printk: add and use LOGLEVEL_<level> defines for KERN_<LEVEL> equivalents
[deliverable/linux.git] / drivers / mmc / host / omap_hsmmc.c
1 /*
2 * drivers/mmc/host/omap_hsmmc.c
3 *
4 * Driver for OMAP2430/3430 MMC controller.
5 *
6 * Copyright (C) 2007 Texas Instruments.
7 *
8 * Authors:
9 * Syed Mohammed Khasim <x0khasim@ti.com>
10 * Madhusudhan <madhu.cr@ti.com>
11 * Mohit Jalori <mjalori@ti.com>
12 *
13 * This file is licensed under the terms of the GNU General Public License
14 * version 2. This program is licensed "as is" without any warranty of any
15 * kind, whether express or implied.
16 */
17
18 #include <linux/module.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/debugfs.h>
22 #include <linux/dmaengine.h>
23 #include <linux/seq_file.h>
24 #include <linux/sizes.h>
25 #include <linux/interrupt.h>
26 #include <linux/delay.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/platform_device.h>
29 #include <linux/timer.h>
30 #include <linux/clk.h>
31 #include <linux/of.h>
32 #include <linux/of_irq.h>
33 #include <linux/of_gpio.h>
34 #include <linux/of_device.h>
35 #include <linux/omap-dmaengine.h>
36 #include <linux/mmc/host.h>
37 #include <linux/mmc/core.h>
38 #include <linux/mmc/mmc.h>
39 #include <linux/io.h>
40 #include <linux/irq.h>
41 #include <linux/gpio.h>
42 #include <linux/regulator/consumer.h>
43 #include <linux/pinctrl/consumer.h>
44 #include <linux/pm_runtime.h>
45 #include <linux/platform_data/hsmmc-omap.h>
46
47 /* OMAP HSMMC Host Controller Registers */
48 #define OMAP_HSMMC_SYSSTATUS 0x0014
49 #define OMAP_HSMMC_CON 0x002C
50 #define OMAP_HSMMC_SDMASA 0x0100
51 #define OMAP_HSMMC_BLK 0x0104
52 #define OMAP_HSMMC_ARG 0x0108
53 #define OMAP_HSMMC_CMD 0x010C
54 #define OMAP_HSMMC_RSP10 0x0110
55 #define OMAP_HSMMC_RSP32 0x0114
56 #define OMAP_HSMMC_RSP54 0x0118
57 #define OMAP_HSMMC_RSP76 0x011C
58 #define OMAP_HSMMC_DATA 0x0120
59 #define OMAP_HSMMC_PSTATE 0x0124
60 #define OMAP_HSMMC_HCTL 0x0128
61 #define OMAP_HSMMC_SYSCTL 0x012C
62 #define OMAP_HSMMC_STAT 0x0130
63 #define OMAP_HSMMC_IE 0x0134
64 #define OMAP_HSMMC_ISE 0x0138
65 #define OMAP_HSMMC_AC12 0x013C
66 #define OMAP_HSMMC_CAPA 0x0140
67
68 #define VS18 (1 << 26)
69 #define VS30 (1 << 25)
70 #define HSS (1 << 21)
71 #define SDVS18 (0x5 << 9)
72 #define SDVS30 (0x6 << 9)
73 #define SDVS33 (0x7 << 9)
74 #define SDVS_MASK 0x00000E00
75 #define SDVSCLR 0xFFFFF1FF
76 #define SDVSDET 0x00000400
77 #define AUTOIDLE 0x1
78 #define SDBP (1 << 8)
79 #define DTO 0xe
80 #define ICE 0x1
81 #define ICS 0x2
82 #define CEN (1 << 2)
83 #define CLKD_MAX 0x3FF /* max clock divisor: 1023 */
84 #define CLKD_MASK 0x0000FFC0
85 #define CLKD_SHIFT 6
86 #define DTO_MASK 0x000F0000
87 #define DTO_SHIFT 16
88 #define INIT_STREAM (1 << 1)
89 #define ACEN_ACMD23 (2 << 2)
90 #define DP_SELECT (1 << 21)
91 #define DDIR (1 << 4)
92 #define DMAE 0x1
93 #define MSBS (1 << 5)
94 #define BCE (1 << 1)
95 #define FOUR_BIT (1 << 1)
96 #define HSPE (1 << 2)
97 #define IWE (1 << 24)
98 #define DDR (1 << 19)
99 #define CLKEXTFREE (1 << 16)
100 #define CTPL (1 << 11)
101 #define DW8 (1 << 5)
102 #define OD 0x1
103 #define STAT_CLEAR 0xFFFFFFFF
104 #define INIT_STREAM_CMD 0x00000000
105 #define DUAL_VOLT_OCR_BIT 7
106 #define SRC (1 << 25)
107 #define SRD (1 << 26)
108 #define SOFTRESET (1 << 1)
109
110 /* PSTATE */
111 #define DLEV_DAT(x) (1 << (20 + (x)))
112
113 /* Interrupt masks for IE and ISE register */
114 #define CC_EN (1 << 0)
115 #define TC_EN (1 << 1)
116 #define BWR_EN (1 << 4)
117 #define BRR_EN (1 << 5)
118 #define CIRQ_EN (1 << 8)
119 #define ERR_EN (1 << 15)
120 #define CTO_EN (1 << 16)
121 #define CCRC_EN (1 << 17)
122 #define CEB_EN (1 << 18)
123 #define CIE_EN (1 << 19)
124 #define DTO_EN (1 << 20)
125 #define DCRC_EN (1 << 21)
126 #define DEB_EN (1 << 22)
127 #define ACE_EN (1 << 24)
128 #define CERR_EN (1 << 28)
129 #define BADA_EN (1 << 29)
130
131 #define INT_EN_MASK (BADA_EN | CERR_EN | ACE_EN | DEB_EN | DCRC_EN |\
132 DTO_EN | CIE_EN | CEB_EN | CCRC_EN | CTO_EN | \
133 BRR_EN | BWR_EN | TC_EN | CC_EN)
134
135 #define CNI (1 << 7)
136 #define ACIE (1 << 4)
137 #define ACEB (1 << 3)
138 #define ACCE (1 << 2)
139 #define ACTO (1 << 1)
140 #define ACNE (1 << 0)
141
142 #define MMC_AUTOSUSPEND_DELAY 100
143 #define MMC_TIMEOUT_MS 20 /* 20 mSec */
144 #define MMC_TIMEOUT_US 20000 /* 20000 micro Sec */
145 #define OMAP_MMC_MIN_CLOCK 400000
146 #define OMAP_MMC_MAX_CLOCK 52000000
147 #define DRIVER_NAME "omap_hsmmc"
148
149 #define VDD_1V8 1800000 /* 180000 uV */
150 #define VDD_3V0 3000000 /* 300000 uV */
151 #define VDD_165_195 (ffs(MMC_VDD_165_195) - 1)
152
153 /*
154 * One controller can have multiple slots, like on some omap boards using
155 * omap.c controller driver. Luckily this is not currently done on any known
156 * omap_hsmmc.c device.
157 */
158 #define mmc_pdata(host) host->pdata
159
160 /*
161 * MMC Host controller read/write API's
162 */
163 #define OMAP_HSMMC_READ(base, reg) \
164 __raw_readl((base) + OMAP_HSMMC_##reg)
165
166 #define OMAP_HSMMC_WRITE(base, reg, val) \
167 __raw_writel((val), (base) + OMAP_HSMMC_##reg)
168
169 struct omap_hsmmc_next {
170 unsigned int dma_len;
171 s32 cookie;
172 };
173
174 struct omap_hsmmc_host {
175 struct device *dev;
176 struct mmc_host *mmc;
177 struct mmc_request *mrq;
178 struct mmc_command *cmd;
179 struct mmc_data *data;
180 struct clk *fclk;
181 struct clk *dbclk;
182 /*
183 * vcc == configured supply
184 * vcc_aux == optional
185 * - MMC1, supply for DAT4..DAT7
186 * - MMC2/MMC2, external level shifter voltage supply, for
187 * chip (SDIO, eMMC, etc) or transceiver (MMC2 only)
188 */
189 struct regulator *vcc;
190 struct regulator *vcc_aux;
191 struct regulator *pbias;
192 bool pbias_enabled;
193 void __iomem *base;
194 resource_size_t mapbase;
195 spinlock_t irq_lock; /* Prevent races with irq handler */
196 unsigned int dma_len;
197 unsigned int dma_sg_idx;
198 unsigned char bus_mode;
199 unsigned char power_mode;
200 int suspended;
201 u32 con;
202 u32 hctl;
203 u32 sysctl;
204 u32 capa;
205 int irq;
206 int wake_irq;
207 int use_dma, dma_ch;
208 struct dma_chan *tx_chan;
209 struct dma_chan *rx_chan;
210 int response_busy;
211 int context_loss;
212 int protect_card;
213 int reqs_blocked;
214 int use_reg;
215 int req_in_progress;
216 unsigned long clk_rate;
217 unsigned int flags;
218 #define AUTO_CMD23 (1 << 0) /* Auto CMD23 support */
219 #define HSMMC_SDIO_IRQ_ENABLED (1 << 1) /* SDIO irq enabled */
220 #define HSMMC_WAKE_IRQ_ENABLED (1 << 2)
221 struct omap_hsmmc_next next_data;
222 struct omap_hsmmc_platform_data *pdata;
223
224 /* To handle board related suspend/resume functionality for MMC */
225 int (*suspend)(struct device *dev);
226 int (*resume)(struct device *dev);
227
228 /* return MMC cover switch state, can be NULL if not supported.
229 *
230 * possible return values:
231 * 0 - closed
232 * 1 - open
233 */
234 int (*get_cover_state)(struct device *dev);
235
236 /* Card detection IRQs */
237 int card_detect_irq;
238
239 int (*card_detect)(struct device *dev);
240 int (*get_ro)(struct device *dev);
241
242 };
243
244 struct omap_mmc_of_data {
245 u32 reg_offset;
246 u8 controller_flags;
247 };
248
249 static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host);
250
251 static int omap_hsmmc_card_detect(struct device *dev)
252 {
253 struct omap_hsmmc_host *host = dev_get_drvdata(dev);
254 struct omap_hsmmc_platform_data *mmc = host->pdata;
255
256 /* NOTE: assumes card detect signal is active-low */
257 return !gpio_get_value_cansleep(mmc->switch_pin);
258 }
259
260 static int omap_hsmmc_get_wp(struct device *dev)
261 {
262 struct omap_hsmmc_host *host = dev_get_drvdata(dev);
263 struct omap_hsmmc_platform_data *mmc = host->pdata;
264
265 /* NOTE: assumes write protect signal is active-high */
266 return gpio_get_value_cansleep(mmc->gpio_wp);
267 }
268
269 static int omap_hsmmc_get_cover_state(struct device *dev)
270 {
271 struct omap_hsmmc_host *host = dev_get_drvdata(dev);
272 struct omap_hsmmc_platform_data *mmc = host->pdata;
273
274 /* NOTE: assumes card detect signal is active-low */
275 return !gpio_get_value_cansleep(mmc->switch_pin);
276 }
277
278 #ifdef CONFIG_PM
279
280 static int omap_hsmmc_suspend_cdirq(struct device *dev)
281 {
282 struct omap_hsmmc_host *host = dev_get_drvdata(dev);
283
284 disable_irq(host->card_detect_irq);
285 return 0;
286 }
287
288 static int omap_hsmmc_resume_cdirq(struct device *dev)
289 {
290 struct omap_hsmmc_host *host = dev_get_drvdata(dev);
291
292 enable_irq(host->card_detect_irq);
293 return 0;
294 }
295
296 #else
297
298 #define omap_hsmmc_suspend_cdirq NULL
299 #define omap_hsmmc_resume_cdirq NULL
300
301 #endif
302
303 #ifdef CONFIG_REGULATOR
304
305 static int omap_hsmmc_set_power(struct device *dev, int power_on, int vdd)
306 {
307 struct omap_hsmmc_host *host =
308 platform_get_drvdata(to_platform_device(dev));
309 int ret = 0;
310
311 /*
312 * If we don't see a Vcc regulator, assume it's a fixed
313 * voltage always-on regulator.
