Merge branch 'for-john' of git://git.kernel.org/pub/scm/linux/kernel/git/jberg/mac80211
[deliverable/linux.git] / drivers / mtd / nand / diskonchip.c
1 /*
2 * drivers/mtd/nand/diskonchip.c
3 *
4 * (C) 2003 Red Hat, Inc.
5 * (C) 2004 Dan Brown <dan_brown@ieee.org>
6 * (C) 2004 Kalev Lember <kalev@smartlink.ee>
7 *
8 * Author: David Woodhouse <dwmw2@infradead.org>
9 * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
10 * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
11 *
12 * Error correction code lifted from the old docecc code
13 * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
14 * Copyright (C) 2000 Netgem S.A.
15 * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
16 *
17 * Interface to generic NAND code for M-Systems DiskOnChip devices
18 */
19
20 #include <linux/kernel.h>
21 #include <linux/init.h>
22 #include <linux/sched.h>
23 #include <linux/delay.h>
24 #include <linux/rslib.h>
25 #include <linux/moduleparam.h>
26 #include <linux/slab.h>
27 #include <asm/io.h>
28
29 #include <linux/mtd/mtd.h>
30 #include <linux/mtd/nand.h>
31 #include <linux/mtd/doc2000.h>
32 #include <linux/mtd/partitions.h>
33 #include <linux/mtd/inftl.h>
34 #include <linux/module.h>
35
36 /* Where to look for the devices? */
37 #ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS
38 #define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0
39 #endif
40
41 static unsigned long __initdata doc_locations[] = {
42 #if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
43 #ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH
44 0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
45 0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
46 0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
47 0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
48 0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
49 #else /* CONFIG_MTD_DOCPROBE_HIGH */
50 0xc8000, 0xca000, 0xcc000, 0xce000,
51 0xd0000, 0xd2000, 0xd4000, 0xd6000,
52 0xd8000, 0xda000, 0xdc000, 0xde000,
53 0xe0000, 0xe2000, 0xe4000, 0xe6000,
54 0xe8000, 0xea000, 0xec000, 0xee000,
55 #endif /* CONFIG_MTD_DOCPROBE_HIGH */
56 #else
57 #warning Unknown architecture for DiskOnChip. No default probe locations defined
58 #endif
59 0xffffffff };
60
61 static struct mtd_info *doclist = NULL;
62
63 struct doc_priv {
64 void __iomem *virtadr;
65 unsigned long physadr;
66 u_char ChipID;
67 u_char CDSNControl;
68 int chips_per_floor; /* The number of chips detected on each floor */
69 int curfloor;
70 int curchip;
71 int mh0_page;
72 int mh1_page;
73 struct mtd_info *nextdoc;
74 };
75
76 /* This is the syndrome computed by the HW ecc generator upon reading an empty
77 page, one with all 0xff for data and stored ecc code. */
78 static u_char empty_read_syndrome[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a };
79
80 /* This is the ecc value computed by the HW ecc generator upon writing an empty
81 page, one with all 0xff for data. */
82 static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
83
84 #define INFTL_BBT_RESERVED_BLOCKS 4
85
86 #define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
87 #define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
88 #define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
89
90 static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
91 unsigned int bitmask);
92 static void doc200x_select_chip(struct mtd_info *mtd, int chip);
93
94 static int debug = 0;
95 module_param(debug, int, 0);
96
97 static int try_dword = 1;
98 module_param(try_dword, int, 0);
99
100 static int no_ecc_failures = 0;
101 module_param(no_ecc_failures, int, 0);
102
103 static int no_autopart = 0;
104 module_param(no_autopart, int, 0);
105
106 static int show_firmware_partition = 0;
107 module_param(show_firmware_partition, int, 0);
108
109 #ifdef CONFIG_MTD_NAND_DISKONCHIP_BBTWRITE
110 static int inftl_bbt_write = 1;
111 #else
112 static int inftl_bbt_write = 0;
113 #endif
114 module_param(inftl_bbt_write, int, 0);
115
116 static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS;
117 module_param(doc_config_location, ulong, 0);
118 MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip");
119
120 /* Sector size for HW ECC */
121 #define SECTOR_SIZE 512
122 /* The sector bytes are packed into NB_DATA 10 bit words */
123 #define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
124 /* Number of roots */
125 #define NROOTS 4
126 /* First consective root */
127 #define FCR 510
128 /* Number of symbols */
129 #define NN 1023
130
131 /* the Reed Solomon control structure */
132 static struct rs_control *rs_decoder;
133
134 /*
135 * The HW decoder in the DoC ASIC's provides us a error syndrome,
136 * which we must convert to a standard syndrome usable by the generic
137 * Reed-Solomon library code.
138 *
139 * Fabrice Bellard figured this out in the old docecc code. I added
140 * some comments, improved a minor bit and converted it to make use
141 * of the generic Reed-Solomon library. tglx
142 */
143 static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc)
144 {
145 int i, j, nerr, errpos[8];
146 uint8_t parity;
147 uint16_t ds[4], s[5], tmp, errval[8], syn[4];
148
149 memset(syn, 0, sizeof(syn));
150 /* Convert the ecc bytes into words */
151 ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8);
152 ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6);
153 ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4);
154 ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2);
155 parity = ecc[1];
156
157 /* Initialize the syndrome buffer */
158 for (i = 0; i < NROOTS; i++)
159 s[i] = ds[0];
160 /*
161 * Evaluate
162 * s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
163 * where x = alpha^(FCR + i)
164 */
165 for (j = 1; j < NROOTS; j++) {
166 if (ds[j] == 0)
167 continue;
168 tmp = rs->index_of[ds[j]];
169 for (i = 0; i < NROOTS; i++)
170 s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)];
171 }
172
173 /* Calc syn[i] = s[i] / alpha^(v + i) */
174 for (i = 0; i < NROOTS; i++) {
175 if (s[i])
176 syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i));
177 }
178 /* Call the decoder library */
179 nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval);
180
181 /* Incorrectable errors ? */
182 if (nerr < 0)
183 return nerr;
184
185 /*
186 * Correct the errors. The bitpositions are a bit of magic,
187 * but they are given by the design of the de/encoder circuit
188 * in the DoC ASIC's.
