Merge branch 'slab/next' into slab/for-linus
[deliverable/linux.git] / drivers / mtd / nand / davinci_nand.c
1 /*
2 * davinci_nand.c - NAND Flash Driver for DaVinci family chips
3 *
4 * Copyright © 2006 Texas Instruments.
5 *
6 * Port to 2.6.23 Copyright © 2008 by:
7 * Sander Huijsen <Shuijsen@optelecom-nkf.com>
8 * Troy Kisky <troy.kisky@boundarydevices.com>
9 * Dirk Behme <Dirk.Behme@gmail.com>
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 */
25
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/platform_device.h>
30 #include <linux/err.h>
31 #include <linux/clk.h>
32 #include <linux/io.h>
33 #include <linux/mtd/nand.h>
34 #include <linux/mtd/partitions.h>
35 #include <linux/slab.h>
36 #include <linux/of_device.h>
37
38 #include <linux/platform_data/mtd-davinci.h>
39 #include <linux/platform_data/mtd-davinci-aemif.h>
40
41 /*
42 * This is a device driver for the NAND flash controller found on the
43 * various DaVinci family chips. It handles up to four SoC chipselects,
44 * and some flavors of secondary chipselect (e.g. based on A12) as used
45 * with multichip packages.
46 *
47 * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
48 * available on chips like the DM355 and OMAP-L137 and needed with the
49 * more error-prone MLC NAND chips.
50 *
51 * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
52 * outputs in a "wire-AND" configuration, with no per-chip signals.
53 */
54 struct davinci_nand_info {
55 struct mtd_info mtd;
56 struct nand_chip chip;
57 struct nand_ecclayout ecclayout;
58
59 struct device *dev;
60 struct clk *clk;
61
62 bool is_readmode;
63
64 void __iomem *base;
65 void __iomem *vaddr;
66
67 uint32_t ioaddr;
68 uint32_t current_cs;
69
70 uint32_t mask_chipsel;
71 uint32_t mask_ale;
72 uint32_t mask_cle;
73
74 uint32_t core_chipsel;
75
76 struct davinci_aemif_timing *timing;
77 };
78
79 static DEFINE_SPINLOCK(davinci_nand_lock);
80 static bool ecc4_busy;
81
82 #define to_davinci_nand(m) container_of(m, struct davinci_nand_info, mtd)
83
84
85 static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
86 int offset)
87 {
88 return __raw_readl(info->base + offset);
89 }
90
91 static inline void davinci_nand_writel(struct davinci_nand_info *info,
92 int offset, unsigned long value)
93 {
94 __raw_writel(value, info->base + offset);
95 }
96
97 /*----------------------------------------------------------------------*/
98
99 /*
100 * Access to hardware control lines: ALE, CLE, secondary chipselect.
101 */
102
103 static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
104 unsigned int ctrl)
105 {
106 struct davinci_nand_info *info = to_davinci_nand(mtd);
107 uint32_t addr = info->current_cs;
108 struct nand_chip *nand = mtd->priv;
109
110 /* Did the control lines change? */
111 if (ctrl & NAND_CTRL_CHANGE) {
112 if ((ctrl & NAND_CTRL_CLE) == NAND_CTRL_CLE)
113 addr |= info->mask_cle;
114 else if ((ctrl & NAND_CTRL_ALE) == NAND_CTRL_ALE)
115 addr |= info->mask_ale;
116
117 nand->IO_ADDR_W = (void __iomem __force *)addr;
118 }
119
120 if (cmd != NAND_CMD_NONE)
121 iowrite8(cmd, nand->IO_ADDR_W);
122 }
123
124 static void nand_davinci_select_chip(struct mtd_info *mtd, int chip)
125 {
126 struct davinci_nand_info *info = to_davinci_nand(mtd);
