Merge branch 'kconfig' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild
[deliverable/linux.git] / drivers / mmc / host / mmci.c
1 /*
2 * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver
3 *
4 * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved.
5 * Copyright (C) 2010 ST-Ericsson SA
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/device.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/slab.h>
19 #include <linux/delay.h>
20 #include <linux/err.h>
21 #include <linux/highmem.h>
22 #include <linux/log2.h>
23 #include <linux/mmc/pm.h>
24 #include <linux/mmc/host.h>
25 #include <linux/mmc/card.h>
26 #include <linux/amba/bus.h>
27 #include <linux/clk.h>
28 #include <linux/scatterlist.h>
29 #include <linux/gpio.h>
30 #include <linux/of_gpio.h>
31 #include <linux/regulator/consumer.h>
32 #include <linux/dmaengine.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/amba/mmci.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/types.h>
37 #include <linux/pinctrl/consumer.h>
38
39 #include <asm/div64.h>
40 #include <asm/io.h>
41 #include <asm/sizes.h>
42
43 #include "mmci.h"
44
45 #define DRIVER_NAME "mmci-pl18x"
46
47 static unsigned int fmax = 515633;
48
49 /**
50 * struct variant_data - MMCI variant-specific quirks
51 * @clkreg: default value for MCICLOCK register
52 * @clkreg_enable: enable value for MMCICLOCK register
53 * @datalength_bits: number of bits in the MMCIDATALENGTH register
54 * @fifosize: number of bytes that can be written when MMCI_TXFIFOEMPTY
55 * is asserted (likewise for RX)
56 * @fifohalfsize: number of bytes that can be written when MCI_TXFIFOHALFEMPTY
57 * is asserted (likewise for RX)
58 * @sdio: variant supports SDIO
59 * @st_clkdiv: true if using a ST-specific clock divider algorithm
60 * @blksz_datactrl16: true if Block size is at b16..b30 position in datactrl register
61 * @pwrreg_powerup: power up value for MMCIPOWER register
62 * @signal_direction: input/out direction of bus signals can be indicated
63 * @pwrreg_clkgate: MMCIPOWER register must be used to gate the clock
64 * @busy_detect: true if busy detection on dat0 is supported
65 */
66 struct variant_data {
67 unsigned int clkreg;
68 unsigned int clkreg_enable;
69 unsigned int datalength_bits;
70 unsigned int fifosize;
71 unsigned int fifohalfsize;
72 bool sdio;
73 bool st_clkdiv;
74 bool blksz_datactrl16;
75 u32 pwrreg_powerup;
76 bool signal_direction;
77 bool pwrreg_clkgate;
78 bool busy_detect;
79 };
80
81 static struct variant_data variant_arm = {
82 .fifosize = 16 * 4,
83 .fifohalfsize = 8 * 4,
84 .datalength_bits = 16,
85 .pwrreg_powerup = MCI_PWR_UP,
86 };
87
88 static struct variant_data variant_arm_extended_fifo = {
89 .fifosize = 128 * 4,
90 .fifohalfsize = 64 * 4,
91 .datalength_bits = 16,
92 .pwrreg_powerup = MCI_PWR_UP,
93 };
94
95 static struct variant_data variant_arm_extended_fifo_hwfc = {
96 .fifosize = 128 * 4,
97 .fifohalfsize = 64 * 4,
98 .clkreg_enable = MCI_ARM_HWFCEN,
99 .datalength_bits = 16,
100 .pwrreg_powerup = MCI_PWR_UP,
101 };
102
103 static struct variant_data variant_u300 = {
104 .fifosize = 16 * 4,
105 .fifohalfsize = 8 * 4,
106 .clkreg_enable = MCI_ST_U300_HWFCEN,
107 .datalength_bits = 16,
108 .sdio = true,
109 .pwrreg_powerup = MCI_PWR_ON,
110 .signal_direction = true,
111 .pwrreg_clkgate = true,
112 };
113
114 static struct variant_data variant_nomadik = {
115 .fifosize = 16 * 4,
116 .fifohalfsize = 8 * 4,
117 .clkreg = MCI_CLK_ENABLE,
118 .datalength_bits = 24,
119 .sdio = true,
120 .st_clkdiv = true,
121 .pwrreg_powerup = MCI_PWR_ON,
122 .signal_direction = true,
123 .pwrreg_clkgate = true,
124 };
125
126 static struct variant_data variant_ux500 = {
127 .fifosize = 30 * 4,
128 .fifohalfsize = 8 * 4,
129 .clkreg = MCI_CLK_ENABLE,
130 .clkreg_enable = MCI_ST_UX500_HWFCEN,
131 .datalength_bits = 24,
132 .sdio = true,
133 .st_clkdiv = true,
134 .pwrreg_powerup = MCI_PWR_ON,
135 .signal_direction = true,
136 .pwrreg_clkgate = true,
137 .busy_detect = true,
138 };
139
140 static struct variant_data variant_ux500v2 = {
141 .fifosize = 30 * 4,
142 .fifohalfsize = 8 * 4,
143 .clkreg = MCI_CLK_ENABLE,
144 .clkreg_enable = MCI_ST_UX500_HWFCEN,
145 .datalength_bits = 24,
146 .sdio = true,
147 .st_clkdiv = true,
148 .blksz_datactrl16 = true,
149 .pwrreg_powerup = MCI_PWR_ON,
150 .signal_direction = true,
151 .pwrreg_clkgate = true,
152 .busy_detect = true,
153 };
154
155 static int mmci_card_busy(struct mmc_host *mmc)
156 {
157 struct mmci_host *host = mmc_priv(mmc);
158 unsigned long flags;
159 int busy = 0;
160
161 pm_runtime_get_sync(mmc_dev(mmc));
162
163 spin_lock_irqsave(&host->lock, flags);
164 if (readl(host->base + MMCISTATUS) & MCI_ST_CARDBUSY)
165 busy = 1;
166 spin_unlock_irqrestore(&host->lock, flags);
167
168 pm_runtime_mark_last_busy(mmc_dev(mmc));
169 pm_runtime_put_autosuspend(mmc_dev(mmc));
170
171 return busy;
172 }
173
174 /*
175 * Validate mmc prerequisites
176 */
177 static int mmci_validate_data(struct mmci_host *host,
178 struct mmc_data *data)
179 {
180 if (!data)
181 return 0;
182
183 if (!is_power_of_2(data->blksz)) {
184 dev_err(mmc_dev(host->mmc),
185 "unsupported block size (%d bytes)\n", data->blksz);
186 return -EINVAL;
187 }
188
189 return 0;
190 }
191
192 /*
193 * This must be called with host->lock held
194 */
195 static void mmci_write_clkreg(struct mmci_host *host, u32 clk)
196 {
197 if (host->clk_reg != clk) {
198 host->clk_reg = clk;
199 writel(clk, host->base + MMCICLOCK);
200 }
201 }
202
203 /*
204 * This must be called with host->lock held
205 */
206 static void mmci_write_pwrreg(struct mmci_host *host, u32 pwr)
207 {
208 if (host->pwr_reg != pwr) {
209 host->pwr_reg = pwr;
210 writel(pwr, host->base + MMCIPOWER);
211 }
212 }
213
214 /*
215 * This must be called with host->lock held
216 */
217 static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl)
218 {
219 /* Keep ST Micro busy mode if enabled */
220 datactrl |= host->datactrl_reg & MCI_ST_DPSM_BUSYMODE;
221
222 if (host->datactrl_reg != datactrl) {
223 host->datactrl_reg = datactrl;
224 writel(datactrl, host->base + MMCIDATACTRL);
225 }
226 }
227
228 /*
229 * This must be called with host->lock held
230 */
231 static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired)
232 {
233 struct variant_data *variant = host->variant;
234 u32 clk = variant->clkreg;
235
236 /* Make sure cclk reflects the current calculated clock */
237 host->cclk = 0;
238
239 if (desired) {
240 if (desired >= host->mclk) {
241 clk = MCI_CLK_BYPASS;
242 if (variant->st_clkdiv)
243 clk |= MCI_ST_UX500_NEG_EDGE;
244 host->cclk = host->mclk;
245 } else if (variant->st_clkdiv) {