314 */
315 if (!host->vcc)
316 return 0;
317
318 if (mmc_pdata(host)->before_set_reg)
319 mmc_pdata(host)->before_set_reg(dev, power_on, vdd);
320
321 if (host->pbias) {
322 if (host->pbias_enabled == 1) {
323 ret = regulator_disable(host->pbias);
324 if (!ret)
325 host->pbias_enabled = 0;
326 }
327 regulator_set_voltage(host->pbias, VDD_3V0, VDD_3V0);
328 }
329
330 /*
331 * Assume Vcc regulator is used only to power the card ... OMAP
332 * VDDS is used to power the pins, optionally with a transceiver to
333 * support cards using voltages other than VDDS (1.8V nominal). When a
334 * transceiver is used, DAT3..7 are muxed as transceiver control pins.
335 *
336 * In some cases this regulator won't support enable/disable;
337 * e.g. it's a fixed rail for a WLAN chip.
338 *
339 * In other cases vcc_aux switches interface power. Example, for
340 * eMMC cards it represents VccQ. Sometimes transceivers or SDIO
341 * chips/cards need an interface voltage rail too.
342 */
343 if (power_on) {
344 if (host->vcc)
345 ret = mmc_regulator_set_ocr(host->mmc, host->vcc, vdd);
346 /* Enable interface voltage rail, if needed */
347 if (ret == 0 && host->vcc_aux) {
348 ret = regulator_enable(host->vcc_aux);
349 if (ret < 0 && host->vcc)
350 ret = mmc_regulator_set_ocr(host->mmc,
351 host->vcc, 0);
352 }
353 } else {
354 /* Shut down the rail */
355 if (host->vcc_aux)
356 ret = regulator_disable(host->vcc_aux);
357 if (host->vcc) {
358 /* Then proceed to shut down the local regulator */
359 ret = mmc_regulator_set_ocr(host->mmc,
360 host->vcc, 0);
361 }
362 }
363
364 if (host->pbias) {
365 if (vdd <= VDD_165_195)
366 ret = regulator_set_voltage(host->pbias, VDD_1V8,
367 VDD_1V8);
368 else
369 ret = regulator_set_voltage(host->pbias, VDD_3V0,
370 VDD_3V0);
371 if (ret < 0)
372 goto error_set_power;
373
374 if (host->pbias_enabled == 0) {
375 ret = regulator_enable(host->pbias);
376 if (!ret)
377 host->pbias_enabled = 1;
378 }
379 }
380
381 if (mmc_pdata(host)->after_set_reg)
382 mmc_pdata(host)->after_set_reg(dev, power_on, vdd);
383
384 error_set_power:
385 return ret;
386 }
387
388 static int omap_hsmmc_reg_get(struct omap_hsmmc_host *host)
389 {
390 struct regulator *reg;
391 int ocr_value = 0;
392
393 reg = devm_regulator_get(host->dev, "vmmc");
394 if (IS_ERR(reg)) {
395 dev_err(host->dev, "unable to get vmmc regulator %ld\n",
396 PTR_ERR(reg));
397 return PTR_ERR(reg);
398 } else {
399 host->vcc = reg;
400 ocr_value = mmc_regulator_get_ocrmask(reg);
401 if (!mmc_pdata(host)->ocr_mask) {
402 mmc_pdata(host)->ocr_mask = ocr_value;
403 } else {
404 if (!(mmc_pdata(host)->ocr_mask & ocr_value)) {
405 dev_err(host->dev, "ocrmask %x is not supported\n",
406 mmc_pdata(host)->ocr_mask);
407 mmc_pdata(host)->ocr_mask = 0;
408 return -EINVAL;
409 }
410 }
411 }
412 mmc_pdata(host)->set_power = omap_hsmmc_set_power;
413
414 /* Allow an aux regulator */
415 reg = devm_regulator_get_optional(host->dev, "vmmc_aux");
416 host->vcc_aux = IS_ERR(reg) ? NULL : reg;
417
418 reg = devm_regulator_get_optional(host->dev, "pbias");
419 host->pbias = IS_ERR(reg) ? NULL : reg;
420
421 /* For eMMC do not power off when not in sleep state */
422 if (mmc_pdata(host)->no_regulator_off_init)
423 return 0;
424 /*
425 * To disable boot_on regulator, enable regulator
426 * to increase usecount and then disable it.
427 */
428 if ((host->vcc && regulator_is_enabled(host->vcc) > 0) ||
429 (host->vcc_aux && regulator_is_enabled(host->vcc_aux))) {
430 int vdd = ffs(mmc_pdata(host)->ocr_mask) - 1;
431
432 mmc_pdata(host)->set_power(host->dev, 1, vdd);
433 mmc_pdata(host)->set_power(host->dev, 0, 0);
434 }
435
436 return 0;
437 }
438
439 static void omap_hsmmc_reg_put(struct omap_hsmmc_host *host)
440 {
441 mmc_pdata(host)->set_power = NULL;
442 }
443
444 static inline int omap_hsmmc_have_reg(void)
445 {
446 return 1;
447 }
448
449 #else
450
451 static inline int omap_hsmmc_reg_get(struct omap_hsmmc_host *host)
452 {
453 return -EINVAL;
454 }
455
456 static inline void omap_hsmmc_reg_put(struct omap_hsmmc_host *host)
457 {
458 }
459
460 static inline int omap_hsmmc_have_reg(void)
461 {
462 return 0;
463 }
464
465 #endif
466
467 static int omap_hsmmc_gpio_init(struct omap_hsmmc_host *host,
468 struct omap_hsmmc_platform_data *pdata)
469 {
470 int ret;
471
472 if (gpio_is_valid(pdata->switch_pin)) {
473 if (pdata->cover)
474 host->get_cover_state =
475 omap_hsmmc_get_cover_state;
476 else
477 host->card_detect = omap_hsmmc_card_detect;
478 host->card_detect_irq =
479 gpio_to_irq(pdata->switch_pin);
480 ret = gpio_request(pdata->switch_pin, "mmc_cd");
481 if (ret)
482 return ret;
483 ret = gpio_direction_input(pdata->switch_pin);
484 if (ret)
485 goto err_free_sp;
486 } else {
487 pdata->switch_pin = -EINVAL;
488 }
489
490 if (gpio_is_valid(pdata->gpio_wp)) {
491 host->get_ro = omap_hsmmc_get_wp;
492 ret = gpio_request(pdata->gpio_wp, "mmc_wp");
493 if (ret)
494 goto err_free_cd;
495 ret = gpio_direction_input(pdata->gpio_wp);
496 if (ret)
497 goto err_free_wp;
498 } else {
499 pdata->gpio_wp = -EINVAL;
500 }
501
502 return 0;
503
504 err_free_wp:
505 gpio_free(pdata->gpio_wp);
506 err_free_cd:
507 if (gpio_is_valid(pdata->switch_pin))
508 err_free_sp:
509 gpio_free(pdata->switch_pin);
510 return ret;
511 }
512
513 static void omap_hsmmc_gpio_free(struct omap_hsmmc_host *host,
514 struct omap_hsmmc_platform_data *pdata)
515 {
516 if (gpio_is_valid(pdata->gpio_wp))
517 gpio_free(pdata->gpio_wp);
518 if (gpio_is_valid(pdata->switch_pin))
519 gpio_free(pdata->switch_pin);
520 }
521
522 /*
523 * Start clock to the card
524 */
525 static void omap_hsmmc_start_clock(struct omap_hsmmc_host *host)
526 {
527 OMAP_HSMMC_WRITE(host->base, SYSCTL,
528 OMAP_HSMMC_READ(host->base, SYSCTL) | CEN);
529 }
530
531 /*
532 * Stop clock to the card
533 */
534 static void omap_hsmmc_stop_clock(struct omap_hsmmc_host *host)
535 {
536 OMAP_HSMMC_WRITE(host->base, SYSCTL,
537 OMAP_HSMMC_READ(host->base, SYSCTL) & ~CEN);
538 if ((OMAP_HSMMC_READ(host->base, SYSCTL) & CEN) != 0x0)
539 dev_dbg(mmc_dev(host->mmc), "MMC Clock is not stopped\n");
540 }
541
542 static void omap_hsmmc_enable_irq(struct omap_hsmmc_host *host,
543 struct mmc_command *cmd)
544 {
545 u32 irq_mask = INT_EN_MASK;
546 unsigned long flags;
547
548 if (host->use_dma)
549 irq_mask &= ~(BRR_EN | BWR_EN);
550
551 /* Disable timeout for erases */
552 if (cmd->opcode == MMC_ERASE)
553 irq_mask &= ~DTO_EN;
554
555 spin_lock_irqsave(&host->irq_lock, flags);
556 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
557 OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
558
559 /* latch pending CIRQ, but don't signal MMC core */
560 if (host->flags & HSMMC_SDIO_IRQ_ENABLED)
561 irq_mask |= CIRQ_EN;
562 OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
563 spin_unlock_irqrestore(&host->irq_lock, flags);
564 }
565
566 static void omap_hsmmc_disable_irq(struct omap_hsmmc_host *host)
567 {
568 u32 irq_mask = 0;
569 unsigned long flags;
570
571 spin_lock_irqsave(&host->irq_lock, flags);
572 /* no transfer running but need to keep cirq if enabled */
573 if (host->flags & HSMMC_SDIO_IRQ_ENABLED)
574 irq_mask |= CIRQ_EN;
575 OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
576 OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
577 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
578 spin_unlock_irqrestore(&host->irq_lock, flags);
579 }
580
581 /* Calculate divisor for the given clock frequency */
582 static u16 calc_divisor(struct omap_hsmmc_host *host, struct mmc_ios *ios)
583 {
584 u16 dsor = 0;
585
586 if (ios->clock) {
587 dsor = DIV_ROUND_UP(clk_get_rate(host->fclk), ios->clock);
588 if (dsor > CLKD_MAX)
589 dsor = CLKD_MAX;
590 }
591
592 return dsor;
593 }
594
595 static void omap_hsmmc_set_clock(struct omap_hsmmc_host *host)
596 {
597 struct mmc_ios *ios = &host->mmc->ios;
598 unsigned long regval;
599 unsigned long timeout;
600 unsigned long clkdiv;
601
602 dev_vdbg(mmc_dev(host->mmc), "Set clock to %uHz\n", ios->clock);
603
604 omap_hsmmc_stop_clock(host);
605
606 regval = OMAP_HSMMC_READ(host->base, SYSCTL);
607 regval = regval & ~(CLKD_MASK | DTO_MASK);
608 clkdiv = calc_divisor(host, ios);
609 regval = regval | (clkdiv << 6) | (DTO << 16);
610 OMAP_HSMMC_WRITE(host->base, SYSCTL, regval);
611 OMAP_HSMMC_WRITE(host->base, SYSCTL,
612 OMAP_HSMMC_READ(host->base, SYSCTL) | ICE);
613
614 /* Wait till the ICS bit is set */
615 timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
616 while ((OMAP_HSMMC_READ(host->base, SYSCTL) & ICS) != ICS
617 && time_before(jiffies, timeout))
618 cpu_relax();
619
620 /*
621 * Enable High-Speed Support
622 * Pre-Requisites
623 * - Controller should support High-Speed-Enable Bit
624 * - Controller should not be using DDR Mode
625 * - Controller should advertise that it supports High Speed
626 * in capabilities register
627 * - MMC/SD clock coming out of controller > 25MHz
628 */
629 if ((mmc_pdata(host)->features & HSMMC_HAS_HSPE_SUPPORT) &&
630 (ios->timing != MMC_TIMING_MMC_DDR52) &&
631 (ios->timing != MMC_TIMING_UHS_DDR50) &&
632 ((OMAP_HSMMC_READ(host->base, CAPA) & HSS) == HSS)) {
633 regval = OMAP_HSMMC_READ(host->base, HCTL);
634 if (clkdiv && (clk_get_rate(host->fclk)/clkdiv) > 25000000)
635 regval |= HSPE;
636 else
637 regval &= ~HSPE;
638
639 OMAP_HSMMC_WRITE(host->base, HCTL, regval);
640 }
641
642 omap_hsmmc_start_clock(host);
643 }
644
645 static void omap_hsmmc_set_bus_width(struct omap_hsmmc_host *host)
646 {
647 struct mmc_ios *ios = &host->mmc->ios;
648 u32 con;
649
650 con = OMAP_HSMMC_READ(host->base, CON);
651 if (ios->timing == MMC_TIMING_MMC_DDR52 ||
652 ios->timing == MMC_TIMING_UHS_DDR50)
653 con |= DDR; /* configure in DDR mode */
654 else
655 con &= ~DDR;
656 switch (ios->bus_width) {
657 case MMC_BUS_WIDTH_8:
658 OMAP_HSMMC_WRITE(host->base, CON, con | DW8);
659 break;
660 case MMC_BUS_WIDTH_4:
661 OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
662 OMAP_HSMMC_WRITE(host->base, HCTL,
663 OMAP_HSMMC_READ(host->base, HCTL) | FOUR_BIT);
664 break;
665 case MMC_BUS_WIDTH_1:
666 OMAP_HSMMC_WRITE(host->base, CON, con & ~DW8);
667 OMAP_HSMMC_WRITE(host->base, HCTL,
668 OMAP_HSMMC_READ(host->base, HCTL) & ~FOUR_BIT);
669 break;
670 }
671 }
672
673 static void omap_hsmmc_set_bus_mode(struct omap_hsmmc_host *host)
674 {
675 struct mmc_ios *ios = &host->mmc->ios;
676 u32 con;
677
678 con = OMAP_HSMMC_READ(host->base, CON);
679 if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN)
680 OMAP_HSMMC_WRITE(host->base, CON, con | OD);
681 else
682 OMAP_HSMMC_WRITE(host->base, CON, con & ~OD);
683 }
684
685 #ifdef CONFIG_PM
686
687 /*
688 * Restore the MMC host context, if it was lost as result of a
689 * power state change.