189 */
190 for (i = 0; i < nerr; i++) {
191 int index, bitpos, pos = 1015 - errpos[i];
192 uint8_t val;
193 if (pos >= NB_DATA && pos < 1019)
194 continue;
195 if (pos < NB_DATA) {
196 /* extract bit position (MSB first) */
197 pos = 10 * (NB_DATA - 1 - pos) - 6;
198 /* now correct the following 10 bits. At most two bytes
199 can be modified since pos is even */
200 index = (pos >> 3) ^ 1;
201 bitpos = pos & 7;
202 if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
203 val = (uint8_t) (errval[i] >> (2 + bitpos));
204 parity ^= val;
205 if (index < SECTOR_SIZE)
206 data[index] ^= val;
207 }
208 index = ((pos >> 3) + 1) ^ 1;
209 bitpos = (bitpos + 10) & 7;
210 if (bitpos == 0)
211 bitpos = 8;
212 if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) {
213 val = (uint8_t) (errval[i] << (8 - bitpos));
214 parity ^= val;
215 if (index < SECTOR_SIZE)
216 data[index] ^= val;
217 }
218 }
219 }
220 /* If the parity is wrong, no rescue possible */
221 return parity ? -EBADMSG : nerr;
222 }
223
224 static void DoC_Delay(struct doc_priv *doc, unsigned short cycles)
225 {
226 volatile char dummy;
227 int i;
228
229 for (i = 0; i < cycles; i++) {
230 if (DoC_is_Millennium(doc))
231 dummy = ReadDOC(doc->virtadr, NOP);
232 else if (DoC_is_MillenniumPlus(doc))
233 dummy = ReadDOC(doc->virtadr, Mplus_NOP);
234 else
235 dummy = ReadDOC(doc->virtadr, DOCStatus);
236 }
237
238 }
239
240 #define CDSN_CTRL_FR_B_MASK (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
241
242 /* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
243 static int _DoC_WaitReady(struct doc_priv *doc)
244 {
245 void __iomem *docptr = doc->virtadr;
246 unsigned long timeo = jiffies + (HZ * 10);
247
248 if (debug)
249 printk("_DoC_WaitReady...\n");
250 /* Out-of-line routine to wait for chip response */
251 if (DoC_is_MillenniumPlus(doc)) {
252 while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
253 if (time_after(jiffies, timeo)) {
254 printk("_DoC_WaitReady timed out.\n");
255 return -EIO;
256 }
257 udelay(1);
258 cond_resched();
259 }
260 } else {
261 while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
262 if (time_after(jiffies, timeo)) {
263 printk("_DoC_WaitReady timed out.\n");
264 return -EIO;
265 }
266 udelay(1);
267 cond_resched();
268 }
269 }
270
271 return 0;
272 }
273
274 static inline int DoC_WaitReady(struct doc_priv *doc)
275 {
276 void __iomem *docptr = doc->virtadr;
277 int ret = 0;
278
279 if (DoC_is_MillenniumPlus(doc)) {
280 DoC_Delay(doc, 4);
281
282 if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK)
283 /* Call the out-of-line routine to wait */
284 ret = _DoC_WaitReady(doc);
285 } else {
286 DoC_Delay(doc, 4);
287
288 if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
289 /* Call the out-of-line routine to wait */
290 ret = _DoC_WaitReady(doc);
291 DoC_Delay(doc, 2);
292 }
293
294 if (debug)
295 printk("DoC_WaitReady OK\n");
296 return ret;
297 }
298
299 static void doc2000_write_byte(struct mtd_info *mtd, u_char datum)
300 {
301 struct nand_chip *this = mtd->priv;
302 struct doc_priv *doc = this->priv;
303 void __iomem *docptr = doc->virtadr;
304
305 if (debug)
306 printk("write_byte %02x\n", datum);
307 WriteDOC(datum, docptr, CDSNSlowIO);
308 WriteDOC(datum, docptr, 2k_CDSN_IO);
309 }
310
311 static u_char doc2000_read_byte(struct mtd_info *mtd)
312 {
313 struct nand_chip *this = mtd->priv;
314 struct doc_priv *doc = this->priv;
315 void __iomem *docptr = doc->virtadr;
316 u_char ret;
317
318 ReadDOC(docptr, CDSNSlowIO);
319 DoC_Delay(doc, 2);
320 ret = ReadDOC(docptr, 2k_CDSN_IO);
321 if (debug)
322 printk("read_byte returns %02x\n", ret);
323 return ret;
324 }
325
326 static void doc2000_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
327 {
328 struct nand_chip *this = mtd->priv;
329 struct doc_priv *doc = this->priv;
330 void __iomem *docptr = doc->virtadr;
331 int i;
332 if (debug)
333 printk("writebuf of %d bytes: ", len);
334 for (i = 0; i < len; i++) {
335 WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i);
336 if (debug && i < 16)
337 printk("%02x ", buf[i]);
338 }
339 if (debug)
340 printk("\n");
341 }
342
343 static void doc2000_readbuf(struct mtd_info *mtd, u_char *buf, int len)
344 {
345 struct nand_chip *this = mtd->priv;
346 struct doc_priv *doc = this->priv;
347 void __iomem *docptr = doc->virtadr;
348 int i;
349
350 if (debug)
351 printk("readbuf of %d bytes: ", len);
352
353 for (i = 0; i < len; i++) {
354 buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i);
355 }
356 }
357
358 static void doc2000_readbuf_dword(struct mtd_info *mtd, u_char *buf, int len)
359 {
360 struct nand_chip *this = mtd->priv;
361 struct doc_priv *doc = this->priv;
362 void __iomem *docptr = doc->virtadr;
363 int i;
364
365 if (debug)
366 printk("readbuf_dword of %d bytes: ", len);
367
368 if (unlikely((((unsigned long)buf) | len) & 3)) {
369 for (i = 0; i < len; i++) {
370 *(uint8_t *) (&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i);
371 }
372 } else {
373 for (i = 0; i < len; i += 4) {
374 *(uint32_t *) (&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i);
375 }
376 }
377 }
378
379 static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
380 {
381 struct nand_chip *this = mtd->priv;
382 struct doc_priv *doc = this->priv;
383 uint16_t ret;
384
385 doc200x_select_chip(mtd, nr);
386 doc200x_hwcontrol(mtd, NAND_CMD_READID,
387 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
388 doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
389 doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
390
391 /* We can't use dev_ready here, but at least we wait for the
392 * command to complete
393 */
394 udelay(50);
395
396 ret = this->read_byte(mtd) << 8;
397 ret |= this->read_byte(mtd);
398
399 if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) {
400 /* First chip probe. See if we get same results by 32-bit access */
401 union {
402 uint32_t dword;
403 uint8_t byte[4];
404 } ident;
405 void __iomem *docptr = doc->virtadr;
406
407 doc200x_hwcontrol(mtd, NAND_CMD_READID,
408 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
409 doc200x_hwcontrol(mtd, 0, NAND_CTRL_ALE | NAND_CTRL_CHANGE);
410 doc200x_hwcontrol(mtd, NAND_CMD_NONE,
411 NAND_NCE | NAND_CTRL_CHANGE);
412
413 udelay(50);
414
415 ident.dword = readl(docptr + DoC_2k_CDSN_IO);
416 if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
417 printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n");
418 this->read_buf = &doc2000_readbuf_dword;
419 }
420 }
421
422 return ret;
423 }
424
425 static void __init doc2000_count_chips(struct mtd_info *mtd)
426 {
427 struct nand_chip *this = mtd->priv;
428 struct doc_priv *doc = this->priv;
429 uint16_t mfrid;
430 int i;
431
432 /* Max 4 chips per floor on DiskOnChip 2000 */
433 doc->chips_per_floor = 4;
434
435 /* Find out what the first chip is */
