Merge tag 'for-linus-4.6-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / drivers / mtd / nand / docg4.c
1 /*
2 * Copyright © 2012 Mike Dunn <mikedunn@newsguy.com>
3 *
4 * mtd nand driver for M-Systems DiskOnChip G4
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * Tested on the Palm Treo 680. The G4 is also present on Toshiba Portege, Asus
12 * P526, some HTC smartphones (Wizard, Prophet, ...), O2 XDA Zinc, maybe others.
13 * Should work on these as well. Let me know!
14 *
15 * TODO:
16 *
17 * Mechanism for management of password-protected areas
18 *
19 * Hamming ecc when reading oob only
20 *
21 * According to the M-Sys documentation, this device is also available in a
22 * "dual-die" configuration having a 256MB capacity, but no mechanism for
23 * detecting this variant is documented. Currently this driver assumes 128MB
24 * capacity.
25 *
26 * Support for multiple cascaded devices ("floors"). Not sure which gadgets
27 * contain multiple G4s in a cascaded configuration, if any.
28 *
29 */
30
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
34 #include <linux/string.h>
35 #include <linux/sched.h>
36 #include <linux/delay.h>
37 #include <linux/module.h>
38 #include <linux/export.h>
39 #include <linux/platform_device.h>
40 #include <linux/io.h>
41 #include <linux/bitops.h>
42 #include <linux/mtd/partitions.h>
43 #include <linux/mtd/mtd.h>
44 #include <linux/mtd/nand.h>
45 #include <linux/bch.h>
46 #include <linux/bitrev.h>
47 #include <linux/jiffies.h>
48
49 /*
50 * In "reliable mode" consecutive 2k pages are used in parallel (in some
51 * fashion) to store the same data. The data can be read back from the
52 * even-numbered pages in the normal manner; odd-numbered pages will appear to
53 * contain junk. Systems that boot from the docg4 typically write the secondary
54 * program loader (SPL) code in this mode. The SPL is loaded by the initial
55 * program loader (IPL, stored in the docg4's 2k NOR-like region that is mapped
56 * to the reset vector address). This module parameter enables you to use this
57 * driver to write the SPL. When in this mode, no more than 2k of data can be
58 * written at a time, because the addresses do not increment in the normal
59 * manner, and the starting offset must be within an even-numbered 2k region;
60 * i.e., invalid starting offsets are 0x800, 0xa00, 0xc00, 0xe00, 0x1800,
61 * 0x1a00, ... Reliable mode is a special case and should not be used unless
62 * you know what you're doing.
63 */
64 static bool reliable_mode;
65 module_param(reliable_mode, bool, 0);
66 MODULE_PARM_DESC(reliable_mode, "pages are programmed in reliable mode");
67
68 /*
69 * You'll want to ignore badblocks if you're reading a partition that contains
70 * data written by the TrueFFS library (i.e., by PalmOS, Windows, etc), since
71 * it does not use mtd nand's method for marking bad blocks (using oob area).
72 * This will also skip the check of the "page written" flag.
73 */
74 static bool ignore_badblocks;
75 module_param(ignore_badblocks, bool, 0);
76 MODULE_PARM_DESC(ignore_badblocks, "no badblock checking performed");
77
78 struct docg4_priv {
79 struct mtd_info *mtd;
80 struct device *dev;
81 void __iomem *virtadr;
82 int status;
83 struct {
84 unsigned int command;
85 int column;
86 int page;
87 } last_command;
88 uint8_t oob_buf[16];
89 uint8_t ecc_buf[7];
90 int oob_page;
91 struct bch_control *bch;
92 };
93
94 /*
95 * Defines prefixed with DOCG4 are unique to the diskonchip G4. All others are
96 * shared with other diskonchip devices (P3, G3 at least).
97 *
98 * Functions with names prefixed with docg4_ are mtd / nand interface functions
99 * (though they may also be called internally). All others are internal.
100 */
101
102 #define DOC_IOSPACE_DATA 0x0800
103
104 /* register offsets */
105 #define DOC_CHIPID 0x1000
106 #define DOC_DEVICESELECT 0x100a
107 #define DOC_ASICMODE 0x100c
108 #define DOC_DATAEND 0x101e
109 #define DOC_NOP 0x103e
110
111 #define DOC_FLASHSEQUENCE 0x1032
112 #define DOC_FLASHCOMMAND 0x1034
113 #define DOC_FLASHADDRESS 0x1036
114 #define DOC_FLASHCONTROL 0x1038
115 #define DOC_ECCCONF0 0x1040
116 #define DOC_ECCCONF1 0x1042
117 #define DOC_HAMMINGPARITY 0x1046
118 #define DOC_BCH_SYNDROM(idx) (0x1048 + idx)
119
120 #define DOC_ASICMODECONFIRM 0x1072
121 #define DOC_CHIPID_INV 0x1074
122 #define DOC_POWERMODE 0x107c
123
124 #define DOCG4_MYSTERY_REG 0x1050
125
126 /* apparently used only to write oob bytes 6 and 7 */
127 #define DOCG4_OOB_6_7 0x1052
128
129 /* DOC_FLASHSEQUENCE register commands */
130 #define DOC_SEQ_RESET 0x00
131 #define DOCG4_SEQ_PAGE_READ 0x03
132 #define DOCG4_SEQ_FLUSH 0x29
133 #define DOCG4_SEQ_PAGEWRITE 0x16
134 #define DOCG4_SEQ_PAGEPROG 0x1e
135 #define DOCG4_SEQ_BLOCKERASE 0x24
136 #define DOCG4_SEQ_SETMODE 0x45
137
138 /* DOC_FLASHCOMMAND register commands */
139 #define DOCG4_CMD_PAGE_READ 0x00
140 #define DOC_CMD_ERASECYCLE2 0xd0
141 #define DOCG4_CMD_FLUSH 0x70
142 #define DOCG4_CMD_READ2 0x30
143 #define DOC_CMD_PROG_BLOCK_ADDR 0x60
144 #define DOCG4_CMD_PAGEWRITE 0x80
145 #define DOC_CMD_PROG_CYCLE2 0x10
146 #define DOCG4_CMD_FAST_MODE 0xa3 /* functionality guessed */
147 #define DOC_CMD_RELIABLE_MODE 0x22
148 #define DOC_CMD_RESET 0xff
149
150 /* DOC_POWERMODE register bits */
151 #define DOC_POWERDOWN_READY 0x80
152
153 /* DOC_FLASHCONTROL register bits */
154 #define DOC_CTRL_CE 0x10
155 #define DOC_CTRL_UNKNOWN 0x40
156 #define DOC_CTRL_FLASHREADY 0x01
157
158 /* DOC_ECCCONF0 register bits */
159 #define DOC_ECCCONF0_READ_MODE 0x8000
160 #define DOC_ECCCONF0_UNKNOWN 0x2000
161 #define DOC_ECCCONF0_ECC_ENABLE 0x1000
162 #define DOC_ECCCONF0_DATA_BYTES_MASK 0x07ff
163
164 /* DOC_ECCCONF1 register bits */
165 #define DOC_ECCCONF1_BCH_SYNDROM_ERR 0x80
166 #define DOC_ECCCONF1_ECC_ENABLE 0x07
167 #define DOC_ECCCONF1_PAGE_IS_WRITTEN 0x20
168
169 /* DOC_ASICMODE register bits */
170 #define DOC_ASICMODE_RESET 0x00
171 #define DOC_ASICMODE_NORMAL 0x01
172 #define DOC_ASICMODE_POWERDOWN 0x02
173 #define DOC_ASICMODE_MDWREN 0x04
174 #define DOC_ASICMODE_BDETCT_RESET 0x08
175 #define DOC_ASICMODE_RSTIN_RESET 0x10
176 #define DOC_ASICMODE_RAM_WE 0x20
177
178 /* good status values read after read/write/erase operations */
179 #define DOCG4_PROGSTATUS_GOOD 0x51
180 #define DOCG4_PROGSTATUS_GOOD_2 0xe0
181
182 /*
183 * On read operations (page and oob-only), the first byte read from I/O reg is a
184 * status. On error, it reads 0x73; otherwise, it reads either 0x71 (first read
185 * after reset only) or 0x51, so bit 1 is presumed to be an error indicator.
