Merge tag 'powerpc-4.6-3' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[deliverable/linux.git] / drivers / mtd / nand / davinci_nand.c
1 /*
2 * davinci_nand.c - NAND Flash Driver for DaVinci family chips
3 *
4 * Copyright © 2006 Texas Instruments.
5 *
6 * Port to 2.6.23 Copyright © 2008 by:
7 * Sander Huijsen <Shuijsen@optelecom-nkf.com>
8 * Troy Kisky <troy.kisky@boundarydevices.com>
9 * Dirk Behme <Dirk.Behme@gmail.com>
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 */
25
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/err.h>
30 #include <linux/clk.h>
31 #include <linux/io.h>
32 #include <linux/mtd/nand.h>
33 #include <linux/mtd/partitions.h>
34 #include <linux/slab.h>
35 #include <linux/of_device.h>
36 #include <linux/of.h>
37 #include <linux/of_mtd.h>
38
39 #include <linux/platform_data/mtd-davinci.h>
40 #include <linux/platform_data/mtd-davinci-aemif.h>
41
42 /*
43 * This is a device driver for the NAND flash controller found on the
44 * various DaVinci family chips. It handles up to four SoC chipselects,
45 * and some flavors of secondary chipselect (e.g. based on A12) as used
46 * with multichip packages.
47 *
48 * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
49 * available on chips like the DM355 and OMAP-L137 and needed with the
50 * more error-prone MLC NAND chips.
51 *
52 * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
53 * outputs in a "wire-AND" configuration, with no per-chip signals.
54 */
55 struct davinci_nand_info {
56 struct nand_chip chip;
57 struct nand_ecclayout ecclayout;
58
59 struct device *dev;
60 struct clk *clk;
61
62 bool is_readmode;
63
64 void __iomem *base;
65 void __iomem *vaddr;
66
67 uint32_t ioaddr;
68 uint32_t current_cs;
69
70 uint32_t mask_chipsel;
71 uint32_t mask_ale;
72 uint32_t mask_cle;
73
74 uint32_t core_chipsel;
75
76 struct davinci_aemif_timing *timing;
77 };
78
79 static DEFINE_SPINLOCK(davinci_nand_lock);
80 static bool ecc4_busy;
81
82 static inline struct davinci_nand_info *to_davinci_nand(struct mtd_info *mtd)
83 {
84 return container_of(mtd_to_nand(mtd), struct davinci_nand_info, chip);
85 }
86
87 static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
88 int offset)
89 {
90 return __raw_readl(info->base + offset);
91 }
92
93 static inline void davinci_nand_writel(struct davinci_nand_info *info,
94 int offset, unsigned long value)
95 {
96 __raw_writel(value, info->base + offset);
97 }
98
99 /*----------------------------------------------------------------------*/
100
101 /*
102 * Access to hardware control lines: ALE, CLE, secondary chipselect.
