Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dledford/rdma
[deliverable/linux.git] / drivers / mtd / mtdcore.c
1 /*
2 * Core registration and callback routines for MTD
3 * drivers and users.
4 *
5 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
6 * Copyright © 2006 Red Hat UK Limited
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
21 *
22 */
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/ptrace.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/major.h>
31 #include <linux/fs.h>
32 #include <linux/err.h>
33 #include <linux/ioctl.h>
34 #include <linux/init.h>
35 #include <linux/of.h>
36 #include <linux/proc_fs.h>
37 #include <linux/idr.h>
38 #include <linux/backing-dev.h>
39 #include <linux/gfp.h>
40 #include <linux/slab.h>
41 #include <linux/reboot.h>
42 #include <linux/kconfig.h>
43
44 #include <linux/mtd/mtd.h>
45 #include <linux/mtd/partitions.h>
46
47 #include "mtdcore.h"
48
49 static struct backing_dev_info mtd_bdi = {
50 };
51
52 #ifdef CONFIG_PM_SLEEP
53
54 static int mtd_cls_suspend(struct device *dev)
55 {
56 struct mtd_info *mtd = dev_get_drvdata(dev);
57
58 return mtd ? mtd_suspend(mtd) : 0;
59 }
60
61 static int mtd_cls_resume(struct device *dev)
62 {
63 struct mtd_info *mtd = dev_get_drvdata(dev);
64
65 if (mtd)
66 mtd_resume(mtd);
67 return 0;
68 }
69
70 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
71 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
72 #else
73 #define MTD_CLS_PM_OPS NULL
74 #endif
75
76 static struct class mtd_class = {
77 .name = "mtd",
78 .owner = THIS_MODULE,
79 .pm = MTD_CLS_PM_OPS,
80 };
81
82 static DEFINE_IDR(mtd_idr);
83
84 /* These are exported solely for the purpose of mtd_blkdevs.c. You
85 should not use them for _anything_ else */
86 DEFINE_MUTEX(mtd_table_mutex);
87 EXPORT_SYMBOL_GPL(mtd_table_mutex);
88
89 struct mtd_info *__mtd_next_device(int i)
90 {
91 return idr_get_next(&mtd_idr, &i);
92 }
93 EXPORT_SYMBOL_GPL(__mtd_next_device);
94
95 static LIST_HEAD(mtd_notifiers);
96
97
98 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
99
100 /* REVISIT once MTD uses the driver model better, whoever allocates
101 * the mtd_info will probably want to use the release() hook...
102 */
103 static void mtd_release(struct device *dev)
104 {
105 struct mtd_info *mtd = dev_get_drvdata(dev);
106 dev_t index = MTD_DEVT(mtd->index);
107
108 /* remove /dev/mtdXro node */
109 device_destroy(&mtd_class, index + 1);
110 }
111
112 static ssize_t mtd_type_show(struct device *dev,
113 struct device_attribute *attr, char *buf)
114 {
115 struct mtd_info *mtd = dev_get_drvdata(dev);
116 char *type;
117
118 switch (mtd->type) {
119 case MTD_ABSENT:
120 type = "absent";
121 break;
122 case MTD_RAM:
123 type = "ram";
124 break;
125 case MTD_ROM:
126 type = "rom";
127 break;
128 case MTD_NORFLASH:
129 type = "nor";
130 break;
131 case MTD_NANDFLASH:
132 type = "nand";
133 break;
134 case MTD_DATAFLASH:
135 type = "dataflash";
136 break;
137 case MTD_UBIVOLUME:
138 type = "ubi";
139 break;
140 case MTD_MLCNANDFLASH:
141 type = "mlc-nand";
142 break;
143 default:
144 type = "unknown";
145 }
146
147 return snprintf(buf, PAGE_SIZE, "%s\n", type);
148 }
149 static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
150
151 static ssize_t mtd_flags_show(struct device *dev,
152 struct device_attribute *attr, char *buf)
153 {
154 struct mtd_info *mtd = dev_get_drvdata(dev);
155
156 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
157
158 }
159 static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
160
161 static ssize_t mtd_size_show(struct device *dev,
162 struct device_attribute *attr, char *buf)
163 {
164 struct mtd_info *mtd = dev_get_drvdata(dev);
165
166 return snprintf(buf, PAGE_SIZE, "%llu\n",
167 (unsigned long long)mtd->size);
168
169 }
170 static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
171
172 static ssize_t mtd_erasesize_show(struct device *dev,
173 struct device_attribute *attr, char *buf)
174 {
175 struct mtd_info *mtd = dev_get_drvdata(dev);
176
177 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
178
179 }
180 static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
181
182 static ssize_t mtd_writesize_show(struct device *dev,
183 struct device_attribute *attr, char *buf)
184 {
185 struct mtd_info *mtd = dev_get_drvdata(dev);
186
187 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
188
189 }
190 static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
191
192 static ssize_t mtd_subpagesize_show(struct device *dev,
193 struct device_attribute *attr, char *buf)
194 {
195 struct mtd_info *mtd = dev_get_drvdata(dev);
196 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
197
198 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
199
200 }
201 static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
202
203 static ssize_t mtd_oobsize_show(struct device *dev,
204 struct device_attribute *attr, char *buf)
205 {
206 struct mtd_info *mtd = dev_get_drvdata(dev);
207
208 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
209
210 }
211 static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
212
