Merge tag 'renesas-fixes2-for-v4.6' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / mtd / mtdpart.c
1 /*
2 * Simple MTD partitioning layer
3 *
4 * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
5 * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
6 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
21 *
22 */
23
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/kmod.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/partitions.h>
32 #include <linux/err.h>
33 #include <linux/kconfig.h>
34
35 #include "mtdcore.h"
36
37 /* Our partition linked list */
38 static LIST_HEAD(mtd_partitions);
39 static DEFINE_MUTEX(mtd_partitions_mutex);
40
41 /* Our partition node structure */
42 struct mtd_part {
43 struct mtd_info mtd;
44 struct mtd_info *master;
45 uint64_t offset;
46 struct list_head list;
47 };
48
49 /*
50 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
51 * the pointer to that structure.
52 */
53 static inline struct mtd_part *mtd_to_part(const struct mtd_info *mtd)
54 {
55 return container_of(mtd, struct mtd_part, mtd);
56 }
57
58
59 /*
60 * MTD methods which simply translate the effective address and pass through
61 * to the _real_ device.
62 */
63
64 static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
65 size_t *retlen, u_char *buf)
66 {
67 struct mtd_part *part = mtd_to_part(mtd);
68 struct mtd_ecc_stats stats;
69 int res;
70
71 stats = part->master->ecc_stats;
72 res = part->master->_read(part->master, from + part->offset, len,
73 retlen, buf);
74 if (unlikely(mtd_is_eccerr(res)))
75 mtd->ecc_stats.failed +=
76 part->master->ecc_stats.failed - stats.failed;
77 else
78 mtd->ecc_stats.corrected +=
79 part->master->ecc_stats.corrected - stats.corrected;
80 return res;
81 }
82
83 static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
84 size_t *retlen, void **virt, resource_size_t *phys)
85 {
86 struct mtd_part *part = mtd_to_part(mtd);
87
88 return part->master->_point(part->master, from + part->offset, len,
89 retlen, virt, phys);
90 }
91
92 static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
93 {
94 struct mtd_part *part = mtd_to_part(mtd);
95
96 return part->master->_unpoint(part->master, from + part->offset, len);
97 }
98
99 static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
100 unsigned long len,
101 unsigned long offset,
102 unsigned long flags)
103 {
104 struct mtd_part *part = mtd_to_part(mtd);
105
106 offset += part->offset;
107 return part->master->_get_unmapped_area(part->master, len, offset,
108 flags);
109 }
110
111 static int part_read_oob(struct mtd_info *mtd, loff_t from,
112 struct mtd_oob_ops *ops)
113 {
114 struct mtd_part *part = mtd_to_part(mtd);
115 int res;
116
117 if (from >= mtd->size)
118 return -EINVAL;
119 if (ops->datbuf && from + ops->len > mtd->size)
120 return -EINVAL;
121
122 /*
123 * If OOB is also requested, make sure that we do not read past the end
124 * of this partition.
