Merge git://git.kernel.org/pub/scm/linux/kernel/git/sfrench/cifs-2.6
[deliverable/linux.git] / drivers / mtd / mtdpart.c
1 /*
2 * Simple MTD partitioning layer
3 *
4 * (C) 2000 Nicolas Pitre <nico@cam.org>
5 *
6 * This code is GPL
7 *
8 * 02-21-2002 Thomas Gleixner <gleixner@autronix.de>
9 * added support for read_oob, write_oob
10 */
11
12 #include <linux/module.h>
13 #include <linux/types.h>
14 #include <linux/kernel.h>
15 #include <linux/slab.h>
16 #include <linux/list.h>
17 #include <linux/kmod.h>
18 #include <linux/mtd/mtd.h>
19 #include <linux/mtd/partitions.h>
20 #include <linux/mtd/compatmac.h>
21
22 /* Our partition linked list */
23 static LIST_HEAD(mtd_partitions);
24
25 /* Our partition node structure */
26 struct mtd_part {
27 struct mtd_info mtd;
28 struct mtd_info *master;
29 uint64_t offset;
30 struct list_head list;
31 };
32
33 /*
34 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
35 * the pointer to that structure with this macro.
36 */
37 #define PART(x) ((struct mtd_part *)(x))
38
39
40 /*
41 * MTD methods which simply translate the effective address and pass through
42 * to the _real_ device.
43 */
44
45 static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
46 size_t *retlen, u_char *buf)
47 {
48 struct mtd_part *part = PART(mtd);
49 struct mtd_ecc_stats stats;
50 int res;
51
52 stats = part->master->ecc_stats;
53
54 if (from >= mtd->size)
55 len = 0;
56 else if (from + len > mtd->size)
57 len = mtd->size - from;
58 res = part->master->read(part->master, from + part->offset,
59 len, retlen, buf);
60 if (unlikely(res)) {
61 if (res == -EUCLEAN)
62 mtd->ecc_stats.corrected += part->master->ecc_stats.corrected - stats.corrected;
63 if (res == -EBADMSG)
64 mtd->ecc_stats.failed += part->master->ecc_stats.failed - stats.failed;
65 }
66 return res;
67 }
68
69 static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
70 size_t *retlen, void **virt, resource_size_t *phys)
71 {
72 struct mtd_part *part = PART(mtd);
73 if (from >= mtd->size)
74 len = 0;
75 else if (from + len > mtd->size)
76 len = mtd->size - from;
77 return part->master->point (part->master, from + part->offset,
78 len, retlen, virt, phys);
79 }
80
81 static void part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
82 {
83 struct mtd_part *part = PART(mtd);
84
85 part->master->unpoint(part->master, from + part->offset, len);
86 }
87
88 static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
89 unsigned long len,
90 unsigned long offset,
91 unsigned long flags)
92 {
93 struct mtd_part *part = PART(mtd);
94
95 offset += part->offset;
96 return part->master->get_unmapped_area(part->master, len, offset,
97 flags);
98 }
99
100 static int part_read_oob(struct mtd_info *mtd, loff_t from,
101 struct mtd_oob_ops *ops)
102 {
103 struct mtd_part *part = PART(mtd);
104 int res;
105
106 if (from >= mtd->size)
107 return -EINVAL;
108 if (ops->datbuf && from + ops->len > mtd->size)
109 return -EINVAL;
110 res = part->master->read_oob(part->master, from + part->offset, ops);
111
112 if (unlikely(res)) {
113 if (res == -EUCLEAN)
114 mtd->ecc_stats.corrected++;
115 if (res == -EBADMSG)
116 mtd->ecc_stats.failed++;
117 }
118 return res;
119 }
120
121 static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
122 size_t len, size_t *retlen, u_char *buf)
123 {
124 struct mtd_part *part = PART(mtd);
125 return part->master->read_user_prot_reg(part->master, from,
