Merge tag 'hsi-for-3.17' of git://git.kernel.org/pub/scm/linux/kernel/git/sre/linux-hsi
[deliverable/linux.git] / drivers / mmc / host / mmci.c
1 /*
2 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3 *
4 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 * Copyright (C) 2010 ST-Ericsson SA
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/io.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/highmem.h>
23 #include <linux/log2.h>
24 #include <linux/mmc/pm.h>
25 #include <linux/mmc/host.h>
26 #include <linux/mmc/card.h>
27 #include <linux/mmc/slot-gpio.h>
28 #include <linux/amba/bus.h>
29 #include <linux/clk.h>
30 #include <linux/scatterlist.h>
31 #include <linux/gpio.h>
32 #include <linux/of_gpio.h>
33 #include <linux/regulator/consumer.h>
34 #include <linux/dmaengine.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/amba/mmci.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/types.h>
39 #include <linux/pinctrl/consumer.h>
40
41 #include <asm/div64.h>
42 #include <asm/io.h>
43 #include <asm/sizes.h>
44
45 #include "mmci.h"
46
47 #define DRIVER_NAME "mmci-pl18x"
48
49 static unsigned int fmax = 515633;
50
51 /**
52 * struct variant_data - MMCI variant-specific quirks
53 * @clkreg: default value for MCICLOCK register
54 * @clkreg_enable: enable value for MMCICLOCK register
55 * @datalength_bits: number of bits in the MMCIDATALENGTH register
56 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
57 * is asserted (likewise for RX)
58 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
59 * is asserted (likewise for RX)
60 * @sdio: variant supports SDIO
61 * @st_clkdiv: true if using a ST-specific clock divider algorithm
62 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
63 * @pwrreg_powerup: power up value for MMCIPOWER register
64 * @signal_direction: input/out direction of bus signals can be indicated
65 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
66 * @busy_detect: true if busy detection on dat0 is supported
67 * @pwrreg_nopower: bits in MMCIPOWER don't controls ext. power supply
68 */
69 struct variant_data {
70 unsigned int clkreg;
71 unsigned int clkreg_enable;
72 unsigned int datalength_bits;
73 unsigned int fifosize;
74 unsigned int fifohalfsize;
75 bool sdio;
76 bool st_clkdiv;
77 bool blksz_datactrl16;
78 u32 pwrreg_powerup;
79 bool signal_direction;
80 bool pwrreg_clkgate;
81 bool busy_detect;
82 bool pwrreg_nopower;
83 };
84
85 static struct variant_data variant_arm = {
86 .fifosize = 16 * 4,
87 .fifohalfsize = 8 * 4,
88 .datalength_bits = 16,
89 .pwrreg_powerup = MCI_PWR_UP,
90 };
91
92 static struct variant_data variant_arm_extended_fifo = {
93 .fifosize = 128 * 4,
94 .fifohalfsize = 64 * 4,
95 .datalength_bits = 16,
96 .pwrreg_powerup = MCI_PWR_UP,
97 };
98
99 static struct variant_data variant_arm_extended_fifo_hwfc = {
100 .fifosize = 128 * 4,
101 .fifohalfsize = 64 * 4,
102 .clkreg_enable = MCI_ARM_HWFCEN,
103 .datalength_bits = 16,
104 .pwrreg_powerup = MCI_PWR_UP,
105 };
106
107 static struct variant_data variant_u300 = {
108 .fifosize = 16 * 4,
109 .fifohalfsize = 8 * 4,
110 .clkreg_enable = MCI_ST_U300_HWFCEN,
111 .datalength_bits = 16,
112 .sdio = true,
113 .pwrreg_powerup = MCI_PWR_ON,
114 .signal_direction = true,
115 .pwrreg_clkgate = true,
116 .pwrreg_nopower = true,
117 };
118
119 static struct variant_data variant_nomadik = {
120 .fifosize = 16 * 4,
121 .fifohalfsize = 8 * 4,
122 .clkreg = MCI_CLK_ENABLE,
123 .datalength_bits = 24,
124 .sdio = true,
125 .st_clkdiv = true,
126 .pwrreg_powerup = MCI_PWR_ON,
127 .signal_direction = true,
128 .pwrreg_clkgate = true,
129 .pwrreg_nopower = true,
130 };
131
132 static struct variant_data variant_ux500 = {
133 .fifosize = 30 * 4,
134 .fifohalfsize = 8 * 4,
135 .clkreg = MCI_CLK_ENABLE,
136 .clkreg_enable = MCI_ST_UX500_HWFCEN,
137 .datalength_bits = 24,
138 .sdio = true,
139 .st_clkdiv = true,
140 .pwrreg_powerup = MCI_PWR_ON,
141 .signal_direction = true,
142 .pwrreg_clkgate = true,
143 .busy_detect = true,
144 .pwrreg_nopower = true,
145 };
146
147 static struct variant_data variant_ux500v2 = {
148 .fifosize = 30 * 4,
149 .fifohalfsize = 8 * 4,
150 .clkreg = MCI_CLK_ENABLE,
151 .clkreg_enable = MCI_ST_UX500_HWFCEN,
152 .datalength_bits = 24,
153 .sdio = true,
154 .st_clkdiv = true,
155 .blksz_datactrl16 = true,
156 .pwrreg_powerup = MCI_PWR_ON,
157 .signal_direction = true,
158 .pwrreg_clkgate = true,
159 .busy_detect = true,
160 .pwrreg_nopower = true,
161 };
162
163 static int mmci_card_busy(struct mmc_host *mmc)
164 {
165 struct mmci_host *host = mmc_priv(mmc);
166 unsigned long flags;
167 int busy = 0;
168
169 pm_runtime_get_sync(mmc_dev(mmc));
170
171 spin_lock_irqsave(&host->lock, flags);
172 if (readl(host->base + MMCISTATUS) & MCI_ST_CARDBUSY)
173 busy = 1;
174 spin_unlock_irqrestore(&host->lock, flags);
175
176 pm_runtime_mark_last_busy(mmc_dev(mmc));
177 pm_runtime_put_autosuspend(mmc_dev(mmc));
178
179 return busy;
180 }
181
182 /*
183 * Validate mmc prerequisites
184 */
185 static int mmci_validate_data(struct mmci_host *host,
186 struct mmc_data *data)
187 {
188 if (!data)
189 return 0;
190
191 if (!is_power_of_2(data->blksz)) {
192 dev_err(mmc_dev(host->mmc),
193 "unsupported block size (%d bytes)\n", data->blksz);
194 return -EINVAL;
195 }
196
197 return 0;
198 }
199
200 static void mmci_reg_delay(struct mmci_host *host)
201 {
202 /*
203 * According to the spec, at least three feedback clock cycles
204 * of max 52 MHz must pass between two writes to the MMCICLOCK reg.
205 * Three MCLK clock cycles must pass between two MMCIPOWER reg writes.
206 * Worst delay time during card init is at 100 kHz => 30 us.