186 */
187 #define DOCG4_READ_ERROR 0x02 /* bit 1 indicates read error */
188
189 /* anatomy of the device */
190 #define DOCG4_CHIP_SIZE 0x8000000
191 #define DOCG4_PAGE_SIZE 0x200
192 #define DOCG4_PAGES_PER_BLOCK 0x200
193 #define DOCG4_BLOCK_SIZE (DOCG4_PAGES_PER_BLOCK * DOCG4_PAGE_SIZE)
194 #define DOCG4_NUMBLOCKS (DOCG4_CHIP_SIZE / DOCG4_BLOCK_SIZE)
195 #define DOCG4_OOB_SIZE 0x10
196 #define DOCG4_CHIP_SHIFT 27 /* log_2(DOCG4_CHIP_SIZE) */
197 #define DOCG4_PAGE_SHIFT 9 /* log_2(DOCG4_PAGE_SIZE) */
198 #define DOCG4_ERASE_SHIFT 18 /* log_2(DOCG4_BLOCK_SIZE) */
199
200 /* all but the last byte is included in ecc calculation */
201 #define DOCG4_BCH_SIZE (DOCG4_PAGE_SIZE + DOCG4_OOB_SIZE - 1)
202
203 #define DOCG4_USERDATA_LEN 520 /* 512 byte page plus 8 oob avail to user */
204
205 /* expected values from the ID registers */
206 #define DOCG4_IDREG1_VALUE 0x0400
207 #define DOCG4_IDREG2_VALUE 0xfbff
208
209 /* primitive polynomial used to build the Galois field used by hw ecc gen */
210 #define DOCG4_PRIMITIVE_POLY 0x4443
211
212 #define DOCG4_M 14 /* Galois field is of order 2^14 */
213 #define DOCG4_T 4 /* BCH alg corrects up to 4 bit errors */
214
215 #define DOCG4_FACTORY_BBT_PAGE 16 /* page where read-only factory bbt lives */
216 #define DOCG4_REDUNDANT_BBT_PAGE 24 /* page where redundant factory bbt lives */
217
218 /*
219 * Bytes 0, 1 are used as badblock marker.
220 * Bytes 2 - 6 are available to the user.
221 * Byte 7 is hamming ecc for first 7 oob bytes only.
222 * Bytes 8 - 14 are hw-generated ecc covering entire page + oob bytes 0 - 14.
223 * Byte 15 (the last) is used by the driver as a "page written" flag.
224 */
225 static struct nand_ecclayout docg4_oobinfo = {
226 .eccbytes = 9,
227 .eccpos = {7, 8, 9, 10, 11, 12, 13, 14, 15},
228 .oobfree = { {.offset = 2, .length = 5} }
229 };
230
231 /*
232 * The device has a nop register which M-Sys claims is for the purpose of
233 * inserting precise delays. But beware; at least some operations fail if the
234 * nop writes are replaced with a generic delay!
235 */
236 static inline void write_nop(void __iomem *docptr)
237 {
238 writew(0, docptr + DOC_NOP);
239 }
240
241 static void docg4_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
242 {
243 int i;
244 struct nand_chip *nand = mtd_to_nand(mtd);
245 uint16_t *p = (uint16_t *) buf;
246 len >>= 1;
247
248 for (i = 0; i < len; i++)
249 p[i] = readw(nand->IO_ADDR_R);
250 }
251
252 static void docg4_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
253 {
254 int i;
255 struct nand_chip *nand = mtd_to_nand(mtd);
256 uint16_t *p = (uint16_t *) buf;
257 len >>= 1;
258
259 for (i = 0; i < len; i++)
260 writew(p[i], nand->IO_ADDR_W);
261 }
262
263 static int poll_status(struct docg4_priv *doc)
264 {
265 /*
266 * Busy-wait for the FLASHREADY bit to be set in the FLASHCONTROL
267 * register. Operations known to take a long time (e.g., block erase)
268 * should sleep for a while before calling this.
269 */
270
271 uint16_t flash_status;
272 unsigned long timeo;
273 void __iomem *docptr = doc->virtadr;
274
275 dev_dbg(doc->dev, "%s...\n", __func__);
276
277 /* hardware quirk requires reading twice initially */
278 flash_status = readw(docptr + DOC_FLASHCONTROL);
279
280 timeo = jiffies + msecs_to_jiffies(200); /* generous timeout */
281 do {
282 cpu_relax();
283 flash_status = readb(docptr + DOC_FLASHCONTROL);
284 } while (!(flash_status & DOC_CTRL_FLASHREADY) &&
285 time_before(jiffies, timeo));
286
287 if (unlikely(!(flash_status & DOC_CTRL_FLASHREADY))) {
288 dev_err(doc->dev, "%s: timed out!\n", __func__);
289 return NAND_STATUS_FAIL;
290 }
291
292 return 0;
293 }
294
295
296 static int docg4_wait(struct mtd_info *mtd, struct nand_chip *nand)
297 {
298
299 struct docg4_priv *doc = nand_get_controller_data(nand);
300 int status = NAND_STATUS_WP; /* inverse logic?? */
301 dev_dbg(doc->dev, "%s...\n", __func__);
302
303 /* report any previously unreported error */
304 if (doc->status) {
305 status |= doc->status;
306 doc->status = 0;
307 return status;
308 }
309
310 status |= poll_status(doc);
311 return status;
312 }
313
314 static void docg4_select_chip(struct mtd_info *mtd, int chip)
315 {
316 /*
317 * Select among multiple cascaded chips ("floors"). Multiple floors are
318 * not yet supported, so the only valid non-negative value is 0.
