Merge branch 'stable/for-jens-4.3' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / mmc / host / sh_mmcif.c
1 /*
2 * MMCIF eMMC driver.
3 *
4 * Copyright (C) 2010 Renesas Solutions Corp.
5 * Yusuke Goda <yusuke.goda.sx@renesas.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License.
10 *
11 *
12 * TODO
13 * 1. DMA
14 * 2. Power management
15 * 3. Handle MMC errors better
16 *
17 */
18
19 /*
20 * The MMCIF driver is now processing MMC requests asynchronously, according
21 * to the Linux MMC API requirement.
22 *
23 * The MMCIF driver processes MMC requests in up to 3 stages: command, optional
24 * data, and optional stop. To achieve asynchronous processing each of these
25 * stages is split into two halves: a top and a bottom half. The top half
26 * initialises the hardware, installs a timeout handler to handle completion
27 * timeouts, and returns. In case of the command stage this immediately returns
28 * control to the caller, leaving all further processing to run asynchronously.
29 * All further request processing is performed by the bottom halves.
30 *
31 * The bottom half further consists of a "hard" IRQ handler, an IRQ handler
32 * thread, a DMA completion callback, if DMA is used, a timeout work, and
33 * request- and stage-specific handler methods.
34 *
35 * Each bottom half run begins with either a hardware interrupt, a DMA callback
36 * invocation, or a timeout work run. In case of an error or a successful
37 * processing completion, the MMC core is informed and the request processing is
38 * finished. In case processing has to continue, i.e., if data has to be read
39 * from or written to the card, or if a stop command has to be sent, the next
40 * top half is called, which performs the necessary hardware handling and
41 * reschedules the timeout work. This returns the driver state machine into the
42 * bottom half waiting state.
43 */
44
45 #include <linux/bitops.h>
46 #include <linux/clk.h>
47 #include <linux/completion.h>
48 #include <linux/delay.h>
49 #include <linux/dma-mapping.h>
50 #include <linux/dmaengine.h>
51 #include <linux/mmc/card.h>
52 #include <linux/mmc/core.h>
53 #include <linux/mmc/host.h>
54 #include <linux/mmc/mmc.h>
55 #include <linux/mmc/sdio.h>
56 #include <linux/mmc/sh_mmcif.h>
57 #include <linux/mmc/slot-gpio.h>
58 #include <linux/mod_devicetable.h>
59 #include <linux/mutex.h>
60 #include <linux/of_device.h>
61 #include <linux/pagemap.h>
62 #include <linux/platform_device.h>
63 #include <linux/pm_qos.h>
64 #include <linux/pm_runtime.h>
65 #include <linux/sh_dma.h>
66 #include <linux/spinlock.h>
67 #include <linux/module.h>
68
69 #define DRIVER_NAME "sh_mmcif"
70 #define DRIVER_VERSION "2010-04-28"
71
72 /* CE_CMD_SET */
73 #define CMD_MASK 0x3f000000
74 #define CMD_SET_RTYP_NO ((0 << 23) | (0 << 22))
75 #define CMD_SET_RTYP_6B ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */
76 #define CMD_SET_RTYP_17B ((1 << 23) | (0 << 22)) /* R2 */
77 #define CMD_SET_RBSY (1 << 21) /* R1b */
78 #define CMD_SET_CCSEN (1 << 20)
79 #define CMD_SET_WDAT (1 << 19) /* 1: on data, 0: no data */
80 #define CMD_SET_DWEN (1 << 18) /* 1: write, 0: read */
81 #define CMD_SET_CMLTE (1 << 17) /* 1: multi block trans, 0: single */
82 #define CMD_SET_CMD12EN (1 << 16) /* 1: CMD12 auto issue */
83 #define CMD_SET_RIDXC_INDEX ((0 << 15) | (0 << 14)) /* index check */
84 #define CMD_SET_RIDXC_BITS ((0 << 15) | (1 << 14)) /* check bits check */
85 #define CMD_SET_RIDXC_NO ((1 << 15) | (0 << 14)) /* no check */
86 #define CMD_SET_CRC7C ((0 << 13) | (0 << 12)) /* CRC7 check*/
87 #define CMD_SET_CRC7C_BITS ((0 << 13) | (1 << 12)) /* check bits check*/
88 #define CMD_SET_CRC7C_INTERNAL ((1 << 13) | (0 << 12)) /* internal CRC7 check*/
89 #define CMD_SET_CRC16C (1 << 10) /* 0: CRC16 check*/
90 #define CMD_SET_CRCSTE (1 << 8) /* 1: not receive CRC status */
91 #define CMD_SET_TBIT (1 << 7) /* 1: tran mission bit "Low" */
92 #define CMD_SET_OPDM (1 << 6) /* 1: open/drain */
93 #define CMD_SET_CCSH (1 << 5)
94 #define CMD_SET_DARS (1 << 2) /* Dual Data Rate */
95 #define CMD_SET_DATW_1 ((0 << 1) | (0 << 0)) /* 1bit */
96 #define CMD_SET_DATW_4 ((0 << 1) | (1 << 0)) /* 4bit */
97 #define CMD_SET_DATW_8 ((1 << 1) | (0 << 0)) /* 8bit */
98
99 /* CE_CMD_CTRL */
100 #define CMD_CTRL_BREAK (1 << 0)
101
102 /* CE_BLOCK_SET */
103 #define BLOCK_SIZE_MASK 0x0000ffff
104
105 /* CE_INT */
106 #define INT_CCSDE (1 << 29)
107 #define INT_CMD12DRE (1 << 26)
108 #define INT_CMD12RBE (1 << 25)
109 #define INT_CMD12CRE (1 << 24)
110 #define INT_DTRANE (1 << 23)
111 #define INT_BUFRE (1 << 22)
112 #define INT_BUFWEN (1 << 21)
113 #define INT_BUFREN (1 << 20)
114 #define INT_CCSRCV (1 << 19)
115 #define INT_RBSYE (1 << 17)
116 #define INT_CRSPE (1 << 16)
117 #define INT_CMDVIO (1 << 15)
118 #define INT_BUFVIO (1 << 14)
119 #define INT_WDATERR (1 << 11)
120 #define INT_RDATERR (1 << 10)
121 #define INT_RIDXERR (1 << 9)
122 #define INT_RSPERR (1 << 8)
123 #define INT_CCSTO (1 << 5)
124 #define INT_CRCSTO (1 << 4)
125 #define INT_WDATTO (1 << 3)
126 #define INT_RDATTO (1 << 2)
127 #define INT_RBSYTO (1 << 1)
128 #define INT_RSPTO (1 << 0)
129 #define INT_ERR_STS (INT_CMDVIO | INT_BUFVIO | INT_WDATERR | \
130 INT_RDATERR | INT_RIDXERR | INT_RSPERR | \
131 INT_CCSTO | INT_CRCSTO | INT_WDATTO | \
132 INT_RDATTO | INT_RBSYTO | INT_RSPTO)
133
134 #define INT_ALL (INT_RBSYE | INT_CRSPE | INT_BUFREN | \
135 INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \
136 INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE)
137
138 #define INT_CCS (INT_CCSTO | INT_CCSRCV | INT_CCSDE)
139
140 /* CE_INT_MASK */
141 #define MASK_ALL 0x00000000
142 #define MASK_MCCSDE (1 << 29)
143 #define MASK_MCMD12DRE (1 << 26)
144 #define MASK_MCMD12RBE (1 << 25)
145 #define MASK_MCMD12CRE (1 << 24)
146 #define MASK_MDTRANE (1 << 23)
147 #define MASK_MBUFRE (1 << 22)
148 #define MASK_MBUFWEN (1 << 21)
149 #define MASK_MBUFREN (1 << 20)
150 #define MASK_MCCSRCV (1 << 19)
151 #define MASK_MRBSYE (1 << 17)
152 #define MASK_MCRSPE (1 << 16)
153 #define MASK_MCMDVIO (1 << 15)
154 #define MASK_MBUFVIO (1 << 14)
155 #define MASK_MWDATERR (1 << 11)
156 #define MASK_MRDATERR (1 << 10)
157 #define MASK_MRIDXERR (1 << 9)
158 #define MASK_MRSPERR (1 << 8)
159 #define MASK_MCCSTO (1 << 5)
160 #define MASK_MCRCSTO (1 << 4)
161 #define MASK_MWDATTO (1 << 3)
162 #define MASK_MRDATTO (1 << 2)
163 #define MASK_MRBSYTO (1 << 1)
164 #define MASK_MRSPTO (1 << 0)
165
166 #define MASK_START_CMD (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \
167 MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \
168 MASK_MCRCSTO | MASK_MWDATTO | \