127 uint32_t addr = info->ioaddr;
128
129 /* maybe kick in a second chipselect */
130 if (chip > 0)
131 addr |= info->mask_chipsel;
132 info->current_cs = addr;
133
134 info->chip.IO_ADDR_W = (void __iomem __force *)addr;
135 info->chip.IO_ADDR_R = info->chip.IO_ADDR_W;
136 }
137
138 /*----------------------------------------------------------------------*/
139
140 /*
141 * 1-bit hardware ECC ... context maintained for each core chipselect
142 */
143
144 static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
145 {
146 struct davinci_nand_info *info = to_davinci_nand(mtd);
147
148 return davinci_nand_readl(info, NANDF1ECC_OFFSET
149 + 4 * info->core_chipsel);
150 }
151
152 static void nand_davinci_hwctl_1bit(struct mtd_info *mtd, int mode)
153 {
154 struct davinci_nand_info *info;
155 uint32_t nandcfr;
156 unsigned long flags;
157
158 info = to_davinci_nand(mtd);
159
160 /* Reset ECC hardware */
161 nand_davinci_readecc_1bit(mtd);
162
163 spin_lock_irqsave(&davinci_nand_lock, flags);
164
165 /* Restart ECC hardware */
166 nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
167 nandcfr |= BIT(8 + info->core_chipsel);
168 davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);
169
170 spin_unlock_irqrestore(&davinci_nand_lock, flags);
171 }
172
173 /*
174 * Read hardware ECC value and pack into three bytes
175 */
176 static int nand_davinci_calculate_1bit(struct mtd_info *mtd,
177 const u_char *dat, u_char *ecc_code)
178 {
179 unsigned int ecc_val = nand_davinci_readecc_1bit(mtd);
180 unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);
181
182 /* invert so that erased block ecc is correct */
183 ecc24 = ~ecc24;
184 ecc_code[0] = (u_char)(ecc24);
185 ecc_code[1] = (u_char)(ecc24 >> 8);
186 ecc_code[2] = (u_char)(ecc24 >> 16);
187
188 return 0;
189 }
190
191 static int nand_davinci_correct_1bit(struct mtd_info *mtd, u_char *dat,
192 u_char *read_ecc, u_char *calc_ecc)
193 {
194 struct nand_chip *chip = mtd->priv;
195 uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
196 (read_ecc[2] << 16);
197 uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
198 (calc_ecc[2] << 16);
199 uint32_t diff = eccCalc ^ eccNand;
200
201 if (diff) {
202 if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
203 /* Correctable error */
204 if ((diff >> (12 + 3)) < chip->ecc.size) {
205 dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
206 return 1;
207 } else {
208 return -1;
209 }
210 } else if (!(diff & (diff - 1))) {
211 /* Single bit ECC error in the ECC itself,
212 * nothing to fix */
213 return 1;
214 } else {
215 /* Uncorrectable error */
216 return -1;
217 }
218
219 }
220 return 0;
221 }
222
223 /*----------------------------------------------------------------------*/
224
225 /*
226 * 4-bit hardware ECC ... context maintained over entire AEMIF
227 *
228 * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME
229 * since that forces use of a problematic "infix OOB" layout.
230 * Among other things, it trashes manufacturer bad block markers.
231 * Also, and specific to this hardware, it ECC-protects the "prepad"
232 * in the OOB ... while having ECC protection for parts of OOB would
233 * seem useful, the current MTD stack sometimes wants to update the
234 * OOB without recomputing ECC.
