a482e8922de102c15b514f3d672ad074a585c290
[deliverable/linux.git] / drivers / mtd / chips / cfi_cmdset_0002.c
1 /*
2 * Common Flash Interface support:
3 * AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
4 *
5 * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
6 * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
7 * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
8 *
9 * 2_by_8 routines added by Simon Munton
10 *
11 * 4_by_16 work by Carolyn J. Smith
12 *
13 * XIP support hooks by Vitaly Wool (based on code for Intel flash
14 * by Nicolas Pitre)
15 *
16 * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
17 *
18 * This code is GPL
19 *
20 * $Id: cfi_cmdset_0002.c,v 1.122 2005/11/07 11:14:22 gleixner Exp $
21 *
22 */
23
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/kernel.h>
27 #include <linux/sched.h>
28 #include <linux/init.h>
29 #include <asm/io.h>
30 #include <asm/byteorder.h>
31
32 #include <linux/errno.h>
33 #include <linux/slab.h>
34 #include <linux/delay.h>
35 #include <linux/interrupt.h>
36 #include <linux/mtd/compatmac.h>
37 #include <linux/mtd/map.h>
38 #include <linux/mtd/mtd.h>
39 #include <linux/mtd/cfi.h>
40 #include <linux/mtd/xip.h>
41
42 #define AMD_BOOTLOC_BUG
43 #define FORCE_WORD_WRITE 0
44
45 #define MAX_WORD_RETRIES 3
46
47 #define MANUFACTURER_AMD 0x0001
48 #define MANUFACTURER_ATMEL 0x001F
49 #define MANUFACTURER_SST 0x00BF
50 #define SST49LF004B 0x0060
51 #define SST49LF008A 0x005a
52 #define AT49BV6416 0x00d6
53
54 static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
55 static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
56 static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
57 static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
58 static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
59 static void cfi_amdstd_sync (struct mtd_info *);
60 static int cfi_amdstd_suspend (struct mtd_info *);
61 static void cfi_amdstd_resume (struct mtd_info *);
62 static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
63
64 static void cfi_amdstd_destroy(struct mtd_info *);
65
66 struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
67 static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
68
69 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
70 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
71 #include "fwh_lock.h"
72
73 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, size_t len);
74 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, size_t len);
75
76 static struct mtd_chip_driver cfi_amdstd_chipdrv = {
77 .probe = NULL, /* Not usable directly */
78 .destroy = cfi_amdstd_destroy,
79 .name = "cfi_cmdset_0002",
80 .module = THIS_MODULE
81 };
82
83
84 /* #define DEBUG_CFI_FEATURES */
85
86
87 #ifdef DEBUG_CFI_FEATURES
88 static void cfi_tell_features(struct cfi_pri_amdstd *extp)
89 {
90 const char* erase_suspend[3] = {
91 "Not supported", "Read only", "Read/write"
92 };
93 const char* top_bottom[6] = {
94 "No WP", "8x8KiB sectors at top & bottom, no WP",
95 "Bottom boot", "Top boot",
96 "Uniform, Bottom WP", "Uniform, Top WP"
97 };
98
99 printk(" Silicon revision: %d\n", extp->SiliconRevision >> 1);
100 printk(" Address sensitive unlock: %s\n",
101 (extp->SiliconRevision & 1) ? "Not required" : "Required");
102
103 if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
104 printk(" Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
105 else
106 printk(" Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
107
108 if (extp->BlkProt == 0)
109 printk(" Block protection: Not supported\n");
110 else
111 printk(" Block protection: %d sectors per group\n", extp->BlkProt);
112
113
114 printk(" Temporary block unprotect: %s\n",
115 extp->TmpBlkUnprotect ? "Supported" : "Not supported");
116 printk(" Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
117 printk(" Number of simultaneous operations: %d\n", extp->SimultaneousOps);
118 printk(" Burst mode: %s\n",
119 extp->BurstMode ? "Supported" : "Not supported");
120 if (extp->PageMode == 0)
121 printk(" Page mode: Not supported\n");
122 else
123 printk(" Page mode: %d word page\n", extp->PageMode << 2);
124
125 printk(" Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
126 extp->VppMin >> 4, extp->VppMin & 0xf);
127 printk(" Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
128 extp->VppMax >> 4, extp->VppMax & 0xf);
129
130 if (extp->TopBottom < ARRAY_SIZE(top_bottom))
131 printk(" Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
132 else
133 printk(" Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
134 }
135 #endif
136
137 #ifdef AMD_BOOTLOC_BUG
138 /* Wheee. Bring me the head of someone at AMD. */
139 static void fixup_amd_bootblock(struct mtd_info *mtd, void* param)
140 {
141 struct map_info *map = mtd->priv;
142 struct cfi_private *cfi = map->fldrv_priv;
143 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
144 __u8 major = extp->MajorVersion;
145 __u8 minor = extp->MinorVersion;
146
147 if (((major << 8) | minor) < 0x3131) {
148 /* CFI version 1.0 => don't trust bootloc */
149 if (cfi->id & 0x80) {
150 printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
151 extp->TopBottom = 3; /* top boot */
152 } else {
153 extp->TopBottom = 2; /* bottom boot */
154 }
155 }
156 }
157 #endif
158
159 static void fixup_use_write_buffers(struct mtd_info *mtd, void *param)
160 {
161 struct map_info *map = mtd->priv;
162 struct cfi_private *cfi = map->fldrv_priv;
163 if (cfi->cfiq->BufWriteTimeoutTyp) {
164 DEBUG(MTD_DEBUG_LEVEL1, "Using buffer write method\n" );
165 mtd->write = cfi_amdstd_write_buffers;
166 }
167 }
168
169 /* Atmel chips don't use the same PRI format as AMD chips */
170 static void fixup_convert_atmel_pri(struct mtd_info *mtd, void *param)
171 {
172 struct map_info *map = mtd->priv;
173 struct cfi_private *cfi = map->fldrv_priv;
174 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
175 struct cfi_pri_atmel atmel_pri;
176
177 memcpy(&atmel_pri, extp, sizeof(atmel_pri));
178 memset((char *)extp + 5, 0, sizeof(*extp) - 5);
179
180 if (atmel_pri.Features & 0x02)
181 extp->EraseSuspend = 2;
182
183 if (atmel_pri.BottomBoot)
184 extp->TopBottom = 2;
185 else
186 extp->TopBottom = 3;
187 }
188
189 static void fixup_use_secsi(struct mtd_info *mtd, void *param)
190 {
191 /* Setup for chips with a secsi area */
192 mtd->read_user_prot_reg = cfi_amdstd_secsi_read;
193 mtd->read_fact_prot_reg = cfi_amdstd_secsi_read;
194 }
195
196 static void fixup_use_erase_chip(struct mtd_info *mtd, void *param)
197 {
198 struct map_info *map = mtd->priv;
199 struct cfi_private *cfi = map->fldrv_priv;
200 if ((cfi->cfiq->NumEraseRegions == 1) &&
201 ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
202 mtd->erase = cfi_amdstd_erase_chip;
203 }
204
205 }
206
207 /*
208 * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
209 * locked by default.