169 MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO)
170
171 #define MASK_CLEAN (INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE | \
172 MASK_MBUFREN | MASK_MBUFWEN | \
173 MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE | \
174 MASK_MCMD12RBE | MASK_MCMD12CRE)
175
176 /* CE_HOST_STS1 */
177 #define STS1_CMDSEQ (1 << 31)
178
179 /* CE_HOST_STS2 */
180 #define STS2_CRCSTE (1 << 31)
181 #define STS2_CRC16E (1 << 30)
182 #define STS2_AC12CRCE (1 << 29)
183 #define STS2_RSPCRC7E (1 << 28)
184 #define STS2_CRCSTEBE (1 << 27)
185 #define STS2_RDATEBE (1 << 26)
186 #define STS2_AC12REBE (1 << 25)
187 #define STS2_RSPEBE (1 << 24)
188 #define STS2_AC12IDXE (1 << 23)
189 #define STS2_RSPIDXE (1 << 22)
190 #define STS2_CCSTO (1 << 15)
191 #define STS2_RDATTO (1 << 14)
192 #define STS2_DATBSYTO (1 << 13)
193 #define STS2_CRCSTTO (1 << 12)
194 #define STS2_AC12BSYTO (1 << 11)
195 #define STS2_RSPBSYTO (1 << 10)
196 #define STS2_AC12RSPTO (1 << 9)
197 #define STS2_RSPTO (1 << 8)
198 #define STS2_CRC_ERR (STS2_CRCSTE | STS2_CRC16E | \
199 STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE)
200 #define STS2_TIMEOUT_ERR (STS2_CCSTO | STS2_RDATTO | \
201 STS2_DATBSYTO | STS2_CRCSTTO | \
202 STS2_AC12BSYTO | STS2_RSPBSYTO | \
203 STS2_AC12RSPTO | STS2_RSPTO)
204
205 #define CLKDEV_EMMC_DATA 52000000 /* 52MHz */
206 #define CLKDEV_MMC_DATA 20000000 /* 20MHz */
207 #define CLKDEV_INIT 400000 /* 400 KHz */
208
209 enum sh_mmcif_state {
210 STATE_IDLE,
211 STATE_REQUEST,
212 STATE_IOS,
213 STATE_TIMEOUT,
214 };
215
216 enum sh_mmcif_wait_for {
217 MMCIF_WAIT_FOR_REQUEST,
218 MMCIF_WAIT_FOR_CMD,
219 MMCIF_WAIT_FOR_MREAD,
220 MMCIF_WAIT_FOR_MWRITE,
221 MMCIF_WAIT_FOR_READ,
222 MMCIF_WAIT_FOR_WRITE,
223 MMCIF_WAIT_FOR_READ_END,
224 MMCIF_WAIT_FOR_WRITE_END,
225 MMCIF_WAIT_FOR_STOP,
226 };
227
228 /*
229 * difference for each SoC
230 */
231 struct sh_mmcif_host {
232 struct mmc_host *mmc;
233 struct mmc_request *mrq;
234 struct platform_device *pd;
235 struct clk *clk;
236 int bus_width;
237 unsigned char timing;
238 bool sd_error;
239 bool dying;
240 long timeout;
241 void __iomem *addr;
242 u32 *pio_ptr;
243 spinlock_t lock; /* protect sh_mmcif_host::state */
244 enum sh_mmcif_state state;
245 enum sh_mmcif_wait_for wait_for;
246 struct delayed_work timeout_work;
247 size_t blocksize;
248 int sg_idx;
249 int sg_blkidx;
250 bool power;
251 bool card_present;
252 bool ccs_enable; /* Command Completion Signal support */
253 bool clk_ctrl2_enable;
254 struct mutex thread_lock;
255 u32 clkdiv_map; /* see CE_CLK_CTRL::CLKDIV */
256
257 /* DMA support */
258 struct dma_chan *chan_rx;
259 struct dma_chan *chan_tx;
260 struct completion dma_complete;
261 bool dma_active;
262 };
263
264 static const struct of_device_id sh_mmcif_of_match[] = {
265 { .compatible = "renesas,sh-mmcif" },
266 { }
267 };
268 MODULE_DEVICE_TABLE(of, sh_mmcif_of_match);
269
270 #define sh_mmcif_host_to_dev(host) (&host->pd->dev)
271
272 static inline void sh_mmcif_bitset(struct sh_mmcif_host *host,
273 unsigned int reg, u32 val)
274 {
275 writel(val | readl(host->addr + reg), host->addr + reg);
276 }
277
278 static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host,
279 unsigned int reg, u32 val)
280 {
281 writel(~val & readl(host->addr + reg), host->addr + reg);
282 }
283
284 static void sh_mmcif_dma_complete(void *arg)
285 {
286 struct sh_mmcif_host *host = arg;
287 struct mmc_request *mrq = host->mrq;
288 struct device *dev = sh_mmcif_host_to_dev(host);
289
290 dev_dbg(dev, "Command completed\n");
291
292 if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n",
293 dev_name(dev)))
294 return;
295
296 complete(&host->dma_complete);
297 }
298
299 static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host)
300 {
301 struct mmc_data *data = host->mrq->data;
302 struct scatterlist *sg = data->sg;
303 struct dma_async_tx_descriptor *desc = NULL;
304 struct dma_chan *chan = host->chan_rx;
305 struct device *dev = sh_mmcif_host_to_dev(host);
306 dma_cookie_t cookie = -EINVAL;
307 int ret;
308
309 ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
310 DMA_FROM_DEVICE);
311 if (ret > 0) {
312 host->dma_active = true;
313 desc = dmaengine_prep_slave_sg(chan, sg, ret,
314 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
315 }
316
317 if (desc) {
318 desc->callback = sh_mmcif_dma_complete;
319 desc->callback_param = host;
320 cookie = dmaengine_submit(desc);
321 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN);
322 dma_async_issue_pending(chan);
323 }
324 dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
325 __func__, data->sg_len, ret, cookie);
326
327 if (!desc) {
328 /* DMA failed, fall back to PIO */
329 if (ret >= 0)
330 ret = -EIO;
331 host->chan_rx = NULL;
332 host->dma_active = false;
333 dma_release_channel(chan);
334 /* Free the Tx channel too */
335 chan = host->chan_tx;
336 if (chan) {
337 host->chan_tx = NULL;
338 dma_release_channel(chan);
339 }
340 dev_warn(dev,
341 "DMA failed: %d, falling back to PIO\n", ret);
342 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
343 }
344
345 dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__,
346 desc, cookie, data->sg_len);
347 }
348
349 static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host)
350 {
351 struct mmc_data *data = host->mrq->data;
352 struct scatterlist *sg = data->sg;
353 struct dma_async_tx_descriptor *desc = NULL;
354 struct dma_chan *chan = host->chan_tx;
355 struct device *dev = sh_mmcif_host_to_dev(host);
356 dma_cookie_t cookie = -EINVAL;
357 int ret;
358
359 ret = dma_map_sg(chan->device->dev, sg, data->sg_len,
360 DMA_TO_DEVICE);
361 if (ret > 0) {
362 host->dma_active = true;
363 desc = dmaengine_prep_slave_sg(chan, sg, ret,
364 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
365 }
366
367 if (desc) {
368 desc->callback = sh_mmcif_dma_complete;
369 desc->callback_param = host;
370 cookie = dmaengine_submit(desc);
371 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN);
372 dma_async_issue_pending(chan);
373 }
374 dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n",
375 __func__, data->sg_len, ret, cookie);
376
377 if (!desc) {
378 /* DMA failed, fall back to PIO */
379 if (ret >= 0)
380 ret = -EIO;
381 host->chan_tx = NULL;
382 host->dma_active = false;
383 dma_release_channel(chan);
384 /* Free the Rx channel too */
385 chan = host->chan_rx;
386 if (chan) {
387 host->chan_rx = NULL;
388 dma_release_channel(chan);
389 }
390 dev_warn(dev,
391 "DMA failed: %d, falling back to PIO\n", ret);
392 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
393 }
394
395 dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__,