207 * Worst delay time when up and running is at 25 MHz => 120 ns.
208 */
209 if (host->cclk < 25000000)
210 udelay(30);
211 else
212 ndelay(120);
213 }
214
215 /*
216 * This must be called with host->lock held
217 */
218 static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
219 {
220 if (host->clk_reg != clk) {
221 host->clk_reg = clk;
222 writel(clk, host->base + MMCICLOCK);
223 }
224 }
225
226 /*
227 * This must be called with host->lock held
228 */
229 static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
230 {
231 if (host->pwr_reg != pwr) {
232 host->pwr_reg = pwr;
233 writel(pwr, host->base + MMCIPOWER);
234 }
235 }
236
237 /*
238 * This must be called with host->lock held
239 */
240 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
241 {
242 /* Keep ST Micro busy mode if enabled */
243 datactrl |= host->datactrl_reg & MCI_ST_DPSM_BUSYMODE;
244
245 if (host->datactrl_reg != datactrl) {
246 host->datactrl_reg = datactrl;
247 writel(datactrl, host->base + MMCIDATACTRL);
248 }
249 }
250
251 /*
252 * This must be called with host->lock held
253 */
254 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
255 {
256 struct variant_data *variant = host->variant;
257 u32 clk = variant->clkreg;
258
259 /* Make sure cclk reflects the current calculated clock */
260 host->cclk = 0;
261
262 if (desired) {
263 if (desired >= host->mclk) {
264 clk = MCI_CLK_BYPASS;
265 if (variant->st_clkdiv)
266 clk |= MCI_ST_UX500_NEG_EDGE;
267 host->cclk = host->mclk;
268 } else if (variant->st_clkdiv) {
269 /*
270 * DB8500 TRM says f = mclk / (clkdiv + 2)
271 * => clkdiv = (mclk / f) - 2
272 * Round the divider up so we don't exceed the max
273 * frequency
274 */
275 clk = DIV_ROUND_UP(host->mclk, desired) - 2;
276 if (clk >= 256)
277 clk = 255;
278 host->cclk = host->mclk / (clk + 2);
279 } else {
280 /*
281 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
282 * => clkdiv = mclk / (2 * f) - 1
283 */
284 clk = host->mclk / (2 * desired) - 1;
285 if (clk >= 256)
286 clk = 255;
287 host->cclk = host->mclk / (2 * (clk + 1));
288 }
289
290 clk |= variant->clkreg_enable;
291 clk |= MCI_CLK_ENABLE;
292 /* This hasn't proven to be worthwhile */
293 /* clk |= MCI_CLK_PWRSAVE; */
294 }
295
296 /* Set actual clock for debug */
297 host->mmc->actual_clock = host->cclk;
298
299 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
300 clk |= MCI_4BIT_BUS;
301 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
302 clk |= MCI_ST_8BIT_BUS;
303
304 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
305 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
306 clk |= MCI_ST_UX500_NEG_EDGE;
307
308 mmci_write_clkreg(host, clk);
309 }
310
311 static void
312 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
313 {
314 writel(0, host->base + MMCICOMMAND);
315
316 BUG_ON(host->data);
317
318 host->mrq = NULL;
319 host->cmd = NULL;
320
321 mmc_request_done(host->mmc, mrq);
322
323 pm_runtime_mark_last_busy(mmc_dev(host->mmc));
324 pm_runtime_put_autosuspend(mmc_dev(host->mmc));
325 }
326
327 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
328 {
329 void __iomem *base = host->base;
330
331 if (host->singleirq) {
332 unsigned int mask0 = readl(base + MMCIMASK0);
333
334 mask0 &= ~MCI_IRQ1MASK;
335 mask0 |= mask;
336
337 writel(mask0, base + MMCIMASK0);
338 }
339
340 writel(mask, base + MMCIMASK1);
341 }
342
343 static void mmci_stop_data(struct mmci_host *host)
344 {
345 mmci_write_datactrlreg(host, 0);
346 mmci_set_mask1(host, 0);
347 host->data = NULL;
348 }
349
350 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
351 {
352 unsigned int flags = SG_MITER_ATOMIC;
353
354 if (data->flags & MMC_DATA_READ)
355 flags |= SG_MITER_TO_SG;
356 else
357 flags |= SG_MITER_FROM_SG;
358
359 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
360 }
361
362 /*
363 * All the DMA operation mode stuff goes inside this ifdef.
364 * This assumes that you have a generic DMA device interface,
365 * no custom DMA interfaces are supported.
366 */
367 #ifdef CONFIG_DMA_ENGINE
368 static void mmci_dma_setup(struct mmci_host *host)
369 {
370 const char *rxname, *txname;
371 dma_cap_mask_t mask;
372
373 host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
374 host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
375
376 /* initialize pre request cookie */
377 host->next_data.cookie = 1;
378
379 /* Try to acquire a generic DMA engine slave channel */
380 dma_cap_zero(mask);
381 dma_cap_set(DMA_SLAVE, mask);
382
383 /*
384 * If only an RX channel is specified, the driver will
385 * attempt to use it bidirectionally, however if it is
386 * is specified but cannot be located, DMA will be disabled.
387 */
388 if (host->dma_rx_channel && !host->dma_tx_channel)
389 host->dma_tx_channel = host->dma_rx_channel;
390
391 if (host->dma_rx_channel)
392 rxname = dma_chan_name(host->dma_rx_channel);
393 else
394 rxname = "none";
395
396 if (host->dma_tx_channel)
397 txname = dma_chan_name(host->dma_tx_channel);
398 else
399 txname = "none";
400
401 dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
402 rxname, txname);
403
404 /*
405 * Limit the maximum segment size in any SG entry according to
406 * the parameters of the DMA engine device.
407 */
408 if (host->dma_tx_channel) {
409 struct device *dev = host->dma_tx_channel->device->dev;
410 unsigned int max_seg_size = dma_get_max_seg_size(dev);
411
412 if (max_seg_size < host->mmc->max_seg_size)
413 host->mmc->max_seg_size = max_seg_size;
414 }
415 if (host->dma_rx_channel) {
416 struct device *dev = host->dma_rx_channel->device->dev;
417 unsigned int max_seg_size = dma_get_max_seg_size(dev);
418
419 if (max_seg_size < host->mmc->max_seg_size)
420 host->mmc->max_seg_size = max_seg_size;
421 }
422 }
423
424 /*
425 * This is used in or so inline it
426 * so it can be discarded.