213 static ssize_t mtd_numeraseregions_show(struct device *dev,
214 struct device_attribute *attr, char *buf)
215 {
216 struct mtd_info *mtd = dev_get_drvdata(dev);
217
218 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
219
220 }
221 static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
222 NULL);
223
224 static ssize_t mtd_name_show(struct device *dev,
225 struct device_attribute *attr, char *buf)
226 {
227 struct mtd_info *mtd = dev_get_drvdata(dev);
228
229 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
230
231 }
232 static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
233
234 static ssize_t mtd_ecc_strength_show(struct device *dev,
235 struct device_attribute *attr, char *buf)
236 {
237 struct mtd_info *mtd = dev_get_drvdata(dev);
238
239 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
240 }
241 static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
242
243 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
244 struct device_attribute *attr,
245 char *buf)
246 {
247 struct mtd_info *mtd = dev_get_drvdata(dev);
248
249 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
250 }
251
252 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
253 struct device_attribute *attr,
254 const char *buf, size_t count)
255 {
256 struct mtd_info *mtd = dev_get_drvdata(dev);
257 unsigned int bitflip_threshold;
258 int retval;
259
260 retval = kstrtouint(buf, 0, &bitflip_threshold);
261 if (retval)
262 return retval;
263
264 mtd->bitflip_threshold = bitflip_threshold;
265 return count;
266 }
267 static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
268 mtd_bitflip_threshold_show,
269 mtd_bitflip_threshold_store);
270
271 static ssize_t mtd_ecc_step_size_show(struct device *dev,
272 struct device_attribute *attr, char *buf)
273 {
274 struct mtd_info *mtd = dev_get_drvdata(dev);
275
276 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
277
278 }
279 static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
280
281 static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
282 struct device_attribute *attr, char *buf)
283 {
284 struct mtd_info *mtd = dev_get_drvdata(dev);
285 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
286
287 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
288 }
289 static DEVICE_ATTR(corrected_bits, S_IRUGO,
290 mtd_ecc_stats_corrected_show, NULL);
291
292 static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
293 struct device_attribute *attr, char *buf)
294 {
295 struct mtd_info *mtd = dev_get_drvdata(dev);
296 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
297
298 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
299 }
300 static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
301
302 static ssize_t mtd_badblocks_show(struct device *dev,
303 struct device_attribute *attr, char *buf)
304 {
305 struct mtd_info *mtd = dev_get_drvdata(dev);
306 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
307
308 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
309 }
310 static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
311
312 static ssize_t mtd_bbtblocks_show(struct device *dev,
313 struct device_attribute *attr, char *buf)
314 {
315 struct mtd_info *mtd = dev_get_drvdata(dev);
316 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
317
318 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
319 }
320 static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
321
322 static struct attribute *mtd_attrs[] = {
323 &dev_attr_type.attr,
324 &dev_attr_flags.attr,
325 &dev_attr_size.attr,
326 &dev_attr_erasesize.attr,
327 &dev_attr_writesize.attr,
328 &dev_attr_subpagesize.attr,
329 &dev_attr_oobsize.attr,
330 &dev_attr_numeraseregions.attr,
331 &dev_attr_name.attr,
332 &dev_attr_ecc_strength.attr,
333 &dev_attr_ecc_step_size.attr,
334 &dev_attr_corrected_bits.attr,
335 &dev_attr_ecc_failures.attr,
336 &dev_attr_bad_blocks.attr,
337 &dev_attr_bbt_blocks.attr,
338 &dev_attr_bitflip_threshold.attr,
339 NULL,
340 };
341 ATTRIBUTE_GROUPS(mtd);
342
343 static struct device_type mtd_devtype = {
344 .name = "mtd",
345 .groups = mtd_groups,
346 .release = mtd_release,
347 };
348
349 #ifndef CONFIG_MMU
350 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
351 {
352 switch (mtd->type) {
353 case MTD_RAM:
354 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
355 NOMMU_MAP_READ | NOMMU_MAP_WRITE;
356 case MTD_ROM:
357 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
358 NOMMU_MAP_READ;
359 default:
360 return NOMMU_MAP_COPY;
361 }
362 }
363 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
364 #endif
365
366 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
367 void *cmd)
368 {
369 struct mtd_info *mtd;
370
371 mtd = container_of(n, struct mtd_info, reboot_notifier);
372 mtd->_reboot(mtd);
373
374 return NOTIFY_DONE;
375 }
376
377 /**
378 * add_mtd_device - register an MTD device
379 * @mtd: pointer to new MTD device info structure
380 *
381 * Add a device to the list of MTD devices present in the system, and
382 * notify each currently active MTD 'user' of its arrival. Returns
383 * zero on success or non-zero on failure.