235 */
236
237 static void nand_davinci_hwctl_4bit(struct mtd_info *mtd, int mode)
238 {
239 struct davinci_nand_info *info = to_davinci_nand(mtd);
240 unsigned long flags;
241 u32 val;
242
243 spin_lock_irqsave(&davinci_nand_lock, flags);
244
245 /* Start 4-bit ECC calculation for read/write */
246 val = davinci_nand_readl(info, NANDFCR_OFFSET);
247 val &= ~(0x03 << 4);
248 val |= (info->core_chipsel << 4) | BIT(12);
249 davinci_nand_writel(info, NANDFCR_OFFSET, val);
250
251 info->is_readmode = (mode == NAND_ECC_READ);
252
253 spin_unlock_irqrestore(&davinci_nand_lock, flags);
254 }
255
256 /* Read raw ECC code after writing to NAND. */
257 static void
258 nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
259 {
260 const u32 mask = 0x03ff03ff;
261
262 code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
263 code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
264 code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
265 code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
266 }
267
268 /* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
269 static int nand_davinci_calculate_4bit(struct mtd_info *mtd,
270 const u_char *dat, u_char *ecc_code)
271 {
272 struct davinci_nand_info *info = to_davinci_nand(mtd);
273 u32 raw_ecc[4], *p;
274 unsigned i;
275
276 /* After a read, terminate ECC calculation by a dummy read
277 * of some 4-bit ECC register. ECC covers everything that
278 * was read; correct() just uses the hardware state, so
279 * ecc_code is not needed.
280 */
281 if (info->is_readmode) {
282 davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
283 return 0;
284 }
285
286 /* Pack eight raw 10-bit ecc values into ten bytes, making
287 * two passes which each convert four values (in upper and
288 * lower halves of two 32-bit words) into five bytes. The
289 * ROM boot loader uses this same packing scheme.
290 */
291 nand_davinci_readecc_4bit(info, raw_ecc);
292 for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
293 *ecc_code++ = p[0] & 0xff;
294 *ecc_code++ = ((p[0] >> 8) & 0x03) | ((p[0] >> 14) & 0xfc);
295 *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] << 4) & 0xf0);
296 *ecc_code++ = ((p[1] >> 4) & 0x3f) | ((p[1] >> 10) & 0xc0);
297 *ecc_code++ = (p[1] >> 18) & 0xff;
298 }
299
300 return 0;
301 }
302
303 /* Correct up to 4 bits in data we just read, using state left in the
304 * hardware plus the ecc_code computed when it was first written.
305 */
306 static int nand_davinci_correct_4bit(struct mtd_info *mtd,
307 u_char *data, u_char *ecc_code, u_char *null)
308 {
309 int i;
310 struct davinci_nand_info *info = to_davinci_nand(mtd);
311 unsigned short ecc10[8];
312 unsigned short *ecc16;
313 u32 syndrome[4];
314 u32 ecc_state;
315 unsigned num_errors, corrected;
316 unsigned long timeo;
317
318 /* All bytes 0xff? It's an erased page; ignore its ECC. */
319 for (i = 0; i < 10; i++) {
320 if (ecc_code[i] != 0xff)
321 goto compare;
322 }
323 return 0;
324
325 compare:
326 /* Unpack ten bytes into eight 10 bit values. We know we're
327 * little-endian, and use type punning for less shifting/masking.
328 */
329 if (WARN_ON(0x01 & (unsigned) ecc_code))
330 return -EINVAL;
331 ecc16 = (unsigned short *)ecc_code;
332
333 ecc10[0] = (ecc16[0] >> 0) & 0x3ff;
334 ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
335 ecc10[2] = (ecc16[1] >> 4) & 0x3ff;
336 ecc10[3] = ((ecc16[1] >> 14) & 0x3) | ((ecc16[2] << 2) & 0x3fc);
337 ecc10[4] = (ecc16[2] >> 8) | ((ecc16[3] << 8) & 0x300);
338 ecc10[5] = (ecc16[3] >> 2) & 0x3ff;
339 ecc10[6] = ((ecc16[3] >> 12) & 0xf) | ((ecc16[4] << 4) & 0x3f0);
340 ecc10[7] = (ecc16[4] >> 6) & 0x3ff;
341
342 /* Tell ECC controller about the expected ECC codes. */
343 for (i = 7; i >= 0; i--)
344 davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);
345
346 /* Allow time for syndrome calculation ... then read it.
347 * A syndrome of all zeroes 0 means no detected errors.
348 */
349 davinci_nand_readl(info, NANDFSR_OFFSET);
350 nand_davinci_readecc_4bit(info, syndrome);
351 if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
352 return 0;
353
354 /*
355 * Clear any previous address calculation by doing a dummy read of an
356 * error address register.