125 */
126 if (ops->oobbuf) {
127 size_t len, pages;
128
129 len = mtd_oobavail(mtd, ops);
130 pages = mtd_div_by_ws(mtd->size, mtd);
131 pages -= mtd_div_by_ws(from, mtd);
132 if (ops->ooboffs + ops->ooblen > pages * len)
133 return -EINVAL;
134 }
135
136 res = part->master->_read_oob(part->master, from + part->offset, ops);
137 if (unlikely(res)) {
138 if (mtd_is_bitflip(res))
139 mtd->ecc_stats.corrected++;
140 if (mtd_is_eccerr(res))
141 mtd->ecc_stats.failed++;
142 }
143 return res;
144 }
145
146 static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
147 size_t len, size_t *retlen, u_char *buf)
148 {
149 struct mtd_part *part = mtd_to_part(mtd);
150 return part->master->_read_user_prot_reg(part->master, from, len,
151 retlen, buf);
152 }
153
154 static int part_get_user_prot_info(struct mtd_info *mtd, size_t len,
155 size_t *retlen, struct otp_info *buf)
156 {
157 struct mtd_part *part = mtd_to_part(mtd);
158 return part->master->_get_user_prot_info(part->master, len, retlen,
159 buf);
160 }
161
162 static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
163 size_t len, size_t *retlen, u_char *buf)
164 {
165 struct mtd_part *part = mtd_to_part(mtd);
166 return part->master->_read_fact_prot_reg(part->master, from, len,
167 retlen, buf);
168 }
169
170 static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len,
171 size_t *retlen, struct otp_info *buf)
172 {
173 struct mtd_part *part = mtd_to_part(mtd);
174 return part->master->_get_fact_prot_info(part->master, len, retlen,
175 buf);
176 }
177
178 static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
179 size_t *retlen, const u_char *buf)
180 {
181 struct mtd_part *part = mtd_to_part(mtd);
182 return part->master->_write(part->master, to + part->offset, len,
183 retlen, buf);
184 }
185
186 static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
187 size_t *retlen, const u_char *buf)
188 {
189 struct mtd_part *part = mtd_to_part(mtd);
190 return part->master->_panic_write(part->master, to + part->offset, len,
191 retlen, buf);
192 }
193
194 static int part_write_oob(struct mtd_info *mtd, loff_t to,
195 struct mtd_oob_ops *ops)
196 {
197 struct mtd_part *part = mtd_to_part(mtd);
198
199 if (to >= mtd->size)
200 return -EINVAL;
201 if (ops->datbuf && to + ops->len > mtd->size)
202 return -EINVAL;
203 return part->master->_write_oob(part->master, to + part->offset, ops);
204 }
205
206 static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
207 size_t len, size_t *retlen, u_char *buf)
208 {
209 struct mtd_part *part = mtd_to_part(mtd);
210 return part->master->_write_user_prot_reg(part->master, from, len,
211 retlen, buf);
212 }
213
214 static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
215 size_t len)
216 {
217 struct mtd_part *part = mtd_to_part(mtd);
218 return part->master->_lock_user_prot_reg(part->master, from, len);
219 }
220
221 static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
222 unsigned long count, loff_t to, size_t *retlen)
223 {
224 struct mtd_part *part = mtd_to_part(mtd);
225 return part->master->_writev(part->master, vecs, count,
226 to + part->offset, retlen);
227 }
228
229 static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
230 {
231 struct mtd_part *part = mtd_to_part(mtd);
232 int ret;
233
234 instr->addr += part->offset;
235 ret = part->master->_erase(part->master, instr);
236 if (ret) {
237 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
238 instr->fail_addr -= part->offset;
239 instr->addr -= part->offset;
240 }
241 return ret;
242 }
243
244 void mtd_erase_callback(struct erase_info *instr)
245 {
246 if (instr->mtd->_erase == part_erase) {
247 struct mtd_part *part = mtd_to_part(instr->mtd);
248
249 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
250 instr->fail_addr -= part->offset;
251 instr->addr -= part->offset;
252 }
253 if (instr->callback)
254 instr->callback(instr);
255 }
256 EXPORT_SYMBOL_GPL(mtd_erase_callback);
257
258 static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
259 {