319 */
320 struct nand_chip *nand = mtd_to_nand(mtd);
321 struct docg4_priv *doc = nand_get_controller_data(nand);
322 void __iomem *docptr = doc->virtadr;
323
324 dev_dbg(doc->dev, "%s: chip %d\n", __func__, chip);
325
326 if (chip < 0)
327 return; /* deselected */
328
329 if (chip > 0)
330 dev_warn(doc->dev, "multiple floors currently unsupported\n");
331
332 writew(0, docptr + DOC_DEVICESELECT);
333 }
334
335 static void reset(struct mtd_info *mtd)
336 {
337 /* full device reset */
338
339 struct nand_chip *nand = mtd_to_nand(mtd);
340 struct docg4_priv *doc = nand_get_controller_data(nand);
341 void __iomem *docptr = doc->virtadr;
342
343 writew(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN,
344 docptr + DOC_ASICMODE);
345 writew(~(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN),
346 docptr + DOC_ASICMODECONFIRM);
347 write_nop(docptr);
348
349 writew(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN,
350 docptr + DOC_ASICMODE);
351 writew(~(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN),
352 docptr + DOC_ASICMODECONFIRM);
353
354 writew(DOC_ECCCONF1_ECC_ENABLE, docptr + DOC_ECCCONF1);
355
356 poll_status(doc);
357 }
358
359 static void read_hw_ecc(void __iomem *docptr, uint8_t *ecc_buf)
360 {
361 /* read the 7 hw-generated ecc bytes */
362
363 int i;
364 for (i = 0; i < 7; i++) { /* hw quirk; read twice */
365 ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i));
366 ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i));
367 }
368 }
369
370 static int correct_data(struct mtd_info *mtd, uint8_t *buf, int page)
371 {
372 /*
373 * Called after a page read when hardware reports bitflips.
374 * Up to four bitflips can be corrected.
375 */
376
377 struct nand_chip *nand = mtd_to_nand(mtd);
378 struct docg4_priv *doc = nand_get_controller_data(nand);
379 void __iomem *docptr = doc->virtadr;
380 int i, numerrs, errpos[4];
381 const uint8_t blank_read_hwecc[8] = {
382 0xcf, 0x72, 0xfc, 0x1b, 0xa9, 0xc7, 0xb9, 0 };
383
384 read_hw_ecc(docptr, doc->ecc_buf); /* read 7 hw-generated ecc bytes */
385
386 /* check if read error is due to a blank page */
387 if (!memcmp(doc->ecc_buf, blank_read_hwecc, 7))
388 return 0; /* yes */
389
390 /* skip additional check of "written flag" if ignore_badblocks */
391 if (ignore_badblocks == false) {
392
393 /*
394 * If the hw ecc bytes are not those of a blank page, there's
395 * still a chance that the page is blank, but was read with
396 * errors. Check the "written flag" in last oob byte, which
397 * is set to zero when a page is written. If more than half
398 * the bits are set, assume a blank page. Unfortunately, the
399 * bit flips(s) are not reported in stats.
400 */
401
402 if (nand->oob_poi[15]) {
403 int bit, numsetbits = 0;
404 unsigned long written_flag = nand->oob_poi[15];
405 for_each_set_bit(bit, &written_flag, 8)
406 numsetbits++;
407 if (numsetbits > 4) { /* assume blank */
408 dev_warn(doc->dev,
409 "error(s) in blank page "
410 "at offset %08x\n",
411 page * DOCG4_PAGE_SIZE);
412 return 0;
413 }
414 }
415 }
416
417 /*
418 * The hardware ecc unit produces oob_ecc ^ calc_ecc. The kernel's bch
419 * algorithm is used to decode this. However the hw operates on page
420 * data in a bit order that is the reverse of that of the bch alg,
421 * requiring that the bits be reversed on the result. Thanks to Ivan
422 * Djelic for his analysis!
423 */
424 for (i = 0; i < 7; i++)
425 doc->ecc_buf[i] = bitrev8(doc->ecc_buf[i]);
426
427 numerrs = decode_bch(doc->bch, NULL, DOCG4_USERDATA_LEN, NULL,
428 doc->ecc_buf, NULL, errpos);
429
430 if (numerrs == -EBADMSG) {
431 dev_warn(doc->dev, "uncorrectable errors at offset %08x\n",
432 page * DOCG4_PAGE_SIZE);
433 return -EBADMSG;
434 }
435
436 BUG_ON(numerrs < 0); /* -EINVAL, or anything other than -EBADMSG */
437
438 /* undo last step in BCH alg (modulo mirroring not needed) */
439 for (i = 0; i < numerrs; i++)
440 errpos[i] = (errpos[i] & ~7)|(7-(errpos[i] & 7));
441
442 /* fix the errors */
443 for (i = 0; i < numerrs; i++) {
444
445 /* ignore if error within oob ecc bytes */
446 if (errpos[i] > DOCG4_USERDATA_LEN * 8)
447 continue;
448
449 /* if error within oob area preceeding ecc bytes... */
450 if (errpos[i] > DOCG4_PAGE_SIZE * 8)
451 change_bit(errpos[i] - DOCG4_PAGE_SIZE * 8,
452 (unsigned long *)nand->oob_poi);
453
454 else /* error in page data */
455 change_bit(errpos[i], (unsigned long *)buf);
456 }
457
458 dev_notice(doc->dev, "%d error(s) corrected at offset %08x\n",
459 numerrs, page * DOCG4_PAGE_SIZE);
460
461 return numerrs;
462 }
463
464 static uint8_t docg4_read_byte(struct mtd_info *mtd)
465 {
466 struct nand_chip *nand = mtd_to_nand(mtd);
467 struct docg4_priv *doc = nand_get_controller_data(nand);
468
469 dev_dbg(doc->dev, "%s\n", __func__);
470
471 if (doc->last_command.command == NAND_CMD_STATUS) {
472 int status;
473
474 /*
475 * Previous nand command was status request, so nand
476 * infrastructure code expects to read the status here. If an
477 * error occurred in a previous operation, report it.
478 */
479 doc->last_command.command = 0;
480
481 if (doc->status) {
482 status = doc->status;
483 doc->status = 0;
484 }
485
486 /* why is NAND_STATUS_WP inverse logic?? */
487 else
488 status = NAND_STATUS_WP | NAND_STATUS_READY;
489
490 return status;
491 }
492
493 dev_warn(doc->dev, "unexpected call to read_byte()\n");
494
495 return 0;
496 }
497
498 static void write_addr(struct docg4_priv *doc, uint32_t docg4_addr)
499 {
500 /* write the four address bytes packed in docg4_addr to the device */
501
502 void __iomem *docptr = doc->virtadr;
503 writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
504 docg4_addr >>= 8;
505 writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
506 docg4_addr >>= 8;
507 writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
508 docg4_addr >>= 8;
509 writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
510 }
511
512 static int read_progstatus(struct docg4_priv *doc)
513 {
514 /*
515 * This apparently checks the status of programming. Done after an
516 * erasure, and after page data is written. On error, the status is
517 * saved, to be later retrieved by the nand infrastructure code.