126 len, retlen, buf);
127 }
128
129 static int part_get_user_prot_info(struct mtd_info *mtd,
130 struct otp_info *buf, size_t len)
131 {
132 struct mtd_part *part = PART(mtd);
133 return part->master->get_user_prot_info(part->master, buf, len);
134 }
135
136 static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
137 size_t len, size_t *retlen, u_char *buf)
138 {
139 struct mtd_part *part = PART(mtd);
140 return part->master->read_fact_prot_reg(part->master, from,
141 len, retlen, buf);
142 }
143
144 static int part_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf,
145 size_t len)
146 {
147 struct mtd_part *part = PART(mtd);
148 return part->master->get_fact_prot_info(part->master, buf, len);
149 }
150
151 static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
152 size_t *retlen, const u_char *buf)
153 {
154 struct mtd_part *part = PART(mtd);
155 if (!(mtd->flags & MTD_WRITEABLE))
156 return -EROFS;
157 if (to >= mtd->size)
158 len = 0;
159 else if (to + len > mtd->size)
160 len = mtd->size - to;
161 return part->master->write(part->master, to + part->offset,
162 len, retlen, buf);
163 }
164
165 static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
166 size_t *retlen, const u_char *buf)
167 {
168 struct mtd_part *part = PART(mtd);
169 if (!(mtd->flags & MTD_WRITEABLE))
170 return -EROFS;
171 if (to >= mtd->size)
172 len = 0;
173 else if (to + len > mtd->size)
174 len = mtd->size - to;
175 return part->master->panic_write(part->master, to + part->offset,
176 len, retlen, buf);
177 }
178
179 static int part_write_oob(struct mtd_info *mtd, loff_t to,
180 struct mtd_oob_ops *ops)
181 {
182 struct mtd_part *part = PART(mtd);
183
184 if (!(mtd->flags & MTD_WRITEABLE))
185 return -EROFS;
186
187 if (to >= mtd->size)
188 return -EINVAL;
189 if (ops->datbuf && to + ops->len > mtd->size)
190 return -EINVAL;
191 return part->master->write_oob(part->master, to + part->offset, ops);
192 }
193
194 static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
195 size_t len, size_t *retlen, u_char *buf)
196 {
197 struct mtd_part *part = PART(mtd);
198 return part->master->write_user_prot_reg(part->master, from,
199 len, retlen, buf);
200 }
201
202 static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
203 size_t len)
204 {
205 struct mtd_part *part = PART(mtd);
206 return part->master->lock_user_prot_reg(part->master, from, len);
207 }
208
209 static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
210 unsigned long count, loff_t to, size_t *retlen)
211 {
212 struct mtd_part *part = PART(mtd);
213 if (!(mtd->flags & MTD_WRITEABLE))
214 return -EROFS;
215 return part->master->writev(part->master, vecs, count,
216 to + part->offset, retlen);
217 }
218
219 static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
220 {
221 struct mtd_part *part = PART(mtd);
222 int ret;
223 if (!(mtd->flags & MTD_WRITEABLE))
224 return -EROFS;
225 if (instr->addr >= mtd->size)
226 return -EINVAL;
227 instr->addr += part->offset;
228 ret = part->master->erase(part->master, instr);
229 if (ret) {
230 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
231 instr->fail_addr -= part->offset;
232 instr->addr -= part->offset;
233 }
234 return ret;
235 }
236
237 void mtd_erase_callback(struct erase_info *instr)
238 {
239 if (instr->mtd->erase == part_erase) {
240 struct mtd_part *part = PART(instr->mtd);
241