260 struct mtd_part *part = mtd_to_part(mtd);
261 return part->master->_lock(part->master, ofs + part->offset, len);
262 }
263
264 static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
265 {
266 struct mtd_part *part = mtd_to_part(mtd);
267 return part->master->_unlock(part->master, ofs + part->offset, len);
268 }
269
270 static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
271 {
272 struct mtd_part *part = mtd_to_part(mtd);
273 return part->master->_is_locked(part->master, ofs + part->offset, len);
274 }
275
276 static void part_sync(struct mtd_info *mtd)
277 {
278 struct mtd_part *part = mtd_to_part(mtd);
279 part->master->_sync(part->master);
280 }
281
282 static int part_suspend(struct mtd_info *mtd)
283 {
284 struct mtd_part *part = mtd_to_part(mtd);
285 return part->master->_suspend(part->master);
286 }
287
288 static void part_resume(struct mtd_info *mtd)
289 {
290 struct mtd_part *part = mtd_to_part(mtd);
291 part->master->_resume(part->master);
292 }
293
294 static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs)
295 {
296 struct mtd_part *part = mtd_to_part(mtd);
297 ofs += part->offset;
298 return part->master->_block_isreserved(part->master, ofs);
299 }
300
301 static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
302 {
303 struct mtd_part *part = mtd_to_part(mtd);
304 ofs += part->offset;
305 return part->master->_block_isbad(part->master, ofs);
306 }
307
308 static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
309 {
310 struct mtd_part *part = mtd_to_part(mtd);
311 int res;
312
313 ofs += part->offset;
314 res = part->master->_block_markbad(part->master, ofs);
315 if (!res)
316 mtd->ecc_stats.badblocks++;
317 return res;
318 }
319
320 static inline void free_partition(struct mtd_part *p)
321 {
322 kfree(p->mtd.name);
323 kfree(p);
324 }
325
326 /*
327 * This function unregisters and destroy all slave MTD objects which are
328 * attached to the given master MTD object.
329 */
330
331 int del_mtd_partitions(struct mtd_info *master)
332 {
333 struct mtd_part *slave, *next;
334 int ret, err = 0;
335
336 mutex_lock(&mtd_partitions_mutex);
337 list_for_each_entry_safe(slave, next, &mtd_partitions, list)
338 if (slave->master == master) {
339 ret = del_mtd_device(&slave->mtd);
340 if (ret < 0) {
341 err = ret;
342 continue;
343 }
344 list_del(&slave->list);
345 free_partition(slave);
346 }
347 mutex_unlock(&mtd_partitions_mutex);
348
349 return err;
350 }
351
352 static struct mtd_part *allocate_partition(struct mtd_info *master,
353 const struct mtd_partition *part, int partno,
354 uint64_t cur_offset)
355 {
356 struct mtd_part *slave;
357 char *name;
358
359 /* allocate the partition structure */
360 slave = kzalloc(sizeof(*slave), GFP_KERNEL);
361 name = kstrdup(part->name, GFP_KERNEL);
362 if (!name || !slave) {
363 printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
364 master->name);
365 kfree(name);
366 kfree(slave);
367 return ERR_PTR(-ENOMEM);
368 }
369
370 /* set up the MTD object for this partition */
371 slave->mtd.type = master->type;
372 slave->mtd.flags = master->flags & ~part->mask_flags;
373 slave->mtd.size = part->size;
374 slave->mtd.writesize = master->writesize;
375 slave->mtd.writebufsize = master->writebufsize;
376 slave->mtd.oobsize = master->oobsize;
377 slave->mtd.oobavail = master->oobavail;
378 slave->mtd.subpage_sft = master->subpage_sft;
379
380 slave->mtd.name = name;
381 slave->mtd.owner = master->owner;
382
383 /* NOTE: Historically, we didn't arrange MTDs as a tree out of
384 * concern for showing the same data in multiple partitions.
385 * However, it is very useful to have the master node present,
386 * so the MTD_PARTITIONED_MASTER option allows that. The master
387 * will have device nodes etc only if this is set, so make the
388 * parent conditional on that option. Note, this is a way to
389 * distinguish between the master and the partition in sysfs.
390 */
391 slave->mtd.dev.parent = IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER) ?
