Merge branch 'stable-4.5' of git://git.infradead.org/users/pcmoore/selinux into for...
[deliverable/linux.git] / drivers / mtd / nand / atmel_nand.c
1 /*
2 * Copyright © 2003 Rick Bronson
3 *
4 * Derived from drivers/mtd/nand/autcpu12.c
5 * Copyright © 2001 Thomas Gleixner (gleixner@autronix.de)
6 *
7 * Derived from drivers/mtd/spia.c
8 * Copyright © 2000 Steven J. Hill (sjhill@cotw.com)
9 *
10 *
11 * Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
12 * Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright © 2007
13 *
14 * Derived from Das U-Boot source code
15 * (u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
16 * © Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
17 *
18 * Add Programmable Multibit ECC support for various AT91 SoC
19 * © Copyright 2012 ATMEL, Hong Xu
20 *
21 * Add Nand Flash Controller support for SAMA5 SoC
22 * © Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
23 *
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License version 2 as
26 * published by the Free Software Foundation.
27 *
28 */
29
30 #include <linux/clk.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/slab.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/platform_device.h>
36 #include <linux/of.h>
37 #include <linux/of_device.h>
38 #include <linux/of_gpio.h>
39 #include <linux/of_mtd.h>
40 #include <linux/mtd/mtd.h>
41 #include <linux/mtd/nand.h>
42 #include <linux/mtd/partitions.h>
43
44 #include <linux/delay.h>
45 #include <linux/dmaengine.h>
46 #include <linux/gpio.h>
47 #include <linux/interrupt.h>
48 #include <linux/io.h>
49 #include <linux/platform_data/atmel.h>
50
51 static int use_dma = 1;
52 module_param(use_dma, int, 0);
53
54 static int on_flash_bbt = 0;
55 module_param(on_flash_bbt, int, 0);
56
57 /* Register access macros */
58 #define ecc_readl(add, reg) \
59 __raw_readl(add + ATMEL_ECC_##reg)
60 #define ecc_writel(add, reg, value) \
61 __raw_writel((value), add + ATMEL_ECC_##reg)
62
63 #include "atmel_nand_ecc.h" /* Hardware ECC registers */
64 #include "atmel_nand_nfc.h" /* Nand Flash Controller definition */
65
66 struct atmel_nand_caps {
67 bool pmecc_correct_erase_page;
68 };
69
70 /* oob layout for large page size
71 * bad block info is on bytes 0 and 1
72 * the bytes have to be consecutives to avoid
73 * several NAND_CMD_RNDOUT during read
74 */
75 static struct nand_ecclayout atmel_oobinfo_large = {
76 .eccbytes = 4,
77 .eccpos = {60, 61, 62, 63},
78 .oobfree = {
79 {2, 58}
80 },
81 };
82
83 /* oob layout for small page size
84 * bad block info is on bytes 4 and 5
85 * the bytes have to be consecutives to avoid
86 * several NAND_CMD_RNDOUT during read
87 */
88 static struct nand_ecclayout atmel_oobinfo_small = {
89 .eccbytes = 4,
90 .eccpos = {0, 1, 2, 3},
91 .oobfree = {
92 {6, 10}
93 },
94 };
95
96 struct atmel_nfc {
97 void __iomem *base_cmd_regs;
98 void __iomem *hsmc_regs;
99 void *sram_bank0;
100 dma_addr_t sram_bank0_phys;
101 bool use_nfc_sram;
102 bool write_by_sram;
103
104 struct clk *clk;
105
106 bool is_initialized;
107 struct completion comp_ready;
108 struct completion comp_cmd_done;
109 struct completion comp_xfer_done;
110
111 /* Point to the sram bank which include readed data via NFC */
112 void *data_in_sram;
113 bool will_write_sram;
114 };
115 static struct atmel_nfc nand_nfc;
116
117 struct atmel_nand_host {
118 struct nand_chip nand_chip;
119 void __iomem *io_base;
120 dma_addr_t io_phys;
121 struct atmel_nand_data board;
122 struct device *dev;
123 void __iomem *ecc;
124
125 struct completion comp;
126 struct dma_chan *dma_chan;
127
128 struct atmel_nfc *nfc;
129
130 const struct atmel_nand_caps *caps;
131 bool has_pmecc;
132 u8 pmecc_corr_cap;
133 u16 pmecc_sector_size;
134 bool has_no_lookup_table;
135 u32 pmecc_lookup_table_offset;
136 u32 pmecc_lookup_table_offset_512;
137 u32 pmecc_lookup_table_offset_1024;
138
139 int pmecc_degree; /* Degree of remainders */
140 int pmecc_cw_len; /* Length of codeword */
141
142 void __iomem *pmerrloc_base;
143 void __iomem *pmecc_rom_base;
144
145 /* lookup table for alpha_to and index_of */
146 void __iomem *pmecc_alpha_to;
147 void __iomem *pmecc_index_of;
148
149 /* data for pmecc computation */
150 int16_t *pmecc_partial_syn;
151 int16_t *pmecc_si;
152 int16_t *pmecc_smu; /* Sigma table */
153 int16_t *pmecc_lmu; /* polynomal order */
154 int *pmecc_mu;
155 int *pmecc_dmu;
156 int *pmecc_delta;
157 };
158
159 static struct nand_ecclayout atmel_pmecc_oobinfo;
160
161 /*
162 * Enable NAND.
163 */
164 static void atmel_nand_enable(struct atmel_nand_host *host)
165 {
166 if (gpio_is_valid(host->board.enable_pin))
167 gpio_set_value(host->board.enable_pin, 0);
168 }
169
170 /*
171 * Disable NAND.
172 */
173 static void atmel_nand_disable(struct atmel_nand_host *host)
174 {
175 if (gpio_is_valid(host->board.enable_pin))
176 gpio_set_value(host->board.enable_pin, 1);
177 }
178
179 /*
180 * Hardware specific access to control-lines
181 */
182 static void atmel_nand_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
183 {
184 struct nand_chip *nand_chip = mtd_to_nand(mtd);
185 struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
186
187 if (ctrl & NAND_CTRL_CHANGE) {
188 if (ctrl & NAND_NCE)
189 atmel_nand_enable(host);
190 else
191 atmel_nand_disable(host);
192 }
193 if (cmd == NAND_CMD_NONE)
194 return;
195
196 if (ctrl & NAND_CLE)
197 writeb(cmd, host->io_base + (1 << host->board.cle));
198 else
199 writeb(cmd, host->io_base + (1 << host->board.ale));
200 }
201
202 /*
203 * Read the Device Ready pin.
204 */
205 static int atmel_nand_device_ready(struct mtd_info *mtd)
206 {
207 struct nand_chip *nand_chip = mtd_to_nand(mtd);
208 struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
209
210 return gpio_get_value(host->board.rdy_pin) ^
211 !!host->board.rdy_pin_active_low;
212 }
213
214 /* Set up for hardware ready pin and enable pin. */
215 static int atmel_nand_set_enable_ready_pins(struct mtd_info *mtd)
216 {
217 struct nand_chip *chip = mtd_to_nand(mtd);
218 struct atmel_nand_host *host = nand_get_controller_data(chip);
219 int res = 0;
220
221 if (gpio_is_valid(host->board.rdy_pin)) {
222 res = devm_gpio_request(host->dev,
223 host->board.rdy_pin, "nand_rdy");
224 if (res < 0) {
225 dev_err(host->dev,
226 "can't request rdy gpio %d\n",
227 host->board.rdy_pin);
228 return res;
229 }
230
231 res = gpio_direction_input(host->board.rdy_pin);
232 if (res < 0) {
233 dev_err(host->dev,
234 "can't request input direction rdy gpio %d\n",
235 host->board.rdy_pin);
236 return res;
237 }
238
239 chip->dev_ready = atmel_nand_device_ready;
240 }
241
242 if (gpio_is_valid(host->board.enable_pin)) {
243 res = devm_gpio_request(host->dev,
244 host->board.enable_pin, "nand_enable");
245 if (res < 0) {
246 dev_err(host->dev,
247 "can't request enable gpio %d\n",
248 host->board.enable_pin);
249 return res;
250 }
251
252 res = gpio_direction_output(host->board.enable_pin, 1);
253 if (res < 0) {
254 dev_err(host->dev,
255 "can't request output direction enable gpio %d\n",
256 host->board.enable_pin);
257 return res;
258 }
259 }
260
261 return res;
262 }
263
264 /*
265 * Minimal-overhead PIO for data access.