690 */
691 static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
692 {
693 struct mmc_ios *ios = &host->mmc->ios;
694 u32 hctl, capa;
695 unsigned long timeout;
696
697 if (host->con == OMAP_HSMMC_READ(host->base, CON) &&
698 host->hctl == OMAP_HSMMC_READ(host->base, HCTL) &&
699 host->sysctl == OMAP_HSMMC_READ(host->base, SYSCTL) &&
700 host->capa == OMAP_HSMMC_READ(host->base, CAPA))
701 return 0;
702
703 host->context_loss++;
704
705 if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
706 if (host->power_mode != MMC_POWER_OFF &&
707 (1 << ios->vdd) <= MMC_VDD_23_24)
708 hctl = SDVS18;
709 else
710 hctl = SDVS30;
711 capa = VS30 | VS18;
712 } else {
713 hctl = SDVS18;
714 capa = VS18;
715 }
716
717 if (host->mmc->caps & MMC_CAP_SDIO_IRQ)
718 hctl |= IWE;
719
720 OMAP_HSMMC_WRITE(host->base, HCTL,
721 OMAP_HSMMC_READ(host->base, HCTL) | hctl);
722
723 OMAP_HSMMC_WRITE(host->base, CAPA,
724 OMAP_HSMMC_READ(host->base, CAPA) | capa);
725
726 OMAP_HSMMC_WRITE(host->base, HCTL,
727 OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
728
729 timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
730 while ((OMAP_HSMMC_READ(host->base, HCTL) & SDBP) != SDBP
731 && time_before(jiffies, timeout))
732 ;
733
734 OMAP_HSMMC_WRITE(host->base, ISE, 0);
735 OMAP_HSMMC_WRITE(host->base, IE, 0);
736 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
737
738 /* Do not initialize card-specific things if the power is off */
739 if (host->power_mode == MMC_POWER_OFF)
740 goto out;
741
742 omap_hsmmc_set_bus_width(host);
743
744 omap_hsmmc_set_clock(host);
745
746 omap_hsmmc_set_bus_mode(host);
747
748 out:
749 dev_dbg(mmc_dev(host->mmc), "context is restored: restore count %d\n",
750 host->context_loss);
751 return 0;
752 }
753
754 /*
755 * Save the MMC host context (store the number of power state changes so far).
756 */
757 static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
758 {
759 host->con = OMAP_HSMMC_READ(host->base, CON);
760 host->hctl = OMAP_HSMMC_READ(host->base, HCTL);
761 host->sysctl = OMAP_HSMMC_READ(host->base, SYSCTL);
762 host->capa = OMAP_HSMMC_READ(host->base, CAPA);
763 }
764
765 #else
766
767 static int omap_hsmmc_context_restore(struct omap_hsmmc_host *host)
768 {
769 return 0;
770 }
771
772 static void omap_hsmmc_context_save(struct omap_hsmmc_host *host)
773 {
774 }
775
776 #endif
777
778 /*
779 * Send init stream sequence to card
780 * before sending IDLE command
781 */
782 static void send_init_stream(struct omap_hsmmc_host *host)
783 {
784 int reg = 0;
785 unsigned long timeout;
786
787 if (host->protect_card)
788 return;
789
790 disable_irq(host->irq);
791
792 OMAP_HSMMC_WRITE(host->base, IE, INT_EN_MASK);
793 OMAP_HSMMC_WRITE(host->base, CON,
794 OMAP_HSMMC_READ(host->base, CON) | INIT_STREAM);
795 OMAP_HSMMC_WRITE(host->base, CMD, INIT_STREAM_CMD);
796
797 timeout = jiffies + msecs_to_jiffies(MMC_TIMEOUT_MS);
798 while ((reg != CC_EN) && time_before(jiffies, timeout))
799 reg = OMAP_HSMMC_READ(host->base, STAT) & CC_EN;
800
801 OMAP_HSMMC_WRITE(host->base, CON,
802 OMAP_HSMMC_READ(host->base, CON) & ~INIT_STREAM);
803
804 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
805 OMAP_HSMMC_READ(host->base, STAT);
806
807 enable_irq(host->irq);
808 }
809
810 static inline
811 int omap_hsmmc_cover_is_closed(struct omap_hsmmc_host *host)
812 {
813 int r = 1;
814
815 if (host->get_cover_state)
816 r = host->get_cover_state(host->dev);
817 return r;
818 }
819
820 static ssize_t
821 omap_hsmmc_show_cover_switch(struct device *dev, struct device_attribute *attr,
822 char *buf)
823 {
824 struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
825 struct omap_hsmmc_host *host = mmc_priv(mmc);
826
827 return sprintf(buf, "%s\n",
828 omap_hsmmc_cover_is_closed(host) ? "closed" : "open");
829 }
830
831 static DEVICE_ATTR(cover_switch, S_IRUGO, omap_hsmmc_show_cover_switch, NULL);
832
833 static ssize_t
834 omap_hsmmc_show_slot_name(struct device *dev, struct device_attribute *attr,
835 char *buf)
836 {
837 struct mmc_host *mmc = container_of(dev, struct mmc_host, class_dev);
838 struct omap_hsmmc_host *host = mmc_priv(mmc);
839
840 return sprintf(buf, "%s\n", mmc_pdata(host)->name);
841 }
842
843 static DEVICE_ATTR(slot_name, S_IRUGO, omap_hsmmc_show_slot_name, NULL);
844
845 /*
846 * Configure the response type and send the cmd.
847 */
848 static void
849 omap_hsmmc_start_command(struct omap_hsmmc_host *host, struct mmc_command *cmd,
850 struct mmc_data *data)
851 {
852 int cmdreg = 0, resptype = 0, cmdtype = 0;
853
854 dev_vdbg(mmc_dev(host->mmc), "%s: CMD%d, argument 0x%08x\n",
855 mmc_hostname(host->mmc), cmd->opcode, cmd->arg);
856 host->cmd = cmd;
857
858 omap_hsmmc_enable_irq(host, cmd);
859
860 host->response_busy = 0;
861 if (cmd->flags & MMC_RSP_PRESENT) {
862 if (cmd->flags & MMC_RSP_136)
863 resptype = 1;
864 else if (cmd->flags & MMC_RSP_BUSY) {
865 resptype = 3;
866 host->response_busy = 1;
867 } else
868 resptype = 2;
869 }
870
871 /*
872 * Unlike OMAP1 controller, the cmdtype does not seem to be based on
873 * ac, bc, adtc, bcr. Only commands ending an open ended transfer need
874 * a val of 0x3, rest 0x0.
