI_SEND_STATUS) {
1685 /*
1686 * No data CRC status was returned.
1687 * The number of bytes transferred
1688 * will be exaggerated in PIO mode.
1689 */
1690 data->bytes_xfered = 0;
1691 data->error = -ETIMEDOUT;
1692 } else if (host->dir_status ==
1693 DW_MCI_RECV_STATUS) {
1694 data->error = -EIO;
1695 }
1696 } else {
1697 /* SDMMC_INT_SBE is included */
1698 data->error = -EIO;
1699 }
1700
1701 dev_dbg(host->dev, "data error, status 0x%08x\n", status);
1702
1703 /*
1704 * After an error, there may be data lingering
1705 * in the FIFO
1706 */
1707 dw_mci_reset(host);
1708 } else {
1709 data->bytes_xfered = data->blocks * data->blksz;
1710 data->error = 0;
1711 }
1712
1713 return data->error;
1714 }
1715
1716 static void dw_mci_set_drto(struct dw_mci *host)
1717 {
1718 unsigned int drto_clks;
1719 unsigned int drto_ms;
1720
1721 drto_clks = mci_readl(host, TMOUT) >> 8;
1722 drto_ms = DIV_ROUND_UP(drto_clks, host->bus_hz / 1000);
1723
1724 /* add a bit spare time */
1725 drto_ms += 10;
1726
1727 mod_timer(&host->dto_timer, jiffies + msecs_to_jiffies(drto_ms));
1728 }
1729
1730 static void dw_mci_tasklet_func(unsigned long priv)
1731 {
1732 struct dw_mci *host = (struct dw_mci *)priv;
1733 struct mmc_data *data;
1734 struct mmc_command *cmd;
1735 struct mmc_request *mrq;
1736 enum dw_mci_state state;
1737 enum dw_mci_state prev_state;
1738 unsigned int err;
1739
1740 spin_lock(&host->lock);
1741
1742 state = host->state;
1743 data = host->data;
1744 mrq = host->mrq;
1745
1746 do {
1747 prev_state = state;
1748
1749 switch (state) {
1750 case STATE_IDLE:
1751 case STATE_WAITING_CMD11_DONE:
1752 break;
1753
1754 case STATE_SENDING_CMD11:
1755 case STATE_SENDING_CMD:
1756 if (!test_and_clear_bit(EVENT_CMD_COMPLETE,
1757 &host->pending_events))
1758 break;
1759
1760 cmd = host->cmd;
1761 host->cmd = NULL;
1762 set_bit(EVENT_CMD_COMPLETE, &host->completed_events);
1763 err = dw_mci_command_complete(host, cmd);
1764 if (cmd == mrq->sbc && !err) {
1765 prev_state = state = STATE_SENDING_CMD;
1766 __dw_mci_start_request(host, host->cur_slot,
1767 mrq->cmd);
1768 goto unlock;
1769 }
1770
1771 if (cmd->data && err) {
1772 /*
1773 * During UHS tuning sequence, sending the stop
1774 * command after the response CRC error would
1775 * throw the system into a confused state
1776 * causing all future tuning phases to report
1777 * failure.
1778 *
1779 * In such case controller will move into a data
1780 * transfer state after a response error or
1781 * response CRC error. Let's let that finish
1782 * before trying to send a stop, so we'll go to
1783 * STATE_SENDING_DATA.
1784 *
1785 * Although letting the data transfer take place
1786 * will waste a bit of time (we already know
1787 * the command was bad), it can't cause any
1788 * errors since it's possible it would have
1789 * taken place anyway if this tasklet got
1790 * delayed. Allowing the transfer to take place
1791 * avoids races and keeps things simple.
1792 */
1793 if ((err != -ETIMEDOUT) &&
1794 (cmd->opcode == MMC_SEND_TUNING_BLOCK)) {
1795 state = STATE_SENDING_DATA;
1796 continue;
1797 }
1798
1799 dw_mci_stop_dma(host);
1800 send_stop_abort(host, data);
1801 state = STATE_SENDING_STOP;
1802 break;
1803 }
1804
1805 if (!cmd->data || err) {
1806 dw_mci_request_end(host, mrq);
1807 goto unlock;
1808 }
1809
1810 prev_state = state = STATE_SENDING_DATA;
1811 /* fall through */
1812
1813 case STATE_SENDING_DATA:
1814 /*
1815 * We could get a data error and never a transfer
1816 * complete so we'd better check for it here.
1817 *
1818 * Note that we don't really care if we also got a
1819 * transfer complete; stopping the DMA and sending an
1820 * abort won't hurt.
1821 */
1822 if (test_and_clear_bit(EVENT_DATA_ERROR,
1823 &host->pending_events)) {
1824 dw_mci_stop_dma(host);
1825 if (data->stop ||
1826 !(host->data_status & (SDMMC_INT_DRTO |
1827 SDMMC_INT_EBE)))
1828 send_stop_abort(host, data);
1829 state = STATE_DATA_ERROR;
1830 break;
1831 }
1832
1833 if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
1834 &host->pending_events)) {
1835 /*
1836 * If all data-related interrupts don't come
1837 * within the given time in reading data state.
1838 */
1839 if (host->dir_status == DW_MCI_RECV_STATUS)
1840 dw_mci_set_drto(host);
1841 break;
1842 }
1843
1844 set_bit(EVENT_XFER_COMPLETE, &host->completed_events);
1845
1846 /*
1847 * Handle an EVENT_DATA_ERROR that might have shown up
1848 * before the transfer completed. This might not have
1849 * been caught by the check above because the interrupt
1850 * could have gone off between the previous check and
1851 * the check for transfer complete.
1852 *
1853 * Technically this ought not be needed assuming we
1854 * get a DATA_COMPLETE eventually (we'll notice the
1855 * error and end the request), but it shouldn't hurt.
1856 *
1857 * This has the advantage of sending the stop command.
1858 */
1859 if (test_and_clear_bit(EVENT_DATA_ERROR,
1860 &host->pending_events)) {
1861 dw_mci_stop_dma(host);
1862 if (data->stop ||
1863 !(host->data_status & (SDMMC_INT_DRTO |
1864 SDMMC_INT_EBE)))
1865 send_stop_abort(host, data);
1866 state = STATE_DATA_ERROR;
1867 break;
1868 }
1869 prev_state = state = STATE_DATA_BUSY;
1870
1871 /* fall through */
1872
1873 case STATE_DATA_BUSY:
1874 if (!test_and_clear_bit(EVENT_DATA_COMPLETE,
1875 &host->pending_events)) {
1876 /*
1877 * If data error interrupt comes but data over
1878 * interrupt doesn't come within the given time.
1879 * in reading data state.
1880 */
1881 if (host->dir_status == DW_MCI_RECV_STATUS)
1882 dw_mci_set_drto(host);
1883 break;
1884 }
1885
1886 host->data = NULL;
1887 set_bit(EVENT_DATA_COMPLETE, &host->completed_events);
1888 err = dw_mci_data_complete(host, data);
1889
1890 if (!err) {
1891 if (!data->stop || mrq->sbc) {
1892 if (mrq->sbc && data->stop)
1893 data->stop->error = 0;
1894 dw_mci_request_end(host, mrq);
1895 goto unlock;
1896 }
1897
1898 /* stop command for open-ended transfer*/
1899 if (data->stop)
1900 send_stop_abort(host, data);
1901 } else {
1902 /*
1903 * If we don't have a command complete now we'll
1904 * never get one since we just reset everything;
1905 * better end the request.