384 */
385
386 int add_mtd_device(struct mtd_info *mtd)
387 {
388 struct mtd_notifier *not;
389 int i, error;
390
391 /*
392 * May occur, for instance, on buggy drivers which call
393 * mtd_device_parse_register() multiple times on the same master MTD,
394 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
395 */
396 if (WARN_ONCE(mtd->backing_dev_info, "MTD already registered\n"))
397 return -EEXIST;
398
399 mtd->backing_dev_info = &mtd_bdi;
400
401 BUG_ON(mtd->writesize == 0);
402 mutex_lock(&mtd_table_mutex);
403
404 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
405 if (i < 0) {
406 error = i;
407 goto fail_locked;
408 }
409
410 mtd->index = i;
411 mtd->usecount = 0;
412
413 /* default value if not set by driver */
414 if (mtd->bitflip_threshold == 0)
415 mtd->bitflip_threshold = mtd->ecc_strength;
416
417 if (is_power_of_2(mtd->erasesize))
418 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
419 else
420 mtd->erasesize_shift = 0;
421
422 if (is_power_of_2(mtd->writesize))
423 mtd->writesize_shift = ffs(mtd->writesize) - 1;
424 else
425 mtd->writesize_shift = 0;
426
427 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
428 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
429
430 /* Some chips always power up locked. Unlock them now */
431 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
432 error = mtd_unlock(mtd, 0, mtd->size);
433 if (error && error != -EOPNOTSUPP)
434 printk(KERN_WARNING
435 "%s: unlock failed, writes may not work\n",
436 mtd->name);
437 /* Ignore unlock failures? */
438 error = 0;
439 }
440
441 /* Caller should have set dev.parent to match the
442 * physical device, if appropriate.
443 */
444 mtd->dev.type = &mtd_devtype;
445 mtd->dev.class = &mtd_class;
446 mtd->dev.devt = MTD_DEVT(i);
447 dev_set_name(&mtd->dev, "mtd%d", i);
448 dev_set_drvdata(&mtd->dev, mtd);
449 of_node_get(mtd_get_of_node(mtd));
450 error = device_register(&mtd->dev);
451 if (error)
452 goto fail_added;
453
454 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
455 "mtd%dro", i);
456
457 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
458 /* No need to get a refcount on the module containing
459 the notifier, since we hold the mtd_table_mutex */
460 list_for_each_entry(not, &mtd_notifiers, list)
461 not->add(mtd);
462
463 mutex_unlock(&mtd_table_mutex);
464 /* We _know_ we aren't being removed, because
465 our caller is still holding us here. So none
466 of this try_ nonsense, and no bitching about it
467 either. :) */
468 __module_get(THIS_MODULE);
469 return 0;
470
471 fail_added:
472 of_node_put(mtd_get_of_node(mtd));
473 idr_remove(&mtd_idr, i);
474 fail_locked:
475 mutex_unlock(&mtd_table_mutex);
476 return error;
477 }
478
479 /**
480 * del_mtd_device - unregister an MTD device
481 * @mtd: pointer to MTD device info structure
482 *
483 * Remove a device from the list of MTD devices present in the system,
484 * and notify each currently active MTD 'user' of its departure.
485 * Returns zero on success or 1 on failure, which currently will happen
486 * if the requested device does not appear to be present in the list.
487 */
488
489 int del_mtd_device(struct mtd_info *mtd)
490 {
491 int ret;
492 struct mtd_notifier *not;
493
494 mutex_lock(&mtd_table_mutex);
495
496 if (idr_find(&mtd_idr, mtd->index) != mtd) {
497 ret = -ENODEV;
498 goto out_error;
499 }
500
501 /* No need to get a refcount on the module containing
502 the notifier, since we hold the mtd_table_mutex */
503 list_for_each_entry(not, &mtd_notifiers, list)
504 not->remove(mtd);
505
506 if (mtd->usecount) {
507 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
508 mtd->index, mtd->name, mtd->usecount);
509 ret = -EBUSY;
510 } else {
511 device_unregister(&mtd->dev);
512
513 idr_remove(&mtd_idr, mtd->index);
514 of_node_put(mtd_get_of_node(mtd));
515
516 module_put(THIS_MODULE);
517 ret = 0;
518 }
519
520 out_error:
521 mutex_unlock(&mtd_table_mutex);
522 return ret;
523 }
524
525 static int mtd_add_device_partitions(struct mtd_info *mtd,
526 struct mtd_partitions *parts)
527 {
528 const struct mtd_partition *real_parts = parts->parts;
529 int nbparts = parts->nr_parts;
530 int ret;
531
532 if (nbparts == 0 || IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
533 ret = add_mtd_device(mtd);
534 if (ret)
535 return ret;
536 }
537
538 if (nbparts > 0) {
539 ret = add_mtd_partitions(mtd, real_parts, nbparts);
540 if (ret && IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
541 del_mtd_device(mtd);
542 return ret;
543 }
544
545 return 0;
546 }
547
548 /*
549 * Set a few defaults based on the parent devices, if not provided by the
550 * driver
551 */
552 static void mtd_set_dev_defaults(struct mtd_info *mtd)
553 {
554 if (mtd->dev.parent) {
555 if (!mtd->owner && mtd->dev.parent->driver)
556 mtd->owner = mtd->dev.parent->driver->owner;
557 if (!mtd->name)
558 mtd->name = dev_name(mtd->dev.parent);
559 } else {
560 pr_debug("mtd device won't show a device symlink in sysfs\n");
561 }
562 }
563
564 /**
565 * mtd_device_parse_register - parse partitions and register an MTD device.