875 */
876 if (cmd == host->mrq->stop)
877 cmdtype = 0x3;
878
879 cmdreg = (cmd->opcode << 24) | (resptype << 16) | (cmdtype << 22);
880
881 if ((host->flags & AUTO_CMD23) && mmc_op_multi(cmd->opcode) &&
882 host->mrq->sbc) {
883 cmdreg |= ACEN_ACMD23;
884 OMAP_HSMMC_WRITE(host->base, SDMASA, host->mrq->sbc->arg);
885 }
886 if (data) {
887 cmdreg |= DP_SELECT | MSBS | BCE;
888 if (data->flags & MMC_DATA_READ)
889 cmdreg |= DDIR;
890 else
891 cmdreg &= ~(DDIR);
892 }
893
894 if (host->use_dma)
895 cmdreg |= DMAE;
896
897 host->req_in_progress = 1;
898
899 OMAP_HSMMC_WRITE(host->base, ARG, cmd->arg);
900 OMAP_HSMMC_WRITE(host->base, CMD, cmdreg);
901 }
902
903 static int
904 omap_hsmmc_get_dma_dir(struct omap_hsmmc_host *host, struct mmc_data *data)
905 {
906 if (data->flags & MMC_DATA_WRITE)
907 return DMA_TO_DEVICE;
908 else
909 return DMA_FROM_DEVICE;
910 }
911
912 static struct dma_chan *omap_hsmmc_get_dma_chan(struct omap_hsmmc_host *host,
913 struct mmc_data *data)
914 {
915 return data->flags & MMC_DATA_WRITE ? host->tx_chan : host->rx_chan;
916 }
917
918 static void omap_hsmmc_request_done(struct omap_hsmmc_host *host, struct mmc_request *mrq)
919 {
920 int dma_ch;
921 unsigned long flags;
922
923 spin_lock_irqsave(&host->irq_lock, flags);
924 host->req_in_progress = 0;
925 dma_ch = host->dma_ch;
926 spin_unlock_irqrestore(&host->irq_lock, flags);
927
928 omap_hsmmc_disable_irq(host);
929 /* Do not complete the request if DMA is still in progress */
930 if (mrq->data && host->use_dma && dma_ch != -1)
931 return;
932 host->mrq = NULL;
933 mmc_request_done(host->mmc, mrq);
934 }
935
936 /*
937 * Notify the transfer complete to MMC core
938 */
939 static void
940 omap_hsmmc_xfer_done(struct omap_hsmmc_host *host, struct mmc_data *data)
941 {
942 if (!data) {
943 struct mmc_request *mrq = host->mrq;
944
945 /* TC before CC from CMD6 - don't know why, but it happens */
946 if (host->cmd && host->cmd->opcode == 6 &&
947 host->response_busy) {
948 host->response_busy = 0;
949 return;
950 }
951
952 omap_hsmmc_request_done(host, mrq);
953 return;
954 }
955
956 host->data = NULL;
957
958 if (!data->error)
959 data->bytes_xfered += data->blocks * (data->blksz);
960 else
961 data->bytes_xfered = 0;
962
963 if (data->stop && (data->error || !host->mrq->sbc))
964 omap_hsmmc_start_command(host, data->stop, NULL);
965 else
966 omap_hsmmc_request_done(host, data->mrq);
967 }
968
969 /*
970 * Notify the core about command completion
971 */
972 static void
973 omap_hsmmc_cmd_done(struct omap_hsmmc_host *host, struct mmc_command *cmd)
974 {
975 if (host->mrq->sbc && (host->cmd == host->mrq->sbc) &&
976 !host->mrq->sbc->error && !(host->flags & AUTO_CMD23)) {
977 host->cmd = NULL;
978 omap_hsmmc_start_dma_transfer(host);
979 omap_hsmmc_start_command(host, host->mrq->cmd,
980 host->mrq->data);
981 return;
982 }
983
984 host->cmd = NULL;
985
986 if (cmd->flags & MMC_RSP_PRESENT) {
987 if (cmd->flags & MMC_RSP_136) {
988 /* response type 2 */
989 cmd->resp[3] = OMAP_HSMMC_READ(host->base, RSP10);
990 cmd->resp[2] = OMAP_HSMMC_READ(host->base, RSP32);
991 cmd->resp[1] = OMAP_HSMMC_READ(host->base, RSP54);
992 cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP76);
993 } else {
994 /* response types 1, 1b, 3, 4, 5, 6 */
995 cmd->resp[0] = OMAP_HSMMC_READ(host->base, RSP10);
996 }
997 }
998 if ((host->data == NULL && !host->response_busy) || cmd->error)
999 omap_hsmmc_request_done(host, host->mrq);
1000 }
1001
1002 /*
1003 * DMA clean up for command errors
1004 */
1005 static void omap_hsmmc_dma_cleanup(struct omap_hsmmc_host *host, int errno)
1006 {
1007 int dma_ch;
1008 unsigned long flags;
1009
1010 host->data->error = errno;
1011
1012 spin_lock_irqsave(&host->irq_lock, flags);
1013 dma_ch = host->dma_ch;
1014 host->dma_ch = -1;
1015 spin_unlock_irqrestore(&host->irq_lock, flags);
1016
1017 if (host->use_dma && dma_ch != -1) {
1018 struct dma_chan *chan = omap_hsmmc_get_dma_chan(host, host->data);
1019
1020 dmaengine_terminate_all(chan);
1021 dma_unmap_sg(chan->device->dev,
1022 host->data->sg, host->data->sg_len,
1023 omap_hsmmc_get_dma_dir(host, host->data));
1024
1025 host->data->host_cookie = 0;
1026 }
1027 host->data = NULL;
1028 }
1029
1030 /*
1031 * Readable error output
1032 */
1033 #ifdef CONFIG_MMC_DEBUG
1034 static void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host, u32 status)
1035 {
1036 /* --- means reserved bit without definition at documentation */
1037 static const char *omap_hsmmc_status_bits[] = {
1038 "CC" , "TC" , "BGE", "---", "BWR" , "BRR" , "---" , "---" ,
1039 "CIRQ", "OBI" , "---", "---", "---" , "---" , "---" , "ERRI",
1040 "CTO" , "CCRC", "CEB", "CIE", "DTO" , "DCRC", "DEB" , "---" ,
1041 "ACE" , "---" , "---", "---", "CERR", "BADA", "---" , "---"
1042 };
1043 char res[256];
1044 char *buf = res;
1045 int len, i;
1046
1047 len = sprintf(buf, "MMC IRQ 0x%x :", status);
1048 buf += len;
1049
1050 for (i = 0; i < ARRAY_SIZE(omap_hsmmc_status_bits); i++)
1051 if (status & (1 << i)) {
1052 len = sprintf(buf, " %s", omap_hsmmc_status_bits[i]);
1053 buf += len;
1054 }
1055
1056 dev_vdbg(mmc_dev(host->mmc), "%s\n", res);
1057 }
1058 #else
1059 static inline void omap_hsmmc_dbg_report_irq(struct omap_hsmmc_host *host,
1060 u32 status)
1061 {
1062 }
1063 #endif /* CONFIG_MMC_DEBUG */
1064
1065 /*
1066 * MMC controller internal state machines reset
1067 *
1068 * Used to reset command or data internal state machines, using respectively
1069 * SRC or SRD bit of SYSCTL register
1070 * Can be called from interrupt context
1071 */
1072 static inline void omap_hsmmc_reset_controller_fsm(struct omap_hsmmc_host *host,
1073 unsigned long bit)
1074 {
1075 unsigned long i = 0;
1076 unsigned long limit = MMC_TIMEOUT_US;
1077
1078 OMAP_HSMMC_WRITE(host->base, SYSCTL,
1079 OMAP_HSMMC_READ(host->base, SYSCTL) | bit);
1080
1081 /*
1082 * OMAP4 ES2 and greater has an updated reset logic.
1083 * Monitor a 0->1 transition first
1084 */
1085 if (mmc_pdata(host)->features & HSMMC_HAS_UPDATED_RESET) {
1086 while ((!(OMAP_HSMMC_READ(host->base, SYSCTL) & bit))
1087 && (i++ < limit))
1088 udelay(1);
1089 }
1090 i = 0;
1091
1092 while ((OMAP_HSMMC_READ(host->base, SYSCTL) & bit) &&
1093 (i++ < limit))
1094 udelay(1);
1095
1096 if (OMAP_HSMMC_READ(host->base, SYSCTL) & bit)
1097 dev_err(mmc_dev(host->mmc),
1098 "Timeout waiting on controller reset in %s\n",
1099 __func__);
1100 }
1101
1102 static void hsmmc_command_incomplete(struct omap_hsmmc_host *host,
1103 int err, int end_cmd)
1104 {
1105 if (end_cmd) {
1106 omap_hsmmc_reset_controller_fsm(host, SRC);
1107 if (host->cmd)
1108 host->cmd->error = err;
1109 }
1110
1111 if (host->data) {
1112 omap_hsmmc_reset_controller_fsm(host, SRD);
1113 omap_hsmmc_dma_cleanup(host, err);
1114 } else if (host->mrq && host->mrq->cmd)
1115 host->mrq->cmd->error = err;
1116 }
1117
1118 static void omap_hsmmc_do_irq(struct omap_hsmmc_host *host, int status)
1119 {
1120 struct mmc_data *data;
1121 int end_cmd = 0, end_trans = 0;
1122 int error = 0;
1123
1124 data = host->data;
1125 dev_vdbg(mmc_dev(host->mmc), "IRQ Status is %x\n", status);
1126
1127 if (status & ERR_EN) {
1128 omap_hsmmc_dbg_report_irq(host, status);
1129
1130 if (status & (CTO_EN | CCRC_EN))
1131 end_cmd = 1;
1132 if (status & (CTO_EN | DTO_EN))
1133 hsmmc_command_incomplete(host, -ETIMEDOUT, end_cmd);
1134 else if (status & (CCRC_EN | DCRC_EN))
1135 hsmmc_command_incomplete(host, -EILSEQ, end_cmd);
1136
1137 if (status & ACE_EN) {
1138 u32 ac12;
1139 ac12 = OMAP_HSMMC_READ(host->base, AC12);
1140 if (!(ac12 & ACNE) && host->mrq->sbc) {
1141 end_cmd = 1;
1142 if (ac12 & ACTO)
1143 error = -ETIMEDOUT;
1144 else if (ac12 & (ACCE | ACEB | ACIE))
1145 error = -EILSEQ;
1146 host->mrq->sbc->error = error;
1147 hsmmc_command_incomplete(host, error, end_cmd);
1148 }
1149 dev_dbg(mmc_dev(host->mmc), "AC12 err: 0x%x\n", ac12);
1150 }
1151 if (host->data || host->response_busy) {
1152 end_trans = !end_cmd;
1153 host->response_busy = 0;
1154 }
1155 }
1156
1157 OMAP_HSMMC_WRITE(host->base, STAT, status);
1158 if (end_cmd || ((status & CC_EN) && host->cmd))
1159 omap_hsmmc_cmd_done(host, host->cmd);
1160 if ((end_trans || (status & TC_EN)) && host->mrq)
1161 omap_hsmmc_xfer_done(host, data);
1162 }
1163
1164 /*
1165 * MMC controller IRQ handler
1166 */
1167 static irqreturn_t omap_hsmmc_irq(int irq, void *dev_id)
1168 {
1169 struct omap_hsmmc_host *host = dev_id;
1170 int status;
1171
1172 status = OMAP_HSMMC_READ(host->base, STAT);
1173 while (status & (INT_EN_MASK | CIRQ_EN)) {
1174 if (host->req_in_progress)
1175 omap_hsmmc_do_irq(host, status);
1176
1177 if (status & CIRQ_EN)
1178 mmc_signal_sdio_irq(host->mmc);
1179
1180 /* Flush posted write */
1181 status = OMAP_HSMMC_READ(host->base, STAT);
1182 }
1183
1184 return IRQ_HANDLED;
1185 }
1186
1187 static irqreturn_t omap_hsmmc_wake_irq(int irq, void *dev_id)
1188 {
1189 struct omap_hsmmc_host *host = dev_id;
1190
1191 /* cirq is level triggered, disable to avoid infinite loop */
1192 spin_lock(&host->irq_lock);
1193 if (host->flags & HSMMC_WAKE_IRQ_ENABLED) {
1194 disable_irq_nosync(host->wake_irq);
1195 host->flags &= ~HSMMC_WAKE_IRQ_ENABLED;
1196 }
1197 spin_unlock(&host->irq_lock);
1198 pm_request_resume(host->dev); /* no use counter */
1199
1200 return IRQ_HANDLED;
1201 }
1202
1203 static void set_sd_bus_power(struct omap_hsmmc_host *host)
1204 {
1205 unsigned long i;
1206
1207 OMAP_HSMMC_WRITE(host->base, HCTL,
1208 OMAP_HSMMC_READ(host->base, HCTL) | SDBP);
1209 for (i = 0; i < loops_per_jiffy; i++) {
1210 if (OMAP_HSMMC_READ(host->base, HCTL) & SDBP)
1211 break;
1212 cpu_relax();
1213 }
1214 }
1215
1216 /*
1217 * Switch MMC interface voltage ... only relevant for MMC1.
1218 *
1219 * MMC2 and MMC3 use fixed 1.8V levels, and maybe a transceiver.
1220 * The MMC2 transceiver controls are used instead of DAT4..DAT7.
1221 * Some chips, like eMMC ones, use internal transceivers.
1222 */
1223 static int omap_hsmmc_switch_opcond(struct omap_hsmmc_host *host, int vdd)
1224 {
1225 u32 reg_val = 0;
1226 int ret;
1227
1228 /* Disable the clocks */
1229 pm_runtime_put_sync(host->dev);
1230 if (host->dbclk)
1231 clk_disable_unprepare(host->dbclk);
1232
1233 /* Turn the power off */
1234 ret = mmc_pdata(host)->set_power(host->dev, 0, 0);
1235
1236 /* Turn the power ON with given VDD 1.8 or 3.0v */
1237 if (!ret)
1238 ret = mmc_pdata(host)->set_power(host->dev, 1, vdd);
1239 pm_runtime_get_sync(host->dev);
1240 if (host->dbclk)
1241 clk_prepare_enable(host->dbclk);
1242
1243 if (ret != 0)
1244 goto err;
1245
1246 OMAP_HSMMC_WRITE(host->base, HCTL,
1247 OMAP_HSMMC_READ(host->base, HCTL) & SDVSCLR);
1248 reg_val = OMAP_HSMMC_READ(host->base, HCTL);
1249
1250 /*
1251 * If a MMC dual voltage card is detected, the set_ios fn calls
1252 * this fn with VDD bit set for 1.8V. Upon card removal from the
1253 * slot, omap_hsmmc_set_ios sets the VDD back to 3V on MMC_POWER_OFF.
1254 *
1255 * Cope with a bit of slop in the range ... per data sheets:
1256 * - "1.8V" for vdds_mmc1/vdds_mmc1a can be up to 2.45V max,
1257 * but recommended values are 1.71V to 1.89V
1258 * - "3.0V" for vdds_mmc1/vdds_mmc1a can be up to 3.5V max,
1259 * but recommended values are 2.7V to 3.3V
1260 *
1261 * Board setup code shouldn't permit anything very out-of-range.