1906 *
1907 * If we do have a command complete we'll fall
1908 * through to the SENDING_STOP command and
1909 * everything will be peachy keen.
1910 */
1911 if (!test_bit(EVENT_CMD_COMPLETE,
1912 &host->pending_events)) {
1913 host->cmd = NULL;
1914 dw_mci_request_end(host, mrq);
1915 goto unlock;
1916 }
1917 }
1918
1919 /*
1920 * If err has non-zero,
1921 * stop-abort command has been already issued.
1922 */
1923 prev_state = state = STATE_SENDING_STOP;
1924
1925 /* fall through */
1926
1927 case STATE_SENDING_STOP:
1928 if (!test_and_clear_bit(EVENT_CMD_COMPLETE,
1929 &host->pending_events))
1930 break;
1931
1932 /* CMD error in data command */
1933 if (mrq->cmd->error && mrq->data)
1934 dw_mci_reset(host);
1935
1936 host->cmd = NULL;
1937 host->data = NULL;
1938
1939 if (mrq->stop)
1940 dw_mci_command_complete(host, mrq->stop);
1941 else
1942 host->cmd_status = 0;
1943
1944 dw_mci_request_end(host, mrq);
1945 goto unlock;
1946
1947 case STATE_DATA_ERROR:
1948 if (!test_and_clear_bit(EVENT_XFER_COMPLETE,
1949 &host->pending_events))
1950 break;
1951
1952 state = STATE_DATA_BUSY;
1953 break;
1954 }
1955 } while (state != prev_state);
1956
1957 host->state = state;
1958 unlock:
1959 spin_unlock(&host->lock);
1960
1961 }
1962
1963 /* push final bytes to part_buf, only use during push */
1964 static void dw_mci_set_part_bytes(struct dw_mci *host, void *buf, int cnt)
1965 {
1966 memcpy((void *)&host->part_buf, buf, cnt);
1967 host->part_buf_count = cnt;
1968 }
1969
1970 /* append bytes to part_buf, only use during push */
1971 static int dw_mci_push_part_bytes(struct dw_mci *host, void *buf, int cnt)
1972 {
1973 cnt = min(cnt, (1 << host->data_shift) - host->part_buf_count);
1974 memcpy((void *)&host->part_buf + host->part_buf_count, buf, cnt);
1975 host->part_buf_count += cnt;
1976 return cnt;
1977 }
1978
1979 /* pull first bytes from part_buf, only use during pull */
1980 static int dw_mci_pull_part_bytes(struct dw_mci *host, void *buf, int cnt)
1981 {
1982 cnt = min_t(int, cnt, host->part_buf_count);
1983 if (cnt) {
1984 memcpy(buf, (void *)&host->part_buf + host->part_buf_start,
1985 cnt);
1986 host->part_buf_count -= cnt;
1987 host->part_buf_start += cnt;
1988 }
1989 return cnt;
1990 }
1991
1992 /* pull final bytes from the part_buf, assuming it's just been filled */
1993 static void dw_mci_pull_final_bytes(struct dw_mci *host, void *buf, int cnt)
1994 {
1995 memcpy(buf, &host->part_buf, cnt);
1996 host->part_buf_start = cnt;
1997 host->part_buf_count = (1 << host->data_shift) - cnt;
1998 }
1999
2000 static void dw_mci_push_data16(struct dw_mci *host, void *buf, int cnt)
2001 {
2002 struct mmc_data *data = host->data;
2003 int init_cnt = cnt;
2004
2005 /* try and push anything in the part_buf */
2006 if (unlikely(host->part_buf_count)) {
2007 int len = dw_mci_push_part_bytes(host, buf, cnt);
2008
2009 buf += len;
2010 cnt -= len;
2011 if (host->part_buf_count == 2) {
2012 mci_fifo_writew(host->fifo_reg, host->part_buf16);
2013 host->part_buf_count = 0;
2014 }
2015 }
2016 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2017 if (unlikely((unsigned long)buf & 0x1)) {
2018 while (cnt >= 2) {
2019 u16 aligned_buf[64];
2020 int len = min(cnt & -2, (int)sizeof(aligned_buf));
2021 int items = len >> 1;
2022 int i;
2023 /* memcpy from input buffer into aligned buffer */
2024 memcpy(aligned_buf, buf, len);
2025 buf += len;
2026 cnt -= len;
2027 /* push data from aligned buffer into fifo */
2028 for (i = 0; i < items; ++i)
2029 mci_fifo_writew(host->fifo_reg, aligned_buf[i]);
2030 }
2031 } else
2032 #endif
2033 {
2034 u16 *pdata = buf;
2035
2036 for (; cnt >= 2; cnt -= 2)
2037 mci_fifo_writew(host->fifo_reg, *pdata++);
2038 buf = pdata;
2039 }
2040 /* put anything remaining in the part_buf */
2041 if (cnt) {
2042 dw_mci_set_part_bytes(host, buf, cnt);
2043 /* Push data if we have reached the expected data length */
2044 if ((data->bytes_xfered + init_cnt) ==
2045 (data->blksz * data->blocks))
2046 mci_fifo_writew(host->fifo_reg, host->part_buf16);
2047 }
2048 }
2049
2050 static void dw_mci_pull_data16(struct dw_mci *host, void *buf, int cnt)
2051 {
2052 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2053 if (unlikely((unsigned long)buf & 0x1)) {
2054 while (cnt >= 2) {
2055 /* pull data from fifo into aligned buffer */
2056 u16 aligned_buf[64];
2057 int len = min(cnt & -2, (int)sizeof(aligned_buf));
2058 int items = len >> 1;
2059 int i;
2060
2061 for (i = 0; i < items; ++i)
2062 aligned_buf[i] = mci_fifo_readw(host->fifo_reg);
2063 /* memcpy from aligned buffer into output buffer */
2064 memcpy(buf, aligned_buf, len);
2065 buf += len;
2066 cnt -= len;
2067 }
2068 } else
2069 #endif
2070 {
2071 u16 *pdata = buf;
2072
2073 for (; cnt >= 2; cnt -= 2)
2074 *pdata++ = mci_fifo_readw(host->fifo_reg);
2075 buf = pdata;
2076 }
2077 if (cnt) {
2078 host->part_buf16 = mci_fifo_readw(host->fifo_reg);
2079 dw_mci_pull_final_bytes(host, buf, cnt);
2080 }
2081 }
2082
2083 static void dw_mci_push_data32(struct dw_mci *host, void *buf, int cnt)
2084 {
2085 struct mmc_data *data = host->data;
2086 int init_cnt = cnt;
2087
2088 /* try and push anything in the part_buf */
2089 if (unlikely(host->part_buf_count)) {
2090 int len = dw_mci_push_part_bytes(host, buf, cnt);
2091
2092 buf += len;
2093 cnt -= len;
2094 if (host->part_buf_count == 4) {
2095 mci_fifo_writel(host->fifo_reg, host->part_buf32);
2096 host->part_buf_count = 0;
2097 }
2098 }
2099 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2100 if (unlikely((unsigned long)buf & 0x3)) {
2101 while (cnt >= 4) {
2102 u32 aligned_buf[32];
2103 int len = min(cnt & -4, (int)sizeof(aligned_buf));