266 */
267 static void atmel_read_buf8(struct mtd_info *mtd, u8 *buf, int len)
268 {
269 struct nand_chip *nand_chip = mtd_to_nand(mtd);
270 struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
271
272 if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) {
273 memcpy(buf, host->nfc->data_in_sram, len);
274 host->nfc->data_in_sram += len;
275 } else {
276 __raw_readsb(nand_chip->IO_ADDR_R, buf, len);
277 }
278 }
279
280 static void atmel_read_buf16(struct mtd_info *mtd, u8 *buf, int len)
281 {
282 struct nand_chip *nand_chip = mtd_to_nand(mtd);
283 struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
284
285 if (host->nfc && host->nfc->use_nfc_sram && host->nfc->data_in_sram) {
286 memcpy(buf, host->nfc->data_in_sram, len);
287 host->nfc->data_in_sram += len;
288 } else {
289 __raw_readsw(nand_chip->IO_ADDR_R, buf, len / 2);
290 }
291 }
292
293 static void atmel_write_buf8(struct mtd_info *mtd, const u8 *buf, int len)
294 {
295 struct nand_chip *nand_chip = mtd_to_nand(mtd);
296
297 __raw_writesb(nand_chip->IO_ADDR_W, buf, len);
298 }
299
300 static void atmel_write_buf16(struct mtd_info *mtd, const u8 *buf, int len)
301 {
302 struct nand_chip *nand_chip = mtd_to_nand(mtd);
303
304 __raw_writesw(nand_chip->IO_ADDR_W, buf, len / 2);
305 }
306
307 static void dma_complete_func(void *completion)
308 {
309 complete(completion);
310 }
311
312 static int nfc_set_sram_bank(struct atmel_nand_host *host, unsigned int bank)
313 {
314 /* NFC only has two banks. Must be 0 or 1 */
315 if (bank > 1)
316 return -EINVAL;
317
318 if (bank) {
319 struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
320
321 /* Only for a 2k-page or lower flash, NFC can handle 2 banks */
322 if (mtd->writesize > 2048)
323 return -EINVAL;
324 nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK1);
325 } else {
326 nfc_writel(host->nfc->hsmc_regs, BANK, ATMEL_HSMC_NFC_BANK0);
327 }
328
329 return 0;
330 }
331
332 static uint nfc_get_sram_off(struct atmel_nand_host *host)
333 {
334 if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1)
335 return NFC_SRAM_BANK1_OFFSET;
336 else
337 return 0;
338 }
339
340 static dma_addr_t nfc_sram_phys(struct atmel_nand_host *host)
341 {
342 if (nfc_readl(host->nfc->hsmc_regs, BANK) & ATMEL_HSMC_NFC_BANK1)
343 return host->nfc->sram_bank0_phys + NFC_SRAM_BANK1_OFFSET;
344 else
345 return host->nfc->sram_bank0_phys;
346 }
347
348 static int atmel_nand_dma_op(struct mtd_info *mtd, void *buf, int len,
349 int is_read)
350 {
351 struct dma_device *dma_dev;
352 enum dma_ctrl_flags flags;
353 dma_addr_t dma_src_addr, dma_dst_addr, phys_addr;
354 struct dma_async_tx_descriptor *tx = NULL;
355 dma_cookie_t cookie;
356 struct nand_chip *chip = mtd_to_nand(mtd);
357 struct atmel_nand_host *host = nand_get_controller_data(chip);
358 void *p = buf;
359 int err = -EIO;
360 enum dma_data_direction dir = is_read ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
361 struct atmel_nfc *nfc = host->nfc;
362
363 if (buf >= high_memory)
364 goto err_buf;
365
366 dma_dev = host->dma_chan->device;
367
368 flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
369
370 phys_addr = dma_map_single(dma_dev->dev, p, len, dir);
371 if (dma_mapping_error(dma_dev->dev, phys_addr)) {
372 dev_err(host->dev, "Failed to dma_map_single\n");
373 goto err_buf;
374 }
375
376 if (is_read) {
377 if (nfc && nfc->data_in_sram)
378 dma_src_addr = nfc_sram_phys(host) + (nfc->data_in_sram
379 - (nfc->sram_bank0 + nfc_get_sram_off(host)));
380 else
381 dma_src_addr = host->io_phys;
382
383 dma_dst_addr = phys_addr;
384 } else {
385 dma_src_addr = phys_addr;
386
387 if (nfc && nfc->write_by_sram)
388 dma_dst_addr = nfc_sram_phys(host);
389 else
390 dma_dst_addr = host->io_phys;
391 }
392
393 tx = dma_dev->device_prep_dma_memcpy(host->dma_chan, dma_dst_addr,
394 dma_src_addr, len, flags);
395 if (!tx) {
396 dev_err(host->dev, "Failed to prepare DMA memcpy\n");
397 goto err_dma;
398 }
399
400 init_completion(&host->comp);
401 tx->callback = dma_complete_func;
402 tx->callback_param = &host->comp;
403
404 cookie = tx->tx_submit(tx);
405 if (dma_submit_error(cookie)) {
406 dev_err(host->dev, "Failed to do DMA tx_submit\n");
407 goto err_dma;
408 }
409
410 dma_async_issue_pending(host->dma_chan);
411 wait_for_completion(&host->comp);
412
413 if (is_read && nfc && nfc->data_in_sram)
414 /* After read data from SRAM, need to increase the position */
415 nfc->data_in_sram += len;
416
417 err = 0;
418
419 err_dma:
420 dma_unmap_single(dma_dev->dev, phys_addr, len, dir);
421 err_buf:
422 if (err != 0)
423 dev_dbg(host->dev, "Fall back to CPU I/O\n");
424 return err;
425 }
426
427 static void atmel_read_buf(struct mtd_info *mtd, u8 *buf, int len)
428 {
429 struct nand_chip *chip = mtd_to_nand(mtd);
430 struct atmel_nand_host *host = nand_get_controller_data(chip);
431
432 if (use_dma && len > mtd->oobsize)
433 /* only use DMA for bigger than oob size: better performances */
434 if (atmel_nand_dma_op(mtd, buf, len, 1) == 0)
435 return;
436
437 if (host->board.bus_width_16)
438 atmel_read_buf16(mtd, buf, len);
439 else
440 atmel_read_buf8(mtd, buf, len);
441 }
442
443 static void atmel_write_buf(struct mtd_info *mtd, const u8 *buf, int len)
444 {
445 struct nand_chip *chip = mtd_to_nand(mtd);
446 struct atmel_nand_host *host = nand_get_controller_data(chip);
447
448 if (use_dma && len > mtd->oobsize)
449 /* only use DMA for bigger than oob size: better performances */
450 if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) == 0)
451 return;
452
453 if (host->board.bus_width_16)
454 atmel_write_buf16(mtd, buf, len);
455 else
456 atmel_write_buf8(mtd, buf, len);
457 }
458
459 /*
460 * Return number of ecc bytes per sector according to sector size and
461 * correction capability
462 *
463 * Following table shows what at91 PMECC supported:
464 * Correction Capability Sector_512_bytes Sector_1024_bytes
465 * ===================== ================ =================
466 * 2-bits 4-bytes 4-bytes
467 * 4-bits 7-bytes 7-bytes
468 * 8-bits 13-bytes 14-bytes
469 * 12-bits 20-bytes 21-bytes
470 * 24-bits 39-bytes 42-bytes
471 */
472 static int pmecc_get_ecc_bytes(int cap, int sector_size)
473 {
474 int m = 12 + sector_size / 512;
475 return (m * cap + 7) / 8;
476 }
477
478 static void pmecc_config_ecc_layout(struct nand_ecclayout *layout,
479 int oobsize, int ecc_len)
480 {
481 int i;
482
483 layout->eccbytes = ecc_len;
484
485 /* ECC will occupy the last ecc_len bytes continuously */
486 for (i = 0; i < ecc_len; i++)
487 layout->eccpos[i] = oobsize - ecc_len + i;
488
489 layout->oobfree[0].offset = PMECC_OOB_RESERVED_BYTES;
490 layout->oobfree[0].length =
491 oobsize - ecc_len - layout->oobfree[0].offset;
492 }
493
494 static void __iomem *pmecc_get_alpha_to(struct atmel_nand_host *host)
495 {
496 int table_size;
497
498 table_size = host->pmecc_sector_size == 512 ?
499 PMECC_LOOKUP_TABLE_SIZE_512 : PMECC_LOOKUP_TABLE_SIZE_1024;
500
501 return host->pmecc_rom_base + host->pmecc_lookup_table_offset +
502 table_size * sizeof(int16_t);
503 }
504
505 static int pmecc_data_alloc(struct atmel_nand_host *host)
506 {
507 const int cap = host->pmecc_corr_cap;
508 int size;
509
510 size = (2 * cap + 1) * sizeof(int16_t);
511 host->pmecc_partial_syn = devm_kzalloc(host->dev, size, GFP_KERNEL);
512 host->pmecc_si = devm_kzalloc(host->dev, size, GFP_KERNEL);
513 host->pmecc_lmu = devm_kzalloc(host->dev,
514 (cap + 1) * sizeof(int16_t), GFP_KERNEL);
515 host->pmecc_smu = devm_kzalloc(host->dev,
516 (cap + 2) * size, GFP_KERNEL);
517
518 size = (cap + 1) * sizeof(int);
519 host->pmecc_mu = devm_kzalloc(host->dev, size, GFP_KERNEL);
520 host->pmecc_dmu = devm_kzalloc(host->dev, size, GFP_KERNEL);
521 host->pmecc_delta = devm_kzalloc(host->dev, size, GFP_KERNEL);
522
523 if (!host->pmecc_partial_syn ||
524 !host->pmecc_si ||
525 !host->pmecc_lmu ||
526 !host->pmecc_smu ||
527 !host->pmecc_mu ||
528 !host->pmecc_dmu ||
529 !host->pmecc_delta)
530 return -ENOMEM;
531
532 return 0;
533 }
534
535 static void pmecc_gen_syndrome(struct mtd_info *mtd, int sector)
536 {
537 struct nand_chip *nand_chip = mtd_to_nand(mtd);
538 struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
539 int i;
540 uint32_t value;
541
542 /* Fill odd syndromes */
543 for (i = 0; i < host->pmecc_corr_cap; i++) {
544 value = pmecc_readl_rem_relaxed(host->ecc, sector, i / 2);
545 if (i & 1)
546 value >>= 16;
547 value &= 0xffff;
548 host->pmecc_partial_syn[(2 * i) + 1] = (int16_t)value;
549 }
550 }
551
552 static void pmecc_substitute(struct mtd_info *mtd)
553 {
554 struct nand_chip *nand_chip = mtd_to_nand(mtd);
555 struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
556 int16_t __iomem *alpha_to = host->pmecc_alpha_to;
557 int16_t __iomem *index_of = host->pmecc_index_of;
558 int16_t *partial_syn = host->pmecc_partial_syn;
559 const int cap = host->pmecc_corr_cap;
560 int16_t *si;
561 int i, j;
562
563 /* si[] is a table that holds the current syndrome value,
564 * an element of that table belongs to the field
565 */
566 si = host->pmecc_si;
567
568 memset(&si[1], 0, sizeof(int16_t) * (2 * cap - 1));
569
570 /* Computation 2t syndromes based on S(x) */
571 /* Odd syndromes */
572 for (i = 1; i < 2 * cap; i += 2) {
573 for (j = 0; j < host->pmecc_degree; j++) {
574 if (partial_syn[i] & ((unsigned short)0x1 << j))
575 si[i] = readw_relaxed(alpha_to + i * j) ^ si[i];
576 }
577 }
578 /* Even syndrome = (Odd syndrome) ** 2 */
579 for (i = 2, j = 1; j <= cap; i = ++j << 1) {
580 if (si[j] == 0) {
581 si[i] = 0;
582 } else {
583 int16_t tmp;
584
585 tmp = readw_relaxed(index_of + si[j]);
586 tmp = (tmp * 2) % host->pmecc_cw_len;
587 si[i] = readw_relaxed(alpha_to + tmp);
588 }
589 }
590
591 return;
592 }
593
594 static void pmecc_get_sigma(struct mtd_info *mtd)
595 {
596 struct nand_chip *nand_chip = mtd_to_nand(mtd);
597 struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
598
599 int16_t *lmu = host->pmecc_lmu;
600 int16_t *si = host->pmecc_si;
601 int *mu = host->pmecc_mu;
602 int *dmu = host->pmecc_dmu; /* Discrepancy */
603 int *delta = host->pmecc_delta; /* Delta order */
604 int cw_len = host->pmecc_cw_len;
605 const int16_t cap = host->pmecc_corr_cap;
606 const int num = 2 * cap + 1;
607 int16_t __iomem *index_of = host->pmecc_index_of;
608 int16_t __iomem *alpha_to = host->pmecc_alpha_to;
609 int i, j, k;
610 uint32_t dmu_0_count, tmp;
611 int16_t *smu = host->pmecc_smu;
612
613 /* index of largest delta */
614 int ro;
615 int largest;
616 int diff;
617
618 dmu_0_count = 0;
619
620 /* First Row */
621
622 /* Mu */
623 mu[0] = -1;
624
625 memset(smu, 0, sizeof(int16_t) * num);
626 smu[0] = 1;
627
628 /* discrepancy set to 1 */
629 dmu[0] = 1;
630 /* polynom order set to 0 */
631 lmu[0] = 0;
632 delta[0] = (mu[0] * 2 - lmu[0]) >> 1;
633
634 /* Second Row */
635
636 /* Mu */
637 mu[1] = 0;
638 /* Sigma(x) set to 1 */
639 memset(&smu[num], 0, sizeof(int16_t) * num);
640 smu[num] = 1;
641
642 /* discrepancy set to S1 */
643 dmu[1] = si[1];
644
645 /* polynom order set to 0 */
646 lmu[1] = 0;
647
648 delta[1] = (mu[1] * 2 - lmu[1]) >> 1;
649
650 /* Init the Sigma(x) last row */
651 memset(&smu[(cap + 1) * num], 0, sizeof(int16_t) * num);
652
653 for (i = 1; i <= cap; i++) {
654 mu[i + 1] = i << 1;
655 /* Begin Computing Sigma (Mu+1) and L(mu) */
656 /* check if discrepancy is set to 0 */
657 if (dmu[i] == 0) {
658 dmu_0_count++;
