Merge branch 'x86-microcode-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / mtd / mtdpart.c
1 /*
2 * Simple MTD partitioning layer
3 *
4 * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
5 * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
6 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
21 *
22 */
23
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/kmod.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/partitions.h>
32 #include <linux/err.h>
33 #include <linux/kconfig.h>
34
35 #include "mtdcore.h"
36
37 /* Our partition linked list */
38 static LIST_HEAD(mtd_partitions);
39 static DEFINE_MUTEX(mtd_partitions_mutex);
40
41 /* Our partition node structure */
42 struct mtd_part {
43 struct mtd_info mtd;
44 struct mtd_info *master;
45 uint64_t offset;
46 struct list_head list;
47 };
48
49 /*
50 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
51 * the pointer to that structure.
52 */
53 static inline struct mtd_part *mtd_to_part(const struct mtd_info *mtd)
54 {
55 return container_of(mtd, struct mtd_part, mtd);
56 }
57
58
59 /*
60 * MTD methods which simply translate the effective address and pass through
61 * to the _real_ device.
62 */
63
64 static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
65 size_t *retlen, u_char *buf)
66 {
67 struct mtd_part *part = mtd_to_part(mtd);
68 struct mtd_ecc_stats stats;
69 int res;
70
71 stats = part->master->ecc_stats;
72 res = part->master->_read(part->master, from + part->offset, len,
73 retlen, buf);
74 if (unlikely(mtd_is_eccerr(res)))
75 mtd->ecc_stats.failed +=
76 part->master->ecc_stats.failed - stats.failed;
77 else
78 mtd->ecc_stats.corrected +=
79 part->master->ecc_stats.corrected - stats.corrected;
80 return res;
81 }
82
83 static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
84 size_t *retlen, void **virt, resource_size_t *phys)
85 {
86 struct mtd_part *part = mtd_to_part(mtd);
87
88 return part->master->_point(part->master, from + part->offset, len,
89 retlen, virt, phys);
90 }
91
92 static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
93 {
94 struct mtd_part *part = mtd_to_part(mtd);
95
96 return part->master->_unpoint(part->master, from + part->offset, len);
97 }
98
99 static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
100 unsigned long len,
101 unsigned long offset,
102 unsigned long flags)
103 {
104 struct mtd_part *part = mtd_to_part(mtd);
105
106 offset += part->offset;
107 return part->master->_get_unmapped_area(part->master, len, offset,
108 flags);
109 }
110
111 static int part_read_oob(struct mtd_info *mtd, loff_t from,
112 struct mtd_oob_ops *ops)
113 {
114 struct mtd_part *part = mtd_to_part(mtd);
115 int res;
116
117 if (from >= mtd->size)
118 return -EINVAL;
119 if (ops->datbuf && from + ops->len > mtd->size)
120 return -EINVAL;
121
122 /*
123 * If OOB is also requested, make sure that we do not read past the end
124 * of this partition.