427 */
428 static inline void mmci_dma_release(struct mmci_host *host)
429 {
430 if (host->dma_rx_channel)
431 dma_release_channel(host->dma_rx_channel);
432 if (host->dma_tx_channel)
433 dma_release_channel(host->dma_tx_channel);
434 host->dma_rx_channel = host->dma_tx_channel = NULL;
435 }
436
437 static void mmci_dma_data_error(struct mmci_host *host)
438 {
439 dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
440 dmaengine_terminate_all(host->dma_current);
441 host->dma_current = NULL;
442 host->dma_desc_current = NULL;
443 host->data->host_cookie = 0;
444 }
445
446 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
447 {
448 struct dma_chan *chan;
449 enum dma_data_direction dir;
450
451 if (data->flags & MMC_DATA_READ) {
452 dir = DMA_FROM_DEVICE;
453 chan = host->dma_rx_channel;
454 } else {
455 dir = DMA_TO_DEVICE;
456 chan = host->dma_tx_channel;
457 }
458
459 dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
460 }
461
462 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
463 {
464 u32 status;
465 int i;
466
467 /* Wait up to 1ms for the DMA to complete */
468 for (i = 0; ; i++) {
469 status = readl(host->base + MMCISTATUS);
470 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
471 break;
472 udelay(10);
473 }
474
475 /*
476 * Check to see whether we still have some data left in the FIFO -
477 * this catches DMA controllers which are unable to monitor the
478 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
479 * contiguous buffers. On TX, we'll get a FIFO underrun error.
480 */
481 if (status & MCI_RXDATAAVLBLMASK) {
482 mmci_dma_data_error(host);
483 if (!data->error)
484 data->error = -EIO;
485 }
486
487 if (!data->host_cookie)
488 mmci_dma_unmap(host, data);
489
490 /*
491 * Use of DMA with scatter-gather is impossible.
492 * Give up with DMA and switch back to PIO mode.
493 */
494 if (status & MCI_RXDATAAVLBLMASK) {
495 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
496 mmci_dma_release(host);
497 }
498
499 host->dma_current = NULL;
500 host->dma_desc_current = NULL;
501 }
502
503 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
504 static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
505 struct dma_chan **dma_chan,
506 struct dma_async_tx_descriptor **dma_desc)
507 {
508 struct variant_data *variant = host->variant;
509 struct dma_slave_config conf = {
510 .src_addr = host->phybase + MMCIFIFO,
511 .dst_addr = host->phybase + MMCIFIFO,
512 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
513 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
514 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
515 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
516 .device_fc = false,
517 };
518 struct dma_chan *chan;
519 struct dma_device *device;
520 struct dma_async_tx_descriptor *desc;
521 enum dma_data_direction buffer_dirn;
522 int nr_sg;
523
524 if (data->flags & MMC_DATA_READ) {
525 conf.direction = DMA_DEV_TO_MEM;
526 buffer_dirn = DMA_FROM_DEVICE;
527 chan = host->dma_rx_channel;
528 } else {
529 conf.direction = DMA_MEM_TO_DEV;
530 buffer_dirn = DMA_TO_DEVICE;
531 chan = host->dma_tx_channel;
532 }
533
534 /* If there's no DMA channel, fall back to PIO */
535 if (!chan)
536 return -EINVAL;
537
538 /* If less than or equal to the fifo size, don't bother with DMA */
539 if (data->blksz * data->blocks <= variant->fifosize)
540 return -EINVAL;
541
542 device = chan->device;
543 nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
544 if (nr_sg == 0)
545 return -EINVAL;
546
547 dmaengine_slave_config(chan, &conf);
548 desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
549 conf.direction, DMA_CTRL_ACK);
550 if (!desc)
551 goto unmap_exit;
552
553 *dma_chan = chan;
554 *dma_desc = desc;
555
556 return 0;
557
558 unmap_exit:
559 dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
560 return -ENOMEM;
561 }
562
563 static inline int mmci_dma_prep_data(struct mmci_host *host,
564 struct mmc_data *data)
565 {
566 /* Check if next job is already prepared. */
567 if (host->dma_current && host->dma_desc_current)
568 return 0;
569
570 /* No job were prepared thus do it now. */
571 return __mmci_dma_prep_data(host, data, &host->dma_current,
572 &host->dma_desc_current);
573 }
574
575 static inline int mmci_dma_prep_next(struct mmci_host *host,
576 struct mmc_data *data)
577 {
578 struct mmci_host_next *nd = &host->next_data;
579 return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
580 }
581
582 static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
583 {
584 int ret;
585 struct mmc_data *data = host->data;
586
587 ret = mmci_dma_prep_data(host, host->data);
588 if (ret)
589 return ret;
590
591 /* Okay, go for it. */
592 dev_vdbg(mmc_dev(host->mmc),
593 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
594 data->sg_len, data->blksz, data->blocks, data->flags);
595 dmaengine_submit(host->dma_desc_current);
596 dma_async_issue_pending(host->dma_current);
597
598 datactrl |= MCI_DPSM_DMAENABLE;
599
600 /* Trigger the DMA transfer */
601 mmci_write_datactrlreg(host, datactrl);
602
603 /*
604 * Let the MMCI say when the data is ended and it's time
605 * to fire next DMA request. When that happens, MMCI will
606 * call mmci_data_end()
607 */
608 writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
609 host->base + MMCIMASK0);
610 return 0;
611 }
612
613 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
614 {
615 struct mmci_host_next *next = &host->next_data;
616
617 WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
618 WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
619
620 host->dma_desc_current = next->dma_desc;
621 host->dma_current = next->dma_chan;
622 next->dma_desc = NULL;
623 next->dma_chan = NULL;
624 }
625
626 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
627 bool is_first_req)
628 {
629 struct mmci_host *host = mmc_priv(mmc);
630 struct mmc_data *data = mrq->data;
631 struct mmci_host_next *nd = &host->next_data;
632
633 if (!data)
634 return;
635
636 BUG_ON(data->host_cookie);
637
638 if (mmci_validate_data(host, data))
639 return;
640
641 if (!mmci_dma_prep_next(host, data))
642 data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
643 }
644
645 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
646 int err)
647 {
648 struct mmci_host *host = mmc_priv(mmc);
649 struct mmc_data *data = mrq->data;
650
651 if (!data || !data->host_cookie)
652 return;
653
654 mmci_dma_unmap(host, data);
655
656 if (err) {
657 struct mmci_host_next *next = &host->next_data;
658 struct dma_chan *chan;
659 if (data->flags & MMC_DATA_READ)
660 chan = host->dma_rx_channel;
661 else
662 chan = host->dma_tx_channel;
663 dmaengine_terminate_all(chan);
664
665 next->dma_desc = NULL;
666 next->dma_chan = NULL;
667 }
668 }
669
670 #else
671 /* Blank functions if the DMA engine is not available */
672 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
673 {
674 }
675 static inline void mmci_dma_setup(struct mmci_host *host)
676 {
677 }
678
679 static inline void mmci_dma_release(struct mmci_host *host)
680 {
681 }
682
683 static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
684 {
685 }
686
687 static inline void mmci_dma_finalize(struct mmci_host *host,
688 struct mmc_data *data)
689 {
690 }
691
692 static inline void mmci_dma_data_error(struct mmci_host *host)
693 {
694 }
695
696 static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
697 {
698 return -ENOSYS;
699 }
700
701 #define mmci_pre_request NULL
702 #define mmci_post_request NULL
703
704 #endif
705
706 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
707 {
708 struct variant_data *variant = host->variant;
709 unsigned int datactrl, timeout, irqmask;
710 unsigned long long clks;
711 void __iomem *base;
712 int blksz_bits;
713
714 dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
715 data->blksz, data->blocks, data->flags);
716
717 host->data = data;
718 host->size = data->blksz * data->blocks;
719 data->bytes_xfered = 0;
720
721 clks = (unsigned long long)data->timeout_ns * host->cclk;
722 do_div(clks, 1000000000UL);
723
724 timeout = data->timeout_clks + (unsigned int)clks;
725
726 base = host->base;
727 writel(timeout, base + MMCIDATATIMER);
728 writel(host->size, base + MMCIDATALENGTH);
729
730 blksz_bits = ffs(data->blksz) - 1;
731 BUG_ON(1 << blksz_bits != data->blksz);
732
733 if (variant->blksz_datactrl16)
734 datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
735 else
736 datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
737
738 if (data->flags & MMC_DATA_READ)
739 datactrl |= MCI_DPSM_DIRECTION;
740
741 /* The ST Micro variants has a special bit to enable SDIO */
742 if (variant->sdio && host->mmc->card)
743 if (mmc_card_sdio(host->mmc->card)) {
744 /*
745 * The ST Micro variants has a special bit
746 * to enable SDIO.