566 *
567 * @mtd: the MTD device to register
568 * @types: the list of MTD partition probes to try, see
569 * 'parse_mtd_partitions()' for more information
570 * @parser_data: MTD partition parser-specific data
571 * @parts: fallback partition information to register, if parsing fails;
572 * only valid if %nr_parts > %0
573 * @nr_parts: the number of partitions in parts, if zero then the full
574 * MTD device is registered if no partition info is found
575 *
576 * This function aggregates MTD partitions parsing (done by
577 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
578 * basically follows the most common pattern found in many MTD drivers:
579 *
580 * * It first tries to probe partitions on MTD device @mtd using parsers
581 * specified in @types (if @types is %NULL, then the default list of parsers
582 * is used, see 'parse_mtd_partitions()' for more information). If none are
583 * found this functions tries to fallback to information specified in
584 * @parts/@nr_parts.
585 * * If any partitioning info was found, this function registers the found
586 * partitions. If the MTD_PARTITIONED_MASTER option is set, then the device
587 * as a whole is registered first.
588 * * If no partitions were found this function just registers the MTD device
589 * @mtd and exits.
590 *
591 * Returns zero in case of success and a negative error code in case of failure.
592 */
593 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
594 struct mtd_part_parser_data *parser_data,
595 const struct mtd_partition *parts,
596 int nr_parts)
597 {
598 struct mtd_partitions parsed;
599 int ret;
600
601 mtd_set_dev_defaults(mtd);
602
603 memset(&parsed, 0, sizeof(parsed));
604
605 ret = parse_mtd_partitions(mtd, types, &parsed, parser_data);
606 if ((ret < 0 || parsed.nr_parts == 0) && parts && nr_parts) {
607 /* Fall back to driver-provided partitions */
608 parsed = (struct mtd_partitions){
609 .parts = parts,
610 .nr_parts = nr_parts,
611 };
612 } else if (ret < 0) {
613 /* Didn't come up with parsed OR fallback partitions */
614 pr_info("mtd: failed to find partitions; one or more parsers reports errors (%d)\n",
615 ret);
616 /* Don't abort on errors; we can still use unpartitioned MTD */
617 memset(&parsed, 0, sizeof(parsed));
618 }
619
620 ret = mtd_add_device_partitions(mtd, &parsed);
621 if (ret)
622 goto out;
623
624 /*
625 * FIXME: some drivers unfortunately call this function more than once.
626 * So we have to check if we've already assigned the reboot notifier.
627 *
628 * Generally, we can make multiple calls work for most cases, but it
629 * does cause problems with parse_mtd_partitions() above (e.g.,
630 * cmdlineparts will register partitions more than once).
631 */
632 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
633 "MTD already registered\n");
634 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
635 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
636 register_reboot_notifier(&mtd->reboot_notifier);
637 }
638
639 out:
640 /* Cleanup any parsed partitions */
641 mtd_part_parser_cleanup(&parsed);
642 return ret;
643 }
644 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
645
646 /**
647 * mtd_device_unregister - unregister an existing MTD device.
648 *
649 * @master: the MTD device to unregister. This will unregister both the master
650 * and any partitions if registered.
651 */
652 int mtd_device_unregister(struct mtd_info *master)
653 {
654 int err;
655
656 if (master->_reboot)
657 unregister_reboot_notifier(&master->reboot_notifier);
658
659 err = del_mtd_partitions(master);
660 if (err)
661 return err;
662
663 if (!device_is_registered(&master->dev))
664 return 0;
665
666 return del_mtd_device(master);
667 }
668 EXPORT_SYMBOL_GPL(mtd_device_unregister);
669
670 /**
671 * register_mtd_user - register a 'user' of MTD devices.
672 * @new: pointer to notifier info structure
673 *
674 * Registers a pair of callbacks function to be called upon addition
675 * or removal of MTD devices. Causes the 'add' callback to be immediately
676 * invoked for each MTD device currently present in the system.
677 */
678 void register_mtd_user (struct mtd_notifier *new)
679 {
680 struct mtd_info *mtd;
681
682 mutex_lock(&mtd_table_mutex);
683
684 list_add(&new->list, &mtd_notifiers);
685
686 __module_get(THIS_MODULE);
687
688 mtd_for_each_device(mtd)
689 new->add(mtd);
690
691 mutex_unlock(&mtd_table_mutex);
692 }
693 EXPORT_SYMBOL_GPL(register_mtd_user);
694
695 /**
696 * unregister_mtd_user - unregister a 'user' of MTD devices.