392 &master->dev :
393 master->dev.parent;
394
395 slave->mtd._read = part_read;
396 slave->mtd._write = part_write;
397
398 if (master->_panic_write)
399 slave->mtd._panic_write = part_panic_write;
400
401 if (master->_point && master->_unpoint) {
402 slave->mtd._point = part_point;
403 slave->mtd._unpoint = part_unpoint;
404 }
405
406 if (master->_get_unmapped_area)
407 slave->mtd._get_unmapped_area = part_get_unmapped_area;
408 if (master->_read_oob)
409 slave->mtd._read_oob = part_read_oob;
410 if (master->_write_oob)
411 slave->mtd._write_oob = part_write_oob;
412 if (master->_read_user_prot_reg)
413 slave->mtd._read_user_prot_reg = part_read_user_prot_reg;
414 if (master->_read_fact_prot_reg)
415 slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg;
416 if (master->_write_user_prot_reg)
417 slave->mtd._write_user_prot_reg = part_write_user_prot_reg;
418 if (master->_lock_user_prot_reg)
419 slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg;
420 if (master->_get_user_prot_info)
421 slave->mtd._get_user_prot_info = part_get_user_prot_info;
422 if (master->_get_fact_prot_info)
423 slave->mtd._get_fact_prot_info = part_get_fact_prot_info;
424 if (master->_sync)
425 slave->mtd._sync = part_sync;
426 if (!partno && !master->dev.class && master->_suspend &&
427 master->_resume) {
428 slave->mtd._suspend = part_suspend;
429 slave->mtd._resume = part_resume;
430 }
431 if (master->_writev)
432 slave->mtd._writev = part_writev;
433 if (master->_lock)
434 slave->mtd._lock = part_lock;
435 if (master->_unlock)
436 slave->mtd._unlock = part_unlock;
437 if (master->_is_locked)
438 slave->mtd._is_locked = part_is_locked;
439 if (master->_block_isreserved)
440 slave->mtd._block_isreserved = part_block_isreserved;
441 if (master->_block_isbad)
442 slave->mtd._block_isbad = part_block_isbad;
443 if (master->_block_markbad)
444 slave->mtd._block_markbad = part_block_markbad;
445 slave->mtd._erase = part_erase;
446 slave->master = master;
447 slave->offset = part->offset;
448
449 if (slave->offset == MTDPART_OFS_APPEND)
450 slave->offset = cur_offset;
451 if (slave->offset == MTDPART_OFS_NXTBLK) {
452 slave->offset = cur_offset;
453 if (mtd_mod_by_eb(cur_offset, master) != 0) {
454 /* Round up to next erasesize */
455 slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
456 printk(KERN_NOTICE "Moving partition %d: "
457 "0x%012llx -> 0x%012llx\n", partno,
458 (unsigned long long)cur_offset, (unsigned long long)slave->offset);
459 }
460 }
461 if (slave->offset == MTDPART_OFS_RETAIN) {
462 slave->offset = cur_offset;
463 if (master->size - slave->offset >= slave->mtd.size) {
464 slave->mtd.size = master->size - slave->offset
465 - slave->mtd.size;
466 } else {
467 printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
468 part->name, master->size - slave->offset,
469 slave->mtd.size);
470 /* register to preserve ordering */
471 goto out_register;
472 }
473 }
474 if (slave->mtd.size == MTDPART_SIZ_FULL)
475 slave->mtd.size = master->size - slave->offset;
476
477 printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
478 (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
479
480 /* let's do some sanity checks */
481 if (slave->offset >= master->size) {
482 /* let's register it anyway to preserve ordering */
483 slave->offset = 0;
484 slave->mtd.size = 0;
485 printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
486 part->name);
487 goto out_register;
488 }
489 if (slave->offset + slave->mtd.size > master->size) {
490 slave->mtd.size = master->size - slave->offset;