242 if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
243 instr->fail_addr -= part->offset;
244 instr->addr -= part->offset;
245 }
246 if (instr->callback)
247 instr->callback(instr);
248 }
249 EXPORT_SYMBOL_GPL(mtd_erase_callback);
250
251 static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
252 {
253 struct mtd_part *part = PART(mtd);
254 if ((len + ofs) > mtd->size)
255 return -EINVAL;
256 return part->master->lock(part->master, ofs + part->offset, len);
257 }
258
259 static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
260 {
261 struct mtd_part *part = PART(mtd);
262 if ((len + ofs) > mtd->size)
263 return -EINVAL;
264 return part->master->unlock(part->master, ofs + part->offset, len);
265 }
266
267 static void part_sync(struct mtd_info *mtd)
268 {
269 struct mtd_part *part = PART(mtd);
270 part->master->sync(part->master);
271 }
272
273 static int part_suspend(struct mtd_info *mtd)
274 {
275 struct mtd_part *part = PART(mtd);
276 return part->master->suspend(part->master);
277 }
278
279 static void part_resume(struct mtd_info *mtd)
280 {
281 struct mtd_part *part = PART(mtd);
282 part->master->resume(part->master);
283 }
284
285 static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
286 {
287 struct mtd_part *part = PART(mtd);
288 if (ofs >= mtd->size)
289 return -EINVAL;
290 ofs += part->offset;
291 return part->master->block_isbad(part->master, ofs);
292 }
293
294 static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
295 {
296 struct mtd_part *part = PART(mtd);
297 int res;
298
299 if (!(mtd->flags & MTD_WRITEABLE))
300 return -EROFS;
301 if (ofs >= mtd->size)
302 return -EINVAL;
303 ofs += part->offset;
304 res = part->master->block_markbad(part->master, ofs);
305 if (!res)
306 mtd->ecc_stats.badblocks++;
307 return res;
308 }
309
310 /*
311 * This function unregisters and destroy all slave MTD objects which are
312 * attached to the given master MTD object.
313 */
314
315 int del_mtd_partitions(struct mtd_info *master)
316 {
317 struct mtd_part *slave, *next;
318
319 list_for_each_entry_safe(slave, next, &mtd_partitions, list)
320 if (slave->master == master) {
321 list_del(&slave->list);
322 del_mtd_device(&slave->mtd);
323 kfree(slave);
324 }
325
326 return 0;
327 }
328 EXPORT_SYMBOL(del_mtd_partitions);
329
330 static struct mtd_part *add_one_partition(struct mtd_info *master,
331 const struct mtd_partition *part, int partno,
332 uint64_t cur_offset)
333 {
334 struct mtd_part *slave;
335
336 /* allocate the partition structure */
337 slave = kzalloc(sizeof(*slave), GFP_KERNEL);
338 if (!slave) {
339 printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
340 master->name);
341 del_mtd_partitions(master);
342 return NULL;
343 }
344 list_add(&slave->list, &mtd_partitions);
345
346 /* set up the MTD object for this partition */
347 slave->mtd.type = master->type;
348 slave->mtd.flags = master->flags & ~part->mask_flags;
349 slave->mtd.size = part->size;
350 slave->mtd.writesize = master->writesize;
351 slave->mtd.oobsize = master->oobsize;
352 slave->mtd.oobavail = master->oobavail;
353 slave->mtd.subpage_sft = master->subpage_sft;
354
355 slave->mtd.name = part->name;
356 slave->mtd.owner = master->owner;
357 slave->mtd.backing_dev_info = master->backing_dev_info;
358
359 /* NOTE: we don't arrange MTDs as a tree; it'd be error-prone
360 * to have the same data be in two different partitions.