125 */
126 if (ops->oobbuf) {
127 size_t len, pages;
128
129 if (ops->mode == MTD_OPS_AUTO_OOB)
130 len = mtd->oobavail;
131 else
132 len = mtd->oobsize;
133 pages = mtd_div_by_ws(mtd->size, mtd);
134 pages -= mtd_div_by_ws(from, mtd);
135 if (ops->ooboffs + ops->ooblen > pages * len)
136 return -EINVAL;
137 }
138
139 res = part->master->_read_oob(part->master, from + part->offset, ops);
140 if (unlikely(res)) {
141 if (mtd_is_bitflip(res))
142 mtd->ecc_stats.corrected++;
143 if (mtd_is_eccerr(res))
144 mtd->ecc_stats.failed++;
145 }
146 return res;
147 }
148
149 static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
150 size_t len, size_t *retlen, u_char *buf)
151 {
152 struct mtd_part *part = mtd_to_part(mtd);
153 return part->master->_read_user_prot_reg(part->master, from, len,
154 retlen, buf);
155 }
156
157 static int part_get_user_prot_info(struct mtd_info *mtd, size_t len,
158 size_t *retlen, struct otp_info *buf)
159 {
160 struct mtd_part *part = mtd_to_part(mtd);
161 return part->master->_get_user_prot_info(part->master, len, retlen,
162 buf);
163 }
164
165 static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
166 size_t len, size_t *retlen, u_char *buf)
167 {
168 struct mtd_part *part = mtd_to_part(mtd);
169 return part->master->_read_fact_prot_reg(part->master, from, len,
170 retlen, buf);
171 }
172
173 static int part_get_fact_prot_info(struct mtd_info *mtd, size_t len,
174 size_t *retlen, struct otp_info *buf)
175 {
176 struct mtd_part *part = mtd_to_part(mtd);
177 return part->master->_get_fact_prot_info(part->master, len, retlen,
178 buf);
179 }
180
181 static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
182 size_t *retlen, const u_char *buf)
183 {
184 struct mtd_part *part = mtd_to_part(mtd);
185 return part->master->_write(part->master, to + part->offset, len,
186 retlen, buf);
187 }
188
189 static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
190 size_t *retlen, const u_char *buf)
191 {
192 struct mtd_part *part = mtd_to_part(mtd);
193 return part->master->_panic_write(part->master, to + part->offset, len,
194 retlen, buf);
195 }
196
197 static int part_write_oob(struct mtd_info *mtd, loff_t to,
198 struct mtd_oob_ops *ops)
199 {
200 struct mtd_part *part = mtd_to_part(mtd);
201
202 if (to >= mtd->size)
203 return -EINVAL;
204 if (ops->datbuf && to + ops->len > mtd->size)
205 return -EINVAL;
206 return part->master->_write_oob(part->master, to + part->offset, ops);
207 }
208
209 static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
210 size_t len, size_t *retlen, u_char *buf)
211 {
212 struct mtd_part *part = mtd_to_part(mtd);
213 return part->master->_write_user_prot_reg(part->master, from, len,
214 retlen, buf);
215 }
216
217 static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
218 size_t len)
219 {
220 struct mtd_part *part = mtd_to_part(mtd);
221 return part->master->_lock_user_prot_reg(part->master, from, len);
222 }
223
224 static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
225 unsigned long count, loff_t to, size_t *retlen)
226 {
227 struct mtd_part *part = mtd_to_part(mtd);
228 return part->master->_writev(part->master, vecs, count,
229 to + part->offset, retlen);
230 }
231
232 static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
233 {
234 struct mtd_part *part = mtd_to_part(mtd);
235 int ret;
236
237 instr->addr += part->offset;
238 ret = part->master->_erase(part->master, instr);
239 if (ret) {
240 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
241 instr->fail_addr -= part->offset;
242 instr->addr -= part->offset;
243 }
244 return ret;
245 }
246
247 void mtd_erase_callback(struct erase_info *instr)
248 {
249 if (instr->mtd->_erase == part_erase) {
250 struct mtd_part *part = mtd_to_part(instr->mtd);
251
252 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
253 instr->fail_addr -= part->offset;
254 instr->addr -= part->offset;
255 }
256 if (instr->callback)
257 instr->callback(instr);
258 }
259 EXPORT_SYMBOL_GPL(mtd_erase_callback);
260
261 static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