103 */
104
105 static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
106 unsigned int ctrl)
107 {
108 struct davinci_nand_info *info = to_davinci_nand(mtd);
109 uint32_t addr = info->current_cs;
110 struct nand_chip *nand = mtd_to_nand(mtd);
111
112 /* Did the control lines change? */
113 if (ctrl & NAND_CTRL_CHANGE) {
114 if ((ctrl & NAND_CTRL_CLE) == NAND_CTRL_CLE)
115 addr |= info->mask_cle;
116 else if ((ctrl & NAND_CTRL_ALE) == NAND_CTRL_ALE)
117 addr |= info->mask_ale;
118
119 nand->IO_ADDR_W = (void __iomem __force *)addr;
120 }
121
122 if (cmd != NAND_CMD_NONE)
123 iowrite8(cmd, nand->IO_ADDR_W);
124 }
125
126 static void nand_davinci_select_chip(struct mtd_info *mtd, int chip)
127 {
128 struct davinci_nand_info *info = to_davinci_nand(mtd);
129 uint32_t addr = info->ioaddr;
130
131 /* maybe kick in a second chipselect */
132 if (chip > 0)
133 addr |= info->mask_chipsel;
134 info->current_cs = addr;
135
136 info->chip.IO_ADDR_W = (void __iomem __force *)addr;
137 info->chip.IO_ADDR_R = info->chip.IO_ADDR_W;
138 }
139
140 /*----------------------------------------------------------------------*/
141
142 /*
143 * 1-bit hardware ECC ... context maintained for each core chipselect
144 */
145
146 static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
147 {
148 struct davinci_nand_info *info = to_davinci_nand(mtd);
149
150 return davinci_nand_readl(info, NANDF1ECC_OFFSET
151 + 4 * info->core_chipsel);
152 }
153
154 static void nand_davinci_hwctl_1bit(struct mtd_info *mtd, int mode)
155 {
156 struct davinci_nand_info *info;
157 uint32_t nandcfr;
158 unsigned long flags;
159
160 info = to_davinci_nand(mtd);
161
162 /* Reset ECC hardware */
163 nand_davinci_readecc_1bit(mtd);
164
165 spin_lock_irqsave(&davinci_nand_lock, flags);
166
167 /* Restart ECC hardware */
168 nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
169 nandcfr |= BIT(8 + info->core_chipsel);
170 davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);
171
172 spin_unlock_irqrestore(&davinci_nand_lock, flags);
173 }
174
175 /*
176 * Read hardware ECC value and pack into three bytes
177 */
178 static int nand_davinci_calculate_1bit(struct mtd_info *mtd,
179 const u_char *dat, u_char *ecc_code)
180 {
181 unsigned int ecc_val = nand_davinci_readecc_1bit(mtd);
182 unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);
183
184 /* invert so that erased block ecc is correct */
185 ecc24 = ~ecc24;
186 ecc_code[0] = (u_char)(ecc24);
187 ecc_code[1] = (u_char)(ecc24 >> 8);
188 ecc_code[2] = (u_char)(ecc24 >> 16);
189
190 return 0;
191 }
192
193 static int nand_davinci_correct_1bit(struct mtd_info *mtd, u_char *dat,
194 u_char *read_ecc, u_char *calc_ecc)
195 {
196 struct nand_chip *chip = mtd_to_nand(mtd);
197 uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
198 (read_ecc[2] << 16);
199 uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
200 (calc_ecc[2] << 16);
201 uint32_t diff = eccCalc ^ eccNand;
202
203 if (diff) {
204 if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
205 /* Correctable error */
206 if ((diff >> (12 + 3)) < chip->ecc.size) {
207 dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
208 return 1;
209 } else {
210 return -EBADMSG;
211 }
212 } else if (!(diff & (diff - 1))) {
213 /* Single bit ECC error in the ECC itself,
214 * nothing to fix */
215 return 1;
216 } else {
217 /* Uncorrectable error */
218 return -EBADMSG;
219 }
220
221 }
222 return 0;
223 }
224
225 /*----------------------------------------------------------------------*/
226
227 /*
228 * 4-bit hardware ECC ... context maintained over entire AEMIF
229 *
230 * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME
231 * since that forces use of a problematic "infix OOB" layout.
232 * Among other things, it trashes manufacturer bad block markers.
233 * Also, and specific to this hardware, it ECC-protects the "prepad"
234 * in the OOB ... while having ECC protection for parts of OOB would
235 * seem useful, the current MTD stack sometimes wants to update the
236 * OOB without recomputing ECC.