747 */
748 u32 clk;
749
750 datactrl |= MCI_ST_DPSM_SDIOEN;
751
752 /*
753 * The ST Micro variant for SDIO small write transfers
754 * needs to have clock H/W flow control disabled,
755 * otherwise the transfer will not start. The threshold
756 * depends on the rate of MCLK.
757 */
758 if (data->flags & MMC_DATA_WRITE &&
759 (host->size < 8 ||
760 (host->size <= 8 && host->mclk > 50000000)))
761 clk = host->clk_reg & ~variant->clkreg_enable;
762 else
763 clk = host->clk_reg | variant->clkreg_enable;
764
765 mmci_write_clkreg(host, clk);
766 }
767
768 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 ||
769 host->mmc->ios.timing == MMC_TIMING_MMC_DDR52)
770 datactrl |= MCI_ST_DPSM_DDRMODE;
771
772 /*
773 * Attempt to use DMA operation mode, if this
774 * should fail, fall back to PIO mode
775 */
776 if (!mmci_dma_start_data(host, datactrl))
777 return;
778
779 /* IRQ mode, map the SG list for CPU reading/writing */
780 mmci_init_sg(host, data);
781
782 if (data->flags & MMC_DATA_READ) {
783 irqmask = MCI_RXFIFOHALFFULLMASK;
784
785 /*
786 * If we have less than the fifo 'half-full' threshold to
787 * transfer, trigger a PIO interrupt as soon as any data
788 * is available.
789 */
790 if (host->size < variant->fifohalfsize)
791 irqmask |= MCI_RXDATAAVLBLMASK;
792 } else {
793 /*
794 * We don't actually need to include "FIFO empty" here
795 * since its implicit in "FIFO half empty".
796 */
797 irqmask = MCI_TXFIFOHALFEMPTYMASK;
798 }
799
800 mmci_write_datactrlreg(host, datactrl);
801 writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
802 mmci_set_mask1(host, irqmask);
803 }
804
805 static void
806 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
807 {
808 void __iomem *base = host->base;
809
810 dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
811 cmd->opcode, cmd->arg, cmd->flags);
812
813 if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
814 writel(0, base + MMCICOMMAND);
815 udelay(1);
816 }
817
818 c |= cmd->opcode | MCI_CPSM_ENABLE;
819 if (cmd->flags & MMC_RSP_PRESENT) {
820 if (cmd->flags & MMC_RSP_136)
821 c |= MCI_CPSM_LONGRSP;
822 c |= MCI_CPSM_RESPONSE;
823 }
824 if (/*interrupt*/0)
825 c |= MCI_CPSM_INTERRUPT;
826
827 host->cmd = cmd;
828
829 writel(cmd->arg, base + MMCIARGUMENT);
830 writel(c, base + MMCICOMMAND);
831 }
832
833 static void
834 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
835 unsigned int status)
836 {
837 /* First check for errors */
838 if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
839 MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
840 u32 remain, success;
841
842 /* Terminate the DMA transfer */
843 if (dma_inprogress(host)) {
844 mmci_dma_data_error(host);
845 mmci_dma_unmap(host, data);
846 }
847
848 /*
849 * Calculate how far we are into the transfer. Note that
850 * the data counter gives the number of bytes transferred
851 * on the MMC bus, not on the host side. On reads, this
852 * can be as much as a FIFO-worth of data ahead. This
853 * matters for FIFO overruns only.
854 */
855 remain = readl(host->base + MMCIDATACNT);
856 success = data->blksz * data->blocks - remain;
857
858 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
859 status, success);
860 if (status & MCI_DATACRCFAIL) {
861 /* Last block was not successful */
862 success -= 1;
863 data->error = -EILSEQ;
864 } else if (status & MCI_DATATIMEOUT) {
865 data->error = -ETIMEDOUT;
866 } else if (status & MCI_STARTBITERR) {
867 data->error = -ECOMM;
868 } else if (status & MCI_TXUNDERRUN) {
869 data->error = -EIO;
870 } else if (status & MCI_RXOVERRUN) {
871 if (success > host->variant->fifosize)
872 success -= host->variant->fifosize;
873 else
874 success = 0;
875 data->error = -EIO;
876 }
877 data->bytes_xfered = round_down(success, data->blksz);
878 }
879
880 if (status & MCI_DATABLOCKEND)
881 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
882
883 if (status & MCI_DATAEND || data->error) {
884 if (dma_inprogress(host))
885 mmci_dma_finalize(host, data);
886 mmci_stop_data(host);
887
888 if (!data->error)
889 /* The error clause is handled above, success! */
890 data->bytes_xfered = data->blksz * data->blocks;
891
892 if (!data->stop || host->mrq->sbc) {
893 mmci_request_end(host, data->mrq);
894 } else {
895 mmci_start_command(host, data->stop, 0);
896 }
897 }
898 }
899
900 static void
901 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
902 unsigned int status)
903 {
904 void __iomem *base = host->base;
905 bool sbc = (cmd == host->mrq->sbc);
906 bool busy_resp = host->variant->busy_detect &&
907 (cmd->flags & MMC_RSP_BUSY);
908
909 /* Check if we need to wait for busy completion. */
910 if (host->busy_status && (status & MCI_ST_CARDBUSY))
911 return;
912
913 /* Enable busy completion if needed and supported. */
914 if (!host->busy_status && busy_resp &&
915 !(status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT)) &&
916 (readl(base + MMCISTATUS) & MCI_ST_CARDBUSY)) {
917 writel(readl(base + MMCIMASK0) | MCI_ST_BUSYEND,
918 base + MMCIMASK0);
919 host->busy_status = status & (MCI_CMDSENT|MCI_CMDRESPEND);
920 return;
921 }
922
923 /* At busy completion, mask the IRQ and complete the request. */
924 if (host->busy_status) {
925 writel(readl(base + MMCIMASK0) & ~MCI_ST_BUSYEND,
926 base + MMCIMASK0);
927 host->busy_status = 0;
928 }
929
930 host->cmd = NULL;
931
932 if (status & MCI_CMDTIMEOUT) {
933 cmd->error = -ETIMEDOUT;
934 } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
935 cmd->error = -EILSEQ;
936 } else {
937 cmd->resp[0] = readl(base + MMCIRESPONSE0);