246 /*
247 * DB8500 TRM says f = mclk / (clkdiv + 2)
248 * => clkdiv = (mclk / f) - 2
249 * Round the divider up so we don't exceed the max
250 * frequency
251 */
252 clk = DIV_ROUND_UP(host->mclk, desired) - 2;
253 if (clk >= 256)
254 clk = 255;
255 host->cclk = host->mclk / (clk + 2);
256 } else {
257 /*
258 * PL180 TRM says f = mclk / (2 * (clkdiv + 1))
259 * => clkdiv = mclk / (2 * f) - 1
260 */
261 clk = host->mclk / (2 * desired) - 1;
262 if (clk >= 256)
263 clk = 255;
264 host->cclk = host->mclk / (2 * (clk + 1));
265 }
266
267 clk |= variant->clkreg_enable;
268 clk |= MCI_CLK_ENABLE;
269 /* This hasn't proven to be worthwhile */
270 /* clk |= MCI_CLK_PWRSAVE; */
271 }
272
273 /* Set actual clock for debug */
274 host->mmc->actual_clock = host->cclk;
275
276 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4)
277 clk |= MCI_4BIT_BUS;
278 if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8)
279 clk |= MCI_ST_8BIT_BUS;
280
281 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
282 clk |= MCI_ST_UX500_NEG_EDGE;
283
284 mmci_write_clkreg(host, clk);
285 }
286
287 static void
288 mmci_request_end(struct mmci_host *host, struct mmc_request *mrq)
289 {
290 writel(0, host->base + MMCICOMMAND);
291
292 BUG_ON(host->data);
293
294 host->mrq = NULL;
295 host->cmd = NULL;
296
297 mmc_request_done(host->mmc, mrq);
298
299 pm_runtime_mark_last_busy(mmc_dev(host->mmc));
300 pm_runtime_put_autosuspend(mmc_dev(host->mmc));
301 }
302
303 static void mmci_set_mask1(struct mmci_host *host, unsigned int mask)
304 {
305 void __iomem *base = host->base;
306
307 if (host->singleirq) {
308 unsigned int mask0 = readl(base + MMCIMASK0);
309
310 mask0 &= ~MCI_IRQ1MASK;
311 mask0 |= mask;
312
313 writel(mask0, base + MMCIMASK0);
314 }
315
316 writel(mask, base + MMCIMASK1);
317 }
318
319 static void mmci_stop_data(struct mmci_host *host)
320 {
321 mmci_write_datactrlreg(host, 0);
322 mmci_set_mask1(host, 0);
323 host->data = NULL;
324 }
325
326 static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data)
327 {
328 unsigned int flags = SG_MITER_ATOMIC;
329
330 if (data->flags & MMC_DATA_READ)
331 flags |= SG_MITER_TO_SG;
332 else
333 flags |= SG_MITER_FROM_SG;
334
335 sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
336 }
337
338 /*
339 * All the DMA operation mode stuff goes inside this ifdef.
340 * This assumes that you have a generic DMA device interface,
341 * no custom DMA interfaces are supported.
342 */
343 #ifdef CONFIG_DMA_ENGINE
344 static void mmci_dma_setup(struct mmci_host *host)
345 {
346 struct mmci_platform_data *plat = host->plat;
347 const char *rxname, *txname;
348 dma_cap_mask_t mask;
349
350 host->dma_rx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "rx");
351 host->dma_tx_channel = dma_request_slave_channel(mmc_dev(host->mmc), "tx");
352
353 /* initialize pre request cookie */
354 host->next_data.cookie = 1;
355
356 /* Try to acquire a generic DMA engine slave channel */
357 dma_cap_zero(mask);
358 dma_cap_set(DMA_SLAVE, mask);
359
360 if (plat && plat->dma_filter) {
361 if (!host->dma_rx_channel && plat->dma_rx_param) {
362 host->dma_rx_channel = dma_request_channel(mask,
363 plat->dma_filter,
364 plat->dma_rx_param);
365 /* E.g if no DMA hardware is present */
366 if (!host->dma_rx_channel)
367 dev_err(mmc_dev(host->mmc), "no RX DMA channel\n");
368 }
369
370 if (!host->dma_tx_channel && plat->dma_tx_param) {
371 host->dma_tx_channel = dma_request_channel(mask,
372 plat->dma_filter,
373 plat->dma_tx_param);
374 if (!host->dma_tx_channel)
375 dev_warn(mmc_dev(host->mmc), "no TX DMA channel\n");
376 }
377 }
378
379 /*
380 * If only an RX channel is specified, the driver will
381 * attempt to use it bidirectionally, however if it is
382 * is specified but cannot be located, DMA will be disabled.
383 */
384 if (host->dma_rx_channel && !host->dma_tx_channel)
385 host->dma_tx_channel = host->dma_rx_channel;
386
387 if (host->dma_rx_channel)
388 rxname = dma_chan_name(host->dma_rx_channel);
389 else
390 rxname = "none";
391
392 if (host->dma_tx_channel)
393 txname = dma_chan_name(host->dma_tx_channel);
394 else
395 txname = "none";
396
397 dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n",
398 rxname, txname);
399
400 /*
401 * Limit the maximum segment size in any SG entry according to
402 * the parameters of the DMA engine device.
403 */
404 if (host->dma_tx_channel) {
405 struct device *dev = host->dma_tx_channel->device->dev;
406 unsigned int max_seg_size = dma_get_max_seg_size(dev);
407
408 if (max_seg_size < host->mmc->max_seg_size)
409 host->mmc->max_seg_size = max_seg_size;
410 }
411 if (host->dma_rx_channel) {
412 struct device *dev = host->dma_rx_channel->device->dev;
413 unsigned int max_seg_size = dma_get_max_seg_size(dev);
414
415 if (max_seg_size < host->mmc->max_seg_size)
416 host->mmc->max_seg_size = max_seg_size;
417 }
418 }
419
420 /*
421 * This is used in or so inline it
422 * so it can be discarded.
423 */
424 static inline void mmci_dma_release(struct mmci_host *host)
425 {
426 struct mmci_platform_data *plat = host->plat;
427
428 if (host->dma_rx_channel)
429 dma_release_channel(host->dma_rx_channel);
430 if (host->dma_tx_channel && plat->dma_tx_param)
431 dma_release_channel(host->dma_tx_channel);
432 host->dma_rx_channel = host->dma_tx_channel = NULL;
433 }
434
435 static void mmci_dma_data_error(struct mmci_host *host)
436 {
437 dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n");
438 dmaengine_terminate_all(host->dma_current);
439 host->dma_current = NULL;
440 host->dma_desc_current = NULL;
441 host->data->host_cookie = 0;
442 }
443
444 static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
445 {
446 struct dma_chan *chan;
447 enum dma_data_direction dir;
448
449 if (data->flags & MMC_DATA_READ) {
450 dir = DMA_FROM_DEVICE;
451 chan = host->dma_rx_channel;
452 } else {
453 dir = DMA_TO_DEVICE;
454 chan = host->dma_tx_channel;
455 }
456
457 dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, dir);
458 }
459
460 static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data)
461 {
462 u32 status;
463 int i;
464
465 /* Wait up to 1ms for the DMA to complete */
466 for (i = 0; ; i++) {
467 status = readl(host->base + MMCISTATUS);
468 if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100)
469 break;
470 udelay(10);
471 }
472
473 /*
474 * Check to see whether we still have some data left in the FIFO -
475 * this catches DMA controllers which are unable to monitor the
476 * DMALBREQ and DMALSREQ signals while allowing us to DMA to non-
477 * contiguous buffers. On TX, we'll get a FIFO underrun error.