659
660 tmp = ((cap - (lmu[i] >> 1) - 1) / 2);
661 if ((cap - (lmu[i] >> 1) - 1) & 0x1)
662 tmp += 2;
663 else
664 tmp += 1;
665
666 if (dmu_0_count == tmp) {
667 for (j = 0; j <= (lmu[i] >> 1) + 1; j++)
668 smu[(cap + 1) * num + j] =
669 smu[i * num + j];
670
671 lmu[cap + 1] = lmu[i];
672 return;
673 }
674
675 /* copy polynom */
676 for (j = 0; j <= lmu[i] >> 1; j++)
677 smu[(i + 1) * num + j] = smu[i * num + j];
678
679 /* copy previous polynom order to the next */
680 lmu[i + 1] = lmu[i];
681 } else {
682 ro = 0;
683 largest = -1;
684 /* find largest delta with dmu != 0 */
685 for (j = 0; j < i; j++) {
686 if ((dmu[j]) && (delta[j] > largest)) {
687 largest = delta[j];
688 ro = j;
689 }
690 }
691
692 /* compute difference */
693 diff = (mu[i] - mu[ro]);
694
695 /* Compute degree of the new smu polynomial */
696 if ((lmu[i] >> 1) > ((lmu[ro] >> 1) + diff))
697 lmu[i + 1] = lmu[i];
698 else
699 lmu[i + 1] = ((lmu[ro] >> 1) + diff) * 2;
700
701 /* Init smu[i+1] with 0 */
702 for (k = 0; k < num; k++)
703 smu[(i + 1) * num + k] = 0;
704
705 /* Compute smu[i+1] */
706 for (k = 0; k <= lmu[ro] >> 1; k++) {
707 int16_t a, b, c;
708
709 if (!(smu[ro * num + k] && dmu[i]))
710 continue;
711 a = readw_relaxed(index_of + dmu[i]);
712 b = readw_relaxed(index_of + dmu[ro]);
713 c = readw_relaxed(index_of + smu[ro * num + k]);
714 tmp = a + (cw_len - b) + c;
715 a = readw_relaxed(alpha_to + tmp % cw_len);
716 smu[(i + 1) * num + (k + diff)] = a;
717 }
718
719 for (k = 0; k <= lmu[i] >> 1; k++)
720 smu[(i + 1) * num + k] ^= smu[i * num + k];
721 }
722
723 /* End Computing Sigma (Mu+1) and L(mu) */
724 /* In either case compute delta */
725 delta[i + 1] = (mu[i + 1] * 2 - lmu[i + 1]) >> 1;
726
727 /* Do not compute discrepancy for the last iteration */
728 if (i >= cap)
729 continue;
730
731 for (k = 0; k <= (lmu[i + 1] >> 1); k++) {
732 tmp = 2 * (i - 1);
733 if (k == 0) {
734 dmu[i + 1] = si[tmp + 3];
735 } else if (smu[(i + 1) * num + k] && si[tmp + 3 - k]) {
736 int16_t a, b, c;
737 a = readw_relaxed(index_of +
738 smu[(i + 1) * num + k]);
739 b = si[2 * (i - 1) + 3 - k];
740 c = readw_relaxed(index_of + b);
741 tmp = a + c;
742 tmp %= cw_len;
743 dmu[i + 1] = readw_relaxed(alpha_to + tmp) ^
744 dmu[i + 1];
745 }
746 }
747 }
748
749 return;
750 }
751
752 static int pmecc_err_location(struct mtd_info *mtd)
753 {
754 struct nand_chip *nand_chip = mtd_to_nand(mtd);
755 struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
756 unsigned long end_time;
757 const int cap = host->pmecc_corr_cap;
758 const int num = 2 * cap + 1;
759 int sector_size = host->pmecc_sector_size;
760 int err_nbr = 0; /* number of error */
761 int roots_nbr; /* number of roots */
762 int i;
763 uint32_t val;
764 int16_t *smu = host->pmecc_smu;
765
766 pmerrloc_writel(host->pmerrloc_base, ELDIS, PMERRLOC_DISABLE);
767
768 for (i = 0; i <= host->pmecc_lmu[cap + 1] >> 1; i++) {
769 pmerrloc_writel_sigma_relaxed(host->pmerrloc_base, i,
770 smu[(cap + 1) * num + i]);
771 err_nbr++;
772 }
773
774 val = (err_nbr - 1) << 16;
775 if (sector_size == 1024)
776 val |= 1;
777
778 pmerrloc_writel(host->pmerrloc_base, ELCFG, val);
779 pmerrloc_writel(host->pmerrloc_base, ELEN,
780 sector_size * 8 + host->pmecc_degree * cap);
781
782 end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
783 while (!(pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
784 & PMERRLOC_CALC_DONE)) {
785 if (unlikely(time_after(jiffies, end_time))) {
786 dev_err(host->dev, "PMECC: Timeout to calculate error location.\n");
787 return -1;
788 }
789 cpu_relax();
790 }
791
792 roots_nbr = (pmerrloc_readl_relaxed(host->pmerrloc_base, ELISR)
793 & PMERRLOC_ERR_NUM_MASK) >> 8;
794 /* Number of roots == degree of smu hence <= cap */
795 if (roots_nbr == host->pmecc_lmu[cap + 1] >> 1)
796 return err_nbr - 1;
797
798 /* Number of roots does not match the degree of smu
799 * unable to correct error */
800 return -1;
801 }
802
803 static void pmecc_correct_data(struct mtd_info *mtd, uint8_t *buf, uint8_t *ecc,
804 int sector_num, int extra_bytes, int err_nbr)
805 {
806 struct nand_chip *nand_chip = mtd_to_nand(mtd);
807 struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
808 int i = 0;
809 int byte_pos, bit_pos, sector_size, pos;
810 uint32_t tmp;
811 uint8_t err_byte;
812
813 sector_size = host->pmecc_sector_size;
814
815 while (err_nbr) {
816 tmp = pmerrloc_readl_el_relaxed(host->pmerrloc_base, i) - 1;
817 byte_pos = tmp / 8;
818 bit_pos = tmp % 8;
819
820 if (byte_pos >= (sector_size + extra_bytes))
821 BUG(); /* should never happen */
822
823 if (byte_pos < sector_size) {
824 err_byte = *(buf + byte_pos);
825 *(buf + byte_pos) ^= (1 << bit_pos);
826
827 pos = sector_num * host->pmecc_sector_size + byte_pos;
828 dev_info(host->dev, "Bit flip in data area, byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
829 pos, bit_pos, err_byte, *(buf + byte_pos));
830 } else {
831 /* Bit flip in OOB area */
832 tmp = sector_num * nand_chip->ecc.bytes
833 + (byte_pos - sector_size);
834 err_byte = ecc[tmp];
835 ecc[tmp] ^= (1 << bit_pos);
836
837 pos = tmp + nand_chip->ecc.layout->eccpos[0];
838 dev_info(host->dev, "Bit flip in OOB, oob_byte_pos: %d, bit_pos: %d, 0x%02x -> 0x%02x\n",
839 pos, bit_pos, err_byte, ecc[tmp]);
840 }
841
842 i++;
843 err_nbr--;
844 }
845
846 return;
847 }
848
849 static int pmecc_correction(struct mtd_info *mtd, u32 pmecc_stat, uint8_t *buf,
850 u8 *ecc)
851 {
852 struct nand_chip *nand_chip = mtd_to_nand(mtd);
853 struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
854 int i, err_nbr;
855 uint8_t *buf_pos;
856 int max_bitflips = 0;
857
858 /* If can correct bitfilps from erased page, do the normal check */
859 if (host->caps->pmecc_correct_erase_page)
860 goto normal_check;
861
862 for (i = 0; i < nand_chip->ecc.total; i++)
863 if (ecc[i] != 0xff)
864 goto normal_check;
865 /* Erased page, return OK */
866 return 0;
867
868 normal_check:
869 for (i = 0; i < nand_chip->ecc.steps; i++) {
870 err_nbr = 0;
871 if (pmecc_stat & 0x1) {
872 buf_pos = buf + i * host->pmecc_sector_size;
873
874 pmecc_gen_syndrome(mtd, i);
875 pmecc_substitute(mtd);
876 pmecc_get_sigma(mtd);
877
878 err_nbr = pmecc_err_location(mtd);
879 if (err_nbr == -1) {
880 dev_err(host->dev, "PMECC: Too many errors\n");
881 mtd->ecc_stats.failed++;
882 return -EIO;
883 } else {
884 pmecc_correct_data(mtd, buf_pos, ecc, i,
885 nand_chip->ecc.bytes, err_nbr);
886 mtd->ecc_stats.corrected += err_nbr;
887 max_bitflips = max_t(int, max_bitflips, err_nbr);
888 }
889 }
890 pmecc_stat >>= 1;
891 }
892
893 return max_bitflips;
894 }
895
896 static void pmecc_enable(struct atmel_nand_host *host, int ecc_op)
897 {
898 u32 val;
899
900 if (ecc_op != NAND_ECC_READ && ecc_op != NAND_ECC_WRITE) {
901 dev_err(host->dev, "atmel_nand: wrong pmecc operation type!");
902 return;
903 }
904
905 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
906 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
907 val = pmecc_readl_relaxed(host->ecc, CFG);
908
909 if (ecc_op == NAND_ECC_READ)
910 pmecc_writel(host->ecc, CFG, (val & ~PMECC_CFG_WRITE_OP)
911 | PMECC_CFG_AUTO_ENABLE);
912 else
913 pmecc_writel(host->ecc, CFG, (val | PMECC_CFG_WRITE_OP)
914 & ~PMECC_CFG_AUTO_ENABLE);
915
916 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
917 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DATA);
918 }
919
920 static int atmel_nand_pmecc_read_page(struct mtd_info *mtd,
921 struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
922 {
923 struct atmel_nand_host *host = nand_get_controller_data(chip);
924 int eccsize = chip->ecc.size * chip->ecc.steps;
925 uint8_t *oob = chip->oob_poi;
926 uint32_t *eccpos = chip->ecc.layout->eccpos;
927 uint32_t stat;
928 unsigned long end_time;
929 int bitflips = 0;
930
931 if (!host->nfc || !host->nfc->use_nfc_sram)
932 pmecc_enable(host, NAND_ECC_READ);
933
934 chip->read_buf(mtd, buf, eccsize);
935 chip->read_buf(mtd, oob, mtd->oobsize);
936
937 end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
938 while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
939 if (unlikely(time_after(jiffies, end_time))) {
940 dev_err(host->dev, "PMECC: Timeout to get error status.\n");
941 return -EIO;
942 }
943 cpu_relax();
944 }
945
946 stat = pmecc_readl_relaxed(host->ecc, ISR);
947 if (stat != 0) {
948 bitflips = pmecc_correction(mtd, stat, buf, &oob[eccpos[0]]);
949 if (bitflips < 0)
950 /* uncorrectable errors */
951 return 0;
952 }
953
954 return bitflips;
955 }
956
957 static int atmel_nand_pmecc_write_page(struct mtd_info *mtd,
958 struct nand_chip *chip, const uint8_t *buf, int oob_required,
959 int page)
960 {
961 struct atmel_nand_host *host = nand_get_controller_data(chip);
962 uint32_t *eccpos = chip->ecc.layout->eccpos;
963 int i, j;
964 unsigned long end_time;
965
966 if (!host->nfc || !host->nfc->write_by_sram) {
967 pmecc_enable(host, NAND_ECC_WRITE);
968 chip->write_buf(mtd, (u8 *)buf, mtd->writesize);
969 }
970
971 end_time = jiffies + msecs_to_jiffies(PMECC_MAX_TIMEOUT_MS);
972 while ((pmecc_readl_relaxed(host->ecc, SR) & PMECC_SR_BUSY)) {
973 if (unlikely(time_after(jiffies, end_time))) {
974 dev_err(host->dev, "PMECC: Timeout to get ECC value.\n");
975 return -EIO;
976 }
977 cpu_relax();
978 }
979
980 for (i = 0; i < chip->ecc.steps; i++) {
981 for (j = 0; j < chip->ecc.bytes; j++) {
982 int pos;
983
984 pos = i * chip->ecc.bytes + j;
985 chip->oob_poi[eccpos[pos]] =
986 pmecc_readb_ecc_relaxed(host->ecc, i, j);
987 }
988 }
989 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
990
991 return 0;
992 }
993
994 static void atmel_pmecc_core_init(struct mtd_info *mtd)
995 {
996 struct nand_chip *nand_chip = mtd_to_nand(mtd);
997 struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
998 uint32_t val = 0;
999 struct nand_ecclayout *ecc_layout;
1000
1001 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_RST);
1002 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
1003
1004 switch (host->pmecc_corr_cap) {
1005 case 2:
1006 val = PMECC_CFG_BCH_ERR2;
1007 break;
1008 case 4:
1009 val = PMECC_CFG_BCH_ERR4;
1010 break;
1011 case 8:
1012 val = PMECC_CFG_BCH_ERR8;
1013 break;
1014 case 12:
1015 val = PMECC_CFG_BCH_ERR12;
1016 break;
1017 case 24:
1018 val = PMECC_CFG_BCH_ERR24;
1019 break;
1020 }
1021
1022 if (host->pmecc_sector_size == 512)
1023 val |= PMECC_CFG_SECTOR512;
1024 else if (host->pmecc_sector_size == 1024)
1025 val |= PMECC_CFG_SECTOR1024;
1026
1027 switch (nand_chip->ecc.steps) {
1028 case 1:
1029 val |= PMECC_CFG_PAGE_1SECTOR;
1030 break;
1031 case 2:
1032 val |= PMECC_CFG_PAGE_2SECTORS;
1033 break;
1034 case 4:
1035 val |= PMECC_CFG_PAGE_4SECTORS;
1036 break;
1037 case 8:
1038 val |= PMECC_CFG_PAGE_8SECTORS;
1039 break;
1040 }
1041
1042 val |= (PMECC_CFG_READ_OP | PMECC_CFG_SPARE_DISABLE
1043 | PMECC_CFG_AUTO_DISABLE);
1044 pmecc_writel(host->ecc, CFG, val);
1045
1046 ecc_layout = nand_chip->ecc.layout;
1047 pmecc_writel(host->ecc, SAREA, mtd->oobsize - 1);
1048 pmecc_writel(host->ecc, SADDR, ecc_layout->eccpos[0]);
1049 pmecc_writel(host->ecc, EADDR,
1050 ecc_layout->eccpos[ecc_layout->eccbytes - 1]);
1051 /* See datasheet about PMECC Clock Control Register */
1052 pmecc_writel(host->ecc, CLK, 2);
1053 pmecc_writel(host->ecc, IDR, 0xff);
1054 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_ENABLE);
1055 }
1056
1057 /*
1058 * Get minimum ecc requirements from NAND.