1262 * TWL4030-family VMMC1 and VSIM regulators are fine (avoiding the
1263 * middle range) but VSIM can't power DAT4..DAT7 at more than 3V.
1264 */
1265 if ((1 << vdd) <= MMC_VDD_23_24)
1266 reg_val |= SDVS18;
1267 else
1268 reg_val |= SDVS30;
1269
1270 OMAP_HSMMC_WRITE(host->base, HCTL, reg_val);
1271 set_sd_bus_power(host);
1272
1273 return 0;
1274 err:
1275 dev_err(mmc_dev(host->mmc), "Unable to switch operating voltage\n");
1276 return ret;
1277 }
1278
1279 /* Protect the card while the cover is open */
1280 static void omap_hsmmc_protect_card(struct omap_hsmmc_host *host)
1281 {
1282 if (!host->get_cover_state)
1283 return;
1284
1285 host->reqs_blocked = 0;
1286 if (host->get_cover_state(host->dev)) {
1287 if (host->protect_card) {
1288 dev_info(host->dev, "%s: cover is closed, "
1289 "card is now accessible\n",
1290 mmc_hostname(host->mmc));
1291 host->protect_card = 0;
1292 }
1293 } else {
1294 if (!host->protect_card) {
1295 dev_info(host->dev, "%s: cover is open, "
1296 "card is now inaccessible\n",
1297 mmc_hostname(host->mmc));
1298 host->protect_card = 1;
1299 }
1300 }
1301 }
1302
1303 /*
1304 * irq handler to notify the core about card insertion/removal
1305 */
1306 static irqreturn_t omap_hsmmc_detect(int irq, void *dev_id)
1307 {
1308 struct omap_hsmmc_host *host = dev_id;
1309 int carddetect;
1310
1311 sysfs_notify(&host->mmc->class_dev.kobj, NULL, "cover_switch");
1312
1313 if (host->card_detect)
1314 carddetect = host->card_detect(host->dev);
1315 else {
1316 omap_hsmmc_protect_card(host);
1317 carddetect = -ENOSYS;
1318 }
1319
1320 if (carddetect)
1321 mmc_detect_change(host->mmc, (HZ * 200) / 1000);
1322 else
1323 mmc_detect_change(host->mmc, (HZ * 50) / 1000);
1324 return IRQ_HANDLED;
1325 }
1326
1327 static void omap_hsmmc_dma_callback(void *param)
1328 {
1329 struct omap_hsmmc_host *host = param;
1330 struct dma_chan *chan;
1331 struct mmc_data *data;
1332 int req_in_progress;
1333
1334 spin_lock_irq(&host->irq_lock);
1335 if (host->dma_ch < 0) {
1336 spin_unlock_irq(&host->irq_lock);
1337 return;
1338 }
1339
1340 data = host->mrq->data;
1341 chan = omap_hsmmc_get_dma_chan(host, data);
1342 if (!data->host_cookie)
1343 dma_unmap_sg(chan->device->dev,
1344 data->sg, data->sg_len,
1345 omap_hsmmc_get_dma_dir(host, data));
1346
1347 req_in_progress = host->req_in_progress;
1348 host->dma_ch = -1;
1349 spin_unlock_irq(&host->irq_lock);
1350
1351 /* If DMA has finished after TC, complete the request */
1352 if (!req_in_progress) {
1353 struct mmc_request *mrq = host->mrq;
1354
1355 host->mrq = NULL;
1356 mmc_request_done(host->mmc, mrq);
1357 }
1358 }
1359
1360 static int omap_hsmmc_pre_dma_transfer(struct omap_hsmmc_host *host,
1361 struct mmc_data *data,
1362 struct omap_hsmmc_next *next,
1363 struct dma_chan *chan)
1364 {
1365 int dma_len;
1366
1367 if (!next && data->host_cookie &&
1368 data->host_cookie != host->next_data.cookie) {
1369 dev_warn(host->dev, "[%s] invalid cookie: data->host_cookie %d"
1370 " host->next_data.cookie %d\n",
1371 __func__, data->host_cookie, host->next_data.cookie);
1372 data->host_cookie = 0;
1373 }
1374
1375 /* Check if next job is already prepared */
1376 if (next || data->host_cookie != host->next_data.cookie) {
1377 dma_len = dma_map_sg(chan->device->dev, data->sg, data->sg_len,
1378 omap_hsmmc_get_dma_dir(host, data));
1379
1380 } else {
1381 dma_len = host->next_data.dma_len;
1382 host->next_data.dma_len = 0;
1383 }
1384
1385
1386 if (dma_len == 0)
1387 return -EINVAL;
1388
1389 if (next) {
1390 next->dma_len = dma_len;
1391 data->host_cookie = ++next->cookie < 0 ? 1 : next->cookie;
1392 } else
1393 host->dma_len = dma_len;
1394
1395 return 0;
1396 }
1397
1398 /*
1399 * Routine to configure and start DMA for the MMC card
1400 */
1401 static int omap_hsmmc_setup_dma_transfer(struct omap_hsmmc_host *host,
1402 struct mmc_request *req)
1403 {
1404 struct dma_slave_config cfg;
1405 struct dma_async_tx_descriptor *tx;
1406 int ret = 0, i;
1407 struct mmc_data *data = req->data;
1408 struct dma_chan *chan;
1409
1410 /* Sanity check: all the SG entries must be aligned by block size. */
1411 for (i = 0; i < data->sg_len; i++) {
1412 struct scatterlist *sgl;
1413
1414 sgl = data->sg + i;
1415 if (sgl->length % data->blksz)
1416 return -EINVAL;
1417 }
1418 if ((data->blksz % 4) != 0)
1419 /* REVISIT: The MMC buffer increments only when MSB is written.
1420 * Return error for blksz which is non multiple of four.
1421 */
1422 return -EINVAL;
1423
1424 BUG_ON(host->dma_ch != -1);
1425
1426 chan = omap_hsmmc_get_dma_chan(host, data);
1427
1428 cfg.src_addr = host->mapbase + OMAP_HSMMC_DATA;
1429 cfg.dst_addr = host->mapbase + OMAP_HSMMC_DATA;
1430 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1431 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1432 cfg.src_maxburst = data->blksz / 4;
1433 cfg.dst_maxburst = data->blksz / 4;
1434
1435 ret = dmaengine_slave_config(chan, &cfg);
1436 if (ret)
1437 return ret;
1438
1439 ret = omap_hsmmc_pre_dma_transfer(host, data, NULL, chan);
1440 if (ret)
1441 return ret;
1442
1443 tx = dmaengine_prep_slave_sg(chan, data->sg, data->sg_len,
1444 data->flags & MMC_DATA_WRITE ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
1445 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1446 if (!tx) {
1447 dev_err(mmc_dev(host->mmc), "prep_slave_sg() failed\n");
1448 /* FIXME: cleanup */
1449 return -1;
1450 }
1451
1452 tx->callback = omap_hsmmc_dma_callback;
1453 tx->callback_param = host;
1454
1455 /* Does not fail */
1456 dmaengine_submit(tx);
1457
1458 host->dma_ch = 1;
1459
1460 return 0;
1461 }
1462
1463 static void set_data_timeout(struct omap_hsmmc_host *host,
1464 unsigned int timeout_ns,
1465 unsigned int timeout_clks)
1466 {
1467 unsigned int timeout, cycle_ns;
1468 uint32_t reg, clkd, dto = 0;
1469
1470 reg = OMAP_HSMMC_READ(host->base, SYSCTL);
1471 clkd = (reg & CLKD_MASK) >> CLKD_SHIFT;
1472 if (clkd == 0)
1473 clkd = 1;
1474
1475 cycle_ns = 1000000000 / (host->clk_rate / clkd);
1476 timeout = timeout_ns / cycle_ns;
1477 timeout += timeout_clks;
1478 if (timeout) {
1479 while ((timeout & 0x80000000) == 0) {
1480 dto += 1;
1481 timeout <<= 1;
1482 }
1483 dto = 31 - dto;
1484 timeout <<= 1;
1485 if (timeout && dto)
1486 dto += 1;
1487 if (dto >= 13)
1488 dto -= 13;
1489 else
1490 dto = 0;
1491 if (dto > 14)
1492 dto = 14;
1493 }
1494
1495 reg &= ~DTO_MASK;
1496 reg |= dto << DTO_SHIFT;
1497 OMAP_HSMMC_WRITE(host->base, SYSCTL, reg);
1498 }
1499
1500 static void omap_hsmmc_start_dma_transfer(struct omap_hsmmc_host *host)
1501 {
1502 struct mmc_request *req = host->mrq;
1503 struct dma_chan *chan;
1504
1505 if (!req->data)
1506 return;
1507 OMAP_HSMMC_WRITE(host->base, BLK, (req->data->blksz)
1508 | (req->data->blocks << 16));
1509 set_data_timeout(host, req->data->timeout_ns,
1510 req->data->timeout_clks);
1511 chan = omap_hsmmc_get_dma_chan(host, req->data);
1512 dma_async_issue_pending(chan);
1513 }
1514
1515 /*
1516 * Configure block length for MMC/SD cards and initiate the transfer.
1517 */
1518 static int
1519 omap_hsmmc_prepare_data(struct omap_hsmmc_host *host, struct mmc_request *req)
1520 {
1521 int ret;
1522 host->data = req->data;
1523
1524 if (req->data == NULL) {
1525 OMAP_HSMMC_WRITE(host->base, BLK, 0);
1526 /*
1527 * Set an arbitrary 100ms data timeout for commands with
1528 * busy signal.
1529 */
1530 if (req->cmd->flags & MMC_RSP_BUSY)
1531 set_data_timeout(host, 100000000U, 0);
1532 return 0;
1533 }
1534
1535 if (host->use_dma) {
1536 ret = omap_hsmmc_setup_dma_transfer(host, req);
1537 if (ret != 0) {
1538 dev_err(mmc_dev(host->mmc), "MMC start dma failure\n");
1539 return ret;
1540 }
1541 }
1542 return 0;
1543 }
1544
1545 static void omap_hsmmc_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
1546 int err)
1547 {
1548 struct omap_hsmmc_host *host = mmc_priv(mmc);
1549 struct mmc_data *data = mrq->data;
1550
1551 if (host->use_dma && data->host_cookie) {
1552 struct dma_chan *c = omap_hsmmc_get_dma_chan(host, data);
1553
1554 dma_unmap_sg(c->device->dev, data->sg, data->sg_len,
1555 omap_hsmmc_get_dma_dir(host, data));
1556 data->host_cookie = 0;
1557 }
1558 }
1559
1560 static void omap_hsmmc_pre_req(struct mmc_host *mmc, struct mmc_request *mrq,
1561 bool is_first_req)
1562 {
1563 struct omap_hsmmc_host *host = mmc_priv(mmc);
1564
1565 if (mrq->data->host_cookie) {
1566 mrq->data->host_cookie = 0;
1567 return ;
1568 }
1569
1570 if (host->use_dma) {
1571 struct dma_chan *c = omap_hsmmc_get_dma_chan(host, mrq->data);
1572
1573 if (omap_hsmmc_pre_dma_transfer(host, mrq->data,
1574 &host->next_data, c))
1575 mrq->data->host_cookie = 0;
1576 }
1577 }
1578
1579 /*
1580 * Request function. for read/write operation
1581 */
1582 static void omap_hsmmc_request(struct mmc_host *mmc, struct mmc_request *req)
1583 {
1584 struct omap_hsmmc_host *host = mmc_priv(mmc);
1585 int err;
1586
1587 BUG_ON(host->req_in_progress);
1588 BUG_ON(host->dma_ch != -1);
1589 if (host->protect_card) {
1590 if (host->reqs_blocked < 3) {
1591 /*
1592 * Ensure the controller is left in a consistent
1593 * state by resetting the command and data state
1594 * machines.