396 desc, cookie);
397 }
398
399 static struct dma_chan *
400 sh_mmcif_request_dma_one(struct sh_mmcif_host *host,
401 struct sh_mmcif_plat_data *pdata,
402 enum dma_transfer_direction direction)
403 {
404 struct dma_slave_config cfg = { 0, };
405 struct dma_chan *chan;
406 void *slave_data = NULL;
407 struct resource *res;
408 struct device *dev = sh_mmcif_host_to_dev(host);
409 dma_cap_mask_t mask;
410 int ret;
411
412 dma_cap_zero(mask);
413 dma_cap_set(DMA_SLAVE, mask);
414
415 if (pdata)
416 slave_data = direction == DMA_MEM_TO_DEV ?
417 (void *)pdata->slave_id_tx :
418 (void *)pdata->slave_id_rx;
419
420 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
421 slave_data, dev,
422 direction == DMA_MEM_TO_DEV ? "tx" : "rx");
423
424 dev_dbg(dev, "%s: %s: got channel %p\n", __func__,
425 direction == DMA_MEM_TO_DEV ? "TX" : "RX", chan);
426
427 if (!chan)
428 return NULL;
429
430 res = platform_get_resource(host->pd, IORESOURCE_MEM, 0);
431
432 cfg.direction = direction;
433
434 if (direction == DMA_DEV_TO_MEM) {
435 cfg.src_addr = res->start + MMCIF_CE_DATA;
436 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
437 } else {
438 cfg.dst_addr = res->start + MMCIF_CE_DATA;
439 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
440 }
441
442 ret = dmaengine_slave_config(chan, &cfg);
443 if (ret < 0) {
444 dma_release_channel(chan);
445 return NULL;
446 }
447
448 return chan;
449 }
450
451 static void sh_mmcif_request_dma(struct sh_mmcif_host *host,
452 struct sh_mmcif_plat_data *pdata)
453 {
454 struct device *dev = sh_mmcif_host_to_dev(host);
455 host->dma_active = false;
456
457 if (pdata) {
458 if (pdata->slave_id_tx <= 0 || pdata->slave_id_rx <= 0)
459 return;
460 } else if (!dev->of_node) {
461 return;
462 }
463
464 /* We can only either use DMA for both Tx and Rx or not use it at all */
465 host->chan_tx = sh_mmcif_request_dma_one(host, pdata, DMA_MEM_TO_DEV);
466 if (!host->chan_tx)
467 return;
468
469 host->chan_rx = sh_mmcif_request_dma_one(host, pdata, DMA_DEV_TO_MEM);
470 if (!host->chan_rx) {
471 dma_release_channel(host->chan_tx);
472 host->chan_tx = NULL;
473 }
474 }
475
476 static void sh_mmcif_release_dma(struct sh_mmcif_host *host)
477 {
478 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
479 /* Descriptors are freed automatically */
480 if (host->chan_tx) {
481 struct dma_chan *chan = host->chan_tx;
482 host->chan_tx = NULL;
483 dma_release_channel(chan);
484 }
485 if (host->chan_rx) {
486 struct dma_chan *chan = host->chan_rx;
487 host->chan_rx = NULL;
488 dma_release_channel(chan);
489 }
490
491 host->dma_active = false;
492 }
493
494 static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk)
495 {
496 struct device *dev = sh_mmcif_host_to_dev(host);
497 struct sh_mmcif_plat_data *p = dev->platform_data;
498 bool sup_pclk = p ? p->sup_pclk : false;
499 unsigned int current_clk = clk_get_rate(host->clk);
500 unsigned int clkdiv;
501
502 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
503 sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR);
504
505 if (!clk)
506 return;
507
508 if (host->clkdiv_map) {
509 unsigned int freq, best_freq, myclk, div, diff_min, diff;
510 int i;
511
512 clkdiv = 0;
513 diff_min = ~0;
514 best_freq = 0;
515 for (i = 31; i >= 0; i--) {
516 if (!((1 << i) & host->clkdiv_map))
517 continue;
518
519 /*
520 * clk = parent_freq / div
521 * -> parent_freq = clk x div
522 */
523
524 div = 1 << (i + 1);
525 freq = clk_round_rate(host->clk, clk * div);
526 myclk = freq / div;
527 diff = (myclk > clk) ? myclk - clk : clk - myclk;
528
529 if (diff <= diff_min) {
530 best_freq = freq;
531 clkdiv = i;
532 diff_min = diff;
533 }
534 }
535
536 dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n",
537 (best_freq / (1 << (clkdiv + 1))), clk,
538 best_freq, clkdiv);
539
540 clk_set_rate(host->clk, best_freq);
541 clkdiv = clkdiv << 16;
542 } else if (sup_pclk && clk == current_clk) {
543 clkdiv = CLK_SUP_PCLK;
544 } else {
545 clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16;
546 }
547
548 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv);
549 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE);
550 }
551
552 static void sh_mmcif_sync_reset(struct sh_mmcif_host *host)
553 {
554 u32 tmp;
555
556 tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL);
557
558 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON);
559 sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF);
560 if (host->ccs_enable)
561 tmp |= SCCSTO_29;
562 if (host->clk_ctrl2_enable)
563 sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000);
564 sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp |
565 SRSPTO_256 | SRBSYTO_29 | SRWDTO_29);
566 /* byte swap on */
567 sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP);
568 }
569
570 static int sh_mmcif_error_manage(struct sh_mmcif_host *host)
571 {
572 struct device *dev = sh_mmcif_host_to_dev(host);
573 u32 state1, state2;
574 int ret, timeout;
575
576 host->sd_error = false;
577
578 state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1);
579 state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2);
580 dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1);
581 dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2);
582
583 if (state1 & STS1_CMDSEQ) {
584 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK);
585 sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK);
586 for (timeout = 10000000; timeout; timeout--) {
587 if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1)
588 & STS1_CMDSEQ))
589 break;
590 mdelay(1);
591 }
592 if (!timeout) {
593 dev_err(dev,
594 "Forced end of command sequence timeout err\n");
595 return -EIO;
596 }
597 sh_mmcif_sync_reset(host);
598 dev_dbg(dev, "Forced end of command sequence\n");
599 return -EIO;
600 }
601
602 if (state2 & STS2_CRC_ERR) {
603 dev_err(dev, " CRC error: state %u, wait %u\n",
604 host->state, host->wait_for);
605 ret = -EIO;
606 } else if (state2 & STS2_TIMEOUT_ERR) {
607 dev_err(dev, " Timeout: state %u, wait %u\n",
608 host->state, host->wait_for);
609 ret = -ETIMEDOUT;
610 } else {
611 dev_dbg(dev, " End/Index error: state %u, wait %u\n",
612 host->state, host->wait_for);
613 ret = -EIO;
614 }
615 return ret;
616 }
617
618 static bool sh_mmcif_next_block(struct sh_mmcif_host *host, u32 *p)
619 {
620 struct mmc_data *data = host->mrq->data;
621
622 host->sg_blkidx += host->blocksize;
623
624 /* data->sg->length must be a multiple of host->blocksize? */
625 BUG_ON(host->sg_blkidx > data->sg->length);
626
627 if (host->sg_blkidx == data->sg->length) {
628 host->sg_blkidx = 0;
629 if (++host->sg_idx < data->sg_len)