1059 * If pmecc-cap, pmecc-sector-size in DTS are not specified, this function
1060 * will set them according to minimum ecc requirement. Otherwise, use the
1061 * value in DTS file.
1062 * return 0 if success. otherwise return error code.
1063 */
1064 static int pmecc_choose_ecc(struct atmel_nand_host *host,
1065 int *cap, int *sector_size)
1066 {
1067 /* Get minimum ECC requirements */
1068 if (host->nand_chip.ecc_strength_ds) {
1069 *cap = host->nand_chip.ecc_strength_ds;
1070 *sector_size = host->nand_chip.ecc_step_ds;
1071 dev_info(host->dev, "minimum ECC: %d bits in %d bytes\n",
1072 *cap, *sector_size);
1073 } else {
1074 *cap = 2;
1075 *sector_size = 512;
1076 dev_info(host->dev, "can't detect min. ECC, assume 2 bits in 512 bytes\n");
1077 }
1078
1079 /* If device tree doesn't specify, use NAND's minimum ECC parameters */
1080 if (host->pmecc_corr_cap == 0) {
1081 /* use the most fitable ecc bits (the near bigger one ) */
1082 if (*cap <= 2)
1083 host->pmecc_corr_cap = 2;
1084 else if (*cap <= 4)
1085 host->pmecc_corr_cap = 4;
1086 else if (*cap <= 8)
1087 host->pmecc_corr_cap = 8;
1088 else if (*cap <= 12)
1089 host->pmecc_corr_cap = 12;
1090 else if (*cap <= 24)
1091 host->pmecc_corr_cap = 24;
1092 else
1093 return -EINVAL;
1094 }
1095 if (host->pmecc_sector_size == 0) {
1096 /* use the most fitable sector size (the near smaller one ) */
1097 if (*sector_size >= 1024)
1098 host->pmecc_sector_size = 1024;
1099 else if (*sector_size >= 512)
1100 host->pmecc_sector_size = 512;
1101 else
1102 return -EINVAL;
1103 }
1104 return 0;
1105 }
1106
1107 static inline int deg(unsigned int poly)
1108 {
1109 /* polynomial degree is the most-significant bit index */
1110 return fls(poly) - 1;
1111 }
1112
1113 static int build_gf_tables(int mm, unsigned int poly,
1114 int16_t *index_of, int16_t *alpha_to)
1115 {
1116 unsigned int i, x = 1;
1117 const unsigned int k = 1 << deg(poly);
1118 unsigned int nn = (1 << mm) - 1;
1119
1120 /* primitive polynomial must be of degree m */
1121 if (k != (1u << mm))
1122 return -EINVAL;
1123
1124 for (i = 0; i < nn; i++) {
1125 alpha_to[i] = x;
1126 index_of[x] = i;
1127 if (i && (x == 1))
1128 /* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
1129 return -EINVAL;
1130 x <<= 1;
1131 if (x & k)
1132 x ^= poly;
1133 }
1134 alpha_to[nn] = 1;
1135 index_of[0] = 0;
1136
1137 return 0;
1138 }
1139
1140 static uint16_t *create_lookup_table(struct device *dev, int sector_size)
1141 {
1142 int degree = (sector_size == 512) ?
1143 PMECC_GF_DIMENSION_13 :
1144 PMECC_GF_DIMENSION_14;
1145 unsigned int poly = (sector_size == 512) ?
1146 PMECC_GF_13_PRIMITIVE_POLY :
1147 PMECC_GF_14_PRIMITIVE_POLY;
1148 int table_size = (sector_size == 512) ?
1149 PMECC_LOOKUP_TABLE_SIZE_512 :
1150 PMECC_LOOKUP_TABLE_SIZE_1024;
1151
1152 int16_t *addr = devm_kzalloc(dev, 2 * table_size * sizeof(uint16_t),
1153 GFP_KERNEL);
1154 if (addr && build_gf_tables(degree, poly, addr, addr + table_size))
1155 return NULL;
1156
1157 return addr;
1158 }
1159
1160 static int atmel_pmecc_nand_init_params(struct platform_device *pdev,
1161 struct atmel_nand_host *host)
1162 {
1163 struct nand_chip *nand_chip = &host->nand_chip;
1164 struct mtd_info *mtd = nand_to_mtd(nand_chip);
1165 struct resource *regs, *regs_pmerr, *regs_rom;
1166 uint16_t *galois_table;
1167 int cap, sector_size, err_no;
1168
1169 err_no = pmecc_choose_ecc(host, &cap, &sector_size);
1170 if (err_no) {
1171 dev_err(host->dev, "The NAND flash's ECC requirement are not support!");
1172 return err_no;
1173 }
1174
1175 if (cap > host->pmecc_corr_cap ||
1176 sector_size != host->pmecc_sector_size)
1177 dev_info(host->dev, "WARNING: Be Caution! Using different PMECC parameters from Nand ONFI ECC reqirement.\n");
1178
1179 cap = host->pmecc_corr_cap;
1180 sector_size = host->pmecc_sector_size;
1181 host->pmecc_lookup_table_offset = (sector_size == 512) ?
1182 host->pmecc_lookup_table_offset_512 :
1183 host->pmecc_lookup_table_offset_1024;
1184
1185 dev_info(host->dev, "Initialize PMECC params, cap: %d, sector: %d\n",
1186 cap, sector_size);
1187
1188 regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1189 if (!regs) {
1190 dev_warn(host->dev,
1191 "Can't get I/O resource regs for PMECC controller, rolling back on software ECC\n");
1192 nand_chip->ecc.mode = NAND_ECC_SOFT;
1193 return 0;
1194 }
1195
1196 host->ecc = devm_ioremap_resource(&pdev->dev, regs);
1197 if (IS_ERR(host->ecc)) {
1198 err_no = PTR_ERR(host->ecc);
1199 goto err;
1200 }
1201
1202 regs_pmerr = platform_get_resource(pdev, IORESOURCE_MEM, 2);
1203 host->pmerrloc_base = devm_ioremap_resource(&pdev->dev, regs_pmerr);
1204 if (IS_ERR(host->pmerrloc_base)) {
1205 err_no = PTR_ERR(host->pmerrloc_base);
1206 goto err;
1207 }
1208
1209 if (!host->has_no_lookup_table) {
1210 regs_rom = platform_get_resource(pdev, IORESOURCE_MEM, 3);
1211 host->pmecc_rom_base = devm_ioremap_resource(&pdev->dev,
1212 regs_rom);
1213 if (IS_ERR(host->pmecc_rom_base)) {
1214 dev_err(host->dev, "Can not get I/O resource for ROM, will build a lookup table in runtime!\n");
1215 host->has_no_lookup_table = true;
1216 }
1217 }
1218
1219 if (host->has_no_lookup_table) {
1220 /* Build the look-up table in runtime */
1221 galois_table = create_lookup_table(host->dev, sector_size);
1222 if (!galois_table) {
1223 dev_err(host->dev, "Failed to build a lookup table in runtime!\n");
1224 err_no = -EINVAL;
1225 goto err;
1226 }
1227
1228 host->pmecc_rom_base = (void __iomem *)galois_table;
1229 host->pmecc_lookup_table_offset = 0;
1230 }
1231
1232 nand_chip->ecc.size = sector_size;
1233
1234 /* set ECC page size and oob layout */
1235 switch (mtd->writesize) {
1236 case 512:
1237 case 1024:
1238 case 2048:
1239 case 4096:
1240 case 8192:
1241 if (sector_size > mtd->writesize) {
1242 dev_err(host->dev, "pmecc sector size is bigger than the page size!\n");
1243 err_no = -EINVAL;
1244 goto err;
1245 }
1246
1247 host->pmecc_degree = (sector_size == 512) ?