237 */
238
239 static void nand_davinci_hwctl_4bit(struct mtd_info *mtd, int mode)
240 {
241 struct davinci_nand_info *info = to_davinci_nand(mtd);
242 unsigned long flags;
243 u32 val;
244
245 spin_lock_irqsave(&davinci_nand_lock, flags);
246
247 /* Start 4-bit ECC calculation for read/write */
248 val = davinci_nand_readl(info, NANDFCR_OFFSET);
249 val &= ~(0x03 << 4);
250 val |= (info->core_chipsel << 4) | BIT(12);
251 davinci_nand_writel(info, NANDFCR_OFFSET, val);
252
253 info->is_readmode = (mode == NAND_ECC_READ);
254
255 spin_unlock_irqrestore(&davinci_nand_lock, flags);
256 }
257
258 /* Read raw ECC code after writing to NAND. */
259 static void
260 nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
261 {
262 const u32 mask = 0x03ff03ff;
263
264 code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
265 code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
266 code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
267 code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
268 }
269
270 /* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
271 static int nand_davinci_calculate_4bit(struct mtd_info *mtd,
272 const u_char *dat, u_char *ecc_code)
273 {
274 struct davinci_nand_info *info = to_davinci_nand(mtd);
275 u32 raw_ecc[4], *p;
276 unsigned i;
277
278 /* After a read, terminate ECC calculation by a dummy read
279 * of some 4-bit ECC register. ECC covers everything that
280 * was read; correct() just uses the hardware state, so
281 * ecc_code is not needed.
282 */
283 if (info->is_readmode) {
284 davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
285 return 0;
286 }
287
288 /* Pack eight raw 10-bit ecc values into ten bytes, making
289 * two passes which each convert four values (in upper and
290 * lower halves of two 32-bit words) into five bytes. The
291 * ROM boot loader uses this same packing scheme.
292 */
293 nand_davinci_readecc_4bit(info, raw_ecc);
294 for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
295 *ecc_code++ = p[0] & 0xff;
296 *ecc_code++ = ((p[0] >> 8) & 0x03) | ((p[0] >> 14) & 0xfc);
297 *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] << 4) & 0xf0);
298 *ecc_code++ = ((p[1] >> 4) & 0x3f) | ((p[1] >> 10) & 0xc0);
299 *ecc_code++ = (p[1] >> 18) & 0xff;
300 }
301
302 return 0;
303 }
304
305 /* Correct up to 4 bits in data we just read, using state left in the
306 * hardware plus the ecc_code computed when it was first written.
307 */
308 static int nand_davinci_correct_4bit(struct mtd_info *mtd,
309 u_char *data, u_char *ecc_code, u_char *null)
310 {
311 int i;
312 struct davinci_nand_info *info = to_davinci_nand(mtd);
313 unsigned short ecc10[8];
314 unsigned short *ecc16;
315 u32 syndrome[4];
316 u32 ecc_state;
317 unsigned num_errors, corrected;
318 unsigned long timeo;
319
320 /* Unpack ten bytes into eight 10 bit values. We know we're
321 * little-endian, and use type punning for less shifting/masking.
322 */
323 if (WARN_ON(0x01 & (unsigned) ecc_code))
324 return -EINVAL;
325 ecc16 = (unsigned short *)ecc_code;
326
327 ecc10[0] = (ecc16[0] >> 0) & 0x3ff;
328 ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
329 ecc10[2] = (ecc16[1] >> 4) & 0x3ff;
330 ecc10[3] = ((ecc16[1] >> 14) & 0x3) | ((ecc16[2] << 2) & 0x3fc);
331 ecc10[4] = (ecc16[2] >> 8) | ((ecc16[3] << 8) & 0x300);
332 ecc10[5] = (ecc16[3] >> 2) & 0x3ff;
333 ecc10[6] = ((ecc16[3] >> 12) & 0xf) | ((ecc16[4] << 4) & 0x3f0);
334 ecc10[7] = (ecc16[4] >> 6) & 0x3ff;
335
336 /* Tell ECC controller about the expected ECC codes. */
337 for (i = 7; i >= 0; i--)
338 davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);
339
340 /* Allow time for syndrome calculation ... then read it.
341 * A syndrome of all zeroes 0 means no detected errors.
342 */
343 davinci_nand_readl(info, NANDFSR_OFFSET);
344 nand_davinci_readecc_4bit(info, syndrome);
345 if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
346 return 0;
347
348 /*
349 * Clear any previous address calculation by doing a dummy read of an
350 * error address register.
351 */
352 davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);
353
354 /* Start address calculation, and wait for it to complete.