491 printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
492 part->name, master->name, (unsigned long long)slave->mtd.size);
493 }
494 if (master->numeraseregions > 1) {
495 /* Deal with variable erase size stuff */
496 int i, max = master->numeraseregions;
497 u64 end = slave->offset + slave->mtd.size;
498 struct mtd_erase_region_info *regions = master->eraseregions;
499
500 /* Find the first erase regions which is part of this
501 * partition. */
502 for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
503 ;
504 /* The loop searched for the region _behind_ the first one */
505 if (i > 0)
506 i--;
507
508 /* Pick biggest erasesize */
509 for (; i < max && regions[i].offset < end; i++) {
510 if (slave->mtd.erasesize < regions[i].erasesize) {
511 slave->mtd.erasesize = regions[i].erasesize;
512 }
513 }
514 BUG_ON(slave->mtd.erasesize == 0);
515 } else {
516 /* Single erase size */
517 slave->mtd.erasesize = master->erasesize;
518 }
519
520 if ((slave->mtd.flags & MTD_WRITEABLE) &&
521 mtd_mod_by_eb(slave->offset, &slave->mtd)) {
522 /* Doesn't start on a boundary of major erase size */
523 /* FIXME: Let it be writable if it is on a boundary of
524 * _minor_ erase size though */
525 slave->mtd.flags &= ~MTD_WRITEABLE;
526 printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
527 part->name);
528 }
529 if ((slave->mtd.flags & MTD_WRITEABLE) &&
530 mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) {
531 slave->mtd.flags &= ~MTD_WRITEABLE;
532 printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
533 part->name);
534 }
535
536 slave->mtd.ecclayout = master->ecclayout;
537 slave->mtd.ecc_step_size = master->ecc_step_size;
538 slave->mtd.ecc_strength = master->ecc_strength;
539 slave->mtd.bitflip_threshold = master->bitflip_threshold;
540
541 if (master->_block_isbad) {
542 uint64_t offs = 0;
543
544 while (offs < slave->mtd.size) {
545 if (mtd_block_isreserved(master, offs + slave->offset))
546 slave->mtd.ecc_stats.bbtblocks++;
547 else if (mtd_block_isbad(master, offs + slave->offset))
548 slave->mtd.ecc_stats.badblocks++;
549 offs += slave->mtd.erasesize;
550 }
551 }
552
553 out_register:
554 return slave;
555 }
556
557 static ssize_t mtd_partition_offset_show(struct device *dev,
558 struct device_attribute *attr, char *buf)
559 {
560 struct mtd_info *mtd = dev_get_drvdata(dev);
561 struct mtd_part *part = mtd_to_part(mtd);
562 return snprintf(buf, PAGE_SIZE, "%lld\n", part->offset);
563 }
564
565 static DEVICE_ATTR(offset, S_IRUGO, mtd_partition_offset_show, NULL);
566
567 static const struct attribute *mtd_partition_attrs[] = {
568 &dev_attr_offset.attr,
569 NULL
570 };
571
572 static int mtd_add_partition_attrs(struct mtd_part *new)
573 {
574 int ret = sysfs_create_files(&new->mtd.dev.kobj, mtd_partition_attrs);
575 if (ret)
576 printk(KERN_WARNING
577 "mtd: failed to create partition attrs, err=%d\n", ret);
578 return ret;
579 }
580
581 int mtd_add_partition(struct mtd_info *master, const char *name,
582 long long offset, long long length)
583 {
584 struct mtd_partition part;
585 struct mtd_part *new;
586 int ret = 0;
587
588 /* the direct offset is expected */
589 if (offset == MTDPART_OFS_APPEND ||
590 offset == MTDPART_OFS_NXTBLK)
591 return -EINVAL;
592
593 if (length == MTDPART_SIZ_FULL)
594 length = master->size - offset;
595
596 if (length <= 0)
597 return -EINVAL;
598
599 memset(&part, 0, sizeof(part));
600 part.name = name;
601 part.size = length;
602 part.offset = offset;
603
604 new = allocate_partition(master, &part, -1, offset);
605 if (IS_ERR(new))