1595 */
1596 omap_hsmmc_reset_controller_fsm(host, SRD);
1597 omap_hsmmc_reset_controller_fsm(host, SRC);
1598 host->reqs_blocked += 1;
1599 }
1600 req->cmd->error = -EBADF;
1601 if (req->data)
1602 req->data->error = -EBADF;
1603 req->cmd->retries = 0;
1604 mmc_request_done(mmc, req);
1605 return;
1606 } else if (host->reqs_blocked)
1607 host->reqs_blocked = 0;
1608 WARN_ON(host->mrq != NULL);
1609 host->mrq = req;
1610 host->clk_rate = clk_get_rate(host->fclk);
1611 err = omap_hsmmc_prepare_data(host, req);
1612 if (err) {
1613 req->cmd->error = err;
1614 if (req->data)
1615 req->data->error = err;
1616 host->mrq = NULL;
1617 mmc_request_done(mmc, req);
1618 return;
1619 }
1620 if (req->sbc && !(host->flags & AUTO_CMD23)) {
1621 omap_hsmmc_start_command(host, req->sbc, NULL);
1622 return;
1623 }
1624
1625 omap_hsmmc_start_dma_transfer(host);
1626 omap_hsmmc_start_command(host, req->cmd, req->data);
1627 }
1628
1629 /* Routine to configure clock values. Exposed API to core */
1630 static void omap_hsmmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1631 {
1632 struct omap_hsmmc_host *host = mmc_priv(mmc);
1633 int do_send_init_stream = 0;
1634
1635 pm_runtime_get_sync(host->dev);
1636
1637 if (ios->power_mode != host->power_mode) {
1638 switch (ios->power_mode) {
1639 case MMC_POWER_OFF:
1640 mmc_pdata(host)->set_power(host->dev, 0, 0);
1641 break;
1642 case MMC_POWER_UP:
1643 mmc_pdata(host)->set_power(host->dev, 1, ios->vdd);
1644 break;
1645 case MMC_POWER_ON:
1646 do_send_init_stream = 1;
1647 break;
1648 }
1649 host->power_mode = ios->power_mode;
1650 }
1651
1652 /* FIXME: set registers based only on changes to ios */
1653
1654 omap_hsmmc_set_bus_width(host);
1655
1656 if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1657 /* Only MMC1 can interface at 3V without some flavor
1658 * of external transceiver; but they all handle 1.8V.
1659 */
1660 if ((OMAP_HSMMC_READ(host->base, HCTL) & SDVSDET) &&
1661 (ios->vdd == DUAL_VOLT_OCR_BIT)) {
1662 /*
1663 * The mmc_select_voltage fn of the core does
1664 * not seem to set the power_mode to
1665 * MMC_POWER_UP upon recalculating the voltage.
1666 * vdd 1.8v.
1667 */
1668 if (omap_hsmmc_switch_opcond(host, ios->vdd) != 0)
1669 dev_dbg(mmc_dev(host->mmc),
1670 "Switch operation failed\n");
1671 }
1672 }
1673
1674 omap_hsmmc_set_clock(host);
1675
1676 if (do_send_init_stream)
1677 send_init_stream(host);
1678
1679 omap_hsmmc_set_bus_mode(host);
1680
1681 pm_runtime_put_autosuspend(host->dev);
1682 }
1683
1684 static int omap_hsmmc_get_cd(struct mmc_host *mmc)
1685 {
1686 struct omap_hsmmc_host *host = mmc_priv(mmc);
1687
1688 if (!host->card_detect)
1689 return -ENOSYS;
1690 return host->card_detect(host->dev);
1691 }
1692
1693 static int omap_hsmmc_get_ro(struct mmc_host *mmc)
1694 {
1695 struct omap_hsmmc_host *host = mmc_priv(mmc);
1696
1697 if (!host->get_ro)
1698 return -ENOSYS;
1699 return host->get_ro(host->dev);
1700 }
1701
1702 static void omap_hsmmc_init_card(struct mmc_host *mmc, struct mmc_card *card)
1703 {
1704 struct omap_hsmmc_host *host = mmc_priv(mmc);
1705
1706 if (mmc_pdata(host)->init_card)
1707 mmc_pdata(host)->init_card(card);
1708 }
1709
1710 static void omap_hsmmc_enable_sdio_irq(struct mmc_host *mmc, int enable)
1711 {
1712 struct omap_hsmmc_host *host = mmc_priv(mmc);
1713 u32 irq_mask, con;
1714 unsigned long flags;
1715
1716 spin_lock_irqsave(&host->irq_lock, flags);
1717
1718 con = OMAP_HSMMC_READ(host->base, CON);
1719 irq_mask = OMAP_HSMMC_READ(host->base, ISE);
1720 if (enable) {
1721 host->flags |= HSMMC_SDIO_IRQ_ENABLED;
1722 irq_mask |= CIRQ_EN;
1723 con |= CTPL | CLKEXTFREE;
1724 } else {
1725 host->flags &= ~HSMMC_SDIO_IRQ_ENABLED;
1726 irq_mask &= ~CIRQ_EN;
1727 con &= ~(CTPL | CLKEXTFREE);
1728 }
1729 OMAP_HSMMC_WRITE(host->base, CON, con);
1730 OMAP_HSMMC_WRITE(host->base, IE, irq_mask);
1731
1732 /*
1733 * if enable, piggy back detection on current request
1734 * but always disable immediately
1735 */
1736 if (!host->req_in_progress || !enable)
1737 OMAP_HSMMC_WRITE(host->base, ISE, irq_mask);
1738
1739 /* flush posted write */
1740 OMAP_HSMMC_READ(host->base, IE);
1741
1742 spin_unlock_irqrestore(&host->irq_lock, flags);
1743 }
1744
1745 static int omap_hsmmc_configure_wake_irq(struct omap_hsmmc_host *host)
1746 {
1747 struct mmc_host *mmc = host->mmc;
1748 int ret;
1749
1750 /*
1751 * For omaps with wake-up path, wakeirq will be irq from pinctrl and
1752 * for other omaps, wakeirq will be from GPIO (dat line remuxed to
1753 * gpio). wakeirq is needed to detect sdio irq in runtime suspend state
1754 * with functional clock disabled.
1755 */
1756 if (!host->dev->of_node || !host->wake_irq)
1757 return -ENODEV;
1758
1759 /* Prevent auto-enabling of IRQ */
1760 irq_set_status_flags(host->wake_irq, IRQ_NOAUTOEN);
1761 ret = devm_request_irq(host->dev, host->wake_irq, omap_hsmmc_wake_irq,
1762 IRQF_TRIGGER_LOW | IRQF_ONESHOT,
1763 mmc_hostname(mmc), host);
1764 if (ret) {
1765 dev_err(mmc_dev(host->mmc), "Unable to request wake IRQ\n");
1766 goto err;
1767 }
1768
1769 /*
1770 * Some omaps don't have wake-up path from deeper idle states
1771 * and need to remux SDIO DAT1 to GPIO for wake-up from idle.
1772 */
1773 if (host->pdata->controller_flags & OMAP_HSMMC_SWAKEUP_MISSING) {
1774 struct pinctrl *p = devm_pinctrl_get(host->dev);
1775 if (!p) {
1776 ret = -ENODEV;
1777 goto err_free_irq;
1778 }
1779 if (IS_ERR(pinctrl_lookup_state(p, PINCTRL_STATE_DEFAULT))) {
1780 dev_info(host->dev, "missing default pinctrl state\n");
1781 devm_pinctrl_put(p);
1782 ret = -EINVAL;
1783 goto err_free_irq;
1784 }
1785
1786 if (IS_ERR(pinctrl_lookup_state(p, PINCTRL_STATE_IDLE))) {
1787 dev_info(host->dev, "missing idle pinctrl state\n");
1788 devm_pinctrl_put(p);
1789 ret = -EINVAL;
1790 goto err_free_irq;
1791 }
1792 devm_pinctrl_put(p);
1793 }
1794
1795 OMAP_HSMMC_WRITE(host->base, HCTL,
1796 OMAP_HSMMC_READ(host->base, HCTL) | IWE);
1797 return 0;
1798
1799 err_free_irq:
1800 devm_free_irq(host->dev, host->wake_irq, host);
1801 err:
1802 dev_warn(host->dev, "no SDIO IRQ support, falling back to polling\n");
1803 host->wake_irq = 0;
1804 return ret;
1805 }
1806
1807 static void omap_hsmmc_conf_bus_power(struct omap_hsmmc_host *host)
1808 {
1809 u32 hctl, capa, value;
1810
1811 /* Only MMC1 supports 3.0V */
1812 if (host->pdata->controller_flags & OMAP_HSMMC_SUPPORTS_DUAL_VOLT) {
1813 hctl = SDVS30;
1814 capa = VS30 | VS18;
1815 } else {
1816 hctl = SDVS18;
1817 capa = VS18;
1818 }
1819
1820 value = OMAP_HSMMC_READ(host->base, HCTL) & ~SDVS_MASK;
1821 OMAP_HSMMC_WRITE(host->base, HCTL, value | hctl);
1822
1823 value = OMAP_HSMMC_READ(host->base, CAPA);
1824 OMAP_HSMMC_WRITE(host->base, CAPA, value | capa);
1825
1826 /* Set SD bus power bit */
1827 set_sd_bus_power(host);
1828 }
1829
1830 static int omap_hsmmc_enable_fclk(struct mmc_host *mmc)
1831 {
1832 struct omap_hsmmc_host *host = mmc_priv(mmc);
1833
1834 pm_runtime_get_sync(host->dev);
1835
1836 return 0;
1837 }
1838
1839 static int omap_hsmmc_disable_fclk(struct mmc_host *mmc)
1840 {
1841 struct omap_hsmmc_host *host = mmc_priv(mmc);
1842
1843 pm_runtime_mark_last_busy(host->dev);
1844 pm_runtime_put_autosuspend(host->dev);
1845
1846 return 0;
1847 }
1848
1849 static int omap_hsmmc_multi_io_quirk(struct mmc_card *card,
1850 unsigned int direction, int blk_size)
1851 {
1852 /* This controller can't do multiblock reads due to hw bugs */
1853 if (direction == MMC_DATA_READ)
1854 return 1;
1855
1856 return blk_size;
1857 }
1858
1859 static struct mmc_host_ops omap_hsmmc_ops = {
1860 .enable = omap_hsmmc_enable_fclk,
1861 .disable = omap_hsmmc_disable_fclk,
1862 .post_req = omap_hsmmc_post_req,
1863 .pre_req = omap_hsmmc_pre_req,
1864 .request = omap_hsmmc_request,
1865 .set_ios = omap_hsmmc_set_ios,
1866 .get_cd = omap_hsmmc_get_cd,
1867 .get_ro = omap_hsmmc_get_ro,
1868 .init_card = omap_hsmmc_init_card,