478 */
479 if (status & MCI_RXDATAAVLBLMASK) {
480 mmci_dma_data_error(host);
481 if (!data->error)
482 data->error = -EIO;
483 }
484
485 if (!data->host_cookie)
486 mmci_dma_unmap(host, data);
487
488 /*
489 * Use of DMA with scatter-gather is impossible.
490 * Give up with DMA and switch back to PIO mode.
491 */
492 if (status & MCI_RXDATAAVLBLMASK) {
493 dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n");
494 mmci_dma_release(host);
495 }
496
497 host->dma_current = NULL;
498 host->dma_desc_current = NULL;
499 }
500
501 /* prepares DMA channel and DMA descriptor, returns non-zero on failure */
502 static int __mmci_dma_prep_data(struct mmci_host *host, struct mmc_data *data,
503 struct dma_chan **dma_chan,
504 struct dma_async_tx_descriptor **dma_desc)
505 {
506 struct variant_data *variant = host->variant;
507 struct dma_slave_config conf = {
508 .src_addr = host->phybase + MMCIFIFO,
509 .dst_addr = host->phybase + MMCIFIFO,
510 .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
511 .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES,
512 .src_maxburst = variant->fifohalfsize >> 2, /* # of words */
513 .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */
514 .device_fc = false,
515 };
516 struct dma_chan *chan;
517 struct dma_device *device;
518 struct dma_async_tx_descriptor *desc;
519 enum dma_data_direction buffer_dirn;
520 int nr_sg;
521
522 if (data->flags & MMC_DATA_READ) {
523 conf.direction = DMA_DEV_TO_MEM;
524 buffer_dirn = DMA_FROM_DEVICE;
525 chan = host->dma_rx_channel;
526 } else {
527 conf.direction = DMA_MEM_TO_DEV;
528 buffer_dirn = DMA_TO_DEVICE;
529 chan = host->dma_tx_channel;
530 }
531
532 /* If there's no DMA channel, fall back to PIO */
533 if (!chan)
534 return -EINVAL;
535
536 /* If less than or equal to the fifo size, don't bother with DMA */
537 if (data->blksz * data->blocks <= variant->fifosize)
538 return -EINVAL;
539
540 device = chan->device;
541 nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
542 if (nr_sg == 0)
543 return -EINVAL;
544
545 dmaengine_slave_config(chan, &conf);
546 desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg,
547 conf.direction, DMA_CTRL_ACK);
548 if (!desc)
549 goto unmap_exit;
550
551 *dma_chan = chan;
552 *dma_desc = desc;
553
554 return 0;
555
556 unmap_exit:
557 dma_unmap_sg(device->dev, data->sg, data->sg_len, buffer_dirn);
558 return -ENOMEM;
559 }
560
561 static inline int mmci_dma_prep_data(struct mmci_host *host,
562 struct mmc_data *data)
563 {
564 /* Check if next job is already prepared. */
565 if (host->dma_current && host->dma_desc_current)
566 return 0;
567
568 /* No job were prepared thus do it now. */
569 return __mmci_dma_prep_data(host, data, &host->dma_current,
570 &host->dma_desc_current);
571 }
572
573 static inline int mmci_dma_prep_next(struct mmci_host *host,
574 struct mmc_data *data)
575 {
576 struct mmci_host_next *nd = &host->next_data;
577 return __mmci_dma_prep_data(host, data, &nd->dma_chan, &nd->dma_desc);
578 }
579
580 static int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
581 {
582 int ret;
583 struct mmc_data *data = host->data;
584
585 ret = mmci_dma_prep_data(host, host->data);
586 if (ret)
587 return ret;
588
589 /* Okay, go for it. */
590 dev_vdbg(mmc_dev(host->mmc),
591 "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n",
592 data->sg_len, data->blksz, data->blocks, data->flags);
593 dmaengine_submit(host->dma_desc_current);
594 dma_async_issue_pending(host->dma_current);
595
596 datactrl |= MCI_DPSM_DMAENABLE;
597
598 /* Trigger the DMA transfer */
599 mmci_write_datactrlreg(host, datactrl);
600
601 /*
602 * Let the MMCI say when the data is ended and it's time
603 * to fire next DMA request. When that happens, MMCI will
604 * call mmci_data_end()
605 */
606 writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK,
607 host->base + MMCIMASK0);
608 return 0;
609 }
610
611 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
612 {
613 struct mmci_host_next *next = &host->next_data;
614
615 WARN_ON(data->host_cookie && data->host_cookie != next->cookie);
616 WARN_ON(!data->host_cookie && (next->dma_desc || next->dma_chan));
617
618 host->dma_desc_current = next->dma_desc;
619 host->dma_current = next->dma_chan;
620 next->dma_desc = NULL;
621 next->dma_chan = NULL;
622 }
623
624 static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq,
625 bool is_first_req)
626 {
627 struct mmci_host *host = mmc_priv(mmc);
628 struct mmc_data *data = mrq->data;
629 struct mmci_host_next *nd = &host->next_data;
630
631 if (!data)
632 return;
633
634 BUG_ON(data->host_cookie);
635
636 if (mmci_validate_data(host, data))
637 return;
638
639 if (!mmci_dma_prep_next(host, data))
640 data->host_cookie = ++nd->cookie < 0 ? 1 : nd->cookie;
641 }
642
643 static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq,
644 int err)
645 {
646 struct mmci_host *host = mmc_priv(mmc);
647 struct mmc_data *data = mrq->data;
648
649 if (!data || !data->host_cookie)
650 return;
651
652 mmci_dma_unmap(host, data);
653
654 if (err) {
655 struct mmci_host_next *next = &host->next_data;
656 struct dma_chan *chan;
657 if (data->flags & MMC_DATA_READ)
658 chan = host->dma_rx_channel;
659 else
660 chan = host->dma_tx_channel;
661 dmaengine_terminate_all(chan);
662
663 next->dma_desc = NULL;
664 next->dma_chan = NULL;
665 }
666 }
667
668 #else
669 /* Blank functions if the DMA engine is not available */
670 static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data)
671 {
672 }
673 static inline void mmci_dma_setup(struct mmci_host *host)
674 {
675 }
676
677 static inline void mmci_dma_release(struct mmci_host *host)
678 {
679 }
680
681 static inline void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data)
682 {
683 }
684
685 static inline void mmci_dma_finalize(struct mmci_host *host,
686 struct mmc_data *data)
687 {
688 }
689
690 static inline void mmci_dma_data_error(struct mmci_host *host)
691 {
692 }
693
694 static inline int mmci_dma_start_data(struct mmci_host *host, unsigned int datactrl)
695 {
696 return -ENOSYS;
697 }
698
699 #define mmci_pre_request NULL
700 #define mmci_post_request NULL
701
702 #endif
703
704 static void mmci_start_data(struct mmci_host *host, struct mmc_data *data)
705 {
706 struct variant_data *variant = host->variant;
707 unsigned int datactrl, timeout, irqmask;
708 unsigned long long clks;
709 void __iomem *base;
710 int blksz_bits;
711
712 dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n",
713 data->blksz, data->blocks, data->flags);
714
715 host->data = data;
716 host->size = data->blksz * data->blocks;
717 data->bytes_xfered = 0;
718
719 clks = (unsigned long long)data->timeout_ns * host->cclk;
720 do_div(clks, 1000000000UL);
721
722 timeout = data->timeout_clks + (unsigned int)clks;
723
724 base = host->base;
725 writel(timeout, base + MMCIDATATIMER);
726 writel(host->size, base + MMCIDATALENGTH);
727
728 blksz_bits = ffs(data->blksz) - 1;
729 BUG_ON(1 << blksz_bits != data->blksz);
730
731 if (variant->blksz_datactrl16)
732 datactrl = MCI_DPSM_ENABLE | (data->blksz << 16);
733 else
734 datactrl = MCI_DPSM_ENABLE | blksz_bits << 4;
735
736 if (data->flags & MMC_DATA_READ)
737 datactrl |= MCI_DPSM_DIRECTION;
738
739 /* The ST Micro variants has a special bit to enable SDIO */
740 if (variant->sdio && host->mmc->card)
741 if (mmc_card_sdio(host->mmc->card)) {
742 /*
743 * The ST Micro variants has a special bit
744 * to enable SDIO.