210 */
211 static void fixup_use_atmel_lock(struct mtd_info *mtd, void *param)
212 {
213 mtd->lock = cfi_atmel_lock;
214 mtd->unlock = cfi_atmel_unlock;
215 }
216
217 static struct cfi_fixup cfi_fixup_table[] = {
218 #ifdef AMD_BOOTLOC_BUG
219 { CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock, NULL },
220 #endif
221 { CFI_MFR_AMD, 0x0050, fixup_use_secsi, NULL, },
222 { CFI_MFR_AMD, 0x0053, fixup_use_secsi, NULL, },
223 { CFI_MFR_AMD, 0x0055, fixup_use_secsi, NULL, },
224 { CFI_MFR_AMD, 0x0056, fixup_use_secsi, NULL, },
225 { CFI_MFR_AMD, 0x005C, fixup_use_secsi, NULL, },
226 { CFI_MFR_AMD, 0x005F, fixup_use_secsi, NULL, },
227 #if !FORCE_WORD_WRITE
228 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers, NULL, },
229 #endif
230 { CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri, NULL },
231 { 0, 0, NULL, NULL }
232 };
233 static struct cfi_fixup jedec_fixup_table[] = {
234 { MANUFACTURER_SST, SST49LF004B, fixup_use_fwh_lock, NULL, },
235 { MANUFACTURER_SST, SST49LF008A, fixup_use_fwh_lock, NULL, },
236 { 0, 0, NULL, NULL }
237 };
238
239 static struct cfi_fixup fixup_table[] = {
240 /* The CFI vendor ids and the JEDEC vendor IDs appear
241 * to be common. It is like the devices id's are as
242 * well. This table is to pick all cases where
243 * we know that is the case.
244 */
245 { CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip, NULL },
246 { CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock, NULL },
247 { 0, 0, NULL, NULL }
248 };
249
250
251 struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
252 {
253 struct cfi_private *cfi = map->fldrv_priv;
254 struct mtd_info *mtd;
255 int i;
256
257 mtd = kmalloc(sizeof(*mtd), GFP_KERNEL);
258 if (!mtd) {
259 printk(KERN_WARNING "Failed to allocate memory for MTD device\n");
260 return NULL;
261 }
262 memset(mtd, 0, sizeof(*mtd));
263 mtd->priv = map;
264 mtd->type = MTD_NORFLASH;
265
266 /* Fill in the default mtd operations */
267 mtd->erase = cfi_amdstd_erase_varsize;
268 mtd->write = cfi_amdstd_write_words;
269 mtd->read = cfi_amdstd_read;
270 mtd->sync = cfi_amdstd_sync;
271 mtd->suspend = cfi_amdstd_suspend;
272 mtd->resume = cfi_amdstd_resume;
273 mtd->flags = MTD_CAP_NORFLASH;
274 mtd->name = map->name;
275 mtd->writesize = 1;
276
277 if (cfi->cfi_mode==CFI_MODE_CFI){
278 unsigned char bootloc;
279 /*
280 * It's a real CFI chip, not one for which the probe
281 * routine faked a CFI structure. So we read the feature
282 * table from it.
283 */
284 __u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
285 struct cfi_pri_amdstd *extp;
286
287 extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
288 if (!extp) {
289 kfree(mtd);
290 return NULL;
291 }
292
293 if (extp->MajorVersion != '1' ||
294 (extp->MinorVersion < '0' || extp->MinorVersion > '4')) {
295 printk(KERN_ERR " Unknown Amd/Fujitsu Extended Query "
296 "version %c.%c.\n", extp->MajorVersion,
297 extp->MinorVersion);
298 kfree(extp);
299 kfree(mtd);
300 return NULL;
301 }
302
303 /* Install our own private info structure */
304 cfi->cmdset_priv = extp;
305
306 /* Apply cfi device specific fixups */
307 cfi_fixup(mtd, cfi_fixup_table);
308
309 #ifdef DEBUG_CFI_FEATURES
310 /* Tell the user about it in lots of lovely detail */
311 cfi_tell_features(extp);
312 #endif
313
314 bootloc = extp->TopBottom;
315 if ((bootloc != 2) && (bootloc != 3)) {
316 printk(KERN_WARNING "%s: CFI does not contain boot "
317 "bank location. Assuming top.\n", map->name);
318 bootloc = 2;
319 }
320
321 if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
322 printk(KERN_WARNING "%s: Swapping erase regions for broken CFI table.\n", map->name);
323
324 for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
325 int j = (cfi->cfiq->NumEraseRegions-1)-i;
326 __u32 swap;
327
328 swap = cfi->cfiq->EraseRegionInfo[i];
329 cfi->cfiq->EraseRegionInfo[i] = cfi->cfiq->EraseRegionInfo[j];
330 cfi->cfiq->EraseRegionInfo[j] = swap;
331 }
332 }
333 /* Set the default CFI lock/unlock addresses */
334 cfi->addr_unlock1 = 0x555;
335 cfi->addr_unlock2 = 0x2aa;
336 /* Modify the unlock address if we are in compatibility mode */
337 if ( /* x16 in x8 mode */
338 ((cfi->device_type == CFI_DEVICETYPE_X8) &&
339 (cfi->cfiq->InterfaceDesc == 2)) ||
340 /* x32 in x16 mode */
341 ((cfi->device_type == CFI_DEVICETYPE_X16) &&
342 (cfi->cfiq->InterfaceDesc == 4)))
343 {
344 cfi->addr_unlock1 = 0xaaa;
345 cfi->addr_unlock2 = 0x555;
346 }
347
348 } /* CFI mode */
349 else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
350 /* Apply jedec specific fixups */
351 cfi_fixup(mtd, jedec_fixup_table);
352 }
353 /* Apply generic fixups */
354 cfi_fixup(mtd, fixup_table);
355
356 for (i=0; i< cfi->numchips; i++) {
357 cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
358 cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
359 cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
360 }
361
362 map->fldrv = &cfi_amdstd_chipdrv;
363
364 return cfi_amdstd_setup(mtd);
365 }
366 EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
367
368 static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
369 {
370 struct map_info *map = mtd->priv;
371 struct cfi_private *cfi = map->fldrv_priv;
372 unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
373 unsigned long offset = 0;
374 int i,j;
375
376 printk(KERN_NOTICE "number of %s chips: %d\n",
377 (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
378 /* Select the correct geometry setup */
379 mtd->size = devsize * cfi->numchips;
380
381 mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
382 mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
383 * mtd->numeraseregions, GFP_KERNEL);
384 if (!mtd->eraseregions) {
385 printk(KERN_WARNING "Failed to allocate memory for MTD erase region info\n");
386 goto setup_err;
387 }
388
389 for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
390 unsigned long ernum, ersize;
391 ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
392 ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
393
394 if (mtd->erasesize < ersize) {
395 mtd->erasesize = ersize;
396 }
397 for (j=0; j<cfi->numchips; j++) {
398 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
399 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
400 mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
401 }
402 offset += (ersize * ernum);
403 }
404 if (offset != devsize) {
405 /* Argh */
406 printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
407 goto setup_err;
408 }
409 #if 0
410 // debug
411 for (i=0; i<mtd->numeraseregions;i++){
412 printk("%d: offset=0x%x,size=0x%x,blocks=%d\n",
413 i,mtd->eraseregions[i].offset,
414 mtd->eraseregions[i].erasesize,
415 mtd->eraseregions[i].numblocks);
416 }
417 #endif
418
419 /* FIXME: erase-suspend-program is broken. See
420 http://lists.infradead.org/pipermail/linux-mtd/2003-December/009001.html */
421 printk(KERN_NOTICE "cfi_cmdset_0002: Disabling erase-suspend-program due to code brokenness.\n");
422
423 __module_get(THIS_MODULE);
424 return mtd;
425
426 setup_err:
427 if(mtd) {
428 kfree(mtd->eraseregions);
429 kfree(mtd);
430 }
431 kfree(cfi->cmdset_priv);
432 kfree(cfi->cfiq);
433 return NULL;
434 }
435
436 /*
437 * Return true if the chip is ready.