606 return PTR_ERR(new);
607
608 mutex_lock(&mtd_partitions_mutex);
609 list_add(&new->list, &mtd_partitions);
610 mutex_unlock(&mtd_partitions_mutex);
611
612 add_mtd_device(&new->mtd);
613
614 mtd_add_partition_attrs(new);
615
616 return ret;
617 }
618 EXPORT_SYMBOL_GPL(mtd_add_partition);
619
620 int mtd_del_partition(struct mtd_info *master, int partno)
621 {
622 struct mtd_part *slave, *next;
623 int ret = -EINVAL;
624
625 mutex_lock(&mtd_partitions_mutex);
626 list_for_each_entry_safe(slave, next, &mtd_partitions, list)
627 if ((slave->master == master) &&
628 (slave->mtd.index == partno)) {
629 sysfs_remove_files(&slave->mtd.dev.kobj,
630 mtd_partition_attrs);
631 ret = del_mtd_device(&slave->mtd);
632 if (ret < 0)
633 break;
634
635 list_del(&slave->list);
636 free_partition(slave);
637 break;
638 }
639 mutex_unlock(&mtd_partitions_mutex);
640
641 return ret;
642 }
643 EXPORT_SYMBOL_GPL(mtd_del_partition);
644
645 /*
646 * This function, given a master MTD object and a partition table, creates
647 * and registers slave MTD objects which are bound to the master according to
648 * the partition definitions.
649 *
650 * For historical reasons, this function's caller only registers the master
651 * if the MTD_PARTITIONED_MASTER config option is set.
652 */
653
654 int add_mtd_partitions(struct mtd_info *master,
655 const struct mtd_partition *parts,
656 int nbparts)
657 {
658 struct mtd_part *slave;
659 uint64_t cur_offset = 0;
660 int i;
661
662 printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
663
664 for (i = 0; i < nbparts; i++) {
665 slave = allocate_partition(master, parts + i, i, cur_offset);
666 if (IS_ERR(slave)) {
667 del_mtd_partitions(master);
668 return PTR_ERR(slave);
669 }
670
671 mutex_lock(&mtd_partitions_mutex);
672 list_add(&slave->list, &mtd_partitions);
673 mutex_unlock(&mtd_partitions_mutex);
674
675 add_mtd_device(&slave->mtd);
676 mtd_add_partition_attrs(slave);
677
678 cur_offset = slave->offset + slave->mtd.size;
679 }
680
681 return 0;
682 }
683
684 static DEFINE_SPINLOCK(part_parser_lock);
685 static LIST_HEAD(part_parsers);
686
687 static struct mtd_part_parser *mtd_part_parser_get(const char *name)
688 {
689 struct mtd_part_parser *p, *ret = NULL;
690
691 spin_lock(&part_parser_lock);
692
693 list_for_each_entry(p, &part_parsers, list)
694 if (!strcmp(p->name, name) && try_module_get(p->owner)) {
695 ret = p;
696 break;
697 }
698
699 spin_unlock(&part_parser_lock);
700
701 return ret;
702 }
703
704 static inline void mtd_part_parser_put(const struct mtd_part_parser *p)
705 {
706 module_put(p->owner);
707 }
708
709 /*
710 * Many partition parsers just expected the core to kfree() all their data in
711 * one chunk. Do that by default.
712 */
713 static void mtd_part_parser_cleanup_default(const struct mtd_partition *pparts,
714 int nr_parts)
715 {
716 kfree(pparts);
717 }
718
719 int __register_mtd_parser(struct mtd_part_parser *p, struct module *owner)
720 {
721 p->owner = owner;
722
723 if (!p->cleanup)
724 p->cleanup = &mtd_part_parser_cleanup_default;
725
726 spin_lock(&part_parser_lock);
727 list_add(&p->list, &part_parsers);
728 spin_unlock(&part_parser_lock);
729
730 return 0;
731 }
732 EXPORT_SYMBOL_GPL(__register_mtd_parser);
733
734 void deregister_mtd_parser(struct mtd_part_parser *p)
735 {
736 spin_lock(&part_parser_lock);
737 list_del(&p->list);
738 spin_unlock(&part_parser_lock);
739 }
740 EXPORT_SYMBOL_GPL(deregister_mtd_parser);
741
742 /*
743 * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
744 * are changing this array!