518 */
519 void __iomem *docptr = doc->virtadr;
520
521 /* status is read from the I/O reg */
522 uint16_t status1 = readw(docptr + DOC_IOSPACE_DATA);
523 uint16_t status2 = readw(docptr + DOC_IOSPACE_DATA);
524 uint16_t status3 = readw(docptr + DOCG4_MYSTERY_REG);
525
526 dev_dbg(doc->dev, "docg4: %s: %02x %02x %02x\n",
527 __func__, status1, status2, status3);
528
529 if (status1 != DOCG4_PROGSTATUS_GOOD
530 || status2 != DOCG4_PROGSTATUS_GOOD_2
531 || status3 != DOCG4_PROGSTATUS_GOOD_2) {
532 doc->status = NAND_STATUS_FAIL;
533 dev_warn(doc->dev, "read_progstatus failed: "
534 "%02x, %02x, %02x\n", status1, status2, status3);
535 return -EIO;
536 }
537 return 0;
538 }
539
540 static int pageprog(struct mtd_info *mtd)
541 {
542 /*
543 * Final step in writing a page. Writes the contents of its
544 * internal buffer out to the flash array, or some such.
545 */
546
547 struct nand_chip *nand = mtd_to_nand(mtd);
548 struct docg4_priv *doc = nand_get_controller_data(nand);
549 void __iomem *docptr = doc->virtadr;
550 int retval = 0;
551
552 dev_dbg(doc->dev, "docg4: %s\n", __func__);
553
554 writew(DOCG4_SEQ_PAGEPROG, docptr + DOC_FLASHSEQUENCE);
555 writew(DOC_CMD_PROG_CYCLE2, docptr + DOC_FLASHCOMMAND);
556 write_nop(docptr);
557 write_nop(docptr);
558
559 /* Just busy-wait; usleep_range() slows things down noticeably. */
560 poll_status(doc);
561
562 writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE);
563 writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND);
564 writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0);
565 write_nop(docptr);
566 write_nop(docptr);
567 write_nop(docptr);
568 write_nop(docptr);
569 write_nop(docptr);
570
571 retval = read_progstatus(doc);
572 writew(0, docptr + DOC_DATAEND);
573 write_nop(docptr);
574 poll_status(doc);
575 write_nop(docptr);
576
577 return retval;
578 }
579
580 static void sequence_reset(struct mtd_info *mtd)
581 {
582 /* common starting sequence for all operations */
583
584 struct nand_chip *nand = mtd_to_nand(mtd);
585 struct docg4_priv *doc = nand_get_controller_data(nand);
586 void __iomem *docptr = doc->virtadr;
587
588 writew(DOC_CTRL_UNKNOWN | DOC_CTRL_CE, docptr + DOC_FLASHCONTROL);
589 writew(DOC_SEQ_RESET, docptr + DOC_FLASHSEQUENCE);
590 writew(DOC_CMD_RESET, docptr + DOC_FLASHCOMMAND);
591 write_nop(docptr);
592 write_nop(docptr);
593 poll_status(doc);
594 write_nop(docptr);
595 }
596
597 static void read_page_prologue(struct mtd_info *mtd, uint32_t docg4_addr)
598 {
599 /* first step in reading a page */
600
601 struct nand_chip *nand = mtd_to_nand(mtd);
602 struct docg4_priv *doc = nand_get_controller_data(nand);
603 void __iomem *docptr = doc->virtadr;
604
605 dev_dbg(doc->dev,
606 "docg4: %s: g4 page %08x\n", __func__, docg4_addr);
607
608 sequence_reset(mtd);
609
610 writew(DOCG4_SEQ_PAGE_READ, docptr + DOC_FLASHSEQUENCE);
611 writew(DOCG4_CMD_PAGE_READ, docptr + DOC_FLASHCOMMAND);
612 write_nop(docptr);
613
614 write_addr(doc, docg4_addr);
615
616 write_nop(docptr);
617 writew(DOCG4_CMD_READ2, docptr + DOC_FLASHCOMMAND);
618 write_nop(docptr);
619 write_nop(docptr);
620
621 poll_status(doc);
622 }
623
624 static void write_page_prologue(struct mtd_info *mtd, uint32_t docg4_addr)
625 {
626 /* first step in writing a page */
627
628 struct nand_chip *nand = mtd_to_nand(mtd);
629 struct docg4_priv *doc = nand_get_controller_data(nand);
630 void __iomem *docptr = doc->virtadr;
631
632 dev_dbg(doc->dev,
633 "docg4: %s: g4 addr: %x\n", __func__, docg4_addr);
634 sequence_reset(mtd);
635
636 if (unlikely(reliable_mode)) {
637 writew(DOCG4_SEQ_SETMODE, docptr + DOC_FLASHSEQUENCE);
638 writew(DOCG4_CMD_FAST_MODE, docptr + DOC_FLASHCOMMAND);
639 writew(DOC_CMD_RELIABLE_MODE, docptr + DOC_FLASHCOMMAND);
640 write_nop(docptr);
641 }
642
643 writew(DOCG4_SEQ_PAGEWRITE, docptr + DOC_FLASHSEQUENCE);
644 writew(DOCG4_CMD_PAGEWRITE, docptr + DOC_FLASHCOMMAND);
645 write_nop(docptr);
646 write_addr(doc, docg4_addr);
647 write_nop(docptr);
648 write_nop(docptr);
649 poll_status(doc);
650 }
651
652 static uint32_t mtd_to_docg4_address(int page, int column)
653 {
654 /*
655 * Convert mtd address to format used by the device, 32 bit packed.
656 *
657 * Some notes on G4 addressing... The M-Sys documentation on this device
658 * claims that pages are 2K in length, and indeed, the format of the
659 * address used by the device reflects that. But within each page are
660 * four 512 byte "sub-pages", each with its own oob data that is
661 * read/written immediately after the 512 bytes of page data. This oob
662 * data contains the ecc bytes for the preceeding 512 bytes.
663 *
664 * Rather than tell the mtd nand infrastructure that page size is 2k,
665 * with four sub-pages each, we engage in a little subterfuge and tell
666 * the infrastructure code that pages are 512 bytes in size. This is
667 * done because during the course of reverse-engineering the device, I
668 * never observed an instance where an entire 2K "page" was read or
669 * written as a unit. Each "sub-page" is always addressed individually,
670 * its data read/written, and ecc handled before the next "sub-page" is
671 * addressed.
672 *
673 * This requires us to convert addresses passed by the mtd nand
674 * infrastructure code to those used by the device.
675 *
676 * The address that is written to the device consists of four bytes: the
677 * first two are the 2k page number, and the second is the index into
678 * the page. The index is in terms of 16-bit half-words and includes
679 * the preceeding oob data, so e.g., the index into the second
680 * "sub-page" is 0x108, and the full device address of the start of mtd
681 * page 0x201 is 0x00800108.