436 mfrid = doc200x_ident_chip(mtd, 0);
437
438 /* Find how many chips in each floor. */
439 for (i = 1; i < 4; i++) {
440 if (doc200x_ident_chip(mtd, i) != mfrid)
441 break;
442 }
443 doc->chips_per_floor = i;
444 printk(KERN_DEBUG "Detected %d chips per floor.\n", i);
445 }
446
447 static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this)
448 {
449 struct doc_priv *doc = this->priv;
450
451 int status;
452
453 DoC_WaitReady(doc);
454 this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
455 DoC_WaitReady(doc);
456 status = (int)this->read_byte(mtd);
457
458 return status;
459 }
460
461 static void doc2001_write_byte(struct mtd_info *mtd, u_char datum)
462 {
463 struct nand_chip *this = mtd->priv;
464 struct doc_priv *doc = this->priv;
465 void __iomem *docptr = doc->virtadr;
466
467 WriteDOC(datum, docptr, CDSNSlowIO);
468 WriteDOC(datum, docptr, Mil_CDSN_IO);
469 WriteDOC(datum, docptr, WritePipeTerm);
470 }
471
472 static u_char doc2001_read_byte(struct mtd_info *mtd)
473 {
474 struct nand_chip *this = mtd->priv;
475 struct doc_priv *doc = this->priv;
476 void __iomem *docptr = doc->virtadr;
477
478 //ReadDOC(docptr, CDSNSlowIO);
479 /* 11.4.5 -- delay twice to allow extended length cycle */
480 DoC_Delay(doc, 2);
481 ReadDOC(docptr, ReadPipeInit);
482 //return ReadDOC(docptr, Mil_CDSN_IO);
483 return ReadDOC(docptr, LastDataRead);
484 }
485
486 static void doc2001_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
487 {
488 struct nand_chip *this = mtd->priv;
489 struct doc_priv *doc = this->priv;
490 void __iomem *docptr = doc->virtadr;
491 int i;
492
493 for (i = 0; i < len; i++)
494 WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
495 /* Terminate write pipeline */
496 WriteDOC(0x00, docptr, WritePipeTerm);
497 }
498
499 static void doc2001_readbuf(struct mtd_info *mtd, u_char *buf, int len)
500 {
501 struct nand_chip *this = mtd->priv;
502 struct doc_priv *doc = this->priv;
503 void __iomem *docptr = doc->virtadr;
504 int i;
505
506 /* Start read pipeline */
507 ReadDOC(docptr, ReadPipeInit);
508
509 for (i = 0; i < len - 1; i++)
510 buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff));
511
512 /* Terminate read pipeline */
513 buf[i] = ReadDOC(docptr, LastDataRead);
514 }
515
516 static u_char doc2001plus_read_byte(struct mtd_info *mtd)
517 {
518 struct nand_chip *this = mtd->priv;
519 struct doc_priv *doc = this->priv;
520 void __iomem *docptr = doc->virtadr;
521 u_char ret;
522
523 ReadDOC(docptr, Mplus_ReadPipeInit);
524 ReadDOC(docptr, Mplus_ReadPipeInit);
525 ret = ReadDOC(docptr, Mplus_LastDataRead);
526 if (debug)
527 printk("read_byte returns %02x\n", ret);
528 return ret;
529 }
530
531 static void doc2001plus_writebuf(struct mtd_info *mtd, const u_char *buf, int len)
532 {
533 struct nand_chip *this = mtd->priv;
534 struct doc_priv *doc = this->priv;
535 void __iomem *docptr = doc->virtadr;
536 int i;
537
538 if (debug)
539 printk("writebuf of %d bytes: ", len);
540 for (i = 0; i < len; i++) {
541 WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
542 if (debug && i < 16)
543 printk("%02x ", buf[i]);
544 }
545 if (debug)
546 printk("\n");
547 }
548
549 static void doc2001plus_readbuf(struct mtd_info *mtd, u_char *buf, int len)
550 {
551 struct nand_chip *this = mtd->priv;
552 struct doc_priv *doc = this->priv;
553 void __iomem *docptr = doc->virtadr;
554 int i;
555
556 if (debug)
557 printk("readbuf of %d bytes: ", len);
558
559 /* Start read pipeline */
560 ReadDOC(docptr, Mplus_ReadPipeInit);
561 ReadDOC(docptr, Mplus_ReadPipeInit);
562
563 for (i = 0; i < len - 2; i++) {
564 buf[i] = ReadDOC(docptr, Mil_CDSN_IO);
565 if (debug && i < 16)
566 printk("%02x ", buf[i]);
567 }
568
569 /* Terminate read pipeline */
570 buf[len - 2] = ReadDOC(docptr, Mplus_LastDataRead);
571 if (debug && i < 16)
572 printk("%02x ", buf[len - 2]);
573 buf[len - 1] = ReadDOC(docptr, Mplus_LastDataRead);
574 if (debug && i < 16)
575 printk("%02x ", buf[len - 1]);
576 if (debug)
577 printk("\n");
578 }
579
580 static void doc2001plus_select_chip(struct mtd_info *mtd, int chip)
581 {
582 struct nand_chip *this = mtd->priv;
583 struct doc_priv *doc = this->priv;
584 void __iomem *docptr = doc->virtadr;
585 int floor = 0;
586
587 if (debug)
588 printk("select chip (%d)\n", chip);
589
590 if (chip == -1) {
591 /* Disable flash internally */
592 WriteDOC(0, docptr, Mplus_FlashSelect);
593 return;
594 }
595
596 floor = chip / doc->chips_per_floor;
597 chip -= (floor * doc->chips_per_floor);
598
599 /* Assert ChipEnable and deassert WriteProtect */
600 WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect);
601 this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
602
603 doc->curchip = chip;
604 doc->curfloor = floor;
605 }
606
607 static void doc200x_select_chip(struct mtd_info *mtd, int chip)
608 {
609 struct nand_chip *this = mtd->priv;
610 struct doc_priv *doc = this->priv;
611 void __iomem *docptr = doc->virtadr;
612 int floor = 0;
613
614 if (debug)
615 printk("select chip (%d)\n", chip);
616
617 if (chip == -1)
618 return;
619
620 floor = chip / doc->chips_per_floor;
621 chip -= (floor * doc->chips_per_floor);
622
623 /* 11.4.4 -- deassert CE before changing chip */
624 doc200x_hwcontrol(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
625
626 WriteDOC(floor, docptr, FloorSelect);
627 WriteDOC(chip, docptr, CDSNDeviceSelect);
628
629 doc200x_hwcontrol(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
630
631 doc->curchip = chip;
632 doc->curfloor = floor;
633 }
634
635 #define CDSN_CTRL_MSK (CDSN_CTRL_CE | CDSN_CTRL_CLE | CDSN_CTRL_ALE)
636
637 static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd,
638 unsigned int ctrl)
639 {
640 struct nand_chip *this = mtd->priv;
641 struct doc_priv *doc = this->priv;
642 void __iomem *docptr = doc->virtadr;
643
644 if (ctrl & NAND_CTRL_CHANGE) {
645 doc->CDSNControl &= ~CDSN_CTRL_MSK;
646 doc->CDSNControl |= ctrl & CDSN_CTRL_MSK;
647 if (debug)
648 printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl);
649 WriteDOC(doc->CDSNControl, docptr, CDSNControl);
650 /* 11.4.3 -- 4 NOPs after CSDNControl write */
651 DoC_Delay(doc, 4);
652 }
653 if (cmd != NAND_CMD_NONE) {
654 if (DoC_is_2000(doc))
655 doc2000_write_byte(mtd, cmd);
656 else
657 doc2001_write_byte(mtd, cmd);
658 }
659 }
660
661 static void doc2001plus_command(struct mtd_info *mtd, unsigned command, int column, int page_addr)
662 {
663 struct nand_chip *this = mtd->priv;
664 struct doc_priv *doc = this->priv;
665 void __iomem *docptr = doc->virtadr;
666
667 /*
668 * Must terminate write pipeline before sending any commands
669 * to the device.
670 */
671 if (command == NAND_CMD_PAGEPROG) {
672 WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
673 WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
674 }
675
676 /*
677 * Write out the command to the device.