355 * We _could_ start reading more data while this is working,
356 * to speed up the overall page read.
357 */
358 davinci_nand_writel(info, NANDFCR_OFFSET,
359 davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
360
361 /*
362 * ECC_STATE field reads 0x3 (Error correction complete) immediately
363 * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
364 * begin trying to poll for the state, you may fall right out of your
365 * loop without any of the correction calculations having taken place.
366 * The recommendation from the hardware team is to initially delay as
367 * long as ECC_STATE reads less than 4. After that, ECC HW has entered
368 * correction state.
369 */
370 timeo = jiffies + usecs_to_jiffies(100);
371 do {
372 ecc_state = (davinci_nand_readl(info,
373 NANDFSR_OFFSET) >> 8) & 0x0f;
374 cpu_relax();
375 } while ((ecc_state < 4) && time_before(jiffies, timeo));
376
377 for (;;) {
378 u32 fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
379
380 switch ((fsr >> 8) & 0x0f) {
381 case 0: /* no error, should not happen */
382 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
383 return 0;
384 case 1: /* five or more errors detected */
385 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
386 return -EBADMSG;
387 case 2: /* error addresses computed */
388 case 3:
389 num_errors = 1 + ((fsr >> 16) & 0x03);
390 goto correct;
391 default: /* still working on it */
392 cpu_relax();
393 continue;
394 }
395 }
396
397 correct:
398 /* correct each error */
399 for (i = 0, corrected = 0; i < num_errors; i++) {
400 int error_address, error_value;
401
402 if (i > 1) {
403 error_address = davinci_nand_readl(info,
404 NAND_ERR_ADD2_OFFSET);
405 error_value = davinci_nand_readl(info,
406 NAND_ERR_ERRVAL2_OFFSET);
407 } else {
408 error_address = davinci_nand_readl(info,
409 NAND_ERR_ADD1_OFFSET);
410 error_value = davinci_nand_readl(info,
411 NAND_ERR_ERRVAL1_OFFSET);
412 }
413
414 if (i & 1) {
415 error_address >>= 16;
416 error_value >>= 16;
417 }
418 error_address &= 0x3ff;
419 error_address = (512 + 7) - error_address;
420
421 if (error_address < 512) {
422 data[error_address] ^= error_value;
423 corrected++;
424 }
425 }
426
427 return corrected;
428 }
429
430 /*----------------------------------------------------------------------*/
431
432 /*
433 * NOTE: NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's
434 * how these chips are normally wired. This translates to both 8 and 16
435 * bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4).
436 *
437 * For now we assume that configuration, or any other one which ignores
438 * the two LSBs for NAND access ... so we can issue 32-bit reads/writes
439 * and have that transparently morphed into multiple NAND operations.
440 */
441 static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
442 {
443 struct nand_chip *chip = mtd_to_nand(mtd);
444
445 if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
446 ioread32_rep(chip->IO_ADDR_R, buf, len >> 2);
447 else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
448 ioread16_rep(chip->IO_ADDR_R, buf, len >> 1);
449 else
450 ioread8_rep(chip->IO_ADDR_R, buf, len);
451 }
452
453 static void nand_davinci_write_buf(struct mtd_info *mtd,
454 const uint8_t *buf, int len)
455 {
456 struct nand_chip *chip = mtd_to_nand(mtd);
457
458 if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
459 iowrite32_rep(chip->IO_ADDR_R, buf, len >> 2);
460 else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
461 iowrite16_rep(chip->IO_ADDR_R, buf, len >> 1);
462 else
463 iowrite8_rep(chip->IO_ADDR_R, buf, len);
464 }
465
466 /*
467 * Check hardware register for wait status. Returns 1 if device is ready,
468 * 0 if it is still busy.