438 *
439 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
440 * non-suspended sector) and is indicated by no toggle bits toggling.
441 *
442 * Note that anything more complicated than checking if no bits are toggling
443 * (including checking DQ5 for an error status) is tricky to get working
444 * correctly and is therefore not done (particulary with interleaved chips
445 * as each chip must be checked independantly of the others).
446 */
447 static int __xipram chip_ready(struct map_info *map, unsigned long addr)
448 {
449 map_word d, t;
450
451 d = map_read(map, addr);
452 t = map_read(map, addr);
453
454 return map_word_equal(map, d, t);
455 }
456
457 /*
458 * Return true if the chip is ready and has the correct value.
459 *
460 * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
461 * non-suspended sector) and it is indicated by no bits toggling.
462 *
463 * Error are indicated by toggling bits or bits held with the wrong value,
464 * or with bits toggling.
465 *
466 * Note that anything more complicated than checking if no bits are toggling
467 * (including checking DQ5 for an error status) is tricky to get working
468 * correctly and is therefore not done (particulary with interleaved chips
469 * as each chip must be checked independantly of the others).
470 *
471 */
472 static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected)
473 {
474 map_word oldd, curd;
475
476 oldd = map_read(map, addr);
477 curd = map_read(map, addr);
478
479 return map_word_equal(map, oldd, curd) &&
480 map_word_equal(map, curd, expected);
481 }
482
483 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
484 {
485 DECLARE_WAITQUEUE(wait, current);
486 struct cfi_private *cfi = map->fldrv_priv;
487 unsigned long timeo;
488 struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
489
490 resettime:
491 timeo = jiffies + HZ;
492 retry:
493 switch (chip->state) {
494
495 case FL_STATUS:
496 for (;;) {
497 if (chip_ready(map, adr))
498 break;
499
500 if (time_after(jiffies, timeo)) {
501 printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
502 spin_unlock(chip->mutex);
503 return -EIO;
504 }
505 spin_unlock(chip->mutex);
506 cfi_udelay(1);
507 spin_lock(chip->mutex);
508 /* Someone else might have been playing with it. */
509 goto retry;
510 }
511
512 case FL_READY:
513 case FL_CFI_QUERY:
514 case FL_JEDEC_QUERY:
515 return 0;
516
517 case FL_ERASING:
518 if (mode == FL_WRITING) /* FIXME: Erase-suspend-program appears broken. */
519 goto sleep;
520
521 if (!(mode == FL_READY || mode == FL_POINT
522 || !cfip
523 || (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))
524 || (mode == FL_WRITING && (cfip->EraseSuspend & 0x1))))
525 goto sleep;
526
527 /* We could check to see if we're trying to access the sector
528 * that is currently being erased. However, no user will try
529 * anything like that so we just wait for the timeout. */
530
531 /* Erase suspend */
532 /* It's harmless to issue the Erase-Suspend and Erase-Resume
533 * commands when the erase algorithm isn't in progress. */
534 map_write(map, CMD(0xB0), chip->in_progress_block_addr);
535 chip->oldstate = FL_ERASING;
536 chip->state = FL_ERASE_SUSPENDING;
537 chip->erase_suspended = 1;
538 for (;;) {
539 if (chip_ready(map, adr))
540 break;
541
542 if (time_after(jiffies, timeo)) {
543 /* Should have suspended the erase by now.
544 * Send an Erase-Resume command as either
545 * there was an error (so leave the erase
546 * routine to recover from it) or we trying to
547 * use the erase-in-progress sector. */
548 map_write(map, CMD(0x30), chip->in_progress_block_addr);
549 chip->state = FL_ERASING;
550 chip->oldstate = FL_READY;
551 printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
552 return -EIO;
553 }
554
555 spin_unlock(chip->mutex);
556 cfi_udelay(1);
557 spin_lock(chip->mutex);
558 /* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
559 So we can just loop here. */
560 }
561 chip->state = FL_READY;
562 return 0;
563
564 case FL_XIP_WHILE_ERASING:
565 if (mode != FL_READY && mode != FL_POINT &&
566 (!cfip || !(cfip->EraseSuspend&2)))
567 goto sleep;
568 chip->oldstate = chip->state;
569 chip->state = FL_READY;
570 return 0;
571
572 case FL_POINT:
573 /* Only if there's no operation suspended... */
574 if (mode == FL_READY && chip->oldstate == FL_READY)
575 return 0;
576
577 default:
578 sleep:
579 set_current_state(TASK_UNINTERRUPTIBLE);
580 add_wait_queue(&chip->wq, &wait);
581 spin_unlock(chip->mutex);
582 schedule();
583 remove_wait_queue(&chip->wq, &wait);
584 spin_lock(chip->mutex);
585 goto resettime;
586 }
587 }
588
589
590 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
591 {
592 struct cfi_private *cfi = map->fldrv_priv;
593
594 switch(chip->oldstate) {
595 case FL_ERASING:
596 chip->state = chip->oldstate;
597 map_write(map, CMD(0x30), chip->in_progress_block_addr);
598 chip->oldstate = FL_READY;
599 chip->state = FL_ERASING;
600 break;
601
602 case FL_XIP_WHILE_ERASING:
603 chip->state = chip->oldstate;
604 chip->oldstate = FL_READY;
605 break;
606
607 case FL_READY:
608 case FL_STATUS:
609 /* We should really make set_vpp() count, rather than doing this */
610 DISABLE_VPP(map);
611 break;
612 default:
613 printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
614 }
615 wake_up(&chip->wq);
616 }
617
618 #ifdef CONFIG_MTD_XIP
619
620 /*
621 * No interrupt what so ever can be serviced while the flash isn't in array
622 * mode. This is ensured by the xip_disable() and xip_enable() functions
623 * enclosing any code path where the flash is known not to be in array mode.
624 * And within a XIP disabled code path, only functions marked with __xipram
625 * may be called and nothing else (it's a good thing to inspect generated
626 * assembly to make sure inline functions were actually inlined and that gcc
627 * didn't emit calls to its own support functions). Also configuring MTD CFI
628 * support to a single buswidth and a single interleave is also recommended.
629 */
630
631 static void xip_disable(struct map_info *map, struct flchip *chip,
632 unsigned long adr)
633 {
634 /* TODO: chips with no XIP use should ignore and return */
635 (void) map_read(map, adr); /* ensure mmu mapping is up to date */
636 local_irq_disable();
637 }
638
639 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
640 unsigned long adr)
641 {
642 struct cfi_private *cfi = map->fldrv_priv;
643
644 if (chip->state != FL_POINT && chip->state != FL_READY) {
645 map_write(map, CMD(0xf0), adr);
646 chip->state = FL_READY;
647 }
648 (void) map_read(map, adr);
649 xip_iprefetch();
650 local_irq_enable();
651 }
652
653 /*
654 * When a delay is required for the flash operation to complete, the
655 * xip_udelay() function is polling for both the given timeout and pending
656 * (but still masked) hardware interrupts. Whenever there is an interrupt
657 * pending then the flash erase operation is suspended, array mode restored
658 * and interrupts unmasked. Task scheduling might also happen at that
659 * point. The CPU eventually returns from the interrupt or the call to
660 * schedule() and the suspended flash operation is resumed for the remaining
661 * of the delay period.