2104 int items = len >> 2;
2105 int i;
2106 /* memcpy from input buffer into aligned buffer */
2107 memcpy(aligned_buf, buf, len);
2108 buf += len;
2109 cnt -= len;
2110 /* push data from aligned buffer into fifo */
2111 for (i = 0; i < items; ++i)
2112 mci_fifo_writel(host->fifo_reg, aligned_buf[i]);
2113 }
2114 } else
2115 #endif
2116 {
2117 u32 *pdata = buf;
2118
2119 for (; cnt >= 4; cnt -= 4)
2120 mci_fifo_writel(host->fifo_reg, *pdata++);
2121 buf = pdata;
2122 }
2123 /* put anything remaining in the part_buf */
2124 if (cnt) {
2125 dw_mci_set_part_bytes(host, buf, cnt);
2126 /* Push data if we have reached the expected data length */
2127 if ((data->bytes_xfered + init_cnt) ==
2128 (data->blksz * data->blocks))
2129 mci_fifo_writel(host->fifo_reg, host->part_buf32);
2130 }
2131 }
2132
2133 static void dw_mci_pull_data32(struct dw_mci *host, void *buf, int cnt)
2134 {
2135 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2136 if (unlikely((unsigned long)buf & 0x3)) {
2137 while (cnt >= 4) {
2138 /* pull data from fifo into aligned buffer */
2139 u32 aligned_buf[32];
2140 int len = min(cnt & -4, (int)sizeof(aligned_buf));
2141 int items = len >> 2;
2142 int i;
2143
2144 for (i = 0; i < items; ++i)
2145 aligned_buf[i] = mci_fifo_readl(host->fifo_reg);
2146 /* memcpy from aligned buffer into output buffer */
2147 memcpy(buf, aligned_buf, len);
2148 buf += len;
2149 cnt -= len;
2150 }
2151 } else
2152 #endif
2153 {
2154 u32 *pdata = buf;
2155
2156 for (; cnt >= 4; cnt -= 4)
2157 *pdata++ = mci_fifo_readl(host->fifo_reg);
2158 buf = pdata;
2159 }
2160 if (cnt) {
2161 host->part_buf32 = mci_fifo_readl(host->fifo_reg);
2162 dw_mci_pull_final_bytes(host, buf, cnt);
2163 }
2164 }
2165
2166 static void dw_mci_push_data64(struct dw_mci *host, void *buf, int cnt)
2167 {
2168 struct mmc_data *data = host->data;
2169 int init_cnt = cnt;
2170
2171 /* try and push anything in the part_buf */
2172 if (unlikely(host->part_buf_count)) {
2173 int len = dw_mci_push_part_bytes(host, buf, cnt);
2174
2175 buf += len;
2176 cnt -= len;
2177
2178 if (host->part_buf_count == 8) {
2179 mci_fifo_writeq(host->fifo_reg, host->part_buf);
2180 host->part_buf_count = 0;
2181 }
2182 }
2183 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2184 if (unlikely((unsigned long)buf & 0x7)) {
2185 while (cnt >= 8) {
2186 u64 aligned_buf[16];
2187 int len = min(cnt & -8, (int)sizeof(aligned_buf));
2188 int items = len >> 3;
2189 int i;
2190 /* memcpy from input buffer into aligned buffer */
2191 memcpy(aligned_buf, buf, len);
2192 buf += len;
2193 cnt -= len;
2194 /* push data from aligned buffer into fifo */
2195 for (i = 0; i < items; ++i)
2196 mci_fifo_writeq(host->fifo_reg, aligned_buf[i]);
2197 }
2198 } else
2199 #endif
2200 {
2201 u64 *pdata = buf;
2202
2203 for (; cnt >= 8; cnt -= 8)
2204 mci_fifo_writeq(host->fifo_reg, *pdata++);
2205 buf = pdata;
2206 }
2207 /* put anything remaining in the part_buf */
2208 if (cnt) {
2209 dw_mci_set_part_bytes(host, buf, cnt);
2210 /* Push data if we have reached the expected data length */
2211 if ((data->bytes_xfered + init_cnt) ==
2212 (data->blksz * data->blocks))
2213 mci_fifo_writeq(host->fifo_reg, host->part_buf);
2214 }
2215 }
2216
2217 static void dw_mci_pull_data64(struct dw_mci *host, void *buf, int cnt)
2218 {
2219 #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
2220 if (unlikely((unsigned long)buf & 0x7)) {
2221 while (cnt >= 8) {
2222 /* pull data from fifo into aligned buffer */
2223 u64 aligned_buf[16];
2224 int len = min(cnt & -8, (int)sizeof(aligned_buf));
2225 int items = len >> 3;
2226 int i;
2227
2228 for (i = 0; i < items; ++i)
2229 aligned_buf[i] = mci_fifo_readq(host->fifo_reg);
2230
2231 /* memcpy from aligned buffer into output buffer */
2232 memcpy(buf, aligned_buf, len);
2233 buf += len;
2234 cnt -= len;
2235 }
2236 } else
2237 #endif
2238 {
2239 u64 *pdata = buf;
2240
2241 for (; cnt >= 8; cnt -= 8)
2242 *pdata++ = mci_fifo_readq(host->fifo_reg);
2243 buf = pdata;
2244 }
2245 if (cnt) {
2246 host->part_buf = mci_fifo_readq(host->fifo_reg);
2247 dw_mci_pull_final_bytes(host, buf, cnt);
2248 }
2249 }
2250
2251 static void dw_mci_pull_data(struct dw_mci *host, void *buf, int cnt)
2252 {
2253 int len;
2254
2255 /* get remaining partial bytes */
2256 len = dw_mci_pull_part_bytes(host, buf, cnt);
2257 if (unlikely(len == cnt))
2258 return;
2259 buf += len;
2260 cnt -= len;
2261
2262 /* get the rest of the data */
2263 host->pull_data(host, buf, cnt);
2264 }
2265
2266 static void dw_mci_read_data_pio(struct dw_mci *host, bool dto)
2267 {
2268 struct sg_mapping_iter *sg_miter = &host->sg_miter;
2269 void *buf;
2270 unsigned int offset;
2271 struct mmc_data *data = host->data;
2272 int shift = host->data_shift;
2273 u32 status;
2274 unsigned int len;
2275 unsigned int remain, fcnt;
2276
2277 do {
2278 if (!sg_miter_next(sg_miter))
2279 goto done;
2280
2281 host->sg = sg_miter->piter.sg;
2282 buf = sg_miter->addr;
2283 remain = sg_miter->length;
2284 offset = 0;
2285
2286 do {
2287 fcnt = (SDMMC_GET_FCNT(mci_readl(host, STATUS))
2288 << shift) + host->part_buf_count;
2289 len = min(remain, fcnt);
2290 if (!len)
2291 break;
2292 dw_mci_pull_data(host, (void *)(buf + offset), len);
2293 data->bytes_xfered += len;
2294 offset += len;
2295 remain -= len;
2296 } while (remain);
2297
2298 sg_miter->consumed = offset;
2299 status = mci_readl(host, MINTSTS);
2300 mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2301 /* if the RXDR is ready read again */
2302 } while ((status & SDMMC_INT_RXDR) ||
2303 (dto && SDMMC_GET_FCNT(mci_readl(host, STATUS))));
2304
2305 if (!remain) {
2306 if (!sg_miter_next(sg_miter))