630 host->pio_ptr = sg_virt(++data->sg);
631 } else {
632 host->pio_ptr = p;
633 }
634
635 return host->sg_idx != data->sg_len;
636 }
637
638 static void sh_mmcif_single_read(struct sh_mmcif_host *host,
639 struct mmc_request *mrq)
640 {
641 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
642 BLOCK_SIZE_MASK) + 3;
643
644 host->wait_for = MMCIF_WAIT_FOR_READ;
645
646 /* buf read enable */
647 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
648 }
649
650 static bool sh_mmcif_read_block(struct sh_mmcif_host *host)
651 {
652 struct device *dev = sh_mmcif_host_to_dev(host);
653 struct mmc_data *data = host->mrq->data;
654 u32 *p = sg_virt(data->sg);
655 int i;
656
657 if (host->sd_error) {
658 data->error = sh_mmcif_error_manage(host);
659 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
660 return false;
661 }
662
663 for (i = 0; i < host->blocksize / 4; i++)
664 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
665
666 /* buffer read end */
667 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE);
668 host->wait_for = MMCIF_WAIT_FOR_READ_END;
669
670 return true;
671 }
672
673 static void sh_mmcif_multi_read(struct sh_mmcif_host *host,
674 struct mmc_request *mrq)
675 {
676 struct mmc_data *data = mrq->data;
677
678 if (!data->sg_len || !data->sg->length)
679 return;
680
681 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
682 BLOCK_SIZE_MASK;
683
684 host->wait_for = MMCIF_WAIT_FOR_MREAD;
685 host->sg_idx = 0;
686 host->sg_blkidx = 0;
687 host->pio_ptr = sg_virt(data->sg);
688
689 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
690 }
691
692 static bool sh_mmcif_mread_block(struct sh_mmcif_host *host)
693 {
694 struct device *dev = sh_mmcif_host_to_dev(host);
695 struct mmc_data *data = host->mrq->data;
696 u32 *p = host->pio_ptr;
697 int i;
698
699 if (host->sd_error) {
700 data->error = sh_mmcif_error_manage(host);
701 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
702 return false;
703 }
704
705 BUG_ON(!data->sg->length);
706
707 for (i = 0; i < host->blocksize / 4; i++)
708 *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA);
709
710 if (!sh_mmcif_next_block(host, p))
711 return false;
712
713 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN);
714
715 return true;
716 }
717
718 static void sh_mmcif_single_write(struct sh_mmcif_host *host,
719 struct mmc_request *mrq)
720 {
721 host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
722 BLOCK_SIZE_MASK) + 3;
723
724 host->wait_for = MMCIF_WAIT_FOR_WRITE;
725
726 /* buf write enable */
727 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
728 }
729
730 static bool sh_mmcif_write_block(struct sh_mmcif_host *host)
731 {
732 struct device *dev = sh_mmcif_host_to_dev(host);
733 struct mmc_data *data = host->mrq->data;
734 u32 *p = sg_virt(data->sg);
735 int i;
736
737 if (host->sd_error) {
738 data->error = sh_mmcif_error_manage(host);
739 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
740 return false;
741 }
742
743 for (i = 0; i < host->blocksize / 4; i++)
744 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
745
746 /* buffer write end */
747 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE);
748 host->wait_for = MMCIF_WAIT_FOR_WRITE_END;
749
750 return true;
751 }
752
753 static void sh_mmcif_multi_write(struct sh_mmcif_host *host,
754 struct mmc_request *mrq)
755 {
756 struct mmc_data *data = mrq->data;
757
758 if (!data->sg_len || !data->sg->length)
759 return;
760
761 host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) &
762 BLOCK_SIZE_MASK;
763
764 host->wait_for = MMCIF_WAIT_FOR_MWRITE;
765 host->sg_idx = 0;
766 host->sg_blkidx = 0;
767 host->pio_ptr = sg_virt(data->sg);
768
769 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
770 }
771
772 static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host)
773 {
774 struct device *dev = sh_mmcif_host_to_dev(host);
775 struct mmc_data *data = host->mrq->data;
776 u32 *p = host->pio_ptr;
777 int i;
778
779 if (host->sd_error) {
780 data->error = sh_mmcif_error_manage(host);
781 dev_dbg(dev, "%s(): %d\n", __func__, data->error);
782 return false;
783 }
784
785 BUG_ON(!data->sg->length);
786
787 for (i = 0; i < host->blocksize / 4; i++)
788 sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++);
789
790 if (!sh_mmcif_next_block(host, p))
791 return false;
792
793 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN);
794
795 return true;
796 }
797
798 static void sh_mmcif_get_response(struct sh_mmcif_host *host,
799 struct mmc_command *cmd)
800 {
801 if (cmd->flags & MMC_RSP_136) {
802 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3);
803 cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2);
804 cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1);
805 cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
806 } else
807 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0);
808 }
809
810 static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host,
811 struct mmc_command *cmd)
812 {
813 cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12);
814 }
815
816 static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host,
817 struct mmc_request *mrq)
818 {
819 struct device *dev = sh_mmcif_host_to_dev(host);
820 struct mmc_data *data = mrq->data;
821 struct mmc_command *cmd = mrq->cmd;
822 u32 opc = cmd->opcode;
823 u32 tmp = 0;
824
825 /* Response Type check */
826 switch (mmc_resp_type(cmd)) {
827 case MMC_RSP_NONE:
828 tmp |= CMD_SET_RTYP_NO;
829 break;
830 case MMC_RSP_R1:
831 case MMC_RSP_R1B:
832 case MMC_RSP_R3:
833 tmp |= CMD_SET_RTYP_6B;
834 break;
835 case MMC_RSP_R2:
836 tmp |= CMD_SET_RTYP_17B;
837 break;
838 default:
839 dev_err(dev, "Unsupported response type.\n");
840 break;
841 }
842 switch (opc) {
843 /* RBSY */
844 case MMC_SLEEP_AWAKE:
845 case MMC_SWITCH:
846 case MMC_STOP_TRANSMISSION:
847 case MMC_SET_WRITE_PROT:
848 case MMC_CLR_WRITE_PROT:
849 case MMC_ERASE:
850 tmp |= CMD_SET_RBSY;
851 break;
852 }
853 /* WDAT / DATW */
854 if (data) {
855 tmp |= CMD_SET_WDAT;
856 switch (host->bus_width) {
857 case MMC_BUS_WIDTH_1:
858 tmp |= CMD_SET_DATW_1;
859 break;
860 case MMC_BUS_WIDTH_4:
861 tmp |= CMD_SET_DATW_4;
862 break;
863 case MMC_BUS_WIDTH_8:
864 tmp |= CMD_SET_DATW_8;
865 break;
866 default:
867 dev_err(dev, "Unsupported bus width.\n");
868 break;
869 }
870 switch (host->timing) {
871 case MMC_TIMING_MMC_DDR52:
872 /*
873 * MMC core will only set this timing, if the host
874 * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR
875 * capability. MMCIF implementations with this
876 * capability, e.g. sh73a0, will have to set it
877 * in their platform data.