357 */
358 davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);
359
360 /* Start address calculation, and wait for it to complete.
361 * We _could_ start reading more data while this is working,
362 * to speed up the overall page read.
363 */
364 davinci_nand_writel(info, NANDFCR_OFFSET,
365 davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
366
367 /*
368 * ECC_STATE field reads 0x3 (Error correction complete) immediately
369 * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
370 * begin trying to poll for the state, you may fall right out of your
371 * loop without any of the correction calculations having taken place.
372 * The recommendation from the hardware team is to initially delay as
373 * long as ECC_STATE reads less than 4. After that, ECC HW has entered
374 * correction state.
375 */
376 timeo = jiffies + usecs_to_jiffies(100);
377 do {
378 ecc_state = (davinci_nand_readl(info,
379 NANDFSR_OFFSET) >> 8) & 0x0f;
380 cpu_relax();
381 } while ((ecc_state < 4) && time_before(jiffies, timeo));
382
383 for (;;) {
384 u32 fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
385
386 switch ((fsr >> 8) & 0x0f) {
387 case 0: /* no error, should not happen */
388 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
389 return 0;
390 case 1: /* five or more errors detected */
391 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
392 return -EIO;
393 case 2: /* error addresses computed */
394 case 3:
395 num_errors = 1 + ((fsr >> 16) & 0x03);
396 goto correct;
397 default: /* still working on it */
398 cpu_relax();
399 continue;
400 }
401 }
402
403 correct:
404 /* correct each error */
405 for (i = 0, corrected = 0; i < num_errors; i++) {
406 int error_address, error_value;
407
408 if (i > 1) {
409 error_address = davinci_nand_readl(info,
410 NAND_ERR_ADD2_OFFSET);
411 error_value = davinci_nand_readl(info,
412 NAND_ERR_ERRVAL2_OFFSET);
413 } else {
414 error_address = davinci_nand_readl(info,
415 NAND_ERR_ADD1_OFFSET);
416 error_value = davinci_nand_readl(info,
417 NAND_ERR_ERRVAL1_OFFSET);
418 }
419
420 if (i & 1) {
421 error_address >>= 16;
422 error_value >>= 16;
423 }
424 error_address &= 0x3ff;
425 error_address = (512 + 7) - error_address;
426
427 if (error_address < 512) {
428 data[error_address] ^= error_value;
429 corrected++;
430 }
431 }
432
433 return corrected;
434 }
435
436 /*----------------------------------------------------------------------*/
437
438 /*
439 * NOTE: NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's
440 * how these chips are normally wired. This translates to both 8 and 16
441 * bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4).
442 *
443 * For now we assume that configuration, or any other one which ignores
444 * the two LSBs for NAND access ... so we can issue 32-bit reads/writes
445 * and have that transparently morphed into multiple NAND operations.
446 */
447 static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
448 {
449 struct nand_chip *chip = mtd->priv;
450
451 if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
452 ioread32_rep(chip->IO_ADDR_R, buf, len >> 2);
453 else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
454 ioread16_rep(chip->IO_ADDR_R, buf, len >> 1);
455 else
456 ioread8_rep(chip->IO_ADDR_R, buf, len);
457 }
458
459 static void nand_davinci_write_buf(struct mtd_info *mtd,
460 const uint8_t *buf, int len)
461 {
462 struct nand_chip *chip = mtd->priv;
463
464 if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
465 iowrite32_rep(chip->IO_ADDR_R, buf, len >> 2);
466 else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
467 iowrite16_rep(chip->IO_ADDR_R, buf, len >> 1);
468 else
469 iowrite8_rep(chip->IO_ADDR_R, buf, len);
470 }
471
472 /*
473 * Check hardware register for wait status. Returns 1 if device is ready,
474 * 0 if it is still busy.