469 */
470 static int nand_davinci_dev_ready(struct mtd_info *mtd)
471 {
472 struct davinci_nand_info *info = to_davinci_nand(mtd);
473
474 return davinci_nand_readl(info, NANDFSR_OFFSET) & BIT(0);
475 }
476
477 /*----------------------------------------------------------------------*/
478
479 /* An ECC layout for using 4-bit ECC with small-page flash, storing
480 * ten ECC bytes plus the manufacturer's bad block marker byte, and
481 * and not overlapping the default BBT markers.
482 */
483 static struct nand_ecclayout hwecc4_small = {
484 .eccbytes = 10,
485 .eccpos = { 0, 1, 2, 3, 4,
486 /* offset 5 holds the badblock marker */
487 6, 7,
488 13, 14, 15, },
489 .oobfree = {
490 {.offset = 8, .length = 5, },
491 {.offset = 16, },
492 },
493 };
494
495 /* An ECC layout for using 4-bit ECC with large-page (2048bytes) flash,
496 * storing ten ECC bytes plus the manufacturer's bad block marker byte,
497 * and not overlapping the default BBT markers.
498 */
499 static struct nand_ecclayout hwecc4_2048 = {
500 .eccbytes = 40,
501 .eccpos = {
502 /* at the end of spare sector */
503 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
504 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
505 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
506 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
507 },
508 .oobfree = {
509 /* 2 bytes at offset 0 hold manufacturer badblock markers */
510 {.offset = 2, .length = 22, },
511 /* 5 bytes at offset 8 hold BBT markers */
512 /* 8 bytes at offset 16 hold JFFS2 clean markers */
513 },
514 };
515
516 /*
517 * An ECC layout for using 4-bit ECC with large-page (4096bytes) flash,
518 * storing ten ECC bytes plus the manufacturer's bad block marker byte,
519 * and not overlapping the default BBT markers.
520 */
521 static struct nand_ecclayout hwecc4_4096 = {
522 .eccbytes = 80,
523 .eccpos = {
524 /* at the end of spare sector */
525 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,
526 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,
527 68, 69, 70, 71, 72, 73, 74, 75, 76, 77,
528 78, 79, 80, 81, 82, 83, 84, 85, 86, 87,
529 88, 89, 90, 91, 92, 93, 94, 95, 96, 97,
530 98, 99, 100, 101, 102, 103, 104, 105, 106, 107,
531 108, 109, 110, 111, 112, 113, 114, 115, 116, 117,
532 118, 119, 120, 121, 122, 123, 124, 125, 126, 127,
533 },
534 .oobfree = {
535 /* 2 bytes at offset 0 hold manufacturer badblock markers */
536 {.offset = 2, .length = 46, },
537 /* 5 bytes at offset 8 hold BBT markers */
538 /* 8 bytes at offset 16 hold JFFS2 clean markers */
539 },
540 };
541
542 #if defined(CONFIG_OF)
543 static const struct of_device_id davinci_nand_of_match[] = {
544 {.compatible = "ti,davinci-nand", },
545 {.compatible = "ti,keystone-nand", },
546 {},
547 };
548 MODULE_DEVICE_TABLE(of, davinci_nand_of_match);
549
550 static struct davinci_nand_pdata
551 *nand_davinci_get_pdata(struct platform_device *pdev)
552 {
553 if (!dev_get_platdata(&pdev->dev) && pdev->dev.of_node) {
554 struct davinci_nand_pdata *pdata;
555 const char *mode;
556 u32 prop;
557
558 pdata = devm_kzalloc(&pdev->dev,
559 sizeof(struct davinci_nand_pdata),
560 GFP_KERNEL);
561 pdev->dev.platform_data = pdata;
562 if (!pdata)