878 */
879 tmp |= CMD_SET_DARS;
880 break;
881 }
882 }
883 /* DWEN */
884 if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK)
885 tmp |= CMD_SET_DWEN;
886 /* CMLTE/CMD12EN */
887 if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) {
888 tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN;
889 sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET,
890 data->blocks << 16);
891 }
892 /* RIDXC[1:0] check bits */
893 if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID ||
894 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
895 tmp |= CMD_SET_RIDXC_BITS;
896 /* RCRC7C[1:0] check bits */
897 if (opc == MMC_SEND_OP_COND)
898 tmp |= CMD_SET_CRC7C_BITS;
899 /* RCRC7C[1:0] internal CRC7 */
900 if (opc == MMC_ALL_SEND_CID ||
901 opc == MMC_SEND_CSD || opc == MMC_SEND_CID)
902 tmp |= CMD_SET_CRC7C_INTERNAL;
903
904 return (opc << 24) | tmp;
905 }
906
907 static int sh_mmcif_data_trans(struct sh_mmcif_host *host,
908 struct mmc_request *mrq, u32 opc)
909 {
910 struct device *dev = sh_mmcif_host_to_dev(host);
911
912 switch (opc) {
913 case MMC_READ_MULTIPLE_BLOCK:
914 sh_mmcif_multi_read(host, mrq);
915 return 0;
916 case MMC_WRITE_MULTIPLE_BLOCK:
917 sh_mmcif_multi_write(host, mrq);
918 return 0;
919 case MMC_WRITE_BLOCK:
920 sh_mmcif_single_write(host, mrq);
921 return 0;
922 case MMC_READ_SINGLE_BLOCK:
923 case MMC_SEND_EXT_CSD:
924 sh_mmcif_single_read(host, mrq);
925 return 0;
926 default:
927 dev_err(dev, "Unsupported CMD%d\n", opc);
928 return -EINVAL;
929 }
930 }
931
932 static void sh_mmcif_start_cmd(struct sh_mmcif_host *host,
933 struct mmc_request *mrq)
934 {
935 struct mmc_command *cmd = mrq->cmd;
936 u32 opc = cmd->opcode;
937 u32 mask;
938 unsigned long flags;
939
940 switch (opc) {
941 /* response busy check */
942 case MMC_SLEEP_AWAKE:
943 case MMC_SWITCH:
944 case MMC_STOP_TRANSMISSION:
945 case MMC_SET_WRITE_PROT:
946 case MMC_CLR_WRITE_PROT:
947 case MMC_ERASE:
948 mask = MASK_START_CMD | MASK_MRBSYE;
949 break;
950 default:
951 mask = MASK_START_CMD | MASK_MCRSPE;
952 break;
953 }
954
955 if (host->ccs_enable)
956 mask |= MASK_MCCSTO;
957
958 if (mrq->data) {
959 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0);
960 sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET,
961 mrq->data->blksz);
962 }
963 opc = sh_mmcif_set_cmd(host, mrq);
964
965 if (host->ccs_enable)
966 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0);
967 else
968 sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS);
969 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask);
970 /* set arg */
971 sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg);
972 /* set cmd */
973 spin_lock_irqsave(&host->lock, flags);
974 sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc);
975
976 host->wait_for = MMCIF_WAIT_FOR_CMD;
977 schedule_delayed_work(&host->timeout_work, host->timeout);
978 spin_unlock_irqrestore(&host->lock, flags);
979 }
980
981 static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host,
982 struct mmc_request *mrq)
983 {
984 struct device *dev = sh_mmcif_host_to_dev(host);
985
986 switch (mrq->cmd->opcode) {
987 case MMC_READ_MULTIPLE_BLOCK:
988 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE);
989 break;
990 case MMC_WRITE_MULTIPLE_BLOCK:
991 sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE);
992 break;
993 default:
994 dev_err(dev, "unsupported stop cmd\n");
995 mrq->stop->error = sh_mmcif_error_manage(host);
996 return;
997 }
998
999 host->wait_for = MMCIF_WAIT_FOR_STOP;
1000 }
1001
1002 static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq)
1003 {
1004 struct sh_mmcif_host *host = mmc_priv(mmc);
1005 struct device *dev = sh_mmcif_host_to_dev(host);
1006 unsigned long flags;
1007
1008 spin_lock_irqsave(&host->lock, flags);
1009 if (host->state != STATE_IDLE) {
1010 dev_dbg(dev, "%s() rejected, state %u\n",
1011 __func__, host->state);
1012 spin_unlock_irqrestore(&host->lock, flags);
1013 mrq->cmd->error = -EAGAIN;
1014 mmc_request_done(mmc, mrq);
1015 return;
1016 }
1017
1018 host->state = STATE_REQUEST;
1019 spin_unlock_irqrestore(&host->lock, flags);
1020
1021 switch (mrq->cmd->opcode) {
1022 /* MMCIF does not support SD/SDIO command */
1023 case MMC_SLEEP_AWAKE: /* = SD_IO_SEND_OP_COND (5) */
1024 case MMC_SEND_EXT_CSD: /* = SD_SEND_IF_COND (8) */
1025 if ((mrq->cmd->flags & MMC_CMD_MASK) != MMC_CMD_BCR)
1026 break;
1027 case MMC_APP_CMD:
1028 case SD_IO_RW_DIRECT:
1029 host->state = STATE_IDLE;
1030 mrq->cmd->error = -ETIMEDOUT;
1031 mmc_request_done(mmc, mrq);
1032 return;
1033 default:
1034 break;
1035 }
1036
1037 host->mrq = mrq;
1038
1039 sh_mmcif_start_cmd(host, mrq);
1040 }
1041
1042 static void sh_mmcif_clk_setup(struct sh_mmcif_host *host)
1043 {
1044 struct device *dev = sh_mmcif_host_to_dev(host);
1045
1046 if (host->mmc->f_max) {
1047 unsigned int f_max, f_min = 0, f_min_old;
1048
1049 f_max = host->mmc->f_max;
1050 for (f_min_old = f_max; f_min_old > 2;) {
1051 f_min = clk_round_rate(host->clk, f_min_old / 2);
1052 if (f_min == f_min_old)
1053 break;
1054 f_min_old = f_min;
1055 }
1056
1057 /*
1058 * This driver assumes this SoC is R-Car Gen2 or later
1059 */
1060 host->clkdiv_map = 0x3ff;
1061
1062 host->mmc->f_max = f_max / (1 << ffs(host->clkdiv_map));
1063 host->mmc->f_min = f_min / (1 << fls(host->clkdiv_map));
1064 } else {
1065 unsigned int clk = clk_get_rate(host->clk);
1066
1067 host->mmc->f_max = clk / 2;
1068 host->mmc->f_min = clk / 512;
1069 }
1070
1071 dev_dbg(dev, "clk max/min = %d/%d\n",
1072 host->mmc->f_max, host->mmc->f_min);
1073 }
1074