475 */
476 static int nand_davinci_dev_ready(struct mtd_info *mtd)
477 {
478 struct davinci_nand_info *info = to_davinci_nand(mtd);
479
480 return davinci_nand_readl(info, NANDFSR_OFFSET) & BIT(0);
481 }
482
483 /*----------------------------------------------------------------------*/
484
485 /* An ECC layout for using 4-bit ECC with small-page flash, storing
486 * ten ECC bytes plus the manufacturer's bad block marker byte, and
487 * and not overlapping the default BBT markers.
488 */
489 static struct nand_ecclayout hwecc4_small __initconst = {
490 .eccbytes = 10,
491 .eccpos = { 0, 1, 2, 3, 4,
492 /* offset 5 holds the badblock marker */
493 6, 7,
494 13, 14, 15, },
495 .oobfree = {
496 {.offset = 8, .length = 5, },
497 {.offset = 16, },
498 },
499 };
500
501 /* An ECC layout for using 4-bit ECC with large-page (2048bytes) flash,
502 * storing ten ECC bytes plus the manufacturer's bad block marker byte,
503 * and not overlapping the default BBT markers.
504 */
505 static struct nand_ecclayout hwecc4_2048 __initconst = {
506 .eccbytes = 40,
507 .eccpos = {
508 /* at the end of spare sector */
509 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
510 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
511 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
512 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
513 },
514 .oobfree = {
515 /* 2 bytes at offset 0 hold manufacturer badblock markers */
516 {.offset = 2, .length = 22, },
517 /* 5 bytes at offset 8 hold BBT markers */
518 /* 8 bytes at offset 16 hold JFFS2 clean markers */
519 },
520 };
521
522 #if defined(CONFIG_OF)
523 static const struct of_device_id davinci_nand_of_match[] = {
524 {.compatible = "ti,davinci-nand", },
525 {},
526 }
527 MODULE_DEVICE_TABLE(of, davinci_nand_of_match);
528
529 static struct davinci_nand_pdata
530 *nand_davinci_get_pdata(struct platform_device *pdev)
531 {
532 if (!pdev->dev.platform_data && pdev->dev.of_node) {
533 struct davinci_nand_pdata *pdata;
534 const char *mode;
535 u32 prop;
536 int len;
537
538 pdata = devm_kzalloc(&pdev->dev,
539 sizeof(struct davinci_nand_pdata),
540 GFP_KERNEL);
541 pdev->dev.platform_data = pdata;
542 if (!pdata)
543 return NULL;
544 if (!of_property_read_u32(pdev->dev.of_node,
545 "ti,davinci-chipselect", &prop))
546 pdev->id = prop;
547 if (!of_property_read_u32(pdev->dev.of_node,
548 "ti,davinci-mask-ale", &prop))
549 pdata->mask_ale = prop;
550 if (!of_property_read_u32(pdev->dev.of_node,
551 "ti,davinci-mask-cle", &prop))
552 pdata->mask_cle = prop;
553 if (!of_property_read_u32(pdev->dev.of_node,
554 "ti,davinci-mask-chipsel", &prop))
555 pdata->mask_chipsel = prop;
556 if (!of_property_read_string(pdev->dev.of_node,
557 "ti,davinci-ecc-mode", &mode)) {
558 if (!strncmp("none", mode, 4))
559 pdata->ecc_mode = NAND_ECC_NONE;
560 if (!strncmp("soft", mode, 4))
561 pdata->ecc_mode = NAND_ECC_SOFT;
562 if (!strncmp("hw", mode, 2))
563 pdata->ecc_mode = NAND_ECC_HW;
564 }
565 if (!of_property_read_u32(pdev->dev.of_node,
566 "ti,davinci-ecc-bits", &prop))
567 pdata->ecc_bits = prop;
568 if (!of_property_read_u32(pdev->dev.of_node,
569 "ti,davinci-nand-buswidth", &prop))
570 if (prop == 16)
571 pdata->options |= NAND_BUSWIDTH_16;
572 if (of_find_property(pdev->dev.of_node,