662 *
663 * Warning: this function _will_ fool interrupt latency tracing tools.
664 */
665
666 static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
667 unsigned long adr, int usec)
668 {
669 struct cfi_private *cfi = map->fldrv_priv;
670 struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
671 map_word status, OK = CMD(0x80);
672 unsigned long suspended, start = xip_currtime();
673 flstate_t oldstate;
674
675 do {
676 cpu_relax();
677 if (xip_irqpending() && extp &&
678 ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
679 (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
680 /*
681 * Let's suspend the erase operation when supported.
682 * Note that we currently don't try to suspend
683 * interleaved chips if there is already another
684 * operation suspended (imagine what happens
685 * when one chip was already done with the current
686 * operation while another chip suspended it, then
687 * we resume the whole thing at once). Yes, it
688 * can happen!
689 */
690 map_write(map, CMD(0xb0), adr);
691 usec -= xip_elapsed_since(start);
692 suspended = xip_currtime();
693 do {
694 if (xip_elapsed_since(suspended) > 100000) {
695 /*
696 * The chip doesn't want to suspend
697 * after waiting for 100 msecs.
698 * This is a critical error but there
699 * is not much we can do here.
700 */
701 return;
702 }
703 status = map_read(map, adr);
704 } while (!map_word_andequal(map, status, OK, OK));
705
706 /* Suspend succeeded */
707 oldstate = chip->state;
708 if (!map_word_bitsset(map, status, CMD(0x40)))
709 break;
710 chip->state = FL_XIP_WHILE_ERASING;
711 chip->erase_suspended = 1;
712 map_write(map, CMD(0xf0), adr);
713 (void) map_read(map, adr);
714 asm volatile (".rep 8; nop; .endr");
715 local_irq_enable();
716 spin_unlock(chip->mutex);
717 asm volatile (".rep 8; nop; .endr");
718 cond_resched();
719
720 /*
721 * We're back. However someone else might have
722 * decided to go write to the chip if we are in
723 * a suspended erase state. If so let's wait
724 * until it's done.
725 */
726 spin_lock(chip->mutex);
727 while (chip->state != FL_XIP_WHILE_ERASING) {
728 DECLARE_WAITQUEUE(wait, current);
729 set_current_state(TASK_UNINTERRUPTIBLE);
730 add_wait_queue(&chip->wq, &wait);
731 spin_unlock(chip->mutex);
732 schedule();
733 remove_wait_queue(&chip->wq, &wait);
734 spin_lock(chip->mutex);
735 }
736 /* Disallow XIP again */
737 local_irq_disable();
738
739 /* Resume the write or erase operation */
740 map_write(map, CMD(0x30), adr);
741 chip->state = oldstate;
742 start = xip_currtime();
743 } else if (usec >= 1000000/HZ) {
744 /*
745 * Try to save on CPU power when waiting delay
746 * is at least a system timer tick period.
747 * No need to be extremely accurate here.
748 */
749 xip_cpu_idle();
750 }
751 status = map_read(map, adr);
752 } while (!map_word_andequal(map, status, OK, OK)
753 && xip_elapsed_since(start) < usec);
754 }
755
756 #define UDELAY(map, chip, adr, usec) xip_udelay(map, chip, adr, usec)
757
758 /*
759 * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
760 * the flash is actively programming or erasing since we have to poll for
761 * the operation to complete anyway. We can't do that in a generic way with
762 * a XIP setup so do it before the actual flash operation in this case
763 * and stub it out from INVALIDATE_CACHE_UDELAY.
764 */
765 #define XIP_INVAL_CACHED_RANGE(map, from, size) \
766 INVALIDATE_CACHED_RANGE(map, from, size)
767
768 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
769 UDELAY(map, chip, adr, usec)
770
771 /*
772 * Extra notes:
773 *
774 * Activating this XIP support changes the way the code works a bit. For
775 * example the code to suspend the current process when concurrent access
776 * happens is never executed because xip_udelay() will always return with the
777 * same chip state as it was entered with. This is why there is no care for
778 * the presence of add_wait_queue() or schedule() calls from within a couple
779 * xip_disable()'d areas of code, like in do_erase_oneblock for example.
780 * The queueing and scheduling are always happening within xip_udelay().
781 *
782 * Similarly, get_chip() and put_chip() just happen to always be executed
783 * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
784 * is in array mode, therefore never executing many cases therein and not
785 * causing any problem with XIP.
786 */
787
788 #else
789
790 #define xip_disable(map, chip, adr)
791 #define xip_enable(map, chip, adr)
792 #define XIP_INVAL_CACHED_RANGE(x...)
793
794 #define UDELAY(map, chip, adr, usec) \
795 do { \
796 spin_unlock(chip->mutex); \
797 cfi_udelay(usec); \
798 spin_lock(chip->mutex); \
799 } while (0)
800
801 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
802 do { \
803 spin_unlock(chip->mutex); \
804 INVALIDATE_CACHED_RANGE(map, adr, len); \
805 cfi_udelay(usec); \
806 spin_lock(chip->mutex); \
807 } while (0)
808
809 #endif
810
811 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
812 {
813 unsigned long cmd_addr;
814 struct cfi_private *cfi = map->fldrv_priv;
815 int ret;
816
817 adr += chip->start;
818
819 /* Ensure cmd read/writes are aligned. */
820 cmd_addr = adr & ~(map_bankwidth(map)-1);
821
822 spin_lock(chip->mutex);
823 ret = get_chip(map, chip, cmd_addr, FL_READY);
824 if (ret) {
825 spin_unlock(chip->mutex);
826 return ret;
827 }
828
829 if (chip->state != FL_POINT && chip->state != FL_READY) {
830 map_write(map, CMD(0xf0), cmd_addr);
831 chip->state = FL_READY;
832 }
833
834 map_copy_from(map, buf, adr, len);
835
836 put_chip(map, chip, cmd_addr);
837
838 spin_unlock(chip->mutex);
839 return 0;
840 }
841
842
843 static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
844 {
845 struct map_info *map = mtd->priv;
846 struct cfi_private *cfi = map->fldrv_priv;
847 unsigned long ofs;
848 int chipnum;
849 int ret = 0;
850
851 /* ofs: offset within the first chip that the first read should start */
852
853 chipnum = (from >> cfi->chipshift);
854 ofs = from - (chipnum << cfi->chipshift);
855
856
857 *retlen = 0;
858
859 while (len) {
860 unsigned long thislen;
861
862 if (chipnum >= cfi->numchips)
863 break;
864
865 if ((len + ofs -1) >> cfi->chipshift)
866 thislen = (1<<cfi->chipshift) - ofs;
867 else
868 thislen = len;
869
870 ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
871 if (ret)
872 break;
873
874 *retlen += thislen;
875 len -= thislen;
876 buf += thislen;
877
878 ofs = 0;
879 chipnum++;
880 }
881 return ret;
882 }
883
884
885 static inline int do_read_secsi_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
886 {
887 DECLARE_WAITQUEUE(wait, current);
888 unsigned long timeo = jiffies + HZ;
889 struct cfi_private *cfi = map->fldrv_priv;
890
891 retry:
892 spin_lock(chip->mutex);
893
894 if (chip->state != FL_READY){
895 #if 0
896 printk(KERN_DEBUG "Waiting for chip to read, status = %d\n", chip->state);
897 #endif