1075 static void sh_mmcif_set_power(struct sh_mmcif_host *host, struct mmc_ios *ios)
1076 {
1077 struct mmc_host *mmc = host->mmc;
1078
1079 if (!IS_ERR(mmc->supply.vmmc))
1080 /* Errors ignored... */
1081 mmc_regulator_set_ocr(mmc, mmc->supply.vmmc,
1082 ios->power_mode ? ios->vdd : 0);
1083 }
1084
1085 static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
1086 {
1087 struct sh_mmcif_host *host = mmc_priv(mmc);
1088 struct device *dev = sh_mmcif_host_to_dev(host);
1089 unsigned long flags;
1090
1091 spin_lock_irqsave(&host->lock, flags);
1092 if (host->state != STATE_IDLE) {
1093 dev_dbg(dev, "%s() rejected, state %u\n",
1094 __func__, host->state);
1095 spin_unlock_irqrestore(&host->lock, flags);
1096 return;
1097 }
1098
1099 host->state = STATE_IOS;
1100 spin_unlock_irqrestore(&host->lock, flags);
1101
1102 if (ios->power_mode == MMC_POWER_UP) {
1103 if (!host->card_present) {
1104 /* See if we also get DMA */
1105 sh_mmcif_request_dma(host, dev->platform_data);
1106 host->card_present = true;
1107 }
1108 sh_mmcif_set_power(host, ios);
1109 } else if (ios->power_mode == MMC_POWER_OFF || !ios->clock) {
1110 /* clock stop */
1111 sh_mmcif_clock_control(host, 0);
1112 if (ios->power_mode == MMC_POWER_OFF) {
1113 if (host->card_present) {
1114 sh_mmcif_release_dma(host);
1115 host->card_present = false;
1116 }
1117 }
1118 if (host->power) {
1119 pm_runtime_put_sync(dev);
1120 clk_disable_unprepare(host->clk);
1121 host->power = false;
1122 if (ios->power_mode == MMC_POWER_OFF)
1123 sh_mmcif_set_power(host, ios);
1124 }
1125 host->state = STATE_IDLE;
1126 return;
1127 }
1128
1129 if (ios->clock) {
1130 if (!host->power) {
1131 clk_prepare_enable(host->clk);
1132
1133 pm_runtime_get_sync(dev);
1134 host->power = true;
1135 sh_mmcif_sync_reset(host);
1136 }
1137 sh_mmcif_clock_control(host, ios->clock);
1138 }
1139
1140 host->timing = ios->timing;
1141 host->bus_width = ios->bus_width;
1142 host->state = STATE_IDLE;
1143 }
1144
1145 static int sh_mmcif_get_cd(struct mmc_host *mmc)
1146 {
1147 struct sh_mmcif_host *host = mmc_priv(mmc);
1148 struct device *dev = sh_mmcif_host_to_dev(host);
1149 struct sh_mmcif_plat_data *p = dev->platform_data;
1150 int ret = mmc_gpio_get_cd(mmc);
1151
1152 if (ret >= 0)
1153 return ret;
1154
1155 if (!p || !p->get_cd)
1156 return -ENOSYS;
1157 else
1158 return p->get_cd(host->pd);
1159 }
1160
1161 static struct mmc_host_ops sh_mmcif_ops = {
1162 .request = sh_mmcif_request,
1163 .set_ios = sh_mmcif_set_ios,
1164 .get_cd = sh_mmcif_get_cd,
1165 };
1166
1167 static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host)
1168 {
1169 struct mmc_command *cmd = host->mrq->cmd;
1170 struct mmc_data *data = host->mrq->data;
1171 struct device *dev = sh_mmcif_host_to_dev(host);
1172 long time;
1173
1174 if (host->sd_error) {
1175 switch (cmd->opcode) {
1176 case MMC_ALL_SEND_CID:
1177 case MMC_SELECT_CARD:
1178 case MMC_APP_CMD:
1179 cmd->error = -ETIMEDOUT;
1180 break;
1181 default:
1182 cmd->error = sh_mmcif_error_manage(host);
1183 break;
1184 }
1185 dev_dbg(dev, "CMD%d error %d\n",
1186 cmd->opcode, cmd->error);
1187 host->sd_error = false;
1188 return false;
1189 }
1190 if (!(cmd->flags & MMC_RSP_PRESENT)) {
1191 cmd->error = 0;
1192 return false;
1193 }
1194
1195 sh_mmcif_get_response(host, cmd);
1196
1197 if (!data)
1198 return false;
1199
1200 /*
1201 * Completion can be signalled from DMA callback and error, so, have to
1202 * reset here, before setting .dma_active
1203 */
1204 init_completion(&host->dma_complete);
1205
1206 if (data->flags & MMC_DATA_READ) {
1207 if (host->chan_rx)
1208 sh_mmcif_start_dma_rx(host);
1209 } else {
1210 if (host->chan_tx)
1211 sh_mmcif_start_dma_tx(host);
1212 }
1213
1214 if (!host->dma_active) {
1215 data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode);
1216 return !data->error;
1217 }
1218
1219 /* Running in the IRQ thread, can sleep */
1220 time = wait_for_completion_interruptible_timeout(&host->dma_complete,
1221 host->timeout);
1222
1223 if (data->flags & MMC_DATA_READ)
1224 dma_unmap_sg(host->chan_rx->device->dev,
1225 data->sg, data->sg_len,
1226 DMA_FROM_DEVICE);
1227 else
1228 dma_unmap_sg(host->chan_tx->device->dev,
1229 data->sg, data->sg_len,
1230 DMA_TO_DEVICE);
1231
1232 if (host->sd_error) {
1233 dev_err(host->mmc->parent,
1234 "Error IRQ while waiting for DMA completion!\n");
1235 /* Woken up by an error IRQ: abort DMA */
1236 data->error = sh_mmcif_error_manage(host);
1237 } else if (!time) {
1238 dev_err(host->mmc->parent, "DMA timeout!\n");
1239 data->error = -ETIMEDOUT;
1240 } else if (time < 0) {
1241 dev_err(host->mmc->parent,
1242 "wait_for_completion_...() error %ld!\n", time);
1243 data->error = time;
1244 }
1245 sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC,
1246 BUF_ACC_DMAREN | BUF_ACC_DMAWEN);
1247 host->dma_active = false;
1248
1249 if (data->error) {
1250 data->bytes_xfered = 0;
1251 /* Abort DMA */
1252 if (data->flags & MMC_DATA_READ)
1253 dmaengine_terminate_all(host->chan_rx);
1254 else
1255 dmaengine_terminate_all(host->chan_tx);
1256 }
1257
1258 return false;
1259 }
1260
1261 static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id)
1262 {
1263 struct sh_mmcif_host *host = dev_id;
1264 struct mmc_request *mrq;
1265 struct device *dev = sh_mmcif_host_to_dev(host);
1266 bool wait = false;
1267 unsigned long flags;
1268 int wait_work;
1269
1270 spin_lock_irqsave(&host->lock, flags);
1271 wait_work = host->wait_for;
1272 spin_unlock_irqrestore(&host->lock, flags);
1273
1274 cancel_delayed_work_sync(&host->timeout_work);
1275
1276 mutex_lock(&host->thread_lock);
1277