573 "ti,davinci-nand-use-bbt", &len))
574 pdata->bbt_options = NAND_BBT_USE_FLASH;
575 }
576
577 return pdev->dev.platform_data;
578 }
579 #else
580 #define davinci_nand_of_match NULL
581 static struct davinci_nand_pdata
582 *nand_davinci_get_pdata(struct platform_device *pdev)
583 {
584 return pdev->dev.platform_data;
585 }
586 #endif
587
588 static int __init nand_davinci_probe(struct platform_device *pdev)
589 {
590 struct davinci_nand_pdata *pdata;
591 struct davinci_nand_info *info;
592 struct resource *res1;
593 struct resource *res2;
594 void __iomem *vaddr;
595 void __iomem *base;
596 int ret;
597 uint32_t val;
598 nand_ecc_modes_t ecc_mode;
599
600 pdata = nand_davinci_get_pdata(pdev);
601 /* insist on board-specific configuration */
602 if (!pdata)
603 return -ENODEV;
604
605 /* which external chipselect will we be managing? */
606 if (pdev->id < 0 || pdev->id > 3)
607 return -ENODEV;
608
609 info = kzalloc(sizeof(*info), GFP_KERNEL);
610 if (!info) {
611 dev_err(&pdev->dev, "unable to allocate memory\n");
612 ret = -ENOMEM;
613 goto err_nomem;
614 }
615
616 platform_set_drvdata(pdev, info);
617
618 res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
619 res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
620 if (!res1 || !res2) {
621 dev_err(&pdev->dev, "resource missing\n");
622 ret = -EINVAL;
623 goto err_nomem;
624 }
625
626 vaddr = ioremap(res1->start, resource_size(res1));
627 base = ioremap(res2->start, resource_size(res2));
628 if (!vaddr || !base) {
629 dev_err(&pdev->dev, "ioremap failed\n");
630 ret = -EINVAL;
631 goto err_ioremap;
632 }
633
634 info->dev = &pdev->dev;
635 info->base = base;
636 info->vaddr = vaddr;
637
638 info->mtd.priv = &info->chip;
639 info->mtd.name = dev_name(&pdev->dev);
640 info->mtd.owner = THIS_MODULE;
641
642 info->mtd.dev.parent = &pdev->dev;
643
644 info->chip.IO_ADDR_R = vaddr;
645 info->chip.IO_ADDR_W = vaddr;
646 info->chip.chip_delay = 0;
647 info->chip.select_chip = nand_davinci_select_chip;
648
649 /* options such as NAND_BBT_USE_FLASH */
650 info->chip.bbt_options = pdata->bbt_options;
651 /* options such as 16-bit widths */
652 info->chip.options = pdata->options;
653 info->chip.bbt_td = pdata->bbt_td;
654 info->chip.bbt_md = pdata->bbt_md;
655 info->timing = pdata->timing;
656
657 info->ioaddr = (uint32_t __force) vaddr;
658
659 info->current_cs = info->ioaddr;
660 info->core_chipsel = pdev->id;
661 info->mask_chipsel = pdata->mask_chipsel;
662
663 /* use nandboot-capable ALE/CLE masks by default */
664 info->mask_ale = pdata->mask_ale ? : MASK_ALE;
665 info->mask_cle = pdata->mask_cle ? : MASK_CLE;
666
667 /* Set address of hardware control function */
668 info->chip.cmd_ctrl = nand_davinci_hwcontrol;
669 info->chip.dev_ready = nand_davinci_dev_ready;
670
671 /* Speed up buffer I/O */
672 info->chip.read_buf = nand_davinci_read_buf;
673 info->chip.write_buf = nand_davinci_write_buf;
674
675 /* Use board-specific ECC config */
676 ecc_mode = pdata->ecc_mode;
677
678 ret = -EINVAL;
679 switch (ecc_mode) {
680 case NAND_ECC_NONE:
681 case NAND_ECC_SOFT:
682 pdata->ecc_bits = 0;
683 break;
684 case NAND_ECC_HW:
685 if (pdata->ecc_bits == 4) {
686 /* No sanity checks: CPUs must support this,
687 * and the chips may not use NAND_BUSWIDTH_16.