898 set_current_state(TASK_UNINTERRUPTIBLE);
899 add_wait_queue(&chip->wq, &wait);
900
901 spin_unlock(chip->mutex);
902
903 schedule();
904 remove_wait_queue(&chip->wq, &wait);
905 #if 0
906 if(signal_pending(current))
907 return -EINTR;
908 #endif
909 timeo = jiffies + HZ;
910
911 goto retry;
912 }
913
914 adr += chip->start;
915
916 chip->state = FL_READY;
917
918 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
919 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
920 cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
921
922 map_copy_from(map, buf, adr, len);
923
924 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
925 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
926 cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
927 cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
928
929 wake_up(&chip->wq);
930 spin_unlock(chip->mutex);
931
932 return 0;
933 }
934
935 static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
936 {
937 struct map_info *map = mtd->priv;
938 struct cfi_private *cfi = map->fldrv_priv;
939 unsigned long ofs;
940 int chipnum;
941 int ret = 0;
942
943
944 /* ofs: offset within the first chip that the first read should start */
945
946 /* 8 secsi bytes per chip */
947 chipnum=from>>3;
948 ofs=from & 7;
949
950
951 *retlen = 0;
952
953 while (len) {
954 unsigned long thislen;
955
956 if (chipnum >= cfi->numchips)
957 break;
958
959 if ((len + ofs -1) >> 3)
960 thislen = (1<<3) - ofs;
961 else
962 thislen = len;
963
964 ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
965 if (ret)
966 break;
967
968 *retlen += thislen;
969 len -= thislen;
970 buf += thislen;
971
972 ofs = 0;
973 chipnum++;
974 }
975 return ret;
976 }
977
978
979 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, unsigned long adr, map_word datum)
980 {
981 struct cfi_private *cfi = map->fldrv_priv;
982 unsigned long timeo = jiffies + HZ;
983 /*
984 * We use a 1ms + 1 jiffies generic timeout for writes (most devices
985 * have a max write time of a few hundreds usec). However, we should
986 * use the maximum timeout value given by the chip at probe time
987 * instead. Unfortunately, struct flchip does have a field for
988 * maximum timeout, only for typical which can be far too short
989 * depending of the conditions. The ' + 1' is to avoid having a
990 * timeout of 0 jiffies if HZ is smaller than 1000.
991 */
992 unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
993 int ret = 0;
994 map_word oldd;
995 int retry_cnt = 0;
996
997 adr += chip->start;
998
999 spin_lock(chip->mutex);
1000 ret = get_chip(map, chip, adr, FL_WRITING);
1001 if (ret) {
1002 spin_unlock(chip->mutex);
1003 return ret;
1004 }
1005
1006 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1007 __func__, adr, datum.x[0] );
1008
1009 /*
1010 * Check for a NOP for the case when the datum to write is already
1011 * present - it saves time and works around buggy chips that corrupt
1012 * data at other locations when 0xff is written to a location that
1013 * already contains 0xff.
1014 */
1015 oldd = map_read(map, adr);
1016 if (map_word_equal(map, oldd, datum)) {
1017 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): NOP\n",
1018 __func__);
1019 goto op_done;
1020 }
1021
1022 XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1023 ENABLE_VPP(map);
1024 xip_disable(map, chip, adr);
1025 retry:
1026 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1027 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1028 cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1029 map_write(map, datum, adr);
1030 chip->state = FL_WRITING;
1031
1032 INVALIDATE_CACHE_UDELAY(map, chip,
1033 adr, map_bankwidth(map),
1034 chip->word_write_time);
1035
1036 /* See comment above for timeout value. */
1037 timeo = jiffies + uWriteTimeout;
1038 for (;;) {
1039 if (chip->state != FL_WRITING) {
1040 /* Someone's suspended the write. Sleep */
1041 DECLARE_WAITQUEUE(wait, current);
1042
1043 set_current_state(TASK_UNINTERRUPTIBLE);
1044 add_wait_queue(&chip->wq, &wait);
1045 spin_unlock(chip->mutex);
1046 schedule();
1047 remove_wait_queue(&chip->wq, &wait);
1048 timeo = jiffies + (HZ / 2); /* FIXME */
1049 spin_lock(chip->mutex);
1050 continue;
1051 }
1052
1053 if (time_after(jiffies, timeo) && !chip_ready(map, adr)){
1054 xip_enable(map, chip, adr);
1055 printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
1056 xip_disable(map, chip, adr);
1057 break;
1058 }
1059
1060 if (chip_ready(map, adr))
1061 break;
1062
1063 /* Latency issues. Drop the lock, wait a while and retry */
1064 UDELAY(map, chip, adr, 1);
1065 }
1066 /* Did we succeed? */
1067 if (!chip_good(map, adr, datum)) {
1068 /* reset on all failures. */
1069 map_write( map, CMD(0xF0), chip->start );
1070 /* FIXME - should have reset delay before continuing */
1071
1072 if (++retry_cnt <= MAX_WORD_RETRIES)
1073 goto retry;
1074
1075 ret = -EIO;
1076 }
1077 xip_enable(map, chip, adr);
1078 op_done:
1079 chip->state = FL_READY;
1080 put_chip(map, chip, adr);
1081 spin_unlock(chip->mutex);
1082
1083 return ret;
1084 }
1085
1086
1087 static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
1088 size_t *retlen, const u_char *buf)
1089 {
1090 struct map_info *map = mtd->priv;
1091 struct cfi_private *cfi = map->fldrv_priv;
1092 int ret = 0;
1093 int chipnum;
1094 unsigned long ofs, chipstart;
1095 DECLARE_WAITQUEUE(wait, current);
1096
1097 *retlen = 0;
1098 if (!len)
1099 return 0;
1100
1101 chipnum = to >> cfi->chipshift;
1102 ofs = to - (chipnum << cfi->chipshift);
1103 chipstart = cfi->chips[chipnum].start;
1104
1105 /* If it's not bus-aligned, do the first byte write */
1106 if (ofs & (map_bankwidth(map)-1)) {
1107 unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1108 int i = ofs - bus_ofs;
1109 int n = 0;
1110 map_word tmp_buf;
1111
1112 retry:
1113 spin_lock(cfi->chips[chipnum].mutex);
1114
1115 if (cfi->chips[chipnum].state != FL_READY) {
1116 #if 0
1117 printk(KERN_DEBUG "Waiting for chip to write, status = %d\n", cfi->chips[chipnum].state);
1118 #endif
1119 set_current_state(TASK_UNINTERRUPTIBLE);
1120 add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1121
1122 spin_unlock(cfi->chips[chipnum].mutex);
1123
1124 schedule();
1125 remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1126 #if 0
1127 if(signal_pending(current))
1128 return -EINTR;
1129 #endif
1130 goto retry;
1131 }
1132
1133 /* Load 'tmp_buf' with old contents of flash */
1134 tmp_buf = map_read(map, bus_ofs+chipstart);
1135
1136 spin_unlock(cfi->chips[chipnum].mutex);
1137
1138 /* Number of bytes to copy from buffer */
1139 n = min_t(int, len, map_bankwidth(map)-i);
1140
1141 tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1142
1143 ret = do_write_oneword(map, &cfi->chips[chipnum],
1144 bus_ofs, tmp_buf);
1145 if (ret)
1146 return ret;
1147
1148 ofs += n;
1149 buf += n;
1150 (*retlen) += n;