262 {
263 struct mtd_part *part = mtd_to_part(mtd);
264 return part->master->_lock(part->master, ofs + part->offset, len);
265 }
266
267 static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
268 {
269 struct mtd_part *part = mtd_to_part(mtd);
270 return part->master->_unlock(part->master, ofs + part->offset, len);
271 }
272
273 static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
274 {
275 struct mtd_part *part = mtd_to_part(mtd);
276 return part->master->_is_locked(part->master, ofs + part->offset, len);
277 }
278
279 static void part_sync(struct mtd_info *mtd)
280 {
281 struct mtd_part *part = mtd_to_part(mtd);
282 part->master->_sync(part->master);
283 }
284
285 static int part_suspend(struct mtd_info *mtd)
286 {
287 struct mtd_part *part = mtd_to_part(mtd);
288 return part->master->_suspend(part->master);
289 }
290
291 static void part_resume(struct mtd_info *mtd)
292 {
293 struct mtd_part *part = mtd_to_part(mtd);
294 part->master->_resume(part->master);
295 }
296
297 static int part_block_isreserved(struct mtd_info *mtd, loff_t ofs)
298 {
299 struct mtd_part *part = mtd_to_part(mtd);
300 ofs += part->offset;
301 return part->master->_block_isreserved(part->master, ofs);
302 }
303
304 static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
305 {
306 struct mtd_part *part = mtd_to_part(mtd);
307 ofs += part->offset;
308 return part->master->_block_isbad(part->master, ofs);
309 }
310
311 static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
312 {
313 struct mtd_part *part = mtd_to_part(mtd);
314 int res;
315
316 ofs += part->offset;
317 res = part->master->_block_markbad(part->master, ofs);
318 if (!res)
319 mtd->ecc_stats.badblocks++;
320 return res;
321 }
322
323 static inline void free_partition(struct mtd_part *p)
324 {
325 kfree(p->mtd.name);
326 kfree(p);
327 }
328
329 /*
330 * This function unregisters and destroy all slave MTD objects which are
331 * attached to the given master MTD object.
332 */
333
334 int del_mtd_partitions(struct mtd_info *master)
335 {
336 struct mtd_part *slave, *next;
337 int ret, err = 0;
338
339 mutex_lock(&mtd_partitions_mutex);
340 list_for_each_entry_safe(slave, next, &mtd_partitions, list)
341 if (slave->master == master) {
342 ret = del_mtd_device(&slave->mtd);
343 if (ret < 0) {
344 err = ret;
345 continue;
346 }
347 list_del(&slave->list);
348 free_partition(slave);
349 }
350 mutex_unlock(&mtd_partitions_mutex);
351
352 return err;
353 }
354
355 static struct mtd_part *allocate_partition(struct mtd_info *master,
356 const struct mtd_partition *part, int partno,
357 uint64_t cur_offset)
358 {
359 struct mtd_part *slave;
360 char *name;
361
362 /* allocate the partition structure */
363 slave = kzalloc(sizeof(*slave), GFP_KERNEL);
364 name = kstrdup(part->name, GFP_KERNEL);
365 if (!name || !slave) {
366 printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
367 master->name);
368 kfree(name);
369 kfree(slave);
370 return ERR_PTR(-ENOMEM);
371 }
372
373 /* set up the MTD object for this partition */
374 slave->mtd.type = master->type;
375 slave->mtd.flags = master->flags & ~part->mask_flags;
376 slave->mtd.size = part->size;
377 slave->mtd.writesize = master->writesize;
378 slave->mtd.writebufsize = master->writebufsize;
379 slave->mtd.oobsize = master->oobsize;
380 slave->mtd.oobavail = master->oobavail;
381 slave->mtd.subpage_sft = master->subpage_sft;
382
383 slave->mtd.name = name;
384 slave->mtd.owner = master->owner;
385
386 /* NOTE: Historically, we didn't arrange MTDs as a tree out of
387 * concern for showing the same data in multiple partitions.
388 * However, it is very useful to have the master node present,
389 * so the MTD_PARTITIONED_MASTER option allows that. The master
390 * will have device nodes etc only if this is set, so make the
391 * parent conditional on that option. Note, this is a way to
392 * distinguish between the master and the partition in sysfs.
393 */
394 slave->mtd.dev.parent = IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER) ?