697 * @old: pointer to notifier info structure
698 *
699 * Removes a callback function pair from the list of 'users' to be
700 * notified upon addition or removal of MTD devices. Causes the
701 * 'remove' callback to be immediately invoked for each MTD device
702 * currently present in the system.
703 */
704 int unregister_mtd_user (struct mtd_notifier *old)
705 {
706 struct mtd_info *mtd;
707
708 mutex_lock(&mtd_table_mutex);
709
710 module_put(THIS_MODULE);
711
712 mtd_for_each_device(mtd)
713 old->remove(mtd);
714
715 list_del(&old->list);
716 mutex_unlock(&mtd_table_mutex);
717 return 0;
718 }
719 EXPORT_SYMBOL_GPL(unregister_mtd_user);
720
721 /**
722 * get_mtd_device - obtain a validated handle for an MTD device
723 * @mtd: last known address of the required MTD device
724 * @num: internal device number of the required MTD device
725 *
726 * Given a number and NULL address, return the num'th entry in the device
727 * table, if any. Given an address and num == -1, search the device table
728 * for a device with that address and return if it's still present. Given
729 * both, return the num'th driver only if its address matches. Return
730 * error code if not.
731 */
732 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
733 {
734 struct mtd_info *ret = NULL, *other;
735 int err = -ENODEV;
736
737 mutex_lock(&mtd_table_mutex);
738
739 if (num == -1) {
740 mtd_for_each_device(other) {
741 if (other == mtd) {
742 ret = mtd;
743 break;
744 }
745 }
746 } else if (num >= 0) {
747 ret = idr_find(&mtd_idr, num);
748 if (mtd && mtd != ret)
749 ret = NULL;
750 }
751
752 if (!ret) {
753 ret = ERR_PTR(err);
754 goto out;
755 }
756
757 err = __get_mtd_device(ret);
758 if (err)
759 ret = ERR_PTR(err);
760 out:
761 mutex_unlock(&mtd_table_mutex);
762 return ret;
763 }
764 EXPORT_SYMBOL_GPL(get_mtd_device);
765
766
767 int __get_mtd_device(struct mtd_info *mtd)
768 {
769 int err;
770
771 if (!try_module_get(mtd->owner))
772 return -ENODEV;
773
774 if (mtd->_get_device) {
775 err = mtd->_get_device(mtd);
776
777 if (err) {
778 module_put(mtd->owner);
779 return err;
780 }
781 }
782 mtd->usecount++;
783 return 0;
784 }
785 EXPORT_SYMBOL_GPL(__get_mtd_device);
786
787 /**
788 * get_mtd_device_nm - obtain a validated handle for an MTD device by
789 * device name
790 * @name: MTD device name to open
791 *
792 * This function returns MTD device description structure in case of
793 * success and an error code in case of failure.
794 */
795 struct mtd_info *get_mtd_device_nm(const char *name)
796 {
797 int err = -ENODEV;
798 struct mtd_info *mtd = NULL, *other;
799
800 mutex_lock(&mtd_table_mutex);
801
802 mtd_for_each_device(other) {
803 if (!strcmp(name, other->name)) {
804 mtd = other;
805 break;
806 }
807 }
808
809 if (!mtd)
810 goto out_unlock;
811
812 err = __get_mtd_device(mtd);
813 if (err)
814 goto out_unlock;
815
816 mutex_unlock(&mtd_table_mutex);
817 return mtd;
818
819 out_unlock:
820 mutex_unlock(&mtd_table_mutex);
821 return ERR_PTR(err);
822 }
823 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
824
825 void put_mtd_device(struct mtd_info *mtd)
826 {
827 mutex_lock(&mtd_table_mutex);
828 __put_mtd_device(mtd);
829 mutex_unlock(&mtd_table_mutex);
830
831 }
832 EXPORT_SYMBOL_GPL(put_mtd_device);
833
834 void __put_mtd_device(struct mtd_info *mtd)
835 {
836 --mtd->usecount;
837 BUG_ON(mtd->usecount < 0);
838
839 if (mtd->_put_device)
840 mtd->_put_device(mtd);
841
842 module_put(mtd->owner);
843 }
844 EXPORT_SYMBOL_GPL(__put_mtd_device);
845
846 /*
847 * Erase is an asynchronous operation. Device drivers are supposed
848 * to call instr->callback() whenever the operation completes, even
849 * if it completes with a failure.
850 * Callers are supposed to pass a callback function and wait for it
851 * to be called before writing to the block.