682 */
683 int g4_page = page / 4; /* device's 2K page */
684 int g4_index = (page % 4) * 0x108 + column/2; /* offset into page */
685 return (g4_page << 16) | g4_index; /* pack */
686 }
687
688 static void docg4_command(struct mtd_info *mtd, unsigned command, int column,
689 int page_addr)
690 {
691 /* handle standard nand commands */
692
693 struct nand_chip *nand = mtd_to_nand(mtd);
694 struct docg4_priv *doc = nand_get_controller_data(nand);
695 uint32_t g4_addr = mtd_to_docg4_address(page_addr, column);
696
697 dev_dbg(doc->dev, "%s %x, page_addr=%x, column=%x\n",
698 __func__, command, page_addr, column);
699
700 /*
701 * Save the command and its arguments. This enables emulation of
702 * standard flash devices, and also some optimizations.
703 */
704 doc->last_command.command = command;
705 doc->last_command.column = column;
706 doc->last_command.page = page_addr;
707
708 switch (command) {
709
710 case NAND_CMD_RESET:
711 reset(mtd);
712 break;
713
714 case NAND_CMD_READ0:
715 read_page_prologue(mtd, g4_addr);
716 break;
717
718 case NAND_CMD_STATUS:
719 /* next call to read_byte() will expect a status */
720 break;
721
722 case NAND_CMD_SEQIN:
723 if (unlikely(reliable_mode)) {
724 uint16_t g4_page = g4_addr >> 16;
725
726 /* writes to odd-numbered 2k pages are invalid */
727 if (g4_page & 0x01)
728 dev_warn(doc->dev,
729 "invalid reliable mode address\n");
730 }
731
732 write_page_prologue(mtd, g4_addr);
733
734 /* hack for deferred write of oob bytes */
735 if (doc->oob_page == page_addr)
736 memcpy(nand->oob_poi, doc->oob_buf, 16);
737 break;
738
739 case NAND_CMD_PAGEPROG:
740 pageprog(mtd);
741 break;
742
743 /* we don't expect these, based on review of nand_base.c */
744 case NAND_CMD_READOOB:
745 case NAND_CMD_READID:
746 case NAND_CMD_ERASE1:
747 case NAND_CMD_ERASE2:
748 dev_warn(doc->dev, "docg4_command: "
749 "unexpected nand command 0x%x\n", command);
750 break;
751
752 }
753 }
754
755 static int read_page(struct mtd_info *mtd, struct nand_chip *nand,
756 uint8_t *buf, int page, bool use_ecc)
757 {
758 struct docg4_priv *doc = nand_get_controller_data(nand);
759 void __iomem *docptr = doc->virtadr;
760 uint16_t status, edc_err, *buf16;
761 int bits_corrected = 0;
762
763 dev_dbg(doc->dev, "%s: page %08x\n", __func__, page);
764
765 writew(DOC_ECCCONF0_READ_MODE |
766 DOC_ECCCONF0_ECC_ENABLE |
767 DOC_ECCCONF0_UNKNOWN |
768 DOCG4_BCH_SIZE,
769 docptr + DOC_ECCCONF0);
770 write_nop(docptr);
771 write_nop(docptr);
772 write_nop(docptr);
773 write_nop(docptr);
774 write_nop(docptr);
775
776 /* the 1st byte from the I/O reg is a status; the rest is page data */
777 status = readw(docptr + DOC_IOSPACE_DATA);
778 if (status & DOCG4_READ_ERROR) {
779 dev_err(doc->dev,
780 "docg4_read_page: bad status: 0x%02x\n", status);
781 writew(0, docptr + DOC_DATAEND);
782 return -EIO;
783 }
784
785 dev_dbg(doc->dev, "%s: status = 0x%x\n", __func__, status);
786
787 docg4_read_buf(mtd, buf, DOCG4_PAGE_SIZE); /* read the page data */
788
789 /* this device always reads oob after page data */
790 /* first 14 oob bytes read from I/O reg */
791 docg4_read_buf(mtd, nand->oob_poi, 14);
792
793 /* last 2 read from another reg */
794 buf16 = (uint16_t *)(nand->oob_poi + 14);
795 *buf16 = readw(docptr + DOCG4_MYSTERY_REG);
796
797 write_nop(docptr);
798
799 if (likely(use_ecc == true)) {
800
801 /* read the register that tells us if bitflip(s) detected */
802 edc_err = readw(docptr + DOC_ECCCONF1);
803 edc_err = readw(docptr + DOC_ECCCONF1);
804 dev_dbg(doc->dev, "%s: edc_err = 0x%02x\n", __func__, edc_err);
805
806 /* If bitflips are reported, attempt to correct with ecc */
807 if (edc_err & DOC_ECCCONF1_BCH_SYNDROM_ERR) {
808 bits_corrected = correct_data(mtd, buf, page);
809 if (bits_corrected == -EBADMSG)
810 mtd->ecc_stats.failed++;
811 else
812 mtd->ecc_stats.corrected += bits_corrected;
813 }
814 }
815
816 writew(0, docptr + DOC_DATAEND);
817 if (bits_corrected == -EBADMSG) /* uncorrectable errors */
818 return 0;
819 return bits_corrected;
820 }
821
822
823 static int docg4_read_page_raw(struct mtd_info *mtd, struct nand_chip *nand,
824 uint8_t *buf, int oob_required, int page)
825 {
826 return read_page(mtd, nand, buf, page, false);
827 }
828
829 static int docg4_read_page(struct mtd_info *mtd, struct nand_chip *nand,
830 uint8_t *buf, int oob_required, int page)
831 {
832 return read_page(mtd, nand, buf, page, true);
833 }
834
835 static int docg4_read_oob(struct mtd_info *mtd, struct nand_chip *nand,
836 int page)
837 {
838 struct docg4_priv *doc = nand_get_controller_data(nand);
839 void __iomem *docptr = doc->virtadr;
840 uint16_t status;
841
842 dev_dbg(doc->dev, "%s: page %x\n", __func__, page);
843
844 docg4_command(mtd, NAND_CMD_READ0, nand->ecc.size, page);
845
846 writew(DOC_ECCCONF0_READ_MODE | DOCG4_OOB_SIZE, docptr + DOC_ECCCONF0);
847 write_nop(docptr);
848 write_nop(docptr);
849 write_nop(docptr);
850 write_nop(docptr);
851 write_nop(docptr);
852
853 /* the 1st byte from the I/O reg is a status; the rest is oob data */
854 status = readw(docptr + DOC_IOSPACE_DATA);
855 if (status & DOCG4_READ_ERROR) {
856 dev_warn(doc->dev,
857 "docg4_read_oob failed: status = 0x%02x\n", status);
858 return -EIO;
859 }
860
861 dev_dbg(doc->dev, "%s: status = 0x%x\n", __func__, status);
862
863 docg4_read_buf(mtd, nand->oob_poi, 16);
864
865 write_nop(docptr);
866 write_nop(docptr);
867 write_nop(docptr);
868 writew(0, docptr + DOC_DATAEND);
869 write_nop(docptr);
870
871 return 0;
872 }
873
874 static int docg4_erase_block(struct mtd_info *mtd, int page)
875 {
876 struct nand_chip *nand = mtd_to_nand(mtd);