1248 PMECC_GF_DIMENSION_13 : PMECC_GF_DIMENSION_14;
1249 host->pmecc_cw_len = (1 << host->pmecc_degree) - 1;
1250 host->pmecc_alpha_to = pmecc_get_alpha_to(host);
1251 host->pmecc_index_of = host->pmecc_rom_base +
1252 host->pmecc_lookup_table_offset;
1253
1254 nand_chip->ecc.strength = cap;
1255 nand_chip->ecc.bytes = pmecc_get_ecc_bytes(cap, sector_size);
1256 nand_chip->ecc.steps = mtd->writesize / sector_size;
1257 nand_chip->ecc.total = nand_chip->ecc.bytes *
1258 nand_chip->ecc.steps;
1259 if (nand_chip->ecc.total >
1260 mtd->oobsize - PMECC_OOB_RESERVED_BYTES) {
1261 dev_err(host->dev, "No room for ECC bytes\n");
1262 err_no = -EINVAL;
1263 goto err;
1264 }
1265 pmecc_config_ecc_layout(&atmel_pmecc_oobinfo,
1266 mtd->oobsize,
1267 nand_chip->ecc.total);
1268
1269 nand_chip->ecc.layout = &atmel_pmecc_oobinfo;
1270 break;
1271 default:
1272 dev_warn(host->dev,
1273 "Unsupported page size for PMECC, use Software ECC\n");
1274 /* page size not handled by HW ECC */
1275 /* switching back to soft ECC */
1276 nand_chip->ecc.mode = NAND_ECC_SOFT;
1277 return 0;
1278 }
1279
1280 /* Allocate data for PMECC computation */
1281 err_no = pmecc_data_alloc(host);
1282 if (err_no) {
1283 dev_err(host->dev,
1284 "Cannot allocate memory for PMECC computation!\n");
1285 goto err;
1286 }
1287
1288 nand_chip->options |= NAND_NO_SUBPAGE_WRITE;
1289 nand_chip->ecc.read_page = atmel_nand_pmecc_read_page;
1290 nand_chip->ecc.write_page = atmel_nand_pmecc_write_page;
1291
1292 atmel_pmecc_core_init(mtd);
1293
1294 return 0;
1295
1296 err:
1297 return err_no;
1298 }
1299
1300 /*
1301 * Calculate HW ECC
1302 *
1303 * function called after a write
1304 *
1305 * mtd: MTD block structure
1306 * dat: raw data (unused)
1307 * ecc_code: buffer for ECC
1308 */
1309 static int atmel_nand_calculate(struct mtd_info *mtd,
1310 const u_char *dat, unsigned char *ecc_code)
1311 {
1312 struct nand_chip *nand_chip = mtd_to_nand(mtd);
1313 struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
1314 unsigned int ecc_value;
1315
1316 /* get the first 2 ECC bytes */
1317 ecc_value = ecc_readl(host->ecc, PR);
1318
1319 ecc_code[0] = ecc_value & 0xFF;
1320 ecc_code[1] = (ecc_value >> 8) & 0xFF;
1321
1322 /* get the last 2 ECC bytes */
1323 ecc_value = ecc_readl(host->ecc, NPR) & ATMEL_ECC_NPARITY;
1324
1325 ecc_code[2] = ecc_value & 0xFF;
1326 ecc_code[3] = (ecc_value >> 8) & 0xFF;
1327
1328 return 0;
1329 }
1330
1331 /*
1332 * HW ECC read page function
1333 *
1334 * mtd: mtd info structure
1335 * chip: nand chip info structure
1336 * buf: buffer to store read data
1337 * oob_required: caller expects OOB data read to chip->oob_poi
1338 */
1339 static int atmel_nand_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1340 uint8_t *buf, int oob_required, int page)
1341 {
1342 int eccsize = chip->ecc.size;
1343 int eccbytes = chip->ecc.bytes;
1344 uint32_t *eccpos = chip->ecc.layout->eccpos;
1345 uint8_t *p = buf;
1346 uint8_t *oob = chip->oob_poi;
1347 uint8_t *ecc_pos;
1348 int stat;
1349 unsigned int max_bitflips = 0;
1350
1351 /*
1352 * Errata: ALE is incorrectly wired up to the ECC controller
1353 * on the AP7000, so it will include the address cycles in the
1354 * ECC calculation.
1355 *
1356 * Workaround: Reset the parity registers before reading the
1357 * actual data.
1358 */
1359 struct atmel_nand_host *host = nand_get_controller_data(chip);
1360 if (host->board.need_reset_workaround)
1361 ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
1362
1363 /* read the page */
1364 chip->read_buf(mtd, p, eccsize);
1365
1366 /* move to ECC position if needed */
1367 if (eccpos[0] != 0) {
1368 /* This only works on large pages
1369 * because the ECC controller waits for
1370 * NAND_CMD_RNDOUTSTART after the
1371 * NAND_CMD_RNDOUT.
1372 * anyway, for small pages, the eccpos[0] == 0
1373 */
1374 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1375 mtd->writesize + eccpos[0], -1);
1376 }
1377
1378 /* the ECC controller needs to read the ECC just after the data */
1379 ecc_pos = oob + eccpos[0];
1380 chip->read_buf(mtd, ecc_pos, eccbytes);
1381
1382 /* check if there's an error */
1383 stat = chip->ecc.correct(mtd, p, oob, NULL);
1384
1385 if (stat < 0) {
1386 mtd->ecc_stats.failed++;
1387 } else {
1388 mtd->ecc_stats.corrected += stat;
1389 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1390 }
1391
1392 /* get back to oob start (end of page) */
1393 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1394
1395 /* read the oob */
1396 chip->read_buf(mtd, oob, mtd->oobsize);
1397
1398 return max_bitflips;
1399 }
1400
1401 /*
1402 * HW ECC Correction
1403 *
1404 * function called after a read
1405 *
1406 * mtd: MTD block structure
1407 * dat: raw data read from the chip
1408 * read_ecc: ECC from the chip (unused)
1409 * isnull: unused
1410 *
1411 * Detect and correct a 1 bit error for a page
1412 */
1413 static int atmel_nand_correct(struct mtd_info *mtd, u_char *dat,
1414 u_char *read_ecc, u_char *isnull)
1415 {
1416 struct nand_chip *nand_chip = mtd_to_nand(mtd);
1417 struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
1418 unsigned int ecc_status;
1419 unsigned int ecc_word, ecc_bit;
1420
1421 /* get the status from the Status Register */
1422 ecc_status = ecc_readl(host->ecc, SR);
1423
1424 /* if there's no error */
1425 if (likely(!(ecc_status & ATMEL_ECC_RECERR)))
1426 return 0;
1427
1428 /* get error bit offset (4 bits) */
1429 ecc_bit = ecc_readl(host->ecc, PR) & ATMEL_ECC_BITADDR;
1430 /* get word address (12 bits) */
1431 ecc_word = ecc_readl(host->ecc, PR) & ATMEL_ECC_WORDADDR;
1432 ecc_word >>= 4;
1433
1434 /* if there are multiple errors */
1435 if (ecc_status & ATMEL_ECC_MULERR) {
1436 /* check if it is a freshly erased block
1437 * (filled with 0xff) */
1438 if ((ecc_bit == ATMEL_ECC_BITADDR)
1439 && (ecc_word == (ATMEL_ECC_WORDADDR >> 4))) {
1440 /* the block has just been erased, return OK */
1441 return 0;
1442 }
1443 /* it doesn't seems to be a freshly
1444 * erased block.
1445 * We can't correct so many errors */
1446 dev_dbg(host->dev, "atmel_nand : multiple errors detected."
1447 " Unable to correct.\n");
1448 return -EBADMSG;
1449 }
1450
1451 /* if there's a single bit error : we can correct it */
1452 if (ecc_status & ATMEL_ECC_ECCERR) {
1453 /* there's nothing much to do here.
1454 * the bit error is on the ECC itself.
1455 */
1456 dev_dbg(host->dev, "atmel_nand : one bit error on ECC code."
1457 " Nothing to correct\n");
1458 return 0;
1459 }
1460
1461 dev_dbg(host->dev, "atmel_nand : one bit error on data."
1462 " (word offset in the page :"
1463 " 0x%x bit offset : 0x%x)\n",
1464 ecc_word, ecc_bit);
1465 /* correct the error */
1466 if (nand_chip->options & NAND_BUSWIDTH_16) {
1467 /* 16 bits words */
1468 ((unsigned short *) dat)[ecc_word] ^= (1 << ecc_bit);
1469 } else {
1470 /* 8 bits words */
1471 dat[ecc_word] ^= (1 << ecc_bit);
1472 }
1473 dev_dbg(host->dev, "atmel_nand : error corrected\n");
1474 return 1;
1475 }
1476
1477 /*
1478 * Enable HW ECC : unused on most chips
1479 */
1480 static void atmel_nand_hwctl(struct mtd_info *mtd, int mode)
1481 {
1482 struct nand_chip *nand_chip = mtd_to_nand(mtd);
1483 struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
1484
1485 if (host->board.need_reset_workaround)
1486 ecc_writel(host->ecc, CR, ATMEL_ECC_RST);
1487 }
1488
1489 static const struct of_device_id atmel_nand_dt_ids[];
1490
1491 static int atmel_of_init_port(struct atmel_nand_host *host,
1492 struct device_node *np)
1493 {
1494 u32 val;
1495 u32 offset[2];
1496 int ecc_mode;
1497 struct atmel_nand_data *board = &host->board;
1498 enum of_gpio_flags flags = 0;
1499
1500 host->caps = (struct atmel_nand_caps *)
1501 of_match_device(atmel_nand_dt_ids, host->dev)->data;
1502
1503 if (of_property_read_u32(np, "atmel,nand-addr-offset", &val) == 0) {
1504 if (val >= 32) {
1505 dev_err(host->dev, "invalid addr-offset %u\n", val);
1506 return -EINVAL;
1507 }
1508 board->ale = val;
1509 }
1510
1511 if (of_property_read_u32(np, "atmel,nand-cmd-offset", &val) == 0) {
1512 if (val >= 32) {
1513 dev_err(host->dev, "invalid cmd-offset %u\n", val);
1514 return -EINVAL;
1515 }
1516 board->cle = val;
1517 }
1518
1519 ecc_mode = of_get_nand_ecc_mode(np);
1520
1521 board->ecc_mode = ecc_mode < 0 ? NAND_ECC_SOFT : ecc_mode;
1522
1523 board->on_flash_bbt = of_get_nand_on_flash_bbt(np);
1524
1525 board->has_dma = of_property_read_bool(np, "atmel,nand-has-dma");
1526
1527 if (of_get_nand_bus_width(np) == 16)
1528 board->bus_width_16 = 1;
1529
1530 board->rdy_pin = of_get_gpio_flags(np, 0, &flags);
1531 board->rdy_pin_active_low = (flags == OF_GPIO_ACTIVE_LOW);
1532
1533 board->enable_pin = of_get_gpio(np, 1);
1534 board->det_pin = of_get_gpio(np, 2);
1535
1536 host->has_pmecc = of_property_read_bool(np, "atmel,has-pmecc");
1537
1538 /* load the nfc driver if there is */
1539 of_platform_populate(np, NULL, NULL, host->dev);
1540
1541 if (!(board->ecc_mode == NAND_ECC_HW) || !host->has_pmecc)
1542 return 0; /* Not using PMECC */
1543
1544 /* use PMECC, get correction capability, sector size and lookup
1545 * table offset.
1546 * If correction bits and sector size are not specified, then find
1547 * them from NAND ONFI parameters.