1151 len -= n;
1152
1153 if (ofs >> cfi->chipshift) {
1154 chipnum ++;
1155 ofs = 0;
1156 if (chipnum == cfi->numchips)
1157 return 0;
1158 }
1159 }
1160
1161 /* We are now aligned, write as much as possible */
1162 while(len >= map_bankwidth(map)) {
1163 map_word datum;
1164
1165 datum = map_word_load(map, buf);
1166
1167 ret = do_write_oneword(map, &cfi->chips[chipnum],
1168 ofs, datum);
1169 if (ret)
1170 return ret;
1171
1172 ofs += map_bankwidth(map);
1173 buf += map_bankwidth(map);
1174 (*retlen) += map_bankwidth(map);
1175 len -= map_bankwidth(map);
1176
1177 if (ofs >> cfi->chipshift) {
1178 chipnum ++;
1179 ofs = 0;
1180 if (chipnum == cfi->numchips)
1181 return 0;
1182 chipstart = cfi->chips[chipnum].start;
1183 }
1184 }
1185
1186 /* Write the trailing bytes if any */
1187 if (len & (map_bankwidth(map)-1)) {
1188 map_word tmp_buf;
1189
1190 retry1:
1191 spin_lock(cfi->chips[chipnum].mutex);
1192
1193 if (cfi->chips[chipnum].state != FL_READY) {
1194 #if 0
1195 printk(KERN_DEBUG "Waiting for chip to write, status = %d\n", cfi->chips[chipnum].state);
1196 #endif
1197 set_current_state(TASK_UNINTERRUPTIBLE);
1198 add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1199
1200 spin_unlock(cfi->chips[chipnum].mutex);
1201
1202 schedule();
1203 remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1204 #if 0
1205 if(signal_pending(current))
1206 return -EINTR;
1207 #endif
1208 goto retry1;
1209 }
1210
1211 tmp_buf = map_read(map, ofs + chipstart);
1212
1213 spin_unlock(cfi->chips[chipnum].mutex);
1214
1215 tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1216
1217 ret = do_write_oneword(map, &cfi->chips[chipnum],
1218 ofs, tmp_buf);
1219 if (ret)
1220 return ret;
1221
1222 (*retlen) += len;
1223 }
1224
1225 return 0;
1226 }
1227
1228
1229 /*
1230 * FIXME: interleaved mode not tested, and probably not supported!
1231 */
1232 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1233 unsigned long adr, const u_char *buf,
1234 int len)
1235 {
1236 struct cfi_private *cfi = map->fldrv_priv;
1237 unsigned long timeo = jiffies + HZ;
1238 /* see comments in do_write_oneword() regarding uWriteTimeo. */
1239 unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1240 int ret = -EIO;
1241 unsigned long cmd_adr;
1242 int z, words;
1243 map_word datum;
1244
1245 adr += chip->start;
1246 cmd_adr = adr;
1247
1248 spin_lock(chip->mutex);
1249 ret = get_chip(map, chip, adr, FL_WRITING);
1250 if (ret) {
1251 spin_unlock(chip->mutex);
1252 return ret;
1253 }
1254
1255 datum = map_word_load(map, buf);
1256
1257 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1258 __func__, adr, datum.x[0] );
1259
1260 XIP_INVAL_CACHED_RANGE(map, adr, len);
1261 ENABLE_VPP(map);
1262 xip_disable(map, chip, cmd_adr);
1263
1264 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1265 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1266 //cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1267
1268 /* Write Buffer Load */
1269 map_write(map, CMD(0x25), cmd_adr);
1270
1271 chip->state = FL_WRITING_TO_BUFFER;
1272
1273 /* Write length of data to come */
1274 words = len / map_bankwidth(map);
1275 map_write(map, CMD(words - 1), cmd_adr);
1276 /* Write data */
1277 z = 0;
1278 while(z < words * map_bankwidth(map)) {
1279 datum = map_word_load(map, buf);
1280 map_write(map, datum, adr + z);
1281
1282 z += map_bankwidth(map);
1283 buf += map_bankwidth(map);
1284 }
1285 z -= map_bankwidth(map);
1286
1287 adr += z;
1288
1289 /* Write Buffer Program Confirm: GO GO GO */
1290 map_write(map, CMD(0x29), cmd_adr);
1291 chip->state = FL_WRITING;
1292
1293 INVALIDATE_CACHE_UDELAY(map, chip,
1294 adr, map_bankwidth(map),
1295 chip->word_write_time);
1296
1297 timeo = jiffies + uWriteTimeout;
1298
1299 for (;;) {
1300 if (chip->state != FL_WRITING) {
1301 /* Someone's suspended the write. Sleep */
1302 DECLARE_WAITQUEUE(wait, current);
1303
1304 set_current_state(TASK_UNINTERRUPTIBLE);
1305 add_wait_queue(&chip->wq, &wait);
1306 spin_unlock(chip->mutex);
1307 schedule();
1308 remove_wait_queue(&chip->wq, &wait);
1309 timeo = jiffies + (HZ / 2); /* FIXME */
1310 spin_lock(chip->mutex);
1311 continue;
1312 }
1313
1314 if (time_after(jiffies, timeo) && !chip_ready(map, adr))
1315 break;
1316
1317 if (chip_ready(map, adr)) {
1318 xip_enable(map, chip, adr);
1319 goto op_done;
1320 }
1321
1322 /* Latency issues. Drop the lock, wait a while and retry */
1323 UDELAY(map, chip, adr, 1);
1324 }
1325
1326 /* reset on all failures. */
1327 map_write( map, CMD(0xF0), chip->start );
1328 xip_enable(map, chip, adr);
1329 /* FIXME - should have reset delay before continuing */
1330
1331 printk(KERN_WARNING "MTD %s(): software timeout\n",
1332 __func__ );
1333
1334 ret = -EIO;
1335 op_done:
1336 chip->state = FL_READY;
1337 put_chip(map, chip, adr);
1338 spin_unlock(chip->mutex);
1339
1340 return ret;
1341 }
1342
1343
1344 static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
1345 size_t *retlen, const u_char *buf)
1346 {
1347 struct map_info *map = mtd->priv;
1348 struct cfi_private *cfi = map->fldrv_priv;
1349 int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1350 int ret = 0;
1351 int chipnum;
1352 unsigned long ofs;
1353
1354 *retlen = 0;
1355 if (!len)
1356 return 0;
1357
1358 chipnum = to >> cfi->chipshift;
1359 ofs = to - (chipnum << cfi->chipshift);
1360
1361 /* If it's not bus-aligned, do the first word write */
1362 if (ofs & (map_bankwidth(map)-1)) {
1363 size_t local_len = (-ofs)&(map_bankwidth(map)-1);
1364 if (local_len > len)
1365 local_len = len;
1366 ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1367 local_len, retlen, buf);
1368 if (ret)
1369 return ret;
1370 ofs += local_len;
1371 buf += local_len;
1372 len -= local_len;
1373
1374 if (ofs >> cfi->chipshift) {
1375 chipnum ++;
1376 ofs = 0;
1377 if (chipnum == cfi->numchips)
1378 return 0;
1379 }
1380 }
1381
1382 /* Write buffer is worth it only if more than one word to write... */
1383 while (len >= map_bankwidth(map) * 2) {
1384 /* We must not cross write block boundaries */
1385 int size = wbufsize - (ofs & (wbufsize-1));
1386
1387 if (size > len)
1388 size = len;
1389 if (size % map_bankwidth(map))
1390 size -= size % map_bankwidth(map);
1391
1392 ret = do_write_buffer(map, &cfi->chips[chipnum],
1393 ofs, buf, size);
1394 if (ret)
1395 return ret;
1396
1397 ofs += size;
1398 buf += size;
1399 (*retlen) += size;
1400 len -= size;
1401
1402 if (ofs >> cfi->chipshift) {
1403 chipnum ++;
1404 ofs = 0;
1405 if (chipnum == cfi->numchips)
1406 return 0;
1407 }
1408 }
1409
1410 if (len) {
1411 size_t retlen_dregs = 0;
1412
1413 ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1414 len, &retlen_dregs, buf);
1415
1416 *retlen += retlen_dregs;
1417 return ret;
1418 }
1419
1420 return 0;
1421 }
1422
1423
1424 /*
1425 * Handle devices with one erase region, that only implement
1426 * the chip erase command.