745 */
746 static const char * const default_mtd_part_types[] = {
747 "cmdlinepart",
748 "ofpart",
749 NULL
750 };
751
752 /**
753 * parse_mtd_partitions - parse MTD partitions
754 * @master: the master partition (describes whole MTD device)
755 * @types: names of partition parsers to try or %NULL
756 * @pparts: info about partitions found is returned here
757 * @data: MTD partition parser-specific data
758 *
759 * This function tries to find partition on MTD device @master. It uses MTD
760 * partition parsers, specified in @types. However, if @types is %NULL, then
761 * the default list of parsers is used. The default list contains only the
762 * "cmdlinepart" and "ofpart" parsers ATM.
763 * Note: If there are more then one parser in @types, the kernel only takes the
764 * partitions parsed out by the first parser.
765 *
766 * This function may return:
767 * o a negative error code in case of failure
768 * o zero otherwise, and @pparts will describe the partitions, number of
769 * partitions, and the parser which parsed them. Caller must release
770 * resources with mtd_part_parser_cleanup() when finished with the returned
771 * data.
772 */
773 int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
774 struct mtd_partitions *pparts,
775 struct mtd_part_parser_data *data)
776 {
777 struct mtd_part_parser *parser;
778 int ret, err = 0;
779
780 if (!types)
781 types = default_mtd_part_types;
782
783 for ( ; *types; types++) {
784 pr_debug("%s: parsing partitions %s\n", master->name, *types);
785 parser = mtd_part_parser_get(*types);
786 if (!parser && !request_module("%s", *types))
787 parser = mtd_part_parser_get(*types);
788 pr_debug("%s: got parser %s\n", master->name,
789 parser ? parser->name : NULL);
790 if (!parser)
791 continue;
792 ret = (*parser->parse_fn)(master, &pparts->parts, data);
793 pr_debug("%s: parser %s: %i\n",
794 master->name, parser->name, ret);
795 if (ret > 0) {
796 printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
797 ret, parser->name, master->name);
798 pparts->nr_parts = ret;
799 pparts->parser = parser;
800 return 0;
801 }
802 mtd_part_parser_put(parser);
803 /*
804 * Stash the first error we see; only report it if no parser
805 * succeeds
806 */
807 if (ret < 0 && !err)
808 err = ret;
809 }
810 return err;
811 }
812
813 void mtd_part_parser_cleanup(struct mtd_partitions *parts)
814 {
815 const struct mtd_part_parser *parser;
816
817 if (!parts)
818 return;
819
820 parser = parts->parser;
821 if (parser) {
822 if (parser->cleanup)
823 parser->cleanup(parts->parts, parts->nr_parts);
824
825 mtd_part_parser_put(parser);
826 }
827 }
828
829 int mtd_is_partition(const struct mtd_info *mtd)
830 {
831 struct mtd_part *part;
832 int ispart = 0;
833
834 mutex_lock(&mtd_partitions_mutex);
835 list_for_each_entry(part, &mtd_partitions, list)
836 if (&part->mtd == mtd) {
837 ispart = 1;
838 break;
839 }
840 mutex_unlock(&mtd_partitions_mutex);
841
842 return ispart;
843 }
844 EXPORT_SYMBOL_GPL(mtd_is_partition);
845
846 /* Returns the size of the entire flash chip */
847 uint64_t mtd_get_device_size(const struct mtd_info *mtd)
848 {
849 if (!mtd_is_partition(mtd))
850 return mtd->size;
851
852 return mtd_to_part(mtd)->master->size;
853 }
854 EXPORT_SYMBOL_GPL(mtd_get_device_size);
This page took 0.048701 seconds and 5 git commands to generate.