852 */
853 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
854 {
855 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
856 return -EINVAL;
857 if (!(mtd->flags & MTD_WRITEABLE))
858 return -EROFS;
859 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
860 if (!instr->len) {
861 instr->state = MTD_ERASE_DONE;
862 mtd_erase_callback(instr);
863 return 0;
864 }
865 return mtd->_erase(mtd, instr);
866 }
867 EXPORT_SYMBOL_GPL(mtd_erase);
868
869 /*
870 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
871 */
872 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
873 void **virt, resource_size_t *phys)
874 {
875 *retlen = 0;
876 *virt = NULL;
877 if (phys)
878 *phys = 0;
879 if (!mtd->_point)
880 return -EOPNOTSUPP;
881 if (from < 0 || from >= mtd->size || len > mtd->size - from)
882 return -EINVAL;
883 if (!len)
884 return 0;
885 return mtd->_point(mtd, from, len, retlen, virt, phys);
886 }
887 EXPORT_SYMBOL_GPL(mtd_point);
888
889 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
890 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
891 {
892 if (!mtd->_point)
893 return -EOPNOTSUPP;
894 if (from < 0 || from >= mtd->size || len > mtd->size - from)
895 return -EINVAL;
896 if (!len)
897 return 0;
898 return mtd->_unpoint(mtd, from, len);
899 }
900 EXPORT_SYMBOL_GPL(mtd_unpoint);
901
902 /*
903 * Allow NOMMU mmap() to directly map the device (if not NULL)
904 * - return the address to which the offset maps
905 * - return -ENOSYS to indicate refusal to do the mapping
906 */
907 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
908 unsigned long offset, unsigned long flags)
909 {
910 if (!mtd->_get_unmapped_area)
911 return -EOPNOTSUPP;
912 if (offset >= mtd->size || len > mtd->size - offset)
913 return -EINVAL;
914 return mtd->_get_unmapped_area(mtd, len, offset, flags);
915 }
916 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
917
918 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
919 u_char *buf)
920 {
921 int ret_code;
922 *retlen = 0;
923 if (from < 0 || from >= mtd->size || len > mtd->size - from)
924 return -EINVAL;
925 if (!len)
926 return 0;
927
928 /*
929 * In the absence of an error, drivers return a non-negative integer
930 * representing the maximum number of bitflips that were corrected on
931 * any one ecc region (if applicable; zero otherwise).
932 */
933 ret_code = mtd->_read(mtd, from, len, retlen, buf);
934 if (unlikely(ret_code < 0))
935 return ret_code;
936 if (mtd->ecc_strength == 0)
937 return 0; /* device lacks ecc */
938 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
939 }
940 EXPORT_SYMBOL_GPL(mtd_read);
941
942 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
943 const u_char *buf)
944 {
945 *retlen = 0;
946 if (to < 0 || to >= mtd->size || len > mtd->size - to)
947 return -EINVAL;
948 if (!mtd->_write || !(mtd->flags & MTD_WRITEABLE))
949 return -EROFS;
950 if (!len)
951 return 0;
952 return mtd->_write(mtd, to, len, retlen, buf);
953 }
954 EXPORT_SYMBOL_GPL(mtd_write);
955
956 /*
957 * In blackbox flight recorder like scenarios we want to make successful writes
958 * in interrupt context. panic_write() is only intended to be called when its
959 * known the kernel is about to panic and we need the write to succeed. Since
960 * the kernel is not going to be running for much longer, this function can
961 * break locks and delay to ensure the write succeeds (but not sleep).
962 */
963 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
964 const u_char *buf)
965 {
966 *retlen = 0;
967 if (!mtd->_panic_write)
968 return -EOPNOTSUPP;
969 if (to < 0 || to >= mtd->size || len > mtd->size - to)
970 return -EINVAL;
971 if (!(mtd->flags & MTD_WRITEABLE))
972 return -EROFS;
973 if (!len)
974 return 0;
975 return mtd->_panic_write(mtd, to, len, retlen, buf);
976 }
977 EXPORT_SYMBOL_GPL(mtd_panic_write);
978
979 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
980 {
981 int ret_code;
982 ops->retlen = ops->oobretlen = 0;
983 if (!mtd->_read_oob)
984 return -EOPNOTSUPP;
985 /*
986 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
987 * similar to mtd->_read(), returning a non-negative integer
988 * representing max bitflips. In other cases, mtd->_read_oob() may
989 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
990 */
991 ret_code = mtd->_read_oob(mtd, from, ops);
992 if (unlikely(ret_code < 0))
993 return ret_code;
994 if (mtd->ecc_strength == 0)
995 return 0; /* device lacks ecc */
996 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
997 }
998 EXPORT_SYMBOL_GPL(mtd_read_oob);
999
1000 /*
1001 * Method to access the protection register area, present in some flash
1002 * devices. The user data is one time programmable but the factory data is read
1003 * only.