563 return ERR_PTR(-ENOMEM);
564 if (!of_property_read_u32(pdev->dev.of_node,
565 "ti,davinci-chipselect", &prop))
566 pdev->id = prop;
567 else
568 return ERR_PTR(-EINVAL);
569
570 if (!of_property_read_u32(pdev->dev.of_node,
571 "ti,davinci-mask-ale", &prop))
572 pdata->mask_ale = prop;
573 if (!of_property_read_u32(pdev->dev.of_node,
574 "ti,davinci-mask-cle", &prop))
575 pdata->mask_cle = prop;
576 if (!of_property_read_u32(pdev->dev.of_node,
577 "ti,davinci-mask-chipsel", &prop))
578 pdata->mask_chipsel = prop;
579 if (!of_property_read_string(pdev->dev.of_node,
580 "nand-ecc-mode", &mode) ||
581 !of_property_read_string(pdev->dev.of_node,
582 "ti,davinci-ecc-mode", &mode)) {
583 if (!strncmp("none", mode, 4))
584 pdata->ecc_mode = NAND_ECC_NONE;
585 if (!strncmp("soft", mode, 4))
586 pdata->ecc_mode = NAND_ECC_SOFT;
587 if (!strncmp("hw", mode, 2))
588 pdata->ecc_mode = NAND_ECC_HW;
589 }
590 if (!of_property_read_u32(pdev->dev.of_node,
591 "ti,davinci-ecc-bits", &prop))
592 pdata->ecc_bits = prop;
593
594 prop = of_get_nand_bus_width(pdev->dev.of_node);
595 if (0 < prop || !of_property_read_u32(pdev->dev.of_node,
596 "ti,davinci-nand-buswidth", &prop))
597 if (prop == 16)
598 pdata->options |= NAND_BUSWIDTH_16;
599 if (of_property_read_bool(pdev->dev.of_node,
600 "nand-on-flash-bbt") ||
601 of_property_read_bool(pdev->dev.of_node,
602 "ti,davinci-nand-use-bbt"))
603 pdata->bbt_options = NAND_BBT_USE_FLASH;
604
605 if (of_device_is_compatible(pdev->dev.of_node,
606 "ti,keystone-nand")) {
607 pdata->options |= NAND_NO_SUBPAGE_WRITE;
608 }
609 }
610
611 return dev_get_platdata(&pdev->dev);
612 }
613 #else
614 static struct davinci_nand_pdata
615 *nand_davinci_get_pdata(struct platform_device *pdev)
616 {
617 return dev_get_platdata(&pdev->dev);
618 }
619 #endif
620
621 static int nand_davinci_probe(struct platform_device *pdev)
622 {
623 struct davinci_nand_pdata *pdata;
624 struct davinci_nand_info *info;
625 struct resource *res1;
626 struct resource *res2;
627 void __iomem *vaddr;
628 void __iomem *base;
629 int ret;
630 uint32_t val;
631 nand_ecc_modes_t ecc_mode;
632 struct mtd_info *mtd;
633
634 pdata = nand_davinci_get_pdata(pdev);
635 if (IS_ERR(pdata))
636 return PTR_ERR(pdata);
637
638 /* insist on board-specific configuration */
639 if (!pdata)
640 return -ENODEV;
641
642 /* which external chipselect will we be managing? */
643 if (pdev->id < 0 || pdev->id > 3)
644 return -ENODEV;
645
646 info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
647 if (!info)
648 return -ENOMEM;
649
650 platform_set_drvdata(pdev, info);
651
652 res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
653 res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
654 if (!res1 || !res2) {
655 dev_err(&pdev->dev, "resource missing\n");
656 return -EINVAL;
657 }
658
659 vaddr = devm_ioremap_resource(&pdev->dev, res1);
660 if (IS_ERR(vaddr))
661 return PTR_ERR(vaddr);
662
663 /*
664 * This registers range is used to setup NAND settings. In case with
665 * TI AEMIF driver, the same memory address range is requested already
666 * by AEMIF, so we cannot request it twice, just ioremap.
667 * The AEMIF and NAND drivers not use the same registers in this range.