678 */
679 if (command == NAND_CMD_SEQIN) {
680 int readcmd;
681
682 if (column >= mtd->writesize) {
683 /* OOB area */
684 column -= mtd->writesize;
685 readcmd = NAND_CMD_READOOB;
686 } else if (column < 256) {
687 /* First 256 bytes --> READ0 */
688 readcmd = NAND_CMD_READ0;
689 } else {
690 column -= 256;
691 readcmd = NAND_CMD_READ1;
692 }
693 WriteDOC(readcmd, docptr, Mplus_FlashCmd);
694 }
695 WriteDOC(command, docptr, Mplus_FlashCmd);
696 WriteDOC(0, docptr, Mplus_WritePipeTerm);
697 WriteDOC(0, docptr, Mplus_WritePipeTerm);
698
699 if (column != -1 || page_addr != -1) {
700 /* Serially input address */
701 if (column != -1) {
702 /* Adjust columns for 16 bit buswidth */
703 if (this->options & NAND_BUSWIDTH_16)
704 column >>= 1;
705 WriteDOC(column, docptr, Mplus_FlashAddress);
706 }
707 if (page_addr != -1) {
708 WriteDOC((unsigned char)(page_addr & 0xff), docptr, Mplus_FlashAddress);
709 WriteDOC((unsigned char)((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress);
710 /* One more address cycle for higher density devices */
711 if (this->chipsize & 0x0c000000) {
712 WriteDOC((unsigned char)((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress);
713 printk("high density\n");
714 }
715 }
716 WriteDOC(0, docptr, Mplus_WritePipeTerm);
717 WriteDOC(0, docptr, Mplus_WritePipeTerm);
718 /* deassert ALE */
719 if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 ||
720 command == NAND_CMD_READOOB || command == NAND_CMD_READID)
721 WriteDOC(0, docptr, Mplus_FlashControl);
722 }
723
724 /*
725 * program and erase have their own busy handlers
726 * status and sequential in needs no delay
727 */
728 switch (command) {
729
730 case NAND_CMD_PAGEPROG:
731 case NAND_CMD_ERASE1:
732 case NAND_CMD_ERASE2:
733 case NAND_CMD_SEQIN:
734 case NAND_CMD_STATUS:
735 return;
736
737 case NAND_CMD_RESET:
738 if (this->dev_ready)
739 break;
740 udelay(this->chip_delay);
741 WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd);
742 WriteDOC(0, docptr, Mplus_WritePipeTerm);
743 WriteDOC(0, docptr, Mplus_WritePipeTerm);
744 while (!(this->read_byte(mtd) & 0x40)) ;
745 return;
746
747 /* This applies to read commands */
748 default:
749 /*
750 * If we don't have access to the busy pin, we apply the given
751 * command delay
752 */
753 if (!this->dev_ready) {
754 udelay(this->chip_delay);
755 return;
756 }
757 }
758
759 /* Apply this short delay always to ensure that we do wait tWB in
760 * any case on any machine. */
761 ndelay(100);
762 /* wait until command is processed */
763 while (!this->dev_ready(mtd)) ;
764 }
765
766 static int doc200x_dev_ready(struct mtd_info *mtd)
767 {
768 struct nand_chip *this = mtd->priv;
769 struct doc_priv *doc = this->priv;
770 void __iomem *docptr = doc->virtadr;
771
772 if (DoC_is_MillenniumPlus(doc)) {
773 /* 11.4.2 -- must NOP four times before checking FR/B# */
774 DoC_Delay(doc, 4);
775 if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
776 if (debug)
777 printk("not ready\n");
778 return 0;
779 }
780 if (debug)
781 printk("was ready\n");
782 return 1;
783 } else {
784 /* 11.4.2 -- must NOP four times before checking FR/B# */
785 DoC_Delay(doc, 4);
786 if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
787 if (debug)
788 printk("not ready\n");
789 return 0;
790 }
791 /* 11.4.2 -- Must NOP twice if it's ready */
792 DoC_Delay(doc, 2);
793 if (debug)
794 printk("was ready\n");
795 return 1;
796 }
797 }
798
799 static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
800 {
801 /* This is our last resort if we couldn't find or create a BBT. Just
802 pretend all blocks are good. */
803 return 0;
804 }
805
806 static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode)
807 {
808 struct nand_chip *this = mtd->priv;
809 struct doc_priv *doc = this->priv;
810 void __iomem *docptr = doc->virtadr;
811
812 /* Prime the ECC engine */
813 switch (mode) {
814 case NAND_ECC_READ:
815 WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
816 WriteDOC(DOC_ECC_EN, docptr, ECCConf);
817 break;
818 case NAND_ECC_WRITE:
819 WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
820 WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
821 break;
822 }
823 }
824
825 static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode)
826 {
827 struct nand_chip *this = mtd->priv;
828 struct doc_priv *doc = this->priv;
829 void __iomem *docptr = doc->virtadr;
830
831 /* Prime the ECC engine */
832 switch (mode) {
833 case NAND_ECC_READ:
834 WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
835 WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf);
836 break;
837 case NAND_ECC_WRITE:
838 WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
839 WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf);
840 break;
841 }
842 }
843
844 /* This code is only called on write */
845 static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat, unsigned char *ecc_code)
846 {
847 struct nand_chip *this = mtd->priv;
848 struct doc_priv *doc = this->priv;
849 void __iomem *docptr = doc->virtadr;
850 int i;
851 int emptymatch = 1;
852
853 /* flush the pipeline */
854 if (DoC_is_2000(doc)) {
855 WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl);
856 WriteDOC(0, docptr, 2k_CDSN_IO);
857 WriteDOC(0, docptr, 2k_CDSN_IO);
858 WriteDOC(0, docptr, 2k_CDSN_IO);
859 WriteDOC(doc->CDSNControl, docptr, CDSNControl);
860 } else if (DoC_is_MillenniumPlus(doc)) {
861 WriteDOC(0, docptr, Mplus_NOP);
862 WriteDOC(0, docptr, Mplus_NOP);
863 WriteDOC(0, docptr, Mplus_NOP);
864 } else {
865 WriteDOC(0, docptr, NOP);
866 WriteDOC(0, docptr, NOP);
867 WriteDOC(0, docptr, NOP);
868 }
869
870 for (i = 0; i < 6; i++) {
871 if (DoC_is_MillenniumPlus(doc))
872 ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
873 else
874 ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
875 if (ecc_code[i] != empty_write_ecc[i])
876 emptymatch = 0;
877 }
878 if (DoC_is_MillenniumPlus(doc))
879 WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
880 else
881 WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
882 #if 0
883 /* If emptymatch=1, we might have an all-0xff data buffer. Check. */
884 if (emptymatch) {
885 /* Note: this somewhat expensive test should not be triggered
886 often. It could be optimized away by examining the data in
887 the writebuf routine, and remembering the result. */
888 for (i = 0; i < 512; i++) {
889 if (dat[i] == 0xff)
890 continue;
891 emptymatch = 0;
892 break;
893 }
894 }
895 /* If emptymatch still =1, we do have an all-0xff data buffer.