1869 .enable_sdio_irq = omap_hsmmc_enable_sdio_irq,
1870 };
1871
1872 #ifdef CONFIG_DEBUG_FS
1873
1874 static int omap_hsmmc_regs_show(struct seq_file *s, void *data)
1875 {
1876 struct mmc_host *mmc = s->private;
1877 struct omap_hsmmc_host *host = mmc_priv(mmc);
1878
1879 seq_printf(s, "mmc%d:\n", mmc->index);
1880 seq_printf(s, "sdio irq mode\t%s\n",
1881 (mmc->caps & MMC_CAP_SDIO_IRQ) ? "interrupt" : "polling");
1882
1883 if (mmc->caps & MMC_CAP_SDIO_IRQ) {
1884 seq_printf(s, "sdio irq \t%s\n",
1885 (host->flags & HSMMC_SDIO_IRQ_ENABLED) ? "enabled"
1886 : "disabled");
1887 }
1888 seq_printf(s, "ctx_loss:\t%d\n", host->context_loss);
1889
1890 pm_runtime_get_sync(host->dev);
1891 seq_puts(s, "\nregs:\n");
1892 seq_printf(s, "CON:\t\t0x%08x\n",
1893 OMAP_HSMMC_READ(host->base, CON));
1894 seq_printf(s, "PSTATE:\t\t0x%08x\n",
1895 OMAP_HSMMC_READ(host->base, PSTATE));
1896 seq_printf(s, "HCTL:\t\t0x%08x\n",
1897 OMAP_HSMMC_READ(host->base, HCTL));
1898 seq_printf(s, "SYSCTL:\t\t0x%08x\n",
1899 OMAP_HSMMC_READ(host->base, SYSCTL));
1900 seq_printf(s, "IE:\t\t0x%08x\n",
1901 OMAP_HSMMC_READ(host->base, IE));
1902 seq_printf(s, "ISE:\t\t0x%08x\n",
1903 OMAP_HSMMC_READ(host->base, ISE));
1904 seq_printf(s, "CAPA:\t\t0x%08x\n",
1905 OMAP_HSMMC_READ(host->base, CAPA));
1906
1907 pm_runtime_mark_last_busy(host->dev);
1908 pm_runtime_put_autosuspend(host->dev);
1909
1910 return 0;
1911 }
1912
1913 static int omap_hsmmc_regs_open(struct inode *inode, struct file *file)
1914 {
1915 return single_open(file, omap_hsmmc_regs_show, inode->i_private);
1916 }
1917
1918 static const struct file_operations mmc_regs_fops = {
1919 .open = omap_hsmmc_regs_open,
1920 .read = seq_read,
1921 .llseek = seq_lseek,
1922 .release = single_release,
1923 };
1924
1925 static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1926 {
1927 if (mmc->debugfs_root)
1928 debugfs_create_file("regs", S_IRUSR, mmc->debugfs_root,
1929 mmc, &mmc_regs_fops);
1930 }
1931
1932 #else
1933
1934 static void omap_hsmmc_debugfs(struct mmc_host *mmc)
1935 {
1936 }
1937
1938 #endif
1939
1940 #ifdef CONFIG_OF
1941 static const struct omap_mmc_of_data omap3_pre_es3_mmc_of_data = {
1942 /* See 35xx errata 2.1.1.128 in SPRZ278F */
1943 .controller_flags = OMAP_HSMMC_BROKEN_MULTIBLOCK_READ,
1944 };
1945
1946 static const struct omap_mmc_of_data omap4_mmc_of_data = {
1947 .reg_offset = 0x100,
1948 };
1949 static const struct omap_mmc_of_data am33xx_mmc_of_data = {
1950 .reg_offset = 0x100,
1951 .controller_flags = OMAP_HSMMC_SWAKEUP_MISSING,
1952 };
1953
1954 static const struct of_device_id omap_mmc_of_match[] = {
1955 {
1956 .compatible = "ti,omap2-hsmmc",
1957 },
1958 {
1959 .compatible = "ti,omap3-pre-es3-hsmmc",
1960 .data = &omap3_pre_es3_mmc_of_data,
1961 },
1962 {
1963 .compatible = "ti,omap3-hsmmc",
1964 },
1965 {
1966 .compatible = "ti,omap4-hsmmc",
1967 .data = &omap4_mmc_of_data,
1968 },
1969 {
1970 .compatible = "ti,am33xx-hsmmc",
1971 .data = &am33xx_mmc_of_data,
1972 },
1973 {},
1974 };
1975 MODULE_DEVICE_TABLE(of, omap_mmc_of_match);
1976
1977 static struct omap_hsmmc_platform_data *of_get_hsmmc_pdata(struct device *dev)
1978 {
1979 struct omap_hsmmc_platform_data *pdata;
1980 struct device_node *np = dev->of_node;
1981 u32 bus_width, max_freq;
1982 int cd_gpio, wp_gpio;
1983
1984 cd_gpio = of_get_named_gpio(np, "cd-gpios", 0);
1985 wp_gpio = of_get_named_gpio(np, "wp-gpios", 0);
1986 if (cd_gpio == -EPROBE_DEFER || wp_gpio == -EPROBE_DEFER)
1987 return ERR_PTR(-EPROBE_DEFER);
1988
1989 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1990 if (!pdata)
1991 return ERR_PTR(-ENOMEM); /* out of memory */
1992
1993 if (of_find_property(np, "ti,dual-volt", NULL))
1994 pdata->controller_flags |= OMAP_HSMMC_SUPPORTS_DUAL_VOLT;
1995
1996 pdata->switch_pin = cd_gpio;
1997 pdata->gpio_wp = wp_gpio;
1998
1999 if (of_find_property(np, "ti,non-removable", NULL)) {
2000 pdata->nonremovable = true;
2001 pdata->no_regulator_off_init = true;
2002 }
2003 of_property_read_u32(np, "bus-width", &bus_width);
2004 if (bus_width == 4)
2005 pdata->caps |= MMC_CAP_4_BIT_DATA;
2006 else if (bus_width == 8)
2007 pdata->caps |= MMC_CAP_8_BIT_DATA;
2008
2009 if (of_find_property(np, "ti,needs-special-reset", NULL))
2010 pdata->features |= HSMMC_HAS_UPDATED_RESET;
2011
2012 if (!of_property_read_u32(np, "max-frequency", &max_freq))
2013 pdata->max_freq = max_freq;
2014
2015 if (of_find_property(np, "ti,needs-special-hs-handling", NULL))
2016 pdata->features |= HSMMC_HAS_HSPE_SUPPORT;
2017
2018 if (of_find_property(np, "keep-power-in-suspend", NULL))
2019 pdata->pm_caps |= MMC_PM_KEEP_POWER;
2020
2021 if (of_find_property(np, "enable-sdio-wakeup", NULL))
2022 pdata->pm_caps |= MMC_PM_WAKE_SDIO_IRQ;
2023
2024 return pdata;
2025 }
2026 #else
2027 static inline struct omap_hsmmc_platform_data
2028 *of_get_hsmmc_pdata(struct device *dev)
2029 {
2030 return ERR_PTR(-EINVAL);
2031 }
2032 #endif
2033
2034 static int omap_hsmmc_probe(struct platform_device *pdev)
2035 {
2036 struct omap_hsmmc_platform_data *pdata = pdev->dev.platform_data;
2037 struct mmc_host *mmc;
2038 struct omap_hsmmc_host *host = NULL;
2039 struct resource *res;
2040 int ret, irq;
2041 const struct of_device_id *match;
2042 dma_cap_mask_t mask;
2043 unsigned tx_req, rx_req;
2044 const struct omap_mmc_of_data *data;
2045 void __iomem *base;
2046
2047 match = of_match_device(of_match_ptr(omap_mmc_of_match), &pdev->dev);
2048 if (match) {
2049 pdata = of_get_hsmmc_pdata(&pdev->dev);
2050
2051 if (IS_ERR(pdata))
2052 return PTR_ERR(pdata);
2053
2054 if (match->data) {
2055 data = match->data;
2056 pdata->reg_offset = data->reg_offset;
2057 pdata->controller_flags |= data->controller_flags;
2058 }
2059 }
2060
2061 if (pdata == NULL) {
2062 dev_err(&pdev->dev, "Platform Data is missing\n");
2063 return -ENXIO;
2064 }
2065
2066 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2067 irq = platform_get_irq(pdev, 0);
2068 if (res == NULL || irq < 0)
2069 return -ENXIO;
2070
2071 base = devm_ioremap_resource(&pdev->dev, res);
2072 if (IS_ERR(base))
2073 return PTR_ERR(base);
2074
2075 mmc = mmc_alloc_host(sizeof(struct omap_hsmmc_host), &pdev->dev);
2076 if (!mmc) {
2077 ret = -ENOMEM;
2078 goto err;
2079 }
2080
2081 host = mmc_priv(mmc);
2082 host->mmc = mmc;
2083 host->pdata = pdata;
2084 host->dev = &pdev->dev;
2085 host->use_dma = 1;
2086 host->dma_ch = -1;
2087 host->irq = irq;
2088 host->mapbase = res->start + pdata->reg_offset;
2089 host->base = base + pdata->reg_offset;
2090 host->power_mode = MMC_POWER_OFF;
2091 host->next_data.cookie = 1;
2092 host->pbias_enabled = 0;
2093
2094 ret = omap_hsmmc_gpio_init(host, pdata);
2095 if (ret)
2096 goto err_gpio;
2097
2098 platform_set_drvdata(pdev, host);
2099
2100 if (pdev->dev.of_node)
2101 host->wake_irq = irq_of_parse_and_map(pdev->dev.of_node, 1);
2102
2103 mmc->ops = &omap_hsmmc_ops;
2104
2105 mmc->f_min = OMAP_MMC_MIN_CLOCK;
2106
2107 if (pdata->max_freq > 0)
2108 mmc->f_max = pdata->max_freq;
2109 else
2110 mmc->f_max = OMAP_MMC_MAX_CLOCK;
2111
2112 spin_lock_init(&host->irq_lock);
2113
2114 host->fclk = devm_clk_get(&pdev->dev, "fck");
2115 if (IS_ERR(host->fclk)) {
2116 ret = PTR_ERR(host->fclk);
2117 host->fclk = NULL;
2118 goto err1;
2119 }
2120
2121 if (host->pdata->controller_flags & OMAP_HSMMC_BROKEN_MULTIBLOCK_READ) {
2122 dev_info(&pdev->dev, "multiblock reads disabled due to 35xx erratum 2.1.1.128; MMC read performance may suffer\n");
2123 omap_hsmmc_ops.multi_io_quirk = omap_hsmmc_multi_io_quirk;
2124 }
2125
2126 pm_runtime_enable(host->dev);
2127 pm_runtime_get_sync(host->dev);
2128 pm_runtime_set_autosuspend_delay(host->dev, MMC_AUTOSUSPEND_DELAY);
2129 pm_runtime_use_autosuspend(host->dev);
2130
2131 omap_hsmmc_context_save(host);
2132
2133 host->dbclk = devm_clk_get(&pdev->dev, "mmchsdb_fck");
2134 /*
2135 * MMC can still work without debounce clock.