395 &master->dev :
396 master->dev.parent;
397
398 slave->mtd._read = part_read;
399 slave->mtd._write = part_write;
400
401 if (master->_panic_write)
402 slave->mtd._panic_write = part_panic_write;
403
404 if (master->_point && master->_unpoint) {
405 slave->mtd._point = part_point;
406 slave->mtd._unpoint = part_unpoint;
407 }
408
409 if (master->_get_unmapped_area)
410 slave->mtd._get_unmapped_area = part_get_unmapped_area;
411 if (master->_read_oob)
412 slave->mtd._read_oob = part_read_oob;
413 if (master->_write_oob)
414 slave->mtd._write_oob = part_write_oob;
415 if (master->_read_user_prot_reg)
416 slave->mtd._read_user_prot_reg = part_read_user_prot_reg;
417 if (master->_read_fact_prot_reg)
418 slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg;
419 if (master->_write_user_prot_reg)
420 slave->mtd._write_user_prot_reg = part_write_user_prot_reg;
421 if (master->_lock_user_prot_reg)
422 slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg;
423 if (master->_get_user_prot_info)
424 slave->mtd._get_user_prot_info = part_get_user_prot_info;
425 if (master->_get_fact_prot_info)
426 slave->mtd._get_fact_prot_info = part_get_fact_prot_info;
427 if (master->_sync)
428 slave->mtd._sync = part_sync;
429 if (!partno && !master->dev.class && master->_suspend &&
430 master->_resume) {
431 slave->mtd._suspend = part_suspend;
432 slave->mtd._resume = part_resume;
433 }
434 if (master->_writev)
435 slave->mtd._writev = part_writev;
436 if (master->_lock)
437 slave->mtd._lock = part_lock;
438 if (master->_unlock)
439 slave->mtd._unlock = part_unlock;
440 if (master->_is_locked)
441 slave->mtd._is_locked = part_is_locked;
442 if (master->_block_isreserved)
443 slave->mtd._block_isreserved = part_block_isreserved;
444 if (master->_block_isbad)
445 slave->mtd._block_isbad = part_block_isbad;
446 if (master->_block_markbad)
447 slave->mtd._block_markbad = part_block_markbad;
448 slave->mtd._erase = part_erase;
449 slave->master = master;
450 slave->offset = part->offset;
451
452 if (slave->offset == MTDPART_OFS_APPEND)
453 slave->offset = cur_offset;
454 if (slave->offset == MTDPART_OFS_NXTBLK) {
455 slave->offset = cur_offset;
456 if (mtd_mod_by_eb(cur_offset, master) != 0) {
457 /* Round up to next erasesize */
458 slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
459 printk(KERN_NOTICE "Moving partition %d: "
460 "0x%012llx -> 0x%012llx\n", partno,
461 (unsigned long long)cur_offset, (unsigned long long)slave->offset);
462 }
463 }
464 if (slave->offset == MTDPART_OFS_RETAIN) {
465 slave->offset = cur_offset;
466 if (master->size - slave->offset >= slave->mtd.size) {
467 slave->mtd.size = master->size - slave->offset
468 - slave->mtd.size;
469 } else {
470 printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
471 part->name, master->size - slave->offset,
472 slave->mtd.size);
473 /* register to preserve ordering */
474 goto out_register;
475 }
476 }
477 if (slave->mtd.size == MTDPART_SIZ_FULL)
478 slave->mtd.size = master->size - slave->offset;
479
480 printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
481 (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
482
483 /* let's do some sanity checks */
484 if (slave->offset >= master->size) {
485 /* let's register it anyway to preserve ordering */
486 slave->offset = 0;
487 slave->mtd.size = 0;
488 printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
489 part->name);
490 goto out_register;
491 }
492 if (slave->offset + slave->mtd.size > master->size) {
493 slave->mtd.size = master->size - slave->offset;