745 */
746 u32 clk;
747
748 datactrl |= MCI_ST_DPSM_SDIOEN;
749
750 /*
751 * The ST Micro variant for SDIO small write transfers
752 * needs to have clock H/W flow control disabled,
753 * otherwise the transfer will not start. The threshold
754 * depends on the rate of MCLK.
755 */
756 if (data->flags & MMC_DATA_WRITE &&
757 (host->size < 8 ||
758 (host->size <= 8 && host->mclk > 50000000)))
759 clk = host->clk_reg & ~variant->clkreg_enable;
760 else
761 clk = host->clk_reg | variant->clkreg_enable;
762
763 mmci_write_clkreg(host, clk);
764 }
765
766 if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50)
767 datactrl |= MCI_ST_DPSM_DDRMODE;
768
769 /*
770 * Attempt to use DMA operation mode, if this
771 * should fail, fall back to PIO mode
772 */
773 if (!mmci_dma_start_data(host, datactrl))
774 return;
775
776 /* IRQ mode, map the SG list for CPU reading/writing */
777 mmci_init_sg(host, data);
778
779 if (data->flags & MMC_DATA_READ) {
780 irqmask = MCI_RXFIFOHALFFULLMASK;
781
782 /*
783 * If we have less than the fifo 'half-full' threshold to
784 * transfer, trigger a PIO interrupt as soon as any data
785 * is available.
786 */
787 if (host->size < variant->fifohalfsize)
788 irqmask |= MCI_RXDATAAVLBLMASK;
789 } else {
790 /*
791 * We don't actually need to include "FIFO empty" here
792 * since its implicit in "FIFO half empty".
793 */
794 irqmask = MCI_TXFIFOHALFEMPTYMASK;
795 }
796
797 mmci_write_datactrlreg(host, datactrl);
798 writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0);
799 mmci_set_mask1(host, irqmask);
800 }
801
802 static void
803 mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c)
804 {
805 void __iomem *base = host->base;
806
807 dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n",
808 cmd->opcode, cmd->arg, cmd->flags);
809
810 if (readl(base + MMCICOMMAND) & MCI_CPSM_ENABLE) {
811 writel(0, base + MMCICOMMAND);
812 udelay(1);
813 }
814
815 c |= cmd->opcode | MCI_CPSM_ENABLE;
816 if (cmd->flags & MMC_RSP_PRESENT) {
817 if (cmd->flags & MMC_RSP_136)
818 c |= MCI_CPSM_LONGRSP;
819 c |= MCI_CPSM_RESPONSE;
820 }
821 if (/*interrupt*/0)
822 c |= MCI_CPSM_INTERRUPT;
823
824 host->cmd = cmd;
825
826 writel(cmd->arg, base + MMCIARGUMENT);
827 writel(c, base + MMCICOMMAND);
828 }
829
830 static void
831 mmci_data_irq(struct mmci_host *host, struct mmc_data *data,
832 unsigned int status)
833 {
834 /* First check for errors */
835 if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
836 MCI_TXUNDERRUN|MCI_RXOVERRUN)) {
837 u32 remain, success;
838
839 /* Terminate the DMA transfer */
840 if (dma_inprogress(host)) {
841 mmci_dma_data_error(host);
842 mmci_dma_unmap(host, data);
843 }
844
845 /*
846 * Calculate how far we are into the transfer. Note that
847 * the data counter gives the number of bytes transferred
848 * on the MMC bus, not on the host side. On reads, this
849 * can be as much as a FIFO-worth of data ahead. This
850 * matters for FIFO overruns only.
851 */
852 remain = readl(host->base + MMCIDATACNT);
853 success = data->blksz * data->blocks - remain;
854
855 dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n",
856 status, success);
857 if (status & MCI_DATACRCFAIL) {
858 /* Last block was not successful */
859 success -= 1;
860 data->error = -EILSEQ;
861 } else if (status & MCI_DATATIMEOUT) {
862 data->error = -ETIMEDOUT;
863 } else if (status & MCI_STARTBITERR) {
864 data->error = -ECOMM;
865 } else if (status & MCI_TXUNDERRUN) {
866 data->error = -EIO;
867 } else if (status & MCI_RXOVERRUN) {
868 if (success > host->variant->fifosize)
869 success -= host->variant->fifosize;
870 else
871 success = 0;
872 data->error = -EIO;
873 }
874 data->bytes_xfered = round_down(success, data->blksz);
875 }
876
877 if (status & MCI_DATABLOCKEND)
878 dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n");
879
880 if (status & MCI_DATAEND || data->error) {
881 if (dma_inprogress(host))
882 mmci_dma_finalize(host, data);
883 mmci_stop_data(host);
884
885 if (!data->error)
886 /* The error clause is handled above, success! */
887 data->bytes_xfered = data->blksz * data->blocks;
888
889 if (!data->stop || host->mrq->sbc) {
890 mmci_request_end(host, data->mrq);
891 } else {
892 mmci_start_command(host, data->stop, 0);
893 }
894 }
895 }
896
897 static void
898 mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd,
899 unsigned int status)
900 {
901 void __iomem *base = host->base;
902 bool sbc = (cmd == host->mrq->sbc);
903
904 host->cmd = NULL;
905
906 if (status & MCI_CMDTIMEOUT) {
907 cmd->error = -ETIMEDOUT;
908 } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) {
909 cmd->error = -EILSEQ;
910 } else {
911 cmd->resp[0] = readl(base + MMCIRESPONSE0);
912 cmd->resp[1] = readl(base + MMCIRESPONSE1);
913 cmd->resp[2] = readl(base + MMCIRESPONSE2);
914 cmd->resp[3] = readl(base + MMCIRESPONSE3);
915 }
916
917 if ((!sbc && !cmd->data) || cmd->error) {
918 if (host->data) {
919 /* Terminate the DMA transfer */
920 if (dma_inprogress(host)) {
921 mmci_dma_data_error(host);
922 mmci_dma_unmap(host, host->data);
923 }
924 mmci_stop_data(host);
925 }
926 mmci_request_end(host, host->mrq);
927 } else if (sbc) {
928 mmci_start_command(host, host->mrq->cmd, 0);
929 } else if (!(cmd->data->flags & MMC_DATA_READ)) {
930 mmci_start_data(host, cmd->data);
931 }
932 }
933
934 static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain)
935 {
936 void __iomem *base = host->base;
937 char *ptr = buffer;
938 u32 status;
939 int host_remain = host->size;
940
941 do {
942 int count = host_remain - (readl(base + MMCIFIFOCNT) << 2);
943
944 if (count > remain)
945 count = remain;
946
947 if (count <= 0)
948 break;
949
950 /*
951 * SDIO especially may want to send something that is
952 * not divisible by 4 (as opposed to card sectors
953 * etc). Therefore make sure to always read the last bytes
954 * while only doing full 32-bit reads towards the FIFO.