2307 goto done;
2308 sg_miter->consumed = 0;
2309 }
2310 sg_miter_stop(sg_miter);
2311 return;
2312
2313 done:
2314 sg_miter_stop(sg_miter);
2315 host->sg = NULL;
2316 smp_wmb(); /* drain writebuffer */
2317 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2318 }
2319
2320 static void dw_mci_write_data_pio(struct dw_mci *host)
2321 {
2322 struct sg_mapping_iter *sg_miter = &host->sg_miter;
2323 void *buf;
2324 unsigned int offset;
2325 struct mmc_data *data = host->data;
2326 int shift = host->data_shift;
2327 u32 status;
2328 unsigned int len;
2329 unsigned int fifo_depth = host->fifo_depth;
2330 unsigned int remain, fcnt;
2331
2332 do {
2333 if (!sg_miter_next(sg_miter))
2334 goto done;
2335
2336 host->sg = sg_miter->piter.sg;
2337 buf = sg_miter->addr;
2338 remain = sg_miter->length;
2339 offset = 0;
2340
2341 do {
2342 fcnt = ((fifo_depth -
2343 SDMMC_GET_FCNT(mci_readl(host, STATUS)))
2344 << shift) - host->part_buf_count;
2345 len = min(remain, fcnt);
2346 if (!len)
2347 break;
2348 host->push_data(host, (void *)(buf + offset), len);
2349 data->bytes_xfered += len;
2350 offset += len;
2351 remain -= len;
2352 } while (remain);
2353
2354 sg_miter->consumed = offset;
2355 status = mci_readl(host, MINTSTS);
2356 mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2357 } while (status & SDMMC_INT_TXDR); /* if TXDR write again */
2358
2359 if (!remain) {
2360 if (!sg_miter_next(sg_miter))
2361 goto done;
2362 sg_miter->consumed = 0;
2363 }
2364 sg_miter_stop(sg_miter);
2365 return;
2366
2367 done:
2368 sg_miter_stop(sg_miter);
2369 host->sg = NULL;
2370 smp_wmb(); /* drain writebuffer */
2371 set_bit(EVENT_XFER_COMPLETE, &host->pending_events);
2372 }
2373
2374 static void dw_mci_cmd_interrupt(struct dw_mci *host, u32 status)
2375 {
2376 if (!host->cmd_status)
2377 host->cmd_status = status;
2378
2379 smp_wmb(); /* drain writebuffer */
2380
2381 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2382 tasklet_schedule(&host->tasklet);
2383 }
2384
2385 static void dw_mci_handle_cd(struct dw_mci *host)
2386 {
2387 int i;
2388
2389 for (i = 0; i < host->num_slots; i++) {
2390 struct dw_mci_slot *slot = host->slot[i];
2391
2392 if (!slot)
2393 continue;
2394
2395 if (slot->mmc->ops->card_event)
2396 slot->mmc->ops->card_event(slot->mmc);
2397 mmc_detect_change(slot->mmc,
2398 msecs_to_jiffies(host->pdata->detect_delay_ms));
2399 }
2400 }
2401
2402 static irqreturn_t dw_mci_interrupt(int irq, void *dev_id)
2403 {
2404 struct dw_mci *host = dev_id;
2405 u32 pending;
2406 int i;
2407
2408 pending = mci_readl(host, MINTSTS); /* read-only mask reg */
2409
2410 if (pending) {
2411 /* Check volt switch first, since it can look like an error */
2412 if ((host->state == STATE_SENDING_CMD11) &&
2413 (pending & SDMMC_INT_VOLT_SWITCH)) {
2414 unsigned long irqflags;
2415
2416 mci_writel(host, RINTSTS, SDMMC_INT_VOLT_SWITCH);
2417 pending &= ~SDMMC_INT_VOLT_SWITCH;
2418
2419 /*
2420 * Hold the lock; we know cmd11_timer can't be kicked
2421 * off after the lock is released, so safe to delete.
2422 */
2423 spin_lock_irqsave(&host->irq_lock, irqflags);
2424 dw_mci_cmd_interrupt(host, pending);
2425 spin_unlock_irqrestore(&host->irq_lock, irqflags);
2426
2427 del_timer(&host->cmd11_timer);
2428 }
2429
2430 if (pending & DW_MCI_CMD_ERROR_FLAGS) {
2431 mci_writel(host, RINTSTS, DW_MCI_CMD_ERROR_FLAGS);
2432 host->cmd_status = pending;
2433 smp_wmb(); /* drain writebuffer */
2434 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2435 }
2436
2437 if (pending & DW_MCI_DATA_ERROR_FLAGS) {
2438 /* if there is an error report DATA_ERROR */
2439 mci_writel(host, RINTSTS, DW_MCI_DATA_ERROR_FLAGS);
2440 host->data_status = pending;
2441 smp_wmb(); /* drain writebuffer */
2442 set_bit(EVENT_DATA_ERROR, &host->pending_events);
2443 tasklet_schedule(&host->tasklet);
2444 }
2445
2446 if (pending & SDMMC_INT_DATA_OVER) {
2447 del_timer(&host->dto_timer);
2448
2449 mci_writel(host, RINTSTS, SDMMC_INT_DATA_OVER);
2450 if (!host->data_status)
2451 host->data_status = pending;
2452 smp_wmb(); /* drain writebuffer */
2453 if (host->dir_status == DW_MCI_RECV_STATUS) {
2454 if (host->sg != NULL)
2455 dw_mci_read_data_pio(host, true);
2456 }
2457 set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2458 tasklet_schedule(&host->tasklet);
2459 }
2460
2461 if (pending & SDMMC_INT_RXDR) {
2462 mci_writel(host, RINTSTS, SDMMC_INT_RXDR);
2463 if (host->dir_status == DW_MCI_RECV_STATUS && host->sg)
2464 dw_mci_read_data_pio(host, false);
2465 }
2466
2467 if (pending & SDMMC_INT_TXDR) {
2468 mci_writel(host, RINTSTS, SDMMC_INT_TXDR);
2469 if (host->dir_status == DW_MCI_SEND_STATUS && host->sg)
2470 dw_mci_write_data_pio(host);
2471 }
2472
2473 if (pending & SDMMC_INT_CMD_DONE) {
2474 mci_writel(host, RINTSTS, SDMMC_INT_CMD_DONE);
2475 dw_mci_cmd_interrupt(host, pending);
2476 }
2477
2478 if (pending & SDMMC_INT_CD) {
2479 mci_writel(host, RINTSTS, SDMMC_INT_CD);
2480 dw_mci_handle_cd(host);
2481 }
2482
2483 /* Handle SDIO Interrupts */
2484 for (i = 0; i < host->num_slots; i++) {
2485 struct dw_mci_slot *slot = host->slot[i];
2486
2487 if (!slot)
2488 continue;
2489
2490 if (pending & SDMMC_INT_SDIO(slot->sdio_id)) {
2491 mci_writel(host, RINTSTS,
2492 SDMMC_INT_SDIO(slot->sdio_id));
2493 mmc_signal_sdio_irq(slot->mmc);
2494 }
2495 }
2496
2497 }
2498
2499 if (host->use_dma != TRANS_MODE_IDMAC)
2500 return IRQ_HANDLED;
2501
2502 /* Handle IDMA interrupts */
2503 if (host->dma_64bit_address == 1) {
2504 pending = mci_readl(host, IDSTS64);
2505 if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2506 mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_TI |