1278 mrq = host->mrq;
1279 if (!mrq) {
1280 dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n",
1281 host->state, host->wait_for);
1282 mutex_unlock(&host->thread_lock);
1283 return IRQ_HANDLED;
1284 }
1285
1286 /*
1287 * All handlers return true, if processing continues, and false, if the
1288 * request has to be completed - successfully or not
1289 */
1290 switch (wait_work) {
1291 case MMCIF_WAIT_FOR_REQUEST:
1292 /* We're too late, the timeout has already kicked in */
1293 mutex_unlock(&host->thread_lock);
1294 return IRQ_HANDLED;
1295 case MMCIF_WAIT_FOR_CMD:
1296 /* Wait for data? */
1297 wait = sh_mmcif_end_cmd(host);
1298 break;
1299 case MMCIF_WAIT_FOR_MREAD:
1300 /* Wait for more data? */
1301 wait = sh_mmcif_mread_block(host);
1302 break;
1303 case MMCIF_WAIT_FOR_READ:
1304 /* Wait for data end? */
1305 wait = sh_mmcif_read_block(host);
1306 break;
1307 case MMCIF_WAIT_FOR_MWRITE:
1308 /* Wait data to write? */
1309 wait = sh_mmcif_mwrite_block(host);
1310 break;
1311 case MMCIF_WAIT_FOR_WRITE:
1312 /* Wait for data end? */
1313 wait = sh_mmcif_write_block(host);
1314 break;
1315 case MMCIF_WAIT_FOR_STOP:
1316 if (host->sd_error) {
1317 mrq->stop->error = sh_mmcif_error_manage(host);
1318 dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error);
1319 break;
1320 }
1321 sh_mmcif_get_cmd12response(host, mrq->stop);
1322 mrq->stop->error = 0;
1323 break;
1324 case MMCIF_WAIT_FOR_READ_END:
1325 case MMCIF_WAIT_FOR_WRITE_END:
1326 if (host->sd_error) {
1327 mrq->data->error = sh_mmcif_error_manage(host);
1328 dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error);
1329 }
1330 break;
1331 default:
1332 BUG();
1333 }
1334
1335 if (wait) {
1336 schedule_delayed_work(&host->timeout_work, host->timeout);
1337 /* Wait for more data */
1338 mutex_unlock(&host->thread_lock);
1339 return IRQ_HANDLED;
1340 }
1341
1342 if (host->wait_for != MMCIF_WAIT_FOR_STOP) {
1343 struct mmc_data *data = mrq->data;
1344 if (!mrq->cmd->error && data && !data->error)
1345 data->bytes_xfered =
1346 data->blocks * data->blksz;
1347
1348 if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) {
1349 sh_mmcif_stop_cmd(host, mrq);
1350 if (!mrq->stop->error) {
1351 schedule_delayed_work(&host->timeout_work, host->timeout);
1352 mutex_unlock(&host->thread_lock);
1353 return IRQ_HANDLED;
1354 }
1355 }
1356 }
1357
1358 host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1359 host->state = STATE_IDLE;
1360 host->mrq = NULL;
1361 mmc_request_done(host->mmc, mrq);
1362
1363 mutex_unlock(&host->thread_lock);
1364
1365 return IRQ_HANDLED;
1366 }
1367
1368 static irqreturn_t sh_mmcif_intr(int irq, void *dev_id)
1369 {
1370 struct sh_mmcif_host *host = dev_id;
1371 struct device *dev = sh_mmcif_host_to_dev(host);
1372 u32 state, mask;
1373
1374 state = sh_mmcif_readl(host->addr, MMCIF_CE_INT);
1375 mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK);
1376 if (host->ccs_enable)
1377 sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask));
1378 else
1379 sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask));
1380 sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN);
1381
1382 if (state & ~MASK_CLEAN)
1383 dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n",
1384 state);
1385
1386 if (state & INT_ERR_STS || state & ~INT_ALL) {
1387 host->sd_error = true;
1388 dev_dbg(dev, "int err state = 0x%08x\n", state);
1389 }
1390 if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) {
1391 if (!host->mrq)
1392 dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state);
1393 if (!host->dma_active)
1394 return IRQ_WAKE_THREAD;
1395 else if (host->sd_error)
1396 sh_mmcif_dma_complete(host);
1397 } else {
1398 dev_dbg(dev, "Unexpected IRQ 0x%x\n", state);
1399 }
1400
1401 return IRQ_HANDLED;
1402 }
1403
1404 static void sh_mmcif_timeout_work(struct work_struct *work)
1405 {
1406 struct delayed_work *d = container_of(work, struct delayed_work, work);
1407 struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work);
1408 struct mmc_request *mrq = host->mrq;
1409 struct device *dev = sh_mmcif_host_to_dev(host);
1410 unsigned long flags;
1411
1412 if (host->dying)
1413 /* Don't run after mmc_remove_host() */
1414 return;
1415
1416 spin_lock_irqsave(&host->lock, flags);
1417 if (host->state == STATE_IDLE) {
1418 spin_unlock_irqrestore(&host->lock, flags);
1419 return;
1420 }
1421
1422 dev_err(dev, "Timeout waiting for %u on CMD%u\n",
1423 host->wait_for, mrq->cmd->opcode);
1424
1425 host->state = STATE_TIMEOUT;
1426 spin_unlock_irqrestore(&host->lock, flags);
1427
1428 /*
1429 * Handle races with cancel_delayed_work(), unless
1430 * cancel_delayed_work_sync() is used
1431 */
1432 switch (host->wait_for) {
1433 case MMCIF_WAIT_FOR_CMD:
1434 mrq->cmd->error = sh_mmcif_error_manage(host);
1435 break;
1436 case MMCIF_WAIT_FOR_STOP:
1437 mrq->stop->error = sh_mmcif_error_manage(host);
1438 break;
1439 case MMCIF_WAIT_FOR_MREAD:
1440 case MMCIF_WAIT_FOR_MWRITE:
1441 case MMCIF_WAIT_FOR_READ:
1442 case MMCIF_WAIT_FOR_WRITE:
1443 case MMCIF_WAIT_FOR_READ_END:
1444 case MMCIF_WAIT_FOR_WRITE_END:
1445 mrq->data->error = sh_mmcif_error_manage(host);
1446 break;
1447 default:
1448 BUG();
1449 }
1450
1451 host->state = STATE_IDLE;
1452 host->wait_for = MMCIF_WAIT_FOR_REQUEST;
1453 host->mrq = NULL;
1454 mmc_request_done(host->mmc, mrq);
1455 }
1456
1457 static void sh_mmcif_init_ocr(struct sh_mmcif_host *host)
1458 {
1459 struct device *dev = sh_mmcif_host_to_dev(host);
1460 struct sh_mmcif_plat_data *pd = dev->platform_data;
1461 struct mmc_host *mmc = host->mmc;
1462
1463 mmc_regulator_get_supply(mmc);