877 struct docg4_priv *doc = nand_get_controller_data(nand);
878 void __iomem *docptr = doc->virtadr;
879 uint16_t g4_page;
880
881 dev_dbg(doc->dev, "%s: page %04x\n", __func__, page);
882
883 sequence_reset(mtd);
884
885 writew(DOCG4_SEQ_BLOCKERASE, docptr + DOC_FLASHSEQUENCE);
886 writew(DOC_CMD_PROG_BLOCK_ADDR, docptr + DOC_FLASHCOMMAND);
887 write_nop(docptr);
888
889 /* only 2 bytes of address are written to specify erase block */
890 g4_page = (uint16_t)(page / 4); /* to g4's 2k page addressing */
891 writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS);
892 g4_page >>= 8;
893 writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS);
894 write_nop(docptr);
895
896 /* start the erasure */
897 writew(DOC_CMD_ERASECYCLE2, docptr + DOC_FLASHCOMMAND);
898 write_nop(docptr);
899 write_nop(docptr);
900
901 usleep_range(500, 1000); /* erasure is long; take a snooze */
902 poll_status(doc);
903 writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE);
904 writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND);
905 writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0);
906 write_nop(docptr);
907 write_nop(docptr);
908 write_nop(docptr);
909 write_nop(docptr);
910 write_nop(docptr);
911
912 read_progstatus(doc);
913
914 writew(0, docptr + DOC_DATAEND);
915 write_nop(docptr);
916 poll_status(doc);
917 write_nop(docptr);
918
919 return nand->waitfunc(mtd, nand);
920 }
921
922 static int write_page(struct mtd_info *mtd, struct nand_chip *nand,
923 const uint8_t *buf, bool use_ecc)
924 {
925 struct docg4_priv *doc = nand_get_controller_data(nand);
926 void __iomem *docptr = doc->virtadr;
927 uint8_t ecc_buf[8];
928
929 dev_dbg(doc->dev, "%s...\n", __func__);
930
931 writew(DOC_ECCCONF0_ECC_ENABLE |
932 DOC_ECCCONF0_UNKNOWN |
933 DOCG4_BCH_SIZE,
934 docptr + DOC_ECCCONF0);
935 write_nop(docptr);
936
937 /* write the page data */
938 docg4_write_buf16(mtd, buf, DOCG4_PAGE_SIZE);
939
940 /* oob bytes 0 through 5 are written to I/O reg */
941 docg4_write_buf16(mtd, nand->oob_poi, 6);
942
943 /* oob byte 6 written to a separate reg */
944 writew(nand->oob_poi[6], docptr + DOCG4_OOB_6_7);
945
946 write_nop(docptr);
947 write_nop(docptr);
948
949 /* write hw-generated ecc bytes to oob */
950 if (likely(use_ecc == true)) {
951 /* oob byte 7 is hamming code */
952 uint8_t hamming = readb(docptr + DOC_HAMMINGPARITY);
953 hamming = readb(docptr + DOC_HAMMINGPARITY); /* 2nd read */
954 writew(hamming, docptr + DOCG4_OOB_6_7);
955 write_nop(docptr);
956
957 /* read the 7 bch bytes from ecc regs */
958 read_hw_ecc(docptr, ecc_buf);
959 ecc_buf[7] = 0; /* clear the "page written" flag */
960 }
961
962 /* write user-supplied bytes to oob */
963 else {
964 writew(nand->oob_poi[7], docptr + DOCG4_OOB_6_7);
965 write_nop(docptr);
966 memcpy(ecc_buf, &nand->oob_poi[8], 8);
967 }
968
969 docg4_write_buf16(mtd, ecc_buf, 8);
970 write_nop(docptr);
971 write_nop(docptr);
972 writew(0, docptr + DOC_DATAEND);
973 write_nop(docptr);
974
975 return 0;
976 }
977
978 static int docg4_write_page_raw(struct mtd_info *mtd, struct nand_chip *nand,
979 const uint8_t *buf, int oob_required, int page)
980 {
981 return write_page(mtd, nand, buf, false);
982 }
983
984 static int docg4_write_page(struct mtd_info *mtd, struct nand_chip *nand,
985 const uint8_t *buf, int oob_required, int page)
986 {
987 return write_page(mtd, nand, buf, true);
988 }
989
990 static int docg4_write_oob(struct mtd_info *mtd, struct nand_chip *nand,
991 int page)
992 {
993 /*
994 * Writing oob-only is not really supported, because MLC nand must write
995 * oob bytes at the same time as page data. Nonetheless, we save the
996 * oob buffer contents here, and then write it along with the page data
997 * if the same page is subsequently written. This allows user space
998 * utilities that write the oob data prior to the page data to work
999 * (e.g., nandwrite). The disdvantage is that, if the intention was to
1000 * write oob only, the operation is quietly ignored. Also, oob can get
1001 * corrupted if two concurrent processes are running nandwrite.
1002 */
1003
1004 /* note that bytes 7..14 are hw generated hamming/ecc and overwritten */
1005 struct docg4_priv *doc = nand_get_controller_data(nand);
1006 doc->oob_page = page;
1007 memcpy(doc->oob_buf, nand->oob_poi, 16);
1008 return 0;
1009 }
1010
1011 static int __init read_factory_bbt(struct mtd_info *mtd)
1012 {
1013 /*
1014 * The device contains a read-only factory bad block table. Read it and
1015 * update the memory-based bbt accordingly.
1016 */
1017
1018 struct nand_chip *nand = mtd_to_nand(mtd);
1019 struct docg4_priv *doc = nand_get_controller_data(nand);
1020 uint32_t g4_addr = mtd_to_docg4_address(DOCG4_FACTORY_BBT_PAGE, 0);
1021 uint8_t *buf;
1022 int i, block;
1023 __u32 eccfailed_stats = mtd->ecc_stats.failed;
1024
1025 buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL);
1026 if (buf == NULL)
1027 return -ENOMEM;
1028
1029 read_page_prologue(mtd, g4_addr);
1030 docg4_read_page(mtd, nand, buf, 0, DOCG4_FACTORY_BBT_PAGE);
1031
1032 /*
1033 * If no memory-based bbt was created, exit. This will happen if module
1034 * parameter ignore_badblocks is set. Then why even call this function?
1035 * For an unknown reason, block erase always fails if it's the first
1036 * operation after device power-up. The above read ensures it never is.
1037 * Ugly, I know.
1038 */
1039 if (nand->bbt == NULL) /* no memory-based bbt */
1040 goto exit;
1041
1042 if (mtd->ecc_stats.failed > eccfailed_stats) {
1043 /*
1044 * Whoops, an ecc failure ocurred reading the factory bbt.
1045 * It is stored redundantly, so we get another chance.