955 */
956 if (unlikely(count & 0x3)) {
957 if (count < 4) {
958 unsigned char buf[4];
959 ioread32_rep(base + MMCIFIFO, buf, 1);
960 memcpy(ptr, buf, count);
961 } else {
962 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
963 count &= ~0x3;
964 }
965 } else {
966 ioread32_rep(base + MMCIFIFO, ptr, count >> 2);
967 }
968
969 ptr += count;
970 remain -= count;
971 host_remain -= count;
972
973 if (remain == 0)
974 break;
975
976 status = readl(base + MMCISTATUS);
977 } while (status & MCI_RXDATAAVLBL);
978
979 return ptr - buffer;
980 }
981
982 static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status)
983 {
984 struct variant_data *variant = host->variant;
985 void __iomem *base = host->base;
986 char *ptr = buffer;
987
988 do {
989 unsigned int count, maxcnt;
990
991 maxcnt = status & MCI_TXFIFOEMPTY ?
992 variant->fifosize : variant->fifohalfsize;
993 count = min(remain, maxcnt);
994
995 /*
996 * SDIO especially may want to send something that is
997 * not divisible by 4 (as opposed to card sectors
998 * etc), and the FIFO only accept full 32-bit writes.
999 * So compensate by adding +3 on the count, a single
1000 * byte become a 32bit write, 7 bytes will be two
1001 * 32bit writes etc.
1002 */
1003 iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2);
1004
1005 ptr += count;
1006 remain -= count;
1007
1008 if (remain == 0)
1009 break;
1010
1011 status = readl(base + MMCISTATUS);
1012 } while (status & MCI_TXFIFOHALFEMPTY);
1013
1014 return ptr - buffer;
1015 }
1016
1017 /*
1018 * PIO data transfer IRQ handler.
1019 */
1020 static irqreturn_t mmci_pio_irq(int irq, void *dev_id)
1021 {
1022 struct mmci_host *host = dev_id;
1023 struct sg_mapping_iter *sg_miter = &host->sg_miter;
1024 struct variant_data *variant = host->variant;
1025 void __iomem *base = host->base;
1026 unsigned long flags;
1027 u32 status;
1028
1029 status = readl(base + MMCISTATUS);
1030
1031 dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status);
1032
1033 local_irq_save(flags);
1034
1035 do {
1036 unsigned int remain, len;
1037 char *buffer;
1038
1039 /*
1040 * For write, we only need to test the half-empty flag
1041 * here - if the FIFO is completely empty, then by
1042 * definition it is more than half empty.
1043 *
1044 * For read, check for data available.
1045 */
1046 if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL)))
1047 break;
1048
1049 if (!sg_miter_next(sg_miter))
1050 break;
1051
1052 buffer = sg_miter->addr;
1053 remain = sg_miter->length;
1054
1055 len = 0;
1056 if (status & MCI_RXACTIVE)
1057 len = mmci_pio_read(host, buffer, remain);
1058 if (status & MCI_TXACTIVE)
1059 len = mmci_pio_write(host, buffer, remain, status);
1060
1061 sg_miter->consumed = len;
1062
1063 host->size -= len;
1064 remain -= len;
1065
1066 if (remain)
1067 break;
1068
1069 status = readl(base + MMCISTATUS);
1070 } while (1);
1071
1072 sg_miter_stop(sg_miter);
1073
1074 local_irq_restore(flags);
1075
1076 /*
1077 * If we have less than the fifo 'half-full' threshold to transfer,
1078 * trigger a PIO interrupt as soon as any data is available.
1079 */
1080 if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize)
1081 mmci_set_mask1(host, MCI_RXDATAAVLBLMASK);
1082
1083 /*
1084 * If we run out of data, disable the data IRQs; this
1085 * prevents a race where the FIFO becomes empty before
1086 * the chip itself has disabled the data path, and
1087 * stops us racing with our data end IRQ.
1088 */
1089 if (host->size == 0) {
1090 mmci_set_mask1(host, 0);
1091 writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0);
1092 }
1093
1094 return IRQ_HANDLED;
1095 }
1096
1097 /*
1098 * Handle completion of command and data transfers.
1099 */
1100 static irqreturn_t mmci_irq(int irq, void *dev_id)
1101 {
1102 struct mmci_host *host = dev_id;
1103 u32 status;
1104 int ret = 0;
1105
1106 spin_lock(&host->lock);
1107
1108 do {
1109 struct mmc_command *cmd;
1110 struct mmc_data *data;
1111
1112 status = readl(host->base + MMCISTATUS);
1113
1114 if (host->singleirq) {
1115 if (status & readl(host->base + MMCIMASK1))
1116 mmci_pio_irq(irq, dev_id);
1117
1118 status &= ~MCI_IRQ1MASK;
1119 }
1120
1121 status &= readl(host->base + MMCIMASK0);
1122 writel(status, host->base + MMCICLEAR);
1123
1124 dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status);
1125
1126 data = host->data;
1127 if (status & (MCI_DATACRCFAIL|MCI_DATATIMEOUT|MCI_STARTBITERR|
1128 MCI_TXUNDERRUN|MCI_RXOVERRUN|MCI_DATAEND|
1129 MCI_DATABLOCKEND) && data)
1130 mmci_data_irq(host, data, status);
1131
1132 cmd = host->cmd;
1133 if (status & (MCI_CMDCRCFAIL|MCI_CMDTIMEOUT|MCI_CMDSENT|MCI_CMDRESPEND) && cmd)
1134 mmci_cmd_irq(host, cmd, status);
1135
1136 ret = 1;
1137 } while (status);
1138
1139 spin_unlock(&host->lock);
1140
1141 return IRQ_RETVAL(ret);
1142 }
1143
1144 static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq)
1145 {
1146 struct mmci_host *host = mmc_priv(mmc);
1147 unsigned long flags;
1148
1149 WARN_ON(host->mrq != NULL);
1150
1151 mrq->cmd->error = mmci_validate_data(host, mrq->data);
1152 if (mrq->cmd->error) {
1153 mmc_request_done(mmc, mrq);
1154 return;
1155 }
1156
1157 pm_runtime_get_sync(mmc_dev(mmc));
1158
1159 spin_lock_irqsave(&host->lock, flags);
1160
1161 host->mrq = mrq;
1162
1163 if (mrq->data)
1164 mmci_get_next_data(host, mrq->data);
1165
1166 if (mrq->data && mrq->data->flags & MMC_DATA_READ)
1167 mmci_start_data(host, mrq->data);
1168
1169 if (mrq->sbc)
1170 mmci_start_command(host, mrq->sbc, 0);
1171 else
1172 mmci_start_command(host, mrq->cmd, 0);
1173
1174 spin_unlock_irqrestore(&host->lock, flags);
1175 }
1176
1177 static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1178 {
1179 struct mmci_host *host = mmc_priv(mmc);
1180 struct variant_data *variant = host->variant;
1181 u32 pwr = 0;
1182 unsigned long flags;
1183 int ret;
1184
1185 pm_runtime_get_sync(mmc_dev(mmc));
1186
1187 if (host->plat->ios_handler &&
1188 host->plat->ios_handler(mmc_dev(mmc), ios))
1189 dev_err(mmc_dev(mmc), "platform ios_handler failed\n");
1190
1191 switch (ios->power_mode) {
1192 case MMC_POWER_OFF:
1193 if (!IS_ERR(mmc->supply.vmmc))
1194 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
1195
1196 if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) {
1197 regulator_disable(mmc->supply.vqmmc);
1198 host->vqmmc_enabled = false;
1199 }
1200
1201 break;
1202 case MMC_POWER_UP:
1203 if (!IS_ERR(mmc->supply.vmmc))
1204 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd);
1205
1206 /*
1207 * The ST Micro variant doesn't have the PL180s MCI_PWR_UP
1208 * and instead uses MCI_PWR_ON so apply whatever value is
1209 * configured in the variant data.