494 printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
495 part->name, master->name, (unsigned long long)slave->mtd.size);
496 }
497 if (master->numeraseregions > 1) {
498 /* Deal with variable erase size stuff */
499 int i, max = master->numeraseregions;
500 u64 end = slave->offset + slave->mtd.size;
501 struct mtd_erase_region_info *regions = master->eraseregions;
502
503 /* Find the first erase regions which is part of this
504 * partition. */
505 for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
506 ;
507 /* The loop searched for the region _behind_ the first one */
508 if (i > 0)
509 i--;
510
511 /* Pick biggest erasesize */
512 for (; i < max && regions[i].offset < end; i++) {
513 if (slave->mtd.erasesize < regions[i].erasesize) {
514 slave->mtd.erasesize = regions[i].erasesize;
515 }
516 }
517 BUG_ON(slave->mtd.erasesize == 0);
518 } else {
519 /* Single erase size */
520 slave->mtd.erasesize = master->erasesize;
521 }
522
523 if ((slave->mtd.flags & MTD_WRITEABLE) &&
524 mtd_mod_by_eb(slave->offset, &slave->mtd)) {
525 /* Doesn't start on a boundary of major erase size */
526 /* FIXME: Let it be writable if it is on a boundary of
527 * _minor_ erase size though */
528 slave->mtd.flags &= ~MTD_WRITEABLE;
529 printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
530 part->name);
531 }
532 if ((slave->mtd.flags & MTD_WRITEABLE) &&
533 mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) {
534 slave->mtd.flags &= ~MTD_WRITEABLE;
535 printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
536 part->name);
537 }
538
539 slave->mtd.ecclayout = master->ecclayout;
540 slave->mtd.ecc_step_size = master->ecc_step_size;
541 slave->mtd.ecc_strength = master->ecc_strength;
542 slave->mtd.bitflip_threshold = master->bitflip_threshold;
543
544 if (master->_block_isbad) {
545 uint64_t offs = 0;
546
547 while (offs < slave->mtd.size) {
548 if (mtd_block_isreserved(master, offs + slave->offset))
549 slave->mtd.ecc_stats.bbtblocks++;
550 else if (mtd_block_isbad(master, offs + slave->offset))
551 slave->mtd.ecc_stats.badblocks++;
552 offs += slave->mtd.erasesize;
553 }
554 }
555
556 out_register:
557 return slave;
558 }
559
560 static ssize_t mtd_partition_offset_show(struct device *dev,
561 struct device_attribute *attr, char *buf)
562 {
563 struct mtd_info *mtd = dev_get_drvdata(dev);
564 struct mtd_part *part = mtd_to_part(mtd);
565 return snprintf(buf, PAGE_SIZE, "%lld\n", part->offset);
566 }
567
568 static DEVICE_ATTR(offset, S_IRUGO, mtd_partition_offset_show, NULL);
569
570 static const struct attribute *mtd_partition_attrs[] = {
571 &dev_attr_offset.attr,
572 NULL
573 };
574
575 static int mtd_add_partition_attrs(struct mtd_part *new)
576 {
577 int ret = sysfs_create_files(&new->mtd.dev.kobj, mtd_partition_attrs);
578 if (ret)
579 printk(KERN_WARNING
580 "mtd: failed to create partition attrs, err=%d\n", ret);
581 return ret;
582 }
583
584 int mtd_add_partition(struct mtd_info *master, const char *name,
585 long long offset, long long length)
586 {
587 struct mtd_partition part;
588 struct mtd_part *new;
589 int ret = 0;
590
591 /* the direct offset is expected */
592 if (offset == MTDPART_OFS_APPEND ||
593 offset == MTDPART_OFS_NXTBLK)
594 return -EINVAL;
595
596 if (length == MTDPART_SIZ_FULL)
597 length = master->size - offset;
598
599 if (length <= 0)
600 return -EINVAL;
601
602 memset(&part, 0, sizeof(part));
603 part.name = name;
604 part.size = length;
605 part.offset = offset;
606
607 new = allocate_partition(master, &part, -1, offset);
608 if (IS_ERR(new))