361 */
362 slave->mtd.dev.parent = master->dev.parent;
363
364 slave->mtd.read = part_read;
365 slave->mtd.write = part_write;
366
367 if (master->panic_write)
368 slave->mtd.panic_write = part_panic_write;
369
370 if (master->point && master->unpoint) {
371 slave->mtd.point = part_point;
372 slave->mtd.unpoint = part_unpoint;
373 }
374
375 if (master->get_unmapped_area)
376 slave->mtd.get_unmapped_area = part_get_unmapped_area;
377 if (master->read_oob)
378 slave->mtd.read_oob = part_read_oob;
379 if (master->write_oob)
380 slave->mtd.write_oob = part_write_oob;
381 if (master->read_user_prot_reg)
382 slave->mtd.read_user_prot_reg = part_read_user_prot_reg;
383 if (master->read_fact_prot_reg)
384 slave->mtd.read_fact_prot_reg = part_read_fact_prot_reg;
385 if (master->write_user_prot_reg)
386 slave->mtd.write_user_prot_reg = part_write_user_prot_reg;
387 if (master->lock_user_prot_reg)
388 slave->mtd.lock_user_prot_reg = part_lock_user_prot_reg;
389 if (master->get_user_prot_info)
390 slave->mtd.get_user_prot_info = part_get_user_prot_info;
391 if (master->get_fact_prot_info)
392 slave->mtd.get_fact_prot_info = part_get_fact_prot_info;
393 if (master->sync)
394 slave->mtd.sync = part_sync;
395 if (!partno && !master->dev.class && master->suspend && master->resume) {
396 slave->mtd.suspend = part_suspend;
397 slave->mtd.resume = part_resume;
398 }
399 if (master->writev)
400 slave->mtd.writev = part_writev;
401 if (master->lock)
402 slave->mtd.lock = part_lock;
403 if (master->unlock)
404 slave->mtd.unlock = part_unlock;
405 if (master->block_isbad)
406 slave->mtd.block_isbad = part_block_isbad;
407 if (master->block_markbad)
408 slave->mtd.block_markbad = part_block_markbad;
409 slave->mtd.erase = part_erase;
410 slave->master = master;
411 slave->offset = part->offset;
412
413 if (slave->offset == MTDPART_OFS_APPEND)
414 slave->offset = cur_offset;
415 if (slave->offset == MTDPART_OFS_NXTBLK) {
416 slave->offset = cur_offset;
417 if (mtd_mod_by_eb(cur_offset, master) != 0) {
418 /* Round up to next erasesize */
419 slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
420 printk(KERN_NOTICE "Moving partition %d: "
421 "0x%012llx -> 0x%012llx\n", partno,
422 (unsigned long long)cur_offset, (unsigned long long)slave->offset);
423 }
424 }
425 if (slave->mtd.size == MTDPART_SIZ_FULL)
426 slave->mtd.size = master->size - slave->offset;
427
428 printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
429 (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
430
431 /* let's do some sanity checks */
432 if (slave->offset >= master->size) {
433 /* let's register it anyway to preserve ordering */
434 slave->offset = 0;
435 slave->mtd.size = 0;
436 printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
437 part->name);
438 goto out_register;
439 }
440 if (slave->offset + slave->mtd.size > master->size) {
441 slave->mtd.size = master->size - slave->offset;
442 printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
443 part->name, master->name, (unsigned long long)slave->mtd.size);
444 }
445 if (master->numeraseregions > 1) {
446 /* Deal with variable erase size stuff */
447 int i, max = master->numeraseregions;
448 u64 end = slave->offset + slave->mtd.size;
449 struct mtd_erase_region_info *regions = master->eraseregions;
450
451 /* Find the first erase regions which is part of this
452 * partition. */
453 for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
454 ;
455 /* The loop searched for the region _behind_ the first one */
456 i--;
457
458 /* Pick biggest erasesize */
459 for (; i < max && regions[i].offset < end; i++) {
460 if (slave->mtd.erasesize < regions[i].erasesize) {
461 slave->mtd.erasesize = regions[i].erasesize;
462 }
463 }
464 BUG_ON(slave->mtd.erasesize == 0);
465 } else {
466 /* Single erase size */
467 slave->mtd.erasesize = master->erasesize;
468 }
469
470 if ((slave->mtd.flags & MTD_WRITEABLE) &&
471 mtd_mod_by_eb(slave->offset, &slave->mtd)) {
472 /* Doesn't start on a boundary of major erase size */
473 /* FIXME: Let it be writable if it is on a boundary of
474 * _minor_ erase size though */
475 slave->mtd.flags &= ~MTD_WRITEABLE;
476 printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
477 part->name);
478 }
479 if ((slave->mtd.flags & MTD_WRITEABLE) &&
480 mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) {
481 slave->mtd.flags &= ~MTD_WRITEABLE;
482 printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
483 part->name);
484 }
485
486 slave->mtd.ecclayout = master->ecclayout;
487 if (master->block_isbad) {
488 uint64_t offs = 0;
489
490 while (offs < slave->mtd.size) {
491 if (master->block_isbad(master,
492 offs + slave->offset))
493 slave->mtd.ecc_stats.badblocks++;
494 offs += slave->mtd.erasesize;
495 }
496 }
497
498 out_register:
499 /* register our partition */
500 add_mtd_device(&slave->mtd);
501
502 return slave;
503 }
504
505 /*
506 * This function, given a master MTD object and a partition table, creates
507 * and registers slave MTD objects which are bound to the master according to
508 * the partition definitions.