688 */
689
690 /* No sharing 4-bit hardware between chipselects yet */
691 spin_lock_irq(&davinci_nand_lock);
692 if (ecc4_busy)
693 ret = -EBUSY;
694 else
695 ecc4_busy = true;
696 spin_unlock_irq(&davinci_nand_lock);
697
698 if (ret == -EBUSY)
699 goto err_ecc;
700
701 info->chip.ecc.calculate = nand_davinci_calculate_4bit;
702 info->chip.ecc.correct = nand_davinci_correct_4bit;
703 info->chip.ecc.hwctl = nand_davinci_hwctl_4bit;
704 info->chip.ecc.bytes = 10;
705 } else {
706 info->chip.ecc.calculate = nand_davinci_calculate_1bit;
707 info->chip.ecc.correct = nand_davinci_correct_1bit;
708 info->chip.ecc.hwctl = nand_davinci_hwctl_1bit;
709 info->chip.ecc.bytes = 3;
710 }
711 info->chip.ecc.size = 512;
712 info->chip.ecc.strength = pdata->ecc_bits;
713 break;
714 default:
715 ret = -EINVAL;
716 goto err_ecc;
717 }
718 info->chip.ecc.mode = ecc_mode;
719
720 info->clk = clk_get(&pdev->dev, "aemif");
721 if (IS_ERR(info->clk)) {
722 ret = PTR_ERR(info->clk);
723 dev_dbg(&pdev->dev, "unable to get AEMIF clock, err %d\n", ret);
724 goto err_clk;
725 }
726
727 ret = clk_prepare_enable(info->clk);
728 if (ret < 0) {
729 dev_dbg(&pdev->dev, "unable to enable AEMIF clock, err %d\n",
730 ret);
731 goto err_clk_enable;
732 }
733
734 /*
735 * Setup Async configuration register in case we did not boot from
736 * NAND and so bootloader did not bother to set it up.
737 */
738 val = davinci_nand_readl(info, A1CR_OFFSET + info->core_chipsel * 4);
739
740 /* Extended Wait is not valid and Select Strobe mode is not used */
741 val &= ~(ACR_ASIZE_MASK | ACR_EW_MASK | ACR_SS_MASK);
742 if (info->chip.options & NAND_BUSWIDTH_16)
743 val |= 0x1;
744
745 davinci_nand_writel(info, A1CR_OFFSET + info->core_chipsel * 4, val);
746
747 ret = 0;
748 if (info->timing)
749 ret = davinci_aemif_setup_timing(info->timing, info->base,
750 info->core_chipsel);
751 if (ret < 0) {
752 dev_dbg(&pdev->dev, "NAND timing values setup fail\n");
753 goto err_timing;
754 }
755
756 spin_lock_irq(&davinci_nand_lock);
757
758 /* put CSxNAND into NAND mode */
759 val = davinci_nand_readl(info, NANDFCR_OFFSET);
760 val |= BIT(info->core_chipsel);
761 davinci_nand_writel(info, NANDFCR_OFFSET, val);
762
763 spin_unlock_irq(&davinci_nand_lock);
764
765 /* Scan to find existence of the device(s) */
766 ret = nand_scan_ident(&info->mtd, pdata->mask_chipsel ? 2 : 1, NULL);
767 if (ret < 0) {
768 dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
769 goto err_scan;
770 }
771
772 /* Update ECC layout if needed ... for 1-bit HW ECC, the default
773 * is OK, but it allocates 6 bytes when only 3 are needed (for
774 * each 512 bytes). For the 4-bit HW ECC, that default is not
775 * usable: 10 bytes are needed, not 6.
776 */
777 if (pdata->ecc_bits == 4) {
778 int chunks = info->mtd.writesize / 512;
779
780 if (!chunks || info->mtd.oobsize < 16) {
781 dev_dbg(&pdev->dev, "too small\n");
782 ret = -EINVAL;
783 goto err_scan;
784 }
785
786 /* For small page chips, preserve the manufacturer's
787 * badblock marking data ... and make sure a flash BBT
788 * table marker fits in the free bytes.