2507 SDMMC_IDMAC_INT_RI);
2508 mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_NI);
2509 if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2510 host->dma_ops->complete((void *)host);
2511 }
2512 } else {
2513 pending = mci_readl(host, IDSTS);
2514 if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) {
2515 mci_writel(host, IDSTS, SDMMC_IDMAC_INT_TI |
2516 SDMMC_IDMAC_INT_RI);
2517 mci_writel(host, IDSTS, SDMMC_IDMAC_INT_NI);
2518 if (!test_bit(EVENT_DATA_ERROR, &host->pending_events))
2519 host->dma_ops->complete((void *)host);
2520 }
2521 }
2522
2523 return IRQ_HANDLED;
2524 }
2525
2526 #ifdef CONFIG_OF
2527 /* given a slot, find out the device node representing that slot */
2528 static struct device_node *dw_mci_of_find_slot_node(struct dw_mci_slot *slot)
2529 {
2530 struct device *dev = slot->mmc->parent;
2531 struct device_node *np;
2532 const __be32 *addr;
2533 int len;
2534
2535 if (!dev || !dev->of_node)
2536 return NULL;
2537
2538 for_each_child_of_node(dev->of_node, np) {
2539 addr = of_get_property(np, "reg", &len);
2540 if (!addr || (len < sizeof(int)))
2541 continue;
2542 if (be32_to_cpup(addr) == slot->id)
2543 return np;
2544 }
2545 return NULL;
2546 }
2547
2548 static void dw_mci_slot_of_parse(struct dw_mci_slot *slot)
2549 {
2550 struct device_node *np = dw_mci_of_find_slot_node(slot);
2551
2552 if (!np)
2553 return;
2554
2555 if (of_property_read_bool(np, "disable-wp")) {
2556 slot->mmc->caps2 |= MMC_CAP2_NO_WRITE_PROTECT;
2557 dev_warn(slot->mmc->parent,
2558 "Slot quirk 'disable-wp' is deprecated\n");
2559 }
2560 }
2561 #else /* CONFIG_OF */
2562 static void dw_mci_slot_of_parse(struct dw_mci_slot *slot)
2563 {
2564 }
2565 #endif /* CONFIG_OF */
2566
2567 static int dw_mci_init_slot(struct dw_mci *host, unsigned int id)
2568 {
2569 struct mmc_host *mmc;
2570 struct dw_mci_slot *slot;
2571 const struct dw_mci_drv_data *drv_data = host->drv_data;
2572 int ctrl_id, ret;
2573 u32 freq[2];
2574
2575 mmc = mmc_alloc_host(sizeof(struct dw_mci_slot), host->dev);
2576 if (!mmc)
2577 return -ENOMEM;
2578
2579 slot = mmc_priv(mmc);
2580 slot->id = id;
2581 slot->sdio_id = host->sdio_id0 + id;
2582 slot->mmc = mmc;
2583 slot->host = host;
2584 host->slot[id] = slot;
2585
2586 mmc->ops = &dw_mci_ops;
2587 if (of_property_read_u32_array(host->dev->of_node,
2588 "clock-freq-min-max", freq, 2)) {
2589 mmc->f_min = DW_MCI_FREQ_MIN;
2590 mmc->f_max = DW_MCI_FREQ_MAX;
2591 } else {
2592 mmc->f_min = freq[0];
2593 mmc->f_max = freq[1];
2594 }
2595
2596 /*if there are external regulators, get them*/
2597 ret = mmc_regulator_get_supply(mmc);
2598 if (ret == -EPROBE_DEFER)
2599 goto err_host_allocated;
2600
2601 if (!mmc->ocr_avail)
2602 mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
2603
2604 if (host->pdata->caps)
2605 mmc->caps = host->pdata->caps;
2606
2607 /*
2608 * Support MMC_CAP_ERASE by default.
2609 * It needs to use trim/discard/erase commands.
2610 */
2611 mmc->caps |= MMC_CAP_ERASE;
2612
2613 if (host->pdata->pm_caps)
2614 mmc->pm_caps = host->pdata->pm_caps;
2615
2616 if (host->dev->of_node) {
2617 ctrl_id = of_alias_get_id(host->dev->of_node, "mshc");
2618 if (ctrl_id < 0)
2619 ctrl_id = 0;
2620 } else {
2621 ctrl_id = to_platform_device(host->dev)->id;
2622 }
2623 if (drv_data && drv_data->caps)
2624 mmc->caps |= drv_data->caps[ctrl_id];
2625
2626 if (host->pdata->caps2)
2627 mmc->caps2 = host->pdata->caps2;
2628
2629 dw_mci_slot_of_parse(slot);
2630
2631 ret = mmc_of_parse(mmc);
2632 if (ret)
2633 goto err_host_allocated;
2634
2635 /* Useful defaults if platform data is unset. */
2636 if (host->use_dma == TRANS_MODE_IDMAC) {
2637 mmc->max_segs = host->ring_size;
2638 mmc->max_blk_size = 65535;
2639 mmc->max_seg_size = 0x1000;
2640 mmc->max_req_size = mmc->max_seg_size * host->ring_size;
2641 mmc->max_blk_count = mmc->max_req_size / 512;
2642 } else if (host->use_dma == TRANS_MODE_EDMAC) {
2643 mmc->max_segs = 64;
2644 mmc->max_blk_size = 65535;
2645 mmc->max_blk_count = 65535;
2646 mmc->max_req_size =
2647 mmc->max_blk_size * mmc->max_blk_count;
2648 mmc->max_seg_size = mmc->max_req_size;
2649 } else {
2650 /* TRANS_MODE_PIO */
2651 mmc->max_segs = 64;
2652 mmc->max_blk_size = 65535; /* BLKSIZ is 16 bits */
2653 mmc->max_blk_count = 512;
2654 mmc->max_req_size = mmc->max_blk_size *
2655 mmc->max_blk_count;
2656 mmc->max_seg_size = mmc->max_req_size;
2657 }
2658
2659 dw_mci_get_cd(mmc);
2660
2661 ret = mmc_add_host(mmc);
2662 if (ret)
2663 goto err_host_allocated;
2664
2665 #if defined(CONFIG_DEBUG_FS)
2666 dw_mci_init_debugfs(slot);
2667 #endif
2668
2669 return 0;
2670
2671 err_host_allocated:
2672 mmc_free_host(mmc);
2673 return ret;
2674 }
2675
2676 static void dw_mci_cleanup_slot(struct dw_mci_slot *slot, unsigned int id)
2677 {
2678 /* Debugfs stuff is cleaned up by mmc core */
2679 mmc_remove_host(slot->mmc);
2680 slot->host->slot[id] = NULL;
2681 mmc_free_host(slot->mmc);
2682 }
2683
2684 static void dw_mci_init_dma(struct dw_mci *host)
2685 {
2686 int addr_config;
2687 struct device *dev = host->dev;
2688 struct device_node *np = dev->of_node;
2689
2690 /*
2691 * Check tansfer mode from HCON[17:16]
2692 * Clear the ambiguous description of dw_mmc databook:
2693 * 2b'00: No DMA Interface -> Actually means using Internal DMA block
2694 * 2b'01: DesignWare DMA Interface -> Synopsys DW-DMA block
2695 * 2b'10: Generic DMA Interface -> non-Synopsys generic DMA block
2696 * 2b'11: Non DW DMA Interface -> pio only
2697 * Compared to DesignWare DMA Interface, Generic DMA Interface has a
2698 * simpler request/acknowledge handshake mechanism and both of them
2699 * are regarded as external dma master for dw_mmc.