896 Return all-0xff ecc value instead of the computed one, so
897 it'll look just like a freshly-erased page. */
898 if (emptymatch)
899 memset(ecc_code, 0xff, 6);
900 #endif
901 return 0;
902 }
903
904 static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat,
905 u_char *read_ecc, u_char *isnull)
906 {
907 int i, ret = 0;
908 struct nand_chip *this = mtd->priv;
909 struct doc_priv *doc = this->priv;
910 void __iomem *docptr = doc->virtadr;
911 uint8_t calc_ecc[6];
912 volatile u_char dummy;
913 int emptymatch = 1;
914
915 /* flush the pipeline */
916 if (DoC_is_2000(doc)) {
917 dummy = ReadDOC(docptr, 2k_ECCStatus);
918 dummy = ReadDOC(docptr, 2k_ECCStatus);
919 dummy = ReadDOC(docptr, 2k_ECCStatus);
920 } else if (DoC_is_MillenniumPlus(doc)) {
921 dummy = ReadDOC(docptr, Mplus_ECCConf);
922 dummy = ReadDOC(docptr, Mplus_ECCConf);
923 dummy = ReadDOC(docptr, Mplus_ECCConf);
924 } else {
925 dummy = ReadDOC(docptr, ECCConf);
926 dummy = ReadDOC(docptr, ECCConf);
927 dummy = ReadDOC(docptr, ECCConf);
928 }
929
930 /* Error occurred ? */
931 if (dummy & 0x80) {
932 for (i = 0; i < 6; i++) {
933 if (DoC_is_MillenniumPlus(doc))
934 calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
935 else
936 calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
937 if (calc_ecc[i] != empty_read_syndrome[i])
938 emptymatch = 0;
939 }
940 /* If emptymatch=1, the read syndrome is consistent with an
941 all-0xff data and stored ecc block. Check the stored ecc. */
942 if (emptymatch) {
943 for (i = 0; i < 6; i++) {
944 if (read_ecc[i] == 0xff)
945 continue;
946 emptymatch = 0;
947 break;
948 }
949 }
950 /* If emptymatch still =1, check the data block. */
951 if (emptymatch) {
952 /* Note: this somewhat expensive test should not be triggered
953 often. It could be optimized away by examining the data in
954 the readbuf routine, and remembering the result. */
955 for (i = 0; i < 512; i++) {
956 if (dat[i] == 0xff)
957 continue;
958 emptymatch = 0;
959 break;
960 }
961 }
962 /* If emptymatch still =1, this is almost certainly a freshly-
963 erased block, in which case the ECC will not come out right.
964 We'll suppress the error and tell the caller everything's
965 OK. Because it is. */
966 if (!emptymatch)
967 ret = doc_ecc_decode(rs_decoder, dat, calc_ecc);
968 if (ret > 0)
969 printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret);
970 }
971 if (DoC_is_MillenniumPlus(doc))
972 WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
973 else
974 WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
975 if (no_ecc_failures && mtd_is_eccerr(ret)) {
976 printk(KERN_ERR "suppressing ECC failure\n");
977 ret = 0;
978 }
979 return ret;
980 }
981
982 //u_char mydatabuf[528];
983
984 /* The strange out-of-order .oobfree list below is a (possibly unneeded)
985 * attempt to retain compatibility. It used to read:
986 * .oobfree = { {8, 8} }
987 * Since that leaves two bytes unusable, it was changed. But the following
988 * scheme might affect existing jffs2 installs by moving the cleanmarker:
989 * .oobfree = { {6, 10} }
990 * jffs2 seems to handle the above gracefully, but the current scheme seems
991 * safer. The only problem with it is that any code that parses oobfree must
992 * be able to handle out-of-order segments.
993 */
994 static struct nand_ecclayout doc200x_oobinfo = {
995 .eccbytes = 6,
996 .eccpos = {0, 1, 2, 3, 4, 5},
997 .oobfree = {{8, 8}, {6, 2}}
998 };
999
1000 /* Find the (I)NFTL Media Header, and optionally also the mirror media header.
1001 On successful return, buf will contain a copy of the media header for
1002 further processing. id is the string to scan for, and will presumably be
1003 either "ANAND" or "BNAND". If findmirror=1, also look for the mirror media
1004 header. The page #s of the found media headers are placed in mh0_page and
1005 mh1_page in the DOC private structure. */
1006 static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const char *id, int findmirror)
1007 {
1008 struct nand_chip *this = mtd->priv;
1009 struct doc_priv *doc = this->priv;
1010 unsigned offs;
1011 int ret;
1012 size_t retlen;
1013
1014 for (offs = 0; offs < mtd->size; offs += mtd->erasesize) {
1015 ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf);
1016 if (retlen != mtd->writesize)
1017 continue;
1018 if (ret) {
1019 printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n", offs);
1020 }
1021 if (memcmp(buf, id, 6))
1022 continue;
1023 printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
1024 if (doc->mh0_page == -1) {
1025 doc->mh0_page = offs >> this->page_shift;
1026 if (!findmirror)
1027 return 1;
1028 continue;
1029 }
1030 doc->mh1_page = offs >> this->page_shift;
1031 return 2;
1032 }
1033 if (doc->mh0_page == -1) {
1034 printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id);
1035 return 0;
1036 }
1037 /* Only one mediaheader was found. We want buf to contain a
1038 mediaheader on return, so we'll have to re-read the one we found. */
1039 offs = doc->mh0_page << this->page_shift;
1040 ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf);
1041 if (retlen != mtd->writesize) {
1042 /* Insanity. Give up. */
1043 printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n");
1044 return 0;
1045 }
1046 return 1;
1047 }
1048
1049 static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1050 {
1051 struct nand_chip *this = mtd->priv;
1052 struct doc_priv *doc = this->priv;
1053 int ret = 0;
1054 u_char *buf;
1055 struct NFTLMediaHeader *mh;
1056 const unsigned psize = 1 << this->page_shift;
1057 int numparts = 0;
1058 unsigned blocks, maxblocks;
1059 int offs, numheaders;
1060
1061 buf = kmalloc(mtd->writesize, GFP_KERNEL);
1062 if (!buf) {
1063 printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
1064 return 0;
1065 }
1066 if (!(numheaders = find_media_headers(mtd, buf, "ANAND", 1)))
1067 goto out;
1068 mh = (struct NFTLMediaHeader *)buf;
1069
1070 le16_to_cpus(&mh->NumEraseUnits);
1071 le16_to_cpus(&mh->FirstPhysicalEUN);
1072 le32_to_cpus(&mh->FormattedSize);
1073
1074 printk(KERN_INFO " DataOrgID = %s\n"
1075 " NumEraseUnits = %d\n"
1076 " FirstPhysicalEUN = %d\n"
1077 " FormattedSize = %d\n"
1078 " UnitSizeFactor = %d\n",
1079 mh->DataOrgID, mh->NumEraseUnits,
1080 mh->FirstPhysicalEUN, mh->FormattedSize,
1081 mh->UnitSizeFactor);
1082
1083 blocks = mtd->size >> this->phys_erase_shift;
1084 maxblocks = min(32768U, mtd->erasesize - psize);
1085
1086 if (mh->UnitSizeFactor == 0x00) {
1087 /* Auto-determine UnitSizeFactor. The constraints are:
1088 - There can be at most 32768 virtual blocks.
1089 - There can be at most (virtual block size - page size)
1090 virtual blocks (because MediaHeader+BBT must fit in 1).
1091 */
1092 mh->UnitSizeFactor = 0xff;
1093 while (blocks > maxblocks) {
1094 blocks >>= 1;
1095 maxblocks = min(32768U, (maxblocks << 1) + psize);
1096 mh->UnitSizeFactor--;
1097 }
1098 printk(KERN_WARNING "UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
1099 }
1100
1101 /* NOTE: The lines below modify internal variables of the NAND and MTD
1102 layers; variables with have already been configured by nand_scan.