1046 */
1047 eccfailed_stats = mtd->ecc_stats.failed;
1048 docg4_read_page(mtd, nand, buf, 0, DOCG4_REDUNDANT_BBT_PAGE);
1049 if (mtd->ecc_stats.failed > eccfailed_stats) {
1050 dev_warn(doc->dev,
1051 "The factory bbt could not be read!\n");
1052 goto exit;
1053 }
1054 }
1055
1056 /*
1057 * Parse factory bbt and update memory-based bbt. Factory bbt format is
1058 * simple: one bit per block, block numbers increase left to right (msb
1059 * to lsb). Bit clear means bad block.
1060 */
1061 for (i = block = 0; block < DOCG4_NUMBLOCKS; block += 8, i++) {
1062 int bitnum;
1063 unsigned long bits = ~buf[i];
1064 for_each_set_bit(bitnum, &bits, 8) {
1065 int badblock = block + 7 - bitnum;
1066 nand->bbt[badblock / 4] |=
1067 0x03 << ((badblock % 4) * 2);
1068 mtd->ecc_stats.badblocks++;
1069 dev_notice(doc->dev, "factory-marked bad block: %d\n",
1070 badblock);
1071 }
1072 }
1073 exit:
1074 kfree(buf);
1075 return 0;
1076 }
1077
1078 static int docg4_block_markbad(struct mtd_info *mtd, loff_t ofs)
1079 {
1080 /*
1081 * Mark a block as bad. Bad blocks are marked in the oob area of the
1082 * first page of the block. The default scan_bbt() in the nand
1083 * infrastructure code works fine for building the memory-based bbt
1084 * during initialization, as does the nand infrastructure function that
1085 * checks if a block is bad by reading the bbt. This function replaces
1086 * the nand default because writes to oob-only are not supported.
1087 */
1088
1089 int ret, i;
1090 uint8_t *buf;
1091 struct nand_chip *nand = mtd_to_nand(mtd);
1092 struct docg4_priv *doc = nand_get_controller_data(nand);
1093 struct nand_bbt_descr *bbtd = nand->badblock_pattern;
1094 int page = (int)(ofs >> nand->page_shift);
1095 uint32_t g4_addr = mtd_to_docg4_address(page, 0);
1096
1097 dev_dbg(doc->dev, "%s: %08llx\n", __func__, ofs);
1098
1099 if (unlikely(ofs & (DOCG4_BLOCK_SIZE - 1)))
1100 dev_warn(doc->dev, "%s: ofs %llx not start of block!\n",
1101 __func__, ofs);
1102
1103 /* allocate blank buffer for page data */
1104 buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL);
1105 if (buf == NULL)
1106 return -ENOMEM;
1107
1108 /* write bit-wise negation of pattern to oob buffer */
1109 memset(nand->oob_poi, 0xff, mtd->oobsize);
1110 for (i = 0; i < bbtd->len; i++)
1111 nand->oob_poi[bbtd->offs + i] = ~bbtd->pattern[i];
1112
1113 /* write first page of block */
1114 write_page_prologue(mtd, g4_addr);
1115 docg4_write_page(mtd, nand, buf, 1, page);
1116 ret = pageprog(mtd);
1117
1118 kfree(buf);
1119
1120 return ret;
1121 }
1122
1123 static int docg4_block_neverbad(struct mtd_info *mtd, loff_t ofs)
1124 {
1125 /* only called when module_param ignore_badblocks is set */
1126 return 0;
1127 }
1128
1129 static int docg4_suspend(struct platform_device *pdev, pm_message_t state)
1130 {
1131 /*
1132 * Put the device into "deep power-down" mode. Note that CE# must be
1133 * deasserted for this to take effect. The xscale, e.g., can be
1134 * configured to float this signal when the processor enters power-down,
1135 * and a suitable pull-up ensures its deassertion.
1136 */
1137
1138 int i;
1139 uint8_t pwr_down;
1140 struct docg4_priv *doc = platform_get_drvdata(pdev);
1141 void __iomem *docptr = doc->virtadr;
1142
1143 dev_dbg(doc->dev, "%s...\n", __func__);
1144
1145 /* poll the register that tells us we're ready to go to sleep */
1146 for (i = 0; i < 10; i++) {
1147 pwr_down = readb(docptr + DOC_POWERMODE);
1148 if (pwr_down & DOC_POWERDOWN_READY)
1149 break;
1150 usleep_range(1000, 4000);
1151 }
1152
1153 if (pwr_down & DOC_POWERDOWN_READY) {
1154 dev_err(doc->dev, "suspend failed; "
1155 "timeout polling DOC_POWERDOWN_READY\n");
1156 return -EIO;
1157 }
1158
1159 writew(DOC_ASICMODE_POWERDOWN | DOC_ASICMODE_MDWREN,
1160 docptr + DOC_ASICMODE);
1161 writew(~(DOC_ASICMODE_POWERDOWN | DOC_ASICMODE_MDWREN),
1162 docptr + DOC_ASICMODECONFIRM);
1163
1164 write_nop(docptr);
1165
1166 return 0;
1167 }
1168
1169 static int docg4_resume(struct platform_device *pdev)
1170 {
1171
1172 /*
1173 * Exit power-down. Twelve consecutive reads of the address below
1174 * accomplishes this, assuming CE# has been asserted.
1175 */
1176
1177 struct docg4_priv *doc = platform_get_drvdata(pdev);
1178 void __iomem *docptr = doc->virtadr;
1179 int i;
1180
1181 dev_dbg(doc->dev, "%s...\n", __func__);
1182
1183 for (i = 0; i < 12; i++)
1184 readb(docptr + 0x1fff);
1185
1186 return 0;
1187 }
1188
1189 static void __init init_mtd_structs(struct mtd_info *mtd)
1190 {
1191 /* initialize mtd and nand data structures */
1192
1193 /*
1194 * Note that some of the following initializations are not usually
1195 * required within a nand driver because they are performed by the nand
1196 * infrastructure code as part of nand_scan(). In this case they need
1197 * to be initialized here because we skip call to nand_scan_ident() (the
1198 * first half of nand_scan()). The call to nand_scan_ident() is skipped
1199 * because for this device the chip id is not read in the manner of a
1200 * standard nand device. Unfortunately, nand_scan_ident() does other
1201 * things as well, such as call nand_set_defaults().