1464
1465 if (!pd)
1466 return;
1467
1468 if (!mmc->ocr_avail)
1469 mmc->ocr_avail = pd->ocr;
1470 else if (pd->ocr)
1471 dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n");
1472 }
1473
1474 static int sh_mmcif_probe(struct platform_device *pdev)
1475 {
1476 int ret = 0, irq[2];
1477 struct mmc_host *mmc;
1478 struct sh_mmcif_host *host;
1479 struct device *dev = &pdev->dev;
1480 struct sh_mmcif_plat_data *pd = dev->platform_data;
1481 struct resource *res;
1482 void __iomem *reg;
1483 const char *name;
1484
1485 irq[0] = platform_get_irq(pdev, 0);
1486 irq[1] = platform_get_irq(pdev, 1);
1487 if (irq[0] < 0) {
1488 dev_err(dev, "Get irq error\n");
1489 return -ENXIO;
1490 }
1491
1492 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1493 reg = devm_ioremap_resource(dev, res);
1494 if (IS_ERR(reg))
1495 return PTR_ERR(reg);
1496
1497 mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev);
1498 if (!mmc)
1499 return -ENOMEM;
1500
1501 ret = mmc_of_parse(mmc);
1502 if (ret < 0)
1503 goto err_host;
1504
1505 host = mmc_priv(mmc);
1506 host->mmc = mmc;
1507 host->addr = reg;
1508 host->timeout = msecs_to_jiffies(10000);
1509 host->ccs_enable = !pd || !pd->ccs_unsupported;
1510 host->clk_ctrl2_enable = pd && pd->clk_ctrl2_present;
1511
1512 host->pd = pdev;
1513
1514 spin_lock_init(&host->lock);
1515
1516 mmc->ops = &sh_mmcif_ops;
1517 sh_mmcif_init_ocr(host);
1518
1519 mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY;
1520 if (pd && pd->caps)
1521 mmc->caps |= pd->caps;
1522 mmc->max_segs = 32;
1523 mmc->max_blk_size = 512;
1524 mmc->max_req_size = PAGE_CACHE_SIZE * mmc->max_segs;
1525 mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size;
1526 mmc->max_seg_size = mmc->max_req_size;
1527
1528 platform_set_drvdata(pdev, host);
1529
1530 pm_runtime_enable(dev);
1531 host->power = false;
1532
1533 host->clk = devm_clk_get(dev, NULL);
1534 if (IS_ERR(host->clk)) {
1535 ret = PTR_ERR(host->clk);
1536 dev_err(dev, "cannot get clock: %d\n", ret);
1537 goto err_pm;
1538 }
1539
1540 ret = clk_prepare_enable(host->clk);
1541 if (ret < 0)
1542 goto err_pm;
1543
1544 sh_mmcif_clk_setup(host);
1545
1546 ret = pm_runtime_resume(dev);
1547 if (ret < 0)
1548 goto err_clk;
1549
1550 INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work);
1551
1552 sh_mmcif_sync_reset(host);
1553 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1554
1555 name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error";
1556 ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr,
1557 sh_mmcif_irqt, 0, name, host);
1558 if (ret) {
1559 dev_err(dev, "request_irq error (%s)\n", name);
1560 goto err_clk;
1561 }
1562 if (irq[1] >= 0) {
1563 ret = devm_request_threaded_irq(dev, irq[1],
1564 sh_mmcif_intr, sh_mmcif_irqt,
1565 0, "sh_mmc:int", host);
1566 if (ret) {
1567 dev_err(dev, "request_irq error (sh_mmc:int)\n");
1568 goto err_clk;
1569 }
1570 }
1571
1572 if (pd && pd->use_cd_gpio) {
1573 ret = mmc_gpio_request_cd(mmc, pd->cd_gpio, 0);
1574 if (ret < 0)
1575 goto err_clk;
1576 }
1577
1578 mutex_init(&host->thread_lock);
1579
1580 ret = mmc_add_host(mmc);
1581 if (ret < 0)
1582 goto err_clk;
1583
1584 dev_pm_qos_expose_latency_limit(dev, 100);
1585
1586 dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n",
1587 sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff,
1588 clk_get_rate(host->clk) / 1000000UL);
1589
1590 clk_disable_unprepare(host->clk);
1591 return ret;
1592
1593 err_clk:
1594 clk_disable_unprepare(host->clk);
1595 err_pm:
1596 pm_runtime_disable(dev);
1597 err_host:
1598 mmc_free_host(mmc);
1599 return ret;
1600 }
1601
1602 static int sh_mmcif_remove(struct platform_device *pdev)
1603 {
1604 struct sh_mmcif_host *host = platform_get_drvdata(pdev);
1605
1606 host->dying = true;
1607 clk_prepare_enable(host->clk);
1608 pm_runtime_get_sync(&pdev->dev);
1609
1610 dev_pm_qos_hide_latency_limit(&pdev->dev);
1611
1612 mmc_remove_host(host->mmc);
1613 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1614
1615 /*
1616 * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the
1617 * mmc_remove_host() call above. But swapping order doesn't help either
1618 * (a query on the linux-mmc mailing list didn't bring any replies).
1619 */
1620 cancel_delayed_work_sync(&host->timeout_work);
1621
1622 clk_disable_unprepare(host->clk);
1623 mmc_free_host(host->mmc);
1624 pm_runtime_put_sync(&pdev->dev);
1625 pm_runtime_disable(&pdev->dev);
1626
1627 return 0;
1628 }
1629
1630 #ifdef CONFIG_PM_SLEEP
1631 static int sh_mmcif_suspend(struct device *dev)
1632 {
1633 struct sh_mmcif_host *host = dev_get_drvdata(dev);
1634
1635 pm_runtime_get_sync(dev);
1636 sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL);
1637 pm_runtime_put(dev);
1638
1639 return 0;
1640 }
1641
1642 static int sh_mmcif_resume(struct device *dev)
1643 {
1644 return 0;
1645 }
1646 #endif
1647
1648 static const struct dev_pm_ops sh_mmcif_dev_pm_ops = {
1649 SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume)
1650 };
1651
1652 static struct platform_driver sh_mmcif_driver = {
1653 .probe = sh_mmcif_probe,
1654 .remove = sh_mmcif_remove,
1655 .driver = {
1656 .name = DRIVER_NAME,
1657 .pm = &sh_mmcif_dev_pm_ops,
1658 .of_match_table = sh_mmcif_of_match,
1659 },
1660 };
1661
1662 module_platform_driver(sh_mmcif_driver);
1663
1664 MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver");
1665 MODULE_LICENSE("GPL");
1666 MODULE_ALIAS("platform:" DRIVER_NAME);
1667 MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");
This page took 0.10671 seconds and 6 git commands to generate.