938 cmd->resp[1] = readl(base + MMCIRESPONSE1);
939 cmd->resp[2] = readl(base + MMCIRESPONSE2);
940 cmd->resp[3] = readl(base + MMCIRESPONSE3);
941 }
942
943 if ((!sbc && !cmd->data) || cmd->error) {
944 if (host->data) {
945 /* Terminate the DMA transfer */
946 if (dma_inprogress(host)) {
947 mmci_dma_data_error(host);
948 mmci_dma_unmap(host, host->data);
949 }
950 mmci_stop_data(host);
951 }
952 mmci_request_end(host, host->mrq);
953 } else if (sbc) {
954 mmci_start_command(host, host->mrq->cmd, 0);
955 } else if (!(cmd->data->flags & MMC_DATA_READ)) {
956 mmci_start_data(host, cmd->data);
957 }
958 }
959
960 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
961 {
962 void __iomem *base = host->base;
963 char *ptr = buffer;
964 u32 status;
965 int host_remain = host->size;
966
967 do {
968 int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
969
970 if (count > remain)
971 count = remain;
972
973 if (count <= 0)
974 break;
975
976 /*
977 * SDIO especially may want to send something that is
978 * not divisible by 4 (as opposed to card sectors
979 * etc). Therefore make sure to always read the last bytes
980 * while only doing full 32-bit reads towards the FIFO.
981 */
982 if (unlikely(count & 0x3)) {
983 if (count < 4) {
984 unsigned char buf[4];
985 ioread32_rep(base + MMCIFIFO, buf, 1);
986 memcpy(ptr, buf, count);
987 } else {
988 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
989 count &= ~0x3;
990 }
991 } else {
992 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
993 }
994
995 ptr += count;
996 remain -= count;
997 host_remain -= count;
998
999 if (remain == 0)
1000 break;
1001
1002 status = readl(base + MMCISTATUS);
1003 } while (status & MCI_RXDATAAVLBL);
1004
1005 return ptr - buffer;
1006 }
1007
1008 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
1009 {
1010 struct variant_data *variant = host->variant;
1011 void __iomem *base = host->base;
1012 char *ptr = buffer;
1013
1014 do {
1015 unsigned int count, maxcnt;
1016
1017 maxcnt = status & MCI_TXFIFOEMPTY ?
1018 variant->fifosize : variant->fifohalfsize;
1019 count = min(remain, maxcnt);
1020
1021 /*
1022 * SDIO especially may want to send something that is
1023 * not divisible by 4 (as opposed to card sectors
1024 * etc), and the FIFO only accept full 32-bit writes.
1025 * So compensate by adding +3 on the count, a single
1026 * byte become a 32bit write, 7 bytes will be two
1027 * 32bit writes etc.
1028 */
1029 iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1030
1031 ptr += count;
1032 remain -= count;
1033
1034 if (remain == 0)
1035 break;
1036
1037 status = readl(base + MMCISTATUS);
1038 } while (status & MCI_TXFIFOHALFEMPTY);
1039
1040 return ptr - buffer;
1041 }
1042
1043 /*
1044 * PIO data transfer IRQ handler.
1045 */
1046 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1047 {
1048 struct mmci_host *host = dev_id;
1049 struct sg_mapping_iter *sg_miter = &host->sg_miter;
1050 struct variant_data *variant = host->variant;
1051 void __iomem *base = host->base;
1052 unsigned long flags;
1053 u32 status;
1054
1055 status = readl(base + MMCISTATUS);
1056
1057 dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1058
1059 local_irq_save(flags);
1060
1061 do {
1062 unsigned int remain, len;
1063 char *buffer;
1064
1065 /*
1066 * For write, we only need to test the half-empty flag
1067 * here - if the FIFO is completely empty, then by
1068 * definition it is more than half empty.
1069 *
1070 * For read, check for data available.
1071 */
1072 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1073 break;
1074
1075 if (!sg_miter_next(sg_miter))
1076 break;
1077
1078 buffer = sg_miter->addr;
1079 remain = sg_miter->length;
1080
1081 len = 0;
1082 if (status & MCI_RXACTIVE)
1083 len = mmci_pio_read(host, buffer, remain);
1084 if (status & MCI_TXACTIVE)
1085 len = mmci_pio_write(host, buffer, remain, status);
1086
1087 sg_miter->consumed = len;
1088
1089 host->size -= len;
1090 remain -= len;
1091
1092 if (remain)
1093 break;
1094
1095 status = readl(base + MMCISTATUS);
1096 } while (1);
1097
1098 sg_miter_stop(sg_miter);
1099
1100 local_irq_restore(flags);
1101
1102 /*
1103 * If we have less than the fifo 'half-full' threshold to transfer,
1104 * trigger a PIO interrupt as soon as any data is available.
1105 */
1106 if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1107 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1108
1109 /*
1110 * If we run out of data, disable the data IRQs; this
1111 * prevents a race where the FIFO becomes empty before
1112 * the chip itself has disabled the data path, and
1113 * stops us racing with our data end IRQ.
1114 */
1115 if (host->size == 0) {
1116 mmci_set_mask1(host, 0);
1117 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1118 }
1119
1120 return IRQ_HANDLED;
1121 }
1122
1123 /*
1124 * Handle completion of command and data transfers.
1125 */
1126 static irqreturn_t mmci_irq(int irq, void *dev_id)
1127 {
1128 struct mmci_host *host = dev_id;
1129 u32 status;
1130 int ret = 0;
1131
1132 spin_lock(&host->lock);
1133
1134 do {
1135 struct mmc_command *cmd;
1136 struct mmc_data *data;
1137
1138 status = readl(host->base + MMCISTATUS);
1139
1140 if (host->singleirq) {
1141 if (status & readl(host->base + MMCIMASK1))
1142 mmci_pio_irq(irq, dev_id);
1143
1144 status &= ~MCI_IRQ1MASK;
1145 }
1146
1147 /*
1148 * We intentionally clear the MCI_ST_CARDBUSY IRQ here (if it's
1149 * enabled) since the HW seems to be triggering the IRQ on both
1150 * edges while monitoring DAT0 for busy completion.