2700 */
2701 host->use_dma = SDMMC_GET_TRANS_MODE(mci_readl(host, HCON));
2702 if (host->use_dma == DMA_INTERFACE_IDMA) {
2703 host->use_dma = TRANS_MODE_IDMAC;
2704 } else if (host->use_dma == DMA_INTERFACE_DWDMA ||
2705 host->use_dma == DMA_INTERFACE_GDMA) {
2706 host->use_dma = TRANS_MODE_EDMAC;
2707 } else {
2708 goto no_dma;
2709 }
2710
2711 /* Determine which DMA interface to use */
2712 if (host->use_dma == TRANS_MODE_IDMAC) {
2713 /*
2714 * Check ADDR_CONFIG bit in HCON to find
2715 * IDMAC address bus width
2716 */
2717 addr_config = SDMMC_GET_ADDR_CONFIG(mci_readl(host, HCON));
2718
2719 if (addr_config == 1) {
2720 /* host supports IDMAC in 64-bit address mode */
2721 host->dma_64bit_address = 1;
2722 dev_info(host->dev,
2723 "IDMAC supports 64-bit address mode.\n");
2724 if (!dma_set_mask(host->dev, DMA_BIT_MASK(64)))
2725 dma_set_coherent_mask(host->dev,
2726 DMA_BIT_MASK(64));
2727 } else {
2728 /* host supports IDMAC in 32-bit address mode */
2729 host->dma_64bit_address = 0;
2730 dev_info(host->dev,
2731 "IDMAC supports 32-bit address mode.\n");
2732 }
2733
2734 /* Alloc memory for sg translation */
2735 host->sg_cpu = dmam_alloc_coherent(host->dev, PAGE_SIZE,
2736 &host->sg_dma, GFP_KERNEL);
2737 if (!host->sg_cpu) {
2738 dev_err(host->dev,
2739 "%s: could not alloc DMA memory\n",
2740 __func__);
2741 goto no_dma;
2742 }
2743
2744 host->dma_ops = &dw_mci_idmac_ops;
2745 dev_info(host->dev, "Using internal DMA controller.\n");
2746 } else {
2747 /* TRANS_MODE_EDMAC: check dma bindings again */
2748 if ((of_property_count_strings(np, "dma-names") < 0) ||
2749 (!of_find_property(np, "dmas", NULL))) {
2750 goto no_dma;
2751 }
2752 host->dma_ops = &dw_mci_edmac_ops;
2753 dev_info(host->dev, "Using external DMA controller.\n");
2754 }
2755
2756 if (host->dma_ops->init && host->dma_ops->start &&
2757 host->dma_ops->stop && host->dma_ops->cleanup) {
2758 if (host->dma_ops->init(host)) {
2759 dev_err(host->dev, "%s: Unable to initialize DMA Controller.\n",
2760 __func__);
2761 goto no_dma;
2762 }
2763 } else {
2764 dev_err(host->dev, "DMA initialization not found.\n");
2765 goto no_dma;
2766 }
2767
2768 return;
2769
2770 no_dma:
2771 dev_info(host->dev, "Using PIO mode.\n");
2772 host->use_dma = TRANS_MODE_PIO;
2773 }
2774
2775 static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset)
2776 {
2777 unsigned long timeout = jiffies + msecs_to_jiffies(500);
2778 u32 ctrl;
2779
2780 ctrl = mci_readl(host, CTRL);
2781 ctrl |= reset;
2782 mci_writel(host, CTRL, ctrl);
2783
2784 /* wait till resets clear */
2785 do {
2786 ctrl = mci_readl(host, CTRL);
2787 if (!(ctrl & reset))
2788 return true;
2789 } while (time_before(jiffies, timeout));
2790
2791 dev_err(host->dev,
2792 "Timeout resetting block (ctrl reset %#x)\n",
2793 ctrl & reset);
2794
2795 return false;
2796 }
2797
2798 static bool dw_mci_reset(struct dw_mci *host)
2799 {
2800 u32 flags = SDMMC_CTRL_RESET | SDMMC_CTRL_FIFO_RESET;
2801 bool ret = false;
2802
2803 /*
2804 * Reseting generates a block interrupt, hence setting
2805 * the scatter-gather pointer to NULL.
2806 */
2807 if (host->sg) {
2808 sg_miter_stop(&host->sg_miter);
2809 host->sg = NULL;
2810 }
2811
2812 if (host->use_dma)
2813 flags |= SDMMC_CTRL_DMA_RESET;
2814
2815 if (dw_mci_ctrl_reset(host, flags)) {
2816 /*
2817 * In all cases we clear the RAWINTS register to clear any
2818 * interrupts.
2819 */
2820 mci_writel(host, RINTSTS, 0xFFFFFFFF);
2821
2822 /* if using dma we wait for dma_req to clear */
2823 if (host->use_dma) {
2824 unsigned long timeout = jiffies + msecs_to_jiffies(500);
2825 u32 status;
2826
2827 do {
2828 status = mci_readl(host, STATUS);
2829 if (!(status & SDMMC_STATUS_DMA_REQ))
2830 break;
2831 cpu_relax();
2832 } while (time_before(jiffies, timeout));
2833
2834 if (status & SDMMC_STATUS_DMA_REQ) {
2835 dev_err(host->dev,
2836 "%s: Timeout waiting for dma_req to clear during reset\n",
2837 __func__);
2838 goto ciu_out;
2839 }
2840
2841 /* when using DMA next we reset the fifo again */
2842 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_FIFO_RESET))
2843 goto ciu_out;
2844 }
2845 } else {
2846 /* if the controller reset bit did clear, then set clock regs */
2847 if (!(mci_readl(host, CTRL) & SDMMC_CTRL_RESET)) {
2848 dev_err(host->dev,
2849 "%s: fifo/dma reset bits didn't clear but ciu was reset, doing clock update\n",
2850 __func__);
2851 goto ciu_out;
2852 }
2853 }
2854
2855 if (host->use_dma == TRANS_MODE_IDMAC)
2856 /* It is also recommended that we reset and reprogram idmac */
2857 dw_mci_idmac_reset(host);
2858
2859 ret = true;
2860
2861 ciu_out:
2862 /* After a CTRL reset we need to have CIU set clock registers */
2863 mci_send_cmd(host->cur_slot, SDMMC_CMD_UPD_CLK, 0);
2864
2865 return ret;
2866 }
2867
2868 static void dw_mci_cmd11_timer(unsigned long arg)
2869 {
2870 struct dw_mci *host = (struct dw_mci *)arg;
2871
2872 if (host->state != STATE_SENDING_CMD11) {
2873 dev_warn(host->dev, "Unexpected CMD11 timeout\n");
2874 return;
2875 }
2876
2877 host->cmd_status = SDMMC_INT_RTO;
2878 set_bit(EVENT_CMD_COMPLETE, &host->pending_events);
2879 tasklet_schedule(&host->tasklet);
2880 }
2881
2882 static void dw_mci_dto_timer(unsigned long arg)
2883 {
2884 struct dw_mci *host = (struct dw_mci *)arg;
2885
2886 switch (host->state) {
2887 case STATE_SENDING_DATA:
2888 case STATE_DATA_BUSY:
2889 /*
2890 * If DTO interrupt does NOT come in sending data state,
2891 * we should notify the driver to terminate current transfer
2892 * and report a data timeout to the core.