1548 */
1549 if (of_property_read_u32(np, "atmel,pmecc-cap", &val) == 0) {
1550 if ((val != 2) && (val != 4) && (val != 8) && (val != 12) &&
1551 (val != 24)) {
1552 dev_err(host->dev,
1553 "Unsupported PMECC correction capability: %d; should be 2, 4, 8, 12 or 24\n",
1554 val);
1555 return -EINVAL;
1556 }
1557 host->pmecc_corr_cap = (u8)val;
1558 }
1559
1560 if (of_property_read_u32(np, "atmel,pmecc-sector-size", &val) == 0) {
1561 if ((val != 512) && (val != 1024)) {
1562 dev_err(host->dev,
1563 "Unsupported PMECC sector size: %d; should be 512 or 1024 bytes\n",
1564 val);
1565 return -EINVAL;
1566 }
1567 host->pmecc_sector_size = (u16)val;
1568 }
1569
1570 if (of_property_read_u32_array(np, "atmel,pmecc-lookup-table-offset",
1571 offset, 2) != 0) {
1572 dev_err(host->dev, "Cannot get PMECC lookup table offset, will build a lookup table in runtime.\n");
1573 host->has_no_lookup_table = true;
1574 /* Will build a lookup table and initialize the offset later */
1575 return 0;
1576 }
1577 if (!offset[0] && !offset[1]) {
1578 dev_err(host->dev, "Invalid PMECC lookup table offset\n");
1579 return -EINVAL;
1580 }
1581 host->pmecc_lookup_table_offset_512 = offset[0];
1582 host->pmecc_lookup_table_offset_1024 = offset[1];
1583
1584 return 0;
1585 }
1586
1587 static int atmel_hw_nand_init_params(struct platform_device *pdev,
1588 struct atmel_nand_host *host)
1589 {
1590 struct nand_chip *nand_chip = &host->nand_chip;
1591 struct mtd_info *mtd = nand_to_mtd(nand_chip);
1592 struct resource *regs;
1593
1594 regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1595 if (!regs) {
1596 dev_err(host->dev,
1597 "Can't get I/O resource regs, use software ECC\n");
1598 nand_chip->ecc.mode = NAND_ECC_SOFT;
1599 return 0;
1600 }
1601
1602 host->ecc = devm_ioremap_resource(&pdev->dev, regs);
1603 if (IS_ERR(host->ecc))
1604 return PTR_ERR(host->ecc);
1605
1606 /* ECC is calculated for the whole page (1 step) */
1607 nand_chip->ecc.size = mtd->writesize;
1608
1609 /* set ECC page size and oob layout */
1610 switch (mtd->writesize) {
1611 case 512:
1612 nand_chip->ecc.layout = &atmel_oobinfo_small;
1613 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_528);
1614 break;
1615 case 1024:
1616 nand_chip->ecc.layout = &atmel_oobinfo_large;
1617 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_1056);
1618 break;
1619 case 2048:
1620 nand_chip->ecc.layout = &atmel_oobinfo_large;
1621 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_2112);
1622 break;
1623 case 4096:
1624 nand_chip->ecc.layout = &atmel_oobinfo_large;
1625 ecc_writel(host->ecc, MR, ATMEL_ECC_PAGESIZE_4224);
1626 break;
1627 default:
1628 /* page size not handled by HW ECC */
1629 /* switching back to soft ECC */
1630 nand_chip->ecc.mode = NAND_ECC_SOFT;
1631 return 0;
1632 }
1633
1634 /* set up for HW ECC */
1635 nand_chip->ecc.calculate = atmel_nand_calculate;
1636 nand_chip->ecc.correct = atmel_nand_correct;
1637 nand_chip->ecc.hwctl = atmel_nand_hwctl;
1638 nand_chip->ecc.read_page = atmel_nand_read_page;
1639 nand_chip->ecc.bytes = 4;
1640 nand_chip->ecc.strength = 1;
1641
1642 return 0;
1643 }
1644
1645 static inline u32 nfc_read_status(struct atmel_nand_host *host)
1646 {
1647 u32 err_flags = NFC_SR_DTOE | NFC_SR_UNDEF | NFC_SR_AWB | NFC_SR_ASE;
1648 u32 nfc_status = nfc_readl(host->nfc->hsmc_regs, SR);
1649
1650 if (unlikely(nfc_status & err_flags)) {
1651 if (nfc_status & NFC_SR_DTOE)
1652 dev_err(host->dev, "NFC: Waiting Nand R/B Timeout Error\n");
1653 else if (nfc_status & NFC_SR_UNDEF)
1654 dev_err(host->dev, "NFC: Access Undefined Area Error\n");
1655 else if (nfc_status & NFC_SR_AWB)
1656 dev_err(host->dev, "NFC: Access memory While NFC is busy\n");
1657 else if (nfc_status & NFC_SR_ASE)
1658 dev_err(host->dev, "NFC: Access memory Size Error\n");
1659 }
1660
1661 return nfc_status;
1662 }
1663
1664 /* SMC interrupt service routine */
1665 static irqreturn_t hsmc_interrupt(int irq, void *dev_id)
1666 {
1667 struct atmel_nand_host *host = dev_id;
1668 u32 status, mask, pending;
1669 irqreturn_t ret = IRQ_NONE;
1670
1671 status = nfc_read_status(host);
1672 mask = nfc_readl(host->nfc->hsmc_regs, IMR);
1673 pending = status & mask;
1674
1675 if (pending & NFC_SR_XFR_DONE) {
1676 complete(&host->nfc->comp_xfer_done);
1677 nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_XFR_DONE);
1678 ret = IRQ_HANDLED;
1679 }
1680 if (pending & NFC_SR_RB_EDGE) {
1681 complete(&host->nfc->comp_ready);
1682 nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_RB_EDGE);
1683 ret = IRQ_HANDLED;
1684 }
1685 if (pending & NFC_SR_CMD_DONE) {
1686 complete(&host->nfc->comp_cmd_done);
1687 nfc_writel(host->nfc->hsmc_regs, IDR, NFC_SR_CMD_DONE);
1688 ret = IRQ_HANDLED;
1689 }
1690
1691 return ret;
1692 }
1693
1694 /* NFC(Nand Flash Controller) related functions */
1695 static void nfc_prepare_interrupt(struct atmel_nand_host *host, u32 flag)
1696 {
1697 if (flag & NFC_SR_XFR_DONE)
1698 init_completion(&host->nfc->comp_xfer_done);
1699
1700 if (flag & NFC_SR_RB_EDGE)
1701 init_completion(&host->nfc->comp_ready);
1702
1703 if (flag & NFC_SR_CMD_DONE)
1704 init_completion(&host->nfc->comp_cmd_done);
1705
1706 /* Enable interrupt that need to wait for */
1707 nfc_writel(host->nfc->hsmc_regs, IER, flag);
1708 }
1709
1710 static int nfc_wait_interrupt(struct atmel_nand_host *host, u32 flag)
1711 {
1712 int i, index = 0;
1713 struct completion *comp[3]; /* Support 3 interrupt completion */
1714
1715 if (flag & NFC_SR_XFR_DONE)
1716 comp[index++] = &host->nfc->comp_xfer_done;
1717
1718 if (flag & NFC_SR_RB_EDGE)
1719 comp[index++] = &host->nfc->comp_ready;
1720
1721 if (flag & NFC_SR_CMD_DONE)
1722 comp[index++] = &host->nfc->comp_cmd_done;
1723
1724 if (index == 0) {
1725 dev_err(host->dev, "Unknown interrupt flag: 0x%08x\n", flag);
1726 return -EINVAL;
1727 }
1728
1729 for (i = 0; i < index; i++) {
1730 if (wait_for_completion_timeout(comp[i],
1731 msecs_to_jiffies(NFC_TIME_OUT_MS)))
1732 continue; /* wait for next completion */
1733 else
1734 goto err_timeout;
1735 }
1736
1737 return 0;
1738
1739 err_timeout:
1740 dev_err(host->dev, "Time out to wait for interrupt: 0x%08x\n", flag);
1741 /* Disable the interrupt as it is not handled by interrupt handler */
1742 nfc_writel(host->nfc->hsmc_regs, IDR, flag);
1743 return -ETIMEDOUT;
1744 }
1745
1746 static int nfc_send_command(struct atmel_nand_host *host,
1747 unsigned int cmd, unsigned int addr, unsigned char cycle0)
1748 {
1749 unsigned long timeout;
1750 u32 flag = NFC_SR_CMD_DONE;
1751 flag |= cmd & NFCADDR_CMD_DATAEN ? NFC_SR_XFR_DONE : 0;
1752
1753 dev_dbg(host->dev,
1754 "nfc_cmd: 0x%08x, addr1234: 0x%08x, cycle0: 0x%02x\n",
1755 cmd, addr, cycle0);
1756
1757 timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS);
1758 while (nfc_readl(host->nfc->hsmc_regs, SR) & NFC_SR_BUSY) {
1759 if (time_after(jiffies, timeout)) {
1760 dev_err(host->dev,
1761 "Time out to wait for NFC ready!\n");
1762 return -ETIMEDOUT;
1763 }
1764 }
1765
1766 nfc_prepare_interrupt(host, flag);
1767 nfc_writel(host->nfc->hsmc_regs, CYCLE0, cycle0);
1768 nfc_cmd_addr1234_writel(cmd, addr, host->nfc->base_cmd_regs);
1769 return nfc_wait_interrupt(host, flag);
1770 }
1771
1772 static int nfc_device_ready(struct mtd_info *mtd)
1773 {
1774 u32 status, mask;
1775 struct nand_chip *nand_chip = mtd_to_nand(mtd);
1776 struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
1777
1778 status = nfc_read_status(host);
1779 mask = nfc_readl(host->nfc->hsmc_regs, IMR);
1780
1781 /* The mask should be 0. If not we may lost interrupts */
1782 if (unlikely(mask & status))
1783 dev_err(host->dev, "Lost the interrupt flags: 0x%08x\n",
1784 mask & status);
1785
1786 return status & NFC_SR_RB_EDGE;
1787 }
1788
1789 static void nfc_select_chip(struct mtd_info *mtd, int chip)
1790 {
1791 struct nand_chip *nand_chip = mtd_to_nand(mtd);
1792 struct atmel_nand_host *host = nand_get_controller_data(nand_chip);
1793
1794 if (chip == -1)
1795 nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_DISABLE);
1796 else
1797 nfc_writel(host->nfc->hsmc_regs, CTRL, NFC_CTRL_ENABLE);
1798 }
1799
1800 static int nfc_make_addr(struct mtd_info *mtd, int command, int column,
1801 int page_addr, unsigned int *addr1234, unsigned int *cycle0)
1802 {
1803 struct nand_chip *chip = mtd_to_nand(mtd);
1804
1805 int acycle = 0;
1806 unsigned char addr_bytes[8];
1807 int index = 0, bit_shift;
1808
1809 BUG_ON(addr1234 == NULL || cycle0 == NULL);
1810
1811 *cycle0 = 0;
1812 *addr1234 = 0;
1813
1814 if (column != -1) {
1815 if (chip->options & NAND_BUSWIDTH_16 &&
1816 !nand_opcode_8bits(command))
1817 column >>= 1;
1818 addr_bytes[acycle++] = column & 0xff;
1819 if (mtd->writesize > 512)
1820 addr_bytes[acycle++] = (column >> 8) & 0xff;
1821 }
1822
1823 if (page_addr != -1) {
1824 addr_bytes[acycle++] = page_addr & 0xff;
1825 addr_bytes[acycle++] = (page_addr >> 8) & 0xff;
1826 if (chip->chipsize > (128 << 20))
1827 addr_bytes[acycle++] = (page_addr >> 16) & 0xff;
1828 }
1829
1830 if (acycle > 4)
1831 *cycle0 = addr_bytes[index++];
1832
1833 for (bit_shift = 0; index < acycle; bit_shift += 8)
1834 *addr1234 += addr_bytes[index++] << bit_shift;
1835
1836 /* return acycle in cmd register */
1837 return acycle << NFCADDR_CMD_ACYCLE_BIT_POS;
1838 }
1839
1840 static void nfc_nand_command(struct mtd_info *mtd, unsigned int command,
1841 int column, int page_addr)
1842 {
1843 struct nand_chip *chip = mtd_to_nand(mtd);
1844 struct atmel_nand_host *host = nand_get_controller_data(chip);
1845 unsigned long timeout;
1846 unsigned int nfc_addr_cmd = 0;
1847
1848 unsigned int cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS;
1849
1850 /* Set default settings: no cmd2, no addr cycle. read from nand */
1851 unsigned int cmd2 = 0;
1852 unsigned int vcmd2 = 0;
1853 int acycle = NFCADDR_CMD_ACYCLE_NONE;
1854 int csid = NFCADDR_CMD_CSID_3;
1855 int dataen = NFCADDR_CMD_DATADIS;
1856 int nfcwr = NFCADDR_CMD_NFCRD;
1857 unsigned int addr1234 = 0;
1858 unsigned int cycle0 = 0;
1859 bool do_addr = true;
1860 host->nfc->data_in_sram = NULL;
1861
1862 dev_dbg(host->dev, "%s: cmd = 0x%02x, col = 0x%08x, page = 0x%08x\n",
1863 __func__, command, column, page_addr);
1864
1865 switch (command) {
1866 case NAND_CMD_RESET:
1867 nfc_addr_cmd = cmd1 | acycle | csid | dataen | nfcwr;
1868 nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0);
1869 udelay(chip->chip_delay);
1870
1871 nfc_nand_command(mtd, NAND_CMD_STATUS, -1, -1);
1872 timeout = jiffies + msecs_to_jiffies(NFC_TIME_OUT_MS);
1873 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) {
1874 if (time_after(jiffies, timeout)) {
1875 dev_err(host->dev,
1876 "Time out to wait status ready!\n");
1877 break;
1878 }
1879 }
1880 return;
1881 case NAND_CMD_STATUS:
1882 do_addr = false;
1883 break;
1884 case NAND_CMD_PARAM:
1885 case NAND_CMD_READID:
1886 do_addr = false;
1887 acycle = NFCADDR_CMD_ACYCLE_1;
1888 if (column != -1)
1889 addr1234 = column;
1890 break;
1891 case NAND_CMD_RNDOUT:
1892 cmd2 = NAND_CMD_RNDOUTSTART << NFCADDR_CMD_CMD2_BIT_POS;
1893 vcmd2 = NFCADDR_CMD_VCMD2;
1894 break;
1895 case NAND_CMD_READ0:
1896 case NAND_CMD_READOOB:
1897 if (command == NAND_CMD_READOOB) {
1898 column += mtd->writesize;
1899 command = NAND_CMD_READ0; /* only READ0 is valid */
1900 cmd1 = command << NFCADDR_CMD_CMD1_BIT_POS;
1901 }
1902 if (host->nfc->use_nfc_sram) {
1903 /* Enable Data transfer to sram */
1904 dataen = NFCADDR_CMD_DATAEN;
1905
1906 /* Need enable PMECC now, since NFC will transfer
1907 * data in bus after sending nfc read command.