1210 */
1211 pwr |= variant->pwrreg_powerup;
1212
1213 break;
1214 case MMC_POWER_ON:
1215 if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) {
1216 ret = regulator_enable(mmc->supply.vqmmc);
1217 if (ret < 0)
1218 dev_err(mmc_dev(mmc),
1219 "failed to enable vqmmc regulator\n");
1220 else
1221 host->vqmmc_enabled = true;
1222 }
1223
1224 pwr |= MCI_PWR_ON;
1225 break;
1226 }
1227
1228 if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) {
1229 /*
1230 * The ST Micro variant has some additional bits
1231 * indicating signal direction for the signals in
1232 * the SD/MMC bus and feedback-clock usage.
1233 */
1234 pwr |= host->plat->sigdir;
1235
1236 if (ios->bus_width == MMC_BUS_WIDTH_4)
1237 pwr &= ~MCI_ST_DATA74DIREN;
1238 else if (ios->bus_width == MMC_BUS_WIDTH_1)
1239 pwr &= (~MCI_ST_DATA74DIREN &
1240 ~MCI_ST_DATA31DIREN &
1241 ~MCI_ST_DATA2DIREN);
1242 }
1243
1244 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) {
1245 if (host->hw_designer != AMBA_VENDOR_ST)
1246 pwr |= MCI_ROD;
1247 else {
1248 /*
1249 * The ST Micro variant use the ROD bit for something
1250 * else and only has OD (Open Drain).
1251 */
1252 pwr |= MCI_OD;
1253 }
1254 }
1255
1256 /*
1257 * If clock = 0 and the variant requires the MMCIPOWER to be used for
1258 * gating the clock, the MCI_PWR_ON bit is cleared.
1259 */
1260 if (!ios->clock && variant->pwrreg_clkgate)
1261 pwr &= ~MCI_PWR_ON;
1262
1263 spin_lock_irqsave(&host->lock, flags);
1264
1265 mmci_set_clkreg(host, ios->clock);
1266 mmci_write_pwrreg(host, pwr);
1267
1268 spin_unlock_irqrestore(&host->lock, flags);
1269
1270 pm_runtime_mark_last_busy(mmc_dev(mmc));
1271 pm_runtime_put_autosuspend(mmc_dev(mmc));
1272 }
1273
1274 static int mmci_get_ro(struct mmc_host *mmc)
1275 {
1276 struct mmci_host *host = mmc_priv(mmc);
1277
1278 if (host->gpio_wp == -ENOSYS)
1279 return -ENOSYS;
1280
1281 return gpio_get_value_cansleep(host->gpio_wp);
1282 }
1283
1284 static int mmci_get_cd(struct mmc_host *mmc)
1285 {
1286 struct mmci_host *host = mmc_priv(mmc);
1287 struct mmci_platform_data *plat = host->plat;
1288 unsigned int status;
1289
1290 if (host->gpio_cd == -ENOSYS) {
1291 if (!plat->status)
1292 return 1; /* Assume always present */
1293
1294 status = plat->status(mmc_dev(host->mmc));
1295 } else
1296 status = !!gpio_get_value_cansleep(host->gpio_cd)
1297 ^ plat->cd_invert;
1298
1299 /*
1300 * Use positive logic throughout - status is zero for no card,
1301 * non-zero for card inserted.
1302 */
1303 return status;
1304 }
1305
1306 static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios)
1307 {
1308 int ret = 0;
1309
1310 if (!IS_ERR(mmc->supply.vqmmc)) {
1311
1312 pm_runtime_get_sync(mmc_dev(mmc));
1313
1314 switch (ios->signal_voltage) {
1315 case MMC_SIGNAL_VOLTAGE_330:
1316 ret = regulator_set_voltage(mmc->supply.vqmmc,
1317 2700000, 3600000);
1318 break;
1319 case MMC_SIGNAL_VOLTAGE_180:
1320 ret = regulator_set_voltage(mmc->supply.vqmmc,
1321 1700000, 1950000);
1322 break;
1323 case MMC_SIGNAL_VOLTAGE_120:
1324 ret = regulator_set_voltage(mmc->supply.vqmmc,
1325 1100000, 1300000);
1326 break;
1327 }
1328
1329 if (ret)
1330 dev_warn(mmc_dev(mmc), "Voltage switch failed\n");
1331
1332 pm_runtime_mark_last_busy(mmc_dev(mmc));
1333 pm_runtime_put_autosuspend(mmc_dev(mmc));
1334 }
1335
1336 return ret;
1337 }
1338
1339 static irqreturn_t mmci_cd_irq(int irq, void *dev_id)
1340 {
1341 struct mmci_host *host = dev_id;
1342
1343 mmc_detect_change(host->mmc, msecs_to_jiffies(500));
1344
1345 return IRQ_HANDLED;
1346 }
1347
1348 static struct mmc_host_ops mmci_ops = {
1349 .request = mmci_request,
1350 .pre_req = mmci_pre_request,
1351 .post_req = mmci_post_request,
1352 .set_ios = mmci_set_ios,
1353 .get_ro = mmci_get_ro,
1354 .get_cd = mmci_get_cd,
1355 .start_signal_voltage_switch = mmci_sig_volt_switch,
1356 };
1357
1358 #ifdef CONFIG_OF
1359 static void mmci_dt_populate_generic_pdata(struct device_node *np,
1360 struct mmci_platform_data *pdata)
1361 {
1362 int bus_width = 0;
1363
1364 pdata->gpio_wp = of_get_named_gpio(np, "wp-gpios", 0);
1365 pdata->gpio_cd = of_get_named_gpio(np, "cd-gpios", 0);
1366
1367 if (of_get_property(np, "cd-inverted", NULL))
1368 pdata->cd_invert = true;
1369 else
1370 pdata->cd_invert = false;
1371
1372 of_property_read_u32(np, "max-frequency", &pdata->f_max);
1373 if (!pdata->f_max)
1374 pr_warn("%s has no 'max-frequency' property\n", np->full_name);
1375
1376 if (of_get_property(np, "mmc-cap-mmc-highspeed", NULL))
1377 pdata->capabilities |= MMC_CAP_MMC_HIGHSPEED;
1378 if (of_get_property(np, "mmc-cap-sd-highspeed", NULL))
1379 pdata->capabilities |= MMC_CAP_SD_HIGHSPEED;
1380
1381 of_property_read_u32(np, "bus-width", &bus_width);
1382 switch (bus_width) {
1383 case 0 :
1384 /* No bus-width supplied. */
1385 break;
1386 case 4 :
1387 pdata->capabilities |= MMC_CAP_4_BIT_DATA;
1388 break;
1389 case 8 :
1390 pdata->capabilities |= MMC_CAP_8_BIT_DATA;
1391 break;
1392 default :
1393 pr_warn("%s: Unsupported bus width\n", np->full_name);
1394 }
1395 }
1396 #else
1397 static void mmci_dt_populate_generic_pdata(struct device_node *np,
1398 struct mmci_platform_data *pdata)
1399 {
1400 return;
1401 }
1402 #endif
1403
1404 static int mmci_probe(struct amba_device *dev,
1405 const struct amba_id *id)
1406 {
1407 struct mmci_platform_data *plat = dev->dev.platform_data;
1408 struct device_node *np = dev->dev.of_node;
1409 struct variant_data *variant = id->data;
1410 struct mmci_host *host;
1411 struct mmc_host *mmc;
1412 int ret;
1413
1414 /* Must have platform data or Device Tree. */
1415 if (!plat && !np) {
1416 dev_err(&dev->dev, "No plat data or DT found\n");
1417 return -EINVAL;
1418 }
1419
1420 if (!plat) {
1421 plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL);
1422 if (!plat)
1423 return -ENOMEM;
1424 }
1425
1426 if (np)
1427 mmci_dt_populate_generic_pdata(np, plat);
1428
1429 ret = amba_request_regions(dev, DRIVER_NAME);
1430 if (ret)
1431 goto out;
1432
1433 mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev);
1434 if (!mmc) {
1435 ret = -ENOMEM;
1436 goto rel_regions;
1437 }
1438
1439 host = mmc_priv(mmc);
1440 host->mmc = mmc;
1441
1442 host->gpio_wp = -ENOSYS;
1443 host->gpio_cd = -ENOSYS;
1444 host->gpio_cd_irq = -1;
1445
1446 host->hw_designer = amba_manf(dev);
1447 host->hw_revision = amba_rev(dev);
1448 dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer);
1449 dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision);
1450
1451 host->clk = devm_clk_get(&dev->dev, NULL);
1452 if (IS_ERR(host->clk)) {
1453 ret = PTR_ERR(host->clk);
1454 goto host_free;
1455 }
1456
1457 ret = clk_prepare_enable(host->clk);
1458 if (ret)
1459 goto host_free;
1460
1461 host->plat = plat;
1462 host->variant = variant;
1463 host->mclk = clk_get_rate(host->clk);
1464 /*
1465 * According to the spec, mclk is max 100 MHz,
1466 * so we try to adjust the clock down to this,
1467 * (if possible).