1103 Unfortunately, we didn't know before this point what these values
1104 should be. Thus, this code is somewhat dependent on the exact
1105 implementation of the NAND layer. */
1106 if (mh->UnitSizeFactor != 0xff) {
1107 this->bbt_erase_shift += (0xff - mh->UnitSizeFactor);
1108 mtd->erasesize <<= (0xff - mh->UnitSizeFactor);
1109 printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize);
1110 blocks = mtd->size >> this->bbt_erase_shift;
1111 maxblocks = min(32768U, mtd->erasesize - psize);
1112 }
1113
1114 if (blocks > maxblocks) {
1115 printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh->UnitSizeFactor);
1116 goto out;
1117 }
1118
1119 /* Skip past the media headers. */
1120 offs = max(doc->mh0_page, doc->mh1_page);
1121 offs <<= this->page_shift;
1122 offs += mtd->erasesize;
1123
1124 if (show_firmware_partition == 1) {
1125 parts[0].name = " DiskOnChip Firmware / Media Header partition";
1126 parts[0].offset = 0;
1127 parts[0].size = offs;
1128 numparts = 1;
1129 }
1130
1131 parts[numparts].name = " DiskOnChip BDTL partition";
1132 parts[numparts].offset = offs;
1133 parts[numparts].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift;
1134
1135 offs += parts[numparts].size;
1136 numparts++;
1137
1138 if (offs < mtd->size) {
1139 parts[numparts].name = " DiskOnChip Remainder partition";
1140 parts[numparts].offset = offs;
1141 parts[numparts].size = mtd->size - offs;
1142 numparts++;
1143 }
1144
1145 ret = numparts;
1146 out:
1147 kfree(buf);
1148 return ret;
1149 }
1150
1151 /* This is a stripped-down copy of the code in inftlmount.c */
1152 static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts)
1153 {
1154 struct nand_chip *this = mtd->priv;
1155 struct doc_priv *doc = this->priv;
1156 int ret = 0;
1157 u_char *buf;
1158 struct INFTLMediaHeader *mh;
1159 struct INFTLPartition *ip;
1160 int numparts = 0;
1161 int blocks;
1162 int vshift, lastvunit = 0;
1163 int i;
1164 int end = mtd->size;
1165
1166 if (inftl_bbt_write)
1167 end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift);
1168
1169 buf = kmalloc(mtd->writesize, GFP_KERNEL);
1170 if (!buf) {
1171 printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
1172 return 0;
1173 }
1174
1175 if (!find_media_headers(mtd, buf, "BNAND", 0))
1176 goto out;
1177 doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift);
1178 mh = (struct INFTLMediaHeader *)buf;
1179
1180 le32_to_cpus(&mh->NoOfBootImageBlocks);
1181 le32_to_cpus(&mh->NoOfBinaryPartitions);
1182 le32_to_cpus(&mh->NoOfBDTLPartitions);
1183 le32_to_cpus(&mh->BlockMultiplierBits);
1184 le32_to_cpus(&mh->FormatFlags);
1185 le32_to_cpus(&mh->PercentUsed);
1186
1187 printk(KERN_INFO " bootRecordID = %s\n"
1188 " NoOfBootImageBlocks = %d\n"
1189 " NoOfBinaryPartitions = %d\n"
1190 " NoOfBDTLPartitions = %d\n"
1191 " BlockMultiplerBits = %d\n"
1192 " FormatFlgs = %d\n"
1193 " OsakVersion = %d.%d.%d.%d\n"
1194 " PercentUsed = %d\n",
1195 mh->bootRecordID, mh->NoOfBootImageBlocks,
1196 mh->NoOfBinaryPartitions,
1197 mh->NoOfBDTLPartitions,
1198 mh->BlockMultiplierBits, mh->FormatFlags,
1199 ((unsigned char *) &mh->OsakVersion)[0] & 0xf,
1200 ((unsigned char *) &mh->OsakVersion)[1] & 0xf,
1201 ((unsigned char *) &mh->OsakVersion)[2] & 0xf,
1202 ((unsigned char *) &mh->OsakVersion)[3] & 0xf,
1203 mh->PercentUsed);
1204
1205 vshift = this->phys_erase_shift + mh->BlockMultiplierBits;
1206
1207 blocks = mtd->size >> vshift;
1208 if (blocks > 32768) {
1209 printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh->BlockMultiplierBits);
1210 goto out;
1211 }
1212
1213 blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift);
1214 if (inftl_bbt_write && (blocks > mtd->erasesize)) {
1215 printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n");
1216 goto out;
1217 }
1218
1219 /* Scan the partitions */
1220 for (i = 0; (i < 4); i++) {
1221 ip = &(mh->Partitions[i]);
1222 le32_to_cpus(&ip->virtualUnits);
1223 le32_to_cpus(&ip->firstUnit);
1224 le32_to_cpus(&ip->lastUnit);
1225 le32_to_cpus(&ip->flags);
1226 le32_to_cpus(&ip->spareUnits);
1227 le32_to_cpus(&ip->Reserved0);
1228
1229 printk(KERN_INFO " PARTITION[%d] ->\n"
1230 " virtualUnits = %d\n"
1231 " firstUnit = %d\n"
1232 " lastUnit = %d\n"
1233 " flags = 0x%x\n"
1234 " spareUnits = %d\n",
1235 i, ip->virtualUnits, ip->firstUnit,
1236 ip->lastUnit, ip->flags,
1237 ip->spareUnits);
1238
1239 if ((show_firmware_partition == 1) &&
1240 (i == 0) && (ip->firstUnit > 0)) {
1241 parts[0].name = " DiskOnChip IPL / Media Header partition";
1242 parts[0].offset = 0;
1243 parts[0].size = mtd->erasesize * ip->firstUnit;
1244 numparts = 1;
1245 }
1246
1247 if (ip->flags & INFTL_BINARY)
1248 parts[numparts].name = " DiskOnChip BDK partition";
1249 else
1250 parts[numparts].name = " DiskOnChip BDTL partition";
1251 parts[numparts].offset = ip->firstUnit << vshift;
1252 parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift;
1253 numparts++;
1254 if (ip->lastUnit > lastvunit)
1255 lastvunit = ip->lastUnit;
1256 if (ip->flags & INFTL_LAST)
1257 break;
1258 }
1259 lastvunit++;
1260 if ((lastvunit << vshift) < end) {
1261 parts[numparts].name = " DiskOnChip Remainder partition";
1262 parts[numparts].offset = lastvunit << vshift;
1263 parts[numparts].size = end - parts[numparts].offset;
1264 numparts++;
1265 }
1266 ret = numparts;
1267 out:
1268 kfree(buf);
1269 return ret;
1270 }
1271
1272 static int __init nftl_scan_bbt(struct mtd_info *mtd)
1273 {
1274 int ret, numparts;
1275 struct nand_chip *this = mtd->priv;
1276 struct doc_priv *doc = this->priv;
1277 struct mtd_partition parts[2];
1278
1279 memset((char *)parts, 0, sizeof(parts));
1280 /* On NFTL, we have to find the media headers before we can read the
1281 BBTs, since they're stored in the media header eraseblocks. */
1282 numparts = nftl_partscan(mtd, parts);
1283 if (!numparts)
1284 return -EIO;