1202 */
1203
1204 struct nand_chip *nand = mtd_to_nand(mtd);
1205 struct docg4_priv *doc = nand_get_controller_data(nand);
1206
1207 mtd->size = DOCG4_CHIP_SIZE;
1208 mtd->name = "Msys_Diskonchip_G4";
1209 mtd->writesize = DOCG4_PAGE_SIZE;
1210 mtd->erasesize = DOCG4_BLOCK_SIZE;
1211 mtd->oobsize = DOCG4_OOB_SIZE;
1212 nand->chipsize = DOCG4_CHIP_SIZE;
1213 nand->chip_shift = DOCG4_CHIP_SHIFT;
1214 nand->bbt_erase_shift = nand->phys_erase_shift = DOCG4_ERASE_SHIFT;
1215 nand->chip_delay = 20;
1216 nand->page_shift = DOCG4_PAGE_SHIFT;
1217 nand->pagemask = 0x3ffff;
1218 nand->badblockpos = NAND_LARGE_BADBLOCK_POS;
1219 nand->badblockbits = 8;
1220 nand->ecc.layout = &docg4_oobinfo;
1221 nand->ecc.mode = NAND_ECC_HW_SYNDROME;
1222 nand->ecc.size = DOCG4_PAGE_SIZE;
1223 nand->ecc.prepad = 8;
1224 nand->ecc.bytes = 8;
1225 nand->ecc.strength = DOCG4_T;
1226 nand->options = NAND_BUSWIDTH_16 | NAND_NO_SUBPAGE_WRITE;
1227 nand->IO_ADDR_R = nand->IO_ADDR_W = doc->virtadr + DOC_IOSPACE_DATA;
1228 nand->controller = &nand->hwcontrol;
1229 spin_lock_init(&nand->controller->lock);
1230 init_waitqueue_head(&nand->controller->wq);
1231
1232 /* methods */
1233 nand->cmdfunc = docg4_command;
1234 nand->waitfunc = docg4_wait;
1235 nand->select_chip = docg4_select_chip;
1236 nand->read_byte = docg4_read_byte;
1237 nand->block_markbad = docg4_block_markbad;
1238 nand->read_buf = docg4_read_buf;
1239 nand->write_buf = docg4_write_buf16;
1240 nand->erase = docg4_erase_block;
1241 nand->ecc.read_page = docg4_read_page;
1242 nand->ecc.write_page = docg4_write_page;
1243 nand->ecc.read_page_raw = docg4_read_page_raw;
1244 nand->ecc.write_page_raw = docg4_write_page_raw;
1245 nand->ecc.read_oob = docg4_read_oob;
1246 nand->ecc.write_oob = docg4_write_oob;
1247
1248 /*
1249 * The way the nand infrastructure code is written, a memory-based bbt
1250 * is not created if NAND_SKIP_BBTSCAN is set. With no memory bbt,
1251 * nand->block_bad() is used. So when ignoring bad blocks, we skip the
1252 * scan and define a dummy block_bad() which always returns 0.
1253 */
1254 if (ignore_badblocks) {
1255 nand->options |= NAND_SKIP_BBTSCAN;
1256 nand->block_bad = docg4_block_neverbad;
1257 }
1258
1259 }
1260
1261 static int __init read_id_reg(struct mtd_info *mtd)
1262 {
1263 struct nand_chip *nand = mtd_to_nand(mtd);
1264 struct docg4_priv *doc = nand_get_controller_data(nand);
1265 void __iomem *docptr = doc->virtadr;
1266 uint16_t id1, id2;
1267
1268 /* check for presence of g4 chip by reading id registers */
1269 id1 = readw(docptr + DOC_CHIPID);
1270 id1 = readw(docptr + DOCG4_MYSTERY_REG);
1271 id2 = readw(docptr + DOC_CHIPID_INV);
1272 id2 = readw(docptr + DOCG4_MYSTERY_REG);
1273
1274 if (id1 == DOCG4_IDREG1_VALUE && id2 == DOCG4_IDREG2_VALUE) {
1275 dev_info(doc->dev,
1276 "NAND device: 128MiB Diskonchip G4 detected\n");
1277 return 0;
1278 }
1279
1280 return -ENODEV;
1281 }
1282
1283 static char const *part_probes[] = { "cmdlinepart", "saftlpart", NULL };
1284
1285 static int __init probe_docg4(struct platform_device *pdev)
1286 {
1287 struct mtd_info *mtd;
1288 struct nand_chip *nand;
1289 void __iomem *virtadr;
1290 struct docg4_priv *doc;
1291 int len, retval;
1292 struct resource *r;
1293 struct device *dev = &pdev->dev;
1294
1295 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1296 if (r == NULL) {
1297 dev_err(dev, "no io memory resource defined!\n");
1298 return -ENODEV;
1299 }
1300
1301 virtadr = ioremap(r->start, resource_size(r));
1302 if (!virtadr) {
1303 dev_err(dev, "Diskonchip ioremap failed: %pR\n", r);
1304 return -EIO;
1305 }
1306
1307 len = sizeof(struct nand_chip) + sizeof(struct docg4_priv);
1308 nand = kzalloc(len, GFP_KERNEL);
1309 if (nand == NULL) {
1310 retval = -ENOMEM;
1311 goto fail_unmap;
1312 }
1313
1314 mtd = nand_to_mtd(nand);
1315 doc = (struct docg4_priv *) (nand + 1);
1316 nand_set_controller_data(nand, doc);
1317 mtd->dev.parent = &pdev->dev;
1318 doc->virtadr = virtadr;
1319 doc->dev = dev;
1320
1321 init_mtd_structs(mtd);
1322
1323 /* initialize kernel bch algorithm */
1324 doc->bch = init_bch(DOCG4_M, DOCG4_T, DOCG4_PRIMITIVE_POLY);
1325 if (doc->bch == NULL) {
1326 retval = -EINVAL;
1327 goto fail;
1328 }
1329
1330 platform_set_drvdata(pdev, doc);
1331
1332 reset(mtd);
1333 retval = read_id_reg(mtd);
1334 if (retval == -ENODEV) {
1335 dev_warn(dev, "No diskonchip G4 device found.\n");
1336 goto fail;
1337 }
1338
1339 retval = nand_scan_tail(mtd);
1340 if (retval)
1341 goto fail;
1342
1343 retval = read_factory_bbt(mtd);
1344 if (retval)
1345 goto fail;
1346
1347 retval = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
1348 if (retval)
1349 goto fail;
1350
1351 doc->mtd = mtd;
1352 return 0;
1353
1354 fail:
1355 nand_release(mtd); /* deletes partitions and mtd devices */
1356 free_bch(doc->bch);
1357 kfree(nand);
1358
1359 fail_unmap:
1360 iounmap(virtadr);
1361
1362 return retval;
1363 }
1364
1365 static int __exit cleanup_docg4(struct platform_device *pdev)
1366 {
1367 struct docg4_priv *doc = platform_get_drvdata(pdev);
1368 nand_release(doc->mtd);
1369 free_bch(doc->bch);
1370 kfree(mtd_to_nand(doc->mtd));
1371 iounmap(doc->virtadr);
1372 return 0;
1373 }
1374
1375 static struct platform_driver docg4_driver = {
1376 .driver = {
1377 .name = "docg4",
1378 },
1379 .suspend = docg4_suspend,
1380 .resume = docg4_resume,
1381 .remove = __exit_p(cleanup_docg4),
1382 };
1383
1384 module_platform_driver_probe(docg4_driver, probe_docg4);
1385
1386 MODULE_LICENSE("GPL");
1387 MODULE_AUTHOR("Mike Dunn");
1388 MODULE_DESCRIPTION("M-Systems DiskOnChip G4 device driver");
This page took 0.058386 seconds and 5 git commands to generate.