1468 */
1469 if (host->mclk > 100000000) {
1470 ret = clk_set_rate(host->clk, 100000000);
1471 if (ret < 0)
1472 goto clk_disable;
1473 host->mclk = clk_get_rate(host->clk);
1474 dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n",
1475 host->mclk);
1476 }
1477 host->phybase = dev->res.start;
1478 host->base = ioremap(dev->res.start, resource_size(&dev->res));
1479 if (!host->base) {
1480 ret = -ENOMEM;
1481 goto clk_disable;
1482 }
1483
1484 if (variant->busy_detect) {
1485 mmci_ops.card_busy = mmci_card_busy;
1486 mmci_write_datactrlreg(host, MCI_ST_DPSM_BUSYMODE);
1487 }
1488
1489 mmc->ops = &mmci_ops;
1490 /*
1491 * The ARM and ST versions of the block have slightly different
1492 * clock divider equations which means that the minimum divider
1493 * differs too.
1494 */
1495 if (variant->st_clkdiv)
1496 mmc->f_min = DIV_ROUND_UP(host->mclk, 257);
1497 else
1498 mmc->f_min = DIV_ROUND_UP(host->mclk, 512);
1499 /*
1500 * If the platform data supplies a maximum operating
1501 * frequency, this takes precedence. Else, we fall back
1502 * to using the module parameter, which has a (low)
1503 * default value in case it is not specified. Either
1504 * value must not exceed the clock rate into the block,
1505 * of course.
1506 */
1507 if (plat->f_max)
1508 mmc->f_max = min(host->mclk, plat->f_max);
1509 else
1510 mmc->f_max = min(host->mclk, fmax);
1511 dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max);
1512
1513 host->pinctrl = devm_pinctrl_get(&dev->dev);
1514 if (IS_ERR(host->pinctrl)) {
1515 ret = PTR_ERR(host->pinctrl);
1516 goto clk_disable;
1517 }
1518
1519 host->pins_default = pinctrl_lookup_state(host->pinctrl,
1520 PINCTRL_STATE_DEFAULT);
1521
1522 /* enable pins to be muxed in and configured */
1523 if (!IS_ERR(host->pins_default)) {
1524 ret = pinctrl_select_state(host->pinctrl, host->pins_default);
1525 if (ret)
1526 dev_warn(&dev->dev, "could not set default pins\n");
1527 } else
1528 dev_warn(&dev->dev, "could not get default pinstate\n");
1529
1530 /* Get regulators and the supported OCR mask */
1531 mmc_regulator_get_supply(mmc);
1532 if (!mmc->ocr_avail)
1533 mmc->ocr_avail = plat->ocr_mask;
1534 else if (plat->ocr_mask)
1535 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1536
1537 mmc->caps = plat->capabilities;
1538 mmc->caps2 = plat->capabilities2;
1539
1540 /* We support these PM capabilities. */
1541 mmc->pm_caps = MMC_PM_KEEP_POWER;
1542
1543 /*
1544 * We can do SGIO
1545 */
1546 mmc->max_segs = NR_SG;
1547
1548 /*
1549 * Since only a certain number of bits are valid in the data length
1550 * register, we must ensure that we don't exceed 2^num-1 bytes in a
1551 * single request.
1552 */
1553 mmc->max_req_size = (1 << variant->datalength_bits) - 1;
1554
1555 /*
1556 * Set the maximum segment size. Since we aren't doing DMA
1557 * (yet) we are only limited by the data length register.
1558 */
1559 mmc->max_seg_size = mmc->max_req_size;
1560
1561 /*
1562 * Block size can be up to 2048 bytes, but must be a power of two.
1563 */
1564 mmc->max_blk_size = 1 << 11;
1565
1566 /*
1567 * Limit the number of blocks transferred so that we don't overflow
1568 * the maximum request size.
1569 */
1570 mmc->max_blk_count = mmc->max_req_size >> 11;
1571
1572 spin_lock_init(&host->lock);
1573
1574 writel(0, host->base + MMCIMASK0);
1575 writel(0, host->base + MMCIMASK1);
1576 writel(0xfff, host->base + MMCICLEAR);
1577
1578 if (plat->gpio_cd == -EPROBE_DEFER) {
1579 ret = -EPROBE_DEFER;
1580 goto err_gpio_cd;
1581 }
1582 if (gpio_is_valid(plat->gpio_cd)) {
1583 ret = gpio_request(plat->gpio_cd, DRIVER_NAME " (cd)");
1584 if (ret == 0)
1585 ret = gpio_direction_input(plat->gpio_cd);
1586 if (ret == 0)
1587 host->gpio_cd = plat->gpio_cd;
1588 else if (ret != -ENOSYS)
1589 goto err_gpio_cd;
1590
1591 /*
1592 * A gpio pin that will detect cards when inserted and removed
1593 * will most likely want to trigger on the edges if it is
1594 * 0 when ejected and 1 when inserted (or mutatis mutandis
1595 * for the inverted case) so we request triggers on both
1596 * edges.