1285 this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1286 NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1287 NAND_BBT_VERSION;
1288 this->bbt_td->veroffs = 7;
1289 this->bbt_td->pages[0] = doc->mh0_page + 1;
1290 if (doc->mh1_page != -1) {
1291 this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
1292 NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
1293 NAND_BBT_VERSION;
1294 this->bbt_md->veroffs = 7;
1295 this->bbt_md->pages[0] = doc->mh1_page + 1;
1296 } else {
1297 this->bbt_md = NULL;
1298 }
1299
1300 /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1301 At least as nand_bbt.c is currently written. */
1302 if ((ret = nand_scan_bbt(mtd, NULL)))
1303 return ret;
1304 mtd_device_register(mtd, NULL, 0);
1305 if (!no_autopart)
1306 mtd_device_register(mtd, parts, numparts);
1307 return 0;
1308 }
1309
1310 static int __init inftl_scan_bbt(struct mtd_info *mtd)
1311 {
1312 int ret, numparts;
1313 struct nand_chip *this = mtd->priv;
1314 struct doc_priv *doc = this->priv;
1315 struct mtd_partition parts[5];
1316
1317 if (this->numchips > doc->chips_per_floor) {
1318 printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n");
1319 return -EIO;
1320 }
1321
1322 if (DoC_is_MillenniumPlus(doc)) {
1323 this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE;
1324 if (inftl_bbt_write)
1325 this->bbt_td->options |= NAND_BBT_WRITE;
1326 this->bbt_td->pages[0] = 2;
1327 this->bbt_md = NULL;
1328 } else {
1329 this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1330 if (inftl_bbt_write)
1331 this->bbt_td->options |= NAND_BBT_WRITE;
1332 this->bbt_td->offs = 8;
1333 this->bbt_td->len = 8;
1334 this->bbt_td->veroffs = 7;
1335 this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1336 this->bbt_td->reserved_block_code = 0x01;
1337 this->bbt_td->pattern = "MSYS_BBT";
1338
1339 this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION;
1340 if (inftl_bbt_write)
1341 this->bbt_md->options |= NAND_BBT_WRITE;
1342 this->bbt_md->offs = 8;
1343 this->bbt_md->len = 8;
1344 this->bbt_md->veroffs = 7;
1345 this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
1346 this->bbt_md->reserved_block_code = 0x01;
1347 this->bbt_md->pattern = "TBB_SYSM";
1348 }
1349
1350 /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
1351 At least as nand_bbt.c is currently written. */
1352 if ((ret = nand_scan_bbt(mtd, NULL)))
1353 return ret;
1354 memset((char *)parts, 0, sizeof(parts));
1355 numparts = inftl_partscan(mtd, parts);
1356 /* At least for now, require the INFTL Media Header. We could probably
1357 do without it for non-INFTL use, since all it gives us is
1358 autopartitioning, but I want to give it more thought. */
1359 if (!numparts)
1360 return -EIO;
1361 mtd_device_register(mtd, NULL, 0);
1362 if (!no_autopart)
1363 mtd_device_register(mtd, parts, numparts);
1364 return 0;
1365 }
1366
1367 static inline int __init doc2000_init(struct mtd_info *mtd)
1368 {
1369 struct nand_chip *this = mtd->priv;
1370 struct doc_priv *doc = this->priv;
1371
1372 this->read_byte = doc2000_read_byte;
1373 this->write_buf = doc2000_writebuf;
1374 this->read_buf = doc2000_readbuf;
1375 this->scan_bbt = nftl_scan_bbt;
1376
1377 doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO;
1378 doc2000_count_chips(mtd);
1379 mtd->name = "DiskOnChip 2000 (NFTL Model)";
1380 return (4 * doc->chips_per_floor);
1381 }
1382
1383 static inline int __init doc2001_init(struct mtd_info *mtd)
1384 {
1385 struct nand_chip *this = mtd->priv;
1386 struct doc_priv *doc = this->priv;
1387
1388 this->read_byte = doc2001_read_byte;
1389 this->write_buf = doc2001_writebuf;
1390 this->read_buf = doc2001_readbuf;
1391
1392 ReadDOC(doc->virtadr, ChipID);
1393 ReadDOC(doc->virtadr, ChipID);
1394 ReadDOC(doc->virtadr, ChipID);
1395 if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) {
1396 /* It's not a Millennium; it's one of the newer
1397 DiskOnChip 2000 units with a similar ASIC.
1398 Treat it like a Millennium, except that it
1399 can have multiple chips. */
1400 doc2000_count_chips(mtd);
1401 mtd->name = "DiskOnChip 2000 (INFTL Model)";
1402 this->scan_bbt = inftl_scan_bbt;
1403 return (4 * doc->chips_per_floor);
1404 } else {
1405 /* Bog-standard Millennium */
1406 doc->chips_per_floor = 1;
1407 mtd->name = "DiskOnChip Millennium";
1408 this->scan_bbt = nftl_scan_bbt;
1409 return 1;
1410 }
1411 }
1412
1413 static inline int __init doc2001plus_init(struct mtd_info *mtd)
1414 {
1415 struct nand_chip *this = mtd->priv;
1416 struct doc_priv *doc = this->priv;
1417
1418 this->read_byte = doc2001plus_read_byte;
1419 this->write_buf = doc2001plus_writebuf;
1420 this->read_buf = doc2001plus_readbuf;
1421 this->scan_bbt = inftl_scan_bbt;
1422 this->cmd_ctrl = NULL;
1423 this->select_chip = doc2001plus_select_chip;
1424 this->cmdfunc = doc2001plus_command;
1425 this->ecc.hwctl = doc2001plus_enable_hwecc;
1426
1427 doc->chips_per_floor = 1;
1428 mtd->name = "DiskOnChip Millennium Plus";
1429
1430 return 1;
1431 }
1432
1433 static int __init doc_probe(unsigned long physadr)
1434 {
1435 unsigned char ChipID;
1436 struct mtd_info *mtd;
1437 struct nand_chip *nand;
1438 struct doc_priv *doc;
1439 void __iomem *virtadr;
1440 unsigned char save_control;
1441 unsigned char tmp, tmpb, tmpc;
1442 int reg, len, numchips;
1443 int ret = 0;
1444
1445 virtadr = ioremap(physadr, DOC_IOREMAP_LEN);
1446 if (!virtadr) {
1447 printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr);
1448 return -EIO;
1449 }
1450
1451 /* It's not possible to cleanly detect the DiskOnChip - the
1452 * bootup procedure will put the device into reset mode, and
1453 * it's not possible to talk to it without actually writing
1454 * to the DOCControl register. So we store the current contents
1455 * of the DOCControl register's location, in case we later decide
1456 * that it's not a DiskOnChip, and want to put it back how we
1457 * found it.