1004 */
1005 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1006 struct otp_info *buf)
1007 {
1008 if (!mtd->_get_fact_prot_info)
1009 return -EOPNOTSUPP;
1010 if (!len)
1011 return 0;
1012 return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
1013 }
1014 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1015
1016 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1017 size_t *retlen, u_char *buf)
1018 {
1019 *retlen = 0;
1020 if (!mtd->_read_fact_prot_reg)
1021 return -EOPNOTSUPP;
1022 if (!len)
1023 return 0;
1024 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1025 }
1026 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1027
1028 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1029 struct otp_info *buf)
1030 {
1031 if (!mtd->_get_user_prot_info)
1032 return -EOPNOTSUPP;
1033 if (!len)
1034 return 0;
1035 return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1036 }
1037 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1038
1039 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1040 size_t *retlen, u_char *buf)
1041 {
1042 *retlen = 0;
1043 if (!mtd->_read_user_prot_reg)
1044 return -EOPNOTSUPP;
1045 if (!len)
1046 return 0;
1047 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1048 }
1049 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1050
1051 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1052 size_t *retlen, u_char *buf)
1053 {
1054 int ret;
1055
1056 *retlen = 0;
1057 if (!mtd->_write_user_prot_reg)
1058 return -EOPNOTSUPP;
1059 if (!len)
1060 return 0;
1061 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1062 if (ret)
1063 return ret;
1064
1065 /*
1066 * If no data could be written at all, we are out of memory and
1067 * must return -ENOSPC.
1068 */
1069 return (*retlen) ? 0 : -ENOSPC;
1070 }
1071 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1072
1073 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1074 {
1075 if (!mtd->_lock_user_prot_reg)
1076 return -EOPNOTSUPP;
1077 if (!len)
1078 return 0;
1079 return mtd->_lock_user_prot_reg(mtd, from, len);
1080 }
1081 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1082
1083 /* Chip-supported device locking */
1084 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1085 {
1086 if (!mtd->_lock)
1087 return -EOPNOTSUPP;
1088 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1089 return -EINVAL;
1090 if (!len)
1091 return 0;
1092 return mtd->_lock(mtd, ofs, len);
1093 }
1094 EXPORT_SYMBOL_GPL(mtd_lock);
1095
1096 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1097 {
1098 if (!mtd->_unlock)
1099 return -EOPNOTSUPP;
1100 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1101 return -EINVAL;
1102 if (!len)
1103 return 0;
1104 return mtd->_unlock(mtd, ofs, len);
1105 }
1106 EXPORT_SYMBOL_GPL(mtd_unlock);
1107
1108 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1109 {
1110 if (!mtd->_is_locked)
1111 return -EOPNOTSUPP;
1112 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1113 return -EINVAL;
1114 if (!len)
1115 return 0;
1116 return mtd->_is_locked(mtd, ofs, len);
1117 }
1118 EXPORT_SYMBOL_GPL(mtd_is_locked);
1119
1120 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1121 {
1122 if (ofs < 0 || ofs >= mtd->size)
1123 return -EINVAL;
1124 if (!mtd->_block_isreserved)
1125 return 0;
1126 return mtd->_block_isreserved(mtd, ofs);
1127 }
1128 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1129
1130 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1131 {
1132 if (ofs < 0 || ofs >= mtd->size)
1133 return -EINVAL;
1134 if (!mtd->_block_isbad)
1135 return 0;
1136 return mtd->_block_isbad(mtd, ofs);
1137 }
1138 EXPORT_SYMBOL_GPL(mtd_block_isbad);
1139
1140 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1141 {
1142 if (!mtd->_block_markbad)
1143 return -EOPNOTSUPP;
1144 if (ofs < 0 || ofs >= mtd->size)
1145 return -EINVAL;
1146 if (!(mtd->flags & MTD_WRITEABLE))
1147 return -EROFS;
1148 return mtd->_block_markbad(mtd, ofs);
1149 }
1150 EXPORT_SYMBOL_GPL(mtd_block_markbad);
1151
1152 /*
1153 * default_mtd_writev - the default writev method
1154 * @mtd: mtd device description object pointer
1155 * @vecs: the vectors to write
1156 * @count: count of vectors in @vecs
1157 * @to: the MTD device offset to write to
1158 * @retlen: on exit contains the count of bytes written to the MTD device.
1159 *
1160 * This function returns zero in case of success and a negative error code in
1161 * case of failure.
1162 */
1163 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1164 unsigned long count, loff_t to, size_t *retlen)
1165 {
1166 unsigned long i;
1167 size_t totlen = 0, thislen;
1168 int ret = 0;
1169
1170 for (i = 0; i < count; i++) {
1171 if (!vecs[i].iov_len)
1172 continue;
1173 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1174 vecs[i].iov_base);
1175 totlen += thislen;
1176 if (ret || thislen != vecs[i].iov_len)
1177 break;
1178 to += vecs[i].iov_len;
1179 }
1180 *retlen = totlen;
1181 return ret;
1182 }
1183
1184 /*
1185 * mtd_writev - the vector-based MTD write method
1186 * @mtd: mtd device description object pointer
1187 * @vecs: the vectors to write
1188 * @count: count of vectors in @vecs
1189 * @to: the MTD device offset to write to
1190 * @retlen: on exit contains the count of bytes written to the MTD device.
1191 *
1192 * This function returns zero in case of success and a negative error code in
1193 * case of failure.