2893 */
2894 host->data_status = SDMMC_INT_DRTO;
2895 set_bit(EVENT_DATA_ERROR, &host->pending_events);
2896 set_bit(EVENT_DATA_COMPLETE, &host->pending_events);
2897 tasklet_schedule(&host->tasklet);
2898 break;
2899 default:
2900 break;
2901 }
2902 }
2903
2904 #ifdef CONFIG_OF
2905 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
2906 {
2907 struct dw_mci_board *pdata;
2908 struct device *dev = host->dev;
2909 struct device_node *np = dev->of_node;
2910 const struct dw_mci_drv_data *drv_data = host->drv_data;
2911 int ret;
2912 u32 clock_frequency;
2913
2914 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
2915 if (!pdata)
2916 return ERR_PTR(-ENOMEM);
2917
2918 /* find out number of slots supported */
2919 of_property_read_u32(np, "num-slots", &pdata->num_slots);
2920
2921 if (of_property_read_u32(np, "fifo-depth", &pdata->fifo_depth))
2922 dev_info(dev,
2923 "fifo-depth property not found, using value of FIFOTH register as default\n");
2924
2925 of_property_read_u32(np, "card-detect-delay", &pdata->detect_delay_ms);
2926
2927 if (!of_property_read_u32(np, "clock-frequency", &clock_frequency))
2928 pdata->bus_hz = clock_frequency;
2929
2930 if (drv_data && drv_data->parse_dt) {
2931 ret = drv_data->parse_dt(host);
2932 if (ret)
2933 return ERR_PTR(ret);
2934 }
2935
2936 if (of_find_property(np, "supports-highspeed", NULL)) {
2937 dev_info(dev, "supports-highspeed property is deprecated.\n");
2938 pdata->caps |= MMC_CAP_SD_HIGHSPEED | MMC_CAP_MMC_HIGHSPEED;
2939 }
2940
2941 return pdata;
2942 }
2943
2944 #else /* CONFIG_OF */
2945 static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host)
2946 {
2947 return ERR_PTR(-EINVAL);
2948 }
2949 #endif /* CONFIG_OF */
2950
2951 static void dw_mci_enable_cd(struct dw_mci *host)
2952 {
2953 unsigned long irqflags;
2954 u32 temp;
2955 int i;
2956 struct dw_mci_slot *slot;
2957
2958 /*
2959 * No need for CD if all slots have a non-error GPIO
2960 * as well as broken card detection is found.
2961 */
2962 for (i = 0; i < host->num_slots; i++) {
2963 slot = host->slot[i];
2964 if (slot->mmc->caps & MMC_CAP_NEEDS_POLL)
2965 return;
2966
2967 if (mmc_gpio_get_cd(slot->mmc) < 0)
2968 break;
2969 }
2970 if (i == host->num_slots)
2971 return;
2972
2973 spin_lock_irqsave(&host->irq_lock, irqflags);
2974 temp = mci_readl(host, INTMASK);
2975 temp |= SDMMC_INT_CD;
2976 mci_writel(host, INTMASK, temp);
2977 spin_unlock_irqrestore(&host->irq_lock, irqflags);
2978 }
2979
2980 int dw_mci_probe(struct dw_mci *host)
2981 {
2982 const struct dw_mci_drv_data *drv_data = host->drv_data;
2983 int width, i, ret = 0;
2984 u32 fifo_size;
2985 int init_slots = 0;
2986
2987 if (!host->pdata) {
2988 host->pdata = dw_mci_parse_dt(host);
2989 if (IS_ERR(host->pdata)) {
2990 dev_err(host->dev, "platform data not available\n");
2991 return -EINVAL;
2992 }
2993 }
2994
2995 host->biu_clk = devm_clk_get(host->dev, "biu");
2996 if (IS_ERR(host->biu_clk)) {
2997 dev_dbg(host->dev, "biu clock not available\n");
2998 } else {
2999 ret = clk_prepare_enable(host->biu_clk);
3000 if (ret) {
3001 dev_err(host->dev, "failed to enable biu clock\n");
3002 return ret;
3003 }
3004 }
3005
3006 host->ciu_clk = devm_clk_get(host->dev, "ciu");
3007 if (IS_ERR(host->ciu_clk)) {
3008 dev_dbg(host->dev, "ciu clock not available\n");
3009 host->bus_hz = host->pdata->bus_hz;
3010 } else {
3011 ret = clk_prepare_enable(host->ciu_clk);
3012 if (ret) {
3013 dev_err(host->dev, "failed to enable ciu clock\n");
3014 goto err_clk_biu;
3015 }
3016
3017 if (host->pdata->bus_hz) {
3018 ret = clk_set_rate(host->ciu_clk, host->pdata->bus_hz);
3019 if (ret)
3020 dev_warn(host->dev,
3021 "Unable to set bus rate to %uHz\n",
3022 host->pdata->bus_hz);
3023 }
3024 host->bus_hz = clk_get_rate(host->ciu_clk);
3025 }
3026
3027 if (!host->bus_hz) {
3028 dev_err(host->dev,
3029 "Platform data must supply bus speed\n");
3030 ret = -ENODEV;
3031 goto err_clk_ciu;
3032 }
3033
3034 if (drv_data && drv_data->init) {
3035 ret = drv_data->init(host);
3036 if (ret) {
3037 dev_err(host->dev,
3038 "implementation specific init failed\n");
3039 goto err_clk_ciu;
3040 }
3041 }
3042
3043 setup_timer(&host->cmd11_timer,
3044 dw_mci_cmd11_timer, (unsigned long)host);
3045
3046 setup_timer(&host->dto_timer,
3047 dw_mci_dto_timer, (unsigned long)host);
3048
3049 spin_lock_init(&host->lock);
3050 spin_lock_init(&host->irq_lock);
3051 INIT_LIST_HEAD(&host->queue);
3052
3053 /*
3054 * Get the host data width - this assumes that HCON has been set with
3055 * the correct values.
3056 */
3057 i = SDMMC_GET_HDATA_WIDTH(mci_readl(host, HCON));
3058 if (!i) {
3059 host->push_data = dw_mci_push_data16;
3060 host->pull_data = dw_mci_pull_data16;
3061 width = 16;
3062 host->data_shift = 1;
3063 } else if (i == 2) {
3064 host->push_data = dw_mci_push_data64;
3065 host->pull_data = dw_mci_pull_data64;
3066 width = 64;
3067 host->data_shift = 3;
3068 } else {
3069 /* Check for a reserved value, and warn if it is */
3070 WARN((i != 1),
3071 "HCON reports a reserved host data width!\n"
3072 "Defaulting to 32-bit access.\n");
3073 host->push_data = dw_mci_push_data32;
3074 host->pull_data = dw_mci_pull_data32;
3075 width = 32;
3076 host->data_shift = 2;
3077 }
3078
3079 /* Reset all blocks */
3080 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3081 ret = -ENODEV;
3082 goto err_clk_ciu;
3083 }
3084
3085 host->dma_ops = host->pdata->dma_ops;
3086 dw_mci_init_dma(host);
3087
3088 /* Clear the interrupts for the host controller */
3089 mci_writel(host, RINTSTS, 0xFFFFFFFF);
3090 mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3091
3092 /* Put in max timeout */
3093 mci_writel(host, TMOUT, 0xFFFFFFFF);
3094
3095 /*
3096 * FIFO threshold settings RxMark = fifo_size / 2 - 1,
3097 * Tx Mark = fifo_size / 2 DMA Size = 8
3098 */
3099 if (!host->pdata->fifo_depth) {
3100 /*
3101 * Power-on value of RX_WMark is FIFO_DEPTH-1, but this may
3102 * have been overwritten by the bootloader, just like we're
3103 * about to do, so if you know the value for your hardware, you
3104 * should put it in the platform data.