1151 */
1152 status &= readl(host->base + MMCIMASK0);
1153 writel(status, host->base + MMCICLEAR);
1154
1155 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1156
1157 cmd = host->cmd;
1158 if ((status|host->busy_status) & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|
1159 MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
1160 mmci_cmd_irq(host, cmd, status);
1161
1162 data = host->data;
1163 if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
1164 MCI_TXUNDERRUN|MCI_RXOVERRUN|MCI_DATAEND|
1165 MCI_DATABLOCKEND) && data)
1166 mmci_data_irq(host, data, status);
1167
1168 /* Don't poll for busy completion in irq context. */
1169 if (host->busy_status)
1170 status &= ~MCI_ST_CARDBUSY;
1171
1172 ret = 1;
1173 } while (status);
1174
1175 spin_unlock(&host->lock);
1176
1177 return IRQ_RETVAL(ret);
1178 }
1179
1180 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1181 {
1182 struct mmci_host *host = mmc_priv(mmc);
1183 unsigned long flags;
1184
1185 WARN_ON(host->mrq != NULL);
1186
1187 mrq->cmd->error = mmci_validate_data(host, mrq->data);
1188 if (mrq->cmd->error) {
1189 mmc_request_done(mmc, mrq);
1190 return;
1191 }
1192
1193 pm_runtime_get_sync(mmc_dev(mmc));
1194
1195 spin_lock_irqsave(&host->lock, flags);
1196
1197 host->mrq = mrq;
1198
1199 if (mrq->data)
1200 mmci_get_next_data(host, mrq->data);
1201
1202 if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1203 mmci_start_data(host, mrq->data);
1204
1205 if (mrq->sbc)
1206 mmci_start_command(host, mrq->sbc, 0);
1207 else
1208 mmci_start_command(host, mrq->cmd, 0);
1209
1210 spin_unlock_irqrestore(&host->lock, flags);
1211 }
1212
1213 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1214 {
1215 struct mmci_host *host = mmc_priv(mmc);
1216 struct variant_data *variant = host->variant;
1217 u32 pwr = 0;
1218 unsigned long flags;
1219 int ret;
1220
1221 pm_runtime_get_sync(mmc_dev(mmc));
1222
1223 if (host->plat->ios_handler &&
1224 host->plat->ios_handler(mmc_dev(mmc), ios))
1225 dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1226
1227 switch (ios->power_mode) {
1228 case MMC_POWER_OFF:
1229 if (!IS_ERR(mmc->supply.vmmc))
1230 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1231
1232 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1233 regulator_disable(mmc->supply.vqmmc);
1234 host->vqmmc_enabled = false;
1235 }
1236
1237 break;
1238 case MMC_POWER_UP:
1239 if (!IS_ERR(mmc->supply.vmmc))
1240 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1241
1242 /*
1243 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1244 * and instead uses MCI_PWR_ON so apply whatever value is
1245 * configured in the variant data.
1246 */
1247 pwr |= variant->pwrreg_powerup;
1248
1249 break;
1250 case MMC_POWER_ON:
1251 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1252 ret = regulator_enable(mmc->supply.vqmmc);
1253 if (ret < 0)
1254 dev_err(mmc_dev(mmc),
1255 "failed to enable vqmmc regulator\n");
1256 else
1257 host->vqmmc_enabled = true;
1258 }
1259
1260 pwr |= MCI_PWR_ON;
1261 break;
1262 }
1263
1264 if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1265 /*
1266 * The ST Micro variant has some additional bits
1267 * indicating signal direction for the signals in
1268 * the SD/MMC bus and feedback-clock usage.
1269 */
1270 pwr |= host->pwr_reg_add;
1271
1272 if (ios->bus_width == MMC_BUS_WIDTH_4)
1273 pwr &= ~MCI_ST_DATA74DIREN;
1274 else if (ios->bus_width == MMC_BUS_WIDTH_1)
1275 pwr &= (~MCI_ST_DATA74DIREN &
1276 ~MCI_ST_DATA31DIREN &
1277 ~MCI_ST_DATA2DIREN);
1278 }
1279
1280 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1281 if (host->hw_designer != AMBA_VENDOR_ST)
1282 pwr |= MCI_ROD;
1283 else {
1284 /*
1285 * The ST Micro variant use the ROD bit for something
1286 * else and only has OD (Open Drain).
1287 */
1288 pwr |= MCI_OD;
1289 }
1290 }
1291
1292 /*
1293 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1294 * gating the clock, the MCI_PWR_ON bit is cleared.
1295 */
1296 if (!ios->clock && variant->pwrreg_clkgate)
1297 pwr &= ~MCI_PWR_ON;
1298
1299 spin_lock_irqsave(&host->lock, flags);
1300
1301 mmci_set_clkreg(host, ios->clock);
1302 mmci_write_pwrreg(host, pwr);
1303 mmci_reg_delay(host);
1304
1305 spin_unlock_irqrestore(&host->lock, flags);
1306
1307 pm_runtime_mark_last_busy(mmc_dev(mmc));
1308 pm_runtime_put_autosuspend(mmc_dev(mmc));
1309 }
1310
1311 static int mmci_get_cd(struct mmc_host *mmc)
1312 {
1313 struct mmci_host *host = mmc_priv(mmc);
1314 struct mmci_platform_data *plat = host->plat;
1315 unsigned int status = mmc_gpio_get_cd(mmc);
1316
1317 if (status == -ENOSYS) {
1318 if (!plat->status)
1319 return 1; /* Assume always present */
1320
1321 status = plat->status(mmc_dev(host->mmc));
1322 }
1323 return status;
1324 }
1325
1326 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1327 {
1328 int ret = 0;
1329
1330 if (!IS_ERR(mmc->supply.vqmmc)) {
1331
1332 pm_runtime_get_sync(mmc_dev(mmc));
1333
1334 switch (ios->signal_voltage) {
1335 case MMC_SIGNAL_VOLTAGE_330:
1336 ret = regulator_set_voltage(mmc->supply.vqmmc,
1337 2700000, 3600000);
1338 break;
1339 case MMC_SIGNAL_VOLTAGE_180:
1340 ret = regulator_set_voltage(mmc->supply.vqmmc,
1341 1700000, 1950000);
1342 break;
1343 case MMC_SIGNAL_VOLTAGE_120:
1344 ret = regulator_set_voltage(mmc->supply.vqmmc,
1345 1100000, 1300000);
1346 break;
1347 }
1348
1349 if (ret)
1350 dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1351
1352 pm_runtime_mark_last_busy(mmc_dev(mmc));
1353 pm_runtime_put_autosuspend(mmc_dev(mmc));
1354 }
1355
1356 return ret;
1357 }
1358
1359 static struct mmc_host_ops mmci_ops = {
1360 .request = mmci_request,