668 */
669 base = devm_ioremap(&pdev->dev, res2->start, resource_size(res2));
670 if (!base) {
671 dev_err(&pdev->dev, "ioremap failed for resource %pR\n", res2);
672 return -EADDRNOTAVAIL;
673 }
674
675 info->dev = &pdev->dev;
676 info->base = base;
677 info->vaddr = vaddr;
678
679 mtd = nand_to_mtd(&info->chip);
680 mtd->dev.parent = &pdev->dev;
681 nand_set_flash_node(&info->chip, pdev->dev.of_node);
682
683 info->chip.IO_ADDR_R = vaddr;
684 info->chip.IO_ADDR_W = vaddr;
685 info->chip.chip_delay = 0;
686 info->chip.select_chip = nand_davinci_select_chip;
687
688 /* options such as NAND_BBT_USE_FLASH */
689 info->chip.bbt_options = pdata->bbt_options;
690 /* options such as 16-bit widths */
691 info->chip.options = pdata->options;
692 info->chip.bbt_td = pdata->bbt_td;
693 info->chip.bbt_md = pdata->bbt_md;
694 info->timing = pdata->timing;
695
696 info->ioaddr = (uint32_t __force) vaddr;
697
698 info->current_cs = info->ioaddr;
699 info->core_chipsel = pdev->id;
700 info->mask_chipsel = pdata->mask_chipsel;
701
702 /* use nandboot-capable ALE/CLE masks by default */
703 info->mask_ale = pdata->mask_ale ? : MASK_ALE;
704 info->mask_cle = pdata->mask_cle ? : MASK_CLE;
705
706 /* Set address of hardware control function */
707 info->chip.cmd_ctrl = nand_davinci_hwcontrol;
708 info->chip.dev_ready = nand_davinci_dev_ready;
709
710 /* Speed up buffer I/O */
711 info->chip.read_buf = nand_davinci_read_buf;
712 info->chip.write_buf = nand_davinci_write_buf;
713
714 /* Use board-specific ECC config */
715 ecc_mode = pdata->ecc_mode;
716
717 ret = -EINVAL;
718 switch (ecc_mode) {
719 case NAND_ECC_NONE:
720 case NAND_ECC_SOFT:
721 pdata->ecc_bits = 0;
722 break;
723 case NAND_ECC_HW:
724 if (pdata->ecc_bits == 4) {
725 /* No sanity checks: CPUs must support this,
726 * and the chips may not use NAND_BUSWIDTH_16.
727 */
728
729 /* No sharing 4-bit hardware between chipselects yet */
730 spin_lock_irq(&davinci_nand_lock);
731 if (ecc4_busy)
732 ret = -EBUSY;
733 else
734 ecc4_busy = true;
735 spin_unlock_irq(&davinci_nand_lock);
736
737 if (ret == -EBUSY)
738 return ret;
739
740 info->chip.ecc.calculate = nand_davinci_calculate_4bit;
741 info->chip.ecc.correct = nand_davinci_correct_4bit;
742 info->chip.ecc.hwctl = nand_davinci_hwctl_4bit;
743 info->chip.ecc.bytes = 10;
744 info->chip.ecc.options = NAND_ECC_GENERIC_ERASED_CHECK;
745 } else {
746 info->chip.ecc.calculate = nand_davinci_calculate_1bit;
747 info->chip.ecc.correct = nand_davinci_correct_1bit;
748 info->chip.ecc.hwctl = nand_davinci_hwctl_1bit;
749 info->chip.ecc.bytes = 3;
750 }
751 info->chip.ecc.size = 512;
752 info->chip.ecc.strength = pdata->ecc_bits;
753 break;
754 default:
755 return -EINVAL;
756 }
757 info->chip.ecc.mode = ecc_mode;
758
759 info->clk = devm_clk_get(&pdev->dev, "aemif");
760 if (IS_ERR(info->clk)) {
761 ret = PTR_ERR(info->clk);
762 dev_dbg(&pdev->dev, "unable to get AEMIF clock, err %d\n", ret);
763 return ret;
764 }
765
766 ret = clk_prepare_enable(info->clk);
767 if (ret < 0) {
768 dev_dbg(&pdev->dev, "unable to enable AEMIF clock, err %d\n",
769 ret);
770 goto err_clk_enable;
771 }
772
773 spin_lock_irq(&davinci_nand_lock);
774
775 /* put CSxNAND into NAND mode */
776 val = davinci_nand_readl(info, NANDFCR_OFFSET);
777 val |= BIT(info->core_chipsel);
778 davinci_nand_writel(info, NANDFCR_OFFSET, val);
779
780 spin_unlock_irq(&davinci_nand_lock);
781
782 /* Scan to find existence of the device(s) */
783 ret = nand_scan_ident(mtd, pdata->mask_chipsel ? 2 : 1, NULL);
784 if (ret < 0) {
785 dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
786 goto err;
787 }
788
789 /* Update ECC layout if needed ... for 1-bit HW ECC, the default
790 * is OK, but it allocates 6 bytes when only 3 are needed (for
791 * each 512 bytes). For the 4-bit HW ECC, that default is not
792 * usable: 10 bytes are needed, not 6.