509 *
510 * We don't register the master, or expect the caller to have done so,
511 * for reasons of data integrity.
512 */
513
514 int add_mtd_partitions(struct mtd_info *master,
515 const struct mtd_partition *parts,
516 int nbparts)
517 {
518 struct mtd_part *slave;
519 uint64_t cur_offset = 0;
520 int i;
521
522 printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
523
524 for (i = 0; i < nbparts; i++) {
525 slave = add_one_partition(master, parts + i, i, cur_offset);
526 if (!slave)
527 return -ENOMEM;
528 cur_offset = slave->offset + slave->mtd.size;
529 }
530
531 return 0;
532 }
533 EXPORT_SYMBOL(add_mtd_partitions);
534
535 static DEFINE_SPINLOCK(part_parser_lock);
536 static LIST_HEAD(part_parsers);
537
538 static struct mtd_part_parser *get_partition_parser(const char *name)
539 {
540 struct mtd_part_parser *p, *ret = NULL;
541
542 spin_lock(&part_parser_lock);
543
544 list_for_each_entry(p, &part_parsers, list)
545 if (!strcmp(p->name, name) && try_module_get(p->owner)) {
546 ret = p;
547 break;
548 }
549
550 spin_unlock(&part_parser_lock);
551
552 return ret;
553 }
554
555 int register_mtd_parser(struct mtd_part_parser *p)
556 {
557 spin_lock(&part_parser_lock);
558 list_add(&p->list, &part_parsers);
559 spin_unlock(&part_parser_lock);
560
561 return 0;
562 }
563 EXPORT_SYMBOL_GPL(register_mtd_parser);
564
565 int deregister_mtd_parser(struct mtd_part_parser *p)
566 {
567 spin_lock(&part_parser_lock);
568 list_del(&p->list);
569 spin_unlock(&part_parser_lock);
570 return 0;
571 }
572 EXPORT_SYMBOL_GPL(deregister_mtd_parser);
573
574 int parse_mtd_partitions(struct mtd_info *master, const char **types,
575 struct mtd_partition **pparts, unsigned long origin)
576 {
577 struct mtd_part_parser *parser;
578 int ret = 0;
579
580 for ( ; ret <= 0 && *types; types++) {
581 parser = get_partition_parser(*types);
582 if (!parser && !request_module("%s", *types))
583 parser = get_partition_parser(*types);
584 if (!parser) {
585 printk(KERN_NOTICE "%s partition parsing not available\n",
586 *types);
587 continue;
588 }
589 ret = (*parser->parse_fn)(master, pparts, origin);
590 if (ret > 0) {
591 printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
592 ret, parser->name, master->name);
593 }
594 put_partition_parser(parser);
595 }
596 return ret;
597 }
598 EXPORT_SYMBOL_GPL(parse_mtd_partitions);
This page took 0.042948 seconds and 5 git commands to generate.