1361 .pre_req = mmci_pre_request,
1362 .post_req = mmci_post_request,
1363 .set_ios = mmci_set_ios,
1364 .get_ro = mmc_gpio_get_ro,
1365 .get_cd = mmci_get_cd,
1366 .start_signal_voltage_switch = mmci_sig_volt_switch,
1367 };
1368
1369 static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc)
1370 {
1371 struct mmci_host *host = mmc_priv(mmc);
1372 int ret = mmc_of_parse(mmc);
1373
1374 if (ret)
1375 return ret;
1376
1377 if (of_get_property(np, "st,sig-dir-dat0", NULL))
1378 host->pwr_reg_add |= MCI_ST_DATA0DIREN;
1379 if (of_get_property(np, "st,sig-dir-dat2", NULL))
1380 host->pwr_reg_add |= MCI_ST_DATA2DIREN;
1381 if (of_get_property(np, "st,sig-dir-dat31", NULL))
1382 host->pwr_reg_add |= MCI_ST_DATA31DIREN;
1383 if (of_get_property(np, "st,sig-dir-dat74", NULL))
1384 host->pwr_reg_add |= MCI_ST_DATA74DIREN;
1385 if (of_get_property(np, "st,sig-dir-cmd", NULL))
1386 host->pwr_reg_add |= MCI_ST_CMDDIREN;
1387 if (of_get_property(np, "st,sig-pin-fbclk", NULL))
1388 host->pwr_reg_add |= MCI_ST_FBCLKEN;
1389
1390 if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1391 mmc->caps |= MMC_CAP_MMC_HIGHSPEED;
1392 if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1393 mmc->caps |= MMC_CAP_SD_HIGHSPEED;
1394
1395 return 0;
1396 }
1397
1398 static int mmci_probe(struct amba_device *dev,
1399 const struct amba_id *id)
1400 {
1401 struct mmci_platform_data *plat = dev->dev.platform_data;
1402 struct device_node *np = dev->dev.of_node;
1403 struct variant_data *variant = id->data;
1404 struct mmci_host *host;
1405 struct mmc_host *mmc;
1406 int ret;
1407
1408 /* Must have platform data or Device Tree. */
1409 if (!plat && !np) {
1410 dev_err(&dev->dev, "No plat data or DT found\n");
1411 return -EINVAL;
1412 }
1413
1414 if (!plat) {
1415 plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1416 if (!plat)
1417 return -ENOMEM;
1418 }
1419
1420 mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1421 if (!mmc)
1422 return -ENOMEM;
1423
1424 ret = mmci_of_parse(np, mmc);
1425 if (ret)
1426 goto host_free;
1427
1428 host = mmc_priv(mmc);
1429 host->mmc = mmc;
1430
1431 host->hw_designer = amba_manf(dev);
1432 host->hw_revision = amba_rev(dev);
1433 dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1434 dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1435
1436 host->clk = devm_clk_get(&dev->dev, NULL);
1437 if (IS_ERR(host->clk)) {
1438 ret = PTR_ERR(host->clk);
1439 goto host_free;
1440 }
1441
1442 ret = clk_prepare_enable(host->clk);
1443 if (ret)
1444 goto host_free;
1445
1446 host->plat = plat;
1447 host->variant = variant;
1448 host->mclk = clk_get_rate(host->clk);
1449 /*
1450 * According to the spec, mclk is max 100 MHz,
1451 * so we try to adjust the clock down to this,
1452 * (if possible).
1453 */
1454 if (host->mclk > 100000000) {
1455 ret = clk_set_rate(host->clk, 100000000);
1456 if (ret < 0)
1457 goto clk_disable;
1458 host->mclk = clk_get_rate(host->clk);
1459 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1460 host->mclk);
1461 }
1462
1463 host->phybase = dev->res.start;
1464 host->base = devm_ioremap_resource(&dev->dev, &dev->res);
1465 if (IS_ERR(host->base)) {
1466 ret = PTR_ERR(host->base);
1467 goto clk_disable;
1468 }
1469
1470 /*
1471 * The ARM and ST versions of the block have slightly different
1472 * clock divider equations which means that the minimum divider
1473 * differs too.
1474 */
1475 if (variant->st_clkdiv)
1476 mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1477 else
1478 mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1479 /*
1480 * If no maximum operating frequency is supplied, fall back to use
1481 * the module parameter, which has a (low) default value in case it
1482 * is not specified. Either value must not exceed the clock rate into
1483 * the block, of course.
1484 */
1485 if (mmc->f_max)
1486 mmc->f_max = min(host->mclk, mmc->f_max);
1487 else
1488 mmc->f_max = min(host->mclk, fmax);
1489 dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1490
1491 /* Get regulators and the supported OCR mask */
1492 mmc_regulator_get_supply(mmc);
1493 if (!mmc->ocr_avail)
1494 mmc->ocr_avail = plat->ocr_mask;
1495 else if (plat->ocr_mask)
1496 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1497
1498 /* DT takes precedence over platform data. */
1499 if (!np) {
1500 if (!plat->cd_invert)
1501 mmc->caps2 |= MMC_CAP2_CD_ACTIVE_HIGH;
1502 mmc->caps2 |= MMC_CAP2_RO_ACTIVE_HIGH;
1503 }
1504
1505 /* We support these capabilities. */
1506 mmc->caps |= MMC_CAP_CMD23;
1507
1508 if (variant->busy_detect) {
1509 mmci_ops.card_busy = mmci_card_busy;
1510 mmci_write_datactrlreg(host, MCI_ST_DPSM_BUSYMODE);
1511 mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY;
1512 mmc->max_busy_timeout = 0;
1513 }
1514
1515 mmc->ops = &mmci_ops;
1516
1517 /* We support these PM capabilities. */
1518 mmc->pm_caps |= MMC_PM_KEEP_POWER;
1519
1520 /*
1521 * We can do SGIO
1522 */
1523 mmc->max_segs = NR_SG;
1524
1525 /*
1526 * Since only a certain number of bits are valid in the data length
1527 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1528 * single request.
1529 */
1530 mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1531
1532 /*
1533 * Set the maximum segment size. Since we aren't doing DMA
1534 * (yet) we are only limited by the data length register.
1535 */
1536 mmc->max_seg_size = mmc->max_req_size;
1537
1538 /*
1539 * Block size can be up to 2048 bytes, but must be a power of two.
1540 */
1541 mmc->max_blk_size = 1 << 11;
1542
1543 /*
1544 * Limit the number of blocks transferred so that we don't overflow
1545 * the maximum request size.