2136 */
2137 if (IS_ERR(host->dbclk)) {
2138 host->dbclk = NULL;
2139 } else if (clk_prepare_enable(host->dbclk) != 0) {
2140 dev_warn(mmc_dev(host->mmc), "Failed to enable debounce clk\n");
2141 host->dbclk = NULL;
2142 }
2143
2144 /* Since we do only SG emulation, we can have as many segs
2145 * as we want. */
2146 mmc->max_segs = 1024;
2147
2148 mmc->max_blk_size = 512; /* Block Length at max can be 1024 */
2149 mmc->max_blk_count = 0xFFFF; /* No. of Blocks is 16 bits */
2150 mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count;
2151 mmc->max_seg_size = mmc->max_req_size;
2152
2153 mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED |
2154 MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_ERASE;
2155
2156 mmc->caps |= mmc_pdata(host)->caps;
2157 if (mmc->caps & MMC_CAP_8_BIT_DATA)
2158 mmc->caps |= MMC_CAP_4_BIT_DATA;
2159
2160 if (mmc_pdata(host)->nonremovable)
2161 mmc->caps |= MMC_CAP_NONREMOVABLE;
2162
2163 mmc->pm_caps = mmc_pdata(host)->pm_caps;
2164
2165 omap_hsmmc_conf_bus_power(host);
2166
2167 if (!pdev->dev.of_node) {
2168 res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "tx");
2169 if (!res) {
2170 dev_err(mmc_dev(host->mmc), "cannot get DMA TX channel\n");
2171 ret = -ENXIO;
2172 goto err_irq;
2173 }
2174 tx_req = res->start;
2175
2176 res = platform_get_resource_byname(pdev, IORESOURCE_DMA, "rx");
2177 if (!res) {
2178 dev_err(mmc_dev(host->mmc), "cannot get DMA RX channel\n");
2179 ret = -ENXIO;
2180 goto err_irq;
2181 }
2182 rx_req = res->start;
2183 }
2184
2185 dma_cap_zero(mask);
2186 dma_cap_set(DMA_SLAVE, mask);
2187
2188 host->rx_chan =
2189 dma_request_slave_channel_compat(mask, omap_dma_filter_fn,
2190 &rx_req, &pdev->dev, "rx");
2191
2192 if (!host->rx_chan) {
2193 dev_err(mmc_dev(host->mmc), "unable to obtain RX DMA engine channel %u\n", rx_req);
2194 ret = -ENXIO;
2195 goto err_irq;
2196 }
2197
2198 host->tx_chan =
2199 dma_request_slave_channel_compat(mask, omap_dma_filter_fn,
2200 &tx_req, &pdev->dev, "tx");
2201
2202 if (!host->tx_chan) {
2203 dev_err(mmc_dev(host->mmc), "unable to obtain TX DMA engine channel %u\n", tx_req);
2204 ret = -ENXIO;
2205 goto err_irq;
2206 }
2207
2208 /* Request IRQ for MMC operations */
2209 ret = devm_request_irq(&pdev->dev, host->irq, omap_hsmmc_irq, 0,
2210 mmc_hostname(mmc), host);
2211 if (ret) {
2212 dev_err(mmc_dev(host->mmc), "Unable to grab HSMMC IRQ\n");
2213 goto err_irq;
2214 }
2215
2216 if (omap_hsmmc_have_reg() && !mmc_pdata(host)->set_power) {
2217 ret = omap_hsmmc_reg_get(host);
2218 if (ret)
2219 goto err_irq;
2220 host->use_reg = 1;
2221 }
2222
2223 mmc->ocr_avail = mmc_pdata(host)->ocr_mask;
2224
2225 /* Request IRQ for card detect */
2226 if (host->card_detect_irq) {
2227 ret = devm_request_threaded_irq(&pdev->dev,
2228 host->card_detect_irq,
2229 NULL, omap_hsmmc_detect,
2230 IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
2231 mmc_hostname(mmc), host);
2232 if (ret) {
2233 dev_err(mmc_dev(host->mmc),
2234 "Unable to grab MMC CD IRQ\n");
2235 goto err_irq_cd;
2236 }
2237 host->suspend = omap_hsmmc_suspend_cdirq;
2238 host->resume = omap_hsmmc_resume_cdirq;
2239 }
2240
2241 omap_hsmmc_disable_irq(host);
2242
2243 /*
2244 * For now, only support SDIO interrupt if we have a separate
2245 * wake-up interrupt configured from device tree. This is because
2246 * the wake-up interrupt is needed for idle state and some
2247 * platforms need special quirks. And we don't want to add new
2248 * legacy mux platform init code callbacks any longer as we
2249 * are moving to DT based booting anyways.
2250 */
2251 ret = omap_hsmmc_configure_wake_irq(host);
2252 if (!ret)
2253 mmc->caps |= MMC_CAP_SDIO_IRQ;
2254
2255 omap_hsmmc_protect_card(host);
2256
2257 mmc_add_host(mmc);
2258
2259 if (mmc_pdata(host)->name != NULL) {
2260 ret = device_create_file(&mmc->class_dev, &dev_attr_slot_name);
2261 if (ret < 0)
2262 goto err_slot_name;
2263 }
2264 if (host->card_detect_irq && host->get_cover_state) {
2265 ret = device_create_file(&mmc->class_dev,
2266 &dev_attr_cover_switch);
2267 if (ret < 0)
2268 goto err_slot_name;
2269 }
2270
2271 omap_hsmmc_debugfs(mmc);
2272 pm_runtime_mark_last_busy(host->dev);
2273 pm_runtime_put_autosuspend(host->dev);
2274
2275 return 0;
2276
2277 err_slot_name:
2278 mmc_remove_host(mmc);
2279 err_irq_cd:
2280 if (host->use_reg)
2281 omap_hsmmc_reg_put(host);
2282 err_irq:
2283 if (host->tx_chan)
2284 dma_release_channel(host->tx_chan);
2285 if (host->rx_chan)
2286 dma_release_channel(host->rx_chan);
2287 pm_runtime_put_sync(host->dev);
2288 pm_runtime_disable(host->dev);
2289 if (host->dbclk)
2290 clk_disable_unprepare(host->dbclk);
2291 err1:
2292 omap_hsmmc_gpio_free(host, pdata);
2293 err_gpio:
2294 mmc_free_host(mmc);
2295 err:
2296 return ret;
2297 }
2298
2299 static int omap_hsmmc_remove(struct platform_device *pdev)
2300 {
2301 struct omap_hsmmc_host *host = platform_get_drvdata(pdev);
2302
2303 pm_runtime_get_sync(host->dev);
2304 mmc_remove_host(host->mmc);
2305 if (host->use_reg)
2306 omap_hsmmc_reg_put(host);
2307
2308 if (host->tx_chan)
2309 dma_release_channel(host->tx_chan);
2310 if (host->rx_chan)
2311 dma_release_channel(host->rx_chan);
2312
2313 pm_runtime_put_sync(host->dev);
2314 pm_runtime_disable(host->dev);
2315 if (host->dbclk)
2316 clk_disable_unprepare(host->dbclk);
2317
2318 omap_hsmmc_gpio_free(host, host->pdata);
2319 mmc_free_host(host->mmc);
2320
2321 return 0;
2322 }
2323
2324 #ifdef CONFIG_PM
2325 static int omap_hsmmc_prepare(struct device *dev)
2326 {
2327 struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2328
2329 if (host->suspend)
2330 return host->suspend(dev);
2331
2332 return 0;
2333 }
2334
2335 static void omap_hsmmc_complete(struct device *dev)
2336 {
2337 struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2338
2339 if (host->resume)
2340 host->resume(dev);
2341
2342 }
2343
2344 static int omap_hsmmc_suspend(struct device *dev)
2345 {
2346 struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2347
2348 if (!host)
2349 return 0;
2350
2351 pm_runtime_get_sync(host->dev);
2352
2353 if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER)) {
2354 OMAP_HSMMC_WRITE(host->base, ISE, 0);
2355 OMAP_HSMMC_WRITE(host->base, IE, 0);
2356 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2357 OMAP_HSMMC_WRITE(host->base, HCTL,
2358 OMAP_HSMMC_READ(host->base, HCTL) & ~SDBP);
2359 }
2360
2361 /* do not wake up due to sdio irq */
2362 if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
2363 !(host->mmc->pm_flags & MMC_PM_WAKE_SDIO_IRQ))
2364 disable_irq(host->wake_irq);
2365
2366 if (host->dbclk)
2367 clk_disable_unprepare(host->dbclk);
2368
2369 pm_runtime_put_sync(host->dev);
2370 return 0;
2371 }
2372
2373 /* Routine to resume the MMC device */
2374 static int omap_hsmmc_resume(struct device *dev)
2375 {
2376 struct omap_hsmmc_host *host = dev_get_drvdata(dev);
2377
2378 if (!host)
2379 return 0;
2380
2381 pm_runtime_get_sync(host->dev);
2382
2383 if (host->dbclk)
2384 clk_prepare_enable(host->dbclk);
2385
2386 if (!(host->mmc->pm_flags & MMC_PM_KEEP_POWER))
2387 omap_hsmmc_conf_bus_power(host);
2388
2389 omap_hsmmc_protect_card(host);
2390
2391 if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
2392 !(host->mmc->pm_flags & MMC_PM_WAKE_SDIO_IRQ))
2393 enable_irq(host->wake_irq);
2394
2395 pm_runtime_mark_last_busy(host->dev);
2396 pm_runtime_put_autosuspend(host->dev);
2397 return 0;
2398 }
2399
2400 #else
2401 #define omap_hsmmc_prepare NULL
2402 #define omap_hsmmc_complete NULL
2403 #define omap_hsmmc_suspend NULL
2404 #define omap_hsmmc_resume NULL
2405 #endif
2406
2407 static int omap_hsmmc_runtime_suspend(struct device *dev)
2408 {
2409 struct omap_hsmmc_host *host;
2410 unsigned long flags;
2411 int ret = 0;
2412
2413 host = platform_get_drvdata(to_platform_device(dev));
2414 omap_hsmmc_context_save(host);
2415 dev_dbg(dev, "disabled\n");
2416
2417 spin_lock_irqsave(&host->irq_lock, flags);
2418 if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
2419 (host->flags & HSMMC_SDIO_IRQ_ENABLED)) {
2420 /* disable sdio irq handling to prevent race */
2421 OMAP_HSMMC_WRITE(host->base, ISE, 0);
2422 OMAP_HSMMC_WRITE(host->base, IE, 0);
2423
2424 if (!(OMAP_HSMMC_READ(host->base, PSTATE) & DLEV_DAT(1))) {
2425 /*
2426 * dat1 line low, pending sdio irq
2427 * race condition: possible irq handler running on
2428 * multi-core, abort
2429 */
2430 dev_dbg(dev, "pending sdio irq, abort suspend\n");
2431 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2432 OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN);
2433 OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN);
2434 pm_runtime_mark_last_busy(dev);
2435 ret = -EBUSY;
2436 goto abort;
2437 }
2438
2439 pinctrl_pm_select_idle_state(dev);
2440
2441 WARN_ON(host->flags & HSMMC_WAKE_IRQ_ENABLED);
2442 enable_irq(host->wake_irq);
2443 host->flags |= HSMMC_WAKE_IRQ_ENABLED;
2444 } else {
2445 pinctrl_pm_select_idle_state(dev);
2446 }
2447
2448 abort:
2449 spin_unlock_irqrestore(&host->irq_lock, flags);
2450 return ret;
2451 }
2452
2453 static int omap_hsmmc_runtime_resume(struct device *dev)
2454 {
2455 struct omap_hsmmc_host *host;
2456 unsigned long flags;
2457
2458 host = platform_get_drvdata(to_platform_device(dev));
2459 omap_hsmmc_context_restore(host);
2460 dev_dbg(dev, "enabled\n");
2461
2462 spin_lock_irqsave(&host->irq_lock, flags);
2463 if ((host->mmc->caps & MMC_CAP_SDIO_IRQ) &&
2464 (host->flags & HSMMC_SDIO_IRQ_ENABLED)) {
2465 /* sdio irq flag can't change while in runtime suspend */
2466 if (host->flags & HSMMC_WAKE_IRQ_ENABLED) {
2467 disable_irq_nosync(host->wake_irq);
2468 host->flags &= ~HSMMC_WAKE_IRQ_ENABLED;
2469 }
2470
2471 pinctrl_pm_select_default_state(host->dev);
2472
2473 /* irq lost, if pinmux incorrect */
2474 OMAP_HSMMC_WRITE(host->base, STAT, STAT_CLEAR);
2475 OMAP_HSMMC_WRITE(host->base, ISE, CIRQ_EN);
2476 OMAP_HSMMC_WRITE(host->base, IE, CIRQ_EN);
2477 } else {
2478 pinctrl_pm_select_default_state(host->dev);
2479 }
2480 spin_unlock_irqrestore(&host->irq_lock, flags);
2481 return 0;
2482 }
2483
2484 static struct dev_pm_ops omap_hsmmc_dev_pm_ops = {
2485 .suspend = omap_hsmmc_suspend,
2486 .resume = omap_hsmmc_resume,
2487 .prepare = omap_hsmmc_prepare,
2488 .complete = omap_hsmmc_complete,
2489 .runtime_suspend = omap_hsmmc_runtime_suspend,
2490 .runtime_resume = omap_hsmmc_runtime_resume,
2491 };
2492
2493 static struct platform_driver omap_hsmmc_driver = {
2494 .probe = omap_hsmmc_probe,
2495 .remove = omap_hsmmc_remove,
2496 .driver = {
2497 .name = DRIVER_NAME,
2498 .pm = &omap_hsmmc_dev_pm_ops,
2499 .of_match_table = of_match_ptr(omap_mmc_of_match),
2500 },
2501 };
2502
2503 module_platform_driver(omap_hsmmc_driver);
2504 MODULE_DESCRIPTION("OMAP High Speed Multimedia Card driver");
2505 MODULE_LICENSE("GPL");
2506 MODULE_ALIAS("platform:" DRIVER_NAME);
2507 MODULE_AUTHOR("Texas Instruments Inc");
This page took 0.090658 seconds and 5 git commands to generate.