1458 */
1459 save_control = ReadDOC(virtadr, DOCControl);
1460
1461 /* Reset the DiskOnChip ASIC */
1462 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1463 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl);
1464
1465 /* Enable the DiskOnChip ASIC */
1466 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1467 WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl);
1468
1469 ChipID = ReadDOC(virtadr, ChipID);
1470
1471 switch (ChipID) {
1472 case DOC_ChipID_Doc2k:
1473 reg = DoC_2k_ECCStatus;
1474 break;
1475 case DOC_ChipID_DocMil:
1476 reg = DoC_ECCConf;
1477 break;
1478 case DOC_ChipID_DocMilPlus16:
1479 case DOC_ChipID_DocMilPlus32:
1480 case 0:
1481 /* Possible Millennium Plus, need to do more checks */
1482 /* Possibly release from power down mode */
1483 for (tmp = 0; (tmp < 4); tmp++)
1484 ReadDOC(virtadr, Mplus_Power);
1485
1486 /* Reset the Millennium Plus ASIC */
1487 tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1488 WriteDOC(tmp, virtadr, Mplus_DOCControl);
1489 WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1490
1491 mdelay(1);
1492 /* Enable the Millennium Plus ASIC */
1493 tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT;
1494 WriteDOC(tmp, virtadr, Mplus_DOCControl);
1495 WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
1496 mdelay(1);
1497
1498 ChipID = ReadDOC(virtadr, ChipID);
1499
1500 switch (ChipID) {
1501 case DOC_ChipID_DocMilPlus16:
1502 reg = DoC_Mplus_Toggle;
1503 break;
1504 case DOC_ChipID_DocMilPlus32:
1505 printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
1506 default:
1507 ret = -ENODEV;
1508 goto notfound;
1509 }
1510 break;
1511
1512 default:
1513 ret = -ENODEV;
1514 goto notfound;
1515 }
1516 /* Check the TOGGLE bit in the ECC register */
1517 tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1518 tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1519 tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
1520 if ((tmp == tmpb) || (tmp != tmpc)) {
1521 printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
1522 ret = -ENODEV;
1523 goto notfound;
1524 }
1525
1526 for (mtd = doclist; mtd; mtd = doc->nextdoc) {
1527 unsigned char oldval;
1528 unsigned char newval;
1529 nand = mtd->priv;
1530 doc = nand->priv;
1531 /* Use the alias resolution register to determine if this is
1532 in fact the same DOC aliased to a new address. If writes
1533 to one chip's alias resolution register change the value on
1534 the other chip, they're the same chip. */
1535 if (ChipID == DOC_ChipID_DocMilPlus16) {
1536 oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1537 newval = ReadDOC(virtadr, Mplus_AliasResolution);
1538 } else {
1539 oldval = ReadDOC(doc->virtadr, AliasResolution);
1540 newval = ReadDOC(virtadr, AliasResolution);
1541 }
1542 if (oldval != newval)
1543 continue;
1544 if (ChipID == DOC_ChipID_DocMilPlus16) {
1545 WriteDOC(~newval, virtadr, Mplus_AliasResolution);
1546 oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
1547 WriteDOC(newval, virtadr, Mplus_AliasResolution); // restore it
1548 } else {
1549 WriteDOC(~newval, virtadr, AliasResolution);
1550 oldval = ReadDOC(doc->virtadr, AliasResolution);
1551 WriteDOC(newval, virtadr, AliasResolution); // restore it
1552 }
1553 newval = ~newval;
1554 if (oldval == newval) {
1555 printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr);
1556 goto notfound;
1557 }
1558 }
1559
1560 printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr);
1561
1562 len = sizeof(struct mtd_info) +
1563 sizeof(struct nand_chip) + sizeof(struct doc_priv) + (2 * sizeof(struct nand_bbt_descr));
1564 mtd = kzalloc(len, GFP_KERNEL);
1565 if (!mtd) {
1566 printk(KERN_ERR "DiskOnChip kmalloc (%d bytes) failed!\n", len);
1567 ret = -ENOMEM;
1568 goto fail;
1569 }
1570
1571 nand = (struct nand_chip *) (mtd + 1);
1572 doc = (struct doc_priv *) (nand + 1);
1573 nand->bbt_td = (struct nand_bbt_descr *) (doc + 1);
1574 nand->bbt_md = nand->bbt_td + 1;
1575
1576 mtd->priv = nand;
1577 mtd->owner = THIS_MODULE;
1578
1579 nand->priv = doc;
1580 nand->select_chip = doc200x_select_chip;
1581 nand->cmd_ctrl = doc200x_hwcontrol;
1582 nand->dev_ready = doc200x_dev_ready;
1583 nand->waitfunc = doc200x_wait;
1584 nand->block_bad = doc200x_block_bad;
1585 nand->ecc.hwctl = doc200x_enable_hwecc;
1586 nand->ecc.calculate = doc200x_calculate_ecc;
1587 nand->ecc.correct = doc200x_correct_data;
1588
1589 nand->ecc.layout = &doc200x_oobinfo;
1590 nand->ecc.mode = NAND_ECC_HW_SYNDROME;
1591 nand->ecc.size = 512;
1592 nand->ecc.bytes = 6;
1593 nand->ecc.strength = 2;
1594 nand->bbt_options = NAND_BBT_USE_FLASH;
1595
1596 doc->physadr = physadr;
1597 doc->virtadr = virtadr;
1598 doc->ChipID = ChipID;
1599 doc->curfloor = -1;
1600 doc->curchip = -1;
1601 doc->mh0_page = -1;
1602 doc->mh1_page = -1;
1603 doc->nextdoc = doclist;
1604
1605 if (ChipID == DOC_ChipID_Doc2k)
1606 numchips = doc2000_init(mtd);
1607 else if (ChipID == DOC_ChipID_DocMilPlus16)
1608 numchips = doc2001plus_init(mtd);
1609 else
1610 numchips = doc2001_init(mtd);
1611
1612 if ((ret = nand_scan(mtd, numchips))) {
1613 /* DBB note: i believe nand_release is necessary here, as
1614 buffers may have been allocated in nand_base. Check with
1615 Thomas. FIX ME! */
1616 /* nand_release will call mtd_device_unregister, but we
1617 haven't yet added it. This is handled without incident by
1618 mtd_device_unregister, as far as I can tell. */
1619 nand_release(mtd);
1620 kfree(mtd);
1621 goto fail;
1622 }
1623
1624 /* Success! */
1625 doclist = mtd;
1626 return 0;
1627
1628 notfound:
1629 /* Put back the contents of the DOCControl register, in case it's not
1630 actually a DiskOnChip. */
1631 WriteDOC(save_control, virtadr, DOCControl);
1632 fail:
1633 iounmap(virtadr);
1634 return ret;
1635 }
1636
1637 static void release_nanddoc(void)
1638 {
1639 struct mtd_info *mtd, *nextmtd;
1640 struct nand_chip *nand;
1641 struct doc_priv *doc;
1642
1643 for (mtd = doclist; mtd; mtd = nextmtd) {
1644 nand = mtd->priv;
1645 doc = nand->priv;
1646
1647 nextmtd = doc->nextdoc;
1648 nand_release(mtd);
1649 iounmap(doc->virtadr);
1650 kfree(mtd);
1651 }
1652 }
1653
1654 static int __init init_nanddoc(void)
1655 {
1656 int i, ret = 0;
1657
1658 /* We could create the decoder on demand, if memory is a concern.
1659 * This way we have it handy, if an error happens
1660 *
1661 * Symbolsize is 10 (bits)
1662 * Primitve polynomial is x^10+x^3+1
1663 * first consecutive root is 510
1664 * primitve element to generate roots = 1
1665 * generator polinomial degree = 4
1666 */
1667 rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
1668 if (!rs_decoder) {
1669 printk(KERN_ERR "DiskOnChip: Could not create a RS decoder\n");
1670 return -ENOMEM;
1671 }
1672
1673 if (doc_config_location) {
1674 printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location);
1675 ret = doc_probe(doc_config_location);
1676 if (ret < 0)
1677 goto outerr;
1678 } else {
1679 for (i = 0; (doc_locations[i] != 0xffffffff); i++) {
1680 doc_probe(doc_locations[i]);
1681 }
1682 }
1683 /* No banner message any more. Print a message if no DiskOnChip
1684 found, so the user knows we at least tried. */
1685 if (!doclist) {
1686 printk(KERN_INFO "No valid DiskOnChip devices found\n");
1687 ret = -ENODEV;
1688 goto outerr;
1689 }
1690 return 0;
1691 outerr:
1692 free_rs(rs_decoder);
1693 return ret;
1694 }
1695
1696 static void __exit cleanup_nanddoc(void)
1697 {
1698 /* Cleanup the nand/DoC resources */
1699 release_nanddoc();
1700
1701 /* Free the reed solomon resources */
1702 if (rs_decoder) {
1703 free_rs(rs_decoder);
1704 }
1705 }
1706
1707 module_init(init_nanddoc);
1708 module_exit(cleanup_nanddoc);
1709
1710 MODULE_LICENSE("GPL");
1711 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
1712 MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver");
This page took 0.069128 seconds and 6 git commands to generate.