1546 */
1547 mmc->max_blk_count = mmc->max_req_size >> 11;
1548
1549 spin_lock_init(&host->lock);
1550
1551 writel(0, host->base + MMCIMASK0);
1552 writel(0, host->base + MMCIMASK1);
1553 writel(0xfff, host->base + MMCICLEAR);
1554
1555 /* If DT, cd/wp gpios must be supplied through it. */
1556 if (!np && gpio_is_valid(plat->gpio_cd)) {
1557 ret = mmc_gpio_request_cd(mmc, plat->gpio_cd, 0);
1558 if (ret)
1559 goto clk_disable;
1560 }
1561 if (!np && gpio_is_valid(plat->gpio_wp)) {
1562 ret = mmc_gpio_request_ro(mmc, plat->gpio_wp);
1563 if (ret)
1564 goto clk_disable;
1565 }
1566
1567 ret = devm_request_irq(&dev->dev, dev->irq[0], mmci_irq, IRQF_SHARED,
1568 DRIVER_NAME " (cmd)", host);
1569 if (ret)
1570 goto clk_disable;
1571
1572 if (!dev->irq[1])
1573 host->singleirq = true;
1574 else {
1575 ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq,
1576 IRQF_SHARED, DRIVER_NAME " (pio)", host);
1577 if (ret)
1578 goto clk_disable;
1579 }
1580
1581 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1582
1583 amba_set_drvdata(dev, mmc);
1584
1585 dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1586 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1587 amba_rev(dev), (unsigned long long)dev->res.start,
1588 dev->irq[0], dev->irq[1]);
1589
1590 mmci_dma_setup(host);
1591
1592 pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1593 pm_runtime_use_autosuspend(&dev->dev);
1594 pm_runtime_put(&dev->dev);
1595
1596 mmc_add_host(mmc);
1597
1598 return 0;
1599
1600 clk_disable:
1601 clk_disable_unprepare(host->clk);
1602 host_free:
1603 mmc_free_host(mmc);
1604 return ret;
1605 }
1606
1607 static int mmci_remove(struct amba_device *dev)
1608 {
1609 struct mmc_host *mmc = amba_get_drvdata(dev);
1610
1611 if (mmc) {
1612 struct mmci_host *host = mmc_priv(mmc);
1613
1614 /*
1615 * Undo pm_runtime_put() in probe. We use the _sync
1616 * version here so that we can access the primecell.
1617 */
1618 pm_runtime_get_sync(&dev->dev);
1619
1620 mmc_remove_host(mmc);
1621
1622 writel(0, host->base + MMCIMASK0);
1623 writel(0, host->base + MMCIMASK1);
1624
1625 writel(0, host->base + MMCICOMMAND);
1626 writel(0, host->base + MMCIDATACTRL);
1627
1628 mmci_dma_release(host);
1629 clk_disable_unprepare(host->clk);
1630 mmc_free_host(mmc);
1631 }
1632
1633 return 0;
1634 }
1635
1636 #ifdef CONFIG_PM
1637 static void mmci_save(struct mmci_host *host)
1638 {
1639 unsigned long flags;
1640
1641 spin_lock_irqsave(&host->lock, flags);
1642
1643 writel(0, host->base + MMCIMASK0);
1644 if (host->variant->pwrreg_nopower) {
1645 writel(0, host->base + MMCIDATACTRL);
1646 writel(0, host->base + MMCIPOWER);
1647 writel(0, host->base + MMCICLOCK);
1648 }
1649 mmci_reg_delay(host);
1650
1651 spin_unlock_irqrestore(&host->lock, flags);
1652 }
1653
1654 static void mmci_restore(struct mmci_host *host)
1655 {
1656 unsigned long flags;
1657
1658 spin_lock_irqsave(&host->lock, flags);
1659
1660 if (host->variant->pwrreg_nopower) {
1661 writel(host->clk_reg, host->base + MMCICLOCK);
1662 writel(host->datactrl_reg, host->base + MMCIDATACTRL);
1663 writel(host->pwr_reg, host->base + MMCIPOWER);
1664 }
1665 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1666 mmci_reg_delay(host);
1667
1668 spin_unlock_irqrestore(&host->lock, flags);
1669 }
1670
1671 static int mmci_runtime_suspend(struct device *dev)
1672 {
1673 struct amba_device *adev = to_amba_device(dev);
1674 struct mmc_host *mmc = amba_get_drvdata(adev);
1675
1676 if (mmc) {
1677 struct mmci_host *host = mmc_priv(mmc);
1678 pinctrl_pm_select_sleep_state(dev);
1679 mmci_save(host);
1680 clk_disable_unprepare(host->clk);
1681 }
1682
1683 return 0;
1684 }
1685
1686 static int mmci_runtime_resume(struct device *dev)
1687 {
1688 struct amba_device *adev = to_amba_device(dev);
1689 struct mmc_host *mmc = amba_get_drvdata(adev);
1690
1691 if (mmc) {
1692 struct mmci_host *host = mmc_priv(mmc);
1693 clk_prepare_enable(host->clk);
1694 mmci_restore(host);
1695 pinctrl_pm_select_default_state(dev);
1696 }
1697
1698 return 0;
1699 }
1700 #endif
1701
1702 static const struct dev_pm_ops mmci_dev_pm_ops = {
1703 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1704 pm_runtime_force_resume)
1705 SET_PM_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1706 };
1707
1708 static struct amba_id mmci_ids[] = {
1709 {
1710 .id = 0x00041180,
1711 .mask = 0xff0fffff,
1712 .data = &variant_arm,
1713 },
1714 {
1715 .id = 0x01041180,
1716 .mask = 0xff0fffff,
1717 .data = &variant_arm_extended_fifo,
1718 },
1719 {
1720 .id = 0x02041180,
1721 .mask = 0xff0fffff,
1722 .data = &variant_arm_extended_fifo_hwfc,
1723 },
1724 {
1725 .id = 0x00041181,
1726 .mask = 0x000fffff,
1727 .data = &variant_arm,
1728 },
1729 /* ST Micro variants */
1730 {
1731 .id = 0x00180180,
1732 .mask = 0x00ffffff,
1733 .data = &variant_u300,
1734 },
1735 {
1736 .id = 0x10180180,
1737 .mask = 0xf0ffffff,
1738 .data = &variant_nomadik,
1739 },
1740 {
1741 .id = 0x00280180,
1742 .mask = 0x00ffffff,
1743 .data = &variant_u300,
1744 },
1745 {
1746 .id = 0x00480180,
1747 .mask = 0xf0ffffff,
1748 .data = &variant_ux500,
1749 },
1750 {
1751 .id = 0x10480180,
1752 .mask = 0xf0ffffff,
1753 .data = &variant_ux500v2,
1754 },
1755 { 0, 0 },
1756 };
1757
1758 MODULE_DEVICE_TABLE(amba, mmci_ids);
1759
1760 static struct amba_driver mmci_driver = {
1761 .drv = {
1762 .name = DRIVER_NAME,
1763 .pm = &mmci_dev_pm_ops,
1764 },
1765 .probe = mmci_probe,
1766 .remove = mmci_remove,
1767 .id_table = mmci_ids,
1768 };
1769
1770 module_amba_driver(mmci_driver);
1771
1772 module_param(fmax, uint, 0444);
1773
1774 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1775 MODULE_LICENSE("GPL");
This page took 0.068836 seconds and 5 git commands to generate.