793 */
794 if (pdata->ecc_bits == 4) {
795 int chunks = mtd->writesize / 512;
796
797 if (!chunks || mtd->oobsize < 16) {
798 dev_dbg(&pdev->dev, "too small\n");
799 ret = -EINVAL;
800 goto err;
801 }
802
803 /* For small page chips, preserve the manufacturer's
804 * badblock marking data ... and make sure a flash BBT
805 * table marker fits in the free bytes.
806 */
807 if (chunks == 1) {
808 info->ecclayout = hwecc4_small;
809 info->ecclayout.oobfree[1].length = mtd->oobsize - 16;
810 goto syndrome_done;
811 }
812 if (chunks == 4) {
813 info->ecclayout = hwecc4_2048;
814 info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST;
815 goto syndrome_done;
816 }
817 if (chunks == 8) {
818 info->ecclayout = hwecc4_4096;
819 info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST;
820 goto syndrome_done;
821 }
822
823 ret = -EIO;
824 goto err;
825
826 syndrome_done:
827 info->chip.ecc.layout = &info->ecclayout;
828 }
829
830 ret = nand_scan_tail(mtd);
831 if (ret < 0)
832 goto err;
833
834 if (pdata->parts)
835 ret = mtd_device_parse_register(mtd, NULL, NULL,
836 pdata->parts, pdata->nr_parts);
837 else
838 ret = mtd_device_register(mtd, NULL, 0);
839 if (ret < 0)
840 goto err;
841
842 val = davinci_nand_readl(info, NRCSR_OFFSET);
843 dev_info(&pdev->dev, "controller rev. %d.%d\n",
844 (val >> 8) & 0xff, val & 0xff);
845
846 return 0;
847
848 err:
849 clk_disable_unprepare(info->clk);
850
851 err_clk_enable:
852 spin_lock_irq(&davinci_nand_lock);
853 if (ecc_mode == NAND_ECC_HW_SYNDROME)
854 ecc4_busy = false;
855 spin_unlock_irq(&davinci_nand_lock);
856 return ret;
857 }
858
859 static int nand_davinci_remove(struct platform_device *pdev)
860 {
861 struct davinci_nand_info *info = platform_get_drvdata(pdev);
862
863 spin_lock_irq(&davinci_nand_lock);
864 if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME)
865 ecc4_busy = false;
866 spin_unlock_irq(&davinci_nand_lock);
867
868 nand_release(nand_to_mtd(&info->chip));
869
870 clk_disable_unprepare(info->clk);
871
872 return 0;
873 }
874
875 static struct platform_driver nand_davinci_driver = {
876 .probe = nand_davinci_probe,
877 .remove = nand_davinci_remove,
878 .driver = {
879 .name = "davinci_nand",
880 .of_match_table = of_match_ptr(davinci_nand_of_match),
881 },
882 };
883 MODULE_ALIAS("platform:davinci_nand");
884
885 module_platform_driver(nand_davinci_driver);
886
887 MODULE_LICENSE("GPL");
888 MODULE_AUTHOR("Texas Instruments");
889 MODULE_DESCRIPTION("Davinci NAND flash driver");
890
This page took 0.048611 seconds and 5 git commands to generate.