1908 */
1909 if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc)
1910 pmecc_enable(host, NAND_ECC_READ);
1911 }
1912
1913 cmd2 = NAND_CMD_READSTART << NFCADDR_CMD_CMD2_BIT_POS;
1914 vcmd2 = NFCADDR_CMD_VCMD2;
1915 break;
1916 /* For prgramming command, the cmd need set to write enable */
1917 case NAND_CMD_PAGEPROG:
1918 case NAND_CMD_SEQIN:
1919 case NAND_CMD_RNDIN:
1920 nfcwr = NFCADDR_CMD_NFCWR;
1921 if (host->nfc->will_write_sram && command == NAND_CMD_SEQIN)
1922 dataen = NFCADDR_CMD_DATAEN;
1923 break;
1924 default:
1925 break;
1926 }
1927
1928 if (do_addr)
1929 acycle = nfc_make_addr(mtd, command, column, page_addr,
1930 &addr1234, &cycle0);
1931
1932 nfc_addr_cmd = cmd1 | cmd2 | vcmd2 | acycle | csid | dataen | nfcwr;
1933 nfc_send_command(host, nfc_addr_cmd, addr1234, cycle0);
1934
1935 /*
1936 * Program and erase have their own busy handlers status, sequential
1937 * in, and deplete1 need no delay.
1938 */
1939 switch (command) {
1940 case NAND_CMD_CACHEDPROG:
1941 case NAND_CMD_PAGEPROG:
1942 case NAND_CMD_ERASE1:
1943 case NAND_CMD_ERASE2:
1944 case NAND_CMD_RNDIN:
1945 case NAND_CMD_STATUS:
1946 case NAND_CMD_RNDOUT:
1947 case NAND_CMD_SEQIN:
1948 case NAND_CMD_READID:
1949 return;
1950
1951 case NAND_CMD_READ0:
1952 if (dataen == NFCADDR_CMD_DATAEN) {
1953 host->nfc->data_in_sram = host->nfc->sram_bank0 +
1954 nfc_get_sram_off(host);
1955 return;
1956 }
1957 /* fall through */
1958 default:
1959 nfc_prepare_interrupt(host, NFC_SR_RB_EDGE);
1960 nfc_wait_interrupt(host, NFC_SR_RB_EDGE);
1961 }
1962 }
1963
1964 static int nfc_sram_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1965 uint32_t offset, int data_len, const uint8_t *buf,
1966 int oob_required, int page, int cached, int raw)
1967 {
1968 int cfg, len;
1969 int status = 0;
1970 struct atmel_nand_host *host = nand_get_controller_data(chip);
1971 void *sram = host->nfc->sram_bank0 + nfc_get_sram_off(host);
1972
1973 /* Subpage write is not supported */
1974 if (offset || (data_len < mtd->writesize))
1975 return -EINVAL;
1976
1977 len = mtd->writesize;
1978 /* Copy page data to sram that will write to nand via NFC */
1979 if (use_dma) {
1980 if (atmel_nand_dma_op(mtd, (void *)buf, len, 0) != 0)
1981 /* Fall back to use cpu copy */
1982 memcpy(sram, buf, len);
1983 } else {
1984 memcpy(sram, buf, len);
1985 }
1986
1987 cfg = nfc_readl(host->nfc->hsmc_regs, CFG);
1988 if (unlikely(raw) && oob_required) {
1989 memcpy(sram + len, chip->oob_poi, mtd->oobsize);
1990 len += mtd->oobsize;
1991 nfc_writel(host->nfc->hsmc_regs, CFG, cfg | NFC_CFG_WSPARE);
1992 } else {
1993 nfc_writel(host->nfc->hsmc_regs, CFG, cfg & ~NFC_CFG_WSPARE);
1994 }
1995
1996 if (chip->ecc.mode == NAND_ECC_HW && host->has_pmecc)
1997 /*
1998 * When use NFC sram, need set up PMECC before send
1999 * NAND_CMD_SEQIN command. Since when the nand command
2000 * is sent, nfc will do transfer from sram and nand.
2001 */
2002 pmecc_enable(host, NAND_ECC_WRITE);
2003
2004 host->nfc->will_write_sram = true;
2005 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2006 host->nfc->will_write_sram = false;
2007
2008 if (likely(!raw))
2009 /* Need to write ecc into oob */
2010 status = chip->ecc.write_page(mtd, chip, buf, oob_required,
2011 page);
2012
2013 if (status < 0)
2014 return status;
2015
2016 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2017 status = chip->waitfunc(mtd, chip);
2018
2019 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2020 status = chip->errstat(mtd, chip, FL_WRITING, status, page);
2021
2022 if (status & NAND_STATUS_FAIL)
2023 return -EIO;
2024
2025 return 0;
2026 }
2027
2028 static int nfc_sram_init(struct mtd_info *mtd)
2029 {
2030 struct nand_chip *chip = mtd_to_nand(mtd);
2031 struct atmel_nand_host *host = nand_get_controller_data(chip);
2032 int res = 0;
2033
2034 /* Initialize the NFC CFG register */
2035 unsigned int cfg_nfc = 0;
2036
2037 /* set page size and oob layout */
2038 switch (mtd->writesize) {
2039 case 512:
2040 cfg_nfc = NFC_CFG_PAGESIZE_512;
2041 break;
2042 case 1024:
2043 cfg_nfc = NFC_CFG_PAGESIZE_1024;
2044 break;
2045 case 2048:
2046 cfg_nfc = NFC_CFG_PAGESIZE_2048;
2047 break;
2048 case 4096:
2049 cfg_nfc = NFC_CFG_PAGESIZE_4096;
2050 break;
2051 case 8192:
2052 cfg_nfc = NFC_CFG_PAGESIZE_8192;
2053 break;
2054 default:
2055 dev_err(host->dev, "Unsupported page size for NFC.\n");
2056 res = -ENXIO;
2057 return res;
2058 }
2059
2060 /* oob bytes size = (NFCSPARESIZE + 1) * 4
2061 * Max support spare size is 512 bytes. */
2062 cfg_nfc |= (((mtd->oobsize / 4) - 1) << NFC_CFG_NFC_SPARESIZE_BIT_POS
2063 & NFC_CFG_NFC_SPARESIZE);
2064 /* default set a max timeout */
2065 cfg_nfc |= NFC_CFG_RSPARE |
2066 NFC_CFG_NFC_DTOCYC | NFC_CFG_NFC_DTOMUL;
2067
2068 nfc_writel(host->nfc->hsmc_regs, CFG, cfg_nfc);
2069
2070 host->nfc->will_write_sram = false;
2071 nfc_set_sram_bank(host, 0);
2072
2073 /* Use Write page with NFC SRAM only for PMECC or ECC NONE. */
2074 if (host->nfc->write_by_sram) {
2075 if ((chip->ecc.mode == NAND_ECC_HW && host->has_pmecc) ||
2076 chip->ecc.mode == NAND_ECC_NONE)
2077 chip->write_page = nfc_sram_write_page;
2078 else
2079 host->nfc->write_by_sram = false;
2080 }
2081
2082 dev_info(host->dev, "Using NFC Sram read %s\n",
2083 host->nfc->write_by_sram ? "and write" : "");
2084 return 0;
2085 }
2086
2087 static struct platform_driver atmel_nand_nfc_driver;
2088 /*
2089 * Probe for the NAND device.