609 return PTR_ERR(new);
610
611 mutex_lock(&mtd_partitions_mutex);
612 list_add(&new->list, &mtd_partitions);
613 mutex_unlock(&mtd_partitions_mutex);
614
615 add_mtd_device(&new->mtd);
616
617 mtd_add_partition_attrs(new);
618
619 return ret;
620 }
621 EXPORT_SYMBOL_GPL(mtd_add_partition);
622
623 int mtd_del_partition(struct mtd_info *master, int partno)
624 {
625 struct mtd_part *slave, *next;
626 int ret = -EINVAL;
627
628 mutex_lock(&mtd_partitions_mutex);
629 list_for_each_entry_safe(slave, next, &mtd_partitions, list)
630 if ((slave->master == master) &&
631 (slave->mtd.index == partno)) {
632 sysfs_remove_files(&slave->mtd.dev.kobj,
633 mtd_partition_attrs);
634 ret = del_mtd_device(&slave->mtd);
635 if (ret < 0)
636 break;
637
638 list_del(&slave->list);
639 free_partition(slave);
640 break;
641 }
642 mutex_unlock(&mtd_partitions_mutex);
643
644 return ret;
645 }
646 EXPORT_SYMBOL_GPL(mtd_del_partition);
647
648 /*
649 * This function, given a master MTD object and a partition table, creates
650 * and registers slave MTD objects which are bound to the master according to
651 * the partition definitions.
652 *
653 * For historical reasons, this function's caller only registers the master
654 * if the MTD_PARTITIONED_MASTER config option is set.
655 */
656
657 int add_mtd_partitions(struct mtd_info *master,
658 const struct mtd_partition *parts,
659 int nbparts)
660 {
661 struct mtd_part *slave;
662 uint64_t cur_offset = 0;
663 int i;
664
665 printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
666
667 for (i = 0; i < nbparts; i++) {
668 slave = allocate_partition(master, parts + i, i, cur_offset);
669 if (IS_ERR(slave)) {
670 del_mtd_partitions(master);
671 return PTR_ERR(slave);
672 }
673
674 mutex_lock(&mtd_partitions_mutex);
675 list_add(&slave->list, &mtd_partitions);
676 mutex_unlock(&mtd_partitions_mutex);
677
678 add_mtd_device(&slave->mtd);
679 mtd_add_partition_attrs(slave);
680
681 cur_offset = slave->offset + slave->mtd.size;
682 }
683
684 return 0;
685 }
686
687 static DEFINE_SPINLOCK(part_parser_lock);
688 static LIST_HEAD(part_parsers);
689
690 static struct mtd_part_parser *mtd_part_parser_get(const char *name)
691 {
692 struct mtd_part_parser *p, *ret = NULL;
693
694 spin_lock(&part_parser_lock);
695
696 list_for_each_entry(p, &part_parsers, list)
697 if (!strcmp(p->name, name) && try_module_get(p->owner)) {
698 ret = p;
699 break;
700 }
701
702 spin_unlock(&part_parser_lock);
703
704 return ret;
705 }
706
707 static inline void mtd_part_parser_put(const struct mtd_part_parser *p)
708 {
709 module_put(p->owner);
710 }
711
712 /*
713 * Many partition parsers just expected the core to kfree() all their data in
714 * one chunk. Do that by default.
715 */
716 static void mtd_part_parser_cleanup_default(const struct mtd_partition *pparts,
717 int nr_parts)
718 {
719 kfree(pparts);
720 }
721
722 int __register_mtd_parser(struct mtd_part_parser *p, struct module *owner)
723 {
724 p->owner = owner;
725
726 if (!p->cleanup)
727 p->cleanup = &mtd_part_parser_cleanup_default;
728
729 spin_lock(&part_parser_lock);
730 list_add(&p->list, &part_parsers);
731 spin_unlock(&part_parser_lock);
732
733 return 0;
734 }
735 EXPORT_SYMBOL_GPL(__register_mtd_parser);
736
737 void deregister_mtd_parser(struct mtd_part_parser *p)
738 {
739 spin_lock(&part_parser_lock);
740 list_del(&p->list);
741 spin_unlock(&part_parser_lock);
742 }
743 EXPORT_SYMBOL_GPL(deregister_mtd_parser);
744
745 /*
746 * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
747 * are changing this array!