789 */
790 if (chunks == 1) {
791 info->ecclayout = hwecc4_small;
792 info->ecclayout.oobfree[1].length =
793 info->mtd.oobsize - 16;
794 goto syndrome_done;
795 }
796 if (chunks == 4) {
797 info->ecclayout = hwecc4_2048;
798 info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST;
799 goto syndrome_done;
800 }
801
802 /* 4KiB page chips are not yet supported. The eccpos from
803 * nand_ecclayout cannot hold 80 bytes and change to eccpos[]
804 * breaks userspace ioctl interface with mtd-utils. Once we
805 * resolve this issue, NAND_ECC_HW_OOB_FIRST mode can be used
806 * for the 4KiB page chips.
807 *
808 * TODO: Note that nand_ecclayout has now been expanded and can
809 * hold plenty of OOB entries.
810 */
811 dev_warn(&pdev->dev, "no 4-bit ECC support yet "
812 "for 4KiB-page NAND\n");
813 ret = -EIO;
814 goto err_scan;
815
816 syndrome_done:
817 info->chip.ecc.layout = &info->ecclayout;
818 }
819
820 ret = nand_scan_tail(&info->mtd);
821 if (ret < 0)
822 goto err_scan;
823
824 ret = mtd_device_parse_register(&info->mtd, NULL, NULL, pdata->parts,
825 pdata->nr_parts);
826
827 if (ret < 0)
828 goto err_scan;
829
830 val = davinci_nand_readl(info, NRCSR_OFFSET);
831 dev_info(&pdev->dev, "controller rev. %d.%d\n",
832 (val >> 8) & 0xff, val & 0xff);
833
834 return 0;
835
836 err_scan:
837 err_timing:
838 clk_disable_unprepare(info->clk);
839
840 err_clk_enable:
841 clk_put(info->clk);
842
843 spin_lock_irq(&davinci_nand_lock);
844 if (ecc_mode == NAND_ECC_HW_SYNDROME)
845 ecc4_busy = false;
846 spin_unlock_irq(&davinci_nand_lock);
847
848 err_ecc:
849 err_clk:
850 err_ioremap:
851 if (base)
852 iounmap(base);
853 if (vaddr)
854 iounmap(vaddr);
855
856 err_nomem:
857 kfree(info);
858 return ret;
859 }
860
861 static int __exit nand_davinci_remove(struct platform_device *pdev)
862 {
863 struct davinci_nand_info *info = platform_get_drvdata(pdev);
864
865 spin_lock_irq(&davinci_nand_lock);
866 if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME)
867 ecc4_busy = false;
868 spin_unlock_irq(&davinci_nand_lock);
869
870 iounmap(info->base);
871 iounmap(info->vaddr);
872
873 nand_release(&info->mtd);
874
875 clk_disable_unprepare(info->clk);
876 clk_put(info->clk);
877
878 kfree(info);
879
880 return 0;
881 }
882
883 static struct platform_driver nand_davinci_driver = {
884 .remove = __exit_p(nand_davinci_remove),
885 .driver = {
886 .name = "davinci_nand",
887 .owner = THIS_MODULE,
888 .of_match_table = davinci_nand_of_match,
889 },
890 };
891 MODULE_ALIAS("platform:davinci_nand");
892
893 static int __init nand_davinci_init(void)
894 {
895 return platform_driver_probe(&nand_davinci_driver, nand_davinci_probe);
896 }
897 module_init(nand_davinci_init);
898
899 static void __exit nand_davinci_exit(void)
900 {
901 platform_driver_unregister(&nand_davinci_driver);
902 }
903 module_exit(nand_davinci_exit);
904
905 MODULE_LICENSE("GPL");
906 MODULE_AUTHOR("Texas Instruments");
907 MODULE_DESCRIPTION("Davinci NAND flash driver");
908
This page took 0.049278 seconds and 5 git commands to generate.