2090 */
2091 static int atmel_nand_probe(struct platform_device *pdev)
2092 {
2093 struct atmel_nand_host *host;
2094 struct mtd_info *mtd;
2095 struct nand_chip *nand_chip;
2096 struct resource *mem;
2097 int res, irq;
2098
2099 /* Allocate memory for the device structure (and zero it) */
2100 host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
2101 if (!host)
2102 return -ENOMEM;
2103
2104 res = platform_driver_register(&atmel_nand_nfc_driver);
2105 if (res)
2106 dev_err(&pdev->dev, "atmel_nand: can't register NFC driver\n");
2107
2108 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2109 host->io_base = devm_ioremap_resource(&pdev->dev, mem);
2110 if (IS_ERR(host->io_base)) {
2111 res = PTR_ERR(host->io_base);
2112 goto err_nand_ioremap;
2113 }
2114 host->io_phys = (dma_addr_t)mem->start;
2115
2116 nand_chip = &host->nand_chip;
2117 mtd = nand_to_mtd(nand_chip);
2118 host->dev = &pdev->dev;
2119 if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
2120 nand_set_flash_node(nand_chip, pdev->dev.of_node);
2121 /* Only when CONFIG_OF is enabled of_node can be parsed */
2122 res = atmel_of_init_port(host, pdev->dev.of_node);
2123 if (res)
2124 goto err_nand_ioremap;
2125 } else {
2126 memcpy(&host->board, dev_get_platdata(&pdev->dev),
2127 sizeof(struct atmel_nand_data));
2128 }
2129
2130 /* link the private data structures */
2131 nand_set_controller_data(nand_chip, host);
2132 mtd->dev.parent = &pdev->dev;
2133
2134 /* Set address of NAND IO lines */
2135 nand_chip->IO_ADDR_R = host->io_base;
2136 nand_chip->IO_ADDR_W = host->io_base;
2137
2138 if (nand_nfc.is_initialized) {
2139 /* NFC driver is probed and initialized */
2140 host->nfc = &nand_nfc;
2141
2142 nand_chip->select_chip = nfc_select_chip;
2143 nand_chip->dev_ready = nfc_device_ready;
2144 nand_chip->cmdfunc = nfc_nand_command;
2145
2146 /* Initialize the interrupt for NFC */
2147 irq = platform_get_irq(pdev, 0);
2148 if (irq < 0) {
2149 dev_err(host->dev, "Cannot get HSMC irq!\n");
2150 res = irq;
2151 goto err_nand_ioremap;
2152 }
2153
2154 res = devm_request_irq(&pdev->dev, irq, hsmc_interrupt,
2155 0, "hsmc", host);
2156 if (res) {
2157 dev_err(&pdev->dev, "Unable to request HSMC irq %d\n",
2158 irq);
2159 goto err_nand_ioremap;
2160 }
2161 } else {
2162 res = atmel_nand_set_enable_ready_pins(mtd);
2163 if (res)
2164 goto err_nand_ioremap;
2165
2166 nand_chip->cmd_ctrl = atmel_nand_cmd_ctrl;
2167 }
2168
2169 nand_chip->ecc.mode = host->board.ecc_mode;
2170 nand_chip->chip_delay = 40; /* 40us command delay time */
2171
2172 if (host->board.bus_width_16) /* 16-bit bus width */
2173 nand_chip->options |= NAND_BUSWIDTH_16;
2174
2175 nand_chip->read_buf = atmel_read_buf;
2176 nand_chip->write_buf = atmel_write_buf;
2177
2178 platform_set_drvdata(pdev, host);
2179 atmel_nand_enable(host);
2180
2181 if (gpio_is_valid(host->board.det_pin)) {
2182 res = devm_gpio_request(&pdev->dev,
2183 host->board.det_pin, "nand_det");
2184 if (res < 0) {
2185 dev_err(&pdev->dev,
2186 "can't request det gpio %d\n",
2187 host->board.det_pin);
2188 goto err_no_card;
2189 }
2190
2191 res = gpio_direction_input(host->board.det_pin);
2192 if (res < 0) {
2193 dev_err(&pdev->dev,
2194 "can't request input direction det gpio %d\n",
2195 host->board.det_pin);
2196 goto err_no_card;
2197 }
2198
2199 if (gpio_get_value(host->board.det_pin)) {
2200 dev_info(&pdev->dev, "No SmartMedia card inserted.\n");
2201 res = -ENXIO;
2202 goto err_no_card;
2203 }
2204 }
2205
2206 if (host->board.on_flash_bbt || on_flash_bbt) {
2207 dev_info(&pdev->dev, "Use On Flash BBT\n");
2208 nand_chip->bbt_options |= NAND_BBT_USE_FLASH;
2209 }
2210
2211 if (!host->board.has_dma)
2212 use_dma = 0;
2213
2214 if (use_dma) {
2215 dma_cap_mask_t mask;
2216
2217 dma_cap_zero(mask);
2218 dma_cap_set(DMA_MEMCPY, mask);
2219 host->dma_chan = dma_request_channel(mask, NULL, NULL);
2220 if (!host->dma_chan) {
2221 dev_err(host->dev, "Failed to request DMA channel\n");
2222 use_dma = 0;
2223 }
2224 }
2225 if (use_dma)
2226 dev_info(host->dev, "Using %s for DMA transfers.\n",
2227 dma_chan_name(host->dma_chan));
2228 else
2229 dev_info(host->dev, "No DMA support for NAND access.\n");
2230
2231 /* first scan to find the device and get the page size */
2232 if (nand_scan_ident(mtd, 1, NULL)) {
2233 res = -ENXIO;
2234 goto err_scan_ident;
2235 }
2236
2237 if (nand_chip->ecc.mode == NAND_ECC_HW) {
2238 if (host->has_pmecc)
2239 res = atmel_pmecc_nand_init_params(pdev, host);
2240 else
2241 res = atmel_hw_nand_init_params(pdev, host);
2242
2243 if (res != 0)
2244 goto err_hw_ecc;
2245 }
2246
2247 /* initialize the nfc configuration register */
2248 if (host->nfc && host->nfc->use_nfc_sram) {
2249 res = nfc_sram_init(mtd);
2250 if (res) {
2251 host->nfc->use_nfc_sram = false;
2252 dev_err(host->dev, "Disable use nfc sram for data transfer.\n");
2253 }
2254 }
2255
2256 /* second phase scan */
2257 if (nand_scan_tail(mtd)) {
2258 res = -ENXIO;
2259 goto err_scan_tail;
2260 }
2261
2262 mtd->name = "atmel_nand";
2263 res = mtd_device_register(mtd, host->board.parts,
2264 host->board.num_parts);
2265 if (!res)
2266 return res;
2267
2268 err_scan_tail:
2269 if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW)
2270 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
2271 err_hw_ecc:
2272 err_scan_ident:
2273 err_no_card:
2274 atmel_nand_disable(host);
2275 if (host->dma_chan)
2276 dma_release_channel(host->dma_chan);
2277 err_nand_ioremap:
2278 return res;
2279 }
2280
2281 /*
2282 * Remove a NAND device.
2283 */
2284 static int atmel_nand_remove(struct platform_device *pdev)
2285 {
2286 struct atmel_nand_host *host = platform_get_drvdata(pdev);
2287 struct mtd_info *mtd = nand_to_mtd(&host->nand_chip);
2288
2289 nand_release(mtd);
2290
2291 atmel_nand_disable(host);
2292
2293 if (host->has_pmecc && host->nand_chip.ecc.mode == NAND_ECC_HW) {
2294 pmecc_writel(host->ecc, CTRL, PMECC_CTRL_DISABLE);
2295 pmerrloc_writel(host->pmerrloc_base, ELDIS,
2296 PMERRLOC_DISABLE);
2297 }
2298
2299 if (host->dma_chan)
2300 dma_release_channel(host->dma_chan);
2301
2302 platform_driver_unregister(&atmel_nand_nfc_driver);
2303
2304 return 0;
2305 }
2306
2307 static const struct atmel_nand_caps at91rm9200_caps = {
2308 .pmecc_correct_erase_page = false,
2309 };
2310
2311 static const struct atmel_nand_caps sama5d4_caps = {
2312 .pmecc_correct_erase_page = true,
2313 };
2314
2315 static const struct of_device_id atmel_nand_dt_ids[] = {
2316 { .compatible = "atmel,at91rm9200-nand", .data = &at91rm9200_caps },
2317 { .compatible = "atmel,sama5d4-nand", .data = &sama5d4_caps },
2318 { /* sentinel */ }
2319 };
2320
2321 MODULE_DEVICE_TABLE(of, atmel_nand_dt_ids);
2322
2323 static int atmel_nand_nfc_probe(struct platform_device *pdev)
2324 {
2325 struct atmel_nfc *nfc = &nand_nfc;
2326 struct resource *nfc_cmd_regs, *nfc_hsmc_regs, *nfc_sram;
2327 int ret;
2328
2329 nfc_cmd_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2330 nfc->base_cmd_regs = devm_ioremap_resource(&pdev->dev, nfc_cmd_regs);
2331 if (IS_ERR(nfc->base_cmd_regs))
2332 return PTR_ERR(nfc->base_cmd_regs);
2333
2334 nfc_hsmc_regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
2335 nfc->hsmc_regs = devm_ioremap_resource(&pdev->dev, nfc_hsmc_regs);
2336 if (IS_ERR(nfc->hsmc_regs))
2337 return PTR_ERR(nfc->hsmc_regs);
2338
2339 nfc_sram = platform_get_resource(pdev, IORESOURCE_MEM, 2);
2340 if (nfc_sram) {
2341 nfc->sram_bank0 = (void * __force)
2342 devm_ioremap_resource(&pdev->dev, nfc_sram);
2343 if (IS_ERR(nfc->sram_bank0)) {
2344 dev_warn(&pdev->dev, "Fail to ioremap the NFC sram with error: %ld. So disable NFC sram.\n",
2345 PTR_ERR(nfc->sram_bank0));
2346 } else {
2347 nfc->use_nfc_sram = true;
2348 nfc->sram_bank0_phys = (dma_addr_t)nfc_sram->start;
2349
2350 if (pdev->dev.of_node)
2351 nfc->write_by_sram = of_property_read_bool(
2352 pdev->dev.of_node,
2353 "atmel,write-by-sram");
2354 }
2355 }
2356
2357 nfc_writel(nfc->hsmc_regs, IDR, 0xffffffff);
2358 nfc_readl(nfc->hsmc_regs, SR); /* clear the NFC_SR */
2359
2360 nfc->clk = devm_clk_get(&pdev->dev, NULL);
2361 if (!IS_ERR(nfc->clk)) {
2362 ret = clk_prepare_enable(nfc->clk);
2363 if (ret)
2364 return ret;
2365 } else {
2366 dev_warn(&pdev->dev, "NFC clock missing, update your Device Tree");
2367 }
2368
2369 nfc->is_initialized = true;
2370 dev_info(&pdev->dev, "NFC is probed.\n");
2371
2372 return 0;
2373 }
2374
2375 static int atmel_nand_nfc_remove(struct platform_device *pdev)
2376 {
2377 struct atmel_nfc *nfc = &nand_nfc;
2378
2379 if (!IS_ERR(nfc->clk))
2380 clk_disable_unprepare(nfc->clk);
2381
2382 return 0;
2383 }
2384
2385 static const struct of_device_id atmel_nand_nfc_match[] = {
2386 { .compatible = "atmel,sama5d3-nfc" },
2387 { /* sentinel */ }
2388 };
2389 MODULE_DEVICE_TABLE(of, atmel_nand_nfc_match);
2390
2391 static struct platform_driver atmel_nand_nfc_driver = {
2392 .driver = {
2393 .name = "atmel_nand_nfc",
2394 .of_match_table = of_match_ptr(atmel_nand_nfc_match),
2395 },
2396 .probe = atmel_nand_nfc_probe,
2397 .remove = atmel_nand_nfc_remove,
2398 };
2399
2400 static struct platform_driver atmel_nand_driver = {
2401 .probe = atmel_nand_probe,
2402 .remove = atmel_nand_remove,
2403 .driver = {
2404 .name = "atmel_nand",
2405 .of_match_table = of_match_ptr(atmel_nand_dt_ids),
2406 },
2407 };
2408
2409 module_platform_driver(atmel_nand_driver);
2410
2411 MODULE_LICENSE("GPL");
2412 MODULE_AUTHOR("Rick Bronson");
2413 MODULE_DESCRIPTION("NAND/SmartMedia driver for AT91 / AVR32");
2414 MODULE_ALIAS("platform:atmel_nand");
This page took 0.082763 seconds and 6 git commands to generate.