748 */
749 static const char * const default_mtd_part_types[] = {
750 "cmdlinepart",
751 "ofpart",
752 NULL
753 };
754
755 /**
756 * parse_mtd_partitions - parse MTD partitions
757 * @master: the master partition (describes whole MTD device)
758 * @types: names of partition parsers to try or %NULL
759 * @pparts: info about partitions found is returned here
760 * @data: MTD partition parser-specific data
761 *
762 * This function tries to find partition on MTD device @master. It uses MTD
763 * partition parsers, specified in @types. However, if @types is %NULL, then
764 * the default list of parsers is used. The default list contains only the
765 * "cmdlinepart" and "ofpart" parsers ATM.
766 * Note: If there are more then one parser in @types, the kernel only takes the
767 * partitions parsed out by the first parser.
768 *
769 * This function may return:
770 * o a negative error code in case of failure
771 * o zero otherwise, and @pparts will describe the partitions, number of
772 * partitions, and the parser which parsed them. Caller must release
773 * resources with mtd_part_parser_cleanup() when finished with the returned
774 * data.
775 */
776 int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
777 struct mtd_partitions *pparts,
778 struct mtd_part_parser_data *data)
779 {
780 struct mtd_part_parser *parser;
781 int ret, err = 0;
782
783 if (!types)
784 types = default_mtd_part_types;
785
786 for ( ; *types; types++) {
787 pr_debug("%s: parsing partitions %s\n", master->name, *types);
788 parser = mtd_part_parser_get(*types);
789 if (!parser && !request_module("%s", *types))
790 parser = mtd_part_parser_get(*types);
791 pr_debug("%s: got parser %s\n", master->name,
792 parser ? parser->name : NULL);
793 if (!parser)
794 continue;
795 ret = (*parser->parse_fn)(master, &pparts->parts, data);
796 pr_debug("%s: parser %s: %i\n",
797 master->name, parser->name, ret);
798 if (ret > 0) {
799 printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
800 ret, parser->name, master->name);
801 pparts->nr_parts = ret;
802 pparts->parser = parser;
803 return 0;
804 }
805 mtd_part_parser_put(parser);
806 /*
807 * Stash the first error we see; only report it if no parser
808 * succeeds
809 */
810 if (ret < 0 && !err)
811 err = ret;
812 }
813 return err;
814 }
815
816 void mtd_part_parser_cleanup(struct mtd_partitions *parts)
817 {
818 const struct mtd_part_parser *parser;
819
820 if (!parts)
821 return;
822
823 parser = parts->parser;
824 if (parser) {
825 if (parser->cleanup)
826 parser->cleanup(parts->parts, parts->nr_parts);
827
828 mtd_part_parser_put(parser);
829 }
830 }
831
832 int mtd_is_partition(const struct mtd_info *mtd)
833 {
834 struct mtd_part *part;
835 int ispart = 0;
836
837 mutex_lock(&mtd_partitions_mutex);
838 list_for_each_entry(part, &mtd_partitions, list)
839 if (&part->mtd == mtd) {
840 ispart = 1;
841 break;
842 }
843 mutex_unlock(&mtd_partitions_mutex);
844
845 return ispart;
846 }
847 EXPORT_SYMBOL_GPL(mtd_is_partition);
848
849 /* Returns the size of the entire flash chip */
850 uint64_t mtd_get_device_size(const struct mtd_info *mtd)
851 {
852 if (!mtd_is_partition(mtd))
853 return mtd->size;
854
855 return mtd_to_part(mtd)->master->size;
856 }
857 EXPORT_SYMBOL_GPL(mtd_get_device_size);
This page took 0.049947 seconds and 5 git commands to generate.