1194 */
1195 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1196 unsigned long count, loff_t to, size_t *retlen)
1197 {
1198 *retlen = 0;
1199 if (!(mtd->flags & MTD_WRITEABLE))
1200 return -EROFS;
1201 if (!mtd->_writev)
1202 return default_mtd_writev(mtd, vecs, count, to, retlen);
1203 return mtd->_writev(mtd, vecs, count, to, retlen);
1204 }
1205 EXPORT_SYMBOL_GPL(mtd_writev);
1206
1207 /**
1208 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1209 * @mtd: mtd device description object pointer
1210 * @size: a pointer to the ideal or maximum size of the allocation, points
1211 * to the actual allocation size on success.
1212 *
1213 * This routine attempts to allocate a contiguous kernel buffer up to
1214 * the specified size, backing off the size of the request exponentially
1215 * until the request succeeds or until the allocation size falls below
1216 * the system page size. This attempts to make sure it does not adversely
1217 * impact system performance, so when allocating more than one page, we
1218 * ask the memory allocator to avoid re-trying, swapping, writing back
1219 * or performing I/O.
1220 *
1221 * Note, this function also makes sure that the allocated buffer is aligned to
1222 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1223 *
1224 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1225 * to handle smaller (i.e. degraded) buffer allocations under low- or
1226 * fragmented-memory situations where such reduced allocations, from a
1227 * requested ideal, are allowed.
1228 *
1229 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1230 */
1231 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1232 {
1233 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
1234 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1235 void *kbuf;
1236
1237 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1238
1239 while (*size > min_alloc) {
1240 kbuf = kmalloc(*size, flags);
1241 if (kbuf)
1242 return kbuf;
1243
1244 *size >>= 1;
1245 *size = ALIGN(*size, mtd->writesize);
1246 }
1247
1248 /*
1249 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1250 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1251 */
1252 return kmalloc(*size, GFP_KERNEL);
1253 }
1254 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1255
1256 #ifdef CONFIG_PROC_FS
1257
1258 /*====================================================================*/
1259 /* Support for /proc/mtd */
1260
1261 static int mtd_proc_show(struct seq_file *m, void *v)
1262 {
1263 struct mtd_info *mtd;
1264
1265 seq_puts(m, "dev: size erasesize name\n");
1266 mutex_lock(&mtd_table_mutex);
1267 mtd_for_each_device(mtd) {
1268 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1269 mtd->index, (unsigned long long)mtd->size,
1270 mtd->erasesize, mtd->name);
1271 }
1272 mutex_unlock(&mtd_table_mutex);
1273 return 0;
1274 }
1275
1276 static int mtd_proc_open(struct inode *inode, struct file *file)
1277 {
1278 return single_open(file, mtd_proc_show, NULL);
1279 }
1280
1281 static const struct file_operations mtd_proc_ops = {
1282 .open = mtd_proc_open,
1283 .read = seq_read,
1284 .llseek = seq_lseek,
1285 .release = single_release,
1286 };
1287 #endif /* CONFIG_PROC_FS */
1288
1289 /*====================================================================*/
1290 /* Init code */
1291
1292 static int __init mtd_bdi_init(struct backing_dev_info *bdi, const char *name)
1293 {
1294 int ret;
1295
1296 ret = bdi_init(bdi);
1297 if (!ret)
1298 ret = bdi_register(bdi, NULL, "%s", name);
1299
1300 if (ret)
1301 bdi_destroy(bdi);
1302
1303 return ret;
1304 }
1305
1306 static struct proc_dir_entry *proc_mtd;
1307
1308 static int __init init_mtd(void)
1309 {
1310 int ret;
1311
1312 ret = class_register(&mtd_class);
1313 if (ret)
1314 goto err_reg;
1315
1316 ret = mtd_bdi_init(&mtd_bdi, "mtd");
1317 if (ret)
1318 goto err_bdi;
1319
1320 proc_mtd = proc_create("mtd", 0, NULL, &mtd_proc_ops);
1321
1322 ret = init_mtdchar();
1323 if (ret)
1324 goto out_procfs;
1325
1326 return 0;
1327
1328 out_procfs:
1329 if (proc_mtd)
1330 remove_proc_entry("mtd", NULL);
1331 err_bdi:
1332 class_unregister(&mtd_class);
1333 err_reg:
1334 pr_err("Error registering mtd class or bdi: %d\n", ret);
1335 return ret;
1336 }
1337
1338 static void __exit cleanup_mtd(void)
1339 {
1340 cleanup_mtdchar();
1341 if (proc_mtd)
1342 remove_proc_entry("mtd", NULL);
1343 class_unregister(&mtd_class);
1344 bdi_destroy(&mtd_bdi);
1345 idr_destroy(&mtd_idr);
1346 }
1347
1348 module_init(init_mtd);
1349 module_exit(cleanup_mtd);
1350
1351 MODULE_LICENSE("GPL");
1352 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1353 MODULE_DESCRIPTION("Core MTD registration and access routines");
This page took 0.079205 seconds and 5 git commands to generate.