3105 */
3106 fifo_size = mci_readl(host, FIFOTH);
3107 fifo_size = 1 + ((fifo_size >> 16) & 0xfff);
3108 } else {
3109 fifo_size = host->pdata->fifo_depth;
3110 }
3111 host->fifo_depth = fifo_size;
3112 host->fifoth_val =
3113 SDMMC_SET_FIFOTH(0x2, fifo_size / 2 - 1, fifo_size / 2);
3114 mci_writel(host, FIFOTH, host->fifoth_val);
3115
3116 /* disable clock to CIU */
3117 mci_writel(host, CLKENA, 0);
3118 mci_writel(host, CLKSRC, 0);
3119
3120 /*
3121 * In 2.40a spec, Data offset is changed.
3122 * Need to check the version-id and set data-offset for DATA register.
3123 */
3124 host->verid = SDMMC_GET_VERID(mci_readl(host, VERID));
3125 dev_info(host->dev, "Version ID is %04x\n", host->verid);
3126
3127 if (host->verid < DW_MMC_240A)
3128 host->fifo_reg = host->regs + DATA_OFFSET;
3129 else
3130 host->fifo_reg = host->regs + DATA_240A_OFFSET;
3131
3132 tasklet_init(&host->tasklet, dw_mci_tasklet_func, (unsigned long)host);
3133 ret = devm_request_irq(host->dev, host->irq, dw_mci_interrupt,
3134 host->irq_flags, "dw-mci", host);
3135 if (ret)
3136 goto err_dmaunmap;
3137
3138 if (host->pdata->num_slots)
3139 host->num_slots = host->pdata->num_slots;
3140 else
3141 host->num_slots = 1;
3142
3143 if (host->num_slots < 1 ||
3144 host->num_slots > SDMMC_GET_SLOT_NUM(mci_readl(host, HCON))) {
3145 dev_err(host->dev,
3146 "Platform data must supply correct num_slots.\n");
3147 ret = -ENODEV;
3148 goto err_clk_ciu;
3149 }
3150
3151 /*
3152 * Enable interrupts for command done, data over, data empty,
3153 * receive ready and error such as transmit, receive timeout, crc error
3154 */
3155 mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3156 SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3157 DW_MCI_ERROR_FLAGS);
3158 /* Enable mci interrupt */
3159 mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3160
3161 dev_info(host->dev,
3162 "DW MMC controller at irq %d,%d bit host data width,%u deep fifo\n",
3163 host->irq, width, fifo_size);
3164
3165 /* We need at least one slot to succeed */
3166 for (i = 0; i < host->num_slots; i++) {
3167 ret = dw_mci_init_slot(host, i);
3168 if (ret)
3169 dev_dbg(host->dev, "slot %d init failed\n", i);
3170 else
3171 init_slots++;
3172 }
3173
3174 if (init_slots) {
3175 dev_info(host->dev, "%d slots initialized\n", init_slots);
3176 } else {
3177 dev_dbg(host->dev,
3178 "attempted to initialize %d slots, but failed on all\n",
3179 host->num_slots);
3180 goto err_dmaunmap;
3181 }
3182
3183 /* Now that slots are all setup, we can enable card detect */
3184 dw_mci_enable_cd(host);
3185
3186 return 0;
3187
3188 err_dmaunmap:
3189 if (host->use_dma && host->dma_ops->exit)
3190 host->dma_ops->exit(host);
3191
3192 err_clk_ciu:
3193 if (!IS_ERR(host->ciu_clk))
3194 clk_disable_unprepare(host->ciu_clk);
3195
3196 err_clk_biu:
3197 if (!IS_ERR(host->biu_clk))
3198 clk_disable_unprepare(host->biu_clk);
3199
3200 return ret;
3201 }
3202 EXPORT_SYMBOL(dw_mci_probe);
3203
3204 void dw_mci_remove(struct dw_mci *host)
3205 {
3206 int i;
3207
3208 for (i = 0; i < host->num_slots; i++) {
3209 dev_dbg(host->dev, "remove slot %d\n", i);
3210 if (host->slot[i])
3211 dw_mci_cleanup_slot(host->slot[i], i);
3212 }
3213
3214 mci_writel(host, RINTSTS, 0xFFFFFFFF);
3215 mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */
3216
3217 /* disable clock to CIU */
3218 mci_writel(host, CLKENA, 0);
3219 mci_writel(host, CLKSRC, 0);
3220
3221 if (host->use_dma && host->dma_ops->exit)
3222 host->dma_ops->exit(host);
3223
3224 if (!IS_ERR(host->ciu_clk))
3225 clk_disable_unprepare(host->ciu_clk);
3226
3227 if (!IS_ERR(host->biu_clk))
3228 clk_disable_unprepare(host->biu_clk);
3229 }
3230 EXPORT_SYMBOL(dw_mci_remove);
3231
3232
3233
3234 #ifdef CONFIG_PM_SLEEP
3235 /*
3236 * TODO: we should probably disable the clock to the card in the suspend path.
3237 */
3238 int dw_mci_suspend(struct dw_mci *host)
3239 {
3240 if (host->use_dma && host->dma_ops->exit)
3241 host->dma_ops->exit(host);
3242
3243 return 0;
3244 }
3245 EXPORT_SYMBOL(dw_mci_suspend);
3246
3247 int dw_mci_resume(struct dw_mci *host)
3248 {
3249 int i, ret;
3250
3251 if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) {
3252 ret = -ENODEV;
3253 return ret;
3254 }
3255
3256 if (host->use_dma && host->dma_ops->init)
3257 host->dma_ops->init(host);
3258
3259 /*
3260 * Restore the initial value at FIFOTH register
3261 * And Invalidate the prev_blksz with zero
3262 */
3263 mci_writel(host, FIFOTH, host->fifoth_val);
3264 host->prev_blksz = 0;
3265
3266 /* Put in max timeout */
3267 mci_writel(host, TMOUT, 0xFFFFFFFF);
3268
3269 mci_writel(host, RINTSTS, 0xFFFFFFFF);
3270 mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER |
3271 SDMMC_INT_TXDR | SDMMC_INT_RXDR |
3272 DW_MCI_ERROR_FLAGS);
3273 mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE);
3274
3275 for (i = 0; i < host->num_slots; i++) {
3276 struct dw_mci_slot *slot = host->slot[i];
3277
3278 if (!slot)
3279 continue;
3280 if (slot->mmc->pm_flags & MMC_PM_KEEP_POWER) {
3281 dw_mci_set_ios(slot->mmc, &slot->mmc->ios);
3282 dw_mci_setup_bus(slot, true);
3283 }
3284 }
3285
3286 /* Now that slots are all setup, we can enable card detect */
3287 dw_mci_enable_cd(host);
3288
3289 return 0;
3290 }
3291 EXPORT_SYMBOL(dw_mci_resume);
3292 #endif /* CONFIG_PM_SLEEP */
3293
3294 static int __init dw_mci_init(void)
3295 {
3296 pr_info("Synopsys Designware Multimedia Card Interface Driver\n");
3297 return 0;
3298 }
3299
3300 static void __exit dw_mci_exit(void)
3301 {
3302 }
3303
3304 module_init(dw_mci_init);
3305 module_exit(dw_mci_exit);
3306
3307 MODULE_DESCRIPTION("DW Multimedia Card Interface driver");
3308 MODULE_AUTHOR("NXP Semiconductor VietNam");
3309 MODULE_AUTHOR("Imagination Technologies Ltd");
3310 MODULE_LICENSE("GPL v2");
This page took 0.107849 seconds and 6 git commands to generate.