1597 */
1598 ret = request_any_context_irq(gpio_to_irq(plat->gpio_cd),
1599 mmci_cd_irq,
1600 IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
1601 DRIVER_NAME " (cd)", host);
1602 if (ret >= 0)
1603 host->gpio_cd_irq = gpio_to_irq(plat->gpio_cd);
1604 }
1605 if (plat->gpio_wp == -EPROBE_DEFER) {
1606 ret = -EPROBE_DEFER;
1607 goto err_gpio_wp;
1608 }
1609 if (gpio_is_valid(plat->gpio_wp)) {
1610 ret = gpio_request(plat->gpio_wp, DRIVER_NAME " (wp)");
1611 if (ret == 0)
1612 ret = gpio_direction_input(plat->gpio_wp);
1613 if (ret == 0)
1614 host->gpio_wp = plat->gpio_wp;
1615 else if (ret != -ENOSYS)
1616 goto err_gpio_wp;
1617 }
1618
1619 if ((host->plat->status || host->gpio_cd != -ENOSYS)
1620 && host->gpio_cd_irq < 0)
1621 mmc->caps |= MMC_CAP_NEEDS_POLL;
1622
1623 ret = request_irq(dev->irq[0], mmci_irq, IRQF_SHARED, DRIVER_NAME " (cmd)", host);
1624 if (ret)
1625 goto unmap;
1626
1627 if (!dev->irq[1])
1628 host->singleirq = true;
1629 else {
1630 ret = request_irq(dev->irq[1], mmci_pio_irq, IRQF_SHARED,
1631 DRIVER_NAME " (pio)", host);
1632 if (ret)
1633 goto irq0_free;
1634 }
1635
1636 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1637
1638 amba_set_drvdata(dev, mmc);
1639
1640 dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n",
1641 mmc_hostname(mmc), amba_part(dev), amba_manf(dev),
1642 amba_rev(dev), (unsigned long long)dev->res.start,
1643 dev->irq[0], dev->irq[1]);
1644
1645 mmci_dma_setup(host);
1646
1647 pm_runtime_set_autosuspend_delay(&dev->dev, 50);
1648 pm_runtime_use_autosuspend(&dev->dev);
1649 pm_runtime_put(&dev->dev);
1650
1651 mmc_add_host(mmc);
1652
1653 return 0;
1654
1655 irq0_free:
1656 free_irq(dev->irq[0], host);
1657 unmap:
1658 if (host->gpio_wp != -ENOSYS)
1659 gpio_free(host->gpio_wp);
1660 err_gpio_wp:
1661 if (host->gpio_cd_irq >= 0)
1662 free_irq(host->gpio_cd_irq, host);
1663 if (host->gpio_cd != -ENOSYS)
1664 gpio_free(host->gpio_cd);
1665 err_gpio_cd:
1666 iounmap(host->base);
1667 clk_disable:
1668 clk_disable_unprepare(host->clk);
1669 host_free:
1670 mmc_free_host(mmc);
1671 rel_regions:
1672 amba_release_regions(dev);
1673 out:
1674 return ret;
1675 }
1676
1677 static int mmci_remove(struct amba_device *dev)
1678 {
1679 struct mmc_host *mmc = amba_get_drvdata(dev);
1680
1681 amba_set_drvdata(dev, NULL);
1682
1683 if (mmc) {
1684 struct mmci_host *host = mmc_priv(mmc);
1685
1686 /*
1687 * Undo pm_runtime_put() in probe. We use the _sync
1688 * version here so that we can access the primecell.
1689 */
1690 pm_runtime_get_sync(&dev->dev);
1691
1692 mmc_remove_host(mmc);
1693
1694 writel(0, host->base + MMCIMASK0);
1695 writel(0, host->base + MMCIMASK1);
1696
1697 writel(0, host->base + MMCICOMMAND);
1698 writel(0, host->base + MMCIDATACTRL);
1699
1700 mmci_dma_release(host);
1701 free_irq(dev->irq[0], host);
1702 if (!host->singleirq)
1703 free_irq(dev->irq[1], host);
1704
1705 if (host->gpio_wp != -ENOSYS)
1706 gpio_free(host->gpio_wp);
1707 if (host->gpio_cd_irq >= 0)
1708 free_irq(host->gpio_cd_irq, host);
1709 if (host->gpio_cd != -ENOSYS)
1710 gpio_free(host->gpio_cd);
1711
1712 iounmap(host->base);
1713 clk_disable_unprepare(host->clk);
1714
1715 mmc_free_host(mmc);
1716
1717 amba_release_regions(dev);
1718 }
1719
1720 return 0;
1721 }
1722
1723 #ifdef CONFIG_SUSPEND
1724 static int mmci_suspend(struct device *dev)
1725 {
1726 struct amba_device *adev = to_amba_device(dev);
1727 struct mmc_host *mmc = amba_get_drvdata(adev);
1728 int ret = 0;
1729
1730 if (mmc) {
1731 struct mmci_host *host = mmc_priv(mmc);
1732
1733 ret = mmc_suspend_host(mmc);
1734 if (ret == 0) {
1735 pm_runtime_get_sync(dev);
1736 writel(0, host->base + MMCIMASK0);
1737 }
1738 }
1739
1740 return ret;
1741 }
1742
1743 static int mmci_resume(struct device *dev)
1744 {
1745 struct amba_device *adev = to_amba_device(dev);
1746 struct mmc_host *mmc = amba_get_drvdata(adev);
1747 int ret = 0;
1748
1749 if (mmc) {
1750 struct mmci_host *host = mmc_priv(mmc);
1751
1752 writel(MCI_IRQENABLE, host->base + MMCIMASK0);
1753 pm_runtime_put(dev);
1754
1755 ret = mmc_resume_host(mmc);
1756 }
1757
1758 return ret;
1759 }
1760 #endif
1761
1762 #ifdef CONFIG_PM_RUNTIME
1763 static int mmci_runtime_suspend(struct device *dev)
1764 {
1765 struct amba_device *adev = to_amba_device(dev);
1766 struct mmc_host *mmc = amba_get_drvdata(adev);
1767
1768 if (mmc) {
1769 struct mmci_host *host = mmc_priv(mmc);
1770 clk_disable_unprepare(host->clk);
1771 }
1772
1773 return 0;
1774 }
1775
1776 static int mmci_runtime_resume(struct device *dev)
1777 {
1778 struct amba_device *adev = to_amba_device(dev);
1779 struct mmc_host *mmc = amba_get_drvdata(adev);
1780
1781 if (mmc) {
1782 struct mmci_host *host = mmc_priv(mmc);
1783 clk_prepare_enable(host->clk);
1784 }
1785
1786 return 0;
1787 }
1788 #endif
1789
1790 static const struct dev_pm_ops mmci_dev_pm_ops = {
1791 SET_SYSTEM_SLEEP_PM_OPS(mmci_suspend, mmci_resume)
1792 SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL)
1793 };
1794
1795 static struct amba_id mmci_ids[] = {
1796 {
1797 .id = 0x00041180,
1798 .mask = 0xff0fffff,
1799 .data = &variant_arm,
1800 },
1801 {
1802 .id = 0x01041180,
1803 .mask = 0xff0fffff,
1804 .data = &variant_arm_extended_fifo,
1805 },
1806 {
1807 .id = 0x02041180,
1808 .mask = 0xff0fffff,
1809 .data = &variant_arm_extended_fifo_hwfc,
1810 },
1811 {
1812 .id = 0x00041181,
1813 .mask = 0x000fffff,
1814 .data = &variant_arm,
1815 },
1816 /* ST Micro variants */
1817 {
1818 .id = 0x00180180,
1819 .mask = 0x00ffffff,
1820 .data = &variant_u300,
1821 },
1822 {
1823 .id = 0x10180180,
1824 .mask = 0xf0ffffff,
1825 .data = &variant_nomadik,
1826 },
1827 {
1828 .id = 0x00280180,
1829 .mask = 0x00ffffff,
1830 .data = &variant_u300,
1831 },
1832 {
1833 .id = 0x00480180,
1834 .mask = 0xf0ffffff,
1835 .data = &variant_ux500,
1836 },
1837 {
1838 .id = 0x10480180,
1839 .mask = 0xf0ffffff,
1840 .data = &variant_ux500v2,
1841 },
1842 { 0, 0 },
1843 };
1844
1845 MODULE_DEVICE_TABLE(amba, mmci_ids);
1846
1847 static struct amba_driver mmci_driver = {
1848 .drv = {
1849 .name = DRIVER_NAME,
1850 .pm = &mmci_dev_pm_ops,
1851 },
1852 .probe = mmci_probe,
1853 .remove = mmci_remove,
1854 .id_table = mmci_ids,
1855 };
1856
1857 module_amba_driver(mmci_driver);
1858
1859 module_param(fmax, uint, 0444);
1860
1861 MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver");
1862 MODULE_LICENSE("GPL");
This page took 0.068561 seconds and 6 git commands to generate.