1427 */
1428 static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
1429 {
1430 struct cfi_private *cfi = map->fldrv_priv;
1431 unsigned long timeo = jiffies + HZ;
1432 unsigned long int adr;
1433 DECLARE_WAITQUEUE(wait, current);
1434 int ret = 0;
1435
1436 adr = cfi->addr_unlock1;
1437
1438 spin_lock(chip->mutex);
1439 ret = get_chip(map, chip, adr, FL_WRITING);
1440 if (ret) {
1441 spin_unlock(chip->mutex);
1442 return ret;
1443 }
1444
1445 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n",
1446 __func__, chip->start );
1447
1448 XIP_INVAL_CACHED_RANGE(map, adr, map->size);
1449 ENABLE_VPP(map);
1450 xip_disable(map, chip, adr);
1451
1452 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1453 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1454 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1455 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1456 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1457 cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1458
1459 chip->state = FL_ERASING;
1460 chip->erase_suspended = 0;
1461 chip->in_progress_block_addr = adr;
1462
1463 INVALIDATE_CACHE_UDELAY(map, chip,
1464 adr, map->size,
1465 chip->erase_time*500);
1466
1467 timeo = jiffies + (HZ*20);
1468
1469 for (;;) {
1470 if (chip->state != FL_ERASING) {
1471 /* Someone's suspended the erase. Sleep */
1472 set_current_state(TASK_UNINTERRUPTIBLE);
1473 add_wait_queue(&chip->wq, &wait);
1474 spin_unlock(chip->mutex);
1475 schedule();
1476 remove_wait_queue(&chip->wq, &wait);
1477 spin_lock(chip->mutex);
1478 continue;
1479 }
1480 if (chip->erase_suspended) {
1481 /* This erase was suspended and resumed.
1482 Adjust the timeout */
1483 timeo = jiffies + (HZ*20); /* FIXME */
1484 chip->erase_suspended = 0;
1485 }
1486
1487 if (chip_ready(map, adr))
1488 break;
1489
1490 if (time_after(jiffies, timeo)) {
1491 printk(KERN_WARNING "MTD %s(): software timeout\n",
1492 __func__ );
1493 break;
1494 }
1495
1496 /* Latency issues. Drop the lock, wait a while and retry */
1497 UDELAY(map, chip, adr, 1000000/HZ);
1498 }
1499 /* Did we succeed? */
1500 if (!chip_good(map, adr, map_word_ff(map))) {
1501 /* reset on all failures. */
1502 map_write( map, CMD(0xF0), chip->start );
1503 /* FIXME - should have reset delay before continuing */
1504
1505 ret = -EIO;
1506 }
1507
1508 chip->state = FL_READY;
1509 xip_enable(map, chip, adr);
1510 put_chip(map, chip, adr);
1511 spin_unlock(chip->mutex);
1512
1513 return ret;
1514 }
1515
1516
1517 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
1518 {
1519 struct cfi_private *cfi = map->fldrv_priv;
1520 unsigned long timeo = jiffies + HZ;
1521 DECLARE_WAITQUEUE(wait, current);
1522 int ret = 0;
1523
1524 adr += chip->start;
1525
1526 spin_lock(chip->mutex);
1527 ret = get_chip(map, chip, adr, FL_ERASING);
1528 if (ret) {
1529 spin_unlock(chip->mutex);
1530 return ret;
1531 }
1532
1533 DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n",
1534 __func__, adr );
1535
1536 XIP_INVAL_CACHED_RANGE(map, adr, len);
1537 ENABLE_VPP(map);
1538 xip_disable(map, chip, adr);
1539
1540 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1541 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1542 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1543 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1544 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1545 map_write(map, CMD(0x30), adr);
1546
1547 chip->state = FL_ERASING;
1548 chip->erase_suspended = 0;
1549 chip->in_progress_block_addr = adr;
1550
1551 INVALIDATE_CACHE_UDELAY(map, chip,
1552 adr, len,
1553 chip->erase_time*500);
1554
1555 timeo = jiffies + (HZ*20);
1556
1557 for (;;) {
1558 if (chip->state != FL_ERASING) {
1559 /* Someone's suspended the erase. Sleep */
1560 set_current_state(TASK_UNINTERRUPTIBLE);
1561 add_wait_queue(&chip->wq, &wait);
1562 spin_unlock(chip->mutex);
1563 schedule();
1564 remove_wait_queue(&chip->wq, &wait);
1565 spin_lock(chip->mutex);
1566 continue;
1567 }
1568 if (chip->erase_suspended) {
1569 /* This erase was suspended and resumed.
1570 Adjust the timeout */
1571 timeo = jiffies + (HZ*20); /* FIXME */
1572 chip->erase_suspended = 0;
1573 }
1574
1575 if (chip_ready(map, adr)) {
1576 xip_enable(map, chip, adr);
1577 break;
1578 }
1579
1580 if (time_after(jiffies, timeo)) {
1581 xip_enable(map, chip, adr);
1582 printk(KERN_WARNING "MTD %s(): software timeout\n",
1583 __func__ );
1584 break;
1585 }
1586
1587 /* Latency issues. Drop the lock, wait a while and retry */
1588 UDELAY(map, chip, adr, 1000000/HZ);
1589 }
1590 /* Did we succeed? */
1591 if (!chip_good(map, adr, map_word_ff(map))) {
1592 /* reset on all failures. */
1593 map_write( map, CMD(0xF0), chip->start );
1594 /* FIXME - should have reset delay before continuing */
1595
1596 ret = -EIO;
1597 }
1598
1599 chip->state = FL_READY;
1600 put_chip(map, chip, adr);
1601 spin_unlock(chip->mutex);
1602 return ret;
1603 }
1604
1605
1606 int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
1607 {
1608 unsigned long ofs, len;
1609 int ret;
1610
1611 ofs = instr->addr;
1612 len = instr->len;
1613
1614 ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
1615 if (ret)
1616 return ret;
1617
1618 instr->state = MTD_ERASE_DONE;
1619 mtd_erase_callback(instr);
1620
1621 return 0;
1622 }
1623
1624
1625 static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
1626 {
1627 struct map_info *map = mtd->priv;
1628 struct cfi_private *cfi = map->fldrv_priv;
1629 int ret = 0;
1630
1631 if (instr->addr != 0)
1632 return -EINVAL;
1633
1634 if (instr->len != mtd->size)
1635 return -EINVAL;
1636
1637 ret = do_erase_chip(map, &cfi->chips[0]);
1638 if (ret)
1639 return ret;
1640
1641 instr->state = MTD_ERASE_DONE;
1642 mtd_erase_callback(instr);
1643
1644 return 0;
1645 }
1646
1647 static int do_atmel_lock(struct map_info *map, struct flchip *chip,
1648 unsigned long adr, int len, void *thunk)
1649 {
1650 struct cfi_private *cfi = map->fldrv_priv;
1651 int ret;
1652
1653 spin_lock(chip->mutex);
1654 ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
1655 if (ret)
1656 goto out_unlock;
1657 chip->state = FL_LOCKING;
1658
1659 DEBUG(MTD_DEBUG_LEVEL3, "MTD %s(): LOCK 0x%08lx len %d\n",
1660 __func__, adr, len);
1661
1662 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1663 cfi->device_type, NULL);
1664 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1665 cfi->device_type, NULL);
1666 cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
1667 cfi->device_type, NULL);
1668 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1669 cfi->device_type, NULL);
1670 cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1671 cfi->device_type, NULL);
1672 map_write(map, CMD(0x40), chip->start + adr);
1673
1674 chip->state = FL_READY;
1675 put_chip(map, chip, adr + chip->start);
1676 ret = 0;
1677
1678 out_unlock:
1679 spin_unlock(chip->mutex);
1680 return ret;
1681 }
1682
1683 static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
1684 unsigned long adr, int len, void *thunk)
1685 {
1686 struct cfi_private *cfi = map->fldrv_priv;
1687 int ret;
1688
1689 spin_lock(chip->mutex);
1690 ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
1691 if (ret)
1692 goto out_unlock;
1693 chip->state = FL_UNLOCKING;
1694
1695 DEBUG(MTD_DEBUG_LEVEL3, "MTD %s(): LOCK 0x%08lx len %d\n",
1696 __func__, adr, len);
1697
1698 cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1699 cfi->device_type, NULL);
1700 map_write(map, CMD(0x70), adr);
1701
1702 chip->state = FL_READY;
1703 put_chip(map, chip, adr + chip->start);
1704 ret = 0;
1705
1706 out_unlock:
1707 spin_unlock(chip->mutex);
1708 return ret;
1709 }
1710
1711 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
1712 {
1713 return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
1714 }
1715
1716 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
1717 {
1718 return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
1719 }
1720
1721
1722 static void cfi_amdstd_sync (struct mtd_info *mtd)
1723 {
1724 struct map_info *map = mtd->priv;
1725 struct cfi_private *cfi = map->fldrv_priv;
1726 int i;
1727 struct flchip *chip;
1728 int ret = 0;
1729 DECLARE_WAITQUEUE(wait, current);
1730
1731 for (i=0; !ret && i<cfi->numchips; i++) {
1732 chip = &cfi->chips[i];
1733
1734 retry:
1735 spin_lock(chip->mutex);
1736
1737 switch(chip->state) {
1738 case FL_READY:
1739 case FL_STATUS:
1740 case FL_CFI_QUERY:
1741 case FL_JEDEC_QUERY:
1742 chip->oldstate = chip->state;
1743 chip->state = FL_SYNCING;
1744 /* No need to wake_up() on this state change -
1745 * as the whole point is that nobody can do anything
1746 * with the chip now anyway.
1747 */
1748 case FL_SYNCING:
1749 spin_unlock(chip->mutex);
1750 break;
1751
1752 default:
1753 /* Not an idle state */
1754 add_wait_queue(&chip->wq, &wait);
1755
1756 spin_unlock(chip->mutex);
1757
1758 schedule();
1759
1760 remove_wait_queue(&chip->wq, &wait);
1761
1762 goto retry;
1763 }
1764 }
1765
1766 /* Unlock the chips again */
1767
1768 for (i--; i >=0; i--) {
1769 chip = &cfi->chips[i];
1770
1771 spin_lock(chip->mutex);
1772
1773 if (chip->state == FL_SYNCING) {
1774 chip->state = chip->oldstate;
1775 wake_up(&chip->wq);
1776 }
1777 spin_unlock(chip->mutex);
1778 }
1779 }
1780
1781
1782 static int cfi_amdstd_suspend(struct mtd_info *mtd)
1783 {
1784 struct map_info *map = mtd->priv;
1785 struct cfi_private *cfi = map->fldrv_priv;
1786 int i;
1787 struct flchip *chip;
1788 int ret = 0;
1789
1790 for (i=0; !ret && i<cfi->numchips; i++) {
1791 chip = &cfi->chips[i];
1792
1793 spin_lock(chip->mutex);
1794
1795 switch(chip->state) {
1796 case FL_READY:
1797 case FL_STATUS:
1798 case FL_CFI_QUERY:
1799 case FL_JEDEC_QUERY:
1800 chip->oldstate = chip->state;
1801 chip->state = FL_PM_SUSPENDED;
1802 /* No need to wake_up() on this state change -
1803 * as the whole point is that nobody can do anything
1804 * with the chip now anyway.
1805 */
1806 case FL_PM_SUSPENDED:
1807 break;
1808
1809 default:
1810 ret = -EAGAIN;
1811 break;
1812 }
1813 spin_unlock(chip->mutex);
1814 }
1815
1816 /* Unlock the chips again */
1817
1818 if (ret) {
1819 for (i--; i >=0; i--) {
1820 chip = &cfi->chips[i];
1821
1822 spin_lock(chip->mutex);
1823
1824 if (chip->state == FL_PM_SUSPENDED) {
1825 chip->state = chip->oldstate;
1826 wake_up(&chip->wq);
1827 }
1828 spin_unlock(chip->mutex);
1829 }
1830 }
1831
1832 return ret;
1833 }
1834
1835
1836 static void cfi_amdstd_resume(struct mtd_info *mtd)
1837 {
1838 struct map_info *map = mtd->priv;
1839 struct cfi_private *cfi = map->fldrv_priv;
1840 int i;
1841 struct flchip *chip;
1842
1843 for (i=0; i<cfi->numchips; i++) {
1844
1845 chip = &cfi->chips[i];
1846
1847 spin_lock(chip->mutex);
1848
1849 if (chip->state == FL_PM_SUSPENDED) {
1850 chip->state = FL_READY;
1851 map_write(map, CMD(0xF0), chip->start);
1852 wake_up(&chip->wq);
1853 }
1854 else
1855 printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
1856
1857 spin_unlock(chip->mutex);
1858 }
1859 }
1860
1861 static void cfi_amdstd_destroy(struct mtd_info *mtd)
1862 {
1863 struct map_info *map = mtd->priv;
1864 struct cfi_private *cfi = map->fldrv_priv;
1865
1866 kfree(cfi->cmdset_priv);
1867 kfree(cfi->cfiq);
1868 kfree(cfi);
1869 kfree(mtd->eraseregions);
1870 }
1871
1872 MODULE_LICENSE("GPL");
1873 MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
1874 MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
This page took 0.108979 